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Abstract

In many applications materials are modeled by a large number of particles (or atoms)
where any one of particles interacts with all others. Near or nearest neighbor interaction is
expected to be a good simplification of the full interaction in engineering community. In this
paper we shall analyze the approximate error between the solution of the simplified problem
and that of the full-interaction problem so as to answer the question mathematically for a one
dimensional model. A few numerical methods have been designed in engineering literatures
for the simplified model. Recently much attention has been paid to a finite-element-like
quasicontinuum (QC) method which is a mixed atomistic/continuum approximation model.
No numerical analysis has been done yet. In the paper we shall estimate the error of the
QC method for this one dimensional model. Possible ill-posedness of the method and its
modification are discussed as well.

Descriptive title: Analysis of a material particle model.

Keywords. Lattice statics, particle motion, Lennard-Jones potential, global minimization, fi-
nite element method, error estimation, ill-posedness, quasi-continuum approximation, material
modeling.

AMS(MOS) subject classifications. 65C20, 65K10, 65M15, 65M60, 73510, 73V20.

1 Introduction

The analysis of the structure of material defects such as dislocations or fractures has to consider
the effects at the scale of lattice. Directly solving the whole system (e.g. in the lattice statics
and the molecular dynamics model) provides a powerful and accurate tool of analysis at this
scale. However, because the number of particles (or atoms) in a material is huge, it is often
impossible to solve the whole system under the existing computer power. The problem is often
simplified by only considering the interaction of one particle with its nearby particles (or even
its nearest neighbors). It is believed that the simplified problem is a good approximation to the
original problem. But there is no mathematical proof available. On the other hand, even for
the simplified problem the system is still huge and impossible to be solved directly. Recently
a method called quasicontinuum (QC) approximation gains noticeable attention in engineering
literatures (cf. [4, 1, 7]). The idea is that in the region where no defect occurs the material
is modeled at the macroscopic scale and the theory of continuum elasticity may apply. It is
incorporated with the finite element method and is expected to be an approximation of the full
lattice-scale model. Numerical analysis to this approximation method is in its infancy. The



model is a system of a large number of material particles. Unlike usual physical problems the
discrete subdomain of the approximation method is not treated as one small body but as a
composition of a number of particles. As pointed out in [5] the presence of microstructure
has motivated the development of numerical methods that can capture macroscopic information
without resolving the microstructure on the physical length scale. The QC method seems to be
such an example. As an initial theoretical study of the QC method we consider a typical one
dimensional crystal material (an atomistic chain where interacting energy of any two atoms is
the Lennard-Jones potential [3, 6]). Study of similar models can also be found in [2] and in [6]
with emphasis on wave propagation and on nearest neighbor interaction under simpler potential
functions which lead to a linearization of the mathematical problem. In this paper we shall
consider the equilibrium configuration of these material particles where the pairwise potential
is the more realistic Lennard-Jones potential and where the nearest neighbor interaction is not
assumed in discussion. We shall estimate the error of the QC approximation.

Consider a one-dimensional crystal material where N atoms are distributed on a straight line.
Let u;,72 = 0,1,--- , N, denote the position of the ith atom and W;;(u;;) denote the embedding
and interacting energy of atoms i and j, where u;; = |u; — uj|. We assume that the energy
functions W;; between any two atoms are all same and denote it as W. Following Frank and
vander Merwe we adopt the so called Lennard-Jones potential [3]

W(a) = —(2)8 + (2)12 (1)

for the one-dimensional lattice. o > 0 is something like the lattice scale. Also see Figure 1
for what the function looks like. Note that for « near zero the graphs of the function W and
its derivatives are too high or too low to be shown in the figure. Obviously v = /20 is the
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Figure 1: The functions W(«a), W'(«) and W"(a) with o = 0.5

minimum point of the function W(a). We thus can write down the total potential energy of the
material %Zf\;o Z;'V:o, j#i W(uij). Stable configurations of the crystal material is identified by
the minimizers of the potential energy subject to a stress free boundary condition (i.e. the force
acting on the boundary atoms is zero). For the sake of determination, we fix the left-end atom,
say, up = 0 and let u = (uy,--- ,uy)?. Without loss of generality we let u; > u; 1, i =1,--- , N.
So the problem in the full lattice scale is: find 4 such that

1 N N N N
E(ﬂ):IIEnE(u):ngnEZ > W(|uj—ui|):muinz > Wy — wi). (2)

i=0 j=0,j%i i=0 j=i+1



If we make a variable transformation r; = u; — u;—1, ¢ = 1,2,--- , N, then we can write (2) in
terms of r = (ry,--- ,rn)7:

E(f) = mrinE(T), (3)
where
) N N-1 N N N+1—j  itj—1
Er)=Y W)+ Y Weritra) ++WOr) =3 Y w(Y m). @
i=1 i=1 j=1 j=1 i=1 k=i

Existence, uniqueness and conditioning of the problem will be discussed in §2 based on a solution
estimate

4
57 <rp <. (5)

The proof of (5) is not trivial but it is a key to obtain all results throughout the paper. Also
in §2 we find that the problem in terms of the distance r has better conditioning than that in
terms of the position u.

