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ADAPTIVE TIME-STEPPING FOR INCOMPRESSIBLE FLOW
PART I: SCALAR ADVECTION-DIFFUSION∗

PHILIP M. GRESHO† , DAVID F. GRIFFITHS‡ , AND DAVID J. SILVESTER§

Abstract. Even the simplest advection-diffusion problems can exhibit multiple time scales.
This means that robust variable step time integrators are a prerequisite if such problems are to
be efficiently solved computationally. The performance of the second order trapezoid rule using
an explicit Adams–Bashforth method for error control is assessed in this work. This combination is
particularly well suited to long time integration of advection-dominated problems. Herein it is shown
that a stabilized implementation of the trapezoid rule leads to a very effective integrator in other
situations: specifically diffusion problems with rough initial data; and general advection-diffusion
problems with different physical time scales governing the system evolution.
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1. Background and context. The adaptive time-stepping algorithm that is the
focus of this work is certainly not new. We consider the simplest Adams–Bashforth–
Moulton pair. A version of our algorithm is hard-wired as the MATLAB function
ode23t, see [24], and the underlying methodology is discussed in any many textbooks
on the numerical solution of ODEs. See, for example, Henrici [13, p. 258] where
estimation of the truncation error is discussed, or Iserles [16, p. 78], where step-
doubling and halving is described.

The aim of this work is to assess the performance of this integrator in the context
of method-of-lines discretization of PDEs that arise in incompressible flow modelling.
In particular, we hope to provide insight into the role of adaptive time-stepping in
the context of modelling multiple physical timescales. For this purpose it suffices to
restrict our attention to the following simple model of scalar advection-diffusion:

(1.1)
∂u

∂t
+ a

∂u

∂x
− ν

∂2u

∂x2
= 0 on 0 ≤ x ≤ 1,

together with the initial condition u(x, 0) = u0(x), and boundary conditions (BCs)

u(0, t) = uL and either,(1.2)

u(1, t) = uR or
∂u

∂x
(1, t) = 0,(1.3)

where a ≥ 0 (the advecting velocity), ν ≥ 0 (diffusivity), and uL and uR are given
constants. In part II, we build on the foundation laid in this paper and consider the
potential of the integrator in the context of solving the Navier–Stokes equations.
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ADAPTIVE TIME-STEPPING 2019

Spatial discretization will, throughout this paper, be carried out using the stan-
dard Galerkin approximation with piecewise linear finite elements on an N -element
mesh. This leads to the system of coupled ODEs

(1.4) M u̇ + Au = f ; u(0) = u0,

where the vector f arises from the BC’s (and is zero in the homogeneous case) and,
for a Dirichlet BC at x = 1, u(t) := (U1(t), U2(t), . . . UN−1(t))T , where {Uj} are the
nodal values of the finite element approximation. With a Neumann BC at x = 1 the
vector u(t) will contain N components. Thus, for a uniform subdivision of intervals
of length h = 1/N , the jth component of (1.4) is the second order centered finite
difference equation

(1.5)
1

6

[
U̇j−1 + 4U̇j + U̇j+1

]
+

a

2h
[Uj+1 − Uj−1] −

ν

h2
[Uj−1 − 2Uj + Uj+1] = 0.

For further details, see, e.g., Gresho and Sani [7, p. 40]. The matrix A in (1.4)
is the sum of a symmetric positive-definite diffusion matrix K and a skew symmetric
convection matrix C, so as to properly mimic their continuous (operator) counterparts.
M is the mass matrix associated with a discrete L2 projection operator.

The adaptive time-stepping algorithm that is applied to the ODE system (1.4)
is a refined version of the “smart integrator” advocated by Gresho and Sani [7, sec-
tion 2.7.3–4]. Our algorithm has three ingredients: time integration, the time step
selection method, and stabilization of the integrator. We discuss each of these sepa-
rately below.

Time integration. According to the trapezoid rule (TR), given a vector un ≈
u(tn) and a time step ∆tn, we compute un+1 ≈ u(tn +∆tn) by solving the implicit
system

(1.6) un+1 = un + 1
2∆tn(u̇n+1 + u̇n) = un + M−1

(
f − 1

2A(un+1 + un)
)
.

We advocate TR because it is the most accurate A-stable method commensurate with
a second order spatial discretization, and also because it is nondissipative (some con-
sideration is given to other linear multistep methods in section 6). This is important
when solving advection-dominated problems. Another positive feature is that the lo-
cal truncation error is easily estimated by repeating the time step using an explicit
second order Adams–Bashforth method (AB2):

(1.7) u∗
n+1 = un +∆tnu̇n +

1

2
∆t2n

(
u̇n − u̇n−1

∆tn−1

)
.

A more subtle issue is that implemention of this linear multistep pair within a
self-adaptive algorithm needs to be done carefully. Indeed, a naive implementation
may well have a tendency to “stall” since rounding errors often accumulate and cause
the time steps to asymptote and prevent them from increasing as they should. This
is illustrated in Figure 1.1 (top) which shows the behavior of ∆tn versus tn for the
initial value problem (IVP) ẏ = −0.01y, y(0) = 1 with the error per step tolerance
(to be defined later) ε = 10−4 (×) and ε = 10−7 (◦). (The first two time steps
are ∆t0 = ∆t1 = 10−10.) Instead of increasing to infinity with n, it is found that
∆tn → 135.1 in the first case and ∆tn → 0.1351 in the second, indicating that
asymptotically,1 ∆tn ∼ O(ε). The fact that this long-time behavior is spurious is

1This can be proven, but we do not include the proof here.
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Fig. 1.1. Top: Log-log of the time steps ∆tn vs. t for a naive TR-AB2 integration of ẏ = −0.01y
with tolerances ε = 10−4 (×), 10−7 (◦), and ∆t0 = 10−10. Bottom: Corresponding plot using a
numerically stable TR-AB2 integrator.

confirmed in Figure 1.1 (bottom) which shows the time step histories obtained for
a mathematically equivalent algorithm [14] (see also [7, p. 273]), which uses exactly
the same startup time steps and tolerances. In this case, it is seen that ∆tn → ∞ as
n → ∞.

Conscious of the need to minimize potential round-off instability, our implemen-
tation of the TR-AB2 pair explicitly computes the vector updates scaled by the time
step to avoid underflow and inhibit subtractive cancellation. Specifically, given un,
u̇n, and ün, we compute a vector vn via

(1.8)
(
M + 1

2∆tnA
)
vn = M u̇n −Aun + f ,

and update the TR solution vector and time derivative via

(1.9) un+1 = un + 1
2∆tnvn; u̇n+1 = vn − u̇n.

(The more obvious way of writing the right-hand side (RHS) of (1.8) as −2Aun + 2f
is more prone to the ringing phenomenon discussed later in this section. The reason
for this is discussed in [7, pp. 272–273].) Similarly, the scaled AB2 update wn is
explicitly given by

(1.10) wn = u̇n + 1
2∆tnün
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and generates the AB2 estimate and the second time derivative (needed for the fol-
lowing AB2 step) via

(1.11) u∗
n+1 = un +∆tnwn, ün+1 =

u̇n+1 − u̇n

∆tn
.

Standard manipulations, see, e.g., [7, p. 265], then lead to the truncation error esti-
mate

(1.12) un − u(tn) =
1

12
∆t3n

...
u(t̂) ≈ dn =

∆tn
3(1 +∆tn−1/∆tn)

(
1

2
vn − wn

)
.

Time step selection. To control the time integration it is usual to place a user-
specified tolerance, ε, on the norm of dn+1:

(1.13) ‖dn+1‖ ≤ ε‖u‖∞.

For our target problem (1.4) we use the L2 function norm

(1.14) ‖dn‖ = (dT
nMdn)1/2

as this will ensure that ∆tn remains constant for pure advection. An appropriate
choice for ‖u‖∞ is (a possibly user-specified estimate of) the maximum norm of the
ODE solution over the prescribed time interval.2 Assuming that our ODE system has
smooth third derivatives in time (so that the TR time integration is indeed second
order accurate) standard manipulation of Taylor series shows that the ratio of succes-
sive truncation errors is proportional to the cube of the ratio of successive time steps.
This implies that

‖dn‖(∆tn+1/∆tn)3 ! ε‖u‖∞.

Thus, assuming ‖u‖∞ = 1 and invoking equality (corresponding to taking the max-
imum possible time step to satisfy the accuracy tolerance at the next step) leads to
the following time step selection heuristic:

(1.15) ∆tn+1 = ∆tn (ε/‖dn‖)
1
3 .

To implement this methodology in a practical code there are two start-up issues
that need to be addressed:

1. AB2 is not self-starting. We suggest computing u̇0 = M−1(Au0 − f) and
u̇1 from (1.8) and (1.9) in order to start AB2 at the second timestep. Error
control and ∆t variation is then switched on at the third time step (∆t1 =
∆t0).

2. Choice of initial time step ∆t0. Several strategies are available with which to
start the TR method. If an estimate of the initial response time (τ0 = 1/|λ|,
where λ is the dominant eigenvalue of the matrix M−1A) is available, then
a reasonable choice would be ∆t0 = 0.01τ0ε

1
3 . Alternatively, one may simply

select a conservatively small value for ∆t0 (say 10−10). With such a choice
we will have rapid growth in the time step: typically dn = O(eps) for the
first few time steps, where eps is machine precision3 and so ∆tn+1/∆tn =

2‖u‖∞ = ‖u0‖ = 1 in all of the examples discussed in this paper.
3eps ≈ 2.22 × 10−16 in MATLAB, which is used for all of the examples discussed in this paper.
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O((ε/eps)1/3) ≈ 104 when ε = 10−4. This rapid growth implies that, for
small values of n,

tn =
n−1∑

j=0

∆tj ≈ ∆tn−1,

and with very few such steps (typically 2–4), a time step is obtained that is
commensurate with τ0. This also explains the linear growth of ∆t with t in
Figure 1.1 for both implementations starting from ∆t0 = 10−10. We discuss
the other features of Figure 1.1 in the next section.

A general ODE code (like ode23t) will have many additional heuristics, bells, and
whistles; see, Gresho and Sani [7, p. 275], Hairer, Norsett, and Wanner [12, p. 167],
Hundsdorfer and Verwer [15, p. 197] or Shampine, Gladwell, and Thompson [24, p. 27].
Our code has just one.

1. Time step rejection. If ‖dn‖ > 1.1ε, then we consider the local error to be
too large. The step is rejected, the current value of ∆tn is multiplied by
(ε/‖dn‖)1/3, and the step is repeated with this smaller value of ∆tn.

