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Abstract 

        A planetary and synoptic-scale analysis of a relatively rare continental blocking event that 

occurred over North America during the spring of 1980 are undertaken to determine whether or 

not this event was different from its counterparts which occur over oceanic regions. The 

planetary-scale analysis demonstrates that, during the spring season, a ridge was located further 

inland over the North American continent and amplified with respect to climatology. The 

position of this ridge may have been linked to a broad region of colder-than-normal SSTs found 

over the north central Pacific during the spring season and much of the previous winter. Simple 

"Sutcliffe-type" and thermodynamic analyses of the accompanying lower tropospheric warm 

anomaly associated with the ridging shows that lower tropospheric temperature advection and 

subsidence associated with anticyclonic vorticity advection by the time mean thermal wind 

produced much of the anomalous warmth.  

        A simple synoptic-scale analysis was performed using both the Zwack-Okossi (ZO) 

equation and potential vorticity (PV) thinking approaches. These complementary analyses 

demonstrated that synoptic-scale cyclones were instrumental in the formation and maintenance 

(and/or intensification) of this blocking event. The PV analysis demonstrated that low-PV air 

was swept poleward and then was advected over the blocking region sustaining the broad region 

of low potential vorticity associated with the block over North America. The ZO analysis 

showed that the advection of anticyclonic vorticity was the most important mechanism forcing 

geopotential height rises at 500 hPa over the block center. The region of low PV and ZO height 

rises could be associated with the anticyclonic shear side of an upstream jet maximum typically 

found in association with developing and/or intensifying blocking event. Thus, negative PV 

advection correlated significantly with calculated ZO height rises. Finally, it is suggested that a 

favorable phase-relationship between the upstream cyclones and the large-scale ridge is 

necessary for block development or intensification.  



1.     Introduction 

        In recent years, substantial progress has been made in understanding both the climatological 

behavior of blocking anticyclones (e.g. Rex, 1950; Triedl et al., 1981; Lejenas and Okland, 1983; 

Shukla and Mo, 1983; Lupo and Smith 1995a; hereafter LS95a), and the atmospheric dynamics 

associated with the formation and maintenance of them (e.g. Tung and Lindzen, 1979a,b; 

McWilliams, 1980; Kalnay-Rivas and Merkine, 1981; Frederiksen, 1982, 1983; Shutts, 

1983,1986; Colucci, 1985,1987; Mullen, 1986,1987; Tsou and Smith, 1990; Alberta et al., 1991; 

and Lupo and Smith, 1995b; hereafter LS95b). Despite this progress, forecasting the formation 

and maintenance of blocking anticyclones remains a difficult problem (e.g. Simmons, 1986; 

Tibaldi and Molteni, 1990; Tracton, 1990; Tibaldi et al., 1993, 1994; Colucci and Baumhefner, 

1998). Additionally, the understanding of processes contributing to the formation or decay of 

blocking anticyclones is far from complete. In fact, there is no commonly agreed upon (unified) 

definition of blocking (LS95a). Most published definitions of blocking (e.g. Rex, 1950; Shukla 

and Mo, 1983; Lejenas and Okland, 1983; LS95a; and others), however, do contain many 

common elements. 

        Previous theories on block formation and maintenance have focused on the link to 

orography and long-wave baroclinic processes (in particular, surface heating) (e.g. Charney and 

DeVore, 1979; Sperenza, 1986; Kung et al., 1993), interactions between long waves (e.g. 

Blackmon et al., 1977; Austin, 1980; Colucci et al., 1981; Trenberth and Mo, 1985), or the 

resonant amplification of long waves (e.g. Tung and Lindzen, 1979a,b). Early model studies 

involved the use of simple, highly truncated, spectral models and were usually discussed within 

the context of planetary-scale atmospheric flows. Tung and Lindzen described blocking as the 

resonant amplification of large-scale planetary waves forced by topography and surface heating. 

They did not address the problems of why blocks occur in preferred geographical locations or 

why high/low dipoles are the preferred configuration. McWilliams (1980) proposed that blocking 

could be described as a solitary wave ("soliton", or "modon"), which in their simplest form 

resemble dipoles. He showed that the barotropic vorticity equation has solutions that have 
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properties in common to such solitary wave solutions as, for example, the Kortweg-de-Vries 

equation for waves in a channel. He also showed that blocks have many characteristics in 

common with "modons", but he noted that the mean zonal wind profiles in observed cases might 

not match those required for "modons". He also raised questions about whether a stationary 

theoretical solution adequately represents the essential dynamics of blocks, which are observed 

to fluctuate in intensity.  

        While these studies, and others, describe the presence of blocking in the atmosphere, many 

other important questions have been raised. For example, blocks, which are planetary-scale 

phenomenon in both time and space, have been observed to form and decay on time scales 

consistent with synoptic-scale events (e.g., Shutts, 1983; LS95a,b). The pioneering studies of 

Kalnay-Rivas and Merkine (1981), Shutts (1983), and Frederiksen (1982, 1983) using various 

models emphasized the role of mid-latitude transients in the formation and/or maintenance of 

blocking anticyclones. Included in Shutts' work was an experiment that indicated that these 

synoptic-scale transients alone were sufficient to produce and maintain a block in an initially 

zonal flow. Since then, observational studies (e.g. Hoskins et al., 1983; Illari, 1984; Dole, 1986; 

Mullen, 1987; Konrad and Colucci, 1988; Tsou and Smith, 1990; Alberta et al., 1991; Mak, 

1991; LS95a,b; and others), using a variety of methodologies, have shown the importance of 

vorticity transport by traveling synoptic-scale disturbances in maintaining the block against the 

tendency for the block to be advected away by the mean flow. Some of these studies (e.g. Tsou 

and Smith, 1990; Alberta et al., 1991; Lupo and Smith, 1996; Lupo, 1997) also found that 

temperature advection could also play a role in block formation. Additionally, a few of these 

studies (e.g. Konrad and Colucci, 1988; Tsou and Smith, 1990; LS95b) examined the dynamic 

connection between the development of a particular surface cyclone event and block formation.                

         The primary objective of this study is to examine, using simple diagnostic techniques, the 

planetary and synoptic-scale forcing contributing to the development of a continental blocking 

anticyclone that occurs over a region and in a season where blocking activity is uncommon, as 

will be demonstrated using the results of LS95a and others. In particular, this study attempts to 
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determine the extent to which this blocking event is similar to its more commonly (spatially and 

temporally) occurring counterparts examined in the other studies referenced above on both the 

planetary and synoptic-scales, or whether this event is indeed unique. Also, this paper will utilize 

two different diagnostic techniques, and demonstrate that the use of both techniques result in 

similar conclusions and provide a complementary analysis. These techniques will demonstrate 

that, for this event, the synoptic-scale aspects of block formation are similar to that of other 

events, despite the rare occurrence of the block over North America and the anomalous  

planetary-scale flow regime that accompanies it. Also, it is shown that the phase relationship 

between the block and the upstream cyclones is crucially important in determining whether the 

block will intensify or decay. The organization of the paper is as follows: section 2 will describe 

the analyses and diagnostic techniques used in this study. The planetary-scale diagnosis and 

discussion is covered by section 3. Section 4 will cover the synoptic-scale results, and the paper 

will be summarized in section 5.       

