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The covariant transport of electromagnetic �elds and its relation to
magnetohydrodynamics

G� Hornig �

Theoretische Physik IV� Ruhr�Universit�at Bochum� ����� Bochum� Germany

Ohm�s law in ideal magnetohydrodynamics �MHD� leads
to an induction equation which can be interpreted in terms
of magnetic �ux being transported by the plasma �ow� It is
shown that this frozen�in condition is the non�relativistic limit
of a corresponding relativistic condition for the electromag�
netic �eld tensor� Several invariants for this type of trans�
port are analyzed� The relativistic formulation also includes
a broader class of transporting �ows� which may di�er from
the plasma �ow� A classi�cation and interpretation of these
transporting �ows is given and it is shown that the corre�
sponding evolutions of the electromagnetic �eld also includes
cases of non�ideal MHD evolution� Thus it is possible to �nd
invariants in non�ideal MHD similar to the magnetic �ux for
ideal plasma �ows�

	
�����q� 	
�
��h

I� INTRODUCTION

Ideal Ohm�s law in magnetohydrodynamics �MHD�
implies the conservation of magnetic �ux as well as of
magnetic lines of force in the plasma �ow � ���� �	��� This
leads to the intuitive picture of magnetic �ux being trans

ported in the �ow of the plasma� The mathematical foun

dation of this picture is given by the curl of Ohm�s law
which has the form of a Lie
derivative of a divergence
free vector �eld� This implies the conservation of an in

tegral of this vector �eld over an arbitrary surface� i�e� the
magnetic �ux� It also implies the preservation of mag

netic �eld lines which was the motivation for a broad
investigation on topological properties of magnetic �elds
�e�g� contributions in ����� Properties as magnetic he

licity� linkage or knottedness of magnetic �eld lines are
invariant for ideal dynamics and therefore characterize
the class of �elds which are accessible starting from a
given state by ideal plasma dynamics � �
�� �����

In a preceding paper � �	�� we investigated whether it is
possible to extend the conservation of magnetic topology
beyond ideal MHD to non
ideal plasma dynamics� We
found several classes of non
ideal evolution which pre

serve magnetic topology� but we also found that struc

tural stability of the notion of magnetic topology is a
severe restriction in the non
ideal case� Especially in
non
ideal plasmas the magnetic topology may depend on
the frame of reference� �This e�ect does not appear for
ideal plasmas�� The upshot is that the notion of mag

netic topology is not invariant� This naturally raises the
problem of �nding a concept related to magnetic topol


ogy which is invariant under Lorentz transformation�
We will show that there is no way to extend the concept

of magnetic �eld lines invariantly �section II�� Instead the
notion of magnetic �ux does have a relativistic general

ization leading to the covariant transport of electromag

netic �ux �section III�� We will discuss its properties in
section IV� Covariant transport requires a transporting
�ow� examples of such transporting �ows and a classi�

cation are given in section V�

II� MAGNETIC TOPOLOGY UNDER LORENTZ
TRANSFORMATION

In a preceding paper we gave several examples that
show that magnetic topology is not invariant under
Lorentz transformations� This is a consequence of the
fact that the magnetic �eld is not a vector �eld in
Minkowski
space but a part of the electromagnetic �eld
tensor� Magnetic and electric �eld components mix un

der Lorentz transformations and the result does not de

pend on the topology of the magnetic �eld alone� but
also on the electric �eld� Nevertheless� it is instructive to
see what a relativistic analogue of the magnetic topology
conserving equation would look like� Topology conserva

tion in non
relativistic MHD is governed by an equation
of the type

�tB � v�rB�B�rv � �B� ���

where v is the velocity of an arbitrary �ow� not necessar

ily the plasma �ow �see �����	��� It transports the mag

netic �eld lines� such that they are frozen in the �ow� The
scalar function � is only restricted by B�r���r�v� � �
and may depend on space and time� Mathematically
the frozen
in condition is appropriately represented by
the Lie
derivative� Applied to various quantities� such as
scalars� vectors or tensors� the Lie
derivative yields the
corresponding transport equations for the frozen
in con

dition �see Appendix A or ����� The above equation can
be written with the help of the Lie
derivative �cf� Eq� A�
�

LvB � v�rB�B�rv
applied to the vector �eld B as

�tB� LvB � �B� �	�

This equation is not covariant as pointed out in �	�� Now
the question arises� whether there exists a suitably mod

i�ed version of Eq� �	� which is covariant� The covari

ant form of Eq� �	� is the Lie
derivative in Minkowski

space �IM�� applied to a hypothetic four
vector �eld B���

�



which is transported in a �ow given by the four
velocity
V � �V ��V��

LVB
� � �B� � � �� �� 	� � ���

�
�
V ���B

� �V�rB� � B���V
� �B�rV � � �B�

V ���B�V�rB�B�rV � B���V � �B

�The superscript � denotes the time component� while
the cartesian vectors are bold face� Also� from here on
all velocities are normalized to c� the velocity of light��
However� the only four
vector �eld the space components
of which reduce to B in the non
relativistic limit is the
contraction of V ��� with the dual electromagnetic �eld
tensor F�� � i�e�

B��� � V�F�� � �V�B� V �B�V � E��

Unfortunately it involves already the transporting veloc

ity V ��� and it is therefore not suitable to de�ne a covari

ant �topology� of the magnetic �eld� Moreover� we see
that in Eqs� ��� the equation for the space components
of the hypothetic �eld B��� involves the time component
B� and vice versa� So the equations for time and space
components are coupled which excludes the possibility
of simply de�ning B��� � ���B�� An exception is the
non
relativistic limit where the Eqs� ��� reduce to

Eqs� ���
���� ��B

� � v�rB� � �B�

��B� v�rB�B�rv � �B�
�
�

provided the time component of B��� in that limit is of
the order O�v�� i�e� of the order of a non
relativistic ve

locity� Here we rediscover Eq� ��� as the space component
of the non
relativistic limit of Eqs� ���� However� as we
already mentioned� there is no magnetic four
vector and
therefore no straight forward way to generalize the notion
of topology conservation of magnetic �elds in a covariant
way� But we will return to Eqs� ��� in another context�

III� THE COVARIANT TRANSPORT OF
ELECTROMAGNETIC FIELDS

A� Equations of Transport

Mathematically the electromagnetic �eld is a closed
two
form in Minkovski space� i�e� an antisymmetric ten

sor of degree two� Taking this into consideration� the
search for a covariant generalization of magnetic topol

ogy conservation leads us to the Lie
derivative of the
electromagnetic �eld tensor F�� �or in di�erential forms
the two
form ��

F �� Although the notation in di�erential
forms is more compact and concise� the notation in ten

sors or cartesian vectors is more common and so for the
convenience of the reader we give here all three equivalent
expressions�

LV �
�
F � � ���

� �������V
�F�� � � ���

�
�
���V �E�V �B� �r�E�V� � �
V ���B�r� �V �B� �rV � �E � �

���

One might suggest that we should allow the right hand
side �RHS� of Eq� ��� to be � ��

F instead of �� analogous
to Eq� ��� or ���� There the free function � re�ects the
fact that the topology of �eld lines does not depend on
the strength of the vector �eld� Here such a term is re

stricted by the condition of vanishing divergence resulting
in

d ����
F � � �

� ������� ��F��� � �

�
�
B�r� � �
B��� �r�� E � ��

���

Hence there are no non
trivial solutions �� �� const�� ex

cept if E�B � �� Despite the fact that this is a necessary
condition for the ideal plasma �ows� which is assumed
to hold approximately for most of the astrophysical plas

mas� the exact condition is an exceptional case� which
in all realistic situations is present at most on sets of
measure zero� These are the border surfaces where E�B
changes from E �B � � to E �B � �� At these surfaces
Eq� ��� requires � � const� in both regions separated
by the E �B � �
surface� Continuity of � than requires
� � const� everywhere and at every time� This leads us
to the statement that � �� const� requires E�B � � for re

gions of �nite measure� However� these are singular cases
which can be excluded without much loss of generality�
The same holds for solution which have � � const� �� �
which correspond to everywhere exponentially growing
or decaying �elds� so that we can simply use � � ��
So Eq� ��� is a covariant set of equations which gov


erns the transport of electromagnetic �elds� i�e� both the
electric and the magnetic �elds� in a �ow given by the
four
vector �eld V ���� We therefore call this the covariant
transport of electromagnetic �elds� The equations �������
denote the antisymmetric di�erentiation of a four
vector
equation which is found by integration�

iV �
�
F � d�

� V �F�� � ���

�
�
E�V � ����
V �E �V �B � r��

���

While the space component of Eq� ��� is very similar to
the magnetic �ux conserving Ohm�s law� we have an ad

ditional time component which determines the evolution
of the potential �� This evolution is solely determined by
the transporting �eld V ��� which is seen most clearly by
using the second equation to express the left hand side
in terms of r�� This results in the equivalent system

V ���� �V�r� � � ����

V �E�V �B � r�� ����

	



Due to their formulation in di�erential forms these
equations are independent of the choice of the coordinate
system� They are therefore also suitable for the descrip

tion of general relativistic situations� as for instance the
accretion of plasma onto a black hole� �See for instance
Carter in ���� He also showed the embedding of these
equations in a more general Lagrange or Hamilton for

mulation of �uid �ows�� However� it is not our primary
concern to investigate the properties of general relativis

tic plasma �ows� Instead� we want to show that these
equations� although having not such a simple intuitive
meaning as the ideal Ohm�s law� have similar conserva

tion properties as magnetic topology conserving �ows�

B� The non�relativistic limit

The relation of these covariant equations to the usual
induction equation of MHD is found by taking the non

relativistic limit of Eq� ���� This limit requires a non

relativistic velocity kvk � � � � as well as small phase
velocities O���	r� � O��� and a relation between the
order of E and B� This latter relation is usually derived
from Faraday�s law in MHD and states that O�E� �
� O�B�� Taking this into account we can neglect the last
term in the second of Eqs� ��� and replace V ��� � �V ��V�
by V ��� � ���v��

Eqs� ��� with O�v� � O�E	B�� �

�
�
���E � v �B� �r�E�v� � �
��B �r� �v �B� � �

��	�

�
�
��� � v�r� � �
E� v �B � r�

����

In this limit the equation for the evolution of the mag

netic �eld is the usual induction equation of ideal MHD
and it is now decoupled from the equation for the elec

tric �eld� The latter is not considered in MHD because
the electric �eld can be eliminated from all equations
of MHD� However� for all non
ideal cases this equation
forms a non
trivial condition to the evolution of the elec

tric �eld and we will return to it in section IV� Integra

tion of Eq� ��	� yields Eq� ����� which reveals the ideal
Ohm�s law �� � �� as a special case of the more general
magnetic �ux conserving form � �� ��

It is worth mentioning that the condition O�E� �
�O�B� is not a strict consequence of Faraday�s law� To be
precise it should read O�Erot� � � O�B�� where Erot de

notes the divergence
free part of the electric �eld� There

fore� we can assume for instance O�B� � O�E�� which is
consistent with Maxwell�s equations if the electric �eld is
dominated by a curl
free part� The corresponding non

relativistic limit of Eqs� ����

E � r� ��
�

���� v�r� � �� ����

represents an electrohydrodynamics with a frozen
in po

tential of the electric �eld�

IV� INVARIANTS DERIVED FROM
COVARIANT TRANSPORT

A� Electromagnetic �ux conservation

Now we look for the relativistic analogue of the con

servation of magnetic �ux� We integrate the electromag

netic �eld tensor F over a two
dimensional surface C in
IM� �see Eq� A� for the convention on the surface ele

ments da and da���Z

C

FdA �

Z
C

B�da�
Z
C

E�da�

The �rst term on the right hand side is the well known
magnetic �ux penetrating the surface C� The second term
is the electric �ux and exists only if the surface has a non

zero extension along the time axis as shown in Figure
�� Together they form a Lorentz invariant measure of
electromagnetic �ux penetrating C�
If this surface is transported by a �ow V ��� in IM� the

change of �ux through the moving area is given by the
Lie
derivative theorem �see ���� p� ���� which states that
the change is zero as long as the tensor of the electromag

netic �eld is Lie
transported by the �ow V ���� or in other
words� if it is covariantly transported �see Figure 	 for
an illustration�� Hence� we can formulate the following
theorem as the generalization of Alfv�en�s theorem of the
frozen
in magnetic �ux� �The covariant form of which
was �rst stated by Lichnerowicz ���� however without a
closer analysis or interpretation��

a� Theorem �Transported �ux� The electromagnetic
�ux penetrating a two�dimensional surface comoving in
a �ow V ��� in Minkowski space �IM�� is constant for a
covariantly �Lie�� transported �eld tensor�Z

C

FdA �

Z
C

B�da�
Z
C

E�da� � const�

Here the transport of the surface C is now
parametrized by a parameter �s� which is not necessarily
the time��

dX�

ds
�
dX

ds

�
� �V ��V�� �X��X� � C� ����

Only for V � � const� we can identify s with the timeX��
Therefore this theorem reduces to the usual conservation
of magnetic �ux in the non
relativistic limit V � � �� �
v������ � � in a smooth manner� Due to V � 	 � in this
limit a surface which has no extension in time direction�
in other words a space
like surface� stays in a t � const�
plane during the transport and the second integral over
the electric �eld is zero throughout�Z

C

B�da � const�

�for V � 	 � and a space
like C at t���

�



On the other hand� a surface for which only the second
integral contributes� i�e� a surface which contains the time
axis� may develop a projection onto the space axes during
the transport due to a non
vanishing ��V� This projec

tion does not contribute to

R
B�da if the magnetic �eld is

parallel to that plane� Therefore� if we start with a plane
spanned by a magnetic �eld line and the time axis� or if
the �ow is stationary ���V � �� we deduce�Z

E�da� �

Z
E�dl dx� � const� for dl k B� ����

�
Z
E�dl � const�� ����

For the case of a magnetic �eld line the integral can be
expressed via the potential ��Z �

�

E�dl � ��x� t�j�� � const��

Note that this is not a consequence of the non
relativistic
Ohm�s law alone but of both of Eqs� ����� Boozer ����
stressed the importance of this quantity evaluated along
magnetic �eld lines for the non
ideal behavior of the mag

netic �eld and showed that for certain �eld con�gurations
one can always �nd a transporting �ow such that both
Eqs� ���� hold�

In the non
relativistic limit the conservation of �ux
implies the conservation of magnetic lines of force� For
relativistic �ows� this does not hold� So� concerning the
topology of the magnetic �eld there is no smooth limit
from relativistic to non
relativistic �ows and one can eas

ily construct examples which show no conservation of
magnetic �eld lines for all values of V � with exception
of the limit V � 	 �� Thus magnetic �ux conservation
is a much more robust property of plasmas in the sense
that it has a relativistic generalization in contrast to the
conservation of magnetic �eld lines�

B� The Transport of E�B

There are further invariants related to covariant trans

port of electromagnetic �elds� These invariants can be
found by using operations which commute with the Lie

derivative �see ����� p� 	���� The most important invari

ants obtained this way are �the four
form� E�B and the
�three
form� helicity H��� � �A�B� A�B � E �A�� The
equation of transport for E �B can be deduced directly
from Eq� ����

���V
�E�B� �r��V E�B� � � ����

This is a relativistic equation of continuity for the scalar
density E�B� The Lie
derivative theorem �see Appendix
Eq� �A��� states that the corresponding invariant of
transport is found by integration over a four
dimensional
volume

Z
C�

E�B dx� � const�

We can rewrite Eq� ���� in the form

V ���E�B �V�rE�B � ����V � �r�V� E�B�
where it is obvious that points where E�B � � are trans

ported in the �ow of V ��� without any changes� There is
no appearing of new points where E �B � �� nor disap

pearing or merging of such points� Hence the topology
of regions in space in which E�B � ��� �� and � �� re

spectively� is preserved �Figure ��� If for instance a new
region E�B � � appears inside a E�B � � region� this indi

cates that there is no transport velocity for this evolution
of the electromagnetic �eld which satis�es Eqs� ����
In the non
relativistic limit V � 	 � the transport

equation simpli�es to a normal equation of continuity
and therefore the invariant quantity is E �B integrated
over a three
dimensional area in IR� instead of a four

dimensional volume in IM��Z

C�

E�B d�x � const� for V � 	 �

C� Transport of the vector potential

Before we analyze the properties of the helicity four

vector we �rst have to investigate the transport of the
vector potential� which is used in the expression for the
helicity� In terms of di�erential forms the vector potential
of the electromagnetic �eld is a one
form and its Lie

transport is governed by the equations

LV �
�
A � � �	��

�
�
���V �A�� �V�rA� �A��V � �
V ���A�r �V�A��V �r�A �A�rV � � ��

It is easy to prove that these equations imply the covari

ant transport Eq� ��� by applying the covariant derivative
��� eq �req��r� eq� to the time eq� and space com

ponents eq of Eq� �	��� But does the reverse also hold
� This is an interesting problem because if we can de

rive Eq� �	�� from covariant transport we can also derive
transport equations for the helicity and a conservation
property of the helicity similar to the conservation of the
electromagnetic �ux as we will see in the next section�
Thus we convert the equations for covariant transport
with the help of

E � ���A�rA�� B � r�A
into equations for the vector potential� They meet the
form of Eq� �	�� for the condition

d� � �diV ��
A

� ��� � ����V �A��

�
�
��� � ����V �A� �V�A�
r� � �r�V �A� �V�A�

� � � ��V �A� �V�A� � 
c� �	��






where 
c is a constant of integration� This is a new con

dition for the form of the potential � and it will not be
satis�ed for arbitrary choices of � and A�� Thus the
transport of the vector potential is not a direct conse

quence of the transport of the electromagnetic �eld for
the general case� But we can satisfy this equation with
the help of a gauge of the vector potential��

A� � A� � ���
A� A �r�

which turns the condition �	�� into an equation deter

mining the evolution of the gauge potential ��

V ���� � V �A� �V��A �r�� � �� 
c

Hence we can always determine a gauge function ��
which may be chosen to be identically zero at a start

ing time� so that the vector potential is transported ac

cording to equations �	��� A similar gauge was used in
��	��
� for a non
relativistic formulation�

b� Theorem �Transport of vector potential� For a co�
variantly transported electromagnetic �eld under a �ow
V ��� with V � � � there exists an evolution of the vec�
tor potential according to Eqs� ���� so that the vector
potential is a Lie�transported one�form�

The transport of the vector potential again implies the
conservation of an integral� The vector potential inte

grated along a comoving line in IM� is constant �cf� Eq�
�A����Z

C�

��
A �

Z
C�

A� dx� �
Z
C�

A�dl � const� �		�

Because the vector potential is not a measurable quantity
for itself� this property is of limited use for the investiga

tion of electromagnetic �elds� It is� however� important
for the evolution of the helicity four
vector which� inte

grated over a three
dimensional volume� is an important
measure for the complexity of the electromagnetic �eld�

D� Transport of the helicity

The transport of the vector potential enables us to calcu

late the transport equation of the helicity density which
turns out to be a four
vector in the relativistic case� con

taining the usual helicity density A�B as the time com

ponent�

��
H � ��

A 
 ��
F

� H� � A�F��

�
�
H� � A�B
H � A�B�E �A

�Here F�� is the dual tensor of the electromagnetic �eld��
With the help of the transport equations for the

electromagnetic �eld Eqs� ��� and the vector potential

Eqs� �	�� we can derive a transport equation for the he

licity four
vector�

LV �
�
H � � �	��

�
�
V ���H

� �r��VH�
��H�rV � � �

���V �H��r� �V �H� �Vr�H�H���V � �

This in turn is equivalent to the helicity Lie
transported
as a three
form� The integration over a three
dimensional
volume � yields a Lorentz scalar� the total helicity of the
volume � �see Appendix A	 for the convention on the
volume elements dV and dV���Z

�

HdV �

Z
�

H� dV �
Z
�

H�dV� �	
�

The �rst term on the RHS is the well known non

relativistic integral of helicity� the second term arises
from a possible extension of the volume along the time
axis� Together they form a Lorentz scalar� Similar
to the integral of the electromagnetic �ux� the use of
the Lie
derivative theorem yields the following theorem�
�The non
covariant form of helicity conservation was �rst
stated by Woltjer ���� and Mo�att ����� a relativistic ver

sion without the gauge given above was given by Carter
in �����

c� Theorem �Transported helicity� There exists a nat�
ural gauge of the vector potential for covariantly trans�
ported electromagnetic �elds such that the helicity inte�
grated over a three�dimensional volume transported in a
�ow V ��� with V � � � in IM� is constant�Z

