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Evolution of magnetic flux in an isolated reconnection process

Gunnar Hornig*
Department of Physics and Astronomy,
Ruhr-Universitat Bochum
44780 Bochum, Germany

Eric Priest
School of Mathematics and Statistics,
University of St. Andrews,
St. Andrews, KY16 95S, United Kingdom
(Dated: February 19, 2003)

A realistic notion of magnetic reconnection is essential to understand the dynamics of magnetic
fields in plasmas. Therefore we have modeled a three-dimensional reconnection process in a region
of non-vanishing magnetic field and analysed it with respect to the way in which the connection of
magnetic flux is changed. The process is localized in space in the sense that the diffusion region
is limited to a region of finite radius in an otherwise ideal plasma. We use a kinematic, stationary
model which allows for analytical solutions. Aside from the well-known flipping of magnetic flux
in the reconnection process, the localization requires additional features which were not present in
previous two- and 2.5-dimensional models. In particular, we find rotational plasma flows above and
below the diffusion region, which substantially modify the process.

PACS numbers: 52.35.Vd, 95.30.Qd, 52.30.Cv

I. INTRODUCTION

Magnetic reconnection is a key process of structure
formation in space and astrophysical plasmas as well as
many technical plasmas. Our previous understanding of
the ways magnetic reconnection restructures the mag-
netic field has been formed largely by the early station-
ary two-dimensional models where the magnetic field is
a planar field with a hyperbolic (X-type) null point [1-4]
(see Fig. 1). In these models the magnetic flux is trans-
ported towards the null point of the magnetic field by an
inflow of plasma, is cut and re-connected at the null point
and subsequently the newly connected flux is transported
outwards by the plasma flow. The impression of the flux
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FIG. 1: Sketch of a two-dimensional, stationary reconnection
process. The thin lines are magnetic field lines, the thick
arrows indicate the transport velocity of magnetic flux.

*Electronic address: gh@tp4.ruhr-uni-bochum.de; URL: http://
www.tp4.ruhr-uni-bochum.de/vw/

being cut at the null point can be given a mathemati-
cal foundation by defining a transport velocity (w) for
the magnetic flux (see e.g. [5]). Given that the process
satisfies a resistive Ohm’s law

E+v xB=nJ, (1)
we may define the flux velocity as
w:=E x B/|B?|, (2)

which is possible since in these two-dimensional models
E is perpendicular to the magnetic field. Thus w satisfies

E+wxB=0 (3)

and hence can be considered as transporting the mag-
netic flux. It can be shown (see [6]) that the singularity
of w at an X-point of the magnetic field precisely repre-
sents a cut and reconnect process for the magnetic flux
transported by this flow. If the region in which the non-
ideal term (n J) is present is limited to a finite region
near the null point, w will coincide everywhere else with
the plasma velocity (v). In particular the size of the
diffusion region does not directly affect the rate at which
magnetic flux is reconnected, which is determined solely
by the electric field at the null point. This is impor-
tant for the reconnection in astrophysical plasmas where
the extremely small resistivity implies that the non-ideal
term becomes relevant only in very localized regions of
extreme current concentrations.

Unfortunately, the existence of a flux-transporting ve-
locity (w) with or without singularities is limited to cases
where nJ, and therefore E, is perpendicular to B. Thus,
no such velocity exists for cases where E - B # 0, which
is the case for reconnection in regions of non-vanishing



FIG. 2: Splitting and flipping of magnetic flux in the process
of reconnection in a region of non-vanishing magnetic field.

magnetic field. See [6, 7] for an explicit proof of this
statement. Nevertheless, we can still investigate the evo-
lution of magnetic flux for B # 0 reconnection, provided
the non-ideal region is limited to a finite region (D) which
does not contain any closed flux. Under these conditions
all the flux in the non-ideal region (D) is connected to
the ideal environment. Then we can follow the evolution
of magnetic flux inside D by following the magnetic flux
frozen to arbitrary cross sections in the ideal external re-
gion. There is no flux conserving velocity which satisfies
w = v on the whole boundary of D, but we can define a
flux conserving velocity w inside D which satisfies w = v
on either the part of the boundary where flux enters D or
where it leaves D. We can call them, say, w'” and w°%.
However, contrary to the two-dimensional case, for the
general three-dimensional case w” and w°“* will not co-
incide inside D. This is the non-existence of a single flux
transporting velocity as stated above. The difference of
these two velocities results in a splitting of flux tubes
entering the non-ideal region as shown in Fig.2 (also see
7).

