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Abstract
Several omnibus tests of the proportional hazards assumption have

been proposed in the literature. In the two-sample case, tests have also
been developed against ordered alternatives like monotone hazard ra-
tio and monotone ratio of cumulative hazards. Here we propose a
natural extension of these partial orders to the case of continuous co-
variates. The work is motivated by applications in biomedicine and
economics where covariate e¤ects often decay over lifetime. We de-
velop tests for the proportional hazards assumption against ordered
alternatives and propose a graphical method to identify the nature
of departures from proportionality. The proposed tests do not make
restrictive assumptions on the underlying regression model, and are
applicable in the presence of multiple covariates and frailty. Small
sample performance and applications to real data highlight the use-
fulness of the framework and methodology.
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1 Introduction
The Cox regression model (Cox, 1972) plays a very prominent role in the the-
ory and practice of survival analysis. Indeed, the model, and more generally
the proportional hazards (PH) model, provides a convenient way to evaluate
the in‡uence of one or several covariates on the probability of termination of
lifetime or duration spells. However, the PH speci…cation substantially re-
stricts interdependence between the explanatory variables and the lifetime in
determining the hazard. In particular, the Cox PH model restricts coe¢cients
of the regressors in the logarithm of the hazard function to be constant over
the lifetime. This may not hold in many situations, or may even be unreason-
able from the point of view of relevant theory. Since such misspeci…cations
lead to misleading inferences about the e¤ects of explanatory variables and
shape of the baseline hazard, testing the PH assumption has been an area of
active research.

Most of the analytical tests are either omnibus tests or tests in which the
PH model is embedded in a larger class of semiparametric models. However,
many of these tests are not satisfactory. While the omnibus tests usually
have low power, the semiparametric alternatives typically make unveri…able
assumptions about the shape of the regression function. Further, when the
PH assumption does not hold, applied researchers require additional infor-
mation regarding the nature of the covariate e¤ects. In this context, it is
often useful to explore whether the hazard rate for one level of the covariate
increases in lifetime relative to another level, particularly when the covariate
is discrete (two-sample or -sample setup).1

In the two-sample setup, Gill and Schumacher (1987) and Deshpande and
Sengupta (1995) developed analytical tests of the PH hypothesis against the
alternative of ‘increasing hazard ratio’, which is equivalent to convex partial
order of the lifetime distribution in the two samples.2 Under the same setup,
Sengupta et al. (1998) proposed a test of the PH model against the weaker al-
ternative hypothesis of ‘increasing ratio of cumulative hazards’ (star ordering
of the two samples). The above alternative hypotheses (‘increasing hazard
ratio’ and ‘increasing ratio of cumulative hazards’) provide explanations for
the phenomenon of ‘crossing hazards’ often found in applications.

These two-sample tests are useful for analysing survival data because,
not only are they powerful in detecting departures from proportionality, they
also provide further clues about the nature of covariate dependence. However,

1This kind of situation could arise, for example, if the coe¢cient of the covariate is not
constant over time, or is dependent on some other (possibly unobserved) covariate.

2Throughout this paper, the word ‘increasing’ means ‘non-decreasing’, and ‘decreasing’
means ‘non-increasing’.
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their applicability is limited because many important covariates in biomedical
or economic applications are continuous in nature (Horowitz and Neumann,
1992).

In this paper, we extend partial orders in the above two-sample problems
to the case of continuous covariates. Based on examples from the applied lit-
erature as well as new applications, we argue that similar ordered departures
are also common in the case of continuous covariates and provide meaningful
alternatives to the PH model. We propose tests of the PH model against such
ordered departures and study their asymptotic properties. Our framework
does not assume any speci…c underlying regression model, and the tests are
applicable in the presence of additional covariates – observed or unobserved.
Monte Carlo studies and applications to real data highlight the advantages
of the proposed methods.

In Section 2, we develop notions of ordered alternatives to the PH model
in the case of continuous covariates. Tests of the PH assumption against
such partial orders are constructed and their asymptotic properties studied in
Section 3, and issues regarding implementation and extensions are discussed
in Section 4. Small sample properties are studied in Section 5, while two real
life applications are presented in Section 6. We also discuss modeling non-
proportional covariate e¤ects and develop a related graphical test. Section 7
concludes.

2 Partial orders with respect to a continuous
covariate

Partial orders of lifetime distributions are commonly used in theory and
applications. The two most popular notions of partial ordering, namely con-
vex ordering and star ordering (Kalashnikov and Rachev, 1986; Sengupta
and Deshpande, 1994), o¤er useful interpretations in terms of monotonicity
of ratios of hazard and cumulative hazard functions respectively over time.
Therefore, they describe useful and intuitively appealing ways to characterise
departures from the PH model in two samples and in the competing risks
framework. Gill and Schumacher (1987), Deshpande and Sengupta (1995)
and Sengupta et al. (1998) consider several empirical applications where the
departure from the PH model in two samples is evident from the fact that the
ratio of the hazard rates is not constant over the lifetime; see also Andersen
(1998).

For the two-sample setup, Gill and Schumacher (1987) and Deshpande
and Sengupta (1995) developed tests of the PH model against the “increas-
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ing hazard ratio” alternative, which is equivalent to convex ordering of the
life-time distribution in one sample with respect to the other. Sengupta et
al. (1998) constructed a test against the weaker alternative hypothesis of
“increasing ratio of cumulative hazards” (star ordering of the two samples).3

The following de…nitions describe natural extensions of the above partial
orders to the continuous covariate case. Let  be a lifetime variable,  a
continuous covariate and let (j) denote the hazard rate of  , given  = ,
at  = .4

De…nition 1. The lifetime random variable  is de…ned to be increasing
hazard ratio for continuous covariate ( ) with respect to the covariate
 if, whenever 1  2, (j1)(j2) " . In other words, the lifetime
distribution conditional on the lower covariate value is convex ordered with
respect to that conditional on the higher value:

( j = 1) Á

( j = 2)

The dual decreasing hazard ratio for continuous covariate () is
correspondingly de…ned.
De…nition 2. The lifetime random variable  is de…ned to be increasing
cumulative hazard ratio for continuous covariate ( ) with respect
to  if, whenever 1  2,

¤( j1)¤(j2) "  ( ´ ( j = 1) Á
¤
( j = 2)

where Á
¤

denotes star ordering of the conditional lifetime distributions. The

dual decreasing cumulative hazard ratio for continuous covariate ()
is correspondingly de…ned.
De…nition 3. The lifetime random variable  is de…ned to be increasing then
decreasing hazard ratio for continuous covariate ( ) with respect
to the covariate  if, there exists a point  within the range of  such
that,  is  on the interval (¡1 ) and  on the interval
(1). Similarly, we can de…ne decreasing then increasing hazard ratio for
continuous covariate ().

