
Constraint Solving for Bounded-Process
Cryptographic Protocol Analysis

Jonathan Millen and Vitaly Shmatikov
Computer Science Laboratory, SRI International, Menlo Park, CA 94025 USA�

millen,shmat � @csl.sri.com

ABSTRACT
The reachability problem for cryptographic protocols with non-
atomic keys can be solved via a simple constraint satisfaction pro-
cedure.

1. INTRODUCTION
Many protocol security properties can be characterized as reach-

ability problems. This is the case for properties such as secrecy,
where the objective of protocol analysis is to search for a state that
violates a particular invariant, such as a state in which some secret
data has been released publicly by an attacker or dishonest party.

It is known that reachability is undecidable for cryptographic
protocols in the general case [9, 5]. Undecidability results from
a context where the number of distinct processes instantiating pro-
tocol roles is unbounded, and there is an active attacker who can
intercept and forge messages. It has been demonstrated that reach-
ability is decidable for the finite number of processes [1, 13].

The main contribution of this paper is to develop a complete
and practical decision procedure for the reachability problem in the
presence of constructed (non-atomic) keys. Support for constructed
keys is important for formal analysis of “real-world” protocols, as
it is fairly common in protocol design to construct symmetric keys
from shared secrets and other data exchanged as part of the pro-
tocol - see, for example, SSL 3.0 [7]. Some of the techniques for
constructing symmetric keys involve commutative operators such
as xor or Diffie-Hellman exponentiation, and thus lie beyond the
scope of the unmodified free-algebra approach as taken in this pa-
per.

We show how to convert the reachability problem into a con-
straint solving problem and present a relatively simple decision al-
gorithm for the latter that is easy to understand and justify. The
algorithm is sound and complete. We use the standard Dolev-Yao
attacker model with a free term algebra for messages, and do not
impose any bounds on the size of terms or cryptographic function
applications by the attacker. Our cryptographic primitives include
symmetric-key encryption with arbitrary non-atomic keys, public-
key encryption, signatures, and hashes. There is a small, fast Prolog
implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’01, November 5-8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

Protocol processes are specified here as instances of roles, us-
ing the parametric strands formalism. In the original strand space
model [16, 15], messages are ground terms, but subsequent devel-
opment and applications of the approach [4, 14] allow messages to
contain variables (parameters) so that a single schema can repre-
sent all possible strands for a particular role in a protocol. Given a
finite set of parametric strands representing processes running con-
currently, they can be merged in a finite number of possible ways
into a single event sequence. From such a sequence, we generate a
sequence of symbolic constraints that can be solved efficiently.

Related work. Formal methods have been extensively applied to
security protocol analysis. Typically, the tradeoff is between in-
completeness (e.g., for finite-state checking, it is necessary to im-
pose a bound on both attacker capabilities and number of proto-
col instances) and possible non-termination (e.g., in many methods
based on theorem proving). Our work is closest in spirit to the
approaches that use symbolic techniques to enumerate the infinite
state space generated by a limited number of participants.

Huima [10] developed a method for symbolic state-space explo-
ration, using a term algebra with canonical reductions (e.g., decryp-
tion cancels encryption). Completeness was claimed but full details
of the decision algorithm were not in the workshop paper, and, to
the best of our knowledge, never published.

Amadio, Lugiez, and Vanackère [1, 2] also use symbolic tech-
niques to characterize the unbounded set of possible messages gen-
erated by the attacker. These techniques are similar to ours in that
they combine the use of variables in message schemas and con-
straints defining the allowable set of substitutions for those vari-
ables. Amadio et al. proved decidability in the bounded-process
case, but only for atomic encryption keys (with variables in key
positions handled by exhaustive substitutions) and using a simpler
free term algebra. Fiore and Abadi [6] and Boreale [3] present
algorithms for computing symbolic traces of infinite-state crypto-
graphic protocols. Both methods are technically involved, and, in
[6], completeness is proved only for atomic keys. Rusinowitch and
Turuani [13] show the problem to be NP-complete with a free term
algebra and constructed keys.

Our use of the strand space model is similar to that of Athena
[14]. Athena, however, only supports atomic keys. Another dif-
ference is that Athena uses penetrator strands as specified in the
original strand space model, while in our approach, no penetra-
tor strands are constructed. Instead, we use a term closure opera-
tor based on message constructors, similar to Paulson’s synth and
analz [12], to characterize attacker capabilities. The result is an ex-
tremely concise representation of the problem and a clean transition
from the process aspects of the protocol model to a pure constraint-
solving problem.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/204482484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. PROTOCOL MODEL

2.1 Parametric strands and reachability
Protocol roles are specified with parametric strands, in which

message terms may contain variables. Different strands are distin-
guished by different values for the set of variables (parameters) as-
sociated with a role. For example, the initiator role of Lowe’s fixed
version of the Needham-Schroeder public-key protocol handshake
(NSL) [11] can be specified as:

Init �����������
	������������ �
��� 	��������� ����� � � 	 ��� � ��� ������ � 	!� �"� � �#������ � ���
The responder role Resp ���
��������	$������ is the same except that�
and � are interchanged.
The notation above uses

� % �&���� � 	!� for public-key encryption of
%

using the public key of principal � . The signs
�

and � denote mes-
sages sent and received, respectively, and a sent message is called
a node. Term variables in messages are denoted by capital letters.

The protocol as given above is actually slightly different from
Lowe’s; the first message in the original is

� ��	$��� � ���� � ��� , with the
nonce first in the encrypted field. This apparently inconsequential
difference leads to an attack, as shown below in Section 6.

Our constraint solving procedure analyzes a set of parametric
strands, in which some of the parameters may be instantiated by
constants. A set of parametric strands is called a semibundle in
the Athena paper [14]. The sequence of nodes in each strand of a
semibundle implicitly specifies the state sequencing relation ' in
the strand space model. Thus, for example,

(
Init �����������
	������$)� Resp ���+*,���
����-	 ���-*� �.

is a semibundle. A strand in a semibundle need not be complete; it
may be an initial subsequence of the full node sequence of a role.

A semibundle can be completed to a bundle by supplying the at-
tacker computations and the communication causality relation /
between received messages and sent messages. Completion of a
semibundle implies that the network state described by the bun-
dle is reachable from an empty initial state. Some semibundles are
not completable. The task of reachability analysis is to determine
whether a semibundle is completable or not, and, if so, what substi-
tution (instantiating the semibundle variables) is necessary to make
it possible. The representation of security attacks as bundles is dis-
cussed in Section 2.4.

2.2 The term algebra
Messages and message fields are represented as terms in a free

algebra generated by the operators in Fig. 1 from a finite set of sym-
bolic constants. We do not distinguish different types of constants,
e.g., nonces, keys, and principal names, but such types could be in-
troduced if desired. Analysis of particular semibundles will dictate
how many distinct constants are needed. One particular constant is
always available, the name of the attacker, 0 .

The term algebra allows any term to be used as an encryption key
both for public-key and symmetric encryption. We make, however,
a (fairly realistic) assumption that private keys are never leaked.
Also, while the model supports constructed keys, the only construc-
tion operators that can be used are those, such as hashing, that can
be expressed in a free term algebra. Support for operators with
associative and commutative properties such as xor, explicit de-
cryption operators, and relaxing the secure private keys assumption
will require us to add an equational theory to the term algebra. This
is a topic of current research.

0 The attacker or a principal compromised by the at-
tacker (constant)

� 132 � 1�4 � Pairing

pk ��5
 Messages encrypted with this public key can be
decrypted by 5 using its corresponding private
key. We assume that the private key of a public-
private key pair is never transmitted as part of the
protocol, or compromised in any way that might
make it available as initial knowledge of the at-
tacker. Therefore, the attacker can only decrypt
terms encrypted with its own public key 6879�:0; .

< � 1 Hash (modeled as a one-way function)

� 1 ��=> Term
1

encrypted with ? using a symmetric algo-
rithm. Keys are not required to be atomic terms.