 

 

2.     Analyses and Diagnostic Techniques 

 

a.     Analyses 

 

        Two data sets were used for the analyses carried out by this investigation. First, the National 

Meteorological Center (NMC) (now the National Centers for Environmental Prediction, or 

NCEP) gridded analyses of geopotential height, temperature, u and v wind vector components, 

relative humidity, vertical motion (all at selected mandatory levels), and sea-level pressure 

archived on CD-ROM1 (Mass et al., 1987) were used to investigate the role of the planetary-

scale forcing in the antecedent conditions leading to this block. The upper-air fields are arranged 

on grids at selected mandatory levels, while the 500-hPa vertical motions are model 6-h first 

guess fields calculated using the NCEP global spectral model. These grids were stored in 47 by 
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51 point arrays on the NMC octagonal grid, a polar stereographic grid with a resolution of 381 

km at 60o N, and were transformed to a 2.5o by 2.5o latitude/longitude grid. This data set was 

chosen because the software for data manipulation and visualization was already in place, thus 

facilitating the search for a suitable case study. Second, the NCEP/National Center for 

Atmospheric Research (NCAR) re-analyses, available from the NCAR mass-store facilities, were 

also used, primarily for the synoptic-scale investigation. The NCEP re-analyses (Kalnay et al., 

1996) used here are 2.5o by 2.5o latitude/longitude gridded analyses available on 17 mandatory 

levels (from 1000 to 10 hPa) at 6-h intervals. These analyses2 include standard atmospheric 

variables such as; geopotential height, temperature, relative humidity, model calculated vertical 

motions (ω), u and v wind components, a diverse set of surface fields, and tropopause 

information. Mandatory pressure level data were interpolated quadratically in ln[p] to 21 isobaric 

levels in 50 hPa increments from 1050 to 50 hPa. This data set was chosen because it provided 

more detailed analyses for the synoptic-scale diagnoses, especially in the vertical. 

 

b.    Diagnostic techniques      

 

        Two techniques were employed in the synoptic-scale investigation of this block. One of 

these techniques is the ZO equation (Zwack and Okossi, 1986), which has been used, in several 

published studies as the diagnostic framework. The ZO equation is a geostrophic vorticity 

tendency equation derived in its extended form (Lupo et al., 1992; LS95b) by coupling the 

vorticity and thermodynamic equations through the hydrostatic thickness equation. The result is 

an equation that allows for the diagnosis of geostrophic vorticity tendency at a near-surface 

pressure level as forced by vertically integrated dynamic and thermodynamic forcing 

mechanisms.  

        Previous studies have used the extended or complete form of the ZO equation. In the 

diagnosis of this blocking event, however, a quasi-geostrophic form of this equation is used: 
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                                                                                                                   ,    (1) 

 

where Vg represents the geostrophic wind, ζga the geostrophic absolute vorticity, S(p) the static 

stability parameter (-T/θ      ), ω the vertical motion (dp/dt),      the horizontal del operator on an 

isobaric surface, and fo(Coriolis parameter) = 10-4s-1. R, T, and θ are the gas constant for dry air, 

absolute temperature, and the potential temperature, respectively. In (1), the static stability 

parameter, S(p), is a function of pressure only. Also, PD is 1/(pL - pt), where pL represents the 

near-surface level (the first 50 hPa pressure level above the earth's surface at any grid point) and 

pt is the pressure at some sufficiently high pressure level chosen to encompass most of the 

atmospheric mass (50 hPa in this study). This simplified form of the ZO equation is used here 

since the three forcing mechanisms on the right-hand-side (vorticity and temperature advection, 

and adiabatic heating/cooling) are consistently the largest forcing mechanisms at the 500-hPa 

level. The vorticity tendencies were then relaxed to get height tendencies using sequential 

overrelaxation (Haltiner and Williams, 1980). Height tendencies were examined since the 

geostrophic vorticities (vorticity tendencies) tend to be weaker in the central region of such 

planetary-scale phenomena and there is often more than one center of strong geostrophic 

vorticity (vorticity tendency) located along the periphery of the height center (e.g. Sinclair, 

1996).  

        The ZO equation is similar to the Petterssen-Sutcliffe (PS) equation3 (Petterssen, 1956, pp. 

320 - 325), which diagnoses surface development as a function of atmospheric forcing processes 

occurring between the surface and the non-divergent level, coupling these processes via the 

thermal wind. However, the ZO equation extends these concepts in order to expose more 

completely the importance of upper tropospheric forcing on surface development. This equation 

is also versatile in that diagnoses at pressure levels other than the surface can be accomplished 

simply by solving the geostrophic vorticity tendency equation (see Eq. (3) in Lupo et al., 1992) 

for some specified level (here, 500 hPa), as was done in LS95b.  

        Another quantity that is very useful in examining mid-latitude phenomena in a simple and 
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concise manner is potential vorticity, or "PV-thinking". Ertel (1942) derived an elegant form of 

this quantity from the hydrostatic primitive equations: 

 

                                                                                                ,                (2)                       

 

where P is Ertel's potential vorticity (EPV), ωa is the three-dimensional absolute vorticity vector, 

ρ is the density of air, and      is the three-dimensional del operator on theta surfaces. This form 

of the potential vorticity has some particularly powerful characteristics in that the potential 

vorticity is conserved on surfaces of potential temperature in hydrostatic, inviscid, and adiabatic 

three-dimensional flows (see Pedlosky, 1987). Under these conditions, an examination of the 

right-hand-side of (2) reveals that the dynamic and thermodynamic properties of the atmosphere 

are contained in one variable P. The conservation property is also the foundation for examining 

wave development in terms of θ, or some other conserved variable, on a dynamically significant 

PV surface (e.g. 1.5 x 10-6 Km2kg-1s-1, which is commonly taken to correspond to the dynamic 

tropopause) (e.g. Hoskins and Berrisford, 1988; McIntyre, 1988; Nielsen-Gammon and Lefevre, 

1996). This allows one to examine the important features of atmospheric phenomena in a concise 

manner. Additionally, as described by Hoskins et al. (1985), the global distribution of PV, given 

a suitable boundary condition and "reference" state, can be used to determine, or recover, all the 

relevant dynamical fields such as winds, temperature, and pressure. This powerful property is 

referred to by Hoskins et al. (1985) as the "Invertability principle" for potential vorticity. 