Fig.2 also shows the flipping of magnetic flux tubes in
the process of reconnection. An important and unsolved

problem is the question about whether or not the corre-
sponding flux tubes join again perfectly when they leave
the non-ideal region. Moreover, the process of splitting
and flipping of flux tubes has been so far demonstrated
for two-dimensional models only (Sometimes called 2.5
dimensional, in which the fields have components in all
three directions but they depend on only two coordi-
nates). In these models the diffusion region extends to
infinity along the invariant direction. A more realistic
model, however, should have a diffusion region which is
bounded in all three directions. To investigate this and
similar questions we set up a simple analytical magne-
tohydrodynamic model of reconnection in a domain of
non-vanishing magnetic field with a diffusion region lo-
calized in three dimensions.

II. THE MODEL

We seek a kinematic solution of the stationary resistive
MHD equations. That is, we want to solve

E+vxB=nl, (4)
VxE=0, (5)
V-B =0, (6)

VxB=puyJ, (7)

with a localized non-ideal term nJ. The solution for the
velocity will turn out to be incompressible (V-v = 0) and
therefore allows for a solution of the stationary continuity
equation,

V-(pv)=0, (8)

for instance with a uniform plasma density (p = const.).

We start by prescribing the configuration of the mag-
netic field as a simple superposition of an X-type linear
field in the z — y plane with a homogeneous field in z-
direction,

B=DBy(y/Le,+k*xz/Le, +e.). (9)
Here k determines the magnitude of the electric current
J = (k* = 1)Bo/(L po) e-. (10)

The advantage of this model is that we can integrate the
field lines analytically from

0X(s)

0s

and so obtain the equations X(xg,s) of the field line
that passes through an initial point x¢. The components
of X(xg,s) and of the corresponding inverse mapping
Xo(x,s) are:

=B (X(s)) (11)

X = mocosh(Boks/L)+yo/ksinh (B ks/L) (12a)
Y yo cosh (Bo ks/L) + xok sinh (Bo ks/L) (12b)
Z 20+ Bo s (12¢)



Xo = zcosh(Boks/L)—y/k sinh (Boks/L) (13a)
Yo = ycosh(Boks/L)—z ksinh (Boks/L) (13b)
ZO = Z—BO S. (13C)

Note that the parameter s, which parametrizes the mag-
netic field line is not the distance A along the field line,
but it is related to it by

ds =d\/||B|| . (14)
If we set Zy = 0 and solve Eq. 13c¢ for s
s=2z/By, (15)

we can replace s in Eq. 13a and 13b. The corresponding
expressions Xo(z,y,2) and Yy(z,y,2) are Euler poten-
tials for the magnetic field, i.e.:

B = V(v/BoXo) x V(v/BoYs) (16)

This property is important for comparison of our results
with the theory of ‘General magnetic reconnection’ de-
veloped in [8, 9].

Equation 5 implies that the electric field is a gradient
of a scalar function ¢. Inserting this in Eq. 4 yields

—Vé+vxB=nl. (17)

In order to have a localized non-ideal term nJ we have to
localize the resistivity, since J is constant. Note that if we
prescribe 1 we can always calculate ¢ from the component
of Eq. 17 parallel to B, (V@) = —nJ)|, by integrating
along the field lines

¢Z—/1’}JHdl+¢0:—/’I’}J-Bds-l-qbo. (18)

To obtain an analytical solution for ¢ we shall prescribe
n as the following function of the coordinates zq,yo of
field lines in the plane z = 0 and the parameter s along
the field lines.

n(zo,yo,s) = noexp (—(By s> + x5 +y3)/1%). (19

Substituting Eq. 13a, 13b and 15 in the expression for
7 yields n(z,y,z). This function is positive, has a max-
imum 7y at the origin and is exponentially decreasing
with distance from the origin, such that at a distance of
2l its value is less than 2% of the maximum. We will call
this region inside the surface n = 0.02 7,4, the non-ideal
region D. The shape of this domain is a sphere distorted
towards a tetrahedron by the hyperbolic structure of the
magnetic field (see Fig. 3).

The above method of prescribing the functional form
of 7 is useful for the purpose of identifying the qualitative
evolution of magnetic flux, for which only the existence
of a non-ideal term and its localization matters rather
than its detailed form. The results are to a large extent
independent of the profile of the non-idealness. In partic-
ular, given a more general Ohm'’s law, it does not matter

FIG. 3: The non-ideal region D at 2% of the maximum value
of n (parameters: k =2, L =10,1 =1,)

whether the non-idealness results from a resistive, iner-
tia or pressure term in Ohm’s law. Important is only the
existence of a component parallel to B, which is not the
gradient of a scalar.

