
Mapping and Displaying Structural
Transformations between XML and PDF

Matthew R. B. Hardy and David F. Brailsford
Electronic Publishing Research Group

School of Computer Science & IT
University of Nottingham

Nottingham NG8 1BB, UK

{mrh, dfb}@cs.nott.ac.uk

ABSTRACT Keywords
Documents are often marked up in XML-based tagsets to
delineate major structural components such as headings,
paragraphs, figure captions and so on, without much regard to
their eventual displayed appearance. And yet these same abstract
documents, after many transformations and ‘typesetting’
processes, often emerge in the popular format of Adobe PDF,
either for dissemination or archiving.

XML, PDF, document structure transformation.

1. INTRODUCTION
For 20 years or more the field of digital documents has been split
into two distinct cultures, which can be broadly characterised as
the ‘layout based’ and the ‘structure based’ approaches. The
structure-based approach has drawn inspiration from SGML and
XML and has focused on abstract transformation of document
structure and the ‘multi-purposing’ of marked up documents. By
contrast, the layout based approach puts a heavy emphasis on the
graphic richness of the final document and the exact details of
pagination and layout; this approach has concerned itself with
issues such as fonts, colour spaces and the capabilities of
PostScript and PDF. The distinct lack of common ground between
the two approaches is exacerbated by the fact that there truly is a
large ‘semantic gap’ between thinking of a document in these two
very different ways. Figure 1 below tries to summarise the
current state of affairs, where it is now quite routine to use a
single document authoring system, such as MS-Word, and to
exploit different output options to proceed either to an XML-
based world or to a layout-based world where PostScript and PDF
are firmly in place as the de facto standards.

Until recently PDF has been a totally display-based document
representation, relying on the underlying PostScript semantics of
PDF. Early versions of PDF had no mechanism for retaining any
form of abstract document structure but recent releases have now
introduced an internal structure tree to create the so called
‘Tagged PDF’.

This paper describes the development of a plugin for Adobe
Acrobat which creates a two-window display. In one window is
shown an XML document original and in the other its Tagged
PDF counterpart is seen, with an internal structure tree that, in
some sense, matches the one seen in XML. If a component is
highlighted in either window then the corresponding structured
item, with any attendant text, is also highlighted in the other
window.

(X)HTML (+ CSS)XSLT PDF
(+ Structure)

PostScript

XSL-FO

XML (+ CSS)

XSLT

STRUCTURE APPEARANCE

PROCESSING

DOCUMENT

SOFTWARE

Distill

Print
Publishing

Web
Publishing

Acrobat Web Capture

Save As HTML

Important applications of correctly Tagged PDF include making
PDF documents reflow intelligently on small screen devices and
enabling them to be read out in correct reading order, via speech
synthesiser software, for the visually impaired. By tracing
structure transformation from source document to destination one
can implement the repair of damaged PDF structure or the
adaptation of an existing structure tree to an incrementally
updated document.

Categories and Subject Descriptors
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text
Processing]: Document Preparation — Markup languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Algorithms, Documentation.

Figure 1. Document Processing Software.

In recent years the success of HTML has been seen in some
quarters as a genuine synthesis of the ‘structure’ and ‘layout’
approaches and yet even a cursory examination of HTML tags
shows that—for all that they are cloaked in SGML syntax—any
notions of document structure have been largely abandoned in
favour of achieving acceptable layout effects in browsers. To
some extent this is now being addressed by allowing more general

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

FINAL DRAFT of paper accepted for:
DocEng’02, November 8, 2002, McLean, Virginia, USA.
Copyright 2002 Hardy and Brailsford

https://core.ac.uk/display/204484004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XML documents to be viewed in browsers and by styling the
document either with Cascading Style Sheets (CSS) or via XSL
Formatting Objects (XSL-FO) transformations.

However a glance at the right hand side of figure 1 reveals the
other side of the story; PostScript and PDF have evolved, until
very recently, with little or no regard to any abstract document
structure. Worse still, a PostScript or PDF page can often be
rendered on screen in a way that bears no resemblance to any
concept of ‘reading order’. Indeed, it has been common for many
years to render PostScript in a manner which optimises the
performance of some target printing device. Thus, for example, a
two-column article might be typeset in ‘baseline sort’ ordering i.e.
by hopping across the inter-column gutter and setting fragments
of sentences in turn.

More recently the vital importance of structure and correct reading
order has been realised because of the increasing need to read out
PDF files to the visually impaired and to be able to intelligently
reflow PDF material for small-screen hand-held devices. Starting
with release 1.3 of the PDF specification [1] there is now an
option to include a structure tree in a PDF file. The tags within
the structure tree can either be from a default tagset (at a level of
functionality roughly equivalent to that of HTML) or they can be
user-defined tags. Although the tree representation is in PDF
syntax, rather than XML, it can still represent the structure of the
document and the lower levels of this tree are pointers to
imageable material within the PDF Page Content tree. Badly
structured PDF, that is not in reading order, is handled by having
the low levels of the structure tree point to a linked list of text
fragments; traversal of this list recovers the text in reading order
as opposed to rendering order.