De…nitions 1 and 2 describe notions of positive ageing with respect to a
continuous covariate. The higher the covariate, the faster the ageing of the
individual – a situation which is common in empirical studies. In biomedical

3Sengupta and Bhattacharjee (1994), Deshpande and Sengupta (1995) and Dauxois
and Kirmani (2004) extend these tests to the competing risks problem.

4See Fleming and Harrington (1991) for related discussion.
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applications, such monotonically time-dependant covariate e¤ects have been
discussed both under additive hazard models (Aalen, 1980; Mau, 1986) and
multiplicative models (Anderson and Senthilselvan, 1982; Andersen et al.,
1993).

Examples of such partial orders are common in applications. For example,
while analysing of survival with malignant melanoma, Andersen et al. (1993)
observe that, while “hazard seems to increase with tumor thickness” (pp.
389), the plot of estimated cumulative baseline hazards for patients with
‘2mm · tumor thickness  5mm’ and ‘tumor thickness ¸ 5mm’ against that
of patients with ‘tumor thickness  2mm’ reveal “concave looking curves
indicating that the hazard ratios decrease with time” (pp. 544–545). In
fact, it is commonly observed in medical settings that treatment e¤ects of
an active drug decays with time (Therneau and Grambsch, 2000; Scheike
and Martinussen, 2004). Similar evidence has also been noted in the applied
econometrics literature. Using French data on unemplyment durations, Jayet
and Moreau (1991) observe that the ratio of hazard function for individuals
in the age groups 24–28 years to that for 37–40 years increases with duration
of unemployment upto approximately 120 days.

De…nition 3 describes a notion of non-monotonic departure from the PH
model, with respect to the e¤ect of a continuous covariate. An application
considered later in the paper demonstrate evidence of such non-monotonic
departures. The following examples illustrate some simple data generation
processes (DGPs) that generate monotone and non-monotonic departures
from the PH assumption with respect to a continuous covariate.

Example 1. Consider a hazard regression model with time varying coe¢-
cients (Murphy and Sen, 1991; Martinussen et al., 2002), with the hazard
function (j) = 0() exp(()), where  is a continuous covariate and
() is an increasing function of lifetime . This model is appropriate when
the in‡uence (prognostic value) of the covariate is expected to be higher at
higher lifetimes. Then, if 1  2, (j1)(j2) = exp(()(1 ¡ 2)) is
increasing in . In other words, the lifetime random variable  is 
with respect to the covariate . Conversely, if () is an decreasing function
of the lifetime,  would be  with respect to , a feature commonly
observed in empirical studies.
Example 2. Consider a changepoint survival model given by the cumulative
hazard function ¤(j) = ¤0() exp( (  ¤) ), where  is the covariate,
() the indicator function, and ¤ is a lifetime in the interior of the sample
space. This is a model where initially the covariate has no e¤ect on the
lifetime. The e¤ect of the covariate begins as soon as the lifetime crosses a
certain threshold ¤, and it lifts the distribution function upto a level where
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it would have been, if the e¤ect of the covariate would have persisted over the
entire past life of the lifetime variable. If   0, this model is , but
not .5 This kind of model may be useful in analysing the e¤ect of ac-
tive labour market programmes on unemployment duration, where the e¤ect
may become signi…cant only around the time when unemployment bene…ts
are terminated; see, for example, Narendranathan and Stewart (1993).
Example 3. Consider the hazard function (j) = 0() exp(() j ¡ j),
where  is the covariate,  is a point on the covariate space, and () is an
increasing function of lifetime . This model is neither  nor,
but it is; it is  on one region of the covariate space (  ),
and  on another region (  ). An application where such a
feature is observed is the e¤ect on mother’s age on infant mortality. Because
of physiological reasons, mortality is lowest around an optimal childbearing
age; however, keeping mother’s age …xed, the e¤ect itself declines with age
of the child (Bhalotra and Bhattacharjee, 2001). Another application is
considered later in the paper (Section 6).

As the above examples illustrate, the notions of ordering introduced in
De…nitions 1, 2 and 3 encompass a wide range of non-PH situations, and are
potentially useful in many empirical applications. There may be a number
of di¤erent explanations for changes in the covariate e¤ects over lifetime. In
fact, in many applications, monotone departures from the PH model may
be more reasonable even from a theoretical point of view. Examples include
medical applications where one expects the prognostic relevance of some co-
variates to decay, or even disappear, in the long run (Pocock et al., 1982;
Therneau and Grambsch, 2000). Similar decline in covariate e¤ects are ob-
served in economic studies on the e¤ect of bene…ts on unemployment dura-
tion (Narendranathan and Stewart, 1993) and on the e¤ect of macroeconomic
conditions on …rm exits (Bhattacharjee et al., 2007). Construction of tests
of the PH model against monotone alternatives with respect to continuous
covariates is therefore important.

The above examples also demonstrate typical patterns of time varying
coe¢cients when proportionality does not hold. These are useful for mod-
eling ordered departures ( or ) as well as non-monotonic
violations ( or ) of the PH assumption. Using the em-
pirical applications (Section 6), we will demonstrate how such time varying
covariate e¤ects can be used, in combination with the proposed tests, to draw
useful inferences in non-PH situations.

5The distribution function here has a jump discontinuity, but one can construct exam-
ples where  holds, and the distribution function is absolutely continuous.
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3 Test statistics
Several two-sample tests of the PH model against monotone alternatives exist
in the literature. For a continuous covariate, a natural approach for testing
the PH assumption against ordered alternatives  and  (and
their duals) would be repeated applications of the corresponding tests in the
two-sample setup. In this paper, we consider the two-sample test statistics
proposed in Gill and Schumacher (1987) () and Sengupta et al. (1998)
().

Taking this approach, we propose a simple construction of our tests as
follows. First, we …x a positive integer   1, and randomly select  pairs of
distinct points on the covariate space. Next, for each pair, we construct the
two-sample standardised test statistics ( and ) based on counting
processes conditional on the two distinct covariate values. Finally, our test
statistics are constructed by taking maxima, minima or average of these basic
test statistics over the  pairs.

3.1 Monotone hazard ratio
For the alternative of ‘increasing hazard ratio’ (convex partial order) in two
samples, Gill and Schumacher (1987) propose the test statistic

 =
q

dVar []
 (1)

where

 = 1122 ¡ 1221 (2)
dVar [] = 212211 ¡ 211212 ¡ 112221 + 111222 (3)

 =
Z 

0
()b¤() (  = 1 2)

 =
Z 

0
()()f1()2()g¡1 (1 +2) () (  = 1 2)

 is a random stopping time,6 1() and 2() are two predictable processes,
and for the -th sample ( = 1 2), ¤() is the cumulative hazard function
and b¤() its Nelson-Aalen estimator, () denotes the number of individuals
on test at time , and () the counting process for the number of failures
in the sample at time .