This “trip” is not really needed when solving advection-diffusion problems: in the runs
reported later, rejected steps are extremely rare. The heuristic would be important,
however, if the linear algebra solve in the computation of the TR update is done
“inexactly” (in particular, using a preconditioned Krylov subspace solver instead of
MATLAB’s sparse solver). This will be the case when applying our adaptive time-
stepping methodology to the Navier–Stokes equations, and we, thus, defer further
discussion of rejected steps until part II which will build on the strategy outlined by
Gresho and Sani [8, section 3.16.4].

Stabilization of the integrator. The solution of the IVP ẏ = −λy, y(0) = y0

solved using the numerically stable TR-AB2 method (as in Figure 1.1 (bottom)) can
be shown to satisfy a recurrence with an explicit solution given by

(1.16)

[
yn

1
λ ẏn

]
=

y0 + 1
2∆t0ẏ0

1 − 1
2λ∆t0

n−1∏

j=0

1 − 1
2λ∆tj

1 + 1
2λ∆tj

[
1

−1

]
.

Looking at (1.16) suggests a potential problem caused by the product of rational
factors. As λ∆tn → ∞ the factors for large n tend to −1 and so both yn and 1

λ ẏn
would behave asymptotically like (−1)n—this is the familiar “ringing” phenomenon
for TR. Although we have not observed this problematic behavior when solving scalar
ODEs, ringing effects are often observed for very stiff PDEs (typically with very small
spatial grid sizes to resolve fine detail) with relatively large tolerances on the time
step or towards the end of a simulation when close to steady state. Situations such as
these are discussed by Osterby [22] along with a variety of means of suppressing the
oscillations. Our code implements an alternative strategy—time step averaging. The
averaging is invoked periodically every n∗ steps. For such a step, having computed
the TR update vn via (1.8) we set tn+1 = tn + 1

2∆tn and update the solution vectors
via the sequence

un = 1
2 (un + un−1); u̇n = 1

2 (u̇n + u̇n−1);(1.17)

un+1 = un + 1
4∆tnvn; u̇n+1 = 1

2vn.(1.18)

We then compute the next time step using (1.15) and continue the integration.
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Fig. 1.2. Left: Log-log plot of ∆t vs. t for advection-diffusion of a step profile on a Shishkin grid:
standard TR-AB2 integrator (◦) and stabilized TR-AB2 integrator (×) with tolerance ε = 10−3.
Right: Corresponding plot for finer tolerance ε = 10−4 .

The averaging process annihilates any contribution of the form (−1)n to the
solution and its time derivative, thus cutting short the “ringing” while maintaining
second order accuracy. In our code the parameter n∗ is computed automatically. We
specify a target time, t∗, that is longer than the response time τ0 = 1/|λ|, and then
set n∗ to be the number of steps taken to reach this time starting from t = 0.4 The
benefit of this simple stabilization strategy is illustrated in Figure 1.2 which shows the
behavior of stabilized and unstabilized TR-AB2 for advection-diffusion of a step profile
with diffusion parameter ν = 10−3 and a Shishkin grid with N = 128 subintervals.
More details of the experimental set-up are given in Example 5.2, discussed later.
All time steps apart from the first two (both 10−10) are shown. For both the fine
(right plot) and coarse (left plot) tolerance the time steps generated by stabilized
and unstabilized versions are very similar up to t ≈ 10−2. Thereafter the time steps
used by the unstabilized version are smaller (in the coarse case, considerably smaller).
Reducing the tolerance in the unstabilized version delays the onset of instability. The
stabilized method for ε = 10−4 (in this case with n∗ = 12) reaches the target time
in 43 rather than 249 time steps. For ε = 10−3 the frequency of averaging is n∗ = 9
steps and 32 steps are used (as opposed to the 4600 steps required by the unstabilized
version). It may appear that the averaging process is invoked very frequently but
in these experiments it is only called on three times. A more typical value of n∗
with smaller tolerances is n∗ ≈ 100. The ringing effect is a consequence of the lack
of L-stability in the TR scheme, see [11, p. 45], and is effectively countered by our
stabilization process.

An outline of the rest of the paper is as follows. We analyze the behavior of
the TR-AB2 integrator when applied to a scalar ODE model in the next section.
Then, in order to demonstrate the performance of the integrator over a wide range
of conditions, we discuss six example problems in detail; two pure diffusion problems,
three advection-diffusion problems (all advection-dominated), and one pure advection
problem. In each case we give a (mainly) qualitative analysis explaining the observed
behavior of the integrator. We believe that, at the end, the reader will be strongly
convinced not only that advection-diffusion problems benefit significantly by the use
of an adaptive time integrator but also that studying the behavior of the time step
often helps to delineate different phases of the evolution.

4t∗ = 10−4 in all of the examples discussed in this paper.
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2. A model ODE problem. To whet the appetite, let us take a closer look at
the performance of a numerically stable version of TR-AB2 (as in Figure 1.1) applied
to the standard scalar ODE test equation

(2.1) ẏ = −λy, y(0) = 1,

with the solution y(t) = e−λt. The general case of λ = 1/τ +iω is considered here. In
particular, τ represents a decay time constant mimicking diffusion and the frequency
ω gives a simple model for advection. From (1.16) we have yn+1 = (1− 1

2λ∆tn)/(1 +
1
2λ∆tn)yn and ẏn = −λyn, and on substituting into the scalar analogue of (1.12) we
get the explicit expression

dn = − λ3∆t3nyn
12(1 − 1

2λ∆tn−1)(1 + 1
2λ∆tn)

.

The time step selection heuristic (1.15) then implies that

(2.2) ∆t3n+1 =
12ε

|λ3yn|
|
(

1 − 1

2
λ∆tn−1)(1 +

1

2
λ∆tn

)
|,

and we deduce that

(2.3)
∆tn+2

∆tn+1
=

∣∣∣∣
1 + 1

2λ∆tn+1

1 − 1
2λ∆tn−1

∣∣∣∣
1/3

.

This is a three-step recurrence with initial conditions ∆t0,∆t1 prescribed and ∆t2
given by (2.2). To make progress we distinguish the special case +λ = 0 from the
more general case +λ = 1/τ > 0.

First, the recurrence (2.3) is stable and clearly has a constant solution when
λ = iω (ω > 0). From (2.2) we find that

(2.4) ∆t2 = ∆t3 = · · · = ∆tn =
(12ε)1/3

ω
+ O(ε/ω).

Since |yn| = 1, there is no amplitude error—just phase error—and the global error
|y(tn) − yn| ranges between 0 and 2, that is from perfectly in-phase to completely
out-of-phase. This periodic behavior can be further analyzed by setting yn = eiω∆ttn ,
where ω∆t = ω − 1

12ω
3∆t2 + O(∆t4) is the numerical frequency, so that

|y(tn) − yn| =
∣∣e−iωtn − e−iω∆ttn

∣∣ = 2| sin 1
2 (ω − ω∆t)tn|

= 2| sin 1
24ω

3∆t2tn| + O(∆t4).(2.5)

Thus, provided the time interval [0, t∗] is such that ω3t∗∆t2 , 1, the global error is
second order and grows linearly in time (this is typical behavior; see [3, ch. 9], for
instance). This is also illustrated quite clearly in Figure 2.1 (top) where log-log plots
of the global error are shown for tolerances ε = 10−4, 10−7 (the errors for t = t1, t2 are
not shown since they are much too small). Using (2.5) leads to the simple estimate,
T , of the period of the “beats” in the global error

T = 24π/ω3∆t2.

For ω = 1 and ε = 10−4, we get ∆t ≈ (12ε)1/3 = 0.1063 . . . giving T = 6676.9
vis-à-vis the numerical result 6675.6 in Figure 2.1 (bottom).

Second, if ∆tn+1 ≥ ∆tn−1 and +λ > 0, the RHS of (2.3) is > 1 and so ∆tn+2 >
∆tn+1. Thus, by induction, the sequence {∆tn} grows monotonically. We will identify
three distinct phases of time step growth in the case +λ > 0.
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Fig. 2.1. The global error |y(tn)−yn| vs. t for TR-AB2 integration of ẏ = −iy, with tolerances
ε = 10−4 (×) and ε = 10−7 (◦).Top: Log-log, Bottom: Log-linear.

A start-up phase. As discussed earlier, see Figure 1.1, the time step rapidly in-
creases from any (conservatively small) initial value to a value that is appropriate
for the physical response time τ0 = 1/|λ| and the selected tolerance. The observed
behavior of ∆t vs. t (growing and then flattening) can be predicted analytically, at
least in the case of real λ [14].

A transient phase as the solution relaxes to its rest state. Insight into the dynam-
ical behavior in this phase can be obtained through a modified equation approach
(see [29], [10], [9]). We reparameterize time by a pseudo-time variable s discretized
with constant step-size ∆s = (12ε)1/3. Since ∆tn/∆s, is an approximation to dt/ds,
then (2.2) is a consistent finite difference approximation of the ODE

(2.6)
dt

ds
= |λ|−1|y|−1/3.

Using the chain rule dy
ds = −λ dt

dsy, gives

(2.7)
dy

ds
= −λ|λ|−1|y|−1/3y.

The numerical solution yn of our time integrator and the time levels tn are approxi-
mated by y(sn) and t(sn), the solutions of the coupled system (2.6) and (2.7). Mul-
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Table 2.1
Actual behavior of TR-AB2 for ẏ = −0.01y.

ε 10−4 10−7 10−10

n (n∗) 34 (28) 292 (282) 2836 (2823) ∼ ε−1/3

‖y(tn) − yn‖∞ 4.71 × 10−4 5.35 × 10−6 5.42 × 10−8 ∼ ε2/3

tiplying (2.7) by ȳ and integrating gives

(2.8) |y(s)| =

(
1 − s

3

(
+λ
|λ|

))3

,

so that, with respect to this new parameterization, the approach to the stationary
point y = 0 is cubic rather than exponential. Solving (2.8), the steady state will be
reached in the finite “pseudo-time” s∗ = 3|λ|/+λ, and since sn = n∆s this gives a
total of n∗ = (1/(12ε)1/3)(3|λ|/+λ) time steps. Note that n∗ is independent of λ
when λ is real. In practice, if we compare n∗ with n (the actual number of time steps
taken by our integrator to satisfy |yn| < ε), then there is almost perfect agreement.
A typical set of results is given in Table 2.1.

