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ABSTRACT

We model a firm’s choice as to the age composition of dismissed workers for different
assumptions about the level of firing costs. We find that with high firing costs (not to
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Young workers are much more likely to be unemployed than their more mature

counterparts. In France, Italy and Spain the unemployment rate for workers under the

age of 20 has been around 3-5 times as high as for those aged 25-54 (OECD

Employment Outlook, 1996). This observation warrants an explanation for its own

sake. Moreover, if we can find reasons for such differences, the possibility arises that

changes in the age structure of the population affect the aggregate unemployment rate.

The questions that come to mind include: How do firms reach a decision as to

whether to hire (fire) a young or a mature worker? How do labour-market institutions

such as employment protection affect this choice? And, most importantly, how do

changes in the age composition of the labour force affect aggregate outcomes such as

the rate of employment and unemployment? In this paper we provide microeconomic

foundations to address these issues. We find that employment protection is much more

likely to protect the more mature workers. Employment-protection legislation is hence

likely to raise the relative unemployment rates among the young. Moreover, the age

composition of the labour force is an exogenous determinant of the stringency of any

employment-protection legislation.

The low employment-to-population ratios in countries with severe firing

restrictions (i.e. France, Italy and Spain) are mainly due to low participation rates of

teenagers and women (Nickell (1998). High unemployment rates among prime-aged

males are not responsible for this outcome. Thus the impact of such restrictions can be

found both in the composition of those nonactive and in the level of employment. To

analyse this relationship further we estimated the following equations separately for

men and women for a cross section of 18 OECD countries;1

εγβα +++= eplnn oy
000

εγβα +++= epluu oy
111

where ny and uy are the employment/population ratio and the unemployment rate of

young workers (15-19/20-24 years of age) and no and uo are the corresponding figures

for workers aged between 25-54 years. The variable epl denotes a measure of

employment protection (epl) taken from Nickell (1998). The results follow in Table 1

for the year 1994.
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Table 1. The effect of employment protection on youth employment and
unemployment

 Men Women
αi βi γi αi βi γi

u (15-19) 3.87
(0.9)

1.50
(3.6)

0.42
(1.4)

0.45
(0.1)

1.81
(4.5)

0.46
(1.2)

u (20-24) 1.31
(0.5)

1.25
(4.7)

0.53
(2.9)

-1.30
(0.5)

1.48
(5.9)

0.42
(1.7)

n (15-19) 60.98
(1.2)

-0.15
(0.2)

-1.79
(3.8)

31.59
(1.6)

0.23
(0.9)

-1.84
(3.8)

n (20-24) 0.56
(0.0)

0.87
(2.5)

-1.27
(4.8)

63.42
(3.6)

0.12
(0.5)

-1.51
(3.4)

Data source: Employment Outlook, 1996. t-ratios in parentheses.

The effect of epl on the employment/population ratio is very significant for all four

groups. The effect on unemployment is less significant but significant at the 5% level

for men aged 20-24 and at the 10% level for women in the same age group. We

conclude that our measure of employment protection appears to be negatively

correlated with employment and positively correlated with unemployment in our

sample.

Turning to possible explanations for our empirical observations, Lazear and

Freeman (1997) find that in a downturn the young (and also the very old) workers

should be the first to be laid off. The young have not been given any firm-specific

skills while the old’s productivity may have declined relative to their wage. These

groups should thus have a higher rate of transition from employment to

unemployment than do prime-age workers. The interaction with firing costs is not

considered. Layard et al. (1991) find the wage-push factor to be stronger for young

workers due to higher turnover and, as a result, their unemployment rate becomes

higher. This is because high turnover makes the prospect of unemployment spells less

threatening which then makes unions more aggressive. Again, employment protection

legislation is not a part of the story.

                                                                                                                                           
1 The countries are: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy,
Japan, New Zealand, the Netherlands, Norway, Portugal, Spain, Sweden, the U.K. and the U.S.
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Other reasons for age discrimination in firing involve the direct and indirect

effect of pension schemes. Most pension schemes are defined-benefit schemes, which

implies that the benefits increase more rapidly as the age of retirement approaches

since they are based on final salary at retirement. This makes employers want to lay

off workers with a long tenure. A possible offsetting effect can be found in Orszag et

al. (1999). Here old workers have a higher effort level because they have more to lose

in the event of a dismissal.

In our model we show how the level of firing costs is important for the (age)

structure of unemployment. We assume for simplicity that productivity is independent

of age. Workers only differ in their expected remaining tenure and firms take this into

account when making hiring and firing decisions. Under these conditions the decision

whom to fire first in a downturn depends on the level of firing costs as shown in our

model.

We model the hiring and also the firing decision as an intertemporal

investment decision. The (sunk) costs of hiring are associated with teaching the

worker firm-specific skills while the (sunk) firing costs could be state-mandated

redundancy payments. These can be either fixed for all workers or rising in tenure. We

use a real-options approach from investment theory to answer these questions.