The most direct way to tackle the problem of adding structure to a
PDF file is to subject the pages in the file to document recognition
techniques that try to identify features such as headings,
paragraphs, footnotes etc. These techniques were first applied to
PDF by Lovegrove and Brailsford [8] and, more recently, a
similar approach, in Adobe’s Make Accessible plugin for Acrobat,
is usually successful in planting enough inferred structure within
the PDF to enable it to be intelligently reflowed or to be read out
loud, via a sound synthesiser program, in correct reading order.

But our concern is not just to add structure where none existed
previously. We also want to correlate structure in a marked up
structured document, which constitutes the starting point for a set
of transformations including page layout and typesetting, with that
appearing in the structure tree of the corresponding final-form
PDF. The chain of transformations between the XML tagged
starting point and the final PDF will often be very long. It is
important that any structure verification and repair tool we create
should rely solely on an XML starting point and the
corresponding PDF finishing point; it should be independent of
the particular ‘typesetting middleware’ that has been used to
create the PDF.

2. ADVANTAGES OF AN EXTERNALISED
XML REPRESENTATION

It is becoming increasingly common for academic and
commercial publishers to require the creation of an XML version
and a PDF version of their various documents. For archiving
purposes there is then the comforting feeling that both structure-
and layout-based versions will be available for future re-
purposing; for more immediate use the PDF version can be used

to create printing plates while the XML version can, for example,
be processed with various XSLT scripts to create an XHTML
document for the Web.

Figures 2 and 3 illustrate two common ways used by commercial
publishers for creating XML and PDF versions of a document.

XML Typesetting
Codes

Conversion

Script

Conversion

Software
PostScript distill

PDF
(+ optional
structure)

Input
Text

Figure 2. Creating a structured PDF

file — the ‘middle out’ approach.

The first and perhaps more common of these can be characterised
as the ‘middle out’ approach of figure 2. One starts by keying in
the document using a macro set or style file for the text-
processing or typesetting application of choice (e.g. MS-Word,
LATEX, troff, Quark Express etc.). Proceeding to the right of the
figure, the source text is then processed, via PostScript and Adobe
Distiller, into PDF. Proceeding to the left of the diagram a
separate conversion script (perhaps written in PERL or
Omnimark) converts the input script and its macro codes into a
corresponding XML document, tagged up in accordance with the
publisher's Document Type Definition (DTD) or schema.

An alternative method is to proceed via the workflow shown in
Figure 3 which can be characterised as the `top down' or ‘left to
right’ approach.

XML Typesetting
Codes

Conversion

Script

Conversion

Software
PostScript distill

PDF
(+ optional
structure)

Input
Text

Figure 3. Creating a structured PDF file

— the top down approach.

Here the source text is entered using the publisher's XML tagset
and a transformation script (again, this could be coded using
PERL or XSLT) converts this text into a suitable input for the
particular typesetting software in use. The question now arises as
to whether this transformation script can somehow pass on the
structure of the input text as well as the correct codes for
typesetting it. If this is to succeed it implies that the typesetting
middleware has to be persuaded to pass on the structure
information into the PostScript output and in a suitable form to be
converted into a PDF structure tree.

At this stage it is worth noting that PDF has always provided
facilities for various forms of ‘hyperfeature’ (e.g. book marks,
electronic sticky notes, links) but until fairly recently the anchors
for placing these items were simply the low-level coordinates of
bounding boxes to define the source or destination area on a
particular (hard-coded) numbered page. From the earliest PDF
definition a set of parameterised pdfmark operators for the
various hyperfeatures was defined in PostScript syntax. If these
pdfmarks were correctly inserted into the PostScript output, from
a given typesetting program, then it was easy to arrange for

PostScript printer drivers to ignore the pdfmarks but for Distiller
to seize upon them and convert them into the corresponding
feature inside the PDF. This approach requires only that the
middleware be capable of passing on, transparently and without
question, the required pdfmarks. Fortunately most text processing
software has a method of incorporating encapsulated PostScript
for diagrams, photographs etc. and this can usually be subverted
for purpose of passing on pdfmarks. This approach was
pioneered in the CAJUN project [11] and has also been
extensively used in software such as Adobe's PDFMaker, which
converts MS-Word files into PDF.

So, if the middleware can pass on pdfmarks for the ‘unstructured
hyperfeatures’ of PDF there is no problem at all in using the same
mechanism for passing on the pdfmarks that correspond to the
building of PDF structure trees. However, the main problem with
this approach is that every piece of typesetting middleware
becomes a new challenge in terms of finding ways to pass on
pdfmarks.