Now we can integrate ¢ from Eq. 18 starting with ¢ =
¢0(w0,y0) in the plane z=0

_\/’TTBO 770[(k2 — 1) erf(Bo S/l)

2L pio exp (x5 +y5)/1?)
+ ¢o(x0,Y0), (20)

?(x0,Y0,5) =

Again we can use Eq. 13a, 13b and 15 to replace (zo, yo, S)
by (z,y, z) in the expression for ¢. This allows us to cal-
culate Vo(z,y, z) and to deduce the perpendicular com-
ponent of the plasma velocity:

vi=(-V¢-nJ)xB/|B|”. (21)

The resulting analytical expression is too long to be pre-
sented here explicitly but can be calculated by any com-
puter algebra system immediately. Instead we will use
our freedom to add a component parallel to B to set the
z-component of the plasma velocity to zero.

v=v, —(v1):B/Bp. (22)

This is convenient to show plots of the vector field in
z = const.-planes, without suppressing any information,
since now the velocity has only x and y components.

The freedom of choosing ¢o(zg,yo) results from the
fact that, for a given magnetic field, Ohm’s law (17) can
be decomposed into an ideal and a non-ideal part:

~Vonon—id. + Vnon—id. X B = nJ, (23)
—Via. + Va4, xB = 0. (24)
Identifying ¢ with ¢;4., we see that this is the source of

an ideal plasma flow which can be superimposed on any
reconnection solution. In particular we shall choose

do(z0,Y0) = @0 o yo/1* - (25)



Again the use of Eq. 13a, 13b and 15 yields the corre-
sponding expression in terms of (z,y,z). This choice of
¢ corresponds to v;4. being a stagnation flow. In par-
ticular in the z = 0 plane it yields

via (2=0) = ¢o/(Bo 1) (—z e, + yey) . (26)

Thus, in the z=0 plane the flow structure of the ideal flow
is analogous to the structure of the reconnecting flow
shown in Fig. 1. Surprisingly, by comparison with the
two-dimensional case, v;q. is not singular at the origin,
since ideal flows can cross the quasi-separatrix surfaces
(y = £k ) when the z-component of B is non-vanishing.
It is only when B = 0 that this results in a singularity in
Vid..

Before we come to explicit examples two comments
may help to clarify the physical nature of the solutions.
Firstly, as mentioned above, the velocity is divergence-
free, which can be derived from the fact that the z-
component of curl Eq. 17 reduces to BoV - v = 0 due
to the constant B, and the vanishing v,. Therefore the
solutions satisfy the continuity equation for a uniform
density p.

Secondly, our choice of B leads to V x (J x B) = 0.
Thus we can find a plasma pressure, such that

—VP+JIxB=0, (27)

i.e., the solutions satisfy the momentum balance in the
limit of slow flows (much smaller than the sound and
Alfvén speeds). Moreover, we will use in Section IV ve-
locity fields which have a stagnation point in close simi-
larity to the flows which are known to exist for the two-
dimensional problem [10, 11] and for which solutions to
the full momentum balance exist. Note that the non-
vanishing B, component does not alter the momentum
balance compared to the two-dimensional case, since here
J has only a z-component. Thus our kinematic solutions
are in a certain limit solutions to the full MHD equations.

III. PURE SOLUTIONS

We start by analysing the situation when ¢q = 0. For
this case the solution for v vanishes in the z = 0 plane
and shows counter-rotating flows above and below the
non-ideal region, as shown in Fig. 4. The rotational flows
are distorted by the hyperbolic structure of the magnetic
field. Close to the z = 0 plane they are almost circular.
For large values of z they become highly squashed. This
effect grows with the ratio /L.

Outside the non-ideal domain D, non-zero flow is lim-
ited to regions where ¢ is non-zero. Since ¢ is constant
along field lines in the ideal domain, this region consists
of all field lines which are threading D. This domain is
itself a flux tube, called a hyperbolic flux tube (see [12]
for an exact definition of this term), as shown in Fig. 5.

The existence of rotational flows outside D (as shown
in Fig. 4) can be proved for very general conditions, as
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FIG. 4: Counter-rotating plasma flows: a) above (z = 2)
and b) below (z = —2) the reconnection region together with
magnetic field lines (grey) for parameters: k = 2, L = 10,1 =
0.

FIG. 5: The non-ideal region D at 2% of the maximum value
of n together with the hyperbolic flux tube enclosing D, within
which the the pure solutions have non-vanishing flow (param-
eters: k=2,L=10,1=1).