However, we will examine PV distributions on a pressure surface as described in section 4. We 

will also study the advection of PV assuming that the quantity P is a conserved quantity.  
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3.     Planetary-scale Analysis 

 

a.       Diagnostics 

 

        The blocking anticyclone chosen for this study occurred over North America in late April 

and early May of 1980, which was during the spring season that preceded the devastating North 

American drought of 1980 (Dickson, 1980; Livezay, 1980; Wagner, 1980). This blocking event 

met the criterion for a blocking anticyclone as defined by LS95a, which can be summarized as 

combining the aspects and advantages of the subjective Rex (1950) definition and the objective 

Lejenas and Okland (1983) criteria. Comparing the characteristics of this event (Table 1), such as 

the occurrence, intensity, half-wavelength and duration, to the LS95a sample shows that this 

block was similar to typical blocking events which occur over land surfaces or in the spring 

season. However, while this case did have characteristics that were similar to other blocking 

events, this blocking event can be considered anomalous since the event occurred over the North 

American continent. Figure 1, taken from LS95a (their Fig. 6), and Table 1 show that were no 

blocking events that occurred over North America from July 1985 through June 1988, meeting 

the criteria of their climatology. Thus, Continental region statistics in Table 1 are due entirely to 

blocking events that occurred over the Asian continent (see LS95a). Much longer climatologies 

(see Triedl et al. 1981; Lejenas and Okland, 1983) also demonstrate that blocking events are 

comparatively rare over that portion of the Northern Hemisphere. Additionally, there is also a 

relative minimum in the occurrence of blocking events during April and May, especially over the 

Eastern Pacific region, as the focus of Pacific region blocking shifts west of the date line (see 

Triedl et al., 1981; LS95a).  

        An examination of the Northern Hemisphere teleconnectivity patterns over a seven-week 

period, beginning about one month before the onset of the block and terminating after the block 

no longer met the criteria of LS95a (21 March - 5 May 1980), was performed using the 

methodology of Blackmon et al. (1984). This one-point correlation analysis provided us with an 
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initial overview of the planetary-scale environment associated with the blocking event. While the 

time period chosen for the analysis is very short compared to other studies of this type (e.g. 

Wallace and Gutzler, 1983; Mo and Livezey, 1986), we feel it is long enough to capture the 

essence of the teleconnectivity pattern that prevailed during the spring of 1980. Our 

teleconnectivity analysis shown in Fig. 2 corresponds to Fig. 4f in Blackmon et al. (1984). Since 

our sample size is smaller, correlations significant at the 95% level, or above 0.75 (below -0.75), 

are darkly (lightly) shaded. The base point for the one-point correlation analysis was chosen to 

be (45o N 165o W), which is just upstream of the block chosen for study and its environment. 

This point also corresponds to the same point used by Wallace and Gutzler (1981) and Blackmon 

et al., (1984) to deduce the PNA teleconnectivity pattern discussed below.  

         Figure 2 reveals that the teleconnectivity pattern prevalent across the Pacific-North 

American (PNA) region does not correspond to the typical PNA region teleconnectivity found by 

many other studies. A more typical pattern, using the base point mentioned above, (see 

Blackmon et al., 1984 Fig. 4f for an example) features a positive correlation between 500 hPa 

height anomalies over the Gulf of Alaska and Southeast North America and a negative 

correlation to height anomalies over Western North America. The most common configuration, 

for example, is the existence of a 500-hPa trough in the East Pacific and a ridge/trough couplet 

over western/eastern North America, respectively. However, Fig. 2 suggests a shorter 500 hPa 

wavelength over the PNA region as the base point correlates in the opposite manner with 500 

hPa height anomalies over North America than does the typical PNA pattern described above. 

However, our data does resemble the pattern shown in Namais (1982) (his Fig. 13a) for 700 hPa 

heights in the summer season (all summers 1947 - 1972) within the PNA region. The pattern 

shown by Namias (1982) shows a positive correlation between a base point, similarly located to 

ours in the East Pacific, and heights over North America and a negative correlation to regions 

near the continental coastal regions. Namias (1982) stated that this corresponds to a ridge over 

North America, and a trough off or along each coastal region.  

        The significant negative (positive) correlations in Fig 2 suggest lower (higher) heights, or 
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troughing (ridging) over the North (Central) Pacific, which broadly defines anomalously strong 

higher-latitude westerlies across the PNA region. Thus, it is suggested that the prevailing flow 

regime within the PNA (and North America) region during the seven week period here was 

anomalous at least in the sense that; 1) such a pattern would, in a typical year, occur further into 

the warm season, and 2) there were anomalously strong high-latitude westerlies over the Eastern 

Pacific and Northern Canada.    

       An examination of the 10-day mean 500 hPa heights and anomalies (Fig. 3a) reveals that, at 

the end of March, a trough existed over the Rocky Mountain Region. Also, a blocking ridge was 

in place over the western and central Atlantic (Fig. 3a, centered on 26 March) for much of the 

second half of March. However, Fig. 3b (centered on 4 April) shows that the west Atlantic block 

disappeared by late March/early April while a split flow pattern had developed over North 

America, which persisted through the first part of April. Then, by mid-April (Fig. 3c centered on 

15 April) a distinct ridge (western)/trough (eastern) couplet was in place over North America. 

The 500-hPa heights in Fig. 3c also imply that a strong zonally oriented jet extends all the way 

across the Pacific by this time. The ridge/trough pattern then amplified and moved progressively 

eastward until late April (Fig. 3d centered on 25 April) when the block had formed (0000 GMT 

24 April) over western North America.  

       The standardized 500 hPa height anomalies (Fig. 3) were constructed relative to the 1960 - 

1994 500 hPa monthly mean heights using the data obtained from the NCEP CD-ROM. These 

long-term mean height fields were interpolated linearly in time to match each corresponding 10-

day period in Fig. 3, and then subtracted from the 10-day mean height field. The height 

anomalies were then divided by the standard deviation of the 500-hPa height field. The standard 

deviations were constructed using monthly mean height data found on the CD-ROM and thus 

provide a rough estimate of this quantity. However, it should be cautioned that these standard 

deviations of the corresponding 500-hPa height fields are smaller than those constructed using 

daily height fields. Also, the discussion is limited, in most cases, to anomalies of greater (less) 

than 2.0 (-2.0) standard deviations.  
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        In the latter half of March, there was a large positive height anomaly (Fig 3a) associated 

with the block over the western Atlantic. There was also a weaker positive height anomaly 

located over the eastern Pacific (not shaded). Additionally, a region of low heights also persisted 

over southwestern North America. Within the next period (Fig. 3b), all of these anomalies 

weakened over the North American region as part of the western Atlantic positive anomaly 

tracked westward (following the labeled centers) into western North America. It is also likely 

that the east Pacific region height anomaly also moved northeastward into western North 

America as well, becoming superposed with the Atlantic anomaly. Examining the intervening 

10-day running mean maps, which are not shown for brevity, supported our interpretation. This 

positive height anomaly center then amplified over western and central North America 

throughout the rest of April (Figs 3c,d) and into May, which included the block lifetime. There 

was also a large negative height anomaly present over the eastern and central Pacific throughout 

the seven week period (Figs. 3a - d). Thus, Fig. 3 suggests the existence of an anomalously 

strong and more eastwardly extended jet with respect to normal throughout this period with the 

presence of a positive anomaly in the equatorial regions south of a negative anomaly over the 

North Pacific (as suggested by Fig. 2). The negative height anomaly will be discussed in more 

detail later in this section. Finally, examining the 30-year mean height fields for April (Fig. 4a) 

reveals a tendency for weak split flow over western North America during April. Also, the 

previous analysis of the 500 hPa height fields and height anomalies for March and April 1980 

suggest that the occurrence of such an amplified large-scale ridge over North America at this 

time is anomalous.  