Before we leave this section some further issues need to be
addressed with reference to the ‘middle out’ and ‘top down’
approaches we have outlined. Firstly, a key problem with ‘middle
out’ is that the left-going and right-going transformations shown
in Figure 2 can all too easily lead to valid structures in XML and
PDF which still differ in subtle ways, especially if the two
transformation scripts have been written by different people. The
‘top down’ approach of Figure 3 is in principle the more sound
but even here the only way to strive for structural integrity is to
insist that any structural or layout shortcoming in the final PDF
should be addressed by totally regenerating the PDF file, starting
with the XML. Tinkering with the middleware typesetting codes
should definitely not be allowed. And yet any XML schema that
tries to control typeset effects will probably be unwieldy;
moreover reverting to XML to correct small blemishes on a final
form PDF, ready to go to a platemaker, is a sure recipe for
expense and frustration.

2.1. Integrated top-down approaches
An obvious solution to the problem of maintaining structural
coherence is to combine the left hand two boxes in Figure 3 to
create a structured document preparation system. Such an idea is
certainly not new: document systems based on GML or SGML
can be found as early as 1982 in the JANUS system [5] and its
later refinement called Quill [6], and also in the Grif [9] and Lilac
[4] systems. On the commercial front, SGML-based document
preparation software has been available for some years via
products such as Adobe Framemaker and from companies such as
Dynatext, Arbortext and SoftQuad.

The advent of XML has given fresh impetus to such software and
in the long run unified authoring software that is XML aware will
become a vital part of creating technical documents in PDF. Even
so, there are new challenges to be met because, until now, the
structural knowledge has been concentrated into the document
creation process — never before have structured authoring
packages been called upon to preserve and transmit structure into
display-based final formats such as Tagged PDF.

At present the inevitable conclusion is that, even when PDF files
have been created from an allegedly structured starting point, the
corresponding structure tree in the PDF could be either non-
existent or at the very least damaged in some way with respect to
the starting point. It is precisely this circumstance that our

Acrobat plugin is designed to address. Its key advantage is that it
enables starting and destination structure to be reconciled,
independent of any particular typesetting middleware.

3. STRUCTURED PDF
The internal structure of a PDF is built up from a series of trees.
Each of these trees represents a specific aspect of the PDF
content, with the Pages tree representing the majority of the
typeset content. The Pages tree contains a sequence of page
nodes, each containing streams of data which specify the content
for that page. These Page nodes can be logically grouped to share
appearance properties. Within the streams of data belonging to
each page are commands somewhat similar to those found in
PostScript, containing the text, images, lines, etc. that are to
appear on the page.

The PDF 1.3 specification added support for logical structure in
PDF documents. The newly added PDF Structure Tree is
designed to impose structure on the content of the document in a
representation that is conceptually (but not syntactically) similar
to that of XML and SGML. This tree is separate from the Pages
tree, but contains links into the content of each page. It does this
by inserting commands into the data streams of the page content.
These commands demarcate separate areas of content belonging
to the structure tree. Element nodes within the structure tree use
these marked sections to indicate which groups of content
logically belong to them.

This structured approach certainly aids in the repurposing of
documents, but does not completely solve all the associated
problems. The blocks of marked content pointed to from the
structure tree do not have to be in reading order and there is no
easy way to specify the semantics of the tagset chosen to represent
the document structure.

The PDF 1.4 specification [2] addresses these issues by
introducing a more standardised usage of PDF, for logically
structured documents, called Tagged PDF. Tagged PDF uses the
logical structure as defined in PDF 1.3 and extends it to make it
more useful for cases such as text extraction, reflow, conversion,
and accessibility.

A Tagged PDF must conform to a set of rules, which allow the
document to be more accessible. These properties can be
separated into three categories:

1. Page Content

o All represented text is in a form that can be converted to
Unicode.

o Word breaks are explicitly represented.

o Actual content is distinguished from artifacts of layout
and pagination.

o Content must be given an order related to its appearance
on the page.

2. Structure Types

o Standard structure types are used within the structure
tree to convey the semantics of the structure.

o When using customised tagsets, these must be mapped
to their closest equivalent standard structure types.

3. Structure Attributes This mapping of tagsets allows applications using Tagged PDF
files to understand the semantics of the custom tagset, making it
easier to repurpose the documents. o Standard structure attributes used to preserve styling

information from authoring applications.
4. XML COMPARISON PLUGIN The standard tagset defined by Tagged PDF is very much aimed

at document layout, and fast PDF to HTML conversion, rather
than being an exercise in abstract document structure. In both
Structured (1.3) and Tagged (1.4) PDF, a customised tagset can be
defined and there is now provision for a role-map to provide a
mapping between the custom tagset and the predefined Adobe
standard tagset.