FIG. 6: A closed loop consisting of the central field line and a
field line of the envelope together with two radial connections.

follows. Consider the electric field along the central field
line, z =y =0,

E(0,0,2) = By no(k* — 1) exp (—=22/1%)/(L po)e- . (28)

It leads to a potential difference along the central field
line above and below D given by

B I1(k? -1
00,0, 00) =z TR IIEZD

Note that these limiting values are reached to high ac-
curacy already at distances of z/l > 2. With the same
accuracy any field line forming the envelope in Fig. 5 has
a vanishing potential ¢ and the same holds for all other
field lines outside this hyperbolic flux tube. The central
field line (Lg), a field line of the envelope (L;) and two
radial lines connecting them above and below D (Ry, R2)
form a closed loop (Lo, R1, L1, R2). Along this loop the
integral over the parallel electric field has to vanish (see
Fig. 6), since V x E = 0.

%E-dl
/E-d1+/ E-d1+/E-d1+/ E-dl
Lo Ry L1 Ro

= ALO¢+AR1¢+0+AR2¢
= 26(0,0,—00) + 2 Ap.

0

Here we have used the symmetry z < —z in the last
equality. Therefore, the voltage drop along each of the
radial parts of the loop equals —¢(0,0, —o0). However,
since the loop integral requires a direction of integration
which is opposite for R; compared to Ry, the electric
fields along Ry and R» are oppositely directed. These
electric fields induce a plasma flow perpendicular to the
radial lines in planes of constant z, which are oppositely
directed above and below D. This completes the proof
of the existence of counter-rotating flows.

The existence of rotational flows can be understood
from another point of view. In [13] an ideal dynamics

is considered which leads to a current sheet formation
in a hyperbolic flux tube. The rotational flows derived
above can be considered as the stationary limit of these
dynamics if the current density has become sufficiently
high that dissipative effects set in and prevent a further
increase. In particular, our rotational flows have the same
signature as the shearing flows in Fig. 5b of [13].

A. Reconnected Flux

The rate of reconnected flux is given in general by the
integral of the parallel electric field along the reconnec-
tion line (see [6, 8]),

dq)mag.
= [ Byd.
dt / I (30)

In two-dimensional models the reconnection line is the
extension of the hyperbolic null point along the invari-
ant direction. Adding a constant component of B in the
invariant direction turns the null line into a field line of
maximal A¢ across D. For our example the rate of re-
connected flux is given by 2 ¢(0,0, —00).

The interpretation of a rate of reconnection of mag-
netic flux in this case, however, is different from what
we are used to in two dimensions. In three dimensions
no unique line exists at which the flux is split and re-
connected: instead, we have a whole flux tube (the hy-
perbolic flux tube enclosing D), within which every field
line constantly changes its connection. To envisage the
rate of reconnection in this case we will use the method
of constructing w'™ and w°"“ as described in the intro-
duction. These are the velocities of the field lines in D
anchored in the ideal region either above (outflow region)
or below (inflow region) D. To find these velocities we
have to solve

_v¢(in/out) + w(z’n/out) xB=0 (31)

= Wi = (—vgln/o) < B/|BIP.  (32)
Since w" and w?"* coincide with v outside D we can
use for the corresponding ¢(i"/°%) just the asymptotic
values of ¢ in Eq. 20 for large s, i.e., we replace the error
function by its asymptotic values 1 and —1

QS%::E ﬁBonol(k‘z—l)
2L po exp (25 +5)/1%)

(33)

Of course for an explicit calculation we have to replace
Zg, Yo with the help of Eq. 13a, 13b and 15 and insert
the result in Eq. 32. If necessary we can also add a flow
parallel to B to set the z-component of w equal to zero,
as we did for v.

The rate of ‘mismatching’ of flux is now given by the
difference of wi® and w°% in D. For convenience we
choose the plane z = 0, where the relative motion of the
two flux tubes anchored in the outflow and inflow region,



FIG. 7: The difference velocity between flux anchored in the
region above and below D and the projection of magnetic field
lines in the plane z = 0 (parameters: L = 10,1 =1,k = 2)

respectively, is given by:

Aw, = —V(¢") - (") x B/|B?
— 2V x B/||BJI% (34)

Fig. 7 shows the corresponding vector field. The rate at
which flux crosses any radial line between the origin and
the boundary of D is given by the potential difference
along this line, i.e.,

Appay = 2¢°" = A, ¢ =2¢(0,0, —00). (35)

Note that we now have the same potential difference
along a radial line as along the z-axis (Lg), while for
the previous integrals along Ry and R, we had only half
of this value.