� 1 ���> Term
1

encrypted with ? using a public-key algo-
rithm. Any term can be used as if it were a public
key.

sig > � 1 Public-key signature of term
1

that is validated us-
ing key ? . Since private keys of a key pair are
never leaked, the attacker can only construct its
own signatures sig �����A@ � �CB�B3BD .

Figure 1: Message term constructors

2.3 The attacker model
In strand space models, attacker computations are represented

by penetrator strands. In this paper, we use a term set closure op-
eration, instead, to characterize attacker capabilities. Given a time
ordering of nodes consistent with ' , a minus node is realizable
iff its message can be synthesized by the attacker from the set of
messages sent in prior plus nodes. A semibundle is completable iff
it has a node ordering in which every minus node is realizable.

We use the standard Dolev-Yao model for attacker computations.
The attacker can simply pass along a sent message, or construct a
new message by decomposing the previously sent messages into
their parts and recombining those parts.

In the following definition we assume that E is a set of ground
terms. If

1
is a term and F is a set of terms, we write FHG 1

rather
than FIG (1 . to avoid notational clutter, since it is unambiguous.

The fake operation JI�&EK is defined as the smallest set F con-
taining E and closed under the following term set operators:

AnalysisL
split �,F# = F-G % GNM if

� % �CM �!O FL
pdec �,F# = F-G %

if
� % � ���� �A@ � O FL

sdec �,F# = F-G %
if

� % ��=P ��M O F
SynthesisL

pair �,F# = F-G � % ��M � if
% ��M O FL

penc �,F# = F-G � % ���P if
% ��M O FL

senc �,F# = F-G � % � =P if
% ��M O FL

hash �,F# = F-G < � % if
% O FL

sig �,F� = F-G sig �����A@ � � % if
% O F

Encryption hidingL
open �,F� = F-G � % � =P if Q %SR P O FL
hide �,F# = F-GTQ %SR P if

� % � =P O F

Encryption hiding operators are a technical device needed to sup-
port analysis of constructed keys. They are explained in more detail
in sections 4 and 5.

A
L

operator can be applied to a term set whenever the set con-
tains a “target” term with the appropriate structure. One can show
that J is a closure operation: it is idempotent, monotonic (with
respect to set inclusion), and extensive (a set is a subset of its clo-
sure).

J characterizes attacker capabilities in the sense that, for any
non-empty term set E , J �&EK is the (infinite) set of terms that can
be constructed by the attacker from E . A received message � can
be synthesized from a set E of sent messages if and only if it can be
derived through J , i.e., � O L�� �CB�B3B L 2 �&EK� for some

L 2 ��B�B�B!� L�� .
Define

�
synth � (L

pair � L penc � L senc � L hash � L sig . , and
�

analz �(L
split � L pdec � L sdec . . In Paulson’s method [12], J �&EK could be ex-

pressed as synth � analz �&EK� where synth and analz are, respec-
tively, sequences of

�
synth and

�
analz operators, but this formula is

not general enough when keys can be constructed. Consider, for ex-
ample, E � � � � =� ��� � G
	 where

� O J �&EK but
���O synth � analz �&EK� .

It is important to keep in mind that the characterization of the at-
tacker capability as J-�&E works only when (1) E is a set of ground
terms, and (2) we have chosen a time ordering of nodes to estab-
lish which sent messages are “prior” to a received message and are
therefore included in E .

It is not difficult to see how any operator assumed available to
the Dolev-Yao attacker can be represented either as one of the

L
term set operators in the definition of J , or a penetrator strand in
the conventional strand space model. The formal presentation of
the attacker model does not, in itself, imply any difference in at-
tacker capabilities between the term closure approach and the pen-
etrator strand approach. With respect to the class of attacks that
can be represented as a reachability problem for an instantiation of
a single protocol trace (e.g., secrecy and authentication), the two
approaches are equivalent - if an attack can be discovered by one,
it can be discovered by the other. Moreover, our model supports
“programmable” attacker capabilities by changing

L
operators in a

way that is similar to penetrator strands. Extending the model with
new message term constructors and corresponding

L
operators will,

however, affect our ability to solve the generated constraint sets.

2.4 Secrecy and authentication goals
A secrecy goal states that some designated message should not

be made public. Compromise of a secret message can be detected
by adding an artificial secret reception strand to the semibundle. In
the case of NSL, if the responder wants to keep � *� secret, we
would add the one-node strand � � *� to the semibundle. Then
the problem of determining whether the secret is compromised is
equivalent to deciding if the semibundle with the secret reception
strand is reachable (completable in our terminology).

Secrecy is violated if the secret is made public at any time, not
just after all honest strands have completed normally. Thus, to ana-
lyze secrecy, one must consider semibundles in which role strands
terminate prematurely. “Secret” is a relative term, in the sense that
there is no security violation if a “secret” is generated by, or know-
ingly given to, the attacker. In order to associate a secret with hon-
est principals, we instantiate the secret and the principals with sym-
bolic constants. In the NSL example, we supply constants in the re-
sponder strand for the responder � * �	 , the initiator � * � �

with
whom 	 intends to share his secret, and the secret nonce � *� ��� � .

In proof terms, this is a skolemization step. A proof of reacha-
bility or non-reachability applies to all possible values of the con-
stants, subject to the implicit assumption that constants with dif-
ferent names are unequal. Skolemization is used in general to in-

stantiate a nonce in the strand that generates the nonce (or other
session-specific data).

In strand space models, authentication is typically expressed as
the unreachability of a bundle that contains a strand that receives a
message to be authenticated but does not contain another legitimate
strand that sends it [16, 14]. A goal of this kind can be tested by a
procedure to determine completability of semibundles that contain
the authenticated strand but no authenticating strand.

2.5 The origination assumption
In our model, strands in a semibundle satisfy the origination as-

sumption, namely, that a variable always occurs for the first time in
any strand in a minus node. This assumption helps us to state and
prove secrecy goals, and it plays a role in proving completeness of
the decision procedure. It is satisfied for nonces and session se-
crets because of skolemization. For non-secret session parameters,
such as principals, we can make it true by prefixing a strand with
an artificial received message containing the variables that would
otherwise be sent first. Because they are variables, this does not
constrain their values, and because they are not secret, exposing
them in a message does no harm and does not, in principle, affect
implementability of the attack.

In our NSL example, the initiator strand contains the variables �
for the initiator principal, and � for the responder chosen by that
principal. We add the node � � ����� � to the beginning of the node
sequence, so that it satisfies the origination assumption.

3. CONSTRAINT GENERATION
Constraints are created from a node sequence consistent with the

given semibundle, obtained by interleaving the strands in any of the
possible ways. The result may be viewed as a singleton semibundle.
For example, one possible merge of the NSL initiator and responder
strands is:

� � ���C� � � � ������� �&��3��� � � � � � ��� 	����������� � � � � 	 ��� � ��	 ������ � � � B�B3B
B�B B � � � � ��� � �D� � ������ 	!� � � � � � ��3��� � � � � �

This node sequence includes the secret reception strand consist-
ing of the single node � � � , and omits the last responder node
� � � � � ���� ��� � because it cannot affect the outcome.

3.1 Enumeration of interleavings
Different interleavings give rise to different constraint sets, and

we attempt to solve each constraint set until we find one that has
a solution or show that none of them are satisfiable. The number
of possible interleaved node sequences can be very large. In gen-
eral, the number of interleavings of a sequence of length � and
one of length � (if the elements are distinct) is ����� ��

�
, yielding

an exponential number of cases. However, it is not necessary to
consider all possible interleavings, because some interleavings are
dominated by others, in the sense that any solution to one is a so-
lution to the other. Dominated interleavings are redundant, and an
optimization technique would eliminate them. For example, one
can show that once a send node is enabled, there is no need to con-
sider interleavings in which it is delayed until after later send or
receive nodes. With this optimization, the number of interleavings
is determined by the number of receive nodes alone. Further opti-
mizations are possible as well. Since there are cases where differ-
ent interleavings lead to incompatible constraint sets with different
solution characteristics, we must deal with particular interleavings
(rather than just the partial order of nodes given by a semibundle)
before proceeding to the constraint solving phase.