Our methodological approach

The option-valuation approach to investment has been popular since the seminal

papers of Black and Scholes (1973) and Merton (1973) on the pricing of stock

options. These methods of valuing stocks can be easily applied to real options, which

denote the option-like characteristics of investment opportunities. The decision to

invest (or the decision to exercise real options) becomes important with the existence

of uncertainty and sunk costs. McDonald and Siegel (1986) show that the required rate

of return on investment in many large industrial projects can be more than doubled by

moderate amounts of uncertainty when the investment project is at least in partly

irreversible.2

In most cases it is assumed that the real options are infinitely livedthe real-

life investment opportunities are infinitely lived and never valueless (e.g. McDonald

                                                
2 For an introduction, see Dixit and Pindyck (1994).
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and Siegel; 1984, 1986). However, some research deals with the non-perpetual real

options (e.g. Paddock, Siegel and Smith (1988)). But it has been claimed that it is

often not possible to solve such non-perpetual options analytically, making numerical

methods essential.3 Generally speaking, it is hard to solve completely for free-

boundary time-dependent real options. Part of reason is that the function of time-

dependent options has a complicated shape, which might need several analytical

functions to simulate with. We will show in the case of real options that approximate

analytical solutions can exist.4 The approximate solutions of non-perpetual real

options should share the same composite components as perpetual real options. The

partial differential equation of non-perpetual real options can then be transformed into

a Convection-Diffusion problem,5 which can be solved for analytically using standard

techniques of partial differential equations.

In the following section we will describe the profit-maximisation problem and

the underlying stochastic process. We then go on in Sections II and III to describe the

hiring- and firing thresholds when they are calculated separately. In Section IV we

generalise and calculate the two thresholds simultaneously. Finally, in Section V we

discuss the macroeconomic implications.

I. Basic Framework

There is only one sector in our economy that uses labour as an input to produce a

homogenous good. Since our focus is on labour demand, real wages are assumed fixed

and their determination is not described. The source of uncertainty is stochastic

productivity.

Current profits, measured in units of output, are defined as follows in the

absence of firing,

                                                
3 One of the reasons for the non-existence of analytical solutions is that such options are similar to
American stock options that can be exercised at any time up to the expiration date. It is well-known that
American stock options can only be solved for using analytical approximations or numerical methods
such as finite-difference methods. American call options with lump-sum dividends are an exception
though in that their terminal and boundary conditions differ (see Roll, 1977; Geske, 1979; Whaley,
1981). The possible analytical solutions to partial differential equations vary greatly when boundary-
and terminal (and/or initial) conditions change. Changes in such conditions can result in the non-
existence of analytical solutions. The method used here is most similar to Barone-Adesi and Whaley
(1987).
4 ‘Approximate’ is in a sense that the solutions are not complete, but still a good proxy for real
solutions, compared with the results from explicit finite difference method in the Appendix D.
5 In physics, convection is the movement of the substance by the movement of the medium. Combined
with a diffusion problem, it will be like the diffusion of a moving wave.
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( ) ,, ttttt wNNgNg −=Π θ          0<θ<1,                     (1)

where N denotes the number of employed workers, w is the real wage and g is a

measure of productivity.

It is assumed that each worker has a working life of T years. To simplify the

model, we assume that workers die immediately after they retire and that all workers

have the same productivity independent of their age. Moreover, we assume that both

current and potential employers can observe a worker’s age.

It is assumed that g follows a geometric Brownian motion

;gdzgdsdg σ+η=                                               (2)

where z is a Wiener process; dsdz ε=  since ε  is a normally distributed random

variable with mean zero and a standard deviation of unity. Here η  is the drift

parameter (the expected growth rate of labour productivity) and σ  the variance

parameter. It is assumed that this average quit rate per unit time is constant over time

and equal to λ . The probability that a given worker will quit over the interval ds  is

therefore equal toλds .

The firm’s expected marginal value of an employee without any firing and/or

hiring is

( ) ( ) ( ) ( )( )−λ+ρ−−=≡
T

t

ts
st dsewYTtYvTtYv ;,;, ,                        (3)

where ρ  denotes the real interest rate, v is the (intertemporal) marginal value of

workers, Y g Ns s s= −θ θ 1  represents the marginal product of labour at time s, and wYs −

denotes instantaneous marginal profits at time s. Equation (3) is similar to the

expressions in Bentolila and Bertola (1990) except each marginal worker can only

work for the firm for a maximum of T periods.6

s'ôIt  Lemma gives the following process for marginal labour productivity,

YdzYdsdY Y σ+η= ,                                             (4)

where ( )θ−λ+η=η 1Y .

Now consider the effect of the firing and hiring costs on firms’ profits decisions.

When the marginal profit of a worker is greater than the hiring cost, the firm starts to

                                                
6  T is the maximum possible tenure since workers might quit or get fired earlier.
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hire new workers; when the negative of the marginal profit value of a worker is higher

than the firing cost, the firm starts to fire workers. Thus, the process of sY  or ( )tYv ,

becomes an optional stopping problem or regulated Itô process. The firm will hire a

marginal worker if

( ) HTtYv h ≥;,                                             (5.1)

and fire a marginal worker if

( ) FTtYv f ≥− ;, ,                                           (5.2)

where H and F represent hiring and firing costs respectively, hT  denotes T for the

worker that the firm hires and fT  for the worker that the firm fires. hT  is different

from fT  since hiring and firing decisions cannot happen at the same time.