Another important property is the fact that, as in the
two-dimensional case, the diameter of the non-ideal re-
gion, i.e. its extent in the xy plane, does not affect the
reconnection rate. To prove this we can use different
scales, say l,, and [, with respect to the (zq,yo)- and
s-dependence in the expression 19 for the resistivity. It
then turns out that in ¢(0,0,+00) and hence in the re-
connection rate l,, does not appear. This property is
essential for the onset of reconnection under realistic con-
ditions, when the collapse of a current sheet may lead to
small scales in the plane perpendicular to the current.

A simple pedagogical example gives further insight into
the relation between this potential difference and a re-
connection rate. Consider for simplicity a homogeneous
magnetic field B = Bpe, and assume that the difference
velocity is a rigid rotation, with a constant angular ve-
locity w = 27/T. Integrating along a radial line the
reconnection rate is then given by

dq;;ec = /E-dr:/(wa)-dr

= 1T /27‘1’7‘30 dr = @04 /T.

Thus it takes a full turn for the reconnected flux to be
equal to the total magnetic flux of the flux tube ®,,,,,
although already after the first instant all field lines of
the flux tube (with exception of the central one) have
changed their connections. Note the difference of this
notion of reconnection from reconnection rate in the two-
dimensional case where the reconnection occurs only at
a single line and the reconnection rate gives the amount
of flux which is cut by this line.

Up to this point the hyperbolic structure of the mag-
netic field in the zy-plane was not relevant for the results,
that is for an elliptic field in the zy-plane (0-point) the
results would have been qualitatively the same. The rea-
son is that the existence of counter-rotating flows is a
topological property which can be proved without refer-
ing to any particular geometry of field lines and even
for arbitrary time dependence. This has been done in
[14] building on the above mentioned Euler representa-
tion of the magnetic field (see also [8, 9]). In particular,
the plane for which w(i) w(°u) and Aw is calculated is
arbitrary as long as it is transversal to B.

The hyperbolic structure is, however, relevant for the
physical background of the reconnection process as dis-
cussed above and it will be found to be relevant in Section
IV when we consider more realistic reconnection solu-
tions.

B. The evolution of the magnetic flux

The reconnection process in the foregoing example af-
fects only the hyperbolic flux tube bounding the region
D and even within this flux tube there is a certain or-
der in which the field lines reconnect. To see this note
that the level surfaces of ¢ are also level surfaces of
¢°U (although for different values) and in addition they
are flux surfaces for B and Aw, since they satisfy the
ideal equation Eq. 31. Thus, the reconnection changes
the connection only within each level surface of ¢(i/0ut)
There is no reconnection between field lines of different
Plin/out) yalyes.

For a given flux tube the process is shown as a sequence
of snapshots in Fig. 8. The flux tube first splits into
two tubes, which wander in opposite directions along the
elliptical flow lines of w(i®) and w(°“t) shown at the top
and bottom of the box. After half a turn they meet again
(last frame) and the process repeats itself periodically.
What cannot be seen in the sequence of images is that
the motion is always very slow near the turning points
of the ellipses, whereas it is very fast along the almost
straight parts next to the z axis. If the upper end of a
field line is just near a turning point its lower end flips
rapidly along the straight part and vice versa. This effect
is more pronounced if we follow the field lines further
away from the z = 0 plane. The process of flipping is
well known from 21-dimensional models([15]). However,
while in the 2% dimensional models this is a linear motion
extending to infinity, it is here part of a circular motion
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FIG. 8: Splitting of a flux tube under the counter-rotating
flows w(™ (indicated at the bottom of the box) and w®*?
(top of the box). After half a turn the two flux tubes meet
again (last frame).

due to the finite extension of the non-ideal region.

A remark concerning the production of magnetic he-
licity in this kind of process: due to E - B being positive
(given By > 0 and k£ > 1) we have a non-vanishing source
of helicity, —2 [ E-BdV # 0. If we imagine that this kind
of reconnection takes place in a closed flux tube, which,
except for the domain D, is embedded in an ideal plasma,
then due to the counter-rotating flows the process would
change the total helicity of the field by twisting or un-
twisting the flux tube.

IV. COMPOSITE SOLUTIONS

The pure solution can be superimposed on any ideal
flow as shown in Eq. 24. Out of all possible ideal flows,
however, those with a stagnation flow are of particular
interest for two reasons.

First, stagnation flows can create thin current sheets in
a self-amplifying way, as shown in several 2%—dimensional
solutions (see references in [10, 11]). In a real plasma we
expect that the main reason for the localization of the
non-ideal term is the localization of the current, which

then in turn might trigger a local anomalous resistivity
due to turbulent effects on small scales. Thus stagnation
flows are often an important prerequisite for having a
localized non-ideal term.