3.2 Generation of a constraint set
A constraint is a pair ��� E where � is a term and E is a

term set. The term set represents the set of messages known to the
attacker. The constraint ��� E asserts that the attacker must be able
to synthesize term � from the term set E .

A sequence of constraints and term sets is constructed from the
sequence of nodes. Each plus node expands the last term set with
its message, and each minus node creates a constraint ��� E where� is the message in the node and E is the last term set.

The first term set E�� contains ground terms assumed known to
the attacker. This should include constants representing principals,
including at least the attacker’s identity 0 , and their public keys,
including at least 6 79�:0; . For example, we could have E � =

(
alice,

bob, srv, 0 , pk(srv), 6879�:0 �. or E�� =
(� ��	 , pk(

�
), pk(), 0 , 6879�:0;�. .

The first example assumes that the server srv will deliver public
keys on request, or that they are made available in the protocol
through certificates or some other way so that they need not be
known initially.

The node sequence above generates the following term sets and
constraints:

� ����� � � E��+� (� ��	 ��0 ��6 79�:0;�.� � �D�
	 � �������� � � E 2 � E � G (� �
��� � � ���� � ��� .� ���8��� � �D� �������� 	!� � E 4 � E 2 G (� � 	 ��� � ��	 ������ � � � .� � � E��+� E 4 G (� � ��� ���� � ��� .
Note that the term sets are non-decreasing in this order, so that

E�� � E�� � 2 for all � . This is a special case of an invariant property
called monotonicity in Section 5.1.

Let 	 be a substitution of ground terms for all the variables, and
let
 � (� � � E��C. be a set of constraints. We say that 	 is a
solution of
 , or 	 satisfies
 , if 	��
 by the definition

	�

�
� ����� �	 � � O J ��	!E��,

Deciding satisfiability of the constraint set induced by the protocol
requires reasoning about J sets that can be generated from a set of
arbitrary terms, possibly involving variables.

As a shorthand, in the context of a particular
 , we’ll write E 2��
E 4 if (��	���
 #J ��	 E 2 � JI��	 E 4 . If E 2�� E 4 and E 4�� E 2 ,
then E 2��� E 4 .

4. SOLVING THE CONSTRAINT SET
In general, a constraint set is solved by the reduction procedure

in which each application of a reduction rule replaces or eliminates
some constraint. (We will often refer to a constraint sequence as a
constraint set when we do not need to emphasize the ordering.) A
sequence of reductions terminates successfully when the constraint
set is reduced to a simple set, in which the left side of each remain-
ing constraint, if any are left, is a variable. Such sets are always
satisfiable (see section 4.4). A sequence of reductions can also ter-
minate unsuccessfully by producing a constraint set that is neither
simple, nor reducible.

A constraint set may be reducible in more than one way. The
reduction procedure therefore creates a directed tree rooted in the
initial constraint set
�� . Set
�� has a solution (i.e., there exists
a successful attack on the protocol) if at least one path in the tree
leads to a simple constraint set.

The reduction procedure is terminating, sound and complete, as
proved in section 5. Therefore, substitution 	 is a solution of the
initial constraint set if and only if it is a solution of the simple con-
straint set at the end of at least one path in the tree.

 := initial constraint sequence
	 := �
repeat

let ��� � ��� E be the first constraint in C
s.t. � is not a variable

if ��� not found
output Satisfiable!

apply rule (elim) to ��� until no longer applicable
�� O�!

if is applicable to
"
 *$# 	 *&% := 8�$
 # 	�
create node with
 * ; add
"/'
 * edge
push

"
 * # 	 * %"
 # 	 % := pop
until emptystack

Figure 2: Reduction procedure P

4.1 Reduction procedure
A reduction tree has reduction states containing constraint sets

as nodes, and instances of reduction rules as edges. The root of
the tree is the initial constraint set induced by the protocol. The
reduction tree is created by the reduction procedure P in Fig. 2
where (elim) is the variable elimination rule (see section 4.2) and
! is the set of reduction rules (see section 4.3).

Procedure P finds the first constraint where the left side � is not
a variable (� may contain variables inside terms). We will call
the constraint selected by P active. It then applies rule (elim) re-
peatedly to remove all standalone variables from the term set on
the right side of the active constraint. Then one reduction rule is
applied, and the procedure is repeated. If more than one rule is
applicable to the active constraint, the reduction tree branches. Re-
duction rules maintain the relative ordering of the constraints. This
is necessary for variable elimination to be sound (see section 4.2).

The state of the reduction is represented by a pair
 # 	 where

 is the current constraint set and 	 is a partial substitution for
variables that occurred in the initial constraint set. The initial state
is associated with a null substitution. If application of a reduction
rule requires a substitution that instantiates some of the variables,
we apply the substitution immediately to the entire constraint set
and add it to 	 (see rules (un) and (ksub) in section 4.3). The accu-
mulated substitution is thus carried with the reduced constraint set
along every path in the reduction tree. If the path terminates in a
satisfiable constraint set, 	 contains variable instantiations that the
attacker has to make in order to stage a successful attack.

In the rule definitions below, we refer to all constraints ()� � E��
preceding the active constraint �*� E as
,+ , and to all constraints�.-/� E - following ��� E as
10 .

4.2 Variable elimination
Rule (elim) removes a standalone variable from the term set of a

constraint. P applies it as many times as necessary to eliminate all
standalone variables from the term set of the active constraint.

1+#� ��� (GNE �2
 0 # 	

 + � �3� E �2
10 # 	

(elim) (is a variable

This rule is formally justified by proposition 5.1. Informally, re-
moving a standalone variable (from a term set E � does not change
JI��	 E � for any 	4�5
 . By the origination assumption, each vari-
able appears for the first time on the left side of some constraint.
Since P selects as the active constraint the first constraint where the

1+�� ��� E+�
 0 # 	
�
 + � �
10 # � G 	 (un)

where � � mgu � � � 1)� 1 O E #

 + � � � 2 � � 4 � � E �2
10 # 	

1+�� � 2 � E+� � 4 � E �2
 0 # 	

(pair)

1+�� < � � � E �
 0 # 	

1+�� ��� E+�
 0 # 	

(hash)

1+ � � � ���> � E �
 0 # 	

1+���? � E � ��� E �
 0 # 	

(penc)

1+�� � � � => � E �2
 0 # 	

 + ��? � E � ��� E+�
10 # 	

(senc)

 + � sig �3���A@ � � � � E �
10 # 	

 + � �3� E �
10 # 	

(sig)

1+�� ��� � 132 � 1�4 � G�E+�
 0 # 	

 + � ��� 1 2 G 1 4 G�E �
10 # 	

(split)

 + � ��� � 1 � ���� �A@ � G E �2
10 # 	

1+�� ��� 1 G E �2
 0 # 	

(pdec)

1+ � �3� � 1 � �> G E �2
 0 # 	
�
1+#� � �3� � � 1 � �> G � E � �
 0 # � G 	

(ksub)

where � � mgu ��?9��6 79�:0;�)�C? �� 6 79�:0;

 + � � � E G � 1 ��=> �
10 # 	

1+���? � ETGTQ 1CR > � ��� E G 1 G-? �
 0 # 	
(sdec)

Note: Q %SR P unifies with
� % * � =P�� iff � 	 s.t. 	 % � 	 % * � 	 M�� 	 M *

Figure 3: Reduction rules

left side is not a variable, it must be the case that � � (�GHE is
preceded by a constraint (� E�� O
1+ . We can show that E�� � E ,
thus any term that might be used to instantiate (can instead be
constructed directly from E .