To facilitate the checking of logical structure within a Tagged
PDF, a plugin has been developed for the Adobe Acrobat
application. An Acrobat plugin is a helper application which runs
within the Acrobat environment and extends its functionality.
Access to the currently loaded documents is provided through an

API, giving the plugin the ability to view and manipulate the
contents of a PDF.

Figure 4. XML Comparison Plugin Usage

If tags other than the default are used, each custom tag must be
mapped to the standard type that has the closest fit. This is done
by using a dictionary to store key pairs representing the custom
tag followed by the tag it is similar to. contains examples
of standard tags and their usage.

The ‘XML Comparison’ plugin has a number of functions. Its
first function is to compare a Tagged PDF with an XML
document that purportedly represents the same structure and
content. By comparing these documents, we can see whether the
structure has been passed through the document process correctly.

Table 1

Table 1. List of Standard Structure Types
Tags Usage
P, H, H(1-6) Paragraph and Heading tags containing

textual content.
L, LI, LBody List tags describing a List, List Item and

List Body respectively.
Table, TH, TR,
TD

Table tags for display a Table, Table
Headings, Rows and Data respectively.

Document, Art,
Part, Sect, Div

Standard structure types used for grouping
content.

Figure, Form Tags representing figures and interactive
form elements.

4.1. Document Comparison
Document comparison is effected by comparing the structure tree
of the provided XML file to the structure tree inside the Tagged
PDF. When the specific plugin function is selected, the plugin
checks the currently active PDF document for a Structure Tree
and a flag that indicates whether the PDF is ‘Tagged’. If this is
the case, it loads the XML file into a Document Object Model
(DOM) parser. The DOM is a model for representing serialised
XML trees as true trees.

A similar process then ensues to create a DOM representation of
the Tagged PDF. This eases the process of comparing the two
documents, because the plugin now has both documents in a
canonical form.

An example of a standard usage of role-mapping comes when
using the Web Capture plugin provided with Adobe Acrobat. This
plugin allows for a Web page to be captured to a Tagged PDF.
Although the default tagset is similar to that of HTML, it is not
identical, so a mapping is provided e.g. the ‘OL’ tag maps to ‘L’
and the ‘IMG’ tag maps to ‘Figure’.

The first comparison function offered by the plugin is an aid to
allow the user to visually compare the two structure trees. The
plugin creates a dialogue containing two tree-views. The left tree-
view contains a representation of the PDF’s internal structure tree,

taken from the DOM and the right tree-view shows the structure
and content of the XML starting document.

Selecting a specific node in either tree gives access to the
corresponding content in the opposite document. For example, if
a node is selected in the generated XML tree, it causes the
corresponding content in the Tagged PDF to be internally selected
and then highlighted. An example of the plugin being used in this
manner can be seen in Figure 4. Implementation details are
discussed in Section 5.

Should the selected XML node not exist within the PDF, a
warning is given to indicate that there has been a mismatch
between the two comparison documents. Should a node that is
selected from the PDF Tree-view not exist within the XML, the
corresponding text within the PDF is highlighted in red.

A node selected from the PDF tree that does have a corresponding
node in the XML document will also be referenced, but not
visually represented.

The second function of the plugin is to perform a full document
comparison. This has similar functionality to the manual checker,
but automates the process of comparing the documents. By
comparing the DOM representations, the plugin can determine
which nodes do not belong to both documents. Any nodes not
appearing in both DOMs are highlighted within the tree-views and
the content belonging to those nodes in the PDF is highlighted in
red.

Selecting these nodes is the first step, but after this, the content of
each of the matched nodes must be compared. This enables the
plugin to check for differences in the content as well as allowing it
to look for ‘appearance artifacts’. These artifacts are text strings
on the page that do not exist within the content of the abstract
XML starting point. An example of such an artifact would be the
(automatically generated) numbers appearing as part of main- or
sub-headings. These numbers gives the reader some information
about the document, but it is unlikely that they have been hard
coded in the XML; rather they are likely to have been added by
the document typesetting process. Text in the document that the
plugin decides is of this type is highlighted in black.

4.2. XML Extraction
The plugin’s second function is to extract the contents of a
Tagged PDF to an XML representation. The majority of the code
involved in doing this was already implemented for the
comparison functionality of the plugin. An XML DOM tree was
constructed for the comparison component of the plugin. Since
the DOM representation is merely an alternative way of
representing an XML document, the standard DOM-compliant
parsers give automated methods for saving modified DOM trees
back to a serialised XML representation.

Although the comparison part of the plugin already creates an
internal XML representation of the Tagged PDF, it is held in a
simplified format that gives just enough detail for the comparison
algorithm to work on. By providing the plugin with an XML
export functionality we extend its comparison and tree repair
capability by enhancing the information placed in the DOM tree.