Second, the pure solution of the previous section affects
only the hyperbolic flux tube enclosing D and hence is
very restricted in its effect on the overall magnetic field.
This can be changed if we have a flow which transports
flux from the external region into the hyperbolic flux
tube, lets it reconnect, and subsequently removes the re-
connected flux from this region, thereby extending the
effect of the non-ideal region to a much larger domain.
Such a process can be accomplished by a stagnation flow.

These are the motivations to use Eq. 25, which creates
a stagnation-point flow in the plane z = 0, as a basic ex-
ample for the effects of adding an ideal flow to the pure
solution. To be more precise, the resulting flow is a stag-
nation flow outside the hyperbolic flux tube where the
pure solution is negligible, but whether the pure solution
dominates or not within the hyperbolic flux tube depends
on the strength of the ideal flow compared to that of the
pure reconnection solution. The parameter which deter-
mines the strength of the ideal flow is ¢ in Eq. 25 and
the critical value (¢¢rit) is the value of pq where the flow
in D turns from O-point to X-point.

A. Calculation of @it

The critical g at which the nature of the flow changes,
may be determined as follows. At z = 0 the rotational
flow of the pure solution vanishes. The strength of the
rotational flow grows from z = 0 up to the boundary of
D. The local structure of the plasma flow near the z-axis,
which determines whether the flow is X-type or O-type
can be deduced from Eq. 21. Note that it is sufficient to
use v since v = v, + O(2?) and only linear terms are
relevant. Near the z-axis we have

v =—(V@)ay x Bye./Bi + O(2?), (36)

where (V¢),, are the z and y components of the gra-
dient. Hence we can decide whether the composite flow
is elliptic or hyperbolic by determining whether ¢ has a
local extremum or a saddle point in z and y on the z-
axis. In addition, the existence of a saddle point or a
local extremum in ¢ does not depend on whether we use
T,y Or Tg,yo coordinates in the plane perpendicular to
the z-axis.

Thus we can make use of ¢(zq,yo,s) from Eq. 20 and
expand this in zg, yo at the origin,

¢ = a+ (b(zg+y3) +czoyo) + O(z®) with
a=—rByml (k> —1)/(2L),
b=/TBonol (k* — 1) erf(z/1)/(2L po 1?),
c=po/l*.

The critical value which distinguishes whether ¢ has a
local extremum or a saddle point is ¢ — 4b? or in other
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FIG. 9: The flow lines of w'™ (left) and w°! (right) in the
z = 0 plane for parameters k = 2, o = 0.001, L =2, [ =1,
Bo = 3, $o = 0.01 > Perit. -

words the critical value of ¢ is
Oorit(2) = 7By 1° (k* = 1)%erf (/1) /(L? i) . (37)

Since the error function is bounded by £1 there is a max-
imum of this value:

Gerit = VEBomo L K2 = 1]/(Lpo) . (38)
The same critical value holds for w*” and w°* since they
are derived from ¢ by replacing the error function by +1
right from the start. Thus, for g > @erir. WP, WUt
and v have a stagnation point at = y = 0 for every
z. For g < @Yerit, w'” and w°* show an elliptic flow at
2 =y = 0 for every z. The same is true for v outside D.
Inside D there is a critical distance from z = 0 at which
we have a transition from a hyperbolic to an elliptic point
in v.

B. Evolution of the magnetic flux

The effect of the additional flow on the reconnection
process can be visualized best by the flows w'™ and w"!
in the z = 0 plane, or even simpler by plotting contour
levels of ¢ and ¢(°¥) at z = 0, which coincide with
flow lines w'? and w°“, respectively. In Fig. 9 we show
these lines for a case where @g > @crit., that is, we have
stagnation flows in both wi” and w°%t.

The effect of reconnection on the magnetic flux can
now be demonstrated by superimposing the two flow-line
images, such that the deviations from ideal flow become
apparent. This is shown in Fig. 10, which may be read in
the following way. Any point in the diagram represents
a given field line. Starting with a given point (field line)
there are always two flow-lines of w*” and w°* intersect-
ing at this point. They trace the path of the initial point
(field line) frozen to wi™ (left) and w°u!, respectively.
Whenever the flow-lines cross at a given point a field line
starting in this field will split into two if we follow both
motions.

There are three types of matching or mismatching of
magnetic field lines related to three types of regions in

FIG. 10: The superposition of the two flows in Fig. 9 shows
regions of different reconnective behaviour, depending on
whether the flow lines of w'"and w°"! coincide or separate.
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FIG. 11: The separatrices of w'"and w°** from Fig. 10 dis-
tinguish the regions which show almost classical reconnection
(I1I), from the ideal region (I) together with the transition
region (II).

this diagram, as shown in Fig. 11. First, for all flow lines
which remain outside D (which is limited by r ~ 2 and
indicated as type I in Fig. 11) the two flow lines coincide
perfectly. Moreover, the values of wi™ (left) and wo%
coincide, so that any field line of B threading the z = 0
plane at such flow lines is frozen-in (w'” = wo% = v).