4.3 Constraint reduction rules
Reduction rules are listed in Fig. 3. They should be understood

as rewrite rules on the constraint set, and read from top to bottom.
To facilitate explanation, we gave matching names to term set oper-
ators

L
and reduction rules. Each reduction rule applies to the same

term(s) as the corresponding term set operator.
Notice that analysis operators correspond to reduction rules that

decompose some term in the term set on the right side of a con-
straint, while synthesis operators correspond to rules that decom-
pose the term on the left of a constraint.

4.3.1 Unification
The unification rule attempts to recognize � as a member of

E , by unifying � with some non-variable term
1 O E , using the

most general unifier. Informally, application of this rule represents
“replay” of a term known to the attacker. For example, the attacker
can replay an encrypted term even if it has not been able to break
the encryption. Different successful choices for

1
result in different

branches in the reduction tree. A successful unification may cause
one or more variables to be instantiated, in both � and

1
, and this

substitution is applied to every constraint in the set. A successful
unification eliminates the current constraint.

The unification rule (un) is applied only to constraints � � E
where � is not a variable due to the way P selects the active con-
straint. Note that E does not contain any standalone variables since
P applies rule (elim) to �'� E before applying any reduction rule,
including (un). Unification does not distinguish Q R and

� � = terms,
i.e., Q %SR P unifies with

� % * � =P	� iff
%

unifies with
% * , and M with M * .

Since 	 has already been applied to the constraint set, neither � ,
nor

1
contains any variables in the domain of 	 , thus the domains

of � and 	 are disjoint. If the most general unifier mgu � � � 1 does
not exist, the rule is not applicable. Note that if � is a constant, the
rule will succeed only if � O E .

4.3.2 Decomposition
Decomposition rules (pair), (hash), (penc), (senc), (sig) model

the case when term � can be constructed from components which
are synthesizable from terms in E . Intuitively, the rules should be
read “backwards.” For example, rule (penc) can be informally un-
derstood as “one of the ways the attacker can construct term

� � �&�>
is by constructing terms � and ? , and then encrypting � with ? .”
Note that the attacker can construct only its own public-key signa-
ture.

4.3.3 Analysis
Analysis rules (split) and (pdec) attempt to break up terms on

the right side of the constraint as far as possible without variable
instantiation. If a term is encrypted with a public key which does
not belong to the attacker, it cannot be decrypted since our model
assumes that private keys are never leaked. Symmetric-key decryp-
tion is handled by the (sdec) rule.

4.3.4 Key substitution
Application of the key substitution rule (ksub) corresponds to the

case when the attacker decrypts a term encrypted with a public key,
i.e., the right side of the active constraint must contain a

� 1 �:�> term.
The rule is applicable only if term ? in the key position unifies
nonidentically with the attacker’s public key 687 �:0 (the case when
? � 6 79�:0; is covered by the (pdec) rule). The attacker can only
decrypt terms encrypted with its own public key since it is assumed
that the private key of a key pair is never leaked. If ? does not
unify with 6879�:0 , this means that term

1
is not encrypted with the

attacker’s public key, and the rule does not apply.
The domains of � and 	 are disjoint since 	 has already been

applied to the constraint set. Note that successful application of
rule (ksub) enables rule (pdec) which can replace

� % �:���� �A@ � by
%

on
the right side of the current constraint as well as all those containing
terms encrypted with ? before the substitution.

4.3.5 Symmetric-key decryption
The symmetric-key decryption rule (sdec) can be applied when

the right side of the active constraint contains a term encrypted with
a symmetric key. This corresponds to the case when the attacker
succeeds in decrypting a symmetrically encrypted term by synthe-
sizing the right key.

As far as unification and satisfiability are concerned, the spe-
cial term Q 1CR > is indistinguishable from

� 1 ��=> . Its purpose is purely

technical: to “hide” the symmetrically encrypted term
� 1 � => in or-

der to avoid subsequent application of the same rule to the newly
added constraint ? � E > . The intuition behind this is that decrypt-
ing terms encrypted with ? is never necessary in order to construct
? . The term as a whole may still be necessary. Consider constraint
? � Q 1CR > � � ? � = � ������ where the entire term Q 1CR > must be used, without
being decrypted itself, to decrypt another term and extract ? . Note
that

� 1 �&=> is replaced in the term set of the original constraint by
1

and ? . Addition of ? to the term set is sound if constraint ? � E > is
satisfiable, as proved in proposition 5.3.

4.4 Checking satisfiability
Every path in the reduction tree generated by procedure P ter-

minates either in a constraint set to which no rule can be applied,
or in a simple set
 that has only variables on the left, i.e.,
 �
(2 � E 2 ��B�B�B!� (� � E � . A simple constraint set is always satisfi-
able as long as the attacker has at least one constant in its initial
term set. One can check by inspecting the reduction rules that such
constants remain in the term set of every constraint. If � is such
a constant, 	 � � � � (2 ��B�B�B!� � � (� � satisfies all constraints. In the
future, we may wish to distinguish different types of constants. We
will ensure then that the attacker knows one constant of each type.

We have not performed a detailed analysis of the complexity of
the constraint solving algorithm. Rusinowitch and Turuani [13]
demonstrated that the problem is NP-complete in a similar setting
(free term algebra with arbitrary terms as symmetric encryption
keys). The proof of NP-completeness in [13] relies on guessing the
right substitution for variables and the right sequence of attacker
operators that derives � from E � for each constraint ��� E � . It is
likely that while our algorithm has the same worst-case complex-
ity, it is significantly more efficient in practice since in our case
substitutions are performed only when they may possibly result in
satisfying a constraint (rules (un) and (ksub)), and generation of
the sequences of

L
operators deriving � from E � is driven by the

structure of the terms.

5. SOUNDNESS AND COMPLETENESS
In this section, we prove that P terminates and that it preserves

all solutions of
�� without introducing any new ones.

5.1 Invariant properties of P

Let �	� be the set of all constraint sequences generated by P.
The origination assumption (see section 2.5) implies that, in the

initial sequence of constraints, each variable appears for the first
time on the left side of a constraint, and not in the right side of that
constraint. This origination property is an invariant.

Theorem (Invariance of Origination) �
 O �
�$�2
 satisfies
the origination property.

Proof in Appendix A.1.

Consider constraint � � � E � in which variable (appears for
the first time. By the origination property, E�� does not mention (,
or any variable that appears later than (. A constraint sequence is
monotonic, if, for any constraint � � E s.t. E mentions variable
(, � E��� � E such that E��� does not mention (or any variable that
appears later than (, and E�� � E��� . Furthermore, E�� � E .

Monotonicity captures the fact that the attacker never forgets in-
formation. Every message received by the attacker can only add
to its knowledge and cannot possibly remove any terms it already
knows. If at some point the attacker had access to terms in E � , then
at any later point these terms, possibly transformed in a way that
preserves J-�&E � , are still available to the attacker.

Theorem (Invariance of Monotonicity) ��
 O � � �2
 is mono-
tonic.

Proof in Appendix A.2.

PROPOSITION 5.1. If � � E G4(is the active constraint, then
E �� E G5(.

Clearly, E � E G�(, so it suffices to show that E G�(� E . By
the origination property, there exists an earlier constraint � � � E �
where (appears for the first time in � � . It must be the case that� �H�3(, since constraints earlier than the active constraint have
standalone variables on the left.

Suppose 	4�5
 . We must show that J ��	 �&E G�(� � J-��	 EK)B It
suffices to show that 	 �&ETG4(� JI��	 EK , since J is idempotent.
Since 	 E � J-��	!EK , we just need 	 (O J-��	 EK .

By monotonicity of the constraint sequence
 , ��E �� � E G (
such that E��� does not mention (and E�� � E�� . In particular, E��� �
E , so 	�(O J-��	!E�� � J-��	 EK .

PROPOSITION 5.2. If E � � E G � 1 ��=> , then E � �� ETGTQ 1CR >
Follows immediately from the fact that J is closed under

L
open

and
L

hide.