 

b.    Discussion 

 

       Further analysis was carried out in order to support the above contention that this blocking 

event was associated with a flow regime in which the climatological planetary-scale 500 hPa 

features were more amplified and/or phase shifted relative to the climatological means. Figure 4a 
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strongly suggests that wave numbers 2 and 3 dominate the climatological April 500-hPa height 

field over North America. The 500 hPa heights and standardized height anomalies associated 

with the anomalous ridging over North America throughout April (Figs. 3b-d) also suggest 

dominant wave number 2 through 4 patterns. The April 1980 500 hPa height anomalies (Fig. 4a) 

corroborate the presence of a wave number 2 and 3 pattern during that month. Also, the 

standardized anomaly maxima and minima imply that the regular Northern Hemispheric 

trough/ridge features are amplified and/or shifted downstream of their climatological position 

especially over North America, the Atlantic, and into Western Europe. The presence of amplified 

wave numbers 1, 2, and 3 in association with blocking have been noted by many investigators 

(e.g. Austin 1980; Colucci et al., 1981; Trenberth and Mo, 1985), suggesting a prominent role for 

planetary-scale forcing in the development and maintenance of blocking anticyclones. Other 

studies have noted the presence of traveling wave numbers 1 and 2 in association with blocking 

(e.g. Quiroz, 1987; Lejenas and Madden, 1992). Figure 3 may lend support to these observations 

since the height anomalies associated with the Atlantic block earlier in the period are seen to 

"migrate" westward with time into the North America region. However, the 500-hPa height field 

and height anomalies would have to be decomposed into their component wave numbers in order 

to confirm this observation.  

       Several processes may have contributed to the anomalous ridging in the 500-hPa heights 

over North America described above. The study of the North American drought of 1980 by 

Namias (1982) provides some insight. He examined some of the antecedent general circulation 

features that presaged the occurrence of this summer drought and other North American summer 

droughts in more detail (Namias, 1982; 1983). Specifically, he found that sea surface 

temperatures (SSTs) were much cooler than normal over most of the central North Pacific for a 

period of several months leading up to the summer of 1980, and his Fig. 10a shows the extent of 

these cool SSTs for May 1980. This cold pool may be manifested by the persistence of large 

negative 500 hPa height anomalies in March and April (see Fig. 3). The extent to which the cool 

SSTs are entirely responsible for the 500-hPa height anomalies cannot be assessed briefly here. 
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However, modeling studies (e.g. Kung et al., 1993; Nakamura et al., 1997) have demonstrated 

that Pacific region SSTs can produce 500-hPa height anomalies similar in magnitude to those 

shown here. These negative anomalies typically correspond to a stronger and an eastwardly 

extended Pacific jet (e.g. Hurrell, 1996). Fig. 5 is an example of the conditions that prevailed in 

the 250 hPa wind field during this study period (as suggested by Figs. 2 and 3). The shaded 

regions in Fig. 5a depict where the 10-day mean 250 hPa wind speeds are greater than 35 ms-1. 

Note that the strong jet extended all the way across the Pacific Ocean and into North America. 

The map of standardized wind anomalies (Fig. 5b) demonstrates that the stronger than normal 

westerlies (dark shading) across the entire Pacific and into North America during this season was 

anomalous. The planetary-scale (in time and space) negative 500 hPa height anomaly found in 

Fig. 3 may be similar to zonally-elongated planetary-scale eddies found by Hoskins et al. (1983) 

over the Pacific region of the Northern Hemisphere during the preceding winter (1979-80). They 

showed that these planetary-scale eddies contributed to the strengthened Pacific jet in the exit 

region ("smeared" the jet out). These planetary-scale eddies have a quasi-barotropic structure and 

are capable of displacing the prevailing westerlies and could increase the kinetic energy of 

higher-frequency transients (Hoskins et al. 1983), which in turn can impact on the evolution of 

the planetary-scale features (Simmons et al., 1983). Finally, the eastwardly extended Pacific jet 

found here would then result in the diffluent jet exit region, and consequently the upstream 

ridging, being displaced further eastward than normal as is generally shown by Fig. 3 and 5.   

        The above discussion may partially explain the presence of anomalous ridging over North 

America. Further analysis, however, was conducted using the 850-hPa temperatures and 

standardized anomalies (Fig. 6) in order to gain more insight into the process responsible for the 

500 hPa ridging. Fig. 6 was constructed in the same manner as the 500 hPa heights and 

anomalies shown in Figs. 3 and 4. The 850-hPa level was chosen since lower tropospheric 

heating would cause ridging at 500 hPa in the absence of upper level cooling. At 850 hPa, 

temperatures were warmer than average over much of northern Canada (and eventually all of 

North America) for the entire analysis period, especially after mid-April. However, it wasn't until 
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mid-April that temperatures were significantly warmer over the middle portion of North America 

(Fig. 6c) and along the Pacific northwest as the 500 hPa ridge became well established over 

western North America (Fig. 3c). These observations are supported by Fig. 4b, which shows the 

850 hPa temperature anomalies for the month of April 1980 and the 30-year mean 850-hPa 

temperatures for April. Typically, a thermal ridge/trough couplet exists over the western/eastern 

portion of North America, respectively. The first half (Fig. 6a,b) of our analysis period reflects a 

similar distribution, while in the latter half of the period there was a distinct thermal ridge over 

North America (Fig. 6c,d). The surface temperatures (not shown) for April 1980 also show a 

large positive anomaly (greater than 4 C over central Canada) over North America. Finally, a 

comparison of the 850 hPa temperatures (Fig. 6c,d) and heights (not shown) to the 500 hPa 

heights (Fig. 3c,d) over the same period suggests that the anomaly associated with mean ridge 

over North America had a strong equivalent barotropic component.  

        A simple Sutcliffe-type diagnosis was performed in order to gain further insight into the 

formation of this 850-hPa temperature anomaly over North America. A representative 10-day 

average is shown in Fig. 7. This period was chosen since it is the first full 10-day period that 

follows the amplification of the 500-hPa ridge and encompasses block onset. Fig. 7a shows the 

700 - 200 hPa thicknesses plotted over the 500 hPa geostrophic relative vorticity. The 500-hPa 

vertical motion is shown in Fig. 7b. The advection of vorticity by the thermal wind (shaded 

regions in Fig. 7) is similar in form to the "development" term in the Sutcliffe equation, or the 

"Sutcliffe development formula" (e.g, Holton 1979, p. 224). Thus, the regions of cyclonic 

(anticyclonic) vorticity advection by the thermal wind in Fig. 7 represent regions of surface 

cyclone (anticyclone) development in the time-mean sense. Upstream surface cyclone 

development prior to block onset is an important ingredient to block formation as found by Tsou 

and Smith (1990) and others. There is also a correspondence between regions of mean upward 

(downward) motion (Fig. 7b) and mean cyclonic (anticyclonic) vorticity advection by the 

thermal wind in Fig. 7a. This suggests that anticyclonic vorticity advection by the thermal wind 

and the accompanying subsidence regions over central North America may have played some 
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role in the formation of the anomalous 850-hPa warmth. 