Equations (2.6) and (2.8) imply (unsurprisingly) that λt = − log |y|. The assump-
tion that |λ|∆t , 1 can then be used to simplify (2.2) leading to the estimate

(2.9) ∆tn ≈ (12ε)1/3e%λtn/3

|λ| ,

which predicts that the time step will grow exponentially. These predicted time steps
are shown by dotted curves in the top of Figure 2.2 and again the agreement with
computed time steps is excellent—the predicted and actual behavior is indistinguish-
able to graphical accuracy for t < 250. We also indicate by the three vertical solid
lines the times at which the numerical solution passes through |y| = ε. The modified
equation (2.7) cannot be expected to be valid in this neighborhood (or for longer
times). (2.9) coincides with the constant time step in (2.4) when +λ = 0.

Computed global errors are shown in the bottom of Figure 2.2 for the three values
of the tolerance ε, and it is seen that the global error is reduced by a factor of 100
when ε is reduced by a factor 1000 in keeping with a global error of O(ε2/3). The
tails in Figure 2.2 oscillate when the solution reaches the level of the tolerance and
thus begin when t = O(log(1/ε)).

Long term behavior. Our computional experiments have been carried out over
unreasonably long time intervals in order to display this behavior clearly. As was men-
tioned earlier, (2.3) shows that the time steps grow strictly monotonically when +λ >
0. The rate of increase is largest when ∆tn−1 ≈ 2/+λ.5 From (2.9), this occurs when

|yn| ≈
3ε

2

(
+λ
|λ|

)3

,

that is when |yn| = O(ε), so that the transient behavior of the true solution is well
over. After this point, the time steps continue to increase by the ratio on the RHS of
(2.3). This ratio tends to unity (and becomes independent of λ) as ∆tn → ∞, thus the
rate of increase in the time step is progessively reduced—as can be observed in both
Figure 1.1 (bottom) and Figure 2.2 (top). Notice that, as well as being independent
of λ, the long term behavior of the time step is clearly independent of ε.

5It is theoretically possible for the denominator on the RHS of (2.3) to vanish, in which case
yn = 0 and the calculation stops. We shall ignore this unlikely possibility.
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Fig. 2.2. Top: Log-log of the time steps ∆tn vs. tn for TR-AB2 integration of ẏ = −(0.01+i)y,
with ε = 10−4 (×), 10−7 (◦), and 10−10 (+). Bottom: Log-linear plots of the global error against t.

3. The heat equation. We now consider the heat equation, that is the case of
a = 0 in (1.1). Our objective is to relate the temporal variation of the time step to
the smoothness of the initial data. To start with, we assume homogeneous Dirichlet
BCs in (1.2) and (1.3) and suppose that u0(x) has a Fourier sine series

(3.1) u0(x) =
∞∑

j=1

aj sin jπx

that satisfies
∑∞

1 a2
j < ∞ so that it is convergent for u0 ∈ L2(0, 1). When the Fourier

coefficients decay more quickly than this, specifically,
∑∞

j=1 j
2θa2

j < ∞, for some

θ > 0, then we say that u0 ∈ Hθ
0 (0, 1), and we define a norm on this space by

(3.2) |u0|2θ =
1

2

∞∑

j=1

j2θa2
j .

See Babuška and Strouboulis [2, pp. 113–129] for a more complete discussion of these
spaces and the concept of square integrable fractional derivatives. The solution of the
heat equation with this initial data can be expressed as

(3.3) u(x, t) =
∞∑

j=1

aje
−νj2π2t sin jπx.
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For later reference we bound the norm of uttt. If we assume that u0 ∈ Hθ(0, 1)
(0 ≤ θ < 6), then, by Parseval’s relation,

‖uttt‖2
0 =

1

2
ν6π12

∞∑

j=1

a2
jj

12e−2νj2π2t

≤ 1

2
ν6π12(max

j
e−2γνj2π2t)

∞∑

j=1

a2
jj

2θj12−2θe−2(1−γ)νj2π2t

≤ 1

2
ν6π12e−2γνπ2t

(
max

j
j12−2θe−2(1−γ)νj2π2t

) ∞∑

j=1

a2
jj

2θ

= ν6π12e−2γνπ2t
(
max

j
j12−2θe−2(1−γ)νj2π2t

)
|u0|2θ(3.4)

for any γ ∈ [0, 1).6 Now, maxj j2αe−βj2 = (α/β)α e−α, from elementary calculus,
leading to the estimate

‖uttt‖0 ≤ π6ν3

(
6 − θ

2(1 − γ)νeπ2t

)3−θ/2

e−γνπ2t|u|θ.(3.5)

The decay in time in (3.5) is associated with the concept of “parabolic smoothing”

(see, for example, [4], [18], [19]): ‖uttt‖0 ≤ Ct−(3−θ/2)e−γνπ2t for t > 0, C being a
constant depending on ν, γ, and θ. For small times the algebraic decay dominates
whereas decay is governed by the exponential factor (with γ arbitrarily close to, but
less than one) in the long run. In the case of very smooth initial data, u0 ∈ Hθ(0, 1)
for θ ≥ 6, the maximum in (3.4) occurs at j = 1 and we obtain

(3.6) ‖uttt‖0 ≤ π6ν3e−νπ2t|u|θ,

an exponential decay with a rate that is dictated by the smallest eigenvalue (νπ2) of
the diffusion operator −νuxx; this is independent of θ.

We now turn to the analysis of the semidiscrete approximation of the heat equa-
tion with homogeneous Dirichlet BCs (as in (1.4))

(3.7) M u̇ = −Ku,

where M and K are symmetric positive-definite tridiagonal matrices. We suppose
that the generalized eigenvalue problem

(3.8) Mv = λKv

has eigenvalues ordered so that λ1 < λ2 < · · · < λN−1 and associated eigenvectors
normalized so that vT

j Mvj = 1. The solution of (3.7) can then be written as

(3.9) u(t) =
N−1∑

j=1

cje
−λjtvj ,

where the coefficients {cj} are determined from the initial data by cj = vT
j Mu(0).

6The introduction of γ is purely a technical device—its aim is to give the exponential decay at
large times by choosing γ close to, but less than one. It could be avoided by redoing the analysis
with γ = 0 with the proviso that the results are only useful at short times. The exponential phase

can then be handled separately, taking u ∼ a1e−π2t sinπx and the spatial and temporal errors from
the leading terms in (3.20) and (3.22), respectively.
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When the TR-AB2 integator is applied to the system (3.7) there are three distinct
time scales in the evolution; two of these are directly related to the eigenvalues λj

and the third to parabolic smoothing. These are discussed in turn below.
Fast transient. At early times the variation in the solution is dominated by the

fastest transient in (3.9): u(t) ≈ cNe−λN−1tvN−1 + slower varying terms. Thus, as in
the scalar case (see (2.9)), we have that

(3.10) ∆tn+1 ≈ (12ε)1/3

|cN−1|1/3λN−1
eλN−1tn/3.

Since the high frequency modes in the numerical solution (3.9) bear no relation to
the corresponding modes in the PDE solution, this phase is spurious; the numerical
solution cannot begin to approximate the true solution unless all of the coefficients
of high frequency modes are sufficiently small (which occurs if the initial data has a
high degree of smoothness) or have sufficiently decayed.

Smoothing phase. Given the definition of the temporal truncation error, (1.12),
we suppose the existence of a constant C such that the bound ‖dn‖ ≤ 1

12C∆t3n‖uttt‖0
holds. Combining the time step selection heuristic (1.15) with the bounds (3.5) (with
γ = 0) and (3.6) then leads to the estimate

(3.11) ∆tn+1 ≥ 1

C
× (12ε)1/3

|u|1/3θ νπ2
×






(
2νeπ2tn

6−θ

)1−θ/6
if θ ≤ 6

eνπ
2tn/3 if θ > 6.

The lower bound suggests that the time step grows sublinearly for θ < 6 and grows
exponentially for θ > 6.

Relaxation to steady state. As t → ∞, the solutions of the heat equation and its
spatial approximation are governed by the low frequency eigenvectors corresponding
to the smallest eigenvalues: u(t) ≈ c1e−λ1tv1. Thus, as in the scalar case (see (2.9)),
we have that

(3.12) ∆tn+1 ≈ (12ε)1/3

|a1|1/3νπ2
eνπ

2tn/3.

This asymptotic form is more precise than (3.11) for long times in the case θ > 6.
As for the ODE model discussed in section 2 there could be two additional (non-

physical) phases of time step growth: the startup phase as ∆tn grows from its initial
value, and the long term behavior which is independent of ε.

We now give an example that illustrates that these estimates of the time step can
be realized in actual computations.

Example 3.1. Consider the system (3.7) arising from discretizing ut = uxx on
0 < x < 1 with BCs u(0, t) = 1, u(1, t) = 0, and an initial condition given by

(3.13) u0(x) = 1 − |1 − 2x|α, α > 0.

Note that this is rough initial data for all α > 0. In addition to the obvious dis-
continuities in derivatives at x =1/2 when α is not an even integer, there are sin-
gularities since the initial condition does not satisfy the higher order compatibility
conditions required by the Dirichlet boundary conditions. When u0 is extended as an
odd function to the interval (−1, 1), appropriate for homogeneous Dirichlet boundary
conditions, there is a discontinuity in the second derivative at the origin and so the
coefficients {aj} cannot decay more quickly that 1/j3. Moreover, in view of the dis-
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Fig. 3.1. Top: The observed rate of growth of time steps for Example 3.1 (◦) and the rate
predicted by (3.14) (solid). Bottom: Log-log plot of time steps ∆t vs. t for α = 1

2 (broken line),

α = 1 (dot-dashed line) and α = 5 (solid line). The predicted rates for α = 1
2 , 5 are shown by dotted

lines.

continuities in derivatives at x = 1
2 for α < 2, u0 ∈ Hp−δ(−1, 1) for any δ > 0, where

p = max{α + 1
2 ,

5
2}.

7 Given this level of regularity, the estimate (3.11) predicts that
during the smoothing phase the time step will be bounded below by

(3.14) ∆tn+1 ≥ Cts, s = max{7/12, 11/12 − α/6},

where the constant C depends on α and |u0|p−δ.
We take a subdivision of N = 256 equal elements and use a small tolerance

ε = 10−10 in order to accurately determine the observed rates of growth—obtained
by computing the slopes of the linear regression lines through the values of log∆tn
versus log tn for tn ∈ [5 × 10−5, 5 × 10−3]. The resulting exponents s are shown on
the top of Figure 3.1 while on the bottom we show log-log plots of ∆tn against tn for
α = 1

2 , 1, 5. The agreement between theory and practice is excellent.8

7The presence of δ is a consequence of using the norm (3.2) on Hθ. It could be removed by using
a (more appropriate) Besov space; see [2].

8In order to get this level of agreement, spatial resolution is not as important as having a small
tolerance; increasing ε to 10−7 leads to quite poor agreement while decreasing the number of elements
to 64 has little effect (except when α = 0, which we interpret as the discontinuous function u0(x) =
1 − |1 − 2x|sign(1 − 2x)).
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Our second example introduces some other important behavioral characteristics
without the added complication of advection (which will be included in the next
section).