From the shape of the function W («a) the interaction of particles is weaker as their distance
becomes larger. Hence the potential energy generated by one particle, say the ith particle, may
count only the interaction with its nearby particles within a distance p.(d), where § = |W (p.)| is
small and p.(d) is called a cut-off radius. (u; — pc, u; + pc) is called a cut-off interval. Apparently
we should let p. > «y since W («) is not ignorable for o < 7. The original full interaction model is
largely simplified by this interaction cut-off. To analyze the error we introduce a cut-off fraction

pe(6)

F, = > 1. (6)
g

Obviously as F, grows the cut-off radius grows and the simplified system approaches the original
system. In §3 we shall discuss the properties of the simplified problem and prove the error
estimates

lr =€l < KF %0 or |lu—uf|| < K(No)F.?, (7)

where K is a generic constant and 7 (or u) and ¢ (or u°) are the solution of the original problem
and the simplified problem, respectively. || - || denotes || - || oOr \/LNH - |2 and No = O(1) if the
material has finite length.

In §4 we apply the idea of quasicontinuum (QC) approximation combined with the finite
element method to the simplified problem. The finite element setting is a little different from
the usual one. The independent variable is the index set of the particles i = {0,--- ,N}. For
this one-dimensional crystal material we only need a local QC model which assumes that each
element contains a whole cut-off interval (cf. [7]). That is, the number of particles in one element
I > 2i.(0), where i.(d) is the maximal number of particles in a half of a cut-off interval. We
will see that the analysis is already fairly complicated for the local QC approximation. Through
the problem in terms of the distance r and using a linear shape function for the finite element
method we shall prove that for [ > 41,

. n F°
|Ri, — R || < K(No)max{+, = } (8)




and

/R
||Uzk — uzckH < K(NO’) maX{ZFc laFc 6}5 (9)

where ||-|| is either ||-||« or ﬁ””g, n= 2W’(%0)0/15 ~ 0.027, m is the number of elements, R;,
(or Uy, ) is the solution of the QC approximation at the kth element, ug, Is the i;th component
of the solutlon of the simplified problem and Rf, = uj, —wuj, . Then the error between the local
QC solution and the full-lattice solution can be 1mmed1ately obtained by combining (7)-(9). Here
we write the error estimate in terms of F, in order to avoid complicated notations. More precise
results and their proof will be given in §4 Again No = O(1) if the material has a finite length.
Here we write the error estimates in terms of F, for avoiding complicated notations and for seeing
convergence directly as F, grows. More precise results (including those for [ < 44.) and their
proof will be given in §4 (See (49)-(51)). Better approximation can be obtained if we use higher
order polynomial shape functions.

2 Analysis of the model problem and its solution

We analyze the one-dimensional crystal material model (2) or (3). If we only consider nearest
neighbor interaction then the problem is trivial. In this case E(r) = Zf\i 1 W (r;). The minimum
is 7; = 7, where 7 is the minimum point of the function W(«). We shall study the problem
without the nearest-neighbor-interaction assumption. There are several fundamental problems
to be considered. They are boundedness, uniqueness and existence of the solution of problem
(2) or (3). The existence of the solution is obvious since the function W, and then E or E, is
bounded below.

Theorem 1 At a (local or global) minimum or (local or global) mazimum of E(u) = E(r),
Ty = U —Uj—1 <7y foranyi=1,2,--- N, where vy = 260 ~ 1.120.

Proof: Suppose that we have two adjacent atoms such that |u;, — u;,—1| > v. We can group
all the atoms into two parts. Part I includes atoms u;,7 = 0,1,--- ,%9 — 1 and part II includes
atoms u;, %7 = ig,--- , N. It is easy to verify that W(«) increases if a > . If we fix the relative
distance of any two atoms in each group and shift all atoms in part II towards part I by a tiny
distance, then the energy E will decrease a bit since the distance between atoms in part I and
part II decreases and larger than ~y. Similarly if we shift all atoms in part II away from part I
by a tiny distance, the energy F will increase a bit. So F is not possible to reach the maximum
or minimum at the current configuration. This proves the theorem. 1

From the result, we know that the solution of problem (2) or (3) is bounded by N+ or the
length of thematerial is of O(No). Next we give a lower bound for ;.

Theorem 2 At the global minimum of the energy E(u) = E(r), the distance of any two adjacent
particles should be away from zero, say, r; = u; — Uj_1 > %O’, 1=1,2,--- N.