�

H d� �

Z
�

H� dV �
Z
�

H�dV� � const�

Comparing the transport equations for the helicity
Eq� �	�� with the relativistic equations for preservation of
�eld lines Eq� ��� we see� using � � ����V ��r�V�� that
they preserve the helicity �eld lines� It is a ironic feature
here that we were looking without success for a relativis

tic form of magnetic �eld line conservation� and instead
�nd it for the helicity vector �eld� Unfortunately the
Eqs� �	�� have no smooth magnetohydrodynamic limit�
In the non
relativistic limit of Eq� �	�� reduces to

��H
� �r��vH�

�
� � �	��

��H�r� �v �H� � v r�H�H���v � �� �	��

Here the equation for the space components is not an in

dependent equation and is still coupled to the time com

ponent in the non
relativistic limit� This is due to the
fact that the non
relativistic limit of Maxwell�s equations
not only requires v � � but also that time and length
scales of variation of the electric and magnetic �elds are of
the order of a non
relativistic velocity O���	r� � O�v��
Hence�

O�kEk	kBk� � O�A�	kAk� � O�kHk	H�� � O�v��

�



and the last term in Eq� �	�� is of the same order as the
�rst� This explains why the transport equation for the
time component Eq� �	��� i�e� the scalar magnetic helicity�
is well known in magnetohydrodynamics� in contrast to
the equation of the space components� Nevertheless we
can derive Z

H� d�x � const�

for the limit V � 	 � or more general V � � const�� whileZ
H�da � const�

only holds for H���V � �� In this case Eq� �	�� has
the form of a transport equation for a surface density or
two
form in IR� �see Eq� �A�	�� which immediately yields
this invariant�

V� TRANSPORTING FLOWS

A� Examples

The results derived so far would be of limited use if
they were restricted to cases where we have an Ohm�s
law which meets the form Eq� ���� The only major ap

plication would be the ideal Ohm�s law and the derived
equation are either trivial or well known for this case�
The strength of the concept is that it can be general

ized� This generalization has a double meaning� First we
can show how the already known invariants ��ux� topol

ogy� helicity� E �B� of ideal �� � �� V � 	 �� or at least
magnetic �ux conserving �� �� �� V � 	 �� systems are
modi�ed if the characteristic velocities of our system be

came relativistic� This is important for the application
of MHD to relativistic situations� The other more impor

tant point is that we can use this covariant description
to �nd invariants of non
ideal systems also regardless of
whether they are relativistic or not�

The crucial point of the generalization is the interpre

tation of the transporting velocity V ���� For the deriva

tion of the invariants we used at no time that V � is
the plasma velocity nor that it is of the velocity type
V ��� �

�
�	
p
�� v��v	

p
�� v�

�
of particles with �nite

mass� Only for the existence of the vector potential we
used V � � �� Hence� V � is a general vector �eld in the
Minkowski space restricted only by V � � � and we can
also use this to extend the realm of our theory beyond
that of ideal MHD� The case of the electromagnetic �elds
being transported in the plasma �ow is a special case of
the more general situation where we have a transport
velocity which may di�er from the plasma velocity� A
simple example of such a case is given by an Ohm�s law
of the form

E � vp �B �
�

en
J �B�

�vp is the plasma velocity�� which can be converted in
the form for covariant transport Eq� ��� with the help of
V ��� � ���vp � �

enJ� and � � �� In this example we can

also include a term �
enrPe on the RHS� if we assume for

instance T � const� and use � � kT
e
ln�n��

Unfortunately the case that we can deduce transport

ing �ows in this way directly from Ohm�s law is an ex

ception� restricted to special forms of Ohm�s law� For the
important case of a resistive term �J on the right hand
side of Ohm�s law we cannot derive such a general trans

port velocity� Nevertheless in certain situations we may
have transporting �ows for this case as well� Consider
for example an Ohm�s law of the form

E � vp �B � �J� �

en
rPe�n�

A simple stationary one
dimensional solution for a cer

tain region of space is given in cartesian geometry by

B � Bx ex �By�x� ey

J � Jz�x� ez

n � n�x�

E � � �

e n�x�

dPe�n�x��

dx
ex �Ez ez

vp � �Ez � �Jz�x��	Bx ey

Although there is a resistive term we can meet the form
Eq� ��� with a �virtual� velocity