6For example,  may be taken as the time at the …nal observation in the combined
sample.
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Gill and Schumacher (1987) show that the unstandardised test statistic
() has mean zero under the null hypothesis (PH) and positive (negative)
mean if the hazard ratio 1()2() is monotonically increasing (decreasing)
in  on [01) and 1() and 2() are so chosen that 1()2() is monoton-
ically decreasing, and that its standard error falls to zero as sample size
increases to 1 under both the null and alternative hypotheses. Hence, while
the standardized test statistic  is asymptotically standard normal un-
der the null hypothesis, the mean increases (decreases) to 1 (¡1) under the
alternative hypotheses of monotonically increasing (decreasing) hazard ratio.
In many applications, 1 and 2 are chosen corresponding to the Gehan-
Wilkoxon and log rank tests, where 1 = 12 and 2 = 12(1 + 2)

¡1, so
that 1()2() is monotonically decreasing in .

For testing 0 :  vs. 1 : , we propose the following proce-
dure. We …x   1, and select 2 distinct points f11 21     1 12 22     2g
on the covariate space X , such that 2  1  = 1     . We then con-
struct our test statistics  (max)   (min) and  based on the  statistics
(1 2)  = 1      (each testing convexity with respect to the pair
of counting processes  ( 1) and  ( 2)), where

(1 2) =
(1 2)q

dVar [(1 2)]


(1 2) = 1122 ¡ 1221
dVar [(1 2)] = 212211 ¡ 211212 ¡ 112221 + 111222

 =
Z 

0
(1 2)()b¤( )

and

 =
Z 

0
(1 2)()(1 2)()

 [( 1) +( 2)]
 ( 1) ( 2)

for   = 1 2.
Therefore, our test statistics are:

 (max) = max f(11 12) (21 22)     (1 2)g  (4)

 (min) = min f(11 12) (21 22)     (1 2)g  (5)

and

 =
1


X

=1

(1 2) (6)
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For the choice of 1 and 2 mentioned above, these statistics are close
to zero under the null hypothesis. Under the alternative hypothesis ,
 and  (max) increases to 1 as sample size increases, while under,
 and  (min) decreases to ¡1. Under  or ,  (max) and
 (min) will both diverge, to 1 and ¡1 respectively, as sample size increases
to 1.

3.2 Monotone cumulative hazard ratio
The form of the test statistic proposed by Sengupta et al. (1998), for testing
the proportional hazards model against the ‘increasing cumulative hazard
ratio’ (star partial order) alternative, is similar to , and given by

 =
q

dVar []
 (7)

where

 = 1122 ¡ 1221 (8)
dVar [] = 212211 ¡ 211212 ¡ 112221 + 111222 (9)

 =
Z ¤

0
()b¤() (  = 1 2)

 =
Z ¤

0

Z ¤

0
()()() (min( ))  (  = 1 2)

 () =
Z 

0
(1()2())

¡1 (1 +2) ()

 ¤ is a large lifetime with ¤(¤)  1  = 1 27 and ()( = 1 2) are
right continuous functions with left limits (rcll functions) that need not be
predictable processes.

This standardised test statistic is also asymptotically standard normal
under the null hypothesis of proportional hazards, and asymptotically normal
with mean diversing to 1 (¡1) accordingly as the cumulative hazard ratio
¤1()¤2() is monotonically increasing (decreasing) in  on [01) and 1

and 2 are so chosen that 1()2() is a decreasing process.
As before, we construct our test statistics  (max)   (min) and  based

on the  statistics (1 2)  = 1      (each testing star-ordering

7 Note that, unlike  in the Gill-Schumacher statistic , ¤ need not be a stopping
time.
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with respect to the pair of counting processes  ( 1) and  ( 2)). Thus,
we have:

 (max) = max f(11 12) (21 22)     (1 2)g 
(10)

 (min) = min f(11 12) (21 22)     (1 2)g 
(11)

and

  =
1


X

=1

(1 2) (12)

3.3 Large sample results
We now derive the large sample results for the proposed test statistics, using
the counting process methods (Gill and Schumacher, 1987; Andersen et al.,
1993) and an useful result on convergence of ordinary Stieljes integral of a
stochastic process (Theorem 3.1 in Sengupta et al., 1998). It is also indicated
how these results can be used, in combination with extreme value theory, to
obtain -values of  (max) ,  (min) ,  (max) and  (min) .

Consider a counting processes f( ) : [0  ] Xg, indexed on a
continuous covariate , with intensity processes f ( )( )g such that
( ) = () for all  (under the null hypothesis of proportional hazards).
As before, 1 and 2 denote two predictable processes, each indexed on a
pair of distinct values of the continuous covariate  (i.e., indexed on (1 2),
1 6= 2, 1 2X ), and let  be a stopping time. Similarly, let 1 and
2 be right continuous functions with left limits, which are each indexed
on f(1 2) 1 6= 2 1 2Xg, and ¤ is a large positive time such that
¤( ¤ )  1,  = 1 2. Now, let  be a …xed positive integer (  1) and
f11 21     1 12 22     2g are 2 points on the covariate space X ,
such that 2  1  = 1     .

Assumption 1 For each   = 1 2     , let 1(1 2)() and 2(1 2)()
be predictable processes indexed on the pair of …xed covariate values (1 2).
Assumption 2 Let  be a random stopping time. In particular,  may be
taken as the time at the …nal observation of the counting process §

=1§2=1( ).
In principle, one could also have di¤erent stopping times  (1 2)   =
1      for each of the  basic test statistics (1 2)  = 1     .
Assumption 3 The sample paths of (1 2) and  ( )¡1 are almost
surely bounded with respect to , for  = 1 2 and  = 1     . Further, for
each  = 1     , 1(1 2) and 2(1 2) are both zero whenever  ( 1)
or  ( 2) are.
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Assumption 4 There exists a sequence (), () ¡! 1 as  ¡! 1, and
…xed functions ( ), 1(1 2)() and 2(1 2)(),  = 1      such that

sup
[0 ]

¯̄
 ( )() ¡ ( )

¯̄ 
¡! 0 as  ! 1, 8X

sup
[0 ]

j(1 2)()¡ (1 2)()j


¡! 0 as  ! 1  = 1 2  = 1     

where j(1 2)()j are bounded on [0  ] for each  = 1 2 and  = 1     ,
and ¡1( ) is bounded on [0  ], for each .8

Let the test statistics  (max)   (min) and  be as de…ned earlier (4 – 6).
Theorem 1. Let Assumptions 1 through 4 hold. Then, under 0 : , as
 ! 1,
(a) 

h
 (max) · 

i
! [©()],

(b) 
h
 (min) ¸ ¡

i
! [©()],

and
(c)

p


¡! (0 1),
where ©() is the distribution function of a standard normal variate.

(Proof in Appendix.)

Corollary 1.


h


n
 (max) ¡ 

o
· 

i
! exp [¡ exp(¡)] as  ! 1

and


h


n
 (min) + 

o
¸ 

i
! exp [¡ exp()] as  ! 1

where  = (2 ln )
12 and  = (2 ln )

12 ¡ 1
2 (2 ln )

¡12 (ln ln  + ln 4) 
(Proof in Appendix).

