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a b s t r a c t

The understanding and management of biodiversity is often limited by a lack of data. Remote

sensing has considerable potential as a source of data on biodiversity at spatial and tempo-

ral scales appropriate for biodiversity management. To-date, most remote sensing studies

have focused on only one aspect of biodiversity, species richness, and have generally used

conventional image analysis techniques that may not fully exploit the data’s information

content. Here, we report on a study that aimed to estimate biodiversity more fully from

remotely sensed data with the aid of neural networks. Two neural network models, feedfor-

ward networks to estimate basic indices of biodiversity and Kohonen networks to provide

information on species composition, were used. Biodiversity indices of species richness and

evenness derived from the remotely sensed data were strongly correlated with those derived

from field survey. For example, the predicted tree species richness was significantly corre-

lated with that observed in the field (r = 0.69, significant at the 95% level of confidence). In

addition, there was a high degree of correspondence (∼83%) between the partitioning of the

outputs from Kohonen networks applied to tree species and remotely sensed data sets that

indicated the potential to map species composition. Combining the outputs of the two sets

of neural network based analyses enabled a map of biodiversity to be produced.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

Arguments ranging from ethical to pragmatic have been pro-
posed for the conservation of biodiversity (Hampicke, 1994).
While there are great uncertainties associated with the cur-
rent and future levels of biodiversity (Richards, 1994), human
induced land cover change, notably the fragmentation and
destruction of habitats, is known to be a major threat to bio-
diversity (Chapin et al., 2000). This is particularly evident in
tropical forest environments, where competing pressures on
the forests that are believed to support more than half of the
total global biodiversity are of major concern. Understand-
ing and managing forest biodiversity is, however, difficult.
Although some forest sites may be designated as reserves for

∗ Corresponding author. Fax: +44 2380 593295.
E-mail address: g.m.foody@soton.ac.uk (G.M. Foody).

conservation, the level of protection may be incomplete and
inevitably there is a desire to conserve larger areas that is
incompatible with other competing demands on the forests.
However, protected reserves are not the only means of con-
serving biodiversity. Unprotected and indeed actively used
forests, such as those commercially logged, can represent an
important resource in biodiversity conservation and for sus-
tainable development (Cannon et al., 1998; Lugo, 1999). More-
over, it is increasingly recognised that there is a need to con-
sider the conservation status of forests outside reserves and
in particular to consider the landscape mosaic in biodiversity
conservation. Thus, biodiversity conservation activities may
be most appropriately undertaken at the scale of the land-
scape, that is over regions >100 km2 (Innes and Koch, 1998;
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Gould, 2000; Margules and Pressey, 2000; Oindo and Skidmore,
2002). Unfortunately, most knowledge on forest biodiversity
derives from small, typically <1 ha, plots (Innes and Koch,
1998) and the scaling of knowledge is extremely problematical
(Loreau et al., 2001). The understanding and management of
biodiversity would, therefore, be well served by the provision
of information on biodiversity at the landscape scale.

Remote sensing has considerable potential as a source of
information on biodiversity at the scale of the landscape.
Recent studies have indicated that remote sensing may be
able to provide useful information on biodiversity (Griffiths
et al., 2000; Kerr et al., 2001; Nagendra, 2001). As with most
of the literature on the topic, these studies have typically
addressed biodiversity in terms of only the number of species
or species richness. Biodiversity is, however, a broader issue
than just a basic count of species present, and the composition
of species and their relative abundance (evenness) are perhaps
equally important but less well understood variables (Purvis
and Hector, 2000). Additionally, many of the studies that have
sought to estimate biodiversity from remotely sensed imagery
have used basic vegetation indices such as the normalised
vegetation index (NDVI) and standard statistical techniques
such as regression (Gould, 2000; Oindo and Skidmore, 2002).
The use of such approaches may not always be appropri-
ate and often does not fully utilize the information content
of the remotely sensed imagery. Here, we report on a pilot
study to evaluate the potential of satellite remote sensing as a
source of information on the richness, evenness and compo-
sition of tree species in a tropical forest using neural network
techniques.