A standard technique for solving the above dynamic optimisation problem is

Bellman’s Principle of Optimality (Bellman, 1957). Using s'ôIt  Lemma, we get the

following Bellman equation for the marginal value of the firm's stock of workers;

( )TtYvv ;,≡ , in the continuation region where the values of future hires and fires are

not taken into account,

( ) tYYYY vvYYvwYv +σ+η+−=λ+ρ 22

2
1 .                            (6)

This partial differential equation relates the value of workers to the value of the

stochastic variable Y at each point in time.

Equation (6) is different from the expressions in Bentolila and Bertola (1990)

and many others. In their setup, the time horizon in equation (4) is set from zero when

equation (6) is derived, and thus the function v does not depend on time. Under these

conditions, equation (6) becomes a second-order ordinary differential equation in Y.

As a result, the option values of hiring and firing workers become independent of

time. It follows that the options for hires and/or fires do not approach zero when

workers age. One of the objectives of this paper is to correct for this and show how

important implications arise.

The problem now is to solve for v, which is the value of employing a marginal

worker. The solution for v consists of the particular integral and the complementary

function. A convenient particular solution, Pv , for (6) is

,bwaYv P −=                                                  (7)
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where ( ) ( )( ) ( )Y
Tt YY eea η−λ+ρ−= η−λ+ρ−η−λ+ρ− , ( ) ( )( ) ( )λ+ρ−= λ+ρ−λ+ρ− Tt eeb  and it is

assumed that the denominator of the parameter a is positive.

The firm takes into account the option value of hiring in the future. There is

also the option to fire the worker once he is employed. The two option values are

measured by the complementary (or homogenous) solutions to (6). Now only focusing

on the homogenous part of equation (6) and letting vG  be the value of the marginal

option, we get

( ) G
t

G
YY

G
YY

G vvYYvv +σ+η=λ+ρ 22

2
1 .                               (8)

The general solutions of (8) are equal to the value of the options to hire or fire

the marginal worker. When Y approaches zero, the value of the option to hire, G
Hv , has

to go to zero. Similarly, the firing options, G
Fv , is equal to zero when Y goes to

infinity. Thus, the general solutions for the hiring and firing options have to satisfy the

following boundary conditions respectively,

( ) 0;,lim
0

=
→

TtYvG

Y
 for the hiring option,                               (9.1)

( ) 0;,lim =
∞→

TtYvG

Y
 for the firing option.                               (9.2)

A special case of equation (8) is when time is equal to zero (t=0) and workers live

forever (T=∞). Thus, the term G
tv  in equation (8) disappears and the values of the

hiring- and firing options are (see the Appendix A)
1

10
βYAv H =  for hiring option,                                 (10.1)

2
20

βYAv F =  for firing option.                                 (10.2)

The unknown parameters of 1A  and 2A  are determined by the value-matching and

smooth-pasting conditions and β is determined by equation (11). [see Appendix A]

( ) ( ) 01
2
1 2 =λ+ρ−βη+−ββσ Y .                                   (11)

The general solutions to (8) are then given by the following equations (see Appendix

B):

( ) ( )11
1, dNYAtYvG

H
β= ,                                      (12)

( ) ( )22
2, dNYAtYvG

F −= β ,                                   (13)

where A1 , A2 are unknown parameters,
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( ) ( )

tT

tTY
d

Y

−

++�
�
�

� −−+
=

σ
σ

λρ
σ
ησ 2

2

2
2

1

2
2
1ln

,

( ) ( )

tT

tTY
d

Y

−

++�
�
�

� −−−
=

σ
σ

λρ
σ
ησ 2

2

2
2

2

2
2
1ln

,

 where Y  is hiring costs or firing costs

( ) ,
2
1 22

∞−

ϖ− ϖ
π

=
d

dedN  ( ) 10 ≤≤ dN

is the cumulative distribution function for the normal distribution.

Looking at the hiring- and firing options we find two separate cases:

Case 1: T → ∞

It is easy to show that as T approaches infinity (workers live forever), the cumulative

distribution functions of ( )1dN  and ( )2dN −  become unity. This reduces the firing

and hiring options to the case of perpetual options.

Case 2:  T → 0

If Yln >0, then ( )1dN =1 and ( )2dN − =0 as T approaches zero. If marginal

profitability is high enough, firms mainly focus on the hiring decision. The firing

option approaches zero because this marginal worker will retire very soon.

If Yln <0, then ( )1dN =0 and ( )2dN − =1 as T approaches zero. If marginal

profitability is low, firms mainly consider the firing decision. Since the marginal

worker’s T is very small when he/she gets fired, the possibility of re-hiring this worker

is almost zero. Therefore, the hiring option approaches zero.7

                                                
7 Note that the options of hiring and firing approach zero automatically if T approaches zero since the
marginal profits for hiring/firing would be zero in this situation.
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II. The Hiring- and the Firing Decisions

The decision as to hire or fire a worker depends on his value as given by equations

(7)-(13) and also on the direct costs of hiring and firing. We assume that the cost of

firing takes the form of mandatory redundancy payments. The definition of the firing-

and hiring barriers; YF and YH, are given by the value-matching and smooth-pasting

conditions:

Value-matching conditions

( ) ( )12 ,;,,;, ATtYvHATtYvbwaY h
H

G
H

h
H

G
FH +=+− ,             (14)

( ) ( ) ( )21 ,;,,;, ATtYvFATtYvbwaY f
F

G
F

h
F

G
HF +=+−− .            (15)

The left-hand side of (14) has the marginal benefit of hiring which includes the

acquired firing option. The right-hand side has the marginal cost of hiring, which

includes the sacrificed hiring option. Similarly for equation (15), the left-had side has

the marginal benefit and the right-hand side the marginal cost of firing. In our

numerical solutions below, we will only include the sacrificed firing option as part of

the cost of firing; we will not include the acquired hiring option as a benefit of firing.