If a document has no XML starting point, retrieving an XML
version of the PDF is particularly useful. For example, a number
of planned extensions to this work are described in Section 6 and
most of these require that an XML representation of a PDF

document be available to them. The ability to create an XML
representation of a PDF document for which there is no source
available would also be extremely useful should anyone wish to
repurpose the document for use on the Web.

Even if a document does have an XML starting point, it can still
be very important to get a second XML representation from the
PDF. There are a number of reasons why the generation of a
second XML can have added value over the original. One reason
is that extra metadata is often added by the documentation
workflow that created the PDF. Authors, contributors, etc. will be
recorded and stored within the document and it is essential that all
this information, which can include Resource Description
Framework (RDF) and Extensible Metadata Platform (XMP) data,
be recorded and stored if some of the further work is to be
realised. A second use for this document is to exhibit how the
original XML file (which may have had a rather abstract form of
markup) has been transformed into the ‘layout based XML’ that
corresponds to the PDF file. One could then infer the nature of the
typographic processes it has to go through to become a PDF
document. The Tagged PDF representation has information
concerning page layout, ‘appearance artifacts’, etc. that cannot
appear in the abstract XML document. By adding this
information into the new XML DOM using a custom XML
Namespace [10], the extracted XML can have ‘added value’,
while remaining separate from the original XML’s structure and
content.

The metadata described above is available to the plugin through
the Acrobat API. The plugin uses this to enhance the DOM tree
produced from the comparison stage of the plugin. Using XML
namespaces as described above, the different forms of metadata
are differentiated from the content and from each other.

To mark out the appearance artifacts, the plugin can do two types
of checking. The first needs information from an already existing
XML reference document to determine which parts of the PDF
content exist in the XML and which have been added by the
document workflow. The same algorithms used by the document
comparison process can be used to determine the appearance
artifacts. The other process looks for certain types of content at
the beginning of blocks of marked content e.g. a number at the
start of a heading may well be an appearance artifact and not
original content. Again, having an original XML starting point
makes the discovery of these artifacts significantly easier.

Once the plugin has the newly enhanced DOM tree, it can either
display this in a tree view for the user to check, or it can serialise
the tree to an XML file.

4.3. Structuring Legacy PDF
The third and final function the plugin currently has is the ability
to add structure to legacy (un-structured) PDF documents. The
starting point for this is once again an XML reference document
and a PDF (not Tagged).

In a structured or Tagged PDF, the structure tree references the
content by using Marked Content Identifiers (MCIDs). A block
of logical content is wrapped with commands to begin marking
content and to end marking content. Each of these blocks has an
MCID number associated with it. Each node containing content
in the structure tree references the page and the MCID number to
indicate which block of marked content belongs to it. In some

cases, multiple MCIDs are associated with one structure element
node in the structure tree.

The first job the plugin must perform is to match the freeform
content in the PDF to blocks of marked content. To do this, the
plugin needs to compare the content of the PDF to the content in
the XML reference document. This is done by extracting the
contents of the PDF to a textual representation. This
representation contains links back into the PDF, so that the
content can be re-associated with the PDF once it has been
grouped and structured. There are a number of methods in the
Acrobat API that aid the plugin in doing this and help to give a
meaningful reading order to the extracted content (see Section 5
for details).

With this information the plugin can reference the text that
appears within the XML nodes, to the text extracted from the
PDF. A new DOM tree is built using this information, effectively
generating a new XML document. This XML DOM contains the
structure from the original XML document, the text from the PDF
and the extra information that references the text back into the
PDF.

Before the plugin attempts to add the structure to the PDF, it is
very likely that in the above process, some text will still not have
been assigned a position in the structure tree. An example of such
text would be the appearance artifacts discussed earlier in this
section. By doing some positional checking, the plugin
determines which text is likely to be an artifact and then decides
where it is likely to belong. This information is then added into
the DOM tree, but is marked to indicate that it is not part of the
original XML document’s content.

The plugin now builds a skeleton structure tree inside the PDF
document. This has no content as yet, but contains all the
necessary structure nodes for the placement of the content. Once
this has been completed, the plugin places MCIDs around the
appropriate blocks of content, as indicated by the new XML DOM
tree. These MCIDs are then associated with the appropriate nodes
in the structure tree.

Once the plugin has completed this, the user is presented with the
option of specifying the role-map for the newly inserted tagset.
Should the user decide to do this, the structured PDF will become
a Tagged PDF.

5. IMPLEMENTATION DETAILS
In Section 4 the functions performed by the XML Comparison
plugin were described. These functions split into three distinct
categories: Document Comparison, XML Extraction, and
Structure Addition. This section looks at the implementation
details behind each of these categories.

5.1. Sample Tagset
Before the implementation details can be described, the creation
of test documentation for this project will be discussed.