Proof: We assume that at the minimum configuration u* = (ul, LU N) there exists an ig, 1 <
igp < N, such that uj —u; | < ‘;U and for all @ < i, u] —u;_; > 50 We want to derive a
contradiction out of the assumption, i.e. E(u*) < E(u) for all u. The idea of the proof is to
consider a specific configuration v’ = (uf,--- ,u} = uj + [y — (uj, —

i0717’u’z ’ 7u,]V), WheI‘e ul
u§0—1)] for j =4g,--- ,N (cf. Fig. 2).
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Figure 2: Configurations v* and u'
From E(u*) < E(u') we first show that there exists an interval with length  which includes

5 particles in it. In fact, if this is not true then every interval with length v at most includes 4
particles. Write down an equivalent total energy expression of (2):

N N
E(u) =) Ei), where Bj(u)= > W(uj— uj). (10)
i=0 j=i+1

We scale the axis according to the length v starting from v towards the right. Then in each
length-y interval [uj + (k — 1)y,uj + k7], k = 1,2,---, there are at most 4 atoms. We now
compare F(u') and E(u*).

io—1 N
Ey(u') = Z W (u; —ug) + Z W (u; — ug)
Jj=1 Jj=to
N N
= Bo(u") =Y W(uj—up)+ Y Wuj—up)
=0 J=io
Obviously uj —ug > vy for j > ig since u;; —uj _; = . So we have Z;-V:Z-O W (uj — ug) < 0. For
the other sum we have
al 4 > 4
=D Wl —ug) < —4W((io — 1)z0) =4 W((io —1)zo +j7).
J=to j=1

Note that if 4o = 1 there is no —4W ((ip — 1)30) in above inequality. This gives

N . 4 - . 4 .
Bo(u') < Bo(u") = 4W ((io — 1)50) =43 W(lio ~ 10 + 7).
j=1
Similarly, for [ = 1,--- ,4y — 3, we have
N N
Ei() = Bi(w) = 3 Wi —ui)+ > W —uf)
J=to J=io

o

< Fiu) = AW ((io — 1~ 1)50) =4 Y W(lio — L~ )50 + 7).



FOI“ZZio—Qandl:io—l,

o0

Frgoa(u!) < Figa(u®) — AW (y) — 43 W(E

5a+ﬂ),

i=1

Biy1(u') < Eig—1(u™) = W (uj, — ujy_1) — 4W(y) - 42 W (j7)-

From r;, < 30 we have —W (u} —u} _;) < —W(30) &~ —10.74. Also, by the construction of u/,

10 10— 1

E;(u') = E;(u*) for all j > iy. We thus obtain

10—3 i0—1 oo

4 4
E() < B(u')-10.74—2-4W(y) —4> W((ip—1 - 1)z0) -4 S W(lio—1- o +7)
1=0 1=0 j=1
[(¢0—3)/2] [(i0—1)/2] oo
< Bu)-1074-8W(y) -8 > W(l'y)-8 > Wty + ), (11)
I'=1 I'=0 j=1

where we have used the facts that —W ((ip —1 —1)0) < — (ZO*Z*1 v) for [ =0,--- ,ip — 3 and
~W((Go — 1 — D)o +jy) < -W(2==Ly + jy) for I =0,--+ ,ip — 1 and j > 1. We also have

S : - 11
S W) = =S W) - Y W(iy) <0.2585 + 5 / - dj ~ 0.2593,
j=1 j=1 j=4 3 J
where we have used (£)° = zand 1 — (£)°<1;

(e o] o
S W) ==Y W) + W) < 0.0093;
Jj=1 j=1
o x
ST W@y i) ==Y W(iy) + W(29) < 0.0016;
Jj=1 j=2
ZZW 7+.7'7 352 Z _6 5/ / —d]dll~00016
r=3 j=1 I'=3 j=1'+1 I'+1 75

Hence,
E(') < E(u*) —10.74 +8-0.2593 + 8 - 0.25 + 8 - 0.2718 = E(u*) — 4.4912 < E(u*).

This shows that F(u*) is not the minimum. This contradiction implies that there exists at least
an interval with length -« which includes 5 particles. Then there must be two adjacent particles,

say, uj, 1, U, such that uy —uj < 7. Therefore, we can assume that there exists an i; such
that

ug, —ug g S% but u; —u;_; > 1 for all @ < 1;.
Note that W(u}, —uf, ;) > W(z7y) =411 - (%)_6) ~ 4,

Similarly to the previous argument and from F(u*) < E(u') we can obtain (ignoring many
algebraic operations) that there exists an interval of length v including 42 + 1 particles In

other words, there must be two adjacent particles, say, u;, 1, u;,, such that u; —wuj ; < 427



Repeating this argument we can conclude that there exists an interval of length v which includes
as many particles as you want if E(u*) is the minimum. This is a contradiction to the finite
number of particles or atoms. This completes the proof of the theorem. 1

Theorems 1 and 2 show that (5) holds. From (5) we can obtain the uniqueness of the solution
of (2) or (3).

Theorem 3 The (local) mazimum and (local) minimum of the energy E(r) = E(u) is unique
in the region R : a<rz<'y,z—12 , IN.

Proof: At the maximum or minimum of E(r) (cf. (4)), r should satisfy

OF iN(N-1) iN(N—2) 2 N
e W' (r;) + Z W' (rj+rjy1) + Z W'(Z Tivk) +ooo W’(Z r;) =0, (12)
' j=(i-1)v1 j=(i—2)v1 k=0 ]

where a V b and a A b represents mazx(a,b) and min(a,b), respectively.