Corollary 2. Given a vector  = (1 2     ) of  weights, each pos-
sibly dependent on  (  = 1 2     ;  = 1 2) but not on the counting
processes  ( ), let us de…ne the test statistics

 (max) = max
=1

f(1 2)g 

 (min) = min
=1

f(1 2)g 

8The condition on probability limit of  ( ) can be replaced by a set of weaker con-
ditions. See, for example, Sengupta et al. (1998).
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and
 =

P
=1(1 2)P

=1


Let Assumptions 1 through 4 hold. Then, under 0 : , as  ! 1,
(a) 

h
 (max) · 

i
! Q

=1 [©()],

(b) 
h
 (min) ¸ ¡

i
! Q

=1 [©()],

and

(c)


=1 p
=1 

2



¡! (0 1),

where ©() is the distribution function of a standard normal variate.
(Proof in Appendix).

Theorem 1, along with Corollaries 1 and 2, establish the asymptotic re-
sults for testing proportionality against monotone hazard ratio alternatives
( and ) as well as non-monotonic violations ( or
) of the PH assumption.

Next, we derive similar results for partial orders based on cumulative
hazard ratios.

Assumption 5 For each   = 1 2     , let1(1 2)() and2(1 2)()
be stochastic processes with sample paths in [01) (i.e., are right contin-
uous and have left limits).
Assumption 6 Let ¤ be a positive lifetime such that ¤ (¤ )  1  =
1 2       = 1 2.
Assumption 7 There exists a sequence (), () ! 1 as  ! 1, and
deterministic functions ( ), 1(1 2)() and 2(1 2)(),  = 1     
such that

sup
[0¤]

¯̄
 ( )() ¡ ( )

¯̄ ¡! 0 as  ! 1, 8X

sup
[0¤]

j(1 2)()¡ (1 2)()j ¡! 0 as  ! 1,  = 1 2  = 1     

where 1(1 2)() and 2(1 2)(),  = 1      are continuous functions
with respect to , and ¡1( ) is bounded on [0  ], for each X .

Let the test statistics  (max)   (min) and   be as de…ned earlier (10 –
12).
Theorem 2. Let Assumptions 5 through 7 hold. Then, under 0 : , as
 ! 1,
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(a) 
h
 (max) · 

i
! [©()],

(b) 
h
 (min) ¸ ¡

i
! [©()],

and
(c)

p
 

¡! (0 1),
where ©() is the distribution function of a standard normal variate.
(Proof in Appendix.)

Corollary 3.


h


n
 (max) ¡ 

o
· 

i
! exp [¡ exp(¡)] as  ! 1 and


h


n
 (min) + 

o
¸ 

i
! exp [¡ exp()] as  ! 1

where  = (2 ln )12 

and  = (2 ln )12 ¡ 1
2
(2 ln )¡12 (ln ln  + ln 4) 

(Proof in Appendix.)

Corollary 4. Given a vector  = (1 2     ) of  weights, each possibly
dependent on  (  = 1 2     ;  = 1 2) but not on the counting processes
 ( ), let us de…ne the test statistics

 (max) = max
=1

f(1 2)g 

 (min) = min
=1

f(1 2)g 

and   =
P

=1(1 2)P
=1



Let Assumptions 5 through 7 hold. Then, under 0 : , as  ! 1,
(a) 

h
 (max) · 

i
! Q

=1 [©()],

(b) 
h
 (min) ¸ ¡

i
! Q

=1 [©()],

and
(c)


=1 p
=1 

2

 

¡! (0 1),

where ©() is the distribution function of a standard normal variate.
(Proof in Appendix).
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Remark 1. Restricting the statistics  (max) ,  (min) ,  (max) and  (min) to de-
pend on a …xed number () of distinct pairs of points is crucial for the asymp-
totic results. This is because, the processes (1 2) and (1 2)
on the space f(1 2) : 2  1 1 2Xg are pointwise standard normal and
independent, and therefore the maxima (minima) diverges to+1(¡1) with-
out having well-de…ned asymptotic distributions.
Remark 2. Corollaries 1 and 3 provide simple ways to calculate the -
values for the extremal test statistics  (max) and min (and similarly,  (max)

and  (min) ) provided  is reasonably large. Note that since  is held …xed it
cannot increase to 1, but with a value large enough (say, 20 or higher) the
approximation is quite accurate.
Remark 3. Corollaries 2 and 4 can be used to weight the underlying test
statistics by some measure of the distance between 1 and 2. In other
words, one can give higher weights to a covariate pair where the covariates are
further apart. In practice, this is expected improve the empirical performance
of the tests9. We have, however, not used these weights in the empirical work
in Sections 5 and 6.

4 Implementation and extensions
In this Section, we discuss some issues regarding implementation of the pro-
posed tests, particularly in small samples, and extensions to other cases.

4.1 Small sample correction
Since the covariate under consideration is continuous, it is not feasible to
construct the basic tests ( and ) based solely on two distinct …xed
points on the covariate space. In our implementation, we consider "small"
intervals around the (randomly) chosen points, assuming the hazard function
within these intervals to be approximately constant over covariate values.
While the asymptotic distributions in Section 3 are based on speci…ed points
in the covariate space, the tests will be valid for small intervals around these
points, provided the hazard function (for  (max) ,  (min) and ) or the
cumulative hazard function (for  (max) ,  (min) and  ) is continuous at
these points.

However, in small samples, these intervals often overlap, causing inde-
pendence of the basic test statistics to be violated. Our Monte Carlo studies

9The author is grateful to Elja Arjas for pointing out the usefulness of the weighted
average in this context.
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suggest that the average test statistics are susceptible to this problem, result-
ing in a sample variance larger than 1. We suggest making a small sample
correction in such cases, by normalizing the average statistic using a jacknife
or bootstrap (subsample) estimate of the standard error. In this paper, we
have used the Quenouille-Tukey jacknife variance estimator for this purpose.
This adjustment improves the performance of the tests in small samples,
and does not a¤ect our asymptotic results. We denote these adjusted test
statistics as  and   respectively.

4.2 Choice of  and covariate pairs
The proposed tests take , the number of covariate pairs, as …xed a priori.
If the chosen value is su¢ciently high (say, 20 or more), Corollaries 1 and
3 can be used to compute -values very easily; the choice of  is not very
critical otherwise. For the Monte Carlo study reported in Section 5, we
choose  = 45.

However, the choice of covariate pairs can be quite critical for the per-
formance of the tests. Typically, the choice will have to take account of the
design density in an appropriate way. This is to ensure that the underlying
two sample tests ( and ) are based on reasonable sample sizes and
on representative samples of the covariate values.

