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SUMMARY.  

The focus of this work is to investigate the delamination damage in laminate composite 

beams, to fix a Vibration-based structural health monitoring (VSHM)  method for the 

laminate structures. The analysis is concentrated on the vibration characteristics of the 

samples and, in particular, the attention is addressed on the first several natural frequencies of 

a composite laminate beam with a delamination damage. The core of this work is an 

experimental investigation on the vibration response of a composite laminate beam and its 

changes caused by delaminations with different sizes and in different locations of the beam. 

The study is divided in 3 sections: delamination detection, delamination localization, and 

delamination estimate. The aim is to determine how the first six harmonics frequencies 

change due to the delamination, and the results show that they can be successfully used to 

investigate the presence, the location and the dimensions of the delamination in a composite 

beam. A Pattern Recognition analysis is used to locate the damage, while the detection and 

the evaluation are done using the changes in the harmonic frequencies. A finite element 

analysis is performed, and the variations of the natural frequencies due to delamination are in 

good agreement with the experimental results. 

 

1. Introduction 

Composite materials form about 70% of contemporary civil and military aircraft. Aircraft 

safety is paramount because an accident will normally have catastrophic consequences in 

terms of casualties, destruction and the environment. Composites are hard to inspect for flaws 



and difficult, if not impossible, to repair. Composite materials can loose up to 60% of their 

stiffness and toughness, and still remain visibly unchanged. These are some of the reasons 

that make structural health monitoring for composite materials an issue of great importance.  

Delamination is one of most common failure mechanisms for composite materials. 

Delamination problem is as old as composite material. In laminated materials repeated cyclic 

stresses, impact, and so on can cause layers to separate, forming a mica-like structure of 

separate layers, with significant loss of mechanical strength. Thus, delamination is an 

insidious kind of failure as it develops inside of the material, without being obvious on the 

surface.  

Delamination failure may be detected in the material by its sound [1,2]: solid composite has 

bright sound, while delaminated part sounds dull. Other nondestructive health  monitoring 

(NDHM) methods include embedding optical fibers coupled with optical time domain 

reflectometer testing [3], testing with ultrasound [1,2], radiographic imagining [1,4], infrared 

imaging [1,5], in some cases acoustic emission monitoring [1,6,7], and vibration-based 

measuring methods [2,8]. Among NDHM methods the vibration-based methods is a suitable 

tool for damage detection which has been scarcely explored except for several papers devoted 

to vibration based monitoring for delamination detection [2].  

Vibration-based structural health monitoring (VSHM) methods use the vibration response of a 

structure in order to find out its health. In VSHM methods the information from vibration 

parameters (modal frequencies, mode shapes and modal damping ratio) or combinations of 

some of them are used to estimate the variations of a structure mechanical response when 

damaged. The basic idea of these methods is that modal parameters are functions of the 

physical and mechanical properties of the structure (mass, damping and stiffness). In 

particular changes in the mechanical properties, such as the stiffness reduction, will cause 

changes in the modal characteristics. The measure of the vibration response of a structure 

before and after a damaging event enable the possibility to estimate the damage localization 

and entity. In the case of composite structure the usage of VSHM has been applied to 

investigate two main failure modes: the matrix crack and the delamination. A comprehensive 

literature review of this studies is presented in [9,10]. In particular it is interesting to cite the 

works of Lifshitz and Rotem [11] who measured resonant frequencies and damping on 

quartzparticle-filled epoxy and polyester. The authors found damping to be more sensitive to 

damage than