If the Hessian matrix of E(r) is diagonally dominant in the region R then the matrix is
nonsingular in the region. We thus prove that the system (12) has a unique solution in the
region (i.e. the minimum of E(r) is unique). So we only need to show that the Hessian matrix
of E(r) is diagonally dominant in the region R. The diagonal element of the Hessian matrix of
E(r) is

PR iA(N=1) iN(N-2
orz =W'r)+ Y, Wrjtrin) + Z W Zrﬁk + W ZTJ (13)
j=(i—-1)v1 2)v1

In the region R, r; < . Hence, W"(r;) > W ('y) ~ 15/0? since W"(a) decreases when a < 7.
We also have

4 4
T+ i1 > 2(50) >, 1§ +T1jp1 + T2 > 3(30), SRR (14)

Hence, from the monotone property of W”(«), all other terms in the right hand side of (13)
except W”(r;) are negative and the sum of them is larger than A = 2W"(80) + 3W"(20) +---

Noting that W"(20) ~ —0.7614/02, W"(X20) ~ —0.0375/02, W"(¥£0) ~ —0.0038/02, ---, we
have

4 4 5y [ 6
0>A= JE;JWHJSU -I-E]W”j o) > —1.6505/02—7(1)8/1 — dafo® > ~1.7/0",

At the same time we can calculate off-diagonal elements:

2E (i—1)A(N—-2) N
e = W' (ric1 + 1) + Z W (rj 4+ 1rjp1 + Tjgo) + oo + W”(Z r;),
o1 j=(i-2)v1 -
o°F iN(N-2) N
Or:Or; = Writ+rin) + Z W' (rj + i1+ 1j42) + W"(Z T5);
Ti0Ti+1 j=(i—1)v1 j=1
2E (i—2)A(N—3) N
S = W"(rio +rim1 +13) + Z w'( Z Titk) + -+ W"( Z ri)s
Ti0Ti—2 j=(i-3)v1 j=1
o°F iAN(N-3) N
po = W"(m + 7riv1 + rig2) + Z W” Z 7"]_|_k W" Z 7"]
TioTi+2 j=(i—1)Vv1 j=1



We can estimate all these off diagonal elements using (14). Hence, the sum of absolute values of
all off diagonal elements of the Hessian matrix of F(r) is less than

" 4 n 4 II - n 4
B < —2W'"(2:-0) —6W"(3: zo) — 12W"(4 - )= G- DWW G- z0)
j=5

* -1
- dz/o?® < 1.8/5°

< 1.7934/02+7(§)8/
4" 4

So the diagonal element is larger than 15/0% — |A| > 13.7/0? > B. Therefore, each row of the
Hessian matrix of E(r) is diagonally dominant in the region R. We thus complete the proof. 1

Because the global minimum of E(r) = E(u) exists these theorems imply that the global
minimum of E(r) is located in the region R and the last theorem implies that F(r) has no other
critical values in the region R. Hence, the global minimum is unique in the region R since a
global minimum can be a local minimum of a slightly larger region and Theorem 3 holds in the
slightly larger region as well.

Remark 1 The second derivative (Hessian matrzx} V2E(r) of E(r) with respect to r is symmet-
ric. In the above theorem we have shown that \72E(r) is diagonally dominant and the diagonal
elements are all positive in the region R. The eigenvalues of the Hessian matriz are thus all
positive by Gershgorin’s theorem. This implies that <72E(r) is positive definite in the region
R. Using Gershgorin’s theorem and the off-diagonal sum we calculated earlier we can actu-
ally have a lower bound of the eigenvalues (say, i, 1 = 1,--- ,N) of the Hessian matriz, i.e.
i > (15—1.7-1.8) /0% = 11.5/0?. Similarly we can also have \; < (15+1.7+1.8)/0? = 17.5/02.
So problem (8) is well-posed.

Corollary 1 E(u) has a unique minimum and in the region R its second derivative is positive
definite too. Hence, it has no any other critical values in the region R.

1
-1 1
Proof: 7, =u; —u;—1, 1 =1,--- ,N. Sor = Tu, where T' = LIt is

not difficult to verify that

VuB(uw) =TT 77 E(r)T. (15)

So in the region R, 72 E(u) is positive definite since \72FE(r) is. This fact also shows that in the
region R F(u) has only one minimum and there are no any other critical values. 1

Lemma 1 The smallest and the largest eigenvalues of the matriz \72E(u) are of O(1/(No)?
and O(1/a?), respectively.