We considered three methods to choose covariate pairs. In the …rst
aproach, we resample from the realised covariate distribution using a sim-
ple bootstrap. Once covariate values are selected, we computed  and
 based on small samples of 20 nearest neighbour observations corre-
sponding to each chosen value. Our second approach was the nonparametric
bootstrap using a kernel estimate of the design density. This should work
better particularly in regions where covariate values are sparse. The samples
were constructed as in the previous approach. Third, we divided the sample
observations into deciles based on the covariate values, and then chose the¡10
2

¢
= 45 combinations given by the partition.

All the three approaches gave comparable results in our Monte Carlo
experiments. We, however, prefer the third approach because of its simplicity
and its advantages of generating non-overlapping intervals and adequately
covering the covariate space.

4.3 Comparison with other tests
As discussed earlier, a convenient way to interpret the ordered alternatives
considered here is through time varying coe¢cients in a multiplicative hazard
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regression model. In this sense, our tests are somewhat related to other
analytical tests of time-dependant covariate e¤ects proposed in the literature.

However, our approach embodies several important points of departure.
First, our tests are based on the partial orders de…ned in Section 2 and not
on any restrictive regression model. Second, some of the available analytical
tests are based on partitioning the sample space of the lifetime variable into
intervals (Anderson and Senthilselvan, 1982; Murphy, 1993) and consequently
do not make use of the full information that the data o¤ers. Our tests do
not have this shortcoming. Third, unlike some other tests (Grambsch and
Therneau, 1994; Scheike and Martinussen, 2004), our methods enable us to
identify useful non-monotonic departures from the PH model, like 
and . Fourth, while the previous tests merely identify violation of
the constancy of covariate e¤ects over the lifetime, our tests are based on
explicit partial orders and provide additional insight into the nature of the
regression relationship. This is useful for further inference and modeling.
Finally, along with the test proposed by Scheike and Martunussen (2004),
our tests have the advantage that tests of proportionality can be conducted
sequentially for di¤erent covariates. This is often very useful in applications.

Notwithstanding these iportant di¤erences, we compare the performance
of the proposed tests against the popular test for time constant e¤ects (PH
model) due to Grambsch and Therneau (1994), using a simulation study
(Section 5).

4.4 Choice between the proposed tests
The choice between the maxima, minima and average test statistics can be
important in practice. The maxima and minima tests detect more com-
plicated departures from the PH model (, , and their
counterparts based on the cumulative hazard functions), and thereby facili-
tate detailed investigation of ordered covariate e¤ects. On the other hand, as
we shall see in the Monte Carlo simulations (Section 5), the adjusted average
statistics outperform the maxima and minima tests in terms of power.

4.5 Extensions
The proposed ethodology o¤ers several straightforward extensions.

4.5.1 -sample problem

The proposed tests can be used to study monotone departures in -sample
(discrete covariate) problems. In this case, an a priori ordering of the 
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samples can be obtained using estimators of hazard ratio proposed in Gill
and Schumacher (1987) or Sengupta et al. (1998), or using the tree-structured
modeling approach (Ahn and Loh, 1994). One can then easily apply the test
for the PH model proposed here. The tests can also be similarly extended to
the competing risks problem with more than 2 competing risks.

4.5.2 Di¤erent censoring and sampling plans

While our proposed methods are developed under the standard random cen-
sorship model (Fleming and Harrington, 1991; Andersen et al., 1993), these
can be easily extended to other censoring and sampling plans. For example,
Bordes (2004) and Alvarez-Andrade et al. (2007) extend the counting process
approach to estimation of the cumulative hazard function and proportional
hazards regression based on progressive type-II censoring. Their results can
be easily used to extend our results to this setup. Similarly, Sellke and Sieg-
mund (1983) extend partial likelihood inference under the Cox regression
model to the case of staggered (delayed) entry. Here, the counting process
approach does not work. However, large sample results for our tests can still
be derived using Theorem 3.1 of Sengupta et al. (1998) in combination with
our Theorem 2.

4.5.3 Frailty

Like in the case of staggered entry, the counting process approach is not
applicable in the presence of frailty. Under the shared frailty model, where
individuals are clustered a priori based on the value of their shared but un-
observed frailty, "quasi partial likelihood" inference was developed in Spiek-
erman and Lin (1998) based on empirical process theory. Similar theory for
the univariate frailty model with a known one-parameter frailty distribution
is developed in Kosorok et al. (2004). In either case, combining Theorem 3.1
in Sengupta et al. (1998) with our Theorem 2 gives us asymptotic results for
the test statistics.

4.5.4 Presence of other covariates

While the proposed method is presented in the context of a single covariate,
it can be extended to a multiple covariate setup in several ways. First, we
may assume that the other covariates have proportional e¤ects on the hazard
function, as in the Cox regression model. In this case, the usual Aalen-
Breslow estimator of the cumulative baseline hazard function, conditional on
di¤erent values of the index covariate, can be used to construct the tests.
Large sample results follow in the same way as before.
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Second, if it is suspected that some of the other covariates may have
nonproportional e¤ects, these can be accommodated by incorporating time
varying coe¢cients for these covariates. In this case, the tests can be con-
structed using estimates of the cumulative baseline hazard function based
on estimated cumulative baseline hazard function using the histogram sieve
estimator proposed by Murphy and Sen (1991). The asymptotic arguments
described above still follow. In fact, in general, we recommend starting with
a model where all the covariates are allowed to have time varying e¤ects,
and then reduce the model by sequentially testing for proportionality of each
covariate. This is similar to the approach in Scheike and Martinussen (2004).

Third, the proposed method can be used to nonparametrically study co-
variate e¤ects in the context of more general regression models, without the
assumption of time varying coe¢cients. For example, one could de…ne the
lifetime  to be  with respect to continuous covariates  and  if,
whenever 1  2 and 1  2, (j1 1)(j2 2) " . More generally, one
may de…ne  to be  with respect to  and  if, given some func-
tion ( ), (j1 1)(j2 2) "  whenever (1 1)  (2 2). Further,
the appropriate speci…cation of the function ( ), which will be typically
application-speci…c, can be made from the values of the underlying two sam-
ple test statistics. A proposed graphical method, discussed later, may be
particularly useful in this situation. This demonstrates the versatility of the
proposed framework and methodology for studying covariate e¤ects.

It is clear from the above discussion that, though the testing procedure
is applied sequentially to individual covariates or a small number of covari-
ates, its applicability is almost universal. This outlines the usefulness of the
proposed methods.

5 Monte Carlo study
In this Section, we explore the …nite sample performance of the tests for
di¤erent speci…cations of the baseline hazard function and covariate depen-
dence. The selected data generation processes are similar to those used in
Horowitz (1999) and Martinussen et al. (2002). In particular, we consider
models of the form

( ) = 0() exp [( )]  (13)

where 0() and ( ) are chosen to assume a variety of functional forms.
Note that, under model (13), the PH assumption holds if and only if ( )
depends only on . If, for …xed , ( ) increases (decreases) in , we have
the  and  ( and ) alternatives. If, on
the other hand, ( ) increases in  over some range of the covariate space,
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and decreases over another (as in Example 3), the alternatives 
or  may hold. While the proposed average tests are consistent for
ordered alternatives to the null hypothesis of proportional hazards, our max-
ima and minima tests are consistent in both monotonic and non-monotonic
cases.