V � � ��V � Ez	Bx ey

and the potential ��

� � �
Z

�

e n�x�

dPe�n�x��

dx
dx�

This is� of course� not the only solution� we can add for
instance to V a component parallel to B which still sat

is�es both equations Eq� ���� We can also choose another
V ��x� and in this way modify ��x� which may be neces

sary to match this solution for instance to a solution of
an external ideal region�
The examples show that there exist transporting �ows

in all cases of ideal plasma �ows and also for cases of
non
ideal evolutions� For certain cases we can derive the
transporting �ow a priori from the form of Ohm�s law
without knowing any details of the solution� However�
in the general case we have to prove the existence of a
transporting �ow for every single solution� This means
that we have to answer the question� Given the possibly
time
dependent electromagnetic �eld �E�x� t��B�x� t��� is
there a transporting �ow V � �V ��x� t��V�x� t�� such
that the equations Eq� ��� hold� Alternatively we can
answer this question on the level of Ohm�s law Eq� ����
where the equations are more simple� but require to �nd
the potential � in addition�
As an example� we try to �nd a solution for the sim


ple con�guration of a magnetic �ux tube� A solution for

�



fV �����g is found by integrating � from the parallel com

ponent of Ohm�s law along magnetic �eld lines� starting
from an arbitrary cross
section where we can prescribe �
at will� for instance � � ��

��x� t� ��

Z
V � E�eB dl �	��

To satisfy the perpendicular component of Ohm�s law
and the additional time component we split the space
component of the transport velocity V in a part perpen

dicular V� and parallel Vk to B� The former part is
de�ned by

V� ��
�V �E �r���B

B�

the latter by

Vk �� ����� E�V�
E�eB �

Note that the last equation requires that E �B has a
uniform sign in the region under consideration� Then
fV ��V��Vk��g form a complete solution of our prob


lem� although we have not de�ned V � yet which we can
do by simply setting V � 	 �� This of course is a solution
which holds only for a certain region of space where there
are no magnetic nulls or closed �eld lines and where E �B
has a uniform sign� These requirements may prevent us
from extending the solution beyond the �ux tube to a
global one� Consider for instance a closed �ux tube with
E �B � � inside the tube� The integration of � along
a closed �eld line requires according to Eq� �	�� either
� � �� and therefore V � � � and V � � �which is the
trivial solution which always exists�� or V � � � on a part
of the �eld line� Both alternatives do not �t the inter

pretation of V ��� as a transport velocity� in which we up
to now assumed that V � � �� Here the reader might ask

whether we should assume kV ���k �
p
V �� �V� � �� to

interpret V ��� as a velocity of a virtual �ow of particles�
or at least kV ���k � �� to ensure the positiveness of V �

under Lorentz transformations� The answer to this ques

tion requires a closer analysis of our interpretation of the
transporting velocity in Minkowski space� which we try
to give in the following section�

B� Classi�cation

The existence of a transporting �ow� i�e� a Lie
invari

ance or Lie
symmetry� is the most general form of an in

variance of a physical system� It includes all the symme

tries which conserve the metric such as translation �con

stant velocity�� rotation �constant angle velocity� or time
invariance �V � � const��V � �� as well as those which
do not conserve the metric and thus in general depend
on space and time� With this interpretation in mind

the transporting �ow V ��� should satisfy V �� � V� � �

with possible exception of sets of measure zero� to have
a de�nite meaning for the integral invariants as given by
the Lie
derivative theorem �see Appendix A���Otherwise�
i�e� for V ��� 	 � on a whole region of IM�� the meaning of
the constance of comoving integrals is lost in this region��
Now there are three subsets of transporting �ows

which are invariant with respect to Lorentz transforma

tions� First� the space
like symmetries with kV ���k� �

V �� � V� � � everywhere� An example is the solution
V � ���B� for ideal plasmas� or for instance the gen

erating velocity for a rotational symmetry if it exists�
Secondly� the time
like symmetries� i�e� kV ���k� � � ev

erywhere� This subset contains the usual non
relativistic
plasma �ows V � ���v� as well as their relativistic form

V � ��	
p
�� v��v	

p
�� v��� Also for this group V � has

always a de�nite sign in IM�� which we can assume to
be positive� otherwise ��V ���V� is also a transporting
�ow� So we can always interpret the four
velocity by a
velocity v in IR�

V ��� � �V ��V�� v �� V	V �

and v is always smaller than the velocity of light� How

ever� note that we cannot turn around the arrow in
the last equation� that is� di�erent choices for V ��� be

longing to the same V	V � may lead to di�erent evo

lutions of the electromagnetic �eld� This holds for all
Lie
transported quantities listed in the Appendix except
the proper scalars i�e� quantities which are transported
according to Eq� �A
�� �For proper scalars the covariant
equation is equivalent to its non
relativistic form with
v � V	V ��� Therefore� all the �ows with kV ���k� � �
have their own right to exist and are not simply related
to �ows with V � 	 � or kV ���k� � ��
The third group is the complement of the �rst and sec


ond one in the set of all �ows with a Lie
symmetry� These
are the �ows which have regions in space and time where
kV ���k� � � as well as kV ���k� � �� In a subsequent
paper we will show that this set contains solution which
correspond to reconnection processes and that the frame

work of covariant transport allows for a precise de�nition
of reconnection�
This subdivision of transporting �ows is at the same

time a subdivision of electromagnetic systems� First note
that if we allow for kV ���k � �� i�e� the most general
form of a transporting �ow� all electromagnetic �elds
have a transporting �ow �at least the trivial solution
V ��� � ������ and that this �ow is not unique� i�e� there
may be multiple solutions� Secondly� the space of solu

tions� i�e� transporting �ows for a given electromagnetic
�eld� is a vector space� meaning that every solution can
be scaled by a global constant and also a linear combina