2. Test site

The test site was a 300 km2 region of tropical forest surround-
ing the Danum Valley Field Centre in north eastern Borneo,
Malaysia. The forests at this site have been used to varying
degrees in the recent past. Part of the test site lies within an
established conservation area that is believed to support pri-
mary rainforest while significant tracts within the site have
been logged in the 1980s and 1990s. Consequently, the site
contains regions that support forests of differing levels of bio-
diversity.

3. Data sets

In November and December 1997, field surveys were under-
taken at the test site to acquire ground data on forest prop-
erties, including species composition. The ground data were
acquired from 52 circular sample plots, each of 0.05 ha, estab-
lished across a range of forest types. A stratified random sam-
pling design was used, with each forest region (e.g. logging
coupe) used containing five plots, a further two plots were
acquired for one region to facilitate other research. In each
plot, every tree with a diameter at breast height >20 cm was
identified and, for commercially valuable species, its species
recorded. Although the focus on only commercially valuable
species is a limitation, information on their diversity is valu-
able, particularly in terms of sustainable development.

A search of remotely sensed data sets acquired within a
year of the field survey was used to identify a data set of suit-
able quality, notably in terms of cloud contamination, spatial
resolution and temporal coincidence, for relation to the data
acquired by field survey. From this search, a Landsat Thematic
Mapper (TM) image of the test site acquired in March 1997 was
selected for the research. Here, the TM data acquired in the
six non-thermal wavebands with a spatial resolution of 30 m
were selected for the study (the data acquired in TM waveband
6 were not used). These data were rigorously pre-processed
using conventional image analysis methods to reduce the
impact of non-land cover variables on the remotely sensed
response. The pre-processing of the data included a radiomet-
ric correction using pre-launch sensor coefficients (Mather,
1999), application of a simple image based atmospheric correc-
tion to reduce the effects of atmospheric attenuation (Chavez,
1996) and a topographic correction to reduce the effects of
variation in terrain surface geometry and illumination on the
remotely sensed response (Ekstrand, 1996).

Each plot surveyed in the field was identified in the image.
To reduce the impact of image mis-registration errors (esti-
mated to be in the order of a pixel), the remotely sensed
response in the six TM wavebands was extracted for each plot
from a 3 × 3 pixel window area centred upon its estimated
location in the image. Unfortunately, cloud or cloud shadow
impacted on the remotely sensed response of 22 plots and
these were, therefore, excluded from analyses of the remotely
sensed data.

4. Methods

Species richness and evenness were estimated from the data
on forest composition acquired in the field. The two indices
of biodiversity used in this research were the richness and
evenness of the commercially valuable tree species observed
at each plot. Specifically, the term richness in this paper relates
to the number of commercially valuable species with a diame-
ter at breast height >20 cm observed per-plot. The measure of
evenness, E, used was the modified Hill’s ratio that was com-
puted for each plot from:

E = (1/˛) − 1
eH − 1

where ˛ =
∑s

i=1p2
i
, H = −

∑s

i=1pi ln pi, s is the number of
species and pi is the proportional abundance of each species
(Ludwig and Reynolds, 1988).

Two neural network models were used to derive biodi-
versity information from the remotely sensed imagery. First,
standard feedforward neural networks were used to esti-
mate the species richness and evenness of the sample plots
from the remotely sensed response. Three types of feed-
forward neural network were evaluated for this application:
multi-layer perceptron (MLP), radial basis function and gener-
alised regression neural networks (GRNN). In each situation,
these feedforward neural networks were used essentially as
an alternative to regression analysis. Second, Kohonen self-
organising feature map neural networks were used in map-
ping species composition. Using unsupervised learning meth-
ods, this network was used to produce a topologically ordered
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two-dimensional output space in which forest sample plots
were located in relation to their similarity, here expressed in
terms of species composition. In this situation, the neural net-
work was used to effectively ordinate the data (Foody, 1999;
Giraudel and Lek, 2001). A Kohonen network was also used to
derive an unsupervised classification of the remotely sensed
data.