In addition to the proposed tests, we included in our study the popular
test for proportionality proposed by Grambsch and Therneau (1994) ( ).
While the  test is designed for testing speci…c parametric departures in
the single covariate case, it is known to be very powerful in detecting depar-
tures from the PH model. A simulation study in Scheike and Martinussen
(2004) suggests that a particular implementation of the  test has higher
power than the test proposed in their paper. Hence, the  test is a good
benchmark for comparison.

Our Monte Carlo simulations are based on independent right-censored
data from 8 data generating processes (DGPs), de…ned by combinations of 4
speci…cations of the regression function

( ) =

8
>><
>>:

0


ln () 
ln ()  jj

and 2 speci…cations of the baseline hazard function 0() (= 2 12); see Table
1 for de…nitions and notations for the DGPs. Randomly right-censored data
are generated using the Gauss 386 random number generator, where the co-
variate  is i.i.d. (¡1 1), and the censoring time  is i.i.d. (02 22). Of
the 8, four DGPs belong to the null hypothesis of PH, and two have 
(also  speci…cations). The two remaining models, with ( ) =
ln ()  jj, have  speci…cations, being  and  over
the range [0 1] and  and  over the range [¡1 0].

Table 2 reports, for each of the above 8 data generation processes, the
observed rejection rates (in percentage) of each of the test statistics, at 5 per
cent con…dence level, for di¤erent sample sizes. The reported percentages
of rejection are based on 1000 Monte Carlo simulations in each case, and
asymptotic distributions are used to compute the cut-o¤s. The covariate
values considered are midpoints of each decile of the empirical distribution
of realised covariate samples. Our test statistics are computed based on 45
random pairs of points on the covariate space ( = 45) in each case, given
by each distinct combination of the above covariate values. Conditional on
each covariate value, a sample of 20 nearest neighbour data points are used
to construct the underlying two-sample test statistics  and . For
the maxima and minima tests, the one-sided cut-o¤ for the relevant extreme
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value approximation is used, while the average test statistics have the two
sided normal cut-o¤s. As discussed earlier, the average test statistics are
standardized using the Quenouille-Tukey jacknife estimator of variance, to
account for small sample distortions.

The results show that the proposed tests have good power in small sam-
ples, except for24. This is not surprising since 24 is , pos-
sessing  features over one-half of the covariate space, and 
over the other. Hence, when a pair of points are drawn at random from
the covariate space, only a quarter of them may be expected to re‡ect the
 nature of the underlying data generating process, and another quar-
ter would re‡ect the  nature. When we increased the sample size
to 1500, the rejection rates for  (max) ,  (min) ,  (max) and  (min) rose to 77,
68, 61 and 83 per cent respectively. The  test (Grambsch and Therneau,
1994) performed very poorly for both the non-monotonic DGPs (14 and
24).

Overall, our tests are powerful and maintain their nominal sizes in …nite
samples. By comparison, the test has serious de…ciencies in not being able
to maintain its nominal size under PH DGPs. However, its power is higher
for the monotone alternatives. The results also re‡ect the strength of the
maxima and minima test statistics in their ability to detect non-monotonic
departures from the PH model (14 and 24).

6 Empirical applications
Now, we illustrate the use of the tests with two applications – to durations
of contract strikes in the US (Kennan, 1985), and to survival with malignant
melanoma (Drzewiecki and Andersen, 1982; Andersen et al., 1993).

6.1 Data on Strike Durations
The data, reported in Kennan (1985), pertain to durations of 566 contract
strikes in the U.S., each involving 1000 workers or more, beginning during
the period January 1968 to December 1976. Since strike durations are also
known to exhibit seasonal e¤ects (Neumann, 1994), we use data on the 292
strikes beginning in the …rst half of each year (none of these failure times are
censored).

Previous research also suggests that the level of production index signi…-
cantly a¤ects strike duration (Kennan, 1985; Neumann, 1994). Higher values
of the production index are associated with higher conditional probability of
ending the strike, implying signi…cant counter cyclical pattern of strike du-
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ration. However, the PH model speci…es much more than merely the sign of
the covariate e¤ect. In order to graphically explore whether the data exhibit
monotone departures from the PH model, we use Lee-Pirie plots (Lee and
Pirie, 1981) of cumulative hazard functions conditional on various randomly
chosen pairs of covariate values. Many of these plots indicate an increasing
ratio of the hazards, as evident from the convexity (in some cases, star-
shapedness) of the plot lending credence to a priori suspicion of monotone
ordering of the  type; as an illustration, see Figure 1, the Lee-Pirie
plot conditional on covariate values ¡0048 and 0037).

Next, we apply our tests to these data (Table 3). Each of the tests
were based on 150 pairs of distinct covariate values. The results of the tests
con…rm our a priori notion based on the above plots. The null hypothesis of
PH model is rejected in favour of the alternative  (and ),
with production index as the continuous covariate.

This implies that the covariate e¤ect of production index is such that,
the duration distribution conditional on a higher value of the covariate is
convex-ordered with respect to that conditional on a lower production index.
In other words, the impact of production index on the hazard rate of strike
duration increases in the duration of the strike. Further, the maxima and
minima tests provide additional information on the covariate pairs for which
the basic test statistics attain their extreme values, which may be useful
for modeling the nature of departures from proportionality. The maxima
test-statistic  (max) is attained for the covariate pair f¡00478 00371g. The
test statistic  (min) (covariate pair 00371 and 00675) has a -value of 0054,
which provides some evidence of concave-ordering towards the upper end of
the covariate space ().

To illustrate how this  nature can be incorporated into a re-
gression model of strike durations, we present parameter estimates for three
di¤erent models in Table 4. Model 1 is a simple Cox PH model, with produc-
tion index as the continuous covariate. In Model 2, we allow for time-varying
coe¢cients using the histogram sieve estimator proposed in Murphy and
Sen (1991).10 This model accomodates monotone departures from propor-
tionality, in the nature of  or . In Model 3, we allow the
coe¢cient of the covariate to vary not only over failure time, but also for co-
variate values. More speci…cally, we allow the coe¢cients to be di¤erent for
covariate values below and above 00371, enabling us to model departures of

10There are several other estimators for time varying coe¢cients; see Martinussen et
al. (2002) for a review. We choose the histogram sieve estimator (Murphy and Sen,
1991) because of its simplicity, intuitive appeal and e¢ciency in the sense of attaining the
variance bound given in Sasieni (1992).
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the  or  type. Here again, we use the estimators given
by Murphy and Sen (1991) for inference.