Example 3.2. Consider the system (1.4) arising from discretizing ut = νuxx on
0 < x < 1 with ν = 1, BCs u(0, t) = 1, u(1, t) = 0, and an initial condition given by
u0(x) = 1 , 0 ≤ x ≤ 1.

This PDE problem is particularly challenging because of the impossibility of ob-
taining a solution of “arbitrary” accuracy for x → 1 and t ↓ 0, owing to the singularity
there. At early times, 0 < t < 10−2, we compare our numerical solution with the clas-
sical error function approximation to the solution

(3.15) uerf(x, t) = erf
(
(1 − x)/

√
4νt

)
.

In particular, using Maple 9.5 c©9 we can show that

∥∥∥∥
∂3uerf

∂t3

∥∥∥∥
2

=

∫ 1

0

(
∂3

∂t3
erf

(
1 − x√

4νt

))2

dx ∼ 945

2048

√
2ν/π

t11/2
,

where ∼ indicates that this is accurate up to exponentially small terms of the form

exp(−1/νt). Then, assuming ∆t ≈
(
12ε/‖∂3uerf

∂t3 ‖
)1/3

, this leads to the estimate

(3.16) ∆t(t) ∼ (12ε)1/3
(

2048

945
√

2ν/π

)1/6

t11/12.

Note that the step function initial data has a regularity estimate u0 ∈ Hθ(0, 1) for
θ < 1/2, see [2, p. 126], so the factor t11/12 in the time step growth in (3.16) is
completely consistent with the bound in (3.11).

For t ≥ 10−2 our numerical solution will be compared with the truncated Fourier
series (FS) solution:10

(3.17) un(x, t) = 1 − x +
n∑

j=1

2

jπ
exp(−j2π2νt) sin jπx.

We turn next to the issue of spatial resolution. A notional definition of the
thickness of the growing boundary layer at small times is, from (3.15), given by
δ(t) :=

√
4νt (δ(0.01) = 0.02 at the time when (3.15) is replaced by (3.17)). We

combine this with the concept of minimum time of believability, see Gresho and Sani
[7, p. 196], which is defined by

τMTB := h2/4ν.

This is the time at which the boundary layer width has grown from zero to approxi-
mately h, the distance to the first node from the boundary i.e., δ(τMTB) = h. Clearly,
no numerical approximation can be accurate for δ(t) , δ(τMTB). For δ(t) > δ(τMTB)
on the other hand—that is for t > τMTB—believability becomes at least plausible.

For a 256-element uniform mesh, the above remarks are validated by the com-
putational results shown in Figure 3.2 where we show both the analytical solution

9Copyright (C) Maplesoft, a division of Waterloo Maple Inc.
10For 0 < t < 10−2, ‖u− uerf‖∞ < 10−12, and we can ensure comparable accuracy at later times

‖u− un‖∞ < 10−12 by taking n = '5/π
√
νt) terms of the FS.
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Fig. 3.2. Numerical solutions (broken lines) and exact solution (solid lines) in the four elements
nearest the boundary where the singularity is present. Left: Uniform grid. Right: Geometric grid.

(solid line) and the FE solution (broken lines) at four values of t. In this case we
have τMTB ≈ 3.8× 10−6, and from the figure we see that the numerical solution does
not resolve the boundary layer before t ≈ 10−5. We shall analyze the global error
behavior in more detail in a moment.

Here, in order to make our numerical solution useful for much smaller times
(while still retaining its usefulness for larger times, of course) we now introduce a
256-element “smart” (or at least, smarter) mesh. To do this we select—admittedly
somewhat arbitrarily—a small time believability limit of τMTB = 10−8 (nearly 400
times smaller than with the uniform mesh) and use the definition of τMTB to generate
the smallest grid size h = hmin on our new mesh (hmin = 2 × 10−4, nearly 20 times
smaller than h for the uniform mesh). The remaining nodal locations come from the
geometric formula

hj = ρN−jhmin , j = 1 : N,

with the grid ratio ρ chosen so that
∑N

j=1 hj = 1. With N = 256 this gives ρ ≈ 1.0177
and a largest element at x = 0 with hmax ≈ 0.0176—88 times larger than hmin . The
solutions at early times in the four elements closest to the singularity are also shown
in Figure 3.2. The numerical solution is (almost) useful by t = τMTB(= 10−8) and
the superiority of this grid is clear.

In Figure 3.3 we show, on a log-log scale, how the time step varies for four
cases, two on the uniform mesh and two on the geometric mesh, all starting with
∆t0 = 10−10. The first point we wish to emphasize is the tremendously large variation
in step sizes—eleven orders of magnitude in the “best” case (geometric mesh with
ε = 10−7) using about 850 time steps (see Table 3.1). Clearly, there is no fixed-∆t
integrator that could even begin to compete with this efficient use of time steps! The
next thing to note is the numerical agreement with theory: a thousandfold change
in ε gives a tenfold change in step size. In each case the time steps adjust from the
initial value ∆t0 = 10−10 to a more (ε-dependent) appropriate value in no more that
four steps.

We have included in Figure 3.3 three vertical broken lines that delineate the
main phases of the evolution. The first occurs at t = τMTB: at earlier times the
time step behaves as given by the fast-transient expression (3.10) (shown by a dotted
curve for ε = 10−4—the agreement is much better when ε = 10−7). The interval
τMTB < t < τ1 (τMTB ≈ 4 × 10−6 for the uniform grid and 10−8 for the geometric
grid while τ1 = O(1/λ1) ≈ 1/νπ2) covers the smoothing phase when the solution is
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Fig. 3.3. Log-log plot of time steps ∆t vs. t for Example 3.2. Left: Uniform grid. Right:
Geometric grid. The grids have N = 256 elements, ε = 10−4 (×), and ε = 10−7 (◦). Also, shown
on the left are the time steps for the geometric grid (') for comparison.

Table 3.1
Total number of steps used by uniform and geometric grids in Example 3.2 for 0 < t ≤ 10.

Grid ε = 10−4 ε = 10−7 ε = 10−10

Uniform N = 128 100 702 6647
N = 256 103 743 7098

Geometric N = 128 113 842 8073
N = 256 114 853 8168

erf –like and the time step is given by the lower bound in (3.11) with θ = 1/2 (or
(3.16)). Comparing with the dotted line which has gradient 11/12, it is seen that
the exponent given for the time step is sharp. The time steps for the geometric
and uniform grids for ε = 10−7 (Figure 3.3, left, . and ◦, respectively) are virtually
identical for t > 10−5. The constant τ2 in Figure 3.3 is the time when the solution
is within O(ε) of the steady state. During the third interval τ1 < t < τ2, the time
step is governed by (3.12) (shown again by a dotted curve for ε = 10−4). In the final
interval t > τ2, the time step is governed by the internal dynamics of the TR-AB2
integrator and behaves as in the scalar case. Most notably ∆t is independent of ε
and the spatial grid; see the discussion at the end of section 2. It is seen in Table 3.1
that increasing the number of elements for a given tolerance has a negligible effect on
the number of time steps required to integrate up to t = 10. This suggests that the
solution is well resolved spatially. It is also seen that the use of a geometric grid costs
an additional 10%–20% time steps but in return the solution is accurately obtained
for much smaller times.

We now consider the behavior of the global error. We do this back-to-front: we
will first discuss the computational results before deriving analytic bounds for the
spatial and temporal errors consistent with the observed behavior. Figure 3.4 shows
the maximum error as a function of time for both meshes (and two values of ε) and for
127- and 255-term Fourier series. The results show the effectiveness of the combination
of a smart time integrator with a smart mesh—it even beats the Fourier series up until
t ≈ 10−5. (Of course, a really smart mesh would both move and remove nodes as
time progressed, ending with just 3 nodes.) For each of these meshes the behavior
of the error goes through several phases. For the uniform mesh the log-log plot of
the error shown on the top of Figure 3.4 initially behaves like t−1. Also, when N is



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2034 P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

10
−1

10
0

t

Slope = −1

Slope = −1/6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

10
−1

10
0

t

Slope = −1

Slope = −1/6

Fig. 3.4. The maximum error as a function of time for the experiments of Example 3.2. Top:
Uniform grid. Bottom: Geometric grid. Key: ε = 10−4 (N = 256 (◦) and N = 512 (×)), ε = 10−7

(N = 128 (∗) and N = 256 (!)). Also shown are the errors for the truncated Fourier series solutions
(3.17) with n = 127 terms (dot-dash) and n = 255 terms (· and dotted curve).

increased from 128 through 256 to 512, the error is reduced by a factor of four each
time, consistent with a second order spatial approximation. This behavior turns out
also to be completely consistent with our estimate of the spatial error contribution;
see (3.21) below which shows that this phase of evolution is dominated by spatial
error. The flattening of the error curves for ε = 10−4 corresponds to the fact that
temporal error becomes increasingly dominant. Our estimate of the temporal error
(3.22) suggests that the error should decrease like t−1/6 in this phase, consistent with
what is observed. Note that for ε = 10−7 spatial error is always dominant. All of
the geometric meshes used have hmin = 2 × 10−4. These also display an early phase
where spatial error dominates (though the gradient appears to be marginally greater
than −1). As temporal error dominates it appears to behave as t−1/6. In all of the
experiments there is a final stage where the global error decays exponentially as the
solution relaxes to steady state.

To theoretically analyze the global error we first need to recall the local truncation
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error. Specifically, we take the standard uniform grid estimate

(3.18) Tn+1/2
j = − 1

12

[
νh2 ∂

4u

∂x4
+∆t2

∂3u

∂t3

]n+1/2

j

+ . . . ;

see, for example, Morton and Mayers [21, p. 30]. We then take our estimate of the
global error to be the function e(x, t) that solves the “correction equation”:

(3.19) et = νexx − 1

12
νh2 ∂

4u

∂x4
− 1

12
∆t2

∂3u

∂t3
.