For the estimation of species richness and evenness, the
set of 30 sample plots for which there was paired ground and
remotely sensed data (i.e. for the plots unaffected by cloud,
etc.) was divided randomly into two independent samples.
One sample was used to train the networks to develop an
invertible relationship between the remotely sensed response
and the selected biodiversity index and comprised the data for
20 sample plots. The other sample contained the data of the
remaining 10 sample plots and was used to evaluate the accu-
racy of the species richness and evenness predictions derived
from the neural networks. These training and testing sets were
the same as that used in an earlier investigation focused on
the estimation of forest biomass from the TM image (Foody
et al., 2001). Here, the potential to predict biodiversity indices
from a variety of networks of differing type, architecture and
parameter settings was evaluated. For comparative purposes,
estimates of the biodiversity indices were also derived using
both a standard ordinary least squared regression approach
utilising all six TM wavebands and from NDVI data.

A Kohonen neural network was used to summarize the
information on tree species composition acquired by the field
survey. This network was used to derive an unsupervised
classification in which the classes were arranged within its
two-dimensional output on the basis of their relative simi-
larity. In this way, the network performed a task similar to
a vegetation ordination (Foody, 1999). A variety of networks
and associated parameter settings were investigated. Here, the
presence/absence of data on tree species composition for each
of the 52 sample plots was entered into a Kohonen neural net-
work with an output layer that comprised 5 × 5 units. A further
Kohonen neural network was used to classify the remotely
sensed data. Here, the aim was to reduce the remotely sensed
data set to a small number of classes. The network used had
an output layer comprising 2 × 2 units and was used to clas-
sify the data for the 30 plots free from cloud contamination. A
similar two-phase analytical approach was adopted with each
Kohonen network. The first phase involved 200 iterations of
the algorithm with the learning rate set initially at 0.6 and a
neighbourhood of 1 while the second phase involved a further
200 iterations with the learning rate initially set at 0.1 and a
neighbourhood of 0. These parameter settings were defined,
arbitrarily, after experimentation.

5. Results and discussion

A series of several hundreds of candidate feedforward neu-
ral networks were evaluated to predict the biodiversity indices
from the remotely sensed response. For brevity, the discussion
is focused on only the results providing the strongest relation-
ship with the biodiversity indices together, for comparative
purposes, with those derived using conventional alternative
methods.

Fig. 1 – Relationship between the number of species
predicted from a generalized regression neural network
and that measured in the field. The species richness
predictions derived from this network, which had 20 units
in the first hidden layer, were strongly correlated to the
richness observed in the field (training set r = 0.88, testing
set r = 0.69).

The most accurate predictions of species richness were
derived from a GRNN (Fig. 1; r = 0.69, significant at the 95%
level of confidence).

A similar, but slightly weaker relationship (r = 0.68), was
derived with the use of a standard backpropagation trained
MLP neural network. Weaker relationships were observed for
the estimation of species evenness. The strongest relationship
between predicted evenness and that measured in the field
was derived from a GRNN (r = 0.45, insignificant at the 95%
level of confidence). Although the focus upon only commer-
cially valuable species and the smallness of the sample size,
together with the possibility that the training and testing sets
may have been sub-optimally defined in terms of the range of
values represented in each, are limitations, the results indi-
cated the potential to derive a strong predictive relationship
between biodiversity indices and remotely sensed data, espe-
cially for species richness. Moreover, the relationships were
stronger than those derived using conventional alternative
methods. The standard multiple regression equations derived
from the training set, in which the remotely sensed data were
the independent variables, were, for example, used to derive
predictions of the biodiversity indices for the testing set that
were not as strongly related to those derived from field obser-
vation as the predictions made from the neural networks.
The correlation coefficients for the relationship between the
predicted index values and those derived from field observa-
tion were 0.41 and −0.05 for species richness and evenness,
respectively (both insignificant at the 95% level of confidence).
Similarly, the widely used NDVI was less strongly related to
species richness (r = 0.49, insignificant at the 95% level of con-
fidence) and evenness (r = 0.07, insignificant at the 95% level of
confidence) than the neural network predictions.