For test purposes, a custom tagset has been defined. This tagset
was specifically designed for documentation and maps closely to
the default Tagged PDF tagset. contains the mappings
between this test tagset and the default Adobe standard tagset.

Table 2

Table 2

Table 2. Sample Tagset Mappings

As is shown by , the mapping between the custom tagset
and the default tagset is very close. This is to simplify the testing
procedure.

Custom Tagset Default Tagset
article Art
title H
section Sect
heading H
para P
image Figure
table, th, tr, td Table, TH, TR, TD

Using the custom tagset described above, a series of XML
documents have been created. A simple conversion script was
then used to convert the XML documents to troff—this particular
choice of typesetting middleware being prompted by the fact that
a command in troff allows arbitrary PostScript to be directly
inserted into the troff output stream. This mechanism had already
been extensively used in the CAJUN project [11] for inserting
unstructured hyperlinks into a PDF and thus it was a simple
matter to adapt these techniques to pass on the pdfmark calls
corresponding to PDF Structure Tree nodes into the output
PostScript. When distilled to a PDF document, these pdfmarks
are processed by Adobe Distiller and result in the addition of a
structure tree to the PDF. This process follows the ‘top down’
approach to the document workflow as described in Section 2 and

. Figure 3

5.2. DOM Tree Construction
The creation of a DOM tree from the Tagged PDF is used by both
the Document Comparison and XML Extraction functions of the
plugin. The ability to generate the XML DOM form of the PDF’s
structure and content is therefore central to the plugin’s
functionality.

The Microsoft XML parser (MS-XML) is used by the plugin to
create and manipulate the DOM tree. It works on top of the MFC
framework under the Microsoft Windows platform and is fully
compliant with the W3C DOM Standard [7].

To build the DOM tree, as used within the Document Comparison
function, the plugin navigates the PDF Structure Tree using the
Acrobat API. The plugin uses an API call to acquire the currently
active document. The Acrobat API is split into a number of
layers. A few of these give access to different parts of the
document and others give access to the Acrobat application. The
PDSEdit layer gives access to the Structure tree within a PDF and
methods and objects of this type are prefixed by PDS. Using the
AV (Acrobat Viewer) layer, the plugin can gain access to the
PDSTreeRoot of the currently active document. The
PDSTreeRoot is the topmost node in the structure tree and using
it, the plugin can navigate the entire structure tree of the
document.

The PDSTreeRoot contains a set of nodes. The child nodes of a
PDSTreeRoot must be of the type PDSElement. A
PDSElement is equivalent to a tag in an XML document. It also
contains a set of nodes. The main types of node the plugin is
interested in are either PDSElement nodes or PDSMC nodes. A
PDSMC is effectively a node of document content.

The plugin effectively performs a depth-first iteration over the
structure tree, selecting a node at a time, and mapping this into the
newly constructed DOM tree. Since the structure tree is navigable
in a similar way to that of the DOM, the mapping is almost one to

one. As each node is discovered, its type is checked. If it is of
type PDSElement, a new Element Node is added to the DOM
tree. The checking is more complex for a PDSMC, as the nodes
can then contain many types of content. The API classifies each
type of data and this information can be retrieved. The content is
then placed into the tree in the appropriate form (e.g. text, image,
etc.).

5.3. Document Comparison and Highlighting
The Document Comparison functionality of the plugin uses the
newly created DOM tree, described above, as the framework for
its comparisons. As described in Section 4, a DOM tree is also
constructed from the XML reference document. It is fortunate
that XML’s architecture requires all of the internal nodes of any
well-formed XML-based tree to be clearly demarcated. This, in
turn, means that relatively straightforward tree matching
algorithms and string comparison methods (see for example [12])
are adequate for relating the nodes and content extracted from the
PDF to the original XML starting point.

Content appearing in both documents is easily discovered, for our
test set, because both the source XML and the typeset PDF have
their content in reading order. Any blocks of text not matched are
then marked to show that they were not part of the original XML
content.

5.4. XML Extraction
Section 5.2 describes the process of building the DOM tree from
the Tagged PDF and, as mentioned in Section 4.2, the information
stored in this for use by the Comparison function, is not sufficient
for the purpose of full extraction.

For Document Comparison, one of the requirements is that both a
Tagged PDF and an XML document are available. This is not the
case for the XML Extraction function of the plugin.

If there is an available XML document, the plugin makes use of it
in the same way as for Document Comparison, using it to indicate
sections of content that do not appear in the original source
document. However, if this is not available, it is still possible to
mark up a number of types of ‘appearance artifact’. The most
obvious example is when a block of marked content has been
found that is stored within a heading or a list. In the case of the
heading, any preceding numbers will very likely be section
numbers, so these can be appropriately marked as such. In the
case of a list, it is quite possible to have number or bulleted lists
and so the plugin checks the start of every line for any consistent
starting character(s).