Model 1 indicates a signi…cant impact of production index on the haz-
ard rate of strike durations. However, this evidence is misleading. Model 3
estimates show that the true nature of covariate dependence is strikingly dif-
ferent. These time- and covariate-varying nature of the parameter estimates
closely relate to the results of our analytical tests on the nature of covariate
dependence. For lower values of the covariate, the coe¢cient increases with
duration, while the opposite holds for higher covariate values.

6.2 A related graphical test
Plotting the contours of the underlying standardised test statistics on a co-
variate £ covariate two-dimensional plane provides an useful graphical tool
for inference on monotonic and non-monotonic departures considered in this
paper. Figure 2 shows a contour diagram of the standardized test statis-
tic  (smoothed using the Epanechnikov kernel) for the strike duration
data. The signi…cant height of the peaks and troughs indicate nonpropor-
tionality, and the shift in the slopes about the covariate value of approxi-
mately 004 indicate non-monotonic departures from proportionality about
this point. The use of the plot here con…rms the inference drawn from our
analytical tests, and in particular helps in choosing the changepoint for the
 pattern.

In applications with multiple covariates, similar graphical analysis can
also provide valuable insights into the interaction between di¤erent covari-
ates. With two continuous covariates  and , one can obtain similar plots
for di¤erent candidate functions ( ) (see Section 4.5.4) to examine which
of these provides the sharpest slopes in the contour plot. The candidate
functions can sometimes be implied by the relevant application. For exam-
ple, in survival of a series system with covariates measuring proneness to
failure of the two components, the relevant function may be max( ). In
other situations where there is no a priori knowledge about ( ), one can
either hypothesize linear functions of the form  + , or …nd the function
using regression methods. The identity of the covariate pairs with high (low)
values for the maxima (minima) test statistics can be very helpful in such
analyses.

6.3 Malignant Melanoma Data
These data pertain to 205 patients (148 of these are censored) with malignant
melanoma (cancer of the skin) on whom a radical operation was performed
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at the Department of Plastic Surgery, University Hospital of Odense, Den-
mark. The analysis of these data in Andersen et al. (1993) identi…es tumor
thickness as one of the most important prognostic factors. Further, Ander-
sen et al. (1993) show that the Lee-Pirie plots of Nelson-Aalen estimates of
the cumulative hazard functions for patients with ‘2mm · tumor thickness
 5mm’ and ‘tumor thickness ¸ 5mm’ against that of patients with ‘tumor
thickness  2mm’ are “concave looking curves”, indicating possible violation
of the PH model in favour of . Similarly, the plot of the cumulative
regression functions for log-thickness (Martinussen et al., 2002) also indicate
a distinct concave shape, though the constant coe¢cient estimate lies almost
entirely within the 95 percent con…dence band of their cumulative regression
function estimates.

Our analytical tests (Table 5) based on 100 pairs of distinct covariate
values show that  (min) and  (min) are signi…cant at 1 percent level and  (max)
is signi…cant at 5 percent level, but  and   are not signi…cant.
Further,  (min) and  (max) are attained for covariate pairs f19 77g and
f10 18g respectively. This provides partial support for the observation in
Andersen et al. (1993), in that the null of  is rejected in favour of the
alternatives  and  over the upper range of the covariate
space. However, in patients with small tumors, there is some evidence of
an  pattern (probably the reason why  and   are not
signi…cant). The inference from the Murphy-Sen histogram sieve estimators
(Table 6) is similar.

This provides some evidence of the strength of the proposed methods
in detecting non-proportional covariate e¤ects which previous tests fail to
identify.

The two applications considered here demonstrate the value of studying
departures from the PH model with respect to continuous covariates in terms
of monotonicity of the covariate e¤ects. These examples also illustrate the use
of our test statistics in identifying monotonic and non-monotonic structures
in the data. Similar inference has been used in Bhattacharjee et al. (2007)
and Bhalotra and Bhattacharjee (2001). The former is an application to
business failures in the UK, and the latter to child mortality in India.

7 Conclusion
In this paper, we develop notions of partial ordering of lifetime distributions
with respect to continuous covariates and propose tests of the PH model
against such monotone or ordered departures. Departures of these kinds are
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common in applications. Therefore, both empirical and theoretical work in
lifetime models need to have a framework ‡exible enough to accomodate these
kinds of covariate dependence. Unlike other tests available in the literature,
the proposed methodology works in very general situations and does not
require any assumptions on the underlying regression models. Further, the
methods o¤er a great deal of ‡exibility in terms of accommodating the e¤ects
of other covariates, both observed and unobserved.

An important advantage of the tests is that they provide valuable insights
into the pattern of covariate dependence where the PH assumption does not
hold. Unlike other competing tests, this is true for both monotonic and non-
monotonic covariate e¤ects. The methods are therefore useful for regression
modelling in non-PH cases. Further, since the proposed partial orders can be
interpreted in terms of time varying coe¢cients, existing inference methods
can be easily used. Monte Carlo evidence and real life examples demonstrate
the strength and usefulness of the proposed framework based on partial orders
as well as the tests developed here.

Several promising areas of future research emerge from the work in this
paper. First, in the derivation of asymptotic results, we show that the basic
underlying two-sample test statistics for distinct covariate pairs are inde-
pendent of each other. This fact can be exploited to extend many familiar
two-sample inference techniques to the case of continuous covariates. Second,
research can be directed towards extension of the proposed tests to models
with unrestricted univariate frailty. The notions of partial ordering intro-
duced in this paper will be valid in this case, and one can in principle con-
struct similar tests using estimators of the cumulative hazard function under
such models. However, this inference problem is quite distinct from the one
addressed here, because of identi…ability restrictions and the di¤erent nature
of estimators proposed in the literature (see, for example, Horowitz, 1999).
Third, estimation of semiparametric regression models under order restric-
tions motivated by the current work is an area of considerable research po-
tential. Some research has been reported in this area (Bhattacharjee, 2004),
but further useful research can be conducted on classical and Bayesian order
restricted inference on covariate e¤ects. Fourth, it will be useful to develop
further inference on the changepoint in non-monotonic models using covariate
pairs corresponding to the maxima and minima tests. A somewhat related
problem is inference on the unknown ( ) function in the multiple covariate
case. These problems will be retained for future work.
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Appendix: Proofs of the Results
Proof of Theorem 1: It follows from Gill and Schumacher (1987) that, under
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where ( )  = 1       = 1 2 are independent Gaussian processes
with zero means, independent increments and variance functions
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This follows from a version of Rebolledo’s central limit theorem (see An-
dersen et al., 1993), which states that the innovation martingales correspond-
ing to components of a vector counting process are orthogonal, and the vector
of these martingales asymptotically converge to a Gaussian martingale.

It follows, by a version of the -method proved in Gill and Schumacher
(1987), that
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Further, following Gill and Schumacher (1987), it can be shown that 2
can be consistently estimated by d  [ (1 2)]. Hence, it follows that
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where I is the identity matrix of order .
Proofs of (a), (b) and (c) follow.