The reason is that firing one worker is not going to alter a firm’s chances at filling a

vacancy in the future if there are many firms in the market or if there are many

unemployed people to start with.

The smooth-pasting conditions follow.

Smooth-pasting conditions

( ) ( )
0

,;,,;, 12 =
∂

∂
−

∂
∂

+
H

h
H

G
H

H

h
H

G
F

Y
ATtYv

Y
ATtYva ,                (16)

( ) ( )
0

,;,,;, 12 =
∂

∂
−

∂
∂

+
H

h
F

G
H

F

f
F

G
F

Y
ATtYv

Y
ATtYva ,               (17)

where8

( ) ( )111
1

11
11 dNYAdNYA

Y
v

Y

G
H β−β +β=

∂
∂

,                         (18)

                                                
8 For derivation of (20) and (21), see Appendix C.
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( ) ( )222
1

22
22 dNYAdNYA

Y
v

Y

G
F −+−β=

∂
∂ β−β ,                    (19)

( )
( )[ ]
( )

( )tTY
edN

tT
tTY

Y −
=

−
−+−

πσ

σ
ασ

2

2

22

2
ln

1 ,                                      (20)

( )
( )[ ]
( )

( )tTY
edN

tT
tTY

Y −
−=−

−
−+−−

πσ

σ
ασ

2

2

22

2
ln

2 ,                                (21)

and ( )
2

2

2

2
2
1

σ
λρ

σ
ηα ++�

�
�

� −= Y . Equations (14), (15), (16) and (17) are non-linear

systematic equations with four unknown parameters [ 21  and , , , AAYY FH ] and can be

solved for numerically.

III. Firing Thresholds under Alternative Institutional Setups

We will now calculate the firing thresholds on the basis of equation (15) and (17)

without taking into account the hiring thresholds. Thus, (15) and (17) become

( ) ( )2,;, ATtYvFbwaY f
F

G
FF +=−− ,                             (15.1)

( )
0

,;, 2 =
∂

∂
+

F

f
F

G
F

Y
ATtYva ,                                (17.1)

We then check the robustness of our results in Section IV for the general case when

both the hiring- and the firing thresholds are calculated simultaneously.

We start with our baseline, which has a fixed level of firing costs that is

independent of age. This is shown in Figure 1 below. Please see the Appendix D for

the comparison of analytical approximations with explicit finite difference method.

As the firing costs rise, the firm becomes more inclined to fire the younger

among its workers. The reason is simple: part of the cost of firing a worker is the

sacrificed option of doing so in the future. This was shown in equation (15). This

firing option is decreasing in both the level of the firing costs and in the worker’s age.

For low levels of firing costs, the marginal cost of firing a young person is much

higher than the cost of firing an older one for this reason. But at high firing costs, the

difference is much smaller as the firing option is always very lowboth for the young

and the old worker. However, the marginal benefit of firing the young worker is

always higherthat is for all levels of firing costsbecause of his longer remaining
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tenure. It follows that the firm would choose to fire the young worker first if firing

costs are highthe value of the firing option lowbut at low firing costs it may

choose to fire the older worker first since the marginal cost of doing so is much lower.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Age

F=0.2

F=2

F=5

Figure 1.The effect of age on firing thresholds with different firing costs. Age is equal to
(65-T_f). Other parameters: σ=0.20, ρ=0.10, θ=0.7, η=0.02, λ=0.05, w=1, and t=0.

It follows from the nature of the stochastic process for productivity shown in

equation (2) that the firm does not expect productivity to recover. Therefore, when a

young worker is fired the firm is reducing its losses for a much longer period of time

than when the older workers are fired. With high firing costs, this is the only

difference between the old and the young and the young workers are the first to be

fired. However with low firing costs, the firm values the option to be able to fire the

workers at a later date when more information about the evolution of productivity is

available. This option is worth more in the case of the young workers and can make

the firm fire the older ones first.

Note the difference between our setup and that of Lazear and Freeman (1997).

They claim that it is optimal to fire the younger workers because they are less

productive since the (firm-specific) skill accumulation has not been completed. We

find that they should also, if there are significant costs of firing, be the first to go even

if their productivity is no lower than that of older workers. Firing a young worker

whose productivity is lower than wages is more profitable than firing an older worker

since his expected tenure is longer. Note also, that these results do not depend on

firing costs rising over tenure. All that is needed is a high and fixed level of firing

costs.

We now turn to more realistic scenarios. In Figure 2 we introduce a fixed-term

contract at the beginning of employment followed by a permanent contract during
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which redundancy payments are rising in tenure. There is an initial three-year

probationary period during which the worker can be fired at no costs. The cost of

firing is then an increasing function of tenure. For the flattest firing-cost schedule we

find that the old are likely to be fired first. However, as the schedule becomes steeper,

the firm resorts to firing younger workers. We conclude that high (as in Figure 1) and

rising (as in Figure 2) firing costs affect the age composition of layoffs in a similar

manner.