PROPOSITION 5.3. Suppose
� 1 �&=> O E . If � 	 s.t. 	 � ? � E >

and E > � E , then E �� �&E�� � 1 � => G 1 G-?
Let E ���E G � 1 ��=> . If � 	 s.t. 	 � ? � E > and E > � E ,

then 	�? O J-��	 EK and, since J is closed, J-��	 EKN� J-��	��E G� 	 1 ��=� > G 	 ? � J � . Since J � is closed under
L

sdec and
L

senc,
J��T� JI��	��E G � 	 1 � =� > G 	 ? G 	 1 � JI��	��E G 	�? G 	 1)B By
definition, E �� �&E�� � 1 ��=>�!G 1 G ? .

5.2 Termination
The termination measure of a constraint set is a tuple ��� � �����

where � � is the number of distinct variables and ��� is a special
expansion measure. Tuples are ordered lexicographically.

To define the expansion measure, first define the structure size� � �
of a term � to be the number of operator applications plus the

number of constants and variables in it (the number of nodes in the
parse tree). The expansion measure of a constraint set is the sum of
the expansion measures of the constraints. The expansion measure
of a constraint ��� E is

� � ����� �&E where
�

is defined as follows:
� � 1 ��� if

1
is a var or constant

� � � 1 �&�> #� � � 1 ���� � (1)2 ��BABABA� 1 � .;�� � � 132 ����� � � 1 � � � Q 1 R > #� �� � � 132 � 1�4 � �� � � 132 � � 1�4 �!� � � sig > � 1 ��� � � 1 �"�� � � 1 � =>�#� � � 1 � ��? � � ? � �!� � � < � 1 � � � � 1 �!�
We have to show that each rule reduces the termination mea-

sure. Checking the rules one by one, we see that: (elim) reduces
��� by eliminating a factor

� ��(�#� ; (un) either eliminates a
variable by substitution and hence reduces � � , or matches a con-
stant on the left without a substitution, which leaves � � unchanged
but reduces � � by eliminating the constraint; (sig), (pair), (hash),
(penc), and (senc) reduce ��� by leaving E alone but decomposing
the left side into components with a smaller structure sum; (split)
and (pdec) reduce ��� by decreasing a factor

� � 1 ; and (ksub) in-
stantiates a variable and thus reduces � � . The most interesting
case is (sdec), which replaces � � E G � 1 �&=> with expansion mea-
sure

� � � � �&E 3� � � 1 � ��? � � ? � ��� by ? � E G�Q 1CR > and ��� E G 1 G$?
with total expansion measure

� ? � � �&EK � � � � � �&EK � � 1 � ��?8 . This
measure is smaller because that

� ? �%$&� � � � � ? � �'� . Hence, P
terminates.

5.3 Soundness
A constraint reduction procedure is sound if reduction rules do

not introduce new solutions. To prove soundness, it is sufficient to
show for every rule that 	4� 8�$
 implies 	��
 . Each reduction
rule is sound (proof in Appendix A.3). By induction over the length
of the reduction sequence, P is sound.

5.4 Completeness
The basic idea of completeness is to show that any solution of

the initial constraint set is preserved along at least one path in the
reduction tree. If 	 is a substitution such that 	 �
 � , then P is
complete if, among all the simple, satisfiable constraint sets pro-
duced by P, there is at least one set
 such that 	4�5
 .

Our proof of completeness is quite delicate. In particular, com-
pleteness does not hold inductively for any constraint set, i.e., it
is not always the case that if 	 �
 , then there is a rule such
that 	 � �$
 . Consider constraint ��� < ��? � Q:? R � � > � G < ��?8 .
Applying reduction rule (hash) to this constraint, we obtain con-
straint � * �"? � Q:? R � � > � G < ��? . This constraint is satisfiable since
? O J-� Q:? R � � > � G < ��? � by applying

L
open on Q:? R � � > � to obtain� ? � =� � > � , and then

L
sdec on

� ? � =� � > � and
< ��?8 to obtain ? . Unfortu-

nately, there is no reduction rule in section 4.3 that can be applied to
� * . The problem arises because Q %SR P can be “opened” by

L
open and

subsequently decrypted when computing J , but there is no corre-
sponding reduction rule that could be applied to the constraint.

Observe, however, that completeness is not violated in this ex-
ample. There exists another rule that is applicable to � , namely,
(un), which unifies

< ��? with
< ��?8 and successfully eliminates the

constraint. This observation is the intuition behind our proof of
completeness.

Theorem (Completeness) For any substitution 	 such that 	 �

�� , P will generate a simple constraint set
 such that 	��
 .

Details of the proof can be found in Appendix A.4. The proof
consists of two parts. First, we show that completeness holds in-
ductively for any constraint � � E such that � �CE do not con-
tain Q %SR P terms. Then, we show that the first time a constraint� � �E such that �E contains a Q %SR P term appears in the reduction
sequence, there exists, given any solution 	�� � � �E , an applica-
ble sequence of reduction rules 2 ��B3B�B � � , ��$� �����	� such that
	 � � * � E * �3 � �CB�B3B 2 � � � �E � where E * does not contain
Q %SR P terms.

Informally, the proof can be understood as follows. Procedure P
may generate “bad” states which are satisfiable but not reducible,
thus violating completeness. However, “bad” states cannot appear
in an arbitrary place in the reduction tree. We show that they ap-
pear only in branches rooted in “bad-root” states of a particular
type, namely, those generated by the (sdec) rule. For each “bad-
root” state we prove that, given any solution, there always exists
at least one branch out of the state that preserves this solution and
leads to a “good” state. This will guarantee completeness, since
any solution of the initial constraint set (but not necessarily of ev-
ery set generated by P) is preserved along at least one path in the
reduction tree.

6. EXAMPLES
The NSL protocol, as modified, was analyzed using a Prolog

program based on the constraint reduction rules in Section 4.3. The
program was given several semibundles to look at, with as many
as four legitimate strands. On a semibundle with two responder
strands, it found an interleaving with a solvable constraint set. One
constraint reduction path leading to a solution (and hence an attack)
is traced below.

Consider the interleaving of strands for responders 	 and some
� , in which 	 expects to share � � with a particular

�
. The last

reply in each strand has been omitted for simplicity, but the secret-
reception strand � � � is added to test secrecy of � � . The actual
analyzed semibundle had more strands, and they were complete.

� � � ��� 	��&��3����� � to b��� � 	 ��� � ��	 �������� � � from b to a
� � ������� � ������ 	 � to any A from any B��� � � �����8��� ������ � ��� from A to B
� � � secret reception

The constraint set from this interleaving is:
� B � � ��� 	������� ��� � � E�� � (� ��	;��0 ��6879� �)�C6 79� 	 �.
� B � � ��� � � ������ 	 � � E 2 � E � G (� ��	 � � � � ��	 �A� ������ � � .� B � � � E 2 G (� � � � � ���8��� � ������ � � � .

We will follow one path leading to a solution. Note that we are
treating concatenation as a binary right-associative operation. First,
apply (penc) to (1):

� B � B 6 79� 	� � E �� B � B � � ��� 	�� � E��
� B � ���D� � �������� 	 � � E 2 � E���G (� � 	 � � � � ��	 �A�������� � � .� B � � � E 2 G (� ��� � � � � ��� � � ���� � � � .

Eliminate (1.1) with (un) and expand (1.2) with (pair):
� B � B � B � � E �� B � B � B � 	 � E��
� B � ���D� � � ������ 	 � � E 2 � E�� G (� � 	 � � � � ��	 �A� ������ � � .� B � � � E 2 G (� ���+� � � � ��� � � ���� � � � .

Eliminate (1.2.1) with (un) and skip (1.2.2) because it has a variable
on the left. Apply (un) to (2) with the substitutions ���/ � 	 ,
�����/ � � � ��	 � and ���/ �

, eliminating (2).
� B � B � B � 	 � E��� B � � � E 2 G (� � � ��	 � � � ���8� � �A������������ � .

Finally, apply (ksub) to (3) with � 	 �/ 0 . It should be clear after
this that � � will be exposed and the solution can be finished up eas-
ily. Installing the substitutions into the original semibundle yields
the attack.