Second, there are cases where the flow lines of w*” and
wU separate only for a small part inside D and join
again as they leave D (region of type II in Fig. 11). A
magnetic field line transported by this flow towards D
will show a splitting into two of a field line entering D,
and this splitting can remain even after both field lines
have left D, since it might take both field lines different
times to leave D. However, since the flow lines join again,
the separation in time of the split field lines remains con-
stant once they have left D.

Third, there are cases where the flow lines separate
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FIG. 12: The transport of fluid elements in the reconnecting
flows of region III. Two starting points a and b were chosen
such that they join at ' = b’ but they will in general not
match on the other side.

within D and join with flow lines of opposite regions leav-
ing D (regions of type III). A magnetic field line trans-
ported by this flow towards D will show a splitting in
D, and will merge with field lines of a different region on
leaving D. In particular, the distance in space or time of
its initial partner grows even after both have left D. This
distinguishes them from the previous case. The region of
initial points which show this behaviour is bounded by
the separatrices of the two flows shown in Fig. 11. This
case is very similar to the ‘classical’ two-dimensional re-
connection in that field lines of very distant regions be-
come newly connected.

However, there is in general no unique counterpart to
a given field line. This is demonstrated in Fig. 12 for a
single set of flow lines from region III. Starting with a
fluid element (a) at an initial time we can find a coun-
terpart (b) such that they coincide once they have left
D in the negative y-direction (a' = b') but they will in
general not match at the opposite side, i.e. a” # b". (For
symmetry reasons the x axis in our example is excep-
tional in that here we can find perfect counterparts). A
field line, let us call it (a’’), which joins with (b") lies
on the same flow line as (a) but is shifted by a certain
interval in time. If we iterate the process of finding the
reconnecting counterparts, i.e. using (a”’) as a new (a)
and so on, we always obtain points which lie on the four
trajectories shown in Fig. 12. So the counterparts of this
reconnection process are not two field lines but the two
flux surfaces given by the field lines crossing the inflow
trajectories.

This implies that in general any flux tube will not have
a counterpart with which it can reconnect perfectly in
this stationary example. Note that by this process we
always remain on the same level of ¢ or ¢(°t) since
we switch between () and ¢(°%) only outside D where
they coincide. The regions of type III for which the field
lines show genuine reconnection grow with 19 until ¢q
reaches the critical value.

Further increase of ny changes the flow pattern drasti-

N %
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FIG. 13: The flow lines of w'™ (left) and w°%! (right) in the
z = 0 plane for parameters k = 2, no = 0.01, L =2, =1,
Bo =3 and o = 0.01 < @erit..
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FIG. 14: The superposition of the two flows for o < @erit.
(from Fig. 13) shows regions of different reconnective be-
haviour.

cally. This is shown in Fig. 13 for the two flows separately
and in Fig. 14 for the superposition. Fig. 15 shows the
different types of region. Apart from regions I-IIT which
are known from the previous example, there are now two
new regions IV and V which result from the existence of
the elliptic null in the center. Note that both regions are
strictly within the hyperbolic flux tube and have no effect
on the reconnective behaviour of the hyperbolic flux tube
with its environment. Only the size of the regions I-III
are important for the interaction with the environment.
The region V in particular shows a dynamics similar to
the pure reconnection solution. An initial field line splits
under the influence of counter-rotating flows, but both
parts rejoin after some time. Here the counter-rotating
flows are dominant. Region IV is a kind of transition
region between IIT and V. Here an initial field line splits,
one part remains within the hyperbolic flux tube while
the other leaves this domain.
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FIG. 15: The separatrix structure of Fig. 14. Regions of type
I-IIT are the same as in the previous example. Regions of type
IV and V result from the existence of an elliptic null point in
the flows for ¢ < perit.-

C. Reconnection rate

The consideration concerning the reconnected flux in
Section IIT A still holds for the composite solution. In
particular we can construct the flows wi” and w°* and
their difference Aw. Note that while w™ and w°“ de-
pend on the ideal flow induced by ¢, Aw does not and
hence it is just the same as for the pure solution and
so is the interpretation of Aw as the reconnecting en-
gine. However, for the composite solutions the recon-
nection rate summarizes the effect of two (@9 > Qerit.)
or four (pg < @erit.) quite different kinds of reconnec-
tive behaviour. The almost classical type of reconnec-
tion of region III, the more slippage like behaviour of
region IT and additionally the rotational reconnection of
region V together with transitional form of region IV for
(<P0 < (Pcm't.)-

Note that the superposition of the ideal stagnation
flow, although non-reconnective in itself, plays an impor-
tant role in the process. It transports flux to D, where
the reconnection occurs, and subsequently removes the
reconnected flux. It is only due to the stagnation flow
that a separation of the reconnected flux over larger dis-
tances occurs, as has been mentioned already in [8].