Tagged PDF uses a packet format to allow for encapsulation of
any XML data associated with the file. This can be any form of
markup, though the common types are RDF and Adobe’s own
XMP. The Acrobat API gives access to all of this metadata and
enables us to add it to our DOM tree within its own namespace.

6. PROGRESS SO FAR
As we have already outlined, our plugin exhibits the
correspondence between a structured PDF and an external XML
representation of the text; if these two representations differ it
highlights where the differences occur. If no XML version of the
text exists the plugin is also capable of extracting a fully Tagged
PDF into an equivalent external form, with an XML version of the
PDF tags and with the text extracted from the PDF in reading
order.

Our experience so far has convinced us of the many advantages of
a abstracting a Tagged PDF document into an external XML form
for the purposes of maintenance and repair. The Acrobat interface
to the software has to be done via a plugin because only here are
the methods exposed through the Acrobat API for manipulating,
extracting and inserting both text blocks and tree structure.
However, the XML window can be administered by using
standard tools such as MS-XML and COM.

Looking to the future we can now see three further applications of
our work, all of them addressing real-life problems in maintaining
an increasing number of Tagged PDF documents.

6.1. Adding structure to legacy PDF files
If an externalised XML representation of a legacy (unstructured)
PDF has been obtained, by any of the methods outlined in the
previous section, one of its most obvious uses is to act as a
template for rewriting the PDF file with a correct structure tree
inside it. This work is now actively under way. The new features
are that the PDF Structure Tree is now built up by the plugin itself
using API methods. The runs of text indicated by the external
XML original are cross-correlated with those found at the leaves
of the PDF Pages tree and the cross-links to this content, from the
PDF structure tree, are set up as part of the tree-building routines.
At present the routine works correctly on test material that is in
reading order, and where there is a very close textual match
between the XML and PDF versions, but further work is needed
for it to cope robustly with building the linked lists of text
fragments that are needed in situations where the PDF text runs
are not in reading order.

An interesting extra possibility would arise if a corpus of non-
Tagged PDF documents had sufficient common, implicit,
structure that each document could, in principle, be marked up
using elements from some DTD or schema, defined post hoc. It
might then be just about feasible to infer an XML starting point
for each document and a suitable transformation script to convert
it to the observed PDF, but this time with structure carried over.

6.2. Incremental Updating of a Tagged PDF
There are many circumstances where a PDF document has to be
produced using existing typesetting systems with no capability for
embedding a PDF Structure tree. This PDF document may well be
widely circulated and of considerable importance (e.g. a user
manual, a set of safety instructions or a tax form) with a
corresponding need for a structure tree to aid in accessibility and
intelligent reflow. As we have seen, software such as Make
Accessible can infer and embed enough structure to enable a PDF
document to be reflowed, or to be read out to a visually impaired
user, but in many cases there will be a need to embed a company-
defined tagset within the PDF (possibly role-mapped to the Adobe
standard set) to aid in repurposing, structured searching etc. Using
our plugin it is possible to extract any existing structure tree from
a document together with its associated text. This standardised
external representation could then be transformed (perhaps via an
XSLT script) into a form which correctly uses the company's
standard tagset. If a new version of the PDF document is now
created (again, via a document flow which produces an
unstructured PDF) then, armed with a standard XML starting
point for the previous version of the document, a combination of
the tree insertion capability described above, coupled with a tree
repair function, would allow the document to be incrementally
updated. Clearly the tree repair function will be needed to allow

for the fact that some text may have altered in the new document
and, possibly, some new material will have been added. Such a
repair capability is a natural extension of the tree comparison
routines already used in our structural integrity check but
successful tree repair depends on there being reasonably modest
alterations to the original document; it will not be feasible if there
are gross mismatches between the two versions.

6.3. Standoff Markup
A final and very attractive prospect opened up by our techniques
is to provide the facilities of Tagged PDF for a PDF file that is not
only unstructured but is also ‘read only’. Such PDF documents are
becoming increasingly common whenever organisations want to
protect their intellectual property interests by saving it, using the
Acrobat security routines, in a form where any alterations are
prohibited. In such cases there is no prospect of rewriting a new
version of the PDF with an embedded structure tree. However it
would be feasible to produce a new version of our plugin where
we firstly create a structured and external version of the PDF
document but then we enhance the plugin's DOM tree
representation of the document with a list of pointers to the text
and image objects within the Pages tree of the PDF. The plugin
could then display structured tags, bookmarks etc. for the PDF
document exactly as if it were a Tagged PDF but using only the
external tree for navigational guidance.