        To support the above suggestion, further analysis of the anomalous 850-hPa warmth over 

North America was accomplished using the thermodynamic equation in the form: 

  

                                                                                                ,                 (3) 

 

 

where terms (b) and (c) represent the mean contributions from temperature advection and 

adiabatic warming/cooling, respectively, and term (d), the mean diabatic heating term, contains 

contributions from latent heat release, boundary layer sensible heating/cooling, and infrared 

heat/cooling processes. The parameterization of each quantity in (d) is described in LS95b. In 

Table 2, instantaneous calculations of each term (b), (c), and (d) were averaged in time (15-24 

April) and space (bounded by 45o N, 70o N, 130o W, and 80o W or northern North America). The 

time period chosen corresponds to the Sutcliffe analysis presented above, and the region 

corresponds to the area of anomalous 850-hPa warmth (see Fig. 6f). The total heating rate (a) is 

the sum of each term. Table 2 shows that the mean temperature advection was the primary 

process responsible for anomalous warmth at 850 hPa. However, this mechanism would tend to 

produce upward motion at 850 hPa and adiabatic cooling. Thus, anticyclonic vorticity advection 

producing subsidence as shown in the analyses above, in conjunction with the mean infrared 

cooling (producing downward motion), resulted in the adiabatic warming, which must have been 

sufficient to produce the net warming in term (c). Thus, based on the simple thermodynamic and 

Sutcliffe analyses above, the anomalous warmth at 850 hPa would seem to be produced 

primarily by the mean temperature advection and the mean subsidence associated with 

anticyclonic vorticity advection by the mean thermal wind.      
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4.    Synoptic-Scale Analysis  

 

       In this section, we use both "Sutcliffe", and "PV" thinking in order to show that they can be 

used in a complimentary fashion. The 300-hPa EPV fields were calculated using the NCEP re-

analyses and will be examined and displayed on the 300-hPa pressure surface (e.g. Bosart and 

Lackmann, 1995). Maps of EPV on the θ = 315K surface and the 300 hPa pressure surface for 

0000 GMT 21 April 1980 are compared (Fig. 8). The 315K level was chosen since it is close to 

the 300 hPa level in the mid-latitudes (see Hoskins et al., 1985). The important features look 

very similar in a qualitative sense. The 300-hPa wind and the 500-hPa height field, superimposed 

on Fig. 8a and b, respectively, also imply that the advection of PV should be similar. While the 

conservation property of PV is sacrificed, this comparison shows that EPV calculated on a 

pressure surface can still be used effectively as a diagnostic tool. Also, Hoskins et al. (1985) 

comment that, since pressure and height are the vertical coordinate for the observation network, 

it is necessary to use numerical interpolation to calculate PV on isentropic surfaces. Thus, even 

PV fields calculated on isentropic surfaces are still only approximations to the real PV 

distribution. 

       A brief overview of the block life cycle reveals that there were two periods of intensification 

separated by a (mid-life) decay period (Fig. 9). The initial intensification period was more robust 

and resulted in the maximum intensity being achieved 72 hours after onset, which was similar to 

the life cycle of an Atlantic region blocking event studied in Lupo (1997). In this section, these 

intensification periods, as well as the development period, will be associated with upstream 

cyclone development (e.g., LS95b; Lupo, 1997). It will also be shown that there may be an 

optimum phase relationship between the developing cyclone and the block. 

  

a. Block Development 

 

        Figure 10 displays the 500-hPa heights and 300 hPa winds throughout the block formation 
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period. All the key elements of the Tsou and Smith (1990) block formation mechanism were 

present: (1) a planetary-scale quasi-stationary 500 hPa ridge over North America (Fig. 10), (2) a 

developing precursor upstream surface cyclone (Fig. 10b-i), (3) an associated 500 hPa 

amplifying, upstream short wave ridge (Fig. 10c-h), and (4) a strong jet maximum on the 

upstream flank of the developing short wave ridge located just off the western coast of North 

America (Fig. 10c-h). Tsou and Smith (1990) and LS95b noted the presence of one precursor 

surface cyclone in association with block formation. However, in this case, there were two 

identifiable upstream surface cyclones (L1 and L2) that may have contributed to block 

formation. The cyclones were located approximately 60o and 40o longitude upstream of the 

planetary-scale ridge axis when they began a period of rapid development, and this is similar to 

the findings of LS95a who noted that these cyclones tended to be located about 10o - 50o 

longitude upstream of the developing block. L1 deepened rapidly after 0000 GMT on 20 April 

(started at 989 hPa and deepened 22 hPa in 36 h) and was located just southwest of the Aleutians 

at that time (Fig. 10a). This cyclone moved into southwest Alaska over the next 48 hours. At 500 

hPa, the short wave ridge began to amplify markedly after 1200 GMT 21 April (Figure 10d).  

       The ZO calculated height tendencies (Fig. 11a) reveal that strong height rises were located 

over the amplifying short wave ridge. These height rises were mainly due to anticyclonic 

vorticity advection forcing height rises (Fig. 11b), with minor contributions from the thermal 

forcing mechanisms (not shown), a result similar to those of LS95b. The same analysis using PV 

diagnostics (Fig. 11c) shows the poleward extrusion of low PV air over the eastern Gulf of 

Alaska and western Canada, and subsequent low-PV advection into the region of the developing 

ridge over British Columbia, in a similar manner to that described by Illari (1984). The strong 

negative PV advection is shown quantitatively at 300 hPa (Fig. 12a) over western Canada.  

       There are other features in the 300-hPa PV field that are important to identify. For example, 

the upstream extrusion of high PV air over the Gulf of Alaska extended equatorward deep into 

the mid-latitudes. This region of high PV air located along the West Coast that was about to 

fracture from the main PV reservoir at this time was slightly tilted southwest to northeast, which 
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resembled anticyclonic wave breaking as described by Thorncroft et al. (1993). They found that 

this type of wave breaking is commonly associated with blocking. Lastly, the precursor quasi-

stationary planetary-scale ridge feature shown in Fig. 10 over central North America was evident 

in both EPV fields (Fig. 11 c,d) (see the corresponding regions of low EPV values associated 

with the ridge). Also, evident are the corresponding warm dynamical tropopause regions 

associated with both the planetary and synoptic-scale ridges described above.  