V. TIME DEPENDENCE

The model can be easily modified to include time de-
pendence. For instance we can multiply the first term in
Eq. 20 by a time-dependent factor. In addition, also the
second term may contain a time-dependence, as follows

—f(t) \/7?30 o l (kz — 1) erf(Bo S/l)
2 L po exp (w5 +y5)/1%)
+ ¢0(:I:0,y0,t), (39)

?(x0,Y0,5) =

10

Since the electric field is still a gradient of a scalar func-
tion, no additional magnetic field is induced and the time-
dependence shows up only in ¢ and v or wout,

From the variety of solutions generated in this way we
will consider here only one which yields a reconnection
process localized in time, that is, we suppose

f(t) = exp (=#7/T7) , (40)

and adopt the same steady ¢o(xo,y0) as before. For
most aspects discussed in the previous section the time-
dependence is not important since it is in many respects
like an external parameter. However, as far as the exis-
tence of flux tubes which join perfectly after reconnection
is concerned the time-dependence is important. To find
such flux tubes we start with a point in the inflow region
near the x-axis and integrate for a given time # along
w () until we have crossed D. Then we integrate back-
wards in time for the same period along w(°“!): that is,
we follow the field lines in Fig. 12 from point (a) over (')
to (b). We integrate further forward along w(™™ to (b")

and then again backward in time along w(°%t).

For a starting point on the x axis the full loop would
bring us back to the starting point. For other points in
D we will in general end at a different point (a"'). If
(a) belongs to the cross section of a flux tube which has
a counterpart such that they join perfectly in the pro-
cess of reconnection, then (a”) has to be a point of this
cross section as well. Thus iterating this procedure for
a large number N should trace out the cross section of
such a flux tube, if it exists. For a reconnection pro-
cess localized in time such a procedure shows perfectly-
reconnecting cross-sections in a very narrow region near
the z-axis. The results are shown in Fig. 16 for vari-
ous degrees of localization in time, given by the value of
T. The plots show the points a,a’, ... near the nega-
tive z-axis and on the other side their counterparts. The
figure shows that with increasing T', that is, if the pro-
cess becomes more and more stationary, the cross section
stretches. For T' = 1000, which from the numerical point
of view is equivalent to the stationary process, the points
remain always on the same field line of w(°¥) or w(in),
respectively. This confirms the considerations from above
that for this case the points will remain on the same level
curve of ¢(i") or ¢(ou)  respectively.

The existence of perfectly reconnecting cross-sections
is consistent with the production of magnetic helicity,
as mentioned in Section IIIB. For such a cross section
the final flux tubes shows a rotation in the connection
of field lines with respect to the state before the recon-
nection, similar to the pure reconnection case. However,
while in the stationary pure reconnection case the rota-
tion increases in time, the localization in time leads here
to a rotation by a finite angle. This rotation also shows
that there cannot be a one-to-one reconnection of field
lines and it is a manifestation of the helicity production
in the process.
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FIG. 16: Perfectly reconnecting cross section for reconnection
localized in time on time scales T = 30, T = 60, T = 100 and
T = 1000 for parameters k = 2, no = 0.1, L = 2,1 = 1,
Bo =2, oo =1 > @erit..

VI. CONCLUSIONS

The process of three-dimensional magnetic reconnec-
tion at a localized non-ideal region of a non-vanishing

11

magnetic field shows features which have been not
present in previous two- (or 2.5-) dimensional models.
The localisation implies the existence of rotational flows
above and below the non-ideal region (with respect to the
direction of the magnetic field). Moreover, stationary re-
connection is imperfect for most of the field lines in the
sense, that there is no ‘cross‘-connection between pairs
of field lines, i.e. the strict one to one correspondence
of reconnecting field lines known from two-dimensional
reconnection is broken in the three-dimensional case. It
has to be replaced by a weaker form of a reconnection
of field lines from two flux surfaces. For a reconnection
localized in time some of these flux surfaces close to form
perfectly reconnecting flux-tubes. These tubes show that
in the three-dimensional process, although much more
complicated than the two-dimensional case, there is still
a systematic order in which the flux is reconnected.
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