0,4

0,45

0,5

0,55

0,6

0,65

20 25 30 35 40 45 50 55 60 65

Age

Fi
rin

g 
th

re
sh

ol
ds

F=w(ages-20)/96 F=w(ages-20)/48
F=w(ages-20)/24

Figure 2.The effect of age on firing thresholds with different firing costs and a three-period
probationary period. Age is equal to (65-T_f). Other parameters: σ=0.20, ρ=0.10, θ=0.7,
η=0.02, λ=0.05, w=1, and t=0.

A discontinuity in the relationship between tenure and firing costs following the

completion of the probationary period does not change the results. This is shown in

Figure 3. There is a jump in the level of firing costs from zero to a positive number

once the probationary period has been completed.
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0 ,4

0 ,44

0 ,48

0 ,52

0 ,56

0 ,6

20 25 30 35 40 45 50 55 60 65

A ge

Fi
rin

g 
th

re
sh

ol
ds

F =w [(ages-20 )/96+0 .25 ]
F =w [(ages-20 )/48+0 .25 ]
F =w [(ages-20 )/24+0 .25 ]

Figure 3.The effect of age on firing thresholds with different firing costs and a 3 period
probationary period. Age is equal to (65-T_f). Other parameters: σ=0.20, ρ=0.10, θ=0.7,
η=0.02, λ=0.05, w=1, and t=0.

By comparing Figures 1-3 we find that rising firing costs (such as in Figures 2

and 3) have a bigger effect on the young than a fixed but high level of firing costs

Figure 1). Clearly the combination of the twohigh firing costs which are rising in

tenurewould be the worst combination from the perspective of the young workers.

IV. Hiring Thresholds in the Two-threshold Case

In order to check the robustness of our results, we calculate the hiring and the firing

thresholds for a fixed level of firing costs in the two-threshold case when both the

hiring- and the firing thresholds are calculated simultaneously. The results are in

Figure 4 below.
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Figure 4.The effect of age on the hiring- and firing thresholds with different firing costs.
Ages are equal to (65-T_f). Other parameters: σ=0.20, ρ=0.10, θ=0.7, η=0.02, λ=0.05, w=1,
and t=0.
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This figure shows that in this general case, firing thresholds are very similar to the

one-barrier case except for a change in the absolute value. Furthermore we find that

firms always hire younger workers first no matter what level the firing costs are.

V. Macroeconomic implications

We have found that with firing costs (or firing costs that are rising in tenure) provide

more protection to the older workers than to the younger ones.  It follows that the age

structure of the population affects the tightness of employment-protection legislation:

the ageing of the workforce has the same effect on the firing thresholds as an increase

in the firing costs themselves. This has two implications.

First, when assessing the nature of a country’s labour-market institutions one

has to normalise for the age structure of the labour force. Two countries with similar

legislation can nevertheless have different effective legislation in the sense that firms

are more reluctant to lay off (and hire) workers in one of the countries. Second,

changes in the age structure of the population over time may have important

consequences. The maturing of the baby-boom generation in Europe can be one

explanation why a given set of institutions started to generate different labour-market

performance in the 1970s and 1980s from that of the 1950s and 1960s. For example,

the employment-protection legislation already in place in France, Italy and Spain may

have been less restrictive in the 1950s and 1960s than in the 1970s and 80s. We

conclude that labour-market rigidity is a function of the age-structure of the

population no less than of the nature of labour-market institutions.

Finally, there arises an interaction between the level and steepness of firing

costs, on the one hand, and the age of workers, on the other hand, in determining the

level of productivity at which firms start firing each worker. With low firing costs (or

firing costs that do not rise rapidly with age) the firing threshold is monotonically

rising in agethe more mature workers are the first to lose their jobs in a downturn.

But as the level of firing costs rises and/or they rise more steeply with age, the sign of

this relationship changes and the threshold becomes monotonically falling in agethe

young workers are the first to go if labour demand falls. We show the case of different

levels of firing costs in Figure 5 and different firing-costs profiles in Figure 6 below.
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Figure 5.The effect of age on the firing threshold with different firing costs. Age is equal to
(65-T_f). Other parameters: σ=0.20, ρ=0.10, θ=0.7, η=0.02, λ=0.05, w=1, and t=0.
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Figure 6.The 3-D diagram for the effect of age on the firing thresholds with different tenure
slopes (firing costs). Other parameters: σ=0.20, ρ=0.10, θ=0.7, η=0.02, λ=0.05, w=1, and
t=0.

VI. Conclusions

This paper has shown that the aggregate- and the distributional effects of employment-

protection legislation are likely to depend on the age structure of the population and

on the age of the workers affected. Such legislation is most effective in deterring the

dismissal of mature workers and, as a result, is more likely to lead firms to dismiss the

younger ones. Our explanation is independent of the productivity- and wage profiles

of workers and also independent of the type of pension schemes they have. The effect

arises for the sole reason that the value of the firing optionthat is a part of the
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marginal cost of firingis decreasing in both the level of firing costs and in the age of

the worker.