The Kohonen networks provided unsupervised classifica-
tions of the data sets. The sample plots were located within
the output spaces of these networks in a manner defined by
their relative similarity. Thus, the Kohonen network with a
2 × 2 output layer was used to define four classes of forest
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Fig. 2 – Location of sample plots in the output space of the
Kohonen neural network applied to the tree species data.
The symbol for each plot identifies the time (years) since
the region in which it lies was last logged (and method of
logging where appropriate) or the location of unlogged
sites. Note there is a tendency for sites to cluster, with, for
example, recently logged forests concentrated along the
right hand side and older logged forests concentrated
towards the upper left hand side of the output space.

that are highly separable spectrally. Similarly, the larger out-
put space of the Kohonen network applied to the tree species
data could be used to group together similar plots. Since plots
were located in the output space by their relative similarity in
terms of species composition, contiguous regions of the out-
put space may represent similar forest types. This was evident,
for example, in terms of past use of the forest (Fig. 2), with plots
containing certain tree species located within limited parts of
the output space (Fig. 3).

Fig. 3 – Location of a set of selected tree species within the
output space of the Kohonen neural network applied to the
tree species data. Note the confined space in which species
were observed and that different species are often
associated with dissimilar regions of the output space.

Fig. 4 – The partitioning of the output space of the Kohonen
network applied to the tree species data (see Figs. 2 and 3)
by that applied to the remotely sensed data. For illustrative
purposes the four output units of the network applied to
the remotely sensed data have been labelled A–D and their
corresponding location in the output space derived from
the network applied to the tree species data is illustrated.

The outputs from the two Kohonen networks were related
to each other with the aim of identifying similarities in the
groupings derived. Specifically, the aim was to determine if
the output space of the network defined on remotely sensed
data could be used to partition the output space from the
network defined on the vegetation data and thereby indi-
cate the ability to identify classes of tree species composi-
tion from the imagery. The plots allocated to each of the
four output units of the network used with the remotely
sensed data were located in the output space of the network
used to ordinate the tree species data acquired in the field.
The plots grouped by the network applied to the remotely
sensed data were found to be clustered close together in
the output space defined on tree species composition data.
It was, therefore, possible to partition the output space of
the Kohonen network defined by tree species composition
into four spectrally separable groupings (Fig. 4). The partition-
ing was not perfect, but only 5 of the 30 plots (∼17%) were
linked inappropriately between the two Kohonen network out-
puts. Nonetheless, the simple partitioning of the Kohonen
network output space depicting information on tree species
composition by the outputs of the Kohonen network group-
ing the remotely sensed responses indicated the potential
to map species composition classes from remotely sensed
data.

Combining the results of the analyses based upon the feed-
forward and Kohonen neural networks allowed a map depict-
ing the spatial variation in species number, evenness and
compositional attributes to be derived. An example is shown
in Fig. 5, which indicates the variation in species richness for
one of the four classes of species composition defined from
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Fig. 5 – A sample representation of the biodiversity
information extracted from the neural network based
analyses. The variation in image tone mapped represents
the spatial distribution of species richness for one of the
four classes output from the Kohonen neural network
applied to the remotely sensed data.

the output of the Kohonen network applied to the remotely
sensed data.

6. Conclusions

There are great uncertainties associated with biodiversity but
it is recognised that biodiversity conservation and manage-
ment is probably most effectively undertaken at the landscape
scale. Remote sensing has been identified as a major poten-
tial source of information on biodiversity at such scales. Most
studies have generally only considered one aspect of biodi-
versity, that of species richness or the number of species
present. Here, it has been shown that both species richness
and species composition information can be usefully and
accurately derived from remotely sensed data of a tropical
forest site. Although the sample size and range of species con-
sidered in this study are limitations, the potential to extract
useful biodiversity information from remotely sensed data
is apparent. This potential is driving current research that
aims to provide maps of biodiversity that may be used for
monitoring purposes. This work aims to use a larger sam-
ple, which may be more appropriately divided into train-
ing and testing sets for biodiversity estimation. Addition-
ally, it is intended to use the results of a major ground
survey of the site to more precisely locate the plots in the
remotely sensed imagery. The new locational information
should enable the remotely sensed response of the individ-
ual pixel containing a specific plot to be extracted. This may
enhance the ability to relate the ground and remotely sensed
data sets as well as enable the useful derivation of image
textural information. The latter should be of value in indi-
cating forest heterogeneity that may further enhance the

estimation of indices of biodiversity from remotely sensed
data.
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