Note that here ∆t is a function of t.
We shall determine bounds on the maximum norms of the spatial and temporal

errors separately, and, to keep things simple (see (3.11)), we assume that θ ≤ 6.
(Later we are only really interested in the particular case of θ = 1/2.) With u given
by the Fourier expansion (3.3) the spatial error component, e(S), will be governed by

e(S)
t = νe(S)

xx − 1

12
νπ4h2

∞∑

j=1

j4aje
−νπ2j2t sin jπx

from which we deduce, since e(S)(x, 0) = 0,

(3.20) e(S)(x, t) = − 1

12
νπ4h2t

∞∑

j=1

j4aje
−νπ2j2t sin jπx,

and hence

‖e(S)(·, t)‖∞ ≤ Cνh2t
∞∑

j=1

j4|aj |e−νπ2j2t,

where C denotes a generic constant independent of x, t, h,∆t. Assuming that u0 ∈
Hθ(0, 1), we obtain (with any δ > 0 and with 0 ≤ γ < 1)

‖e(S)(·, t)‖∞ ≤ Ch2(νt)
(
max

j
e−γνπ2jt

) ∞∑

j=1

(jθ|aj |)j−1/2−δ
(
j9/2−θ+δe−(1−γ)νπ2j2t

)

≤ Ch2(νt)e−γνπ2t max
j≥1

(
j9/2−θ+δe−(1−γ)νπ2j2t

) ∞∑

j=1

(jθ|aj |)j−1/2−δ.

Then, since
∑∞

j=1 j
−1−2δ < ∞, using the Cauchy–Schwarz inequality gives

(3.21) ‖e(S)(·, t)‖∞ ≤ Cνh2|u0|θ
e−γνπ2t

(νt)5/4−θ/2−δ/2
.

For practical purposes, we can set γ = 1 and δ = 0. Thus, in the case of interest
θ = 1/2, our bound suggests that the spatial error initially behaves like t−1 and then
ultimately decays exponentially.

The temporal error component e(T ) := e− e(S) is governed by

e(T )
t = νe(T )

xx − 1

12
∆t2ν3π6

∞∑

j=1

j6aje
−νπ2j2t sin jπx
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from which we deduce, since e(T )(x, 0) = 0, that

e(T )(x, t) = − 1

12
∆t2ν3π6t

∞∑

j=1

j6aje
−νπ2j2t sin jπx.

We now assume that ∆t(t) is given by the lower bound in (3.11) for θ < 6, that is

e(T )(x, t) = C (ε/|u0|θ)
2/3 (νt)3−θ/3

∞∑

j=1

j6aje
−νπ2j2t sin jπx.

Then, the same argument that was used to estimate the spatial error gives the estimate

(3.22) ‖e(T )(·, t)‖∞ ≤ Cε2/3|u0|1/3θ

e−γνπ2t

(νt)1/4−θ/6−δ/2
.

The algebraic powers of t in (3.22) and (3.21) are equal when θ = 3. For θ < 3 and
for early times the bounds suggest that the spatial error is dominant. In the case of
interest θ = 1/2, the bound (3.22) is consistent with the behavior seen in Figure 3.4,
that is, for dominant temporal error the global error behaves like t−1/6.

In some recent related works, Verfürth [27] has presented a posteriori energy error
estimates of theta time stepping for the fully discretized heat equation, and Akrivis,
Makridakis, and Nochetto [1] give refined a posteriori error estimates for TR semidis-
cretization of selfadjoint parabolic equations (which does not include convection-
diffusion or a discussion of spatial discretization). The nature of corner singularities
for the heat equation and their effects on numerical simulations have been studied by
Flyer and Fornberg [6].

4. Pure advection of a smooth wave form. We now take a rather large
step—from a “rough” diffusion problem to a “smooth” advection problem—in part
to see what different aspects of the TR-AB2 might surface. The smoothness of the
initial data assures good spatial resolution with relatively few elements on a uniform
grid. The solution is governed by the ODE system (1.4) with ν = 0, and if periodic
boundary conditions had been considered, A = C would then be a circulant skew-
symmetric matrix. In such a case, as in (3.9), the solution would be written in the
form

(4.1) u(t) =
N∑

j=1

cje
−λjtvj ,

except that now λj are imaginary (cf. (2.4)). This would, in turn imply that ‖u‖ ≡
(uTMu)1/2 was conserved in time, as would the time derivatives of the solution: ‖u̇‖,
‖ü‖, and ‖...u‖, which would further imply a constant sequence of time steps

(4.2) ∆t2 = ∆t3 = · · · = ∆tn ≈ (12ε)1/3

‖...u‖1/3
.

Returning to the general (nonperiodic) case, the global error e is defined by the
following analogue of (3.19),

(4.3) et + aex = T (x, t) = − 1

12
∆t2

∂3u

∂t3
− 1

180
ah4 ∂

5u

∂x5
,
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Fig. 4.1. Pure advection of Gaussian given by (4.5) at t = 0, 0.25, 0.5.

where T (x, t) is the truncation error term. Since u ≡ u(x− at) and ∆t is constant, it
follows that T ≡ T (x− at) and that (4.3) has the solution

(4.4) e(x, t) = t T (x− at),

which implies that the error grows linearly with time along characteristics x − at =
constant. This behavior of the error will also be seen in the following example.

Example 4.1. Consider the system (1.4) arising from discretizing ut + ux = 0 on
0 < x ≤ 1, with BC u(0, t) = 0 for t ≥ 0, and the initial condition given by a discrete
version of the Gaussian profile

(4.5) u0(x) = exp{−(x− x0)
2/2σ2},

which is centered at x0 = 1/2 and which has σ = 1/
√

200 ≈ 0.071.
The semidiscrete equation at x = 1 is given by

(4.6) 1
6h(2U̇N + U̇N−1) + 1

2 (UN − UN−1) = 0,

which means that K is no longer skew-symmetric. Figure 4.1 shows the numerical
solution at several times for N = 128. Clearly the well-resolved Gaussian is easily
tracked through these grids. The TR-AB2 time step histories are shown on the top in
Figure 4.2 for two values of N , namely 128 and 256, and two values of the tolerance
ε = 10−4 and ε = 10−7. These time steps can be compared with the “theoretical
values” obtained by replacing

...
u in (4.2) by ∂3u∞/∂t3, where

(4.7) u∞(x, t) = exp(−(x− x0 − t)2/2σ2)

is the travelling wave solution that would arise on an infinite span—this prediction is
graphically indistinguishable from the computed values shown up to a time of t ≈ 5/6,
when the Gaussian has effectively left the domain. Indeed, for 0 < t ! 0.4 the time
step is constant (to machine precision for ε ! 10−5) and may be estimated (in a
similar way to (3.16)) from the full span Gaussian to be

(4.8) ∆t∞ = (12ε)1/3
(
8σ5/(15

√
π)
)1/6

,

which gives ∆t∞ ≈ 9.6× 10−3 for ε = 10−4 and is a factor of 10 smaller for ε = 10−7,
in agreement with Figure 4.2. Also, up to the time t ≈ 5/6 the time steps differ im-
perceptibly for the two values of N which indicates that the spatial error is negligible.

The global error e = u−U for 0 < t < 0.25 is shown in Figure 4.3 with ε = 10−7

and N = 128 and grows according to the predicted form (4.4). The analogous figures
for the other parameter values scale as ε2/3 since the global error is dominated by
temporal error in this time interval.

We return now to the discussion of the time step histories in Figure 4.2. The
exact solution (that is u, not u∞) is virtually zero for t > 1 which would lead one to
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Fig. 4.2. Time step history for propagation of a Gaussian. Top: Example 4.1, pure advection
on uniform grids with ε = 10−7 and ε = 10−4. Bottom: Example 5.1, advection-diffusion with
ν = 2 × 10−5 and ε = 10−7.
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Fig. 4.3. Global error for pure advection of a Gaussian for 0 ≤ t ≤ 0.25, ε = 10−7 and N = 128.
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suppose that the time steps should increase to infinity. However, the computed time
steps are approximately constant for 5/6 < t < 11/6. The problem, not apparent on
the scale of Figure 4.1, is that the numerical solution has some difficulty in leaving the
computational domain cleanly. This is manifested in a very small trail of “wiggles”
(with wave lengths ≈ 2h) that move upstream at the group velocity (−3) of a 2h wave
(see Gresho and Sani [7, section 2.6]). The wiggles are a consequence of the outflow
equation and their properties can be deduced from the semidiscrete equations. We
analyze them in some detail since they have a significant bearing on the examples in
the next section.

To isolate the reflections we need to compare the FE solution U with the FE
solution U∞ on the domain {(x, t) : −∞ < x < ∞, t > 0} with initial data extended
to infinity by zero. However, U∞ is an O(h4) approximation to u∞, the solution of the
advection equation on the same domain. Since the reflections are of O(h2) it suffices
to look at the truncation error associated with the outflow approximation (4.6) which
gives

TN = h
6 (2u̇N + u̇N−1) + 1

2 (uN − uN−1)

= 1
2h[ut + ux]N − 1

12h
2[2uxt + 3uxx]N + · · · .(4.9)

The reflection induced by T is given by the solution, say ρ, of the semidiscrete equa-
tions (1.5) (with ν = 0) with ρj(0) = 0 for 0 < j ≤ N , ρ0(t) = 0 and the outflow
equation

(4.10) h
6 (2ρ̇N + ρ̇N−1) + 1

2 (ρN − ρN−1) = − 1
12h

2u′′
0(1 − t),

where the RHS has been obtained by substituting the exact solution u∞ = u0(x− t)
into the above expression for T . Since the initial data u0 is only defined on the interval
(0, 1), the RHS of this equation is nonzero only for 0 < t < 1.

We now assume that the values of ρ at even and odd numbered grid points are
approximations to separate smooth functions p(x, t) and q(x, t). The internal semidis-
crete equations will then be consistent of order O(h2) with the hyperbolic system

(4.11)
1
3 (2pt + qt) + qx = 0
1
3 (pt + 2qt) + px = 0

}

while (4.10) leads to

1
6h(2pt + qt) + 1

2 (p− q) = − 1
12h

2u′′
0(1 − t).

To leading order p = q = O(h2) so the first term on the left-hand side (LHS) is O(h3)
which may be neglected. This leads to the outflow BC

(4.12) p− q = − 1
6h

2u′′
0(1 − t)

at x = 1 and the RHS is again zero for t > 1. Adding and subtracting the component
equations in (4.11) reveals that p + q and p− q are constant along the characteristic
lines x − t = constant and x + 3t = constant, respectively (the slopes of these lines
correspond to the group speeds of 1 for long wavelengths and −3 for 2h-wavelengths).

We focus first on the boundary values of the solution. Since p = q = 0 at t = 0
and p + q = 0 on the incoming characteristic at x = 1, the BC (4.12) gives

(4.13) p(1, t) = −q(1, t) = − 1
12h

2u′′
0(1 − t), 0 < t < 1.
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Fig. 4.4. Plots of p and q (scaled by a factor of 100) showing reflections caused by the outflow
equation (N = 128) for pure advection (top) and with added diffusion (ν = 2×10−5) (bottom). The
horizontal curves at t = 2/3, 4/3, 7/3 show the numerical error (dots) and predicted behavior (solid
lines).