Similarly, we can imagine an economy initially with only young workers. As

the workforce ages, the deterrent effect of employment-protection legislation on firms’

dismissal decisions (and also hiring decisions due to the expected cost of firing) is

likely to rise because the expected return from dismissing a worker is decreasing in his

age.9

Finally, our results have implications for any empirical work done to test the

employment effects of firing costs such as Lazear (1990), Scarpetta (1996), Elmeskov,

Martin and Scarpetta (1998), Nickell (1998), and DiTella and MacCulloch (1998). In

another paper (Chen and Zoega, 1999) we have shown how the employment effects of

firing costs depend on the nature of the stochastic process followed by

productivitytrend growth, variance, degree of mean reversionin addition to the

rate of interest and workers’ quit rates. Here we have shown that one also has to

control for the age-distribution of the workforce when testing for the effect of firing

costs on employment or unemployment. In Appendix E we show how this interaction

shows up in the data.

                                                
9 Note that these results would change if productivity had a mean-reverting tendency. We have assumed
this to be entirely absent.
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Appendix A:

When equation (8) in the text is set when time is equal to zero (t=0) and workers live
forever (T=∞), the equation (8) in the text is reduced to

( ) YYYY vYYvv 22

2
1 σ+η=λ+ρ .                                      (A1)

(A1) is a homogenous equidimensional linear differential equation and is easily
solvable. The solutions to (A1) are:

21
210

ββ YAYAv += ,                                          (A2)
where A1 and A2 are coefficients and β1 and β2 are the roots of the following
characteristic equation,

( ) ( ) 01
2
1 2 =λ+ρ−βη+−ββσ Y ,                                  (A3)

and β1 is positive and β2 is negative,

( ) 02
2
1

2
1

2

2

221 >
σ

λ+ρ+�
�
�

� −
σ
η

+
σ
η

−=β YY ,                      (A4)

( ) 02
2
1

2
1

2

2

222 <
σ

λ+ρ+�
�
�

� −
σ
η

−
σ
η

−=β YY .                      (A5)

The hiring and firing solutions for 0v  are
1

1
βYAvH =  for hiring option,                               (A6)

2
2

βYAvF =  for firing option.                               (A7)
These are equations (10.1) and (10.2) in the text respectively.

Appendix B:
Derivation of Equations (12) and (13)

We know that the if workers are expected to have infinite lives, the hiring and firing
options are 1

1
βYA  and 2

2
βYA  respectively. Thus, the first guess for the solutions to

equation (8) in the text would be
( ) ( )tYvYtYvG ,, β=                                            (B1)

Differentiating (B1) gives
Y

G
Y vYvYv βββ += −1 ,

( ) YYY
G
YY vYvYvYv βββ βββ ++−= −− 12 21 ,

t
G
t vYv β= .

Substituting into equation (8) in the text gives

( )[ ] ( ) ( ) 021
2
1 22 =+−+++++− vvYvvvYYvv tYYYYY λρβηβββσ .

Rearranging gives

( ) ( ) 022
2
11

2
1

22
222 =

�
�
�

�

σ
+�

�

�
�
	




σ
η

+β+σ+�
�

��

� λ+ρ−βη+−ββσ βYvYvvYv tY
Y

YY
G

Y .  (B2)
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The first terms in the first bracket are equal to zero automatically due to the
characteristic equation of equation (A3) in the Appendix A.  With the assumption that
the solutions of options have the same components as the ones with infinite maturity,

βY , the functions, ( )tYv , , then follow a Convection-Diffusion type partial differential
equation:

022 22
2 =+�

�
�

� ++ tY
Y

YY vYvvY
σσ

ηβ .                                 (B3)

It is time to get rid of the Y and Y2 terms. Let

,yeY =      − ∞ < < ∞y , 
1
2

1
2

2 2σ σ τt T= − ,

where T is a constant and Y  is the exercise price, firing or hiring costs. Then we get

v Yvy Y= ,  ,2
YYYyy YvvYv +=  and 1

2
2σ τv vt= − .

Substituting into (B3) gives

0
2
12 2 =−�

�
�

� −++ τσ
ηβ vvv y

Y
yy .                                 (B4)

The boundary and conditions, equation (9.1) and (9.2) in the text become
( ) 0, =τ∞v ,  for firing options,                                (B5.1)

( ) 0, =τ∞−v ,  for hiring options,                               (B5.2)
Substituting the values of betas, 21  and ββ , of equations (A4) and (A5) in the
Appendix A into (B4) gives

02 =−+ τα vvv yyy , for hiring options,                         (B6)

02 =−− τα vvv yyy , for firing options,                         (B7)

where ( )
2

2

2

2
2
1

σ
λ+ρ+�

�
�

� −
σ
η=α Y .

Hiring options
We can simplify (B6) by setting

τα2+= yx , τ=τ .
Note that τ  is the same as τ . To rewrite (B6) in terms of ( )τ,x  we use the chain rule

τττττ +α=τ+= vvvxvv xx 2 ,

xyxy vxvv == , and xxyy vv = .
Substituting into (B6) gives

τ= vvxx .                                                        (B8)
A new variable that depends only on x and τ  is often used to solve the above

partial differential equation:

τ
=ξ x ,                                                        (B9)

so that ( ) ( )ξ=τ uxv , . Differentiating shows that

( )ξξ
τ

−=τ '
2
1 uv , ( )ξξ

τ
= ''1 uvxx .