Proof: The smallest and largest eigenvalues of a symmetric positive definite matrix B can be
expressed as

z' Bz z' Bz
Amin = MiN ————, A\jpgp = Max ———

. 16
40 zlx w20 2Tz (16)



From (15) z! <2 E(u)z = 27 T" <72 E(r)Tz. Using Remark 1 we thus have

1 1
' Va Blu)z = (T2)" w7 B(r)(Tz) = O()(T=)" (Tz) = O(—3)a" T" Tx, (17)
where zTTTTz = 22 + N1 (i1 — #;)* < 42T x. We can choose a special z; = (1,0,---,0)7

such that I TT Tz, = 221z,. So from (16) the largest eigenvalue of 72 E(u) is of O(1/0?).
Now we consider the smallest eigenvalue. Assume ;, = max; |z;|. Hence, 7z < N :1:?0. Let
Yi = -—,1=1,2,--- ,N. We have (noting that |y;| < 1)
%0

T T
T " Tx 1
—r— 2 (v —ov ) e o — D (i)’ o (2 )’ D)
1
= Nf(y)a where Yy = (yla"' s Yio—15Yip+15" " ayN)T-

The minimum of f(y) is %. Hence, z7TTTz > + - %xTx > ngxTx. Also, we can choose a
wZTTT:cp

— — 6 —
vector =, = (1,2,---,N)T such that Tz, = (NFDENTD) = O(1/N?). From (16) and (17)

we obtain that the smallest eigenvalue of 72 E(u) is of O(1/(No)?). 1

Remark 2 The above lemma implies that the problem (2) is ill-posed when N is large since the

condition number of its Hessian matriz ’)\\ma_m is O(N?).
min

3 Cut-off — a simplification of the model

From the shape of the potential W («) it may be good enough to consider only the interaction of
one particle with its nearby particles within the cut-off radius p.. In this section we shall prove
error estimates (7) of such simplication in terms of the cut-off fraction F. (See (6). We have
shown that %0’ <r <vy= ¥/20. We can then obtain

1 , 5
%Fc < 'Lc((s) < ZFc- (18)

We can also verify that roughly
.4 _6
|W(zcga)\ o~ F7°. (19)

The total energy after the cut-off:

N i+ic(0)

B@)=33 Y Wl ], (20)

i=0 j=i—ic(8)j#i

or in terms of r

N N-1 N—ig+1
E(r) = Z W(ri) + Z W +rig)+-+ Z Wi(ri +rig+-- +ri, 1)

=1 =1 i=1

t+j—1
=3 X WY, (21)



where u¢ = (u$,u$, -+ ,u$)?, u§ = 0 and r¢ = (r$,--- %)L, 6 = w

, — u$_;. Hence the
simplified problem of (2) or (3) is finding 7¢ such that

E.(7) = mingcE.(r°). (22)

(In terms of u®, the problem is E.(4°) = minycE.(uc).)

Problem (22) is not same as the original problem (3). Obviously, Theorem 1 is no longer true
for all local minimums or maximums. The distance of two adjacent particles may be larger than
7 at some local minimum or maximum. For example, we could have r{ > p. for some % and the
system is divided into two independent sub-systems at this 7. There is no interaction between
these two subsystems. So the problem (22) could have many local minimums which are not the
minimum of the original system since r{ < v is not satisfied. However, we will prove that there
exists a unique solution of problem (22) in the region R, where the distance of any two adjacent
particles is strictly less than the cut-off radius p,, i.e.

={r¢: r{ <pe i=12,--- N} (23)

Once we have the existence of the minimum solution in the region R, then it should be the
global minimum of the problem (22) for any r¢ since the minimum of the sub-system is larger
than the minimum of the whole system.

Theorem 4 Ifr¢ or u® € R, then, at the minimum of the energy E.(r¢) or E.(u¢), the distance
of any two adjacent particles should satisfy v > r{ = uf —ui | > %0’ fori=1,2,--- /N.

Proof: The proof is just the same as that for Theorems 1 and 2 except restricting u¢ in R, in
proving the first part of the inequality. I

Theorem 5 The problem (22) has a unique solution for r¢ € R..

Proof: The existence of the global minimum of (22) is obvious since each term in the expression
of E, has a lower bound. Following the idea of the proof in Theorem 1, the global minimum must
be in R.. From the previous theorem we thus have r¢ € R. Following the proof of Theorem 3
step-by-step we can obtain that the Hessian matrix is symmetric positive definite in the region
R. Hence, the solution is unique. I

From Lemma 1 of the previous section the condition number of problem (2) is worse than
that of problem (3) although they are mathematically equivalent. So it is better to solve problem
(3). Next we prove the error estimate (7) for » — r¢ and then give the corresponding results (7)
for v — u® using the relation r — r¢ = T'(u — u®).

Theorem 6 Let r¢ be the solution of (22) and r be the solution of (3). We have the first estimate
of (7).

Proof: The solution of (22) satisfies

OF iN(N—1) IN(N—1ic) je—1
87"‘?6 =W'(rf) + Z W' (rs +7r60) +-- + Z w'( Z k) = 0. (24)
? j=(—-1)Vv1 j=(i—ic)V1

for i =1,2,--- ,N. The solution of (3) satisfies (12). Subtracting (24) from (12) and applying
the Taylor’s theorem we have

He(p)(r =) = g, (25)



where ¢ = 0r+ (1 —6)r¢, 0 < 0 < 1, Ho(¢)) = V2 Ec(%) (cf. (13)) and g = (g1,--- ,gn)T, where