This data is swept into the domain along the left-going characteristic along which
p− q is equal to its value at x = 1. Since p = 0 at x = 0, we then find that

q(0, t) = 1
6h

2u′′
0( 4

3 − t), 1
3 < t < 4

3

so that the amplitude of q at the left boundary is twice its value at the right boundary.
This boundary data is then carried back into the domain along right-going character-
istics along which p + q is constant and the process repeats for 4/3 < t < 7/3. (Our
asymptotics break down on this “rebound” because the forcing data on the RHS of
(4.12) is zero for t > 1 and higher order terms have to be included.) The computed
values of U1(t) (corresponding to q(0, t)) and UN−1(t), UN (t) (corresponding to q(1, t)
and p(1, t)), for N = 128 and ε = 10−7 are shown as vertical curves in Figure 4.4
(top). These curves have been amplified by a factor of 100 and the chosen tolerance
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is sufficiently small so that spatial errors dominate. The predicted curves are graphi-
cally indistinguishable from the computed values. The horizontal curves in Figure 4.4
(top) show the computed solutions (dots) at times t = 2

3 ,
4
3 ,

7
3 (only alternate even

and odd points are shown) and the predicted reflections (solid lines).
This explains what is going on in Figure 4.2. The first (left-going) reflection

does not affect the growth of ∆t since ‖...u‖ is still dominated by the tail of the
exiting Gaussian. The vertical dotted lines in Figure 4.2 are the times the right-
going characteristic passing through the peak of the initial profile and its consequent
reflections hit the endpoints. Following the reflection from x = 0, the time step is
constant ∆t = O((εN2)1/3) for 5/6 ! t ! 11/6. At t = 1 with ε = 10−7 the ratio
of time steps with N = 128 and 256 is 1.598 compared with the predicted ratio of
41/3 = 1.587. Subsequent reflections have amplitude O(h4) and so ∆t = O((εN4)1/3).

5. Advection-diffusion. We are now ready to consider the advection-diffusion
equation (1.1) with u(0, t) specified as inflow BC and, as in the previous section,
initial data that are smooth on the open interval (0, 1). This precludes, for instance,
the study of travelling fronts if they have regions of large gradient. We shall begin
with the easier case of a “natural” outflow BC ux(1, t) = 0 before proceeding to a
“hard” BC u(1, t) = 0. The former is perhaps of greatest interest because of the
difficulty in achieving the latter in physical situations, however, the latter has become
a benchmark for computations because of the numerical difficulties it presents.

5.1. Natural outflow boundary conditions. With smooth, compactly sup-
ported initial data u0, a weak boundary layer develops gradually at the outflow x = 1.
Expanding in the parameter ν/a we find that the solution of (1.1) under these condi-
tions can be approximated by

(5.1) ū(x, t) = u∞(x, t) − ν

a
e−a(1−x)/ν ∂u∞

∂x
(x, t),

where the truncation error term is O((ν/a)2), and where u∞ denotes the correspond-
ing infinite span solution with the same initial data extended to be zero outside (0, 1),
as in section 4.

If ν/a , 1, then the numerical solution is prone to spurious reflections from the
right-hand boundary as in the pure advection case discussed above. With the diffusion
term present, the analogues of the hyperbolic system (4.11) and the boundary equation
(4.12) are

(5.2)
1
3 (2pt + qt) + aqx = − 2ν

h2 (p− q)
1
3 (pt + 2qt) + apx = 2ν

h2 (p− q),

}

and

p− q = TN = 2
a [νux − 1

12ah
2uxx]N + . . . ,

respectively, where TN is the truncation error at the outflow (cf. (4.9)). Following
the approach in section 4 we substitute the truncated estimate of the solution ū(x, t)
into the above expression for TN and then solve the system (5.2) with initial data
p = q = 0 and boundary datum p = 0 on x = 1. This leads to the conclusion that
p+ q is constant along characteristics x−at = constant, but that there is exponential
decay,

(5.3) p− q = TN

(
x− 1

3a

)
e−

4ν
ah2 (1−x),
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Fig. 5.1. Global error vs. t for advection-diffusion of a Gaussian.

along left-going characteristics x + 3at = constant.
Example 5.1. Consider the system (1.4) arising from discretizing ut+aux = νuxx

on 0 < x ≤ 1, with BCs u(0, t) = 0 and ux(1, t) = 0 for t ≥ 0, and the initial condition
given by the Gaussian profile (4.5) as in Example 4.1.

Predicted reflections (solid lines) and the numerical results for a uniform grid
with N = 128 (dots showing alternate even and odd grid values) for the case a = 1,
ν = 2 × 10−5 are also shown in Figure 4.4. Comparing these results with those with
ν = 0 the level of exponential decay is gentle but noticeable. In order to inhibit these
reflections we clearly require much better resolution of the outflow boundary layer.

Perhaps the simplest way of achieving this increased resolution is to use a so-
called Shishkin grid [20, 23]. In such a grid N/2 elements are equally spaced in each
of the subintervals [0, 1 − β] and [1 − β, 1], where the “boundary layer thickness” is
given by,

(5.4) β = min

(
1

2
,
2ν

a
lnN

)
.

For advection-dominated problems, β = (2ν/a) lnN . Using such a Shishkin grid
with N = 256—so that the coarse grid is essentially the same as for the previous
experiment—does not dampen the wiggles for reasons given below. In computations
the results are graphically indistinguishable from those in Figure 4.4. This can also
be seen by comparing the second and third rows of Table 5.1 where we give the
magnitudes of the reflected waves at x = 1/2, for the times t = 2/3, 4/3, 8/3.

Figure 5.1 shows the behavior of the maximum norm of the global error11 for the
cases reported in Table 5.1. In all cases the error is approximately linear in time up
to t ≈ 0.2 (as in (4.4) for pure advection), and grows thereafter up to t ≈ 0.5 (when
the peak of the Gaussian meets the right boundary). The error for pure advection is
then nearly constant up to t ≈ 1.7 except for two peaks near t = 5/6 when the wave
reflects from the left boundary, and it finally drops to zero at t ≈ 2.1. In contrast, for
both the uniform grid (N = 128) and the Shishkin grid (N = 256) when diffusion is
present, the error decays on 0.5 < t < 5/6 in accordance with (5.3) before mirroring
the behavior seen in the case of pure advection.

Further insight is provided by Figure 5.2 where the computed solution and the
global errors are plotted for t = 0.4. It can be seen that the uniform grid (N = 128,

11When computing the global error we approximate u(x, t) by the O((ν/a)2) approximation (5.1)

which makes use of the infinite span solution u∞(x, t) = exp(−(x−x0−at)2/(2σ2+4νt))√
1+2νt/σ2

.
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Table 5.1
Amplitude of the reflected waves at x = 1/2 for Gaussian initial data.

ν N t = 2/3 t = 4/3 t = 8/3

Pure advection 0 128 1.023 × 10−3 −1.019 × 10−3 −6.76 × 10−8

Uniform grid 2 × 10−5 128 0.524 × 10−3 −0.269 × 10−3 −4.83 × 10−8

Shishkin grid 2 × 10−5 256 0.526 × 10−3 −0.270 × 10−3 −6.57 × 10−8

Geometric grid 2 × 10−5 256 1.174 × 10−5 0.75 × 10−5 1.32 × 10−10
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Fig. 5.2. Top: The numerical solution for advection-diffusion of the Gaussian at t = 0.4 with
ν = 2 × 10−5 for a Shishkin grid (N = 256, dots). Bottom: Global error with a uniform grid
(N = 128, circles), Shishkin grid (N = 256, dots), and Geometric grid (N = 256, crosses). The
interval (1 − β, 1) has been expanded in order to show the layer solution.

circles) and the Shishkin grid (N = 256, dots) behave in essentially the same manner
for 0 < x < 1 − β showing wiggles of roughly equal amplitude. These results suggest
that the reason that the Shishkin grid generates reflected waves is the sharp transition
between the coarse and fine grid sizes—such behavior has been known for some time
for pure advection; see, for example [17].

Within the numerical layer (1−β, 1) the magnitude of U̇ = O(a) while the spatial
derivatives are well approximated and are of O(a/ν). It can then be shown that the
analogue of (5.1) is

(5.5) Uj(t) = UN/2(t) + (1 − β − xj)/aU̇N/2 + νe−a(1−xj)/ν/a2U̇N/2 + O((ν/a)2)

for j = N/2 : N . Using this expansion it can be shown that the semidiscrete equation
holding at the interface corresponds to the weak implementation of the BC aux = −ut

at x = 1 − β.
To reduce the reflections from the interface we adopt a “smarter” grid that is

defined by

(5.6) hj = 1
2 (H + h) + 1

2 (H − h) tanhα( 1
2 (N + 1) − j), j = 1 : N

with α = log(5/4), and satisfies h < hj < H, where H and h are, respectively, the
coarse and fine grid sizes used in the Shishkin grid. Since hj approaches its extreme
values geometrically (as j → ±∞), we refer to this as a geometric-Shishkin grid.
The largest ratio of consecutive grid sizes for the Shishkin grid is H/h while it is
eα = 5/4 for this alternative grid. The grid size sequence {hj} is shown in Figure 5.3
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Fig. 5.3. Grid size hj for geometric-Shishkin grid (5.6) for ν = 2 × 10−5 and N = 256.

for ν = 2× 10−5 and N = 256, when we have β ≈ 2.2× 10−4 and 111 grid points are
located in the boundary layer region (1−β, 1). The global error on this geometric grid
at t = 0.4 is plotted with crosses in Figure 5.2. It is seen that the amplitude of the
error for x < 1−β is reduced by a factor of about two, but no wiggles are discernable.
The time history of the global error in Figure 5.1 confirms this fact—the plateau is
no longer apparent. This better resolution of the physics is also reflected in the time
step behavior using the TR-AB2 integrator. This is illustrated in Figure 4.2. Up until
the Gaussian meets the right boundary the time step sequence is independent of the
grid used. Thereafter ∆t is dependent on the amplitude of reflected waves and so it
is appreciably larger using the geometric grid compared to the Shishkin and uniform
grids. Although the Shishkin grid solution can be shown to converge uniformly in ν
as N → ∞ [23], our geometric grid is superior (at least for these parameter values).

We have dwelt for some time on the oscillations caused at or near the outflow with
the natural BC employed with the finite element method (FEM). These oscillations are
insignificant when compared with the common finite difference treatment of Neumann
boundary conditions using the so-called image point method. The superiority of the
FEM for natural boundary conditions for advection-diffusion (or Navier–Stokes, for
that matter) is clearly shown by Gresho and Sani [7, p. 209].