Substituting into equation (B8) gives the following second-order ordinary differential
equation:
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( ) 0'
2
1'' =ξ+ξ uu ,  − ∞ < < ∞ξ ,                                  (B10)

The boundary condition of (B5.1) becomes the following equation:
( ) 0=∞−u , for hiring options,                                   (B11)

Separating the variables, (B10) becomes
( ) 4

1

2

' ξ−=ξ eBu ,
where 1B  is unknown constant.  Integrating gives

( ) 1
4

1

2

CdseBu s +=ξ
ξ

∞−

− ,                                         (B12)

where 1C  is an unknown constant. Applying the boundary condition for hiring options
(B11) gives

( ) 0lim 1 ==ξ
−∞→ξ

Cu .

Substituting into (B12) gives

( )
ξ

∞−

−=ξ dseBu s 4
1

2

.

It is convenient to make the change of variable s = 2ϖ , so that

( )
ξ

∞−

ϖ−
ξ

∞−

ϖ− ϖ
π

=ϖ=ξ
2

2
1

2
2

1

22

2
12 deAdeBu .                     (B13)

where π= 211 BA . Substituting (B13) into (B1) and using the facts of ,yeY =
1
2

1
2

2 2σ σ τt T= − ,  τα2+= yx , and τ=τ  gives the hiring options vH
G ,

( ) ( )11
1, dNYAtYvG

H
β= ,                                      (B14)

where 
( ) ( )

tT

tTY
d

Y

−

++�
�
�

� −−+
=

σ
σ

λρ
σ
ησ 2

2

2
2

1

2
2
1ln

 and ( ) ,
2
1 22

∞−

ϖ− ϖ
π

=
d

dedN .

Firing options
In a similar way, we can obtain the firing options. We can simplify (B7) by setting

τα−= 2yx  and τ=τ .

τ= vvxx .                                                   (B15)

A new variable 
τ

=ξ x  is used to solve the above partial differential equation so that

( ) ( )ξ=τ uxv , .  Differentiating and substituting into (B15) gives the following simple
second order ordinary differential equation:

( ) 0'
2
1'' =ξ+ξ uu ,   − ∞ < < ∞ξ .

Separating the variables, the above equation becomes
( ) 4

2

2

' ξ−=ξ eBu ,
where 2B  is unknown constant. Integrating gives
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( ) 2
4

2

2

AdseBu s +=
∞−

−
ξ

ξ ,                                        (B16)

where 2A  is an unknown constant. The boundary condition of (B5.2) becomes the
following equation:

( ) 0=∞u ,     for firing options,                                  (B17)
Applying the boundary condition for hiring options (B16) gives

( )
π

==+π=ξ
∞→ξ 2

02lim 2
222

ABABu .

Substituting into (B16) gives

( ) �

�
�

�

�

π
−=ξ

ξ

∞−

− dseAu s 4
2

2

2
11 .

It is convenient to make the change of variable s = 2ϖ , so that

( )
ξ−

∞−

ϖ−
∞

ξ

ϖ−
ξ

∞−

ϖ− ϖ
π

=ϖ
π

=
�

�
�

�

�
ϖ

π
−=ξ

2
2

2
2

2
2

2
4

2

222

2
1

2
1

2
11 deAdeAdeAu .

Thus, the firing options vH
G  becomes

( ) ( )22
2, dNYAtYvG

F −= β ,                                      (B18)

where 
( ) ( )

tT

tTY
d

Y

−

++�
�
�

� −−−
=

σ
σ

λρ
σ
ησ 2

2

2
2

2

2
2
1ln

 and ( ) ,
2
1 22

∞−

ϖ− ϖ
π

=
d

dedN .

Appendix C:
Derivation of Equations (20) and (21)

By definition,

( ) ,
2
1 22

∞−

ϖ− ϖ
π

=
d

dedN  ( ) 10 ≤≤ dN

where

( ) ( )

tT

tTY
d

Y

−

++�
�
�

� −−+
=

σ
σ

λρ
σ
ησ 2

2

2
2

1

2
2
1ln

,

( ) ( )

tT

tTY
d

Y

−

++�
�

�
�

� −−−
=

σ
σ

λρ
σ
ησ 2

2

2
2

2

2
2
1ln

.

Differentiation of the integral, N(d), involves a parameter. Suppose a function

( ) ( )
( )

( )

ϕ x f x s ds
a x

b x

= , ,                                            (C1)

where f is such that the integration cannot be effected analytically. Using calculus
gives

( ) ( )
( )

( )

( )( ) ( ) ( )( ) ( )ϕ
∂
∂x

a x

b x

x xx
f x s

x
ds f x b x b x f x a x a x= + −

,
, , .               (C2)

Applying (C2) to the differentiation of ( )1dN and ( )2dN −  gives
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( )
( )[ ]
( )

( )tTY
edN

tT
tTY

Y −
=

−
−+−

πσ

σ
ασ

2

2

22

2
ln

1 ,                                      (C3)

( )
( )[ ]
( )

( )tTY
edN

tT
tTY

Y −
−=−

−
−+−−

πσ

σ
ασ

2

2

22

2
ln

2 .                                (C4)

where ( )
2

2

2

2
2
1

σ
λρ

σ
ηα ++�

�
�

� −= Y .