¤

Proof of Corollary 1: Proof follows from the well known result in extreme
value theory regarding the asymptotic distribution of the maximum of a
sample of iid (0 1) variates (see, for example, Berman, 1992), and invoking
the -method by noting that maxima and minima are continuous functions.

¤

Proof of Corollary 2: From Theorem 1, we have:
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The proof follows immediately.
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so that,

 (1 2) =
 (1 2)q
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Like Theorem 1, the proof will follow, if it further holds that
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where I is the identity matrix of order .
The essential di¤erence in the arguments required to establish asymptotic

distributions here, from those in Theorem 1, lie in the fact that the integrals
considered in Theorem 1 are transformations of stochastic integrals, while
here they are functions of ordinary Steiljes integrals of stochastic processes.

Let us de…ne
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al. (1998), we have, as  ! 1,
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where ( )  = 1       = 1 2 are independent Gaussian processes
with zero means, independent increments and variance functions
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Now, as in Theorem 1, invoking the -method of Gill and Schumacher (1987),
it follows that
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and under 0,
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It follows that 2
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3
7775

¡! 
³
0

X´


where
P

= 
¡
(2)

¢
  = 1     , and following Sengupta et al.

(1998), it can be shown that 2 can be consistently estimated by dVar [ (1 2)].
Hence, it follows that

2
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3
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where I is the identity matrix of order .
Proofs of (a), (b) and (c) follow.

¤

Proof of Corollary 3: Proof follows from extreme value theory and the -
method, as in Corollary 1.

¤

Proof of Corollary 4: From Theorem 2, we have:
2
6664

 (11 12)
 (21 22)

...
 (1 2)

3
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¡!  (0 I) 

where I is the identity matrix of order .
The proof follows immediately.

¤
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TABLE 1: Data Generating Processes
Model 0() ( ) Median cens. % cens. Expected signi…cance
11 2 0 0.36 16.4 None
12 2  0.30 19.2 None
13 2 ln() 0.25 15.8  (max)    

(max)
   

14 2 ln() jj 0.52 26.9  (max)   (min)   (max)   (min) ?
21 12 0 0.32 8.9 None
22 12  0.32 9.6 None
23 12 ln() 0.30 8.9  (max)    

(max)
   

24 12 ln() jj 0.42 13.8  (max)   (min)   (max)   (min) ?
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TABLE 2: Rejection Rates (%) at the 5% Asymptotic Confidence
Level

Model Test Sample size Model Test Sample size
100 200 500 1000 100 200 500 1000

11  (max) 18.8 7.7 5.5 4.9 21  (max) 13.1 7.3 5.7 5.2
 (min) 23.0 7.5 5.4 5.0  (min) 21.4 8.0 4.5 5.1
 4.1 4.4 4.7 5.2  5.5 5.5 5.4 4.8
 (max) 13.2 7.8 6.0 4.7  (max) 11.8 7.0 5.6 4.8
 (min) 12.9 7.1 5.6 4.9  (min) 12.9 7.3 5.7 5.2
 5.5 5.1 5.0 5.1  15.2 6.0 4.9 5.0
 4.5 4.1 4.7 5.8  3.7 3.7 5.3 4.1

12  (max) 19.6 9.4 6.3 5.4 22  (max) 28.8 8.9 5.6 5.1
 (min) 18.2 7.9 5.7 4.8  (min) 16.4 8.8 6.4 4.6
 12.3 6.3 5.2 5.3  5.7 5.2 5.0 4.8
 (max) 13.2 6.9 5.4 4.9  (max) 12.5 7.7 5.5 5.1
 (min) 16.9 8.1 5.8 5.2  (min) 12.1 7.0 5.7 4.7
 5.6 5.5 5.6 4.6  3.1 3.9 4.4 5.3
 1.6 1.5 2.6 2.3  0.8 1.9 1.7 1.9

13  (max) 52.3 83.8 100.0 100.0 23  (max) 33.1 49.6 100.0 100.0
 (min) 11.9 6.1 0.5 0.0  (min) 13.1 5.4 1.9 2.0
 37.8 100.0 100.0 100.0  75.8 92.3 100.0 100.0
 (max) 85.2 100.0 100.0 100.0  (max) 14.8 26.6 98.3 100.0
 (min) 4.4 0.1 0.0 0.4  (min) 3.3 1.9 0.0 0.2
 42.2 100.0 100.0 100.0  86.1 98.2 100.0 100.0
 99.1 100.0 100.0 100.0  69.0 95.4 100.0 100.0

14  (max) 31.7 33.2 57.9 91.2 24  (max) 24.6 32.1 40.8 46.3
 (min) 29.4 42.1 70.6 94.8  (min) 22.0 29.1 49.5 53.2
 15.4 12.1 7.7 10.1  11.0 10.3 5.5 2.8
 (max) 10.2 22.4 39.5 87.3  (max) 11.2 19.8 35.9 45.4
 (min) 21.1 33.9 75.2 97.8  (min) 14.4 18.1 27.9 56.3
 9.2 13.5 9.1 8.3  13.9 10.2 4.1 4.6
 2.7 2.4 2.4 2.7  1.8 2.1 3.7 3.1
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TABLE 3: Tests of the PH model: Strike Duration data
Test Test Statistic -Value (%)

 (max) 3619 0030
 (min) ¡3426 0054
 4093 0000
 (max) 3415 0056
 (min) ¡2703 0420
 3808 0000

TABLE 4: Model Estimates: Strike Duration data
Model/ Parameter Coe¢cient z-stat.
Model 1
Production Index,  3529 317
Model 2
 [[0 75)] 5179 390
 [[75 150)] 0360 027
 [[1501)] 9416 119
Model 3
 [(¡1 0037)]  [[0 75)] ¡1178 ¡075
 [(¡1 0037)]  [[75 150)] 9362 432
 [(¡1 0037)]  [[1501)] 45266 343
 [[00371)]  [[0 75)] 10173 496
 [[00371)]  [[75 150)] ¡14910 ¡596
 [[00371)]  [[1501)] ¡27619 ¡590

TABLE 5: Tests of the PH model: Malignant Melanoma Data
Test Test Statistic -Value (%)

 (max) 3462 0035
 (min) ¡4985 0000
 ¡1080 0188
 (max) 2559 0420
 (min) ¡8255 0000
 ¡1235 0249
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Figure 1: Lee-Pirie Plot of b¤(j = 0037) versus b¤(j = ¡0048).

Figure 2: Contour plot of 

TABLE 6: Model Estimates: Malignant Melanoma Data
Model/ Parameter Coe¢cient z-stat.
Model 1
Log Tumor Thickness, ln() 0823 549
Model 2
ln() [[0 1062)] 1123 509
ln() [[10621)] 0518 289
Model 3
ln() [(0 19)]  [[0 1062)] 0097 015
ln() [(0 19)]  [[10621)] 1177 239
ln() [[191)]  [[0 1062)] 1184 590
ln() [[191)]  [[10621)] 0444 199
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