IN(N—ic—1)
gil= Y Wt trig) o A W+ ). (26)
j=(i—ic—1)V1

Note that r and r¢ both belong to the region R. So % € R. Similarly to the proof of Theorem
3 we can have that H.(%)) is strictly diagonally dominant and its diagonal elements (say, d;) are
larger than 11.5/02. Write H, = D + F = D(I + D~'F) where D = (d;) is the diagonal part of
H. and F is the off-diagonal part of H,. Strictly Diagonal dominance of H, gives ||[D71F||o < 1.
Therefore

D
Hlw=|I+D'F) D! <”—°°<K2.
Now we estimate g.
4 4 > 4
gl < (e + DW (e +1)z0) + (i + QW ((ic + 2) o)+ = D jW'(jz0)
Jj=tc+1
1,4, [ 6 6 4,11 48 4
< Z(2)7 —dj==(2)"=% < —i|W(i,=0)| < KF5
<SG [ FU=36) 15 < W) < KF s

where we have used (18) and (19). This completes the proof of the theorem under the norm
| - llso- The result under the norm +|| - ||2 follows immediately. §

Remark 3 Since r = Tu and r¢ = Tu® we have u—u® =T '(r —r¢). From the proof of Lemma
1 we have 2T TTTz > %.’BT.’E. This implies that |[T~||2 < N. Furthermore we can actually find
T~ which is an lower triangular matriz where all lower triangular elements are 1. That means
1T |loo = N. Hence we have the second estimate of (7). Note that No = O(1) if we assume
the material is of finite length. 1

4 The quasicontinuum approximation and its error estimates

To further reduce the size of the problem we consider the local QC approximation combined
with a finite-element-like idea for the problem (22) in this section. For simplicity, we partition
the 1-D material into m parts (elements) such that there are [ particles in each part. So the
total number of particles is N = ml. If the number of particles is not equal in each element our
argument can still be used without much difficulty. A middle atom of each element is a finite
element node. We denote its position as U;,, k = 1,--- ,m. We assume that the deformation
of atoms between any two adjacent nodes (i.e. (U;, ,,U;, ), k=2,--- ,m) is homogeneous, that
is, the distance of any two adjacent particles in an interval (U;,_,,U;,) is same. For the 1-D
material we consider in this paper there is no inhomogeneous effects. Local QC approximation is
thus suggested (cf. [7]), that is, we assume [ > 2i.(J). We will see later from the error estimate
that the local approximation is good enough for our problem.

A more precise description is the following. Applying the finite element idea to the index set
{i=0,--- ,N} of a large number of points (or positions of particles) we write

Ui =Y Ui i), (27)
k=1



where ¢;, are shape functions of 4, U;,, k = 1,--- ,m, is the position of the kth node particle in
the kth element. Now if we use linear shape functions, then

0 if ¢ <dp1, @2 gt
¢k = z._;’;il. if Z'lcfl < 1 < ’ik (28)
2 —1 o - . .
% if i <4 <ipyg
and
wd(U;, — U ifj <
Uj = Uy = ja_’%k( ' ) . ] * (29)
k41 (Uik+1 - Ulk) lfj > 1,
where Uj is in the kth element, ay, = i —ig_1, ¥ = 1,-++ ,m + 1. Under our assumption we

simply have aj, = [%] for k = 1,m + 1 and a;, = [ for other k. If we make another approximation
that the potential energy generated by every particle in one element is equal we are then able to
write down the approximate total energy of the material. But in each element, say the kth, the

. . U, —U; .t C e 1 . .
deformation gradient S; = % in [iy — %, 4] is different from the deformation gradient

Uip Uiy, . . .
Sp41 = —EE—% in the other part [i,i, + “52] of the element. To make the approximate

[¢]
solution morke+1$mooth in each element some kind of average is suggested in [7]. One way is to
average two deformation gradients in each element and the potential of the jth and the ixth
particles is calculated as W(%(] —ix)). The other is to average the energies in two parts
of each element using those two deformation gradients. The former should not be used since it
allows one particle to cross the other, which is not physical. Figure 3 is an example of ten particles
to show that the average of deformation gradients allows such an unphysical crossing, while the

latter way does not. So we use the latter (i.e. energy average form) and the approximate total

o. .

o.

0.

iy
[

°

°

°

o
°
o
°

Figure 3: The deformation gradient average and the energy average solutions of % =vE(u)

energy can be written as

ik +ic (U)

o=y Y WU -,

k=1 j=ix—ic(0), 7k

1 ig—1 i — g ig+ic §— i
= 52 (> WE—Ry)+ Y, W(—R.), (30)
k=1 j—ip—ic Uk =il Qk+1

~U;,_, for k =1,2,--- ;m and denote R = (R;,, -+ ,R;,,)T. For particles

. . . . . R; R,
numbered in [i,, N] the deformation gradient is assumed to be the same as Sy, or JL:_II = o
m

where R;, = U;,



for simplicity. The approximate problem is to find R such that

E"(R) = min E"(R). (31)