The attack requires two somewhat implausible but not impossi-
ble type confusions: 0 in the first message is occupying a nonce
field, and

� � � ��	 � in the first message of the
�

strand is also occu-
pying a nonce field. This could work if agent names are the same
length as nonces and the protocol could handle two sizes of nonce
(single or double). The point is not that this is a realistic attack,
but that it illustrates the power of the analysis technique to find sur-
prising results, in this case by permitting a type flaw. Protocols can
also be encoded in such a way as to reflect type protection, if the
implementation is believed to work that way.

To illustrate how the algorithm handles constructed keys, we
present partial analysis of a toy, faulty mutual authentication proto-
col inspired by Gong’s mutual authentication protocol [8] (we did
not discover any bugs in the original protocol).

� / � � ���C� 	
� / F � �
��� ����	$�����
�
	 F � ��� � � < � � ������� 	 ��� �� 	�� � =� � � ����� ����� 	 � �
��	 � � ��� � < � < � � ��� ��� 	 ��� �� 	�� �
� / � � < � < � � ��� ��� 	 ��� �� 	��)�����9

The goal of the protocol is to preserve the secrecy of the key
�	!� � < � � � � ���
	��D� ���	 � shared between � and � .

One of the possible interleavings of the protocol and the secret
reception strand ��	 	!� gives rise to the following constraint:

 	!� � (����� ��� 	 ��� � ����� � � 	!� � =� � � � � � ��� � 	 � � .
Rule (sdec) transforms this constraint into:
< � � ��� ��� � �D� � � (����� ��� 	 ��� � ����� �

Q �	!� R � � � ����� � ��� 	 � � .
 	!� � (���3B�B�B!�D��� � 	 � � < � � ������� � ��� � �.

Rules (hash) and (un) dispose of the first constraint (this corre-
sponds to the fact that

< � � ��� �D� � ��� � can be constructed by the
attacker who knows ����� � � and � �) and (un) disposes of the sec-
ond constraint. Therefore, the constraint set is satisfiable, proving
that the secret reception semibundle is reachable.

7. CONCLUSION
By using the strand space model only for honest processes and

the term set closure characterization of the attacker, our model
achieves a clean transition from the process model to the constraint
solving problem. Models that put individual attacker actions (such
as in penetrator strands) in the process side must mix the two, be-
cause they cannot predict which actions the attacker will perform.
In terms of attacker capabilities, the term set closure characteriza-
tion of the attacker results in the same (infinite) set of synthesizable
messages as penetrator strands.

Using the free term algebra simplifies the model, enabling us to
handle constructed keys even in cases of self-encryption. However,
without cryptographic reduction rules, we cannot handle protocols
where both keys in a public-private key pair are used explicitly. A
free algebra also fails to represent the properties of encryption op-
erations with associative and commutative characteristics, such as
xor and Diffie-Hellman exponentiation. We are currently investi-
gating how the constraint solving algorithm presented in this paper
may be extended to support such operations.

The finite semibundle node-merge generation and the constraint
reduction rules lend themselves well to implementation in Prolog,
with its built-in depth-first search strategy and unification. We have
implemented the decision procedure in XSB (SUNY Stony Brook)
Prolog, and it often runs in a small fraction of a second on the ex-
amples we have tried, even when the vulnerability search fails. The
program is less than three pages. The approach can be extended in
a natural way to unbounded process analysis by iteratively adding
strands to the initial finite set, though there is no guarantee of ter-
mination if this is done.

8. REFERENCES
[1] AMADIO, R., AND LUGIEZ, D. On the reachability problem

in cryptographic protocols. In CONCUR (2000), vol. 1877 of
LNCS, Springer, pp. 380–394.

[2] AMADIO, R., LUGIEZ, D., AND VANACKÈRE, V. On the
symbolic reduction of processes with cryptographic
functions. Tech. Rep. 4147, INRIA, March 2001.

[3] BOREALE, M. Symbolic analysis of cryptographic protocols
in the spi-calculus. In ICALP (2001). To appear.

[4] CERVESATO, I., DURGIN, N., LINCOLN, P., MITCHELL,
J., AND SCEDROV, A. Relating strands and multiset
rewriting for security protocol analysis. In 13th IEEE
Computer Security Foundations Workshop (2000), pp. 35–51.

[5] DURGIN, N., LINCOLN, P., MITCHELL, J., AND SCEDROV,
A. Undecidability of bounded security protocols. In

Workshop on Formal Methods and Security Protocols
(1999), FLOC.

[6] FIORE, M., AND ABADI, M. Computing symbolic models
for verifying cryptographic protocols. In 14th IEEE
Computer Security Foundations Workshop (2001),
pp. 160–173.

[7] FREIER, A., KARLTON, P., AND KOCHER, P. The SSL
protocol. Version 3.0.
http://home.netscape.com/eng/ssl3/.

[8] GONG, L. Using one-way functions for authentication.
Computer Communication Review 19, 5 (1989), 8–11.

[9] HEINTZE, N., AND TYGAR, J. A model for secure protocols
and their compositions. IEEE Transactions on Software
Engineering 22, 1 (1996), 16–30.

[10] HUIMA, A. Efficient infinite-state analysis of security
protocols. In Workshop on Formal Methods and Security
Protocols (1999), FLOC.

[11] LOWE, G. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In TACAS (1996), vol. 1055
of LNCS, Springer, pp. 147–166.

[12] PAULSON, L. The inductive approach to verifying
cryptographic protocols. Journal of Computer Security 6, 1
(1998), 85–128.

[13] RUSINOWITCH, M., AND TURUANI, M. Protocol insecurity
with finite number of sessions is NP-complete. In 14th IEEE
Computer Security Foundations Workshop (2001),
pp. 174–190.

[14] SONG, D. Athena: a new efficient automatic checker for
security protocol analysis. In 12th IEEE Computer Security
Foundations Workshop (1999), pp. 192–202.

[15] THAYER, F., HERZOG, J., AND GUTTMAN, J. Honest
ideals on strand spaces. In 11th IEEE Computer Security
Foundations Workshop (1998), pp. 66–78.

[16] THAYER, F., HERZOG, J., AND GUTTMAN, J. Strand
spaces: Why is a security protocol correct? In IEEE
Symposium on Security and Privacy (1998), pp. 160–171.

APPENDIX

A. PROOFS

A.1 Invariance of origination
The origination property for a constraint sequence states that

each variable appears for the first time on the left side of a con-
straint, and not in the right side of that constraint. This property
can only be violated by a reduction rule which, given a constraint��� E , changes it to � * � E * such that E * contains a variable (* but
there is no preceding constraint that has (* only on the left side.

With the exception of rules (un) and (ksub), constraint reduction
rules do not instantiate existing variables or introduce new variables
or change the order of constraints. Therefore, they cannot violate
the origination property. Rules (un) and (ksub) may introduce a
new variable on the right side as a result of applying substitution
� . Consider constraint � � E such that E mentions variable (,
and substitution � such that � (mentions some other variable (* . If
the origination property is true for the constraint set to which the
rule is applied, then there exists another constraint � ��(� E � that
precedes � � E in the chronologically ordered constraint list such
that (is mentioned in � ��(but not in E�� . Consider two cases.

(* O E � By the origination property for the constraint set before
rule application, there exists � ��(* � E � � preceding � ��(�
E � such that (* is mentioned in � ��(* but not in E � � . But this

constraint must also precede � � E and, therefore, � * � E * ,
since neither (un), nor (ksub) changes the relative order of
constraints. Application of � does not substitute (* , other-
wise (* would not appear in � E . Therefore, (* is mentioned
in � � ��(* but not in � E � � , thus there exists a constraint pre-
ceding � * � E * , namely, � � ��(* � � E � � that mentions (* only
on the left side.

(* �O E�� Then � � ��(mentions (* , but � E�� does not. Therefore,
there exists a constraint preceding � * � E * , namely, � � ��(�
� E�� such that (* is mentioned only on the left side.