Appendix D
Equation (8) in the text can be solved numerically by finite different method. To
compare the numerical results of finite different method with the analytical solutions
in the Appendix C, we use the simple and robust explicit finite difference method,
which is widely used in the pricing of derivatives.
               For firing options with maturity T, the boundary condition is ( ) 0, =∞ tvG

and ( ) ( )[ ]0,max,0 FbwaYtvG −−−= , where a = ( ) ( )( ) ( )Y
Tt YY ee ηλρηλρηλρ −+− −+−−+− ,

( ) ( )( ) ( )λ+ρ−= λ+ρ−λ+ρ− Tt eeb , and F the firing costs. The terminal condition (in the
programme, calculated from T to 0) is ( ) 0, =TYf . The condition of

( ) ( )[ ]GG vFbwaYtYv ,max, −−−=  is checked for every t since it is a free-boundary
condition in a sense that the firing option can be exercised at any time.

Equation (8) in the text,

( ) G
t

G
YY

G
YY

G vvYYvv +σ+η=λ+ρ 22

2
1 ,                                (D1)

can be approximated by the following grids.10 Let ( ) ji
G vYtv ,, ≡ ,

Y
vv

Y
v jiji

G

∆
−

=
∂
∂ −+++

2
1,11,1

2
,11,11,1

2

2 2
Y

vvv
Y
v jijiji

G

∆
−+

=
∂
∂ +−+++

t
vv

t
v jiji

G

∆
−

=
∂
∂ + ,,1

Substituting into (D1) gives

( ) ji
jijiji

jiji
Y

jiji

v
Y

vvv
Sj

Y
vv

Yj
t

vv

,2
,11,11,1222

1,11,1,,1
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2

λρσ

η
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�

∆
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�
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−
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           (D2)

Rearranging gives
1,1

*
,1

*
1,1

*
, +++−+ ++= jijjijjijji vcvbvav                                    (D3)

where

( )
�

�
�

� ∆+∆−
∆++

= tjtj
t

a Yj
22*

2
1

2
1

1
1 ση
λρ

                                                
10 For a similar algorithm in derivative pricing, see Brennan and Schwartz (1978).
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( ) ( )tj
t

b j ∆−
∆++

= 22* 1
1

1 σ
λρ

( )
�

�
�

� ∆+∆
∆++

= tjtj
t

c Yj
22*

2
1

2
1

1
1 ση
λρ

The firing thresholds calculated from above algorithm are shown in figure D1,
together with the ones in figure 1. The results show that the analytical solutions are
good approximations to the real thresholds.
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Figure D1. The comparison of explicit finite difference method and numerical
approximations. All parameters are the same as in figure 1 in the text.

Appendix E
Following Nickell (1998) we estimate an equation where the dependent variable is
average unemployment in 1983-1988 and 1989-1994 for 19 OECD countries.11 The
explanatory variables include the unemployment-benefit replacement ratio (replace),
the maximum duration of benefits (duration), union density (unden), union coverage
(uncov), union coordination (uncoord), employer coordination (emcoord), a measure
of active labour-market policies (labexp), the average change in the inflation rate and
a measure of employment protection (epl).
The first two columns in the table below show the standard results when we do not
allow for any interaction with the age structure of the population. The sign and
significance of all variables is as expected. We note that epl has an insignificant
coefficient. We then add the share of the labour force between the ages of 15 and 19
(age) as an interaction term with the epl in columns 3 and 4. The coefficients are not
much affected apart from the constant term and the coefficient of epl. The effect of epl
becomes stronger when we include the share of the labour force between the ages of
15 and 24. This is shown in the last two columns.

                                                
11 We are grateful to Stephen Nickell for providing us with the data.
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Table 2.  Unemployment equations
No interaction terms Age (15-19) as

interaction term
Age (15-24) as
interaction term

Variable Coefficient t-ratio Coefficient t-ratio Coefficient        t-ratio

      C   6.29 1.5 -7.82 -0.8 -26.50 -2.4
      Dummy (89-94)   7.61 1.8 -6.54 -0.7 -24.29 -2.3
      Replace   0.10 4.2  0.12  4.8   0.14  6.2
      Duration   0.70 2.1  0.58  1.7   0.71  2.4
      Density   0.03 0.8  0.03  0.6   0.06  1.7
      Uncoord.  -2.12 2.0 -2.21 -2.1  -2.74 -3.0
      Emcoord  -3.77 4.2 -4.01 -4.5  -4.29 -5.4
      Labexp  -0.07 1.9 -0.10 -2.4  -0.11 -3.0
      ∆inflation  -1.01 1.5 -1.45 -2.1  -1.47 -2.4
      Uncov   3.16 2.7  3.07  2.6   3.07  2.8
      Epl   0.49 0.7 -2.03 -0.3 -34.92 -1.9
      Age (15-19)  -0.42 1.4  0.74  1.0   1.02  2.6
      Epl*age  1.09  0.5   3.62  2.3
      Epl*age2 -0.07 -0.7  -0.09 -2.5

      Observations: 38 R2 DW
      Period: 83-88 0.87 2.03
      Period: 89-94       0.49 1.73

In the last two regressions, the effect of epl is significant and a function of the age
structure. This function is shown in the following figure when we use the age group
15-24.

When the share of the labour force between 15 and 24 is less than 26%, the effect of
the epl on unemployment is positivegreater epl gives higher unemploymentwhile
the converse is true when the share is higher than 26%. We conclude that when the
effect of epl on unemployment is allowed to depend on the age structure of the labour
force, its effect becomes statistically significant.
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