tion of solutions is a solution by itself� Naturally we are
most interested in time
like symmetries of electromag

netic systems because they allow us to make predictions
about the evolution with the help of the invariants de

rived above� Therefore we distinguish those electromag

netic �elds which have a time
like symmetry from those

�



which have none� We have done this by distinguishing
transporting �ows with kV ���k� � �� kV ���k� � � respec

tively� But it is tempting to relate other non
time
like
systems also to the group kV ���k� � �� to extend the set
of systems for which we can make predictions� This is in

deed possible for another large group which have V � � �
and kV	V �k � � in at least one frame of reference�
They allow to de�ne a global constant q larger than the
maximum of

p
V�	�V ��� in the region under considera


tion �G��

q �� sup
G

p
V�	�V ��� � �

This allows for a scaling of the time by

t� tq

� E � E	q and fV � � qV �

such that the scaled system has a time
like transporting
�ow� We call these systems MHD
equivalent� meaning
that we can always scale them with the help of large
values of q� such that the assumptions for electromag

netic �elds in MHD O�E	B� � � and O�V	V �� � �
hold� i�e� a small electric �eld compared to B and small
velocities compared to c� The resulting subdivision of
electromagnetic �elds with respect to their transporting
�ows is sketched in Figure 
�

VI� CONCLUSIONS

In this paper we investigated the covariant generaliza

tion of magnetic �ux conservation� This proves to be
a conservation of the electromagnetic �eld tensor which
beyond an induction equation for the magnetic �eld in

cludes a transport equation for the electric �eld as well�
The usual conservation of magnetic �ux is found in the
non
relativistic limit of these equations� In this limit the
topology of the magnetic �eld is preserved too� In gen

eral the covariant transport of the electromagnetic �eld
does not imply the conservation of magnetic topology�
Moreover we have shown that there is no covariant gen

eralization of this property of ideal or magnetic �ux con

serving plasmas� It has� however� other invariants� the
electromagnetic �ux� the helicity� and E �B� which are
conserved in the non
relativistic as well as in the general
case� Similar to the magnetic �ux and magnetic topol

ogy in ideal MHD� these invariants restrict the evolution
of the plasma and allow for predictions of possible �nal
states of an evolution�
Analogous to a smooth plasma �ow in ideal MHD�

which leads to smooth deformation of the magnetic �ux
and hence excludes magnetic reconnection and similar
processes� the covariant transport of the electromagnetic
�eld in Minkowski space represents a smooth redistribu

tion of the electromagnetic �ux� The transporting �ows
do not need to have the form V ��� � ��v � �vv� and we

gave examples that more generals �ows� restricted only
by kV ���k� � �� can be related to non
ideal evolutions
of magnetohydrodynamic systems� Thus there exists a
large group of non
ideal evolutions of plasmas which have
similar invariants as in the ideal case�
For time
like �kV ���k� � �� �ows the transporting �ow

in IM� has a smooth representation v � V	V � in IR�

also� If the �ow satis�es in addition V � � const� the
�ow v is a transporting �ow for the magnetic �eld in IR�

and the invariants reduce to the well
known invariants of
magnetic �ux conserving transport� i�e� the correspond

ing spatial integrals of B� A�B and E�B� For this case we
have in addition to these invariants also the preservation
of magnetic topology� Thus we can subdivide all electro

magnetic �elds in those which allow for a time
like trans

porting �ow� or at least can be scaled to such a �eld� and
those which do not have this property� The former have
frozen
in invariants of the above mentioned type� The
latter represent more violent evolutions of the electro

magnetic �eld� In a subsequent paper we will show that
this group also contains evolutions which show magnetic
reconnection� an example of a non
smooth redistribution
of the electromagnetic �eld�
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APPENDIX A� LIE�DERIVATIVE THEOREM

For reasons of completeness and as a reference we
give here an overview over the di�erential forms �n in
Minkowski space� their corresponding Lie
derivative with
respect to the �ow V ��� � �V ��V� denoted by LV � and
the equivalent expressions in terms of vector analysis� �A
splendid representation of this formalism is found in �����
Due to the dimension four of Minkowski space all forms of
degree higher than four vanish and we have the following
identi�cation between forms in IM� and the scalars �a�
b� and vector �elds �A�B� in IR�� Vectors A � �A��A�
in IM� are denoted by capital letters� their space compo

nents are bold face and time components are indicated by
superscript �� The signature of the metric is ���
��
��
���

��
a � a

��
A � A�dx� � Aidxi

��
�AB� � Aidx� 
 dxi � �ijkB

idxj 
 dxk

��
A � A�dx� 
 dx� 
 dx� � �ijkA

idx� 
 dxj 
 dxk
��
b � b dx� 
 dx� 
 dx� 
 dx�

Each of them imply the conservation of an integral
over the n
form due to the Lie
derivative theorem �see
���� p� ����� The corresponding area of integration Cn