Similarly to the discussion for (22) the problem (31) may have unphysical solution as well if
U; —Uj_1 = R;, /ag > pc., In this case the problem is broken into two sub-problems for nodes
{Uiy,-++,U;, .} and {U;,,--- ,U;,, }. We thus can have one solution of (31) by solving the sub-
problems. But the solution is not what we want since U; — Uj_1 >> < in the kth element. As we
did for (22) we consider a region

ch = {R’Lk : Rik/ak < Pe, k= 1,2, R ,m.}. (32)
If {R;, }7v, € Ryc then {R; = U; — Uj,l}é-v:l € R.. Using the technique in proving Theorems 1,
2 and 4 we can prove that the solution of (31) in the region Ry, satisfies

4
50 <U;j—Uj_1 =Ry, Jap <~ forall k, (33)

where the integer j € (ix_1,ik]. From the estimates of the solution we are able to prove the
uniqueness and existence of the solution of (31) in the region Ry, similarly to previous arguments.
However we shall focus on error estimates.

The solution R;, should satisfy

ip—1 ig—1tic

OFE" ) . —1 L
D M Py o R0 i)
'k j=igp—ic j=ig_1+1
Zk 1 ’L
= Y W/(E—R;)(ix—j) =0. (34)
.] 'Lk e

for k =2,--- ,m — 1. We can easily verify that the last equality of (34) also holds for ¥ = 1 and

kE =m. So we have (34) for all K = 1,--- ,m. The total energy after the cut-off can be written
as
B 1 i+ AN
c=§Z S W S W) (35)
1=0 j=1—icV1 j=i+1

where we have used u§ — uf =7 +---+7rj; for j >4 and uf —uj=1rj+---+rf, for j <u.
We now estimate the error of the solution of this minimization problem (31) to that of (35)
r (22). From error estimates for R;, we can then obtain those for U;,. The solution r{ that
minimizes F, should satisfy

zcl i—1 ic t+ic—p

:—Z Z W' (r Tivp T+ 7)) + Z Z W'r +o i) =0 (36)
p=0 j=ti—ic+p p 1 j=1
Let R{ = ui —wuj  and 7f = R /a;C for all i € (ig—1,%k). To estimate the error between

the solutlons of (34) and (36) we need to replace R;, in the right hand side of (34) by Rf and
estimate its residue. For this purpose let ¢ = iy in (36) and do Taylor’s expansion at R, / ay, for
each component of 7¢ involved. We then obtain

ig—1

S (k- W (LR ) = b, (37)

N a
J=tk k




where
zc—l ip—1
Z Z W”('(p])( zk—|—p+"'+7njc'—|—1 - (Zk +p_])RzCk/ak)
p 0 j=ig—ic+p
ie tptie—D

+3 Z S WIS 4 s — (G — ik + P)RS, ).

pl]lk

Here oj = 01(r ), + -+ +750) + (1= 01)(ix +p— §)RE Jag and 9 = Oa(r§ + -+ 14 ,) +
(1 —62)((4 — ix + p) R, /ax). Note that %o <ri <«vforalli. So does Rf /ay for all k. Hence

: N : . . o 4 o .
(i +p=J)go <95 < (i +p—3)7 (G <ir) (G —ix+p)zo <¥j < (G —ix+p)y (7> k)
We thus have
4 mazx
hiy, < (\W"( o) + 2w (25 0)| 4 i W (e o) AT < 20— 15—, (38)
where Arj?® = max;c, _i,i,+io] |75 — R, /ax|. Subtracting (37) from (34) and using Taylor’s
theorem we can obtain
ip—1 max
> ik — 3)PW" (i — 5)%)(Ri, — RE,)/ax <20 (39)
J=ik—1lc
Here $0 <9 = (0R;, + (1 — 0)R; )/ar < (where 0 < 6 < 1). Noting that
ip—1 4 ZC((S) 4
> ik — )W (i — 5)9) = W" () + ZfW" izo)+ Y W (jz0) > 10/
J=tk—tc j=2 j=5
and a; <[ we have:
|R;, — Ri,| <21 max Arte. (40)

Now we estimate Ar]** for the solution r¢ of (22). From %0 <rf <y~ 1120 we immedi-
ately have Ar[®® < (1.12 — 2)o = 0.320. However, we can do better. From (24) we have (for
all i # j):

l(..C l¢..C ! 4 ! ! 4 ! 4 !
(W) =W (i) < W2 go) =W (29)[+ W2 co) + (W3- 20) = W (3y)]) +
4

4
2W'(3 - go) +-x2W(2- 50)

because W'(«) decreases dramatically as « increases. Noting that [W'(rf)—W'(r$)| > W"(y)|rf -
ré| > 15|r¢ —r¢|/o? we obtain |r§ —r¢| < (2W'(2- $0)/15)0? = no. Hence,
Ar™* < no. (41)

Next we treat (24) more carefully to obtain a much better estimate than (41). Subtracting the
equations of (24) for i =2 and i = j + 1 (j > 2) we have (noting that W"(2 - 30)2W'(2- 30) <
OBW'(3-30)))

4
(W(r5) = W'(rja)l < [W"2- zo)l(rf —rjl +2Ir5 = rip| + [r§ — ) + OBW'(3-

IA

4 4 4
2AW(2- 20)IrS — 14| + [W(2- Z0)lIr§ — rfnl + OBW'(3 - z0).