By induction over the length of the reduction sequence, the orig-
ination property is true for all constraints generated by P.

A.2 Invariance of monotonicity
The initial constraint set is monotonic by simple term set inclu-

sion. To prove that all constraint sets produced by P are monotonic,
it is sufficient to show that monotonicity is invariant with respect to
every reduction rule from section 4.3.

Rule (elim) eliminates one of (� from E but does not affect E��� � .
Rules (split) and (pdec) do not introduce new variables and do

not affect JI��	 E��� � for any (� � 	 �
 . For example, if
� 1 �&���� �A@ � O

E �� � , then E �� � �� �&E �� � � � 1 � ������ @ � !G 1
.

Rules (pair), (hash), (penc), (senc), (sig) do not affect E at all.
Rule (ksub) does not introduce any new variables or terms to E

and, therefore, cannot change E��� � .
Rule (sdec) does not introduce new variables. Suppose

� 1 �:=> O
E�� � . Since J is closed under

L
open and

L
sdec, J-��	!E�� � for any

	 � ? � E > �2
 is not affected if
� 1 � => is replaced by Q 1CR > or

1 GI? .
This follows from propositions 5.2 and 5.3.

Finally, consider rule (un). Suppose � includes substitution (- �/1 ��(� for some variables (��� (- where
1 ��(�, is an arbitrary term men-

tioning (� . Even though � may introduce (� into some terms of E
that did not mention (� before, we’ll prove that either these terms
are not in E��� � , or � , when applied to the entire constraint set, re-
places (- with

1 ��(� in some constraint � preceding � ��(� � E � and
makes that constraint the first constraint mentioning (� . We’ll also
show that E must contain a superset of E�� which is not affected by
� , thus preserving monotonicity. Consider two cases.
��� � By definition, E �� � does not mention (- , and � does not in-

troduce (� to E��� � .
� $ � By the origination property, � constraint � � � ��(- � E -

preceding � ��(�, � E�� such that E - does not mention (� or (- .
By the induction hypothesis, the constraint set to which rule
(un) is applied is monotonic. Therefore, � E ���� � E such that
E - � E�� � . Observe that E��� � � E�� � since E��� � contains all
terms of E that do not mention (- ��B�B3B � (�C��B�B B � (> , while E �� �
contains all terms of E that do not mention (� �3B�B�B!� (> only.
Substitution � does not affect any terms in E��� � since they do
not mention (- . Therefore, E��� � � � E .
After � is applied to the constraint set, � * � � �
� � � ��(- �
� E - � � � 1 ��(�,� � E - . Note that � � 1 ��(� � mentions (� .
Therefore, � * and not � � � E � is now the first constraint that
mentions (� . But � E �� � � � E such that E �� � does not mention
(- �3B�B�B!� (� ��B�B3B � (> and � E - � E - � E��� � .

By induction over the length of the reduction sequence, all con-
straint sets generated by procedure P are monotonic.

A.3 Soundness
For rule (elim), soundness follows from proposition 5.1.
Rules (split) and (pdec) are sound because J is closed underL

pair and
L

pdec. For example, in case of rule (pdec), J-��	!E�G1	 1 #�

JI��	 E G 	 1 G 	 � 1 � ������A@ � #� JI��	 E G 	 � 1 � ���� �A@ � . Therefore, if 	 � O
JI��	 1 G 	!EK , then 	 � O J-��	 � 1 � ���� �A@ � G5	 EK .

For rule (un), consider that if 	 � �
,+ � �
 0 , then 	 G � �

 + �2
10 . Also, 	 G � � � � 1 G �E because � � mgu � � � 1 ,
thus � � � � 1 by definition of the most general unifier. Therefore,
	 G � ��
 .

For rules (pair), (hash), (penc), (senc), and (sig), soundness fol-
lows from the fact that J is closed under the corresponding

L
op-

erator. For example, consider rule (penc). If penc �$
 �
 + �D? �
E � � � E �
 0 is satisfiable, then � 	 s.t. 	 �
1+#�
 0 and 	�? O
JI��	 EK)� 	 � O J ��	 E . Since J is closed under

L
penc,

� 	 � � �� > O
JI��	 EK . Therefore, 	4�5
,+�� � � � �> � E �2
 0 �
 .

For rule (ksub), if 	 � �
,+#� � � � � � 1 � �> G � E � �
 � , then 	NG
� �5
1+ � �3� � 1 ���> GNE �2
 0 �
 .

Finally, consider 	 � sdec �$
 �
,+���? � E > � � � �&E�� � 1 � => !G1 G ?9�2
10 where E > � Q 1CR > G E . Clearly, 	 �
 + �2
10 . By
proposition 5.2, E > �� E , thus 	 � ? � E . Given 	 � ? � E ,
E �� �&E � � 1 � => 9G 1 G ? by proposition 5.3. Therefore, 	4� �3� E .
It follows that 	��
1+ � �3� E �2
 0 �
 .

A.4 Completeness
This proof is long because it requires consideration of many

cases. Because of space limitations, and in the interests of read-
ability, what follows is a fairly detailed proof sketch.

A.4.1 Completeness without encryption hiding
Suppose � � E � is the active constraint and � �CE � contain no

terms of Q %SR P form. For any 	 �
 �'
 + � � � E � �2
10 , we
show that there is a rule � such that (i) � is applicable to
 ,
and (ii) 	 � � �$
 . Note that the solution does not have to be
preserved in every possible reduction. As long as in every state
there is at least one rule that preserves the solution, completeness
will hold. The proof that an applicable rule can always be found
relies on the existence of a normal derivation for any term that can
be constructed by the attacker.

A.4.1.1 Normal derivation.
For any ground term

1
and set of ground terms E , where neither1

, nor E contain any occurrences of terms of Q %SR P form, we prove
that if

1 O J �&EK , then there exists a normal derivation of
1

from
E which either ends with an operator from

�
synth, starts with an

operator from
�

analz, or starts with a sequence of operators from�
synth, followed by

L
sdec which is applied to a term from E .

PROPOSITION A.1. If
1 O JI�&EK and neither

1
, nor E contain

any occurrences of Q % R P terms, then there exists a normal sequenceL 2 � B�B�B!� L�� such that
1 O L�� �CB3B�B L 2 �&EK� . A sequence is normal iff

one of the following conditions holds:
-
L�� O �

synth, or
-
L 2 O �

analz, or
-
L � � L

sdec for some � , L 2 ��B�B�B!� L �	� 2 O �
synth, and

L � is applied
to term

� % �&=P O E for some
% �CM .

Suppose
1 O J-�&EK . Since J is defined as a closure of term

set operators
L

(see section 2.3), this means that either
1 O E , or1 O L�
 �CB�B�B L 2 �&E � where each

L � is one of the term set operators
defining J . For notational convenience, let E � � E , and let E �
stand for

L � �CB�B3B L 2 �&E�� � for any � .
Step 1. First, we observe that

1
with no hidden terms can be derived

without
L

open and
L

hide operators, since any operator application
using a hidden encryption could be replaced by one using the cor-
responding ordinary encryption.
Step 2. Following Step 1, we obtain a sequence

L 2 ��B�B�B!� L�� s.t.
� � L � O �

synth or
�

analz, and
1 O L � �CB�B�B L 2 �&E � � . If

1 O E � , the

proposition holds. If
1 �O E�� , the proposition can only be violated

if, for some ? ,
L > O �

analz and
L - O �

synth for
� $? .

Since
L > O �

analz,
L > � L

split � L pdec, or
L

sdec. First, consider
the case when

L > � L
split or

L
pdec, and let �

1 O E > � 2 be the term to
which

L > is applied. If �
1 O E � , then

L > could be moved up to the
L 2

position. Otherwise �
1

was created by one of the
�

synth operations
and the

�
analz operation is redundant and can be removed.