�



is an n
dimensional volume comoving in the �ow V ����
For the integration� the orientation of these volumes is
important� For one
dimensional volumes this is trivial
but surfaces in IM are characterized by six components
for which we use the convention

da � a�dx� 
 dx� � a�dx� 
 dx� � a�dx� 
 dx�
da� � a��dx

� 
 dx� � a��dx
� 
 dx� � a��dx

� 
 dx�� �A��

while for three
dimensional volumes we use

dV � dx� 
 dx� 
 dx�
dV� � V �

� dx
� 
 dx� 
 dx�

� V �
� dx

� 
 dx� 
 dx�
� V �

� dx
� 
 dx� 
 dx�� �A	�

and the four
dimensional volume element is given by

dV ��� � dx� 
 dx� 
 dx� 
 dx�� �A��

Lie
transport in IM� and conserved integrals�

LV �
�
a � � �A
�

� V ���a�V�ra � �

�
Z
C�

��
a � a � const�

LV �
�
A � � �A��

�
��
�

���V �A�� �V�rA� �A��V � �
V ���A�r �V�A� �V �r�A

�A�rV � � �

�
Z
C�

��
A �

Z
C�

A�dx� �
Z
C�

A�dl � const�

LV �
�
AB � � �A��

�

���
��

���V �A� �r �V�A��V�r�A
���V �B � �

V ���B�r�V �B �V r�B
�rV � �A � �

�
Z
C�

��
AB �

Z
C�

B�da�
Z
C�

A�da� � const�

LV �
�
A � � �A��

�
��
�

V ���A
� �r��VA�

��A�rV � � �
���V

�A��r�V �A�V r�A
�A���V � �

�
Z
C�

��
A �

Z
C�

A�dV �
Z
C�

A�dV� � const�

LV �
�
a � � �A��

� ���aV
�� �r��aV� � �

�
Z
C�

��
a �

Z
C�

a dV ��� � const�

Beside these equations for the Lie
derivative of n

forms� there exists a Lie
derivative for �contravariant�
vector �elds as well�

LVA � � �A��

�
�
V ���A

� �V�rA� �A�rV � �A���V
� � �

V ���A �V�rA�A�rV� A���V � �

� Conservation of �eld lines in IM�

It is also instructive to compare these equations with
the corresponding transport of quantities in the usual
IR � IR��

��a� Lv�
�
a � � �A���

� ��a� v�ra � �

�
Z
C�

�a � a � const�

���
�
A � Lv�

�
A � � �A���

� ��A �r �v�A�� v �r�A � �

�
Z
C�

��
A �

Z
C�

A�dl � const�

���
�
A � Lv�

�
A � � �A�	�

� ��A �r� v �A� v r�A � �

�
Z
c�
��
A �

Z
C�

A�da � const�

���
�
a � Lv�

�
a � � �A���

� ��a�r��av� � �

�
Z
C�

��
a �

Z
C�

adx� � const�

And analogous to A� for vector �elds�

��A� LvA � � �A�
�

� ��A�V�rA�A�rV � �

� Conservation of �eld lines in IR��

�



��� W�A� Newcomb� Ann� Phys� �� ��� ���	���
�
� G� Hornig � K� Schindler� Physics of Plasmas� �� ���

����
��
��� H�K� Mo�att� G�M� Zaslavsky� P� Comte � M� Tabor�

Topological Aspects of the Dynamics of Fluids and Plas�

mas� Nato ASI Series ���� �Kluwer Academic Publishers�
Dordrecht ���
��

��� J�B� Taylor� Physical Review Letters� �� 	�
�� ����
�������

�	� M�A� Berger� Geophys� Astrophys� Fluid Dynamics� ���
�� �������

�
� M� Hesse and K� Schindler� J� Geophys� Res� 
�� 			�
�������

��� R� Abraham� J�E� Marsden� and T� Ratiu� Manifolds

Tensor Analysis and Applications� Applied Mathemati�
cal Sciences 
�� �Springer�Verlag� New York ������

��� B� Carter� in Active Galactic Nuclei� ed� C� Hazard � S�
Milton� �Cambridge University Press� ������ p� 
���

��� A� Lichnerowicz� Relativistic Hydrodynamics and Magne�

tohydrodynamics� The Mathematical Physics Monograph
Series� ed� A�S� Wightman� �W�A� Benjamin Inc� New
York� Amsterdam� ��
��� p� ��	�

���� A�H� Boozer� Physics of Fluids B ������ 
��� �������
���� R� Abraham � J�E� Marsden� Foundations of Mechanics�

�Addison�Wesley Publishing Company� ������
��
� D�D� Holm� Physics Letters A� ������� ��� ����
��
���� V�A� Gordin � V�I� Petviashvili� Sov� J� Plasma Phys��

��� 	�� �������
���� A�V� Tur and V�V� Yanovsky� J� Fluid Mech�� ���� 
�

�������
��	� L� Woltjer� Proc� Nat� Acad� Sci� USA� ��� ��� ���	���
��
� H�K� Mo�att� J� Fluid Mech�� ��� ��� ���
���

FIG� �� The domains of integration of magnetic� CB � and
electric �ux� CE � for a two�dimensional surface in IM�

FIG� 
� For covariant transport the electromagnetic �ux is
frozen in the �ow V

��� in IM��

FIG� �� The covariant transport conserves regions in space
with E�B � � or� �� Therefore a� corresponds to an evolution
which is consistent with covariant transport for V �

� �� while
b� is not�

FIG� �� A subdivision of electromagnetic �elds according
to existence and norm of their transporting �ows�
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