5.2. Dirichlet outflow boundary conditions. Our final scenario involves
solving the full advection-diffusion equation (1.1) with smooth initial data u0(x) and
boundary conditions u(0, t) = u0(0) and u(1, t) = 0 so that there is a step discontinu-
ity at x = 1, t = 0. This scenario is much more challenging than that of the previous
section because here it is the solution u, rather than the flux νux, that changes by O(1)
over the width O(ν/a) of the layer region. Verhulst [28] provides a brief introduction
to singular perturbation techniques for situations such as this.

We consider two example problems. In the first of these we revisit Example 3.2
with the addition of advection. The effects of advection are confined to the outflow
region and this allows a study of the transition from diffusion-dominated to advection-
dominated flow—what we shall refer to as the advection-diffusion time scale (τAD)—in
its simplest setting. Our second example then looks at a more complex transition.

Example 5.2. Consider the system (1.4) arising from discretizing ut+aux = νuxx

on 0 < x ≤ 1, with BCs u(0, t) = 1 and u(1, t) = 0, and the step initial condition
u0(x) = 1 , 0 ≤ x < 1.

We take N = 256 and concentrate on the classical Shishkin grid introduced in the
previous section. Such grids are, of course, designed for exponential layers and are
not ideally suited to the narrower erf-like layer that will arise at early times. Results
obtained for the geometric-Shishkin grid will be discussed subsequently.
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Fig. 5.4. Eigenvalues for pure diffusion problem (top) and advection-diffusion (bottom) both
with ν = 10−4 and N = 256. Symbols: Dots (•) correspond to the Shishkin grid and circles (◦)
correspond to the geometric-Shishkin grid.

For comparison purposes we first discuss the results for the heat equation (a = 0)
when using a Shishkin grid with N = 256 that is defined with β = 2ν lnN . The same
problem on a uniform grid was discussed in Example 3.2. The solution of the PDE
for early times is given by (3.15) and relaxes to the steady state u(x, t) = 1 − x in a
time t = O(1/ν).

The numerical solution, in contrast, evolves in two separate phases. In the first
phase the erf-layer develops entirely within the layer (1−β, 1) and then, in the second
phase, the effect of the singularity spreads to the coarse grid on (0, 1 − β).

An understanding of this evolution requires knowledge of the associated general-
ized eigenvalue problem (3.8). The eigenvalues are shown in the top of Figure 5.4.
They form two distinct sets, Sc = {λj : j = 1 : N/2− 1}, corresponding to the coarse
grid and Sf = {λj : j = N/2 + 1 : N − 1} corresponding to the fine grid, with λN/2 a
“bridge” between the two sets (its eigenvector has a quite different structure to those
corresponding to Sc and Sf ). The eigenvalues in these sets are closely approximated
by the eigenvalues of the FE discretization of the differential operator −νu′′ on the
domains (0, 1 − β) and (1 − β, 1), respectively, each with Dirichlet boundary condi-
tions (formulae for the discretized operator may be deduced from the results given
in Gresho and Sani [7, p. 190] or [5]). Thus, we have the estimates (confirmed by
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numerical experimentation)

λ1 ≈ νπ2,λN/2−1 ≈ 3νN2,λN/2 ≈
√

3N

2 lnN
,λN/2+1 ≈ π2

4ν(lnN)2
,λN−1 ≈ 3N2

4ν(lnN)2

that are valid when νN , 1; they show the considerably different time scales on
which these modes operate. (The estimate for λN/2 is conjectured from the results of
numerical experimentation.)

Both phases of the numerical evolution have similarities with those in Example 3.2
with suitably modified time scales. Each has its own minimum time of believability:

τMTB(h) = h2/4ν, τMTB(H) = H2/4ν

associated with the fine (h) and the coarse (H) grid, respectively. We note that these
times are also related to the largest eigenvalues in the sets Sf and Sc: τMTB(h) =
O(1/λN−1) and τMTB(H) = O(1/λN/2−1).

After the first four time steps, ∆t settles into the fast transient mode appropriate
for the fine grid, i.e., ∆t ≈ C exp(λN−1t/3) for t < τMTB(h) ≈ 1.9 × 10−7 (see
Figure 5.5, top, ◦). The solution then enters the parabolic smoothing phase during
which ∆t increases as t11/12 until t ≈ τ1. At this stage all but the last of the “fast
modes” from Sf have decayed and, for τ1 < t < τ2, ∆t ≈ C exp(λN/2+1t/3) based
on the smallest eigenvalue from Sf . This suggests that τ1 = O(1/λN/2+1), where
λN/2+1 ≈ νπ2/β2.

An estimate of τ2 may be made as the time at which the width of the singular layer
(which grows proportional to

√
νt) equals the width of the fine grid region:

√
νt ≈ β,

i.e., τ2 ≈ β2/ν ≈ 0.012 so τ2 ≈ 10τ1. The effect of the singularity subsequently
spreads into the coarse grid and a second “fast” transient stage begins where ∆t ≈
C exp(λN/2−1t/3) for τ2 < t < τMTB(H) ≈ 0.15. The solution then enters another

smoothing stage (∆t ≈ Ct11/12) followed by relaxation to steady state (the time steps
corresponding to these later times are not shown as the steady state is not achieved
until t = O(1/ν)). Overall, the time step follows the pattern of Figure 3.3 twice in
succession.

In Figure 5.5 we show a linear-log plot of ‖U − uerf‖∞ with time, where uerf is
the solution given by (3.15). (The maximum norm of the difference was computed
by interpolating uerf onto a finer grid—it is not based on just the nodal errors.)
For the heat equation (◦) it is seen that the norm decreases and is small (≈ 10−2)
at t = 10−6—this suggests that the estimate τMTB(h) ≈ 1.9 × 10−7 is a little too
small. The norm continues to decrease until t = τ1 ≈ 10−3 when the erf layer begins
to penetrate the coarse grid. During this process, which takes place in the interval
τ1 < t < τMTB(H), it grows appreciably before decaying again. The norm shows a
similar rise and fall for the geometric-Shishkin grid but it is two orders of magnitude
smaller. The final increase in the norm for t > 103 is due to the fact that uerf does
not satisfy the boundary condition u(0, t) = 1.

Figure 5.5 also shows a linear-log plot of ‖U−USS‖∞with time, where USS = 1−x
denotes the steady state solution of the ODE system when a = 0. The solution is
within 10−5 of the steady state by t = 104 = O(1/ν). Also shown by a broken line is
the maximum difference U − USS computed over only those nodal points lying in the
fine Shishkin grid. This shows that the numerical solution becomes close to steady
state relatively quickly in the fine grid (t ≈ 1).

The main difference when using a geometric-Shishkin grid—see Figure 5.5 (top,
∗ and broken line)—is that ∆t behaves as Ct11/12 for t > τMTB(h) ≈ 1.9 × 10−7 and
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Fig. 5.5. Top: Time step histories for Example 5.2 with ν = 10−4, tolerance ε = 10−7, and
initial time step ∆t0 = 10−10. Bottom: Top: ‖U − uerf‖∞ vs. t. Bottom: ‖U − USS‖∞ vs. t; the
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does not deviate from this, as the Shishkin grid does, over the interval (τ1, τMTB(H)).
We attribute this to the fact that the eigenvalues λn (see Figure 5.4, top, shown by
◦) are more evenly distributed when n is close to N/2.

We now discuss the results of the experiments with advection included (a = 1).
At early times the continuum problem is diffusion-dominated; an erf layer forms as
described above for the heat equation and the solution is given by u ≈ uerf(x, t) (cf.
(3.15); see, for instance, Flyer and Fornberg [6]). For long times, the solution tends
to the steady state

(5.7) uSS(x) =
1 − e−a(1−x)/ν

1 − e−a/ν

having an exponential boundary layer with thickness O(ν/a). The advection-diffusion
equation satisfies a maximum principle so this transition is monotonic.

The eigenvalues of the discrete advection-diffusion operator on a Shishkin grid
again form two distinct sets Sc and Sf ; those in Sc are complex and so it is their moduli
that are shown on the bottom of Figure 5.4 (◦)—the vertical scale used is the same as
that in the top figure. The larger eigenvalues in Sf are closely approximated by those



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2048 P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

of the discrete eigenvalue problem on (1−β, 1) with homogeneous Dirichlet boundary
conditions and are comparable in magnitude with those for the heat equation. This
suggests that the time scales associated with exponential phases based on the fine grid
are also comparable. In particular, the largest eigenvalues are roughly the same so
that τMTB(h) is the same for both problems. The moduli of the eigenvalues in Sc are
considerably larger than the corresponding eigenvalues of the heat equation though
these have little bearing on the solution due to ill conditioning; see Trefethen and
Embree [26].

During the early stages of the evolution, as the erf layer develops, the time step
history in Figure 5.5 (top, !) is seen to follow that for the heat equation up until
advection and diffusion have comparable magnitude. This occurs when the widths of
the erf and exponential layers are comparable:

√
νt ≈ ν/a which gives rise to what

we refer to as the advection-diffusion time scale

(5.8) τAD = ν/a2

and its location is highlighted in Figure 5.5. This is also the time required for material
to be transported through the width of the exponential boundary layer so is a measure
of the time it takes to attain a steady state in the outflow layer. It is clearly a
physical, rather than a numerical time scale—thus correcting the discussion in [7,
section 2.6.2g]. The minimum time of believability on the fine grid can be expressed
in terms of τAD and N as

(5.9) τMTB(h) =

(
2 lnN

N

)2

τAD.

The difference ‖U−uerf‖∞, shown in Figure 5.5 for a Shishkin grid (!), is a minimum
when t ≈ 10−6. The behavior is almost identical for the geometric-Shishkin grid (.).

The next time scale, which is a numerical artifact, occurs when the width of the
erf layer (

√
νt) grows to that of the fine grid:

√
νt = β, leading to τ2 = β2/ν. There

follows a period during which the numerical solution is stationary in the layer and a
wave emanates to the left with speed −3a and having the same oscillatory structure
as that analyzed in section 5.1.

The progress of the solution to steady state is monitored in Figure 5.5 where
we show ‖U − USS‖∞ as a function of time. It is small when t " 10−3 = 10τAD.
The behavior is again almost identical for the geometric-Shishkin grid (.). The nodal
differences Uj−uSS(xj) between the numerical and exact solutions (5.7) at steady state
are shown in Figure 5.6 (as a function of j) for Shishkin grid (dots) and geometric-
Shishkin grid (solid line) with N = 256. It is seen that the difference is oscillatory for
the Shishkin grid when j ≤ N/2 (outside the layer region)12 but the dominant error
occurs inside the layer region and is of almost identical magnitude for both grids.

When the geometric-Shishkin grid is employed the time step history (see Fig-
ure 5.5, top, .) is virtually identical to the classical Shishkin grid while the dynamics
of the solution are restricted to the layer (t < τ2). Thereafter, the advection-diffusion
solution evolves using a much larger time step with the geometric-Shishkin grid since
the amplitude of the 2h–wavelength wave propagating in the negative x-direction
from the grid interface is much smaller when there is a smooth transition from fine to
coarse grid.

12An explicit expression for the steady state solution on a Shishkin grid is readily obtained from
which it can be shown that |UN/2 − uSS(xN/2)| ≈ 1/N2.
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Fig. 5.6. The difference between the nodal values of the steady state uSS(xj) of the advection-
diffusion equation and the steady state nodal values Uj of the numerical solution on a Shishkin grid
(dots) and geometric-Shishkin grid (solid line) for Example 5.2, N = 256, ν = 10−4, and a = 1.

We complete this example by looking more closely at the transition from erf to
exponential layer for a variety of physical parameters ν and a. For the continuum
equation the early time is dominated by diffusion so ut ≈ νuxx (which leads to
the approximate solution uerf) and, at long time, the advective and diffusive terms
balance, i.e., aux ≈ νuxx (so ut ≈ 0, and this leads to the steady state solution uSS). It
is convenient to rescale the time by τ = t/τAD ≡ a2t/ν so that the advection-diffusion
equation becomes

(5.10) uτ + Pe−1ux = Pe−2uxx,

where Pe = a/ν is the Peclet number. This nondimensionalization reduces the depen-
dence of the solution to a single parameter. Since the advection speed is now Pe−1,
the appropriate interval for time integration is 0 < τ < O(Pe). The FEM on a uni-
form grid will produce oscillation-free solutions provided that the grid Peclet number
Peh = hPe = ah/ν < 2. A simulation is therefore said to be advection-dominated
when Peh 2 2 (see, for instance, [7, pp. 216–217] for a discussion). On a Shishkin
grid it is the coarse grid Peclet number, PeH , that is relevant so advection dominates
when Pe > N .

In Figure 5.7 we show results for Peclet numbers Pe = 102 (◦), 103(!), and
104(∗). The time step ∆τ = ∆t/τAD increases slightly with Peclet number during the
parabolic smoothing phase. The figure also shows ‖U−uerf‖∞ as a function of t/τAD.
It is seen that the value of the norm is essentially the same for all parameter values.
We also show the results using N = 512 and Pe = 103 (dashed curve, for which the
minimum time of believability is τ = τMTB(h)/τAD ≈ 5 × 10−4, see (5.9)) and for
N = 256 and Pe = 10 (dotted curve) which suggest that the norm is reduced as N
increases or Pe decreases up until t ≈ 5τMTB(h), where the norm attains its minimum.
Thereafter the norm of the difference is independent of both N and Pe (provided
advection dominates). The lower curve shows ‖U −USS‖∞ as a function of t/τAD and
the curves corresponding to the three Peclet numbers are again roughly coincident
for all t (they are also independent of N and Pe for t > τMTB(h) and Pe " 10). The
results in Figure 5.7 are consistent with the relationship (5.9) between time scales.

Figure 5.8 shows the erf solution (solid curve), steady state USS (dotted curve)
and numerical solution U (dots and broken curve) in the four elements next to the
outflow at Pe = 103 for a range of times. Overall we observe that the differential
equation is not accurately solved until t ≈ τMTB(h); the erf solution (ut ≈ νuxx) then
holds until t is a little beyond 0.01τAD. All three terms in the differential equation
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Fig. 5.7. Advection-diffusion problem with step initial data on a geometric-Shishkin grid with
N = 256 and ε = 10−7 (Example 5.2) for Pe = 102 (◦), Pe = 103 (!), Pe = 104 (∗). Top: ∆τ vs.
τ for the rescaled equation (5.10). Bottom: ‖U − uerf‖∞ vs. t/τAD (dotted curve Pe = 10, broken
curve N = 512) and ‖U − USS‖∞ vs. t/τAD. The vertical dotted lines are drawn at t = τMTB(h).

have to be retained until steady state (ut ≈ 0) is approached at τ ≈ 10. There is no
significant difference for any Peclet numbers Pe ≥ 1.

Our final example incorporates another combination of the time scales seen in
Examples 5.1 and 5.2 but with more interesting “physics.”

Example 5.3. Consider the system (1.4) arising from discretizing ut+aux = νuxx

on 0 < x ≤ 1, with BCs u(0, t) = 0 and u(1, t) = 0 for t ≥ 0, and the initial condition
is the Gaussian profile (4.5) centered at the point x = 1 − σ with σ = 1/

√
200 (see

Figure 5.9).
The main differences between this and the previous example are that the solution

is nonconstant in the outer region and the amplitude of the outflow boundary layer
is also time varying.

With the Dirichlet outflow BC the effects of advection are again negligible at early
times and the solution is given quite accurately by the approximation (cf. (3.15))

(5.11) u(x, t) ≈ ue(x, t) ≡ u0(x)erf
(
(1 − x)/

√
4νt

)
.

This erf layer then develops into an exponential layer at which stage the solution is
given, again quite accurately, by the approximation

(5.12) u(x, t) ≈ u,(x, t) ≡ uSS(x)u∞(x, t),
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Fig. 5.9. Initial condition for Example 5.3.

where uSS is given by (5.7) and u∞ in footnote 11—the latter could equally be replaced
by the exact solution for advection on an infinite span: u0(x− at). We shall be more
precise about the time intervals over which these solutions are valid presently. The
time-varying Gaussian (the “outer” solution) sets the amplitude of the solution in the
boundary layer (the “inner” solution). It is noteworthy that, whereas u∞ satisfies
the full advection-diffusion equation and uSS satisfies the steady state version of this
equation, the solution given by (5.12) satisfies neither—yet does an excellent job
of describing the physics, both within and outwith the boundary layer. A similar
statement applies to (5.11).

The time step histories for the two Shishkin grids are plotted in Figure 5.10.
The time step follows the familiar path through the fast transient t ! τMTB(h) then

increases as t11/12 until t ≈ τAD after which it increases more rapidly as advection
gains in strength. At t = τ1, ∆t reaches the value given by (4.8)—advection is
dominant and diffusive effects have little influence on its value. At this stage the
outflow boundary layer is fully formed (i.e., is in steady state) with a slowly varying
amplitude, but this variation has little effect on ∆t since the width of the layer is so
narrow that the solution within it makes a negligible contribution to the L2 norm of...
U for τ1 < t < τ2.
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Shishkin and geometric-Shishkin grids with N = 256, ε = 10−7 and Pe = 103 (◦), Pe = 104 (!),
and Pe = 105 (∗).

For t > τ2 the increase in ∆t becomes more rapid as the Gaussian “exits” the
domain. Up to this time the two grids generate essentially identical histories. The
constant τ3 in Figure 5.10 is O(ν/a2). Thus, for t > τ3, the numerical solutions
become dominated by the spurious reflected waves from the grid interface and the
time steps for the Shishkin grid, having much larger left-going waves, are appreciably
smaller. Also noteworthy is the close similarity of the time step histories for Examples
5.2 and 5.3 (except of course for large t).

To estimate the times over which the two solutions, ue and u, (given, respectively,
by (5.11) and (5.12)) are valid we compute ‖U − ue‖∞ and ‖U − u,‖∞ and these are
shown in Figure 5.11 as functions of τ = t/τAD for Pe = 103 (◦), Pe = 104 (!), Pe =
105 (∗). For fixed N both norms are essentially independent of Peclet number (in the
advection dominated case). Both norms behave quantitatively as in Figure 5.7 when
the solution in this example is scaled so that the initial amplitude of the discontinuity
is unity—the same as for the step data. A detailed study of the solutions in the four
elements closest to the outflow shows a behavior very similar to that in Figure 5.8
once the amplitude of the boundary layer solution is taken into account.

A corner singularity can also occur at x = t = 0 caused by the mismatch of the
boundary data u(0, t) and u(x, 0) (or their derivatives) as x, t → 0. The nature of the
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singularity is discussed by Flyer and Fornberg [6] and the internal layer created as
the effects are propagated into the domain along the characteristic x = at is studied
by Shih [25]. A finite element method with a fixed spatial grid is inappropriate in the
case that a discontinuity occurs since this will generally create oscillatory numerical
solutions. Weaker singularities on the other hand can be handled quite successfully
and the behavior of the time step can be predicted from the level of regularity in the
solution using the techniques described in section 3.

6. Possible extensions. Our examples reveal that even simple problems can
have quite complex time scales, some physical and some of numerical origin, and
in this paper we have endeavored, wherever possible, to identify as well as quantify
the different phases of each simulation. It is clear that some form of adaptive time
integrator is essential in order to efficiently respond to the different time scales and,
given the wide range of dynamics taking place during these simulations, it is rather
reassuring to see the TR-AB2 integrator find the appropriate time step during all
phases. We have looked in detail at the way that smoothness of the initial data
influences the solution, the error, and the selection of time steps. A close study of
the behavior of the time step can often be useful in shedding light on the different
temporal phases of a simulation.

We note that, of all A-stable linear multistep methods, TR has the smallest error
constant and therefore allows the largest time step for a given accuracy. For the second
order backward differentiation (BDF) BDF2 method (see Hairer, Norsett, and Wanner
[12, p. 401] for the variable step formulation and Hundsdorfer and Verwer [15, p. 203]
for numerical results) the error constant is C3 = −2/9 from which we deduce that
the time step selected by an adaptive time-stepping method will be (3/8)1/3 ≈ 0.72
times smaller than that used by our TR-AB2 method. This has been verified by
computation; for instance, in Example 3.2, the BDF2 time steps are smaller than
those shown in Figure 3.3 by the predicted fraction up until t ≈ τ2, after which both
methods have approximately equal time steps (in keeping with our discussion of long
term behavior in section 2). The same ratio of time steps is observed in pure advection
problems provided that the tolerance is chosen to be sufficiently small that the time
steps remain essentially constant; otherwise, the dissipative nature of BDF2 causes
the time steps to increase with time.

The theoretical results of this paper have all been based on the principal trunca-
tion error term of the TR integrator. For a general pth order linear multistep method
with error constant Cp+1 (see, for instance, Hairer, Norsett, and Wanner [12]) we
obtain, using (1.15),

∆tn ≈
(

ε

|Cp+1| ‖u(p+1)‖

) 1
p+1

.

Thus, for specific model problems, such as the examples used in this paper, it is
possible to compare the efficiency of methods of differing orders as a prelude to the
use of variable step-variable order methods. We intend to pursue these ideas in future
publications.
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