Now, consider the case of
L > � L

sdec, applied to terms
� % � =P ��M O

E > � 2 for some
% ��M . There are two possibilities for term

� % � =P : ei-
ther

� % �&=P O E � (in this case the proof is complete), or
� % �&=P O

E � ��E � � 2 for some � . In this case, also,
� % � =P was created from its

components by one of the
�

synth operations and the
L

sdec operation
is redundant and can be removed.

A.4.1.2 Finding an applicable rule.
Consider the active constraint � � E � and a satisfying substitu-

tion 	 . Given a normal derivation of 	 � from 	 E � , we must find
a reduction rule applicable to E � that is compatible with 	 .

By definition of the active constraint (see section 4.1), � is not
a variable and E � does not contain any standalone variables after
application of the (elim) rule. Suppose 	 � � � E � , i.e., 	 � O
J-��	!E � . Then, by proposition A.1, either 	 � O 	 E � , or there
exists a normal derivation

L 2 �3B�B�B!� L � s.t. 	 � O L � �CB�B3B L 2 ��	!E � �
and

L�� O �
synth, or

L 2 O �
analz, or

� % � =P O 	 E � for some
% �CM

and
L ��� L

sdec applied to
� % �&=P .

If 	 � O 	 E � , then the unification rule (un) can be applied to
the � � E � constraint, and since the rule applies the most gen-
eral unifier, it will be consistent with 	 . Otherwise, an applicable
reduction rule can be found by pattern matching given the normal
derivation which satisfies one of the three conditions given above.

First, consider the case of
L 2 O �

analz. The reduction rule corre-
sponding to

L 2
will be applicable to 	 E � . It must be the case that

	 E � contains a “target” term
1

such that
L 2

operates on 	 1 . There
are no standalone variables in E � , so

1
has the necessary top-level

structure. The case of
L�� O �

synth is handled similarly. Since
	 � is the result of applying

L �
, 	 � must have the corresponding

structure. Since � is not a standalone variable, � must have the
same top-level structure as 	 � , and the corresponding decomposi-
tion rule is applicable to ��� E � .

Finally, consider the case when
L � � L

sdec and 	!E � contains
a
� % � =P term. Since there are no standalone variables in E � , E �

must also contain a
� % * � =P�� term, and the (sdec) rule can be applied

to ��� E � .

A.4.1.3 Preserving the solution.
The proof that the applicable rule preserves the solution of the

constraint set proceeds on cases of
L 2

if
L 2 O �

analz, and
L �

ifL�� O �
synth. For brevity, we omit the details and explain the proof

for the case of
L ��� L

sdec.
By the applicability argument,

� % � =P O E � for some terms
%

and M and rule (sdec) is applicable to
 . It will reduce
 to
 * �

1+���M � �&E � � � % � =P GTQ %SR P � ��� �&E � � � % � =P !G % G M �
 0 .

By proposition 5.2, E � �� �&E � � � % � =P �G Q %SR P . Observe that
	!M O E�� � 2 where E � � 2 � L �	� 2 �CB�B B 	 E � (otherwise,

L
sdec would

not be applicable to E �	� 2). Therefore, 	�NM � �&E � � � % � =P G-Q %SR P .
In this case, according to proposition 5.3, E � �� �&E � � � % �&=P �G % G#M .
This implies that if 	4� ��� E � , then 	� ��� �&E � � � % � =P G % G+M .
Therefore, 	 �
 + ��M � �&E � � � % ��=P �G Q %SR P � � � �&E � � � % ��=P �G% G M �
 0 �
 * .
A.4.2 Completeness with encryption hiding

The initial constraint set contains no Q %SR P terms. The first time
an Q %SR P term can appear in the reduction sequence is as a result

of (sdec) application, which generates a constraint of the form ? �
E�G Q 1CR > . We will show that such a constraint can be solved without
applying (sdec) to the hidden term.

PROPOSITION A.2. Suppose ? � E > is satisfiable and E > con-
tains terms of the form

� 1 � => . Then � 1 ? � E > is satisfiable without
decrypting

� 1 �&=> .

Assume the statement of the proposition is not true. Then every
construction of ? using terms from E > must involve an application
of

L
sdec on

� 1 � => for some
1
. Below, we annotate each application ofL

sdec with the encrypted term on which it operates, so that if
L

sdec
is applied to

� % � =P , we write
L

sdec
" � % � =P % .

If the assumption is true, then for any solution 	 � ? � E > and
any sequence

L 2 � B�B3B � L�
 such that 	 ? O L�
 �CB3B�B L 2 ��	!E > � , � � O� BAB such that
L � � L

sdec
" � 	 1 � =� > % for some

1
. Consider the shortest

such sequence.
Let E � � L � � 2 �CB�B�B L 2 ��	 E > � . Since

L
sdec
" � 	 1 � =� > % can be ap-

plied to E�� , it must be the case that
� 	 1 �&=� > O E�� and 	�? O E�� . This

implies that 	 ? O L � � 2 �CB�B�B L 2 ��	!E > � where � � O � B B � � � L - ��L
sdec
" � 	 1 ��=� > % . This contradicts the shortest-sequence assumption

and completes the proof of the proposition.

Now consider constraint ? � E G Q 1CR > created by (sdec) applica-
tion. Since J is closed under

L
open and

L
hide, 	 �T? � E G"Q 1 R >

iff 	 � ? � E G � 1 ��=> . By proposition A.2, � L 2 �3B�B B � L > s.t. 	 ? OL > �CB�B3B L 2 ��	!E G 	 � 1 � => � and ��� L � �� L
sdec
" 	 � 1 � => % . Note that

	 E G4	 � 1 �&=> contains no terms of Q %SR P form. By the same argu-
ment as was used in normal derivation construction, we can show
that ��� L � �� L

open or
L

hide. This implies ��� that if
L � operates

on the 	 � 1 � => term,
L � is also applicable to the 	 Q 1CR > term because

the only operators that distinguish between 	 � 1 � => and 	+Q 1CR > areL
sdec
" � 	 1 � =� > % and

L
hide
" � 	 1 � =� > % , and the sequence does not contain

any such operators.
Given that 	�? may not contain 	 � 1 �&=> as a subterm, we conclude

that 	�? O L > �CB3B�B L 2 ��	!E G 	+Q 1CR > � iff 	 ? O L > �CB�B�B L 2 ��	 E G
	 � 1 ��=> � . Moreover, each

L � has the corresponding reduction rule
 � � � L � since that are no

L
open or

L
hide in the sequence. Be-

cause ��� L � �� L
sdec
" 	 � 1 � => % , none of � are (sdec) applied to

1+�� � * � E * G � 1 * � => �2
 0 . By induction over the length of the
derivation, every reduction rule � is applicable to its respective
constraint, and � � O � BAB ? , if 	 �3 ��	� 2 �CB�B�B 2 �$
 � , then 	 �
 � �� �	� 2 �CB�B�B
 � where
 �
1+ ��? � E G Q 1 R > � �3� ETG 1 G ?9�
 0
is the constraint set after the first application of rule (sdec). So-
lution 	 is preserved along the reduction sequence > �CB�B B 2 �$
 �
by the same inductive argument as in the case of term sets with-
out encryption hiding. Since constraint ? � ETG Q 1CR > is satisfiable,
by the end of the reduction sequence all constraints derived from
it will be disposed of (either eliminated by unification, or reduced
to (� E where (is variable), and no unifications involve substi-
tuting Q 1 R > for a variable since it appears as a standalone term in
E GHQ 1CR > . Therefore,
 � � > �CB�B�B 2 �$
 � contains no terms of the
form Q %SR P , and the inductive completeness argument is true for the
reduction sequences rooted in
 � .

To summarize, whenever rule (sdec) introduces a constraint con-
taining Q %SR P to the constraint set, for any solution 	 there exists a
sequence of reduction rules that preserves 	 . None of the rules in
the sequence require

� % �&=P terms. Therefore, the sequence is appli-
cable to constraint ? � �&E � � � % � =P G Q 1 R > and leads to a constraint
set in which there are no Q %SR P terms.