          The second surface cyclone (L2) began to develop around 0000 GMT 23 April (started at 

995 hPa and deepened 7 hPa in 24 h) and was located in the eastern Pacific off the coast of North 

America (Fig. 10g). This cyclone was a modest developer that moved over the British Columbia 

coast by 1200 GMT 24 April. After this time, the second surface cyclone was "absorbed" by a 

larger, stronger cyclone following immediately behind it over the eastern Pacific. At 500 hPa on 

0000 GMT 24 April (Fig. 10i), or block onset as defined by LS95a, note the presence of another 

short wave ridge on the northwest side of the block over British Columbia. Using the ZO 

diagnostics, (Fig. 13a) shows that, at that time, there were still height rises occurring over the 

northwest portion of the block, including the shortwave ridge. Height rises were also occurring 

over much of the incipient block located over North America. Again, these height rises were 

dominated by anticyclonic vorticity advection (Fig. 13b). However, temperature advection 

contributed more significantly to the height rise region over the northwest corner of the block, 

and consequently the short wave ridge in Fig. 10i, (not shown) than in the previous sequence. 

The PV maps (Fig. 13c) imply that there were regions of low PV on the western flank of the 

block with low values being advected into the blocked region. The upstream high PV air (Fig 

13c) extruded deep into the mid-latitudes and eventually "fractured" as in Fig. 11c. In Fig. 13c, 

there were two perturbations (B1 and B2, corresponding to L1 and L2, respectively, or regions of 

low EPV, on the northwest and northeast flanks of the block. An examination of the intervening 

maps (not shown) reveals that each region corresponded to each of the two upstream precursor 

cyclones. Fig. 13d also demonstrate that the tropopause was warmer in the blocked region and 

the two perturbations noted in the PV fields are evident. Also, there was a high/low couplet over 
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central North America in the dynamic tropopause θ field that correspond to the high/low couplet 

in the height field (Fig. 10i); indicating a block. 

        Thus, this diagnosis implies that two developing upstream surface cyclones can be 

associated with block development in this case. Therefore, the paradigm for block formation put 

forth by Tsou and Smith (1990), and expanded upon by LS95b (intensification), would not seem 

to be limited to only one precursor cyclone. In fact, in association with the cyclone following L2, 

another poleward extrusion of low PV air (and corresponding calculated ZO height rises) 

occurred, and the low PV air was (not shown) advected into the blocked region. These features 

can be seen occurring upstream of similar features described in Fig. 13a and 12b. The cyclone, 

following L2, corresponded to a period of block intensification after onset (as in LS95b and see 

Fig. 9) and culminating at 0000 GMT 27 April. Thus, it can be seen that, during block formation, 

the periodic poleward surge of low PV air into the block is associated with developing upstream 

synoptic-scale transients. Illari (1984) discussed the continuous (in the time-mean sense) 

poleward surge of low PV air associated with upstream synoptic-scale transients during block 

formation and maintenance in her analysis of a summer season case.  

        A brief re-intensification of the block (Fig. 9), after 0000 GMT 30 April and in association 

with an upstream cyclone, occurred again later in the block life cycle as is shown by the ZO and 

PV maps for 0000 GMT 30 April (Fig. 14). Many of the same features that were found during 

development and intensification could also be seen in Fig. 14, including the presence of a 

developing upstream surface cyclone, calculated 500 hPa ZO height rises, and the 300 hPa 

advection of low PV air on the upstream flank of the block. Additionally, the calculated ZO 

height rises and negative PV advection (Fig 14a,d) were collocated over the eastern Pacific and 

western North America. Correlating the calculated ZO height tendencies and the PV advection 

over the block lifetime and in the region bounded by 30o N, 70o N, 150o W, and 90o W, reveals a 

strong correlation between these fields. The correlation coefficient averaged -0.67, which was 

significant at the 95% level. A Z-score test assuming the null hypothesis, or no relationship 

exists between the two (Neter et al., 1988), was used here and elsewhere as the statistical test. 
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The negative correlation means that calculated 500-hPa ZO height rises (falls) correlate to 300-

hPa negative (positive) PV advection. Both 500-hPa ZO height rises and 300-hPa negative PV 

advection can be associated with block formation and intensification. This also implies that, 

under the conditions of PV conservation, the local rate of change in heights, as calculated by the 

ZO equation in this study, should correlate (negatively) with the local rate of change in PV.       

 

b) Maturity 

       

       0000 GMT 27 April represents the maximum intensity attained by this blocking event (Fig. 

9). After this time, the block lost some of its intensity. The ZO height tendency calculation (Fig. 

15a) shows that the forcing at the block center was weak and the strong height tendency regions 

were located away from the block center. Also, in contrast to the development and intensification 

stage, there were no significant surface cyclones located upstream of the block (Fig. 15c) (within 

60o longitude). This observation concurs with the maintenance period of the LS95b case. The 

EPV distribution also corroborates the lack of strong forcing at the block center. Also, there are 

no broad areas of low PV located in the block at this time (Fig. 15b), and regions of strong low 

PV advection were located too far upstream to impact on further block intensification (Fig. 15d). 

In fact, a region of higher EPV (1.5+ PVU) and positive PV advection were located near the 

block center, or over the Front Range region, at this time. Tracing the evolution of the high PV 

perturbation indicates that the PV fragment that had fractured off the main reservoir was located 

over southwest North America during development (see Fig. 13c). This perturbation then moved 

eastward after 0000 GMT on 24 April and bifurcated, with one piece continuing to move 

eastward and the other becoming the perturbation in Fig. 15b. After this time, the perturbation 

deteriorated, and there was no further influx of low PV air until after 0000 GMT 30 April. 
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c) Decay 

 

        The time period chosen to represent decay is 0000 UTC 3 May 1980. The decay period was 

characterized by the block losing its intensity (Fig. 9) and identity (Fig. 16c), until the block no 

longer met the LS95a criteria after 0000 GMT 4 May. Also, a surface low (Fig. 16c), located on 

the northwest flank of the block over western Canada, was present at this time. Such a feature 

was also noted during the decay of the LS95b case and in one of the cases in Lupo (1997). Fig. 

16a demonstrates that height falls predominated over much of western Canada (in the blocking 

ridge), in association with the upper air trough located on the northwest flank of the decaying 

block. The EPV distribution (Fig. 16b,d) shows a corresponding region of high PV air that 

impinged on the northwest flank of the block. This region of high PV air did not penetrate very 

far equatorward into the mid-latitudes and eventually fracture, as did similar regions of high EPV 

air during formation and intensification periods (contrast with Figs. 11c, 13c, 16b). However, 

this region of high PV air does eventually break cyclonically (Thorncroft et al., 1993), and lack 

of penetration into the mid-latitudes is one of the features distinguishing the behavior of such an 

event. There was also a region of higher potential vorticity air (1.0+ PVU) located within the 

ridge and over mid-North America. Inspection of the PV evolution suggests that this high PV 

perturbation "broke off" from the main PV reservoir located poleward and then settled into the 

High Plains region.  