Such a technique of ‘externalised’ or ‘standoff’ markup also has
the great virtue that it enables different PDF Structure trees,
perhaps with different markups in different tagsets, to be applied
to a single ‘pure’ copy of the underlying document. This
separation of structure from content is reminiscent of the
program/data separation in virtual memory computers and many
of the advantages of program shareability carry over into the
document domain [3].

7. CONCLUSIONS
PDF is firmly established as a de facto document standard for the
accurate page-based display of rich and complex material.
Therefore it will be important, for some time to come, that
existing PDF files should be capable of being enhanced, with as
much structure as possible to assist in archive maintenance and
repurposing of existing material.

The advent of Tagged PDF and Acrobat's routines for converting
PDF very approximately to and from HTML (Save As HTML and
Acrobat Web Capture respectively) mark a distinct step forward
in providing a framework for representing document structure
within PDF. However, professional publishing requires more than
this: it requires that a PDF should be relatable not just to HTML
but to an arbitrary structured starting point, almost certainly
involving the author’s or a publisher's own XML tagset.
Furthermore, this tagset should be capable of being embedded in
the final PDF file as a Structure tree that is capable of
maintenance, repair and upgrade, even if the intervening
typesetting software either damages the originally intended
structure, or fails to pass it on at all. For all these reasons we
believe that our plugin, and developments from it, will play a
significant part in the maintenance of Tagged PDF documents.

ACKNOWLEDGMENTS
We thank Adobe Systems Inc. for sponsorship of Matthew
Hardy's Ph.D. studies and for providing a Summer Internship for
him in 2001. In particular we thank Loretta Guarino, Richard
Potter, Dan Rabin and other members of the Tagged PDF effort at
Adobe, for answering technical questions and for suggesting
applications for our plugin.

REFERENCES
[1] Adobe Systems Incorporated, PDF Reference (Second

Edition) version 1.3, ISBN 0-201-61588-6, Addison-Wesley,
July 2000.

[2] Adobe Systems Incorporated, PDF Reference (Third Edition)
version 1.4, ISBN 0-201-75839-3, Addison-Wesley,
December 2001.

[3] David F. Brailsford, “Separable hyperstructure and delayed
link binding,” ACM Computing Surveys, vol. 31, no. 4es,
December 1999.
http://doi.acm.org/10.1145/345966.346029

[4] Kenneth Brooks, “A two-view document editor with user-
definable document structure,” DEC Research Report No.
33, November 1988. Available online via
ftp://ftp.digital.com/pub/DEC/SRC/
research-reports/SRC-033.pdf

[5] Donald D. Chamberlin, James C. King, Donald R. Slutz,
Stephen J. Todd, and Bradford W. Wade, “JANUS: An
interactive formatter based on declarative tags” IBM Systems
Journal, vol. 21, no. 3, pp. 250–271, 1982.

[6] Donald D. Chamberlin, H.F. Hasselmeier, A. W. Luniewski,
D.P. Paris, B. W. Wade, and M. L. Zolliker, “Quill: An
extensible system for editing documents of mixed type,” in
Proc. 21st Hawaii Int. Conf. on System Sciences, pp. 317–
326, IEEE Computer Society Press, April 1988.

[7] The Document Object Model (DOM).
http://www.w3c.org/TR/2000/REC-DOMLevel-
2-Core-20001113/

[8] W.S. Lovegrove and D. F. Brailsford, “Document Analysis
of PDF Files: Methods, Results and Implications,” Electronic
Publishing—Origination, Dissemination and Design, vol. 8,
no. 2 & 3, pp. 207–220, June & September 1995.

[9] Vincent Quint and Irène Vatton, “Grif: An interactive system
for document structure manipulation,” in Proceedings
International Conference on Text Processing and Document
Manipulation, ed. J. C. van Vliet, pp. 200–213, Cambridge
University Press, April 1986.

[10] Namespaces in XML.
http://www.w3c.org/TR/1999/REC-xml-names-
19990114/

[11] Philip N. Smith, David F. Brailsford, David R. Evans, Leon
Harrison, Steve G. Probets, and Peter E. Sutton, “Journal
Publishing with Acrobat: the CAJUN project,” Electronic
Publishing — Origination, Dissemination and Design, vol. 6,
no. 4, pp. 481–493, December 1993.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/epoddtoc.html

[12] The treediff project.
http://www.alphaworks.ibm.com/tech/
xmltreediff

	INTRODUCTION
	ADVANTAGES OF AN EXTERNALISED XML REPRESENTATION
	Integrated top-down approaches

	STRUCTURED PDF
	XML COMPARISON PLUGIN
	Document Comparison
	XML Extraction
	Structuring Legacy PDF

	IMPLEMENTATION DETAILS
	Sample Tagset
	DOM Tree Construction
	Document Comparison and Highlighting
	XML Extraction

	PROGRESS SO FAR
	Adding structure to legacy PDF files
	Incremental Updating of a Tagged PDF
	Standoff Markup

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

