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Abstract 
The rise of bubbles in viscous liquids is not only a very common process in many 

industrial applications, but also an important fundamental problem in fluid physics. An 

improved numerical algorithm based on the front tracking method, originally proposed by 

Tryggvason and his coworkers, has been validated against experiments over a wide range 

of intermediate Reynolds and Bond numbers using an axisymmetric model (Hua and 

Lou, J. Comput. Phys. 222:769-795, 2007). In the current paper, this numerical algorithm 

is further extended to simulate 3D bubbles rising in viscous liquids with high Reynolds 

and Bond numbers and large density and viscosity ratios at the physical order of the 

typical multi-fluid system of air bubbles in water. To facilitate the simulation, mesh 

adaptation is implemented for both the front mesh and the background mesh, and the 

governing Navier-Stokes equations for incompressible, Newtonian flow are solved in a 

moving reference frame attached to the rising bubble. Specifically, the flow equations are 

solved using a finite volume scheme based on the Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE) algorithm, and it appears to be robust even in the range of 

high Reynolds numbers and high density/viscosity ratios. The 3D bubble surface is 

tracked explicitly using an adaptive, unstructured triangular mesh. The model is 

integrated with the software package PARAMESH, a block-based adaptive mesh 

refinement (AMR) tool developed for parallel computing. PARAMESH allows 

background mesh adaptation as well as the solution of the governing equations in parallel 

on a supercomputer. The interpolations between the front mesh and the background mesh 

are done with Peskin’s distribution function. The current model has also been applied to 
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simulate a number of cases of 3D gas bubbles rising in viscous liquids, e.g. air bubbles 

rising in water. The simulation results are compared with experimental observations both 

in aspect of terminal bubble shapes and terminal bubble velocities. In addition, we 

applied this model to simulate the interaction between two bubbles rising in a liquid. The 

simulation results provide us with more physical insights into the complex bubble rising 

behavior in viscous liquids.   

 

Keywords: Computational fluid dynamics; Incompressible flow; Multiphase flow; Bubble 

rising; SIMPLE algorithm; Front tracking method; Adaptive mesh refinement; Moving 

reference frame  
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1. Introduction 
Multiphase flows are numerous in both everyday life and engineering practice [34].  

Typical examples in nature include raindrops in air and gas bubbles in water, whereas 

chemical reactions, combustion and petroleum refining are examples of multiphase flows 

in industry. One very basic example of such flow is the rise of a single gas bubble in an 

otherwise quiescent viscous liquid. The understanding of the flow dynamics of this 

system is of great importance in engineering applications and to the fundamental 

understanding of multiphase flow physics. Rising bubbles have long been studied 

theoretically [8, 25], experimentally [1] as well as computationally through numerical 

modeling [36]. While all these efforts have provided us with valuable insights into the 

dynamics of bubbles rising in viscous liquids, there are still many questions that remain 

unanswered due to the involvement of complex physics. The behavior of a bubble rising 

in a viscous liquid is not only affected by the physical properties such as density and 

viscosity of both phases [6], but also by the surface tension on the interface between the 

two phases and by the bubble shape evolution [27, 2]. The difficulties in describing and 

modeling the complex behavior of a rising bubble are to a large extent due to the strong 

nonlinear coupling of factors such as buoyancy, surface tension, bubble/liquid 

momentum inertia, viscosity, bubble shape evolution and rise history of the bubble. In 

addition, the physics of the behavior of bubbles is of a three-dimensional nature. Hence, 

most of the past theoretical works were done with a lot of assumptions, and the results are 

only valid for certain flow regimes [25, 43]. The experimental works were limited by the 

available technologies to monitor, probe and sense the moving bubbles without 

interfering with their physics [1, 38, 44].   

With the rapid advance of computing power and the development of robust numerical 

methods, first principle based numerical simulations promise great potential in extending 

our knowledge of the fundamental system of a single bubble rising in a viscous liquid. 

However, there are still great challenges and difficulties in simulating such a system 

accurately.  This may be attributed to the following facts: (i) the sharp interface between 

the gas bubble and the surrounding liquid should be tracked accurately without 

introducing excessive numerical smearing; (ii) the surface tension gives rise to a singular 

source term in the governing equations, leading to a sharp pressure jump across the 
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interface; (iii) the discontinuity of the density and viscosity across the fluid interface may 

lead to numerical instability, especially when the jumps in these properties are high. For 

example, the density ratio of liquid to gas could be as high as 1000; (iv) the geometric 

complexity caused by bubble deformation and possible topological change is the main 

difficulty in handling the geometry of interface; a large bubble may break up into several 

small ones, and a bubble may also merge with other bubbles; (v) the complex physics on 

the interface, e.g. the effects of surfactants, film boiling and phase change (heat and mass 

transfer) and chemical reactions.  Fortunately, various methods for multiphase flow have 

been developed to address these difficulties, and each method typically has its own 

characteristic strengths and weaknesses. Comprehensive reviews of numerical methods 

for multiphase/interfacial flow simulation have been given by Scardovelli and Zaleski 

[37] and Annaland et al. [41]. Most of the current numerical techniques applied in the 

simulation of multiphase/interfacial flows have been developed with focus on the 

following two aspects: (i) capturing/tracking the sharp interface, e.g. interface capturing, 

grid fitting, front tracking or hybrid methods; and (ii) stabilizing the flow solver to handle 

discontinuous fluid properties and highly singular interfacial source terms, e.g. the 

projection-correction method [41] and the SIMPLE algorithm [6, 17].   

The volume of fluid [14, 4], level-set [28, 42, 29] and phase-field [19] approaches fall 

into the first category of front capturing methods. In these methods the interface is 

captured using various volume functions defined on the grid used to solve the “one-fluid” 

formulation of the governing equations for multiphase flow. Since interface capturing 

uses the same grid as the flow solver, it is relatively easy to implement. However, the 

accuracy of this approach is limited by the numerical diffusion from the solution of the 

convection equation of the volume function. Various schemes have been developed to 

advect, reconstruct / reinitialize the volume function to improve the accuracy in 

calculating the interface position.  One example is the high-order shock-capturing scheme 

used to treat the convective terms in the governing equations [18]. Although the explicit 

reconstruction of the interface is circumvented, the implementation of such high-order 

schemes is quite sophisticated, and they do not work well for the sharp discontinuities 

encountered in multiphase/interfacial flows. In addition, a relatively fine grid is needed in 

the vicinity of the interface to obtain good resolution.     
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The second category of approaches tries to track the moving interface by fitting the 

background grid points to the interface. The fitting is achieved through re-meshing 

techniques such as deforming, moving, and adapting the background grid points. This 

method is also well-known as “boundary-fitting approach”, and the “boundary” here 

refers to the interface between the fluids. The grid-fitting approach is capable of 

capturing the interface position accurately. Early development on this approach was done 

by Ryskin and Leal [36]. Curvilinear grids were used to follow the motion of a rising 

bubble in liquid. This method is suitable for relatively simple geometries undergoing 

small deformations, and applications to complex, fully three-dimensional problems with 

unsteady deforming phase boundaries are very rare. This is mainly due to difficulties in 

maintaining the proper volume mesh quality and in handling complex interface geometry 

such as topological change. In spite of these difficulties, recent work by Hu et al. [16] 

showed some very impressive results on 3D simulations of moving spherical particles in 

liquid.  

The third category is the front tracking method. This approach solves the flow field 

on a fixed grid and tracks the interface position in a Lagrangian manner by a set of 

interface markers. These interface markers can be free particles without connection, or 

they can be logically connected elements, possibly containing accurate geometric 

information about the interface such as area, volume, curvature, deformation, etc. A front 

tracking technique was proposed by pioneer researchers Glimm and his coworkers [11, 

12, 13]. They represent the front interface using a set of moving markers and solve the 

flow field on a separate background grid. The background grid is modified only near the 

front to make background grid points coincide with the front markers of the interface. In 

this case, some irregular grids are reconstructed and special finite difference stencils are 

created for the flow solver, increasing the complexity of the method and making it more 

difficult to implement. Independently, another front tracking technique was developed by 

Peskin and collaborators [31, 10]. In their method, the interface is represented by a 

connected set of particles which carry forces, either imposed externally or adjusted to 

achieve a specific velocity at the interface. A fixed background grid is kept unchanged 

even near the front interface, and the interface forces are distributed onto the background 

to solve the “one-fluid” formulation of the fluid flow.        
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A number of combinations and improvements of these basic approaches have been 

proposed to enhance the capabilities in dealing with the sharp, moving interface, where 

complex physical phenomena and processes could occur. One of the most promising 

approaches is arguably the front tracking method proposed by Tryggvason and his 

collaborators [46, 45]. Actually, this method may be viewed as a hybrid of the front 

capturing and the front-tracking techniques: a fixed background grid is used to solve the 

fluid flow, while a separate interface mesh is used to track the interface position 

explicitly. The tracked interface carries any jumps in the fluid properties, such as density 

and viscosity, and any interfacial forces, such as surface tension. Fluid properties are then 

distributed onto the fixed background grid according to the position of the interface. The 

surface tension can be calculated according to the geometry of the interface and is also 

distributed onto the background grid in the vicinity of the interface.  

Besides the numerical techniques employed to capture/track the moving interface, it 

is also very important to develop a stable numerical method to solve the governing 

equations of the flow field. Some investigators have considered simplified models such 

as Stokes flow [33], where inertia is completely ignored, and inviscid potential flow [15], 

where viscous effects are ignored in. In both cases, the motion of deformable boundaries 

can be simulated with boundary integral techniques. However, when considering the 

transient Navier-Stokes equations for incompressible, Newtonian fluid flow, the so-called 

“one-fluid” formulation for multiphase flow has proved most successful [4, 42, 46]. 

Popular modern methods that use the “one-fluid” formulation include the projection-

correction method [45, 41] and the SIMPLE algorithm [6, 17]. Various 

multiphase/interfacial flow problems have been successfully simulated by the front 

tracking method [45] with a projection-correction flow solver. It appears that previously 

reported results have been limited to flows with low to intermediate Reynolds numbers 

(<100) and small density ratios (<100) [5]. It is thus natural to re-examine the approach 

and to make it more robust and applicable to wider flow regimes. Some revised versions 

of the project-correction method have been proposed to improve its capability in handling 

situations with large density and viscosity ratios [41]. Recently, Hua and Lou [17] tested 

a SIMPLE-based algorithm to solve the incompressible Navier-Stokes equations. The 

simulation results indicated that the newly proposed method could robustly solve the 
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Navier-Stokes equations with large density ratios up to 1000 and large viscosity ratios up 

to 500. 

Hua and Lou [17] presented extensive simulations and model validation on a single 

bubble rising in a quiescent liquid. The comprehensive simulations show good results in 

wide flow regimes with high density and viscosity ratios, and the algorithm is as such 

promising in the direct numerical simulation of multiphase flow. Unfortunately, the 

previous validation studies were limited to the 2D axisymmetric model where fluid flows 

and bubble shapes are axisymmetric. Hence, it would be interesting to investigate the 

robustness of the proposed numerical approach for multiphase flow in flow regimes of 

higher Reynolds and Bond numbers where the bubble may not be axisymmetric anymore. 

Therefore, a fully three-dimensional modeling approach is proposed in this paper. In 

addition, other features such as mesh adaptation, moving reference frame and parallel 

programming are introduced to enhance the model capability in simulating the rise of a 

3D bubble in a viscous liquid.  

The numerical algorithm proposed by Tryggvason and co-workers [46, 45], and 

extended further by Hua and Lou [17], is adopted in this paper. The handling of the 

moving interface in this method may be characterized as a hybrid of interface tracking 

and capturing. The governing Navier-Stokes equations are solved on a fixed Cartesian 

grid with an adaptive block structure, while the interface is represented by a set of 

explicitly tracked front markers. These markers form an adaptive triangular surface mesh 

that is advected with a velocity interpolated from the surrounding fluid. An illustration of 

such a mesh system is shown in Figure 1. A single set of the governing equations are 

solved in the entire computational domain by treating the two fluids as one single fluid 

with variable fluid properties across the interface – often referred to as the “one-field” or 

“one-fluid” approach. The interface is assumed to have a given finite thickness (normally 

about two to four times the background grid size) so that jumps in the fluid properties 

across the surface can be reconstructed smoothly by solving a Poisson equation. 

A parallel adaptive mesh refinement (AMR) tool, PARAMESH [24], is integrated 

with the modified SIMPLE flow solver, and the governing equations are solved in a non-

inertial moving reference frame attached to the rising bubble. The AMR feature allows a 

relatively high-resolution mesh in the vicinity of the bubble surface. The non-inertial 
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moving reference frame technique translates the computational domain with the rising 

bubble, allowing the computational domain to be relatively small and always centered 

around the bubble. The latter feature is particularly useful for studying the path instability 

of a rising bubble or the interaction of multiple bubbles, which may need very long 

simulation periods. For example, it is observed in experiments that the paths of 

millimeter-sized, rising air bubbles in water normally stabilize after a rise distance of 50-

100 times the initial bubble diameter. If a stationary frame was to be applied to simulate 

this situation, the computational domain would be huge compared to the domain of 

interest. Even though an AMR feature is adopted, the total number of grid points can still 

be a big burden, slowing down the simulation.   

The problem of a single bubble rising in a viscous liquid has been widely used as a 

typical validation case for the development of new numerical methods for multiphase 

flow [6, 40, 41]. Due to numerous experimental and numerical studies in the past, the 

physical understanding of the bubble rise behavior in liquid has been well-established in 

some flow regimes, e.g. regimes with lower Reynolds and Bond numbers [7, 1]. 

However, due to the complexity in multiphase flow physics and the difficulties in both 

experiments and simulations, the behavior of a rising bubble with high Reynolds number 

is not understood well [26, 21]. In this paper, we first validate our model through 

comparing computational results of a single bubble rising with experimental results [1] in 

aspects of both bubble shapes and terminal velocities. In addition, we apply the 3D model 

to simulate air bubbles rising in water, and we compare the terminal velocities of the 

bubbles predicted in our simulations with experimental results within a large range of 

diameters: from 0.5 mm to 30 mm. There have been few numerical studies on this except 

some recent ones [9, 21]. However, since air bubbles rising in water is such a common 

process both in our daily life and in industrial applications, a better understanding of this 

process is of great importance. 

The rest of this paper is organized as follows. In Section 2 we present the governing 

equations as well as the numerical method we apply to solve these equations. Numerical 

results presented in Section 3 include a detailed sensitivity analysis of the computational 

set-up as well as validation through a comparison of our numerical predictions with 

available experimental data. Finally, we recapitulate our main findings in Section 4. 
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2. MATHEMATICAL MODEL AND NUMERICAL METHOD 
 

2.1. Governing Equations 

The problem of gas bubbles rising in liquids studied in this paper can be described as 

an isothermal, multi-fluid system with two incompressible and immiscible Newtonian 

fluids. We will use one single set of governing equations for the entire flow domain 

where we treat the different fluids as one single fluid with material properties varying 

across the interface. With this “one-fluid” approach, there is no need to deal with the 

jump conditions across the interface when the governing equations are solved. However, 

we will have to calculate the fluid property distributions and include the surface tension 

as a singular source term in the solution domain through the use of a delta function before 

the equations can be solved.  

The mass conservation for the whole domain under the incompressibility condition 

may be expressed in form of volume flux conservation, 

0=⋅∇ u .                                                               (1) 

The momentum conservation (Navier-Stokes equations) takes the form, 

gxxnuuuuu )()()]([)( T
lf dsp

t
ρρδσκμρ

ρ
−+−+∇+∇⋅∇+−∇=⋅∇+

∂
∂

∫
Γ

,    (2) 

where u  is the fluid velocity, ρ  is the fluid density, lρ  is the density of the liquid phase, 

p is the pressure, μ  is the fluid viscosity, σ  is the surface tension coefficient, κ  is the 

interface curvature, n  is the unit normal vector to the interface, g  is the gravitational 

acceleration, and )fx(x −δ  is a delta function that is defined as the product of three one-

dimensional delta functions: )(z)()( yx)( δδδδ =x , ), zy,(x=x . The subscript  refers to a 

point on the interface Γ . It is worth pointing out that the material properties density 

f

ρ  

and viscosity μ  will be discontinuous across the interface, and there will generally be a 

jump in the pressure p  across the interface as well. Note that the surface tension term is 

a singular term that only comes into effect on the interface between the two fluids. 

We non-dimensionalize the equations by introducing dimensionless characteristic 

variables as follows,  
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D
xx =* , 

gD
uu =* , t

D
g

=*τ , 
lρ
ρρ =* , 

gD
pp

lρ
=* , 

lμ
μμ =* , κκ D=* , 

g
gg =* , 

where  is the diameter of a sphere with the same volume as the bubble and D g=g . 

Thus we may re-express the Navier-Stokes equations as  

 

 gxxnuuuuu )1()(1)]([1)(
*

T
* −+−+∇+∇⋅∇+−∇=⋅∇+

∂
∂

∫
Γ

ρδκμρρ ds
BoRe

p
t f ,     (3) 

 

in which the superscript * has been omitted for convenience. Note that the non-

dimensional Reynolds and Bond numbers used here are thus defined as 

l

l Dg
Re

μ
ρ 2/32/1

* =  and 
σ

ρ 2
* gD

Bo l= . 

By studying the non-dimensional formulation, it can be noticed that the flow is entirely 

characterized by the following four dimensionless parameters: The density and viscosity 

ratios of the fluids, the Reynolds number and the Bond number. It is also noted that the 

definition of the non-dimensional Reynolds number in the experimental works is 

different from the one defined here. Normally, experimental works prefer the following 

non-dimensional numbers: Eotvos number ( E , also known as Bond number); Morton 

number ( M ) and Reynolds number ( ), defined as  Re

σ
ρ 2gD

E l= , 3

4

M
σρ
μ

l

lg
= ,  and 

l

l DU
μ

ρ ∞=Re , 

where   is the terminal rise velocity of the bubble measured in the experiments.  ∞U

 

2.2. Treatment of the Discontinuities across the Interface 

When the governing Navier-Stokes equations are solved numerically on a fixed grid, 

the values of the density and viscosity on these grid points are required.  It is a reasonable 

assumption that each fluid is incompressible, and fluid properties such as density and 

viscosity are constant in each fluid phase. Hence the density and viscosity are physically 

discontinuous across the interface between the two immiscible fluids, and this abrupt 

jump at grid points adjacent to the interface has traditionally caused great problems in 
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many numerical methods. In Tryggavson et al. [46, 45] a fixed background mesh is 

adopted to solve the governing flow equations, and a separated mesh is applied to track 

the position of the interface as well as the discontinuities across the front.  An illustration 

of such a mesh system is shown in Figure 1. The discontinuities across the front are 

distributed from the front mesh to the background mesh, and continuous distributions of 

the fluid properties on the fixed background mesh can be reconstructed. The singular 

source term on the front is distributed to the background grid similarly, and the governing 

equations can thus be solved on the fixed background grid using any preferred numerical 

approach.  

Let us first assume zero interface thickness. Consider the associated reconstruction of 

the field distribution of material properties at time t  in the whole domain through 

a certain indicator function . Let the indicator function be zero in the liquid phase 

and one in the gas phase. We may then write, 

),( tb x

I ),( tx

),()(),( tIbbbtb lbl xx ⋅−+= ,                                               (4) 

where  is either fluid density or viscosity, and the subscripts l  and b  refer to liquid 

and gas phase, respectively. Further let 

),( tb x

Ω  be the domain of the gas phase and let Γ  be 

the interface between the two phases. The indicator function may then be expressed as  

∫
Ω

′′−=
)(

)(),(
t

dtI xxxx δ .                                                     (5) 

Taking the gradient of the indicator function and applying Stokes’ theorem, we get 

∫∫
ΓΩ

′−=′′−∇=∇
)()(

)()(),(
tt

ddtI sxxnxxxx δδ ,                            (6) 

wheren is the outer unit normal vector of the interface. Taking the divergence yields a 

Poisson equation for the indicator function: 

∫
Γ

′−⋅∇=∇
)(

2 )(),(
t

dtI sxxnx δ .                                           (7) 

We solve this equation and then calculate the distribution of material properties from 

equation (4). 

Unverdi and Tryggvason [46] addressed the sharp jump in fluid properties across the 

interface in their front tracking algorithm. They introduced an artificial thickness of the 

interface inside which the material properties vary continuously from one fluid to the 
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other. According to this idea, a distribution function  is introduced to approximate 

the delta function 

)(xD

)(xδ  with the assumption of an artificial thickness of the interface. We 

here adopt the traditional Peskin distribution function [31], 

⎪⎩

⎪
⎨
⎧ <−−+=− =

−

                                            otherwise.          0

 2 if   )
2

cos(1)4()( )(
3

1

3 h
h

hD ffif
xxxxΠxx

π
.                   (8) 

Substituting the Peskin distribution function into equation (7), the indicator function can 

be reconstructed by solving the Poisson equation.  The resulting indicator function will 

then be zero in the pure liquid phase, vary continuously from zero to one in the artificial 

thickness region, and one in the gas phase. 

Besides the discontinuity in fluid properties across the bubble interface, the surface 

tension, , a singular source term on the bubble interface, brings 

another great challenge for numerical methods in multiphase flow. In the current study 

the net force caused by surface tension on the surface elements is calculated, thus 

circumventing the high-order derivatives involved in curvature calculations. Figure 2 

shows the surface tension force exerted on a central surface element (E0) by its 

neighboring elements (E1, E2 and E3).  The surface tension force acting on an edge 

shared between the central element and a neighboring element can be calculated by 

∫
Γ

−= dsF f )( xxnδσκσ

 3 and 2 1,i    )( 0, =×= iii ntF σ ,                                        (9) 

where  is the vector of edge i  and  its unit outer normal. Hence, for a central 

element E0, the net force caused by surface tension can be expressed as, 

it 0,in

∑∑
==

×==
3

1
0,

3

1
, )(

i
ii

i
iE ntFF σσ .                                            (10) 

According to equation 10, the net surface tension force on all surface elements can be 

calculated and then distributed to the background mesh for solving the momentum 

equations: 

  )()( ,∑ −=
k

kE XD xFxF σσ                                       (11)  

where represents the mass centre of the k-th element used to triangulate the bubble 

surface.   

kX
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2.3. Tracking the Moving Interface 

With the techniques introduced in Sections 2.1 and 2.2, the governing equations can 

be solved on a fixed background grid to obtain the flow field. An adaptive, unstructured 

triangular mesh (front markers) is used to represent the interface between the two fluid 

phases. Hence, the velocity of the moving front markers can be obtained by interpolation 

from the flow field on the background mesh, and then the front mesh points can be 

advected in a Lagrangian manner.  Thus the front moves with the same velocity as the 

surrounding fluid, and the so-called no-slip condition of the interface is satisfied. In this 

paper, the interpolation is carried out using the same distribution function as the one used 

for the transfer of fluid properties to the background grid: 

∑ −=
x

xxxuxu )(),(),( fff Dtt ,                                           (12)  

tn
ff

n
f Δ+=+    n1 uxx .                                              (13) 

As the front marker points are advected, the mesh size and quality may consequently 

change. The resolution of the front mesh has a strong effect on the information exchange 

with the fixed background grid, which may eventually affect the accuracy of the 

simulation results. Therefore, it is of key importance that the front mesh has a more or 

less constant quality and uniform size throughout the duration of the simulation. To 

ensure this, the front quality is examined at each time step and adapted when necessary. 

In this paper, the resolution of the triangular mesh for the 3D surface of the bubble is 

maintained more or less uniform through adaptation as the interface evolves.  

 

2.4. Mesh Adaptation 

As two sets of mesh are applied in the current front tracking method, the resolution of 

the front mesh and the background mesh near the front plays an important role in 

resolving the interfacial physics of the multiphase flow. From physical principles it is 

known that fluid particles on the bubble interface will move downwards towards the 

bottom of the bubble as the bubble rises. Similarly, the mesh points also move 

downwards on the bubble surface in the front tracking method as the bubble rises. As a 

result, the mesh on the upper part of the bubble becomes coarser. On the other hand, the 
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mesh at the lower part of the bubble becomes increasingly dense. Figure 3(a) shows the 

variation of front mesh quality as the bubble rises in liquid without front mesh adaptation.  

It is obvious that the accuracy will be affected when the mesh on the top is too coarse, 

and that the dense fine mesh at the bottom of the bubble will consume excessive 

computing power without much benefit in accuracy. Thus, the front mesh adaptation as 

shown in Figure 3(b) is essential to ensure the accuracy and efficiency of the simulation. 

In this aspect, three basic operations are adopted to adapt the front mesh, namely edge 

swap, edge split and edge deletion. For long edges, the edge swap operation as shown in 

Figure 4(a) is a simple and easy operation to improve the mesh quality.  In the edge split 

operation as shown in Figure 4(b), a new point is generated by surface fitting of the 

existing neighboring mesh points. This new point is then inserted into the two associated 

meshes, and new and finer triangles are generated to replace the old ones. Thus edge split 

is important to refine the front mesh. For the deletion of short edges as shown in Figure 

4(c), the triangles associated with the short edge will be deleted, and the resulted gap will 

be sealed through merging the old nodes of the short edge. Hence, edge deletion is 

important to coarsen the front mesh. In addition, consistent checking of the mesh 

connectivity is also important to ensure the accuracy in calculating the surface tension.      

 Accordingly, the resolution of the background mesh also plays an important role in 

capturing the flow behavior – particularly so in the vicinity of the interface. If the 

background mesh resolution is too low, then the detailed flow dynamics will not be 

captured reasonably well, resulting in unreliable and inaccurate simulations. Therefore, it 

is desirable to have relatively high-resolution grids, particularly near the interface, while 

coarse grids may be used away from the interface. This is achieved in our model by the 

use of the block-based adaptive mesh refinement (AMR) tool PARAMESH [24]. In this 

study, the refining and coarsening of the grid blocks is based on whether there exists a 

bubble front within the blocks. An example of the block-wise Cartesian mesh refinement 

generated by PARAMESH can be seen in Figure 5. It can be seen that fine background 

grids are located in the vicinity of the bubble, while coarser background grids are applied 

in regions further away from the bubble front. This feature makes it more efficient to 

solve the governing equations and to capture the flow physics near the interface 

accurately. An excellent feature of PARAMESH is that the Cartesian grid at all levels of 
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blocks has the same structure. Hence, once the flow solver is developed for one grid 

block, it can be easily applied to all levels of blocks. In addition, the different blocks can 

be distributed to different CPUs in an MPI parallel environment, which speed up the 

problem solving cycle. 

 

2.5. Flow Solver 

The numerical method for the governing flow equations is one of the key components 

in the simulation. Traditionally, an explicit projection-correction method based on 

second-order central differences on a regular, staggered Cartesian grid has been used 

along with the front tracking approach [46]. However, it seems that this approach is 

unable to handle the large density ratios typical of systems in industrial applications as 

well as in nature. In search of a more robust solver, Hua and Lou [17] implemented a 

modified version of the classical SIMPLE method [30] for axisymmetric multiphase 

flow. Further details about the modified SIMPLE algorithm can be found in the past 

works [17, 6]. Computational results indicate that this approach is more robust than the 

projection correction method – especially for multiphase flows with large density ratios 

such as the air-water system. This improvement is most probably due to the fact that the 

SIMPLE algorithm avoids solving the problematic pressure equation directly. Instead, the 

pressure and the velocity are corrected iteratively based on the governing equations.  

 

2.6. Moving Reference Frame 

In many applications of multiphase flow it is often desirable to study the long-term 

behavior and evolution of the moving interface between the fluids. In such applications 

the front may move a considerable distance, and the study of the rise path of an air bubble 

in water is a typical example. The computational domain must then be correspondingly 

large to accommodate such extensive movement. However, in a three-dimensional model 

with a high-resolution grid, a large computational domain is computationally very 

expensive. Computational cost may therefore limit the domain size and thus also long-

time simulations.  

To remedy this problem, we have therefore incorporated a moving reference frame 

into our numerical algorithm. The idea is to move the reference frame together with the 
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front such that the front (e.g. a bubble) remains more or less fixed in the computational 

domain. The size of the computational domain may then be chosen independently of the 

duration of the simulation, and this will in turn reduce the computational cost 

significantly. As a result, we may carry out long-time simulations of moving interface 

problems which could not be done in a stationary reference frame.   

Figure 6 illustrates a moving reference frame. There, the frame XY  stands for a 

stationary reference frame and the frame YX ′′  for a moving reference frame. The 

positions of a monitoring point in the frames XY  and YX ′′  are represented as  and 

, respectively, which are correlated with the position of the moving reference frame 

( ) according to equation (14).  The velocity of the monitoring point 

px

px′

mx P  is  in the 

frame 

)t,(xu

XY  and  in the moving frame ),'( txu′ YX ′′ , and the velocity of the moving frame is 

.  The following correlation can be obtained: )(mu t

pmp xxx ′+=                                                          (14)  

),()(),( ttt m xuuxu ′′+= .                                              (15) 

Allowing translational, but not rotational, movement of the frame in the present 

study, the following is the updated governing flow equations in the moving reference 

frame: 
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0=′⋅∇′ u                                                               (17)  

The moving front will generally be accelerating and so will the moving reference 

frame. Thus the frame of reference in which we solve the governing equations is no 

longer an inertial frame, and we must therefore modify the momentum equations to take 

into account the acceleration of the frame. In addition, according to equation 15, when 

the governing equations are solved in a moving reference frame, the velocity condition on 

the boundary ( ) should be modified as 'Bx )(),(),'(' ttt mBB uxuxu −= . 
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Notice that the additional term on the left-hand side dtd mu , which denotes the 

acceleration  of the moving reference frame, is added in Equation (16). We aim to 

choose  so that the rising bubble remains as fixed as possible in the moving frame, i.e. 

ideally the acceleration of the frame is equal to the acceleration of the bubble. The bubble 

acceleration is of course unknown, so we need to approximate this acceleration at each 

time step. We shall adopt the prediction as presented by Rusche [35], namely  

ma

ma

t

n
mn

m Δ
Δ

−=
+

+
1

1 ua ,                                                           (18) 

where  
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n
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n
d

n
ddn

m Δ
−

−
Δ
−

=Δ
−

+
1

2

0

1
1 xxxxu λλ .                                          (19) 

Here  is the position of the centre of mass of the bubble relative to the moving frame 

at time step 

j
dx

j , , and 1)( −−=Δ nnn ttt 1λ  and 2λ  are appropriate under-relaxation factors. 

It was found that 1λ = 1.02 =λ  gave good results. 

 

2.7. Solution Procedure 

We may now summarize the main steps in advancing the solution from one time step 

to the next as follows: 

(1) The velocity of the front marker points, n
fu , is calculated through interpolation of 

the fluid velocity field nu  according to  Equation (12). 

(2) The front is advected to its new position 1+n
fx by using the normal interface 

velocity n
fu  found in step (1) – see Equation (13). The front elements are then 

subject to examination for adaptation and topological change. Meanwhile, volume 

conservation is enforced. 

(3) The indicator function )( 11 ++ n
f

n  is computed based on the interface position 

1+n
fx . This is done by solving the Poisson problem in Equation (7) with the 

discrete delta distribution from Equation (8). Subsequently, the distribution of the 

I x
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density 1+nρ , the viscosity 1+nμ  and the surface tension 1+n
σF is updated on the 

flow solver grid points. 

(4) We find the velocity field 1+nu  and the pressure 1+np  by solving the mass 

continuity and momentum equations using a modified version of the SIMPLE 

algorithm. Appropriate boundary conditions are applied. 

(5) Repeat steps (1) to (4) to advance the solution to time 2+nt . 

 

3. RESULTS AND DISCUSSION 
      In this Section, we report various numerical results for different purpose, e.g. model 

sensitivity analysis, validation case, and model capabilities exploration. A summary of all 

the simulations cases can be found in Table I, in which all simulation parameters are 

listed.  

 

3.1. Sensitivity Analysis - Size of the Computational Domain 

Extensive experiments have been performed in the past to study the rise and 

deformation of single bubbles in quiescent liquids. Often these experiments have been 

done in large containers with a size of at least 20 bubble diameters in each spatial 

direction to avoid wall containment effects [1]. In this paper, we intend to validate 

simulation results against such experiments. To achieve this, the computational domain 

should also be rather large to avoid any significant effects caused by the wall 

confinement. On the other hand, if the domain is chosen too large, excessive computing 

time is needed to complete the simulation.  To analyze the influence of the domain size, a 

number of numerical tests were run with domain sizes ranging from two to twelve bubble 

diameters in each of the spatial dimensions. The grid resolution was kept constant and 

accommodated approximately twenty cells inside the bubble in each direction. All 

computations were carried out in a moving reference frame. 

The terminal rise velocity and the terminal bubble shape were used to assess the wall 

confinement effects for various domain sizes. The aim of this sensitivity analysis is to 

find the smallest possible computational domain in which wall containment effects have 

negligible impact on the bubble terminal velocity and shape. Figure 7 presents the 
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simulation results of the terminal bubble shape and the rise velocity using different 

domain sizes under the conditions of 0.243Bo* = , 24.15*R =e , 1000/ =bl ρρ  and 

100/ =bl μμ  (Case A3). There is a notable change in the terminal bubble shape and rise 

velocity as the domain size is increased from two to six bubble diameters. When the 

domain size is increased beyond six bubble diameters, no significant change in the 

simulation results is observed. Moreover, it is noted that the wall confinement has a 

strong effect on the terminal velocity for small domain sizes from two to six bubble 

diameters. However, the change in terminal velocity is only around 1% when increasing 

the computational domain size from eight to ten bubble diameters in each spatial 

dimension. Based on these observations we conclude that a domain size with side length 

of eight bubble diameters should be sufficient in our simulations. Actually, experimental 

results by Krishna et al. [23] also indicate that wall effects on a rising bubble is negligible 

when the diameter of the liquid container is larger than eight bubble diameters.  

 

3.2. Sensitivity Analysis - Grid Resolution 

PARAMESH divides the computational domain into a number of blocks in each 

spatial direction. Each block consists of a certain number of grid cells in each direction, 

and the governing equations are discretized and solved numerically on these grid cells. 

For a computational domain of fixed size, there are therefore two ways to change the grid 

resolution using PARAMESH: either by changing the number of blocks, which is 

determined by the maximum number of refinement levels, or by changing the number of 

cells in each block. In our grid sensitivity analysis we kept the maximum refinement level 

fixed and changed the number of cells in each block. All simulations were done in a 

moving, cubic computational domain with side length equal to eight bubble diameters 

using equal grid spacing in each of the spatial directions. 

The results from the grid sensitivity analysis can be found in Figure 8 under the 

conditions of , 0.243Bo* = 24.15*R =e , 1000/ =bl ρρ  and 100/ =bl μμ (Case A3). It is 

noted that the terminal bubble velocity is highly sensitive to the mesh resolution up until 

16 cells per bubble in each space direction. However, increasing the number of cells from 

16 to 20 yields less than 1% change in terminal velocity. The terminal bubble shape also 

has a very strong dependence on the grid resolution - especially when the grid resolution 
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is relatively low. On the other hand, we can even see a slight change in shape when we 

increase the number of cells per bubble diameter from 16 to 20.  However, increasing the 

number of cells per bubble diameter further to 32 does not lead to any visually detectable 

change in bubble shape. Based on the above we find it sufficient to use a resolution of 20 

cells per bubble diameter in our simulations. 

 

3.3. Comparison of Results Obtained in a Stationary and a Moving Reference Frame 

Since a moving reference is introduced in this paper to perform long-time simulations 

of single bubbles rising as well as two-bubble interactions, it is important to evaluate the 

accuracy and impact of using a moving reference as opposed to a stationary frame. For 

this purpose, simulation results for Case A4 obtained in a stationary reference frame are 

compared with those obtained in a moving reference frame. 

The bubble shapes predicted in both stationary and moving frames at different time 

steps are shown in Figure 9. There are no visually observable differences between the 

results from the two frames. A comparison of the velocity profiles of bubbles rising in a 

stationary and a moving reference frame is shown in Figure 10, and they are in 

reasonable agreement. Note that the velocity of the moving frame has been added to the 

rise velocity obtained in the moving reference frame to enable a direct comparison with 

the rise velocity in the stationary frame. In addition to comparing bulk behavior of rising 

bubbles, we would also like to compare the detailed flow patterns around the bubbles. 

A comparison of the streamlines predicted in a stationary and a moving frame can be 

found in Figure 11. Since one frame is at rest and one is moving, comparing streamlines 

would only be sensible if we modify the velocity in one of the frames to account for the 

different velocities of the frames. Here we have chosen to subtract the velocity of the 

moving reference frame from the velocity field computed in the stationary frame before 

comparison. It can be seen from Figure 11 that an excellent agreement of the streamline 

patterns in the stationary and the moving frame is obtained.  Furthermore, pressure 

distributions predicted in a stationary and a moving frame are compared in Figure 12, and 

again the results agree well.  
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Based on the various tests and comparisons of different flow characteristics carried 

out and described above, we can conclude that the use of a moving reference frame yields 

numerical results equivalent to those obtained in a stationary reference frame.  

 

3.4. Model Validation with Experiments 

In this section we will compare experimental results available in the literature [1] 

with predictions obtained by our numerical method. In Figure 13 we compare observed 

and predicted terminal bubble shapes for a range of Reynolds and Bond numbers, and the 

results agree very well. In Table II we compare the associated terminal rise velocities, 

and again there is reasonable agreement between experiments and our numerical 

predictions. However, note that the relative deviation in Case A1 is a little bit high. This 

may be due to the low rise velocity where the relative error will be high even though 

there is no change in the simulation accuracy. 

Air bubbles rising in water are common in many industrial processes. Examples in 

chemical engineering include bubble columns, loop reactors, agitated stirred reactors, 

flotation, or fermentation reactors. For the design of efficient two-phase reactors, detailed 

knowledge of bubble sizes and shapes, slip velocities, internal circulations, swarm 

behaviors, bubble induced turbulence and mixing, and bubble size distributions 

(including coalescence and breakup) is of fundamental importance. In such industrial 

applications, bubbles often have non-spherical and even dynamic shapes as well as 

asymmetric wake structures. Extensive experimental studies have been performed to 

study air bubbles rising in water [7, 44]. Their measurements of the terminal rise velocity 

of air bubbles in water are presented in Figure 14 as a function of the bubble size. It is 

found that the measurements of the terminal velocity vary significantly (or bifurcation) 

when the bubble size is greater than 0.5 mm and smaller than 10 mm. Traditionally this 

variation has been explained by the presence of surfactants [7], but more recently both 

Wu and Gharib [47] and Tomiyama et al. [44] attributed this variation to the manner in 

which the initial bubbles were generated. The issue continues to be a matter of discussion 

- refer to Yang and Prosperetti [48]. 

      Due to difficulties in measuring the physical properties on the bubble, a fundamental 

understanding of the system of a single bubble rising in high Reynolds number regimes is 
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not well-established. With the recent rapid increase in computing power, numerical 

simulations of two-phase flows based on continuum mechanics models with moving free 

interfaces have become feasible and proved extremely useful for a better understanding 

of fundamental processes and phenomena. However, numerical modeling of the multi-

fluid system of air bubbles rising in water is still quite challenging due to the large 

density ratio of water to air, the low liquid viscosity of water, high Reynolds numbers, 

and large bubble deformations. Koebe et al. [21] started early trials of 3D direct 

numerical simulation of air bubbles rising in water at high Reynolds number using the 

volume of fluid (VOF) method. They studied bubbles with diameters from 0.5 mm to 15 

mm, and their numerical predictions on the terminal rise velocity of the bubbles agree 

reasonably with experimental data.  However, they introduced some initial white noise in 

the simulations, which may introduce non-physical perturbations to the simulation 

system. The recent work by Dijkhuizen et al. [9] reported their trial on simulation of 

single air bubbles rising in initially quiescent pure water using both a 3D front tracking 

method and a 2D VOF method for bubble diameters ranging from 1 mm to 8 mm. The 

calculated terminal rise velocites by the 3D front tracking method are quite close to the 

experimental observations by Tomiyama et al. [44], but they over-predicted the velocity 

for bubble diameters larger than 3 mm.  

    In this paper, we use the front tracking method with features of mesh adaptation and 

moving reference frame, allowing a finer mesh in the region of the bubble surface. 

Consequently, better accuracy is obtained in the current simulations. We simulate a single 

air bubble rising in initially quiescent pure water with the bubble diameters ranging from 

0.5 mm to 30 mm.  The numerically predicted rise velocities of the bubbles agree well 

with the upper bound of the experimental measurements by Tomiyama et al. [44] within 

the whole range of different bubble sizes. When the bubble diameter is in the range from 

2.0 mm to 10 mm, oscillation of the bubble rise velocity and the bubble shape is also 

predicted in the simulations. The terminal bubble rise velocity is calculated through 

averaging the instantaneous rise velocity over a period of time. Since we assume the 

initial bubble shape to be spherical and the surface tension coefficient to be constant, the 

bifurcation of the bubble rise velocity is not revealed in the current simulation. However, 

this is an interesting topic to be explored in the future.  
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3.5 Numerical Studies on the Interaction between Two Rising Bubbles in Viscous Liquid   

    The problem of a single bubble rising in a viscous liquid is an ideal case for numerical 

model validation. However, the final goal when developing a numerical model for 

multiphase flow is not just investigating the flow behavior of single bubbles rising in 

viscous liquids, but also investigating multi-fluid systems with multiple bubbles.  With 

the confidence from validating the current model for a single bubble rising in a viscous 

liquid, we would like to extend this model to explore the complex interaction between 

two bubbles rising in a liquid. Figures 15 and 17 illustrate the simulation of the 

interaction of two initially spherical bubbles rising in a quiescent liquid due to buoyancy. 

In the first simulation, one smaller bubble is initially located 2.5D above a bigger 

bubble in vertical direction, and 0.5D axis-off from the bigger bubble in the horizontal 

direction of Y. Here, D represents the effective diameter of the bigger bubble. The 

diameter of the smaller bubble is half that of the bigger bubble. The flow conditions for 

the bigger bubble are as follows: 6.134*R =e , 0.115Bo* = 1181/ =bl ρρ  and  (Case 

B1). Figure 15 shows the temporal bubble shape evolution of two rising bubbles. As the 

bigger bubble has a higher rise velocity, it will catch up with the smaller bubble (Figure 

15(

5000/ =bl μμ

0.4=τ )). When they are close enough, the trailing bigger bubble is significantly 

affected by the low-pressure zone in the wake of the leading smaller bubble. The trailing 

bubble undergoes large deformations and moves towards the bottom wake zone of the 

leading bubble (Figure 15( 0.6=τ )). Finally, the trailing big bubble merges with the 

leading smaller bubble, and a toroidal bubble ring is formed (Figure 15( 0.10=τ )). 

Similar bubble shape evolution patterns have also been predicted by other numerical 

predictions [40]. In addition, Figure 16 shows the temporal variation of the position of the 

bubbles in both vertical and horizontal directions.  It can be seen from Figure 16(a) that 

the trailing bigger bubble has a higher rise speed than the smaller leading bubble. The 

interesting finding is that when the two bubbles are close enough, then the rise speed of 

both bubbles increases significantly. After the coalescence of the two bubbles, the 

resulting merged bubble returns to a normal situation of a single bubble. The lateral 

movement of the trailing bubble caused by the leading bubble can be seen in Figure 

16(b). Even though initially the leading bubble moves slightly away from the trailing 
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bubble laterally, this distance is quite small. However, the trailing bubble, despite its big 

size, is significantly affected by the leading bubble and moves towards it. 

In the second simulation, the smaller bubble is initially located 2.5D above the bigger 

bubble in vertical direction, and 1.0D center-off from the big bubble in the horizontal 

direction of Y. Here, D represents the effective diameter of the bigger bubble. The 

diameter of the smaller bubble is half that of the bigger bubble. The flow conditions for 

the bigger bubble are as follows: 24.15*R =e , 0.243Bo* = ,  and 1181/ =bl ρρ

5000/ =bl μμ  (Case B2).  Figure 17 shows the temporal evolution of the two rising 

bubbles. As a result, in this case the bigger bubble finally overtakes the smaller one, since 

the big bubble is further horizontally off-set the small one. It can be seen from Figures 17 

and 18(b) that the leading bubble first starts moving laterally away from the trailing 

bubble, whereas the trailing bubble then starts moving towards the leading bubble before 

the overtaking occurs (Figure 17( 0.4=τ , 0.6=τ , 0.8=τ )) . After the bigger bubble has 

overtaken the smaller one, the smaller bubble is significantly affected by the wake of the 

bigger bubble. In fact, the smaller bubble is attracted to the wake of the bigger bubble, 

resulting in a highly deformed and elongated bubble shape as shown in Figure 17 

( 0.12=τ , 0.14=τ , 0.16=τ ). It is also noticed from Figure 18(a) that the smaller bubble 

is accelerated and rises fast in the wake of the bigger bubble, and finally it catches up and 

merges with the bigger bubble (Figure 17( 0.18=τ , 0.20=τ , 0.22=τ )). In this case, the 

smaller trailing bubble has little effect on the rising speed of the bigger leading bubble.    

 

4. CONCLUSION 
 

The numerical algorithm used in this paper is a further extension of the algorithm 

given in [17] for simulating 3D gas bubbles rising in viscous liquids at high Reynolds and 

Bond numbers for systems with large density and viscosity ratios such as air/water. To 

achieve this, mesh adaptation is implemented for both the front mesh and the background 

mesh, and a moving reference frame attached to the rising bubble is used to solve the 

governing incompressible Navier-Stokes equations. The solution method is a finite 

volume scheme based on the Semi-Implicit Method for Pressure-Linked Equations 
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(SIMPLE), and the solver appears to be robust even in the range of high Reynolds 

numbers and high density/viscosity ratios. The bubble surface is tracked explicitly using 

an adaptive, unstructured triangular mesh. The model is integrated with the software 

package PARAMESH, a block-based adaptive mesh refinement (AMR) tool developed 

for parallel computing. It includes features such as background mesh adaptation and 

parallel implementation of solvers for the governing equations on supercomputers. The 

interpolations between the front mesh and the background mesh are done with Peskin’s 

traditional approximation of the delta function. The current model has been applied to 

simulate a number of examples of 3D gas bubbles rising in viscous liquids, e.g. air 

bubbles rising in water. The simulation results are compared with experimental 

observations in aspect of both the terminal bubble shape and the terminal bubble velocity. 

In addition, we use this model to simulate the interaction between two bubbles rising in 

liquid. The simulation results provide us with some physical insights into the complex 

behavior of bubbles rising in viscous liquids.   
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