 

d) Discussion  

 

        In the previous section, it was shown that the planetary-scale flow regime contributed to the 

formation of this blocking anticyclone, at least partially, through the establishment of a favorable 

environment manifested by the presence of a planetary-scale quasi-stationary ridge. The block 

formation model of Tsou and Smith (1990) demonstrates the importance of such a feature prior 

to block onset. LS95a also noted that their model adequately described all blocking events in 
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their sample. Even though blocking events can be described primarily by the planetary-scale 

components of the height field (e.g. Fournier, 1996), planetary-scale dynamics and forcing alone 

clearly cannot account for the development and/or presence of blocking events in Northern 

Hemisphere. Observations alone tell us that, despite the prominence of wave numbers one, two, 

and three in association with blocking, rarely is more than one blocking event observed at any 

one time over the entire Northern Hemisphere (Lejenas and Okland, 1983; LS 95a).  

       Others (e.g. Kalnay-Rivas and Merkine, 1981; Fredriksen, 1982, 1983; Shutts, 1983) first 

showed the maintenance of model blocking events by synoptic-scale transients. Using a simple 

model with a wave maker and no topography, Shutts (1983) showed in his non-linear experiment 

that a block develops only downstream of the wave maker even though the basic state was zonal, 

and the initial wind field can be described as wave number three. The planetary-scale analyses of 

our blocking event showed that despite the presence of wave numbers 2 and 3 in the planetary-

scale height field (Fig. 3), only one block developed. There are other similarities between this 

observed event and Shutts' modeling study. The blocking event studied here had a half-

wavelength of about 3500 km, and the interacting cyclones (L1 and L2; see Fig. 10) were located 

about 40o to 60o longitude upstream of the event during block formation. These results are 

consistent with typical blocking events found in LS95a and Konrad and Colucci (1988) (with 

respect to the location of upstream cyclones). Thus, these cyclones were located roughly 3500 

km (at latitudes of 45o to 60o) upstream of the block, which represents about one-half the large-

scale wavelength (Table 1). This distance is consistent with the dimensions of the Shutts model 

block (~3000 km). Additionally, Shutts (1983) comments in his conclusions that as the wave 

maker was moved upstream in his "channel", so too did the block. Therefore, the evidence 

strongly suggests that not only are the synoptic-scale transients are important to block formation, 

but also the phase-relationship of these transients to the planetary-scale features is important. 

        Figure 17 displays the entire subset of the surface cyclone tracks (connected dots) that 

occurred over the north Pacific region between 19 April and 4 May 1980. The cyclone tracks are 

numbered in parenthesis and the genesis time is noted beneath that number. The circled cross 
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over southeast Saskatchewan represents the position of the block at onset. Several cyclones 

occurred upstream of the block throughout development and during its subsequent evolution. L1 

(track (2) 12/19) and L2 (track (4) 00/23) were two of those cyclones. As stated above, L1 and 

L2 underwent a period of most rapid cyclogenesis about one-half wavelength upstream of the 

block and were, therefore, in an ideal position be associated with block development as described 

previously. The surface cyclone that followed L2, track (3) 12/22, also developed rapidly within 

60o longitude upstream of the block center and was associated with block intensification after 

onset (see section 4a and refer to Figs. 9,12,13). The only other cyclone in this set that was 

associated with block intensification (after 0000 GMT 30 April) is track (6) 00/27. This cyclone 

(Fig. 14) was at the end of a period of most rapid development when it moved within 60o 

longitude upstream of the block center after 0000 GMT 29 April. All other cyclones in the set 

(e.g. track (5) 00/24, see section 4b discussion) apparently developed too far upstream and were 

not associated with development or intensification.         

        To support the importance of this phase relationship of the transients to block formation and 

maintenance, we contrast the relationship of an upstream cyclone, track (10) 12/2 marked with a 

L, and the block that occurred during the decay period (Figs. 16 and 17). LS95b and Lupo (1997) 

also noted the presence of an upstream cyclone during block decay in their case studies. In all 

three cases, the surface cyclone was located much closer (within about 15o longitude, roughly 

700 to 1000 km) to the block center. Also, in all three cases the strong jet streaks were located at 

the apex (see Fig. 16c for this case) or on the downstream flank of the block. Thus, the 

associated upper tropospheric advection of anticyclonic vorticity (not shown) was located 

downstream (northeast and east) of the block center, and the block was not reinforced with the 

deposit of anticyclonic vorticity (Fig. 16a,b). This 180o phase relationship between the transients 

and the block seems crucial to the extent that the associated upper air forcing favorable to 

cyclogenesis (anticyclogenesis) is located away from (within) the block region. Finally, it should 

also be mentioned here that in this case, the forcing favoring anticyclogenesis (upper 

tropospheric anticyclonic vorticity advection) was located in quadrature (approximately one-
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quarter wavelength) with the block on the upstream flank, a result in agreement with other 

blocking studies (e.g. Mullen, 1987).             

        The results of this study suggest that, despite the anomalous planetary-scale flow regime 

that persisted through April 1980, the synoptic-scale formation and maintenance of this blocking 

event via cyclone-scale transients was similar to that of the cases studied by Tsou and Smith 

(1990), LS95a, and others. This study also shows that the Tsou and Smith (1990) block 

formation paradigm can be explained using PV diagnostics. The results obtained by this study 

can be used in attempting to determine whether or not blocking anticyclones will intensify, be 

maintained, or weaken in regions where they are common; providing supplementary information 

to the model guidance. For example, it has been found by previous studies (Tsou and Smith, 

1990; LS95b; Lupo 1997) that blocking anticyclones intensify, or at least are maintained, with 

the occurrence of upstream cyclones and the presence of jet maxima on the upstream flank of the 

block. These results suggest that this scenario is analogous to the "digging" jet located in the 

upstream flank of deepening 500 hPa troughs. However, while being an aid in determining 

whether a block will intensify or decay, it would still be difficult to use the results of this study, 

and the others in this series, to forecast the development of blocking events since the "blocking 

problem" is far from solved.                   

 

 

5.    Summary and Conclusions 

 

        The planetary and synoptic-scale forcing that contributed to the formation of a blocking 

anticyclone over the North American Continent was examined in this paper. This event occurred 

in late April and early May of 1980, or immediately prior to the disastrous summer drought over 

central and southeastern North America in that year. While the characteristics of the blocking 

event were typical for a spring season block occurring over a continental region as defined by 

LS95a, the presence of the block over North America was atypical as shown by previously 
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published blocking climatologies, including LS95a. Using simple diagnostic techniques and the 

NMC analyses archived on CD-ROM, planetary-scale aspects of this event were examined to 

investigate the pre-block environment and determine to what extent this block could be 

considered anomalous. Synoptic-scale aspects of this blocking event were studied using the 

NCEP reanalyses and both the ZO equation and the PV approach, resulting in a complementary 

diagnosis.            

        The planetary-scale analysis of the pre-block and blocking environment showed that the 

flow over the Pacific and North America regions was anomalous in the sense that the regular 

(spring season) trough/ridge features over these regions were amplified, of shorter wavelength, 

and/or located further eastward than are typical. This suggests that anomalous flow regime that 

persisted during the spring season was primarily responsible for the anomalous occurrence of a 

blocking anticyclone over North America. This flow regime was, however, typical of the spring 

season during 1980, and the preceding winter (Namias, 1982; Hoskins et al., 1983). The height 

field over North America resembled a typical summer pattern (e.g. Namias, 1982), with a ridge 

over the continent and troughs along the east and west coasts. The corresponding positive height 

anomalies found over North America could then be associated with cooler than normal SSTs and 

the negative height anomalies over the central North Pacific. The combination of the north 

Pacific negative height anomalies and the positive height anomalies over the tropical Pacific 

(presumably linked to warmer SSTs there) and North America resulted in a stronger Pacific jet 

that was spread out across the entire ocean basin and into North America. At 850 hPa, 

anomalously warm temperatures appeared over North America around mid-April and persisted 

throughout the block lifetime. In the absence of compensating upper tropospheric cooling, this 

lower tropospheric warming would contribute to ridging at 500 hPa over North America. This 

suggests that, at least in the time mean sense, the lower tropospheric processes can also 

contribute to block formation and maintenance. A simple Sutcliffe and 850 hPa thermodynamic 

analysis during the period prior to block formation demonstrated that 850 hPa temperature 

advection and subsidence associated with the advection of anticyclonic vorticity by the mean 
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thermal wind were primarily responsible for the anomalous warmth at 850 hPa.     

        An examination of the synoptic-scale forcing showed that, in general, the block was formed 

and maintained in association with upstream surface cyclones. The synoptic aspects of the block 

formation period were remarkably similar to those of the Tsou and Smith (1990) block, and the 

Tsou and Smith (1990) mechanisms were described using the PV diagnostic framework. 

However, in this case, it was revealed that two cyclones could be identified in association with 

block formation. The question of whether one or more cyclones were involved in block 

formation as shown by Tsou and Smith (1990), LS95b, versus here, for example, may be more a 

matter of subjectivity in defining the "development" period rather than of any dynamical 

significance, since this study endeavored to examine individual cyclone interactions. The results 

of this study, and those of Lupo (1997) and Lupo and Smith (1998), suggest that blocking 

anticyclones fluctuate in intensity, as defined by LS95a, in association with upstream surface 

cyclone development. The same conclusion could be reached by using either the PV approach, or 

the ZO methodology. Many other studies have shown similar results, i.e. that blocks are formed 

and maintained by an ensemble of cyclone-scale transients (Frederiksen, personal 

communication, 1996) either observationally (i.e. Illari, 1984; Mullen, 1987) or using a variety 

models (i.e. Shutts, 1983; Mullen, 1986). However, this study, like those of Konrad and Colucci 

(1988) or LS95b, focuses on interactions between particular cyclone events and block 

development.  

        The PV approach showed that the poleward sweep of low EPV air, which was subsequently 

advected into the block region, was associated with both block formation and intensification. The 

low PV air could be associated with higher pressure and warmer θ on the tropopause, and was 

located along the anticyclonic-shear side of jet maxima found on the upstream flank of the 

developing block. Also, it was noted that during development and intensification, the upstream 

regions of high PV air protruded deeper into the mid-latitudes and eventually "fractured" from 

(anticyclonic breaking) the main PV reservoir as can commonly be associated with blocking 

(Thorncroft et al., 1993). During decay, the upstream high PV air associated with the surface 
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cyclone did not drive very far equatorward, and eventually broke cyclonically (a more zonally 

elongated disturbance) as described by Thorncroft et al. (1993). Further study could reveal if this 

is a common occurrence during block decay. The ZO approach showed that the advection of 

anticyclonic vorticity was primarily responsible for strong height rises found over the developing 

block region. As in LS95a and Lupo and Smith (1998), these height rises were located on the 

anticyclonic shear side on the upstream jet maximum. Additionally, the 500 hPa height 

tendencies correlated negatively with 300 hPa PV advection (significant at the 95% level), and it 

is suggested that 500 hPa ZO height rises and the advection of low PV air at 300 hPa on the 

upstream flank of the block are both signatures that can be associated with block development 

and/or intensification. Finally, the synoptic-scale analysis suggests that despite the anomalous  

occurrence of this block over North America during the spring season, and the anomalous  

planetary-scale flow regime that accompanied it, this block was formed in a similar manner to 

other Northern Hemispheric blocking events.             

       This blocking event had characteristics in common with the simple model results of Shutts 

(1983). Both studies confirm the important role played by synoptic-scale transients, even though 

studies have shown that the planetary-scale components of the 500-hPa height field principally 

describe a blocking event. In particular, it was shown in this study, that despite the wave number 

2 and 3 character of the planetary-scale flow, only one block formed in the Northern 

Hemisphere. A similar result was shown in the Shutts model study, as one block formed 

downstream of a "wave maker". This diagnosis shows that, typically, the interacting upstream 

cyclones develop most rapidly about one-half wavelength upstream of the blocking anticyclone. 

This is consistent with the climatological results of LS95a, and the Shutts model study. This 

suggests that the proper phase relationship between the synoptic-scale cyclones and the 

planetary-scale ridge (about one half-wavelength) is necessary for the amplification of the 500 

hPa short-wave ridge and its subsequent "phase locking" with the planetary-scale ridge. Finally, 

this phase relationship is also necessary for the favorable location of the advection of 

anticyclonic vorticity, or low PV air into the blocking region, thus providing the continuous 
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reinforcement of anticyclonic vorticity necessary to maintain the block.  
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Table 1.  Some characteristics of this blocking event versus the mean characteristics of 

                spring and continental (CON) blocking events in LS95a. 

  

Characteristics Mean Spring Events Mean CON Events 24 April – 4 May 80 

    

# of occurrences & 

as a (%) of total 

16 (25.3%) 15 (23.8%) -- (--) 

    

North American 

occurrences 

0 (0%) 0 (0%) -- (--) 

    

Block intensity 3.3 3.5 3.6 

    

Duration 8.2 days 8.7 days 10 days 

    

Half-wavelength 3129 km 3218 km 3463 km 
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Table 2.   The thermodynamic budget for the region bounded by 45o N, 70o N, 130o W, 

                 and 80o W over the period 15 - 24 April 1980 in degrees K day-1. 

 

Temp adv. Adiabatic Latent heat Sens. heat IR heating Total 

      

Term (b) Term (c) Term(d) LHR Term(d) SNS Term(d) IR Term (a) 

      

1.19 0.07 0.14 0.03 -0.72 0.71 
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Footnotes 

 

1. This work was performed initially using the NMC CD-ROM version II. When Version III 

became available, the work was redone using that version. The visualization software and 

software to read the CD-ROM can be made available for GEMPAK users by contacting the first 

author. 

  

2. For more details on the NCEP re-analyses see Kalnay et al. (1996) or consult online 

information available via the NCAR home page at http://www.ucar.edu:80/dss/pub/ 

reanalysis/index.html 

 

3. Equations such as the ZO, omega, and the height tendency equation and the physical 

interpretation of the forcing processes are referred to in the literature as "Sutcliffe thinking" and 

opposed to potential vorticity diagnostics, or "PV thinking". 