Similarly to the above we have
4 4
1§ = 72| < O(W"(2 - 20)|/15)0%r§ = 15.0] + OBW'(3 - Z0)/15)0. (42)

Subtracting the equations of (24) for i =3 and i = j + 2 (j > 2) we have

4
(W'(r5) = W'(rjp2)l < [WH(2- =g — 1l + 25 — 1ol +Iry —rjpsl) +
4
w"(3 - ST =7l +20r5 = r540] + 3lrs — riyo] + 2rL —rjisl) +
4
|r§ — r514]) + O(4W' (4 - 30))

We can verify that both O(|W"(2 - 20)|W'(3 - 20)/15) and O(|W"(3 - 20)|W'(2 - 20)/15) <
O(4W'(4 - 20)). We thus have

75~ 1540l < O(W"(2- 50)/15)0Irf — rfal + OUW"(3 - £0)|/15)0%1r§ — 15
+O(4W' (4 - %0) /15)a>. (43)
Similarly we can obtain
7 = 75451l < OUW"(@2- £0) [18)0%lr%4s — 5 + OUW" (B 50 18)0% Sy — i
ek O (- 50N /18)0% iy — ol + OGIW (i £0)|/15)0% (44)

for 1 <4 <i.. Fori,+1<i <[] we have

4

-

5
"ne(s 4 21,.c c . "y: 4 2

+ -+ O(WH((ie - 50)|/15)U Titie—1 = Tititic—a| T O W" (ic - 50)|/15)U : (45)

c c c c 4 c C
Irf = r5sical SO(W"(2 - 20)1/15)0% iy — 1§13l + O(W" (3 - 0)|/15)0”Iryy — 11 i|

Substituting (43) into (42) and then applying (41) we can dramatically reduce the first term
(since [W"(j - $0)| < 1 for j > 2) and obtain |r§ — ¢, | < OBW'(3: £0)/15)0”. Similarly if
we substitute (44) for i = 4,5, -+ into (43) we will dramatically reduce the first and the second
terms and obtain [r§ — rf | < O(4W'(4 - 25)/15)02. Repeating this procedure we can obtain
¢ =76 1| < OGEW!'(i- 30)/15)0? for 1 < i <. and |r§ — 15, || < O(iW'(ic - 30)/15)0”
for ic +1 < i < [§]. For [§] <i < N we can start from i = N and obtain the same estimates
accordingly. Therefore, for £k = 1 and %1 — i, > i

i

1 4 1—i 4
AreT < ¢yl /ay < = iW'(j=0)o?/15 $i W' (ie=0)0?
i S elimiotic] j:zijk_l Irj = ril/ox < l; IW(i50)o" /15 + ——icW (iczo)o
L
<K+ (46)

-l l



For k =1 and 41 — 4. < i, (noting that i, = [5]) we have

ik
Armer < max S s/l

1 . . PR .
k 1€ ik —bcyiptic] .

J=tg—1
1 e 4 1 — (i1 — i) 4
< = ey 2/ L =) Pi(e s\ 2
< 7 X AW 15+ S W~ el
l .
s+ 1+ l 4
< k(0 B el i oo, (47
l l 2 )
For 1 < k < [§] we can have
Arj** < Kdo. (48)
For k > [%%] the result is accordingly the same as (46)-(48). Therefore
K max{n+ (I —i.)4,l6}o if [L] — i > .
R, — R || < . R el , 49
1R, — Rl < { K max{n + (4 + 1+ i) W(([}] - i) bo)ovt}o it [1] i <ip )

where || - || can be || - |00 OF ﬁ” “||l2- The first part of (49) shows (8) from (19) and N = ml.
From the definition of R;, and U;, = 0 we can calculate

k
=Y Ry, for k=1,2,---m.
j=1

Uy, =Ry, U,

i

Similarly uj, = Zle Rfj. Thus the error between U;, and uj, is:

Kmmax{n+ (I —i.)é,l0}o if [L] —ic > e

1Ts = i |l < { Kmmax{y + (4] + 1+ i) [W/((1] — i) o)y 6o it (1] —do<dp OO

The first part of (50) shows (9) from (19) and N = mli. Note that the length of our material
problem is of O(N¢). So for a material with finite length we have mlo = No = O(1).

Combining the error estimate (50) with (7) we obtain the error between the QC approximate
solution U;, and the full lattice-scale solution u;,:

K(No)(max{% + 56,6} +i.0) if [L] — i > i,
||UZ - ulkHOO < n o [EHFie oo .\ 4 . ol . .
K(NO')(II].&X{T + fH/V (([E] — ZC)EO')‘O', 6} + ZC(S) if [5] — e < ¢

(51)

All notations used in estimates (49)-(51) have been explained in §1. These results not only prove
the estimates mentioned in the introduction but also give error estimates for other choices of [.
Better approximation is expected if we use higher order polynomial shape functions in (28). The
method we have used to analyze this model may apply to other material particle problems and
our results may also be useful to study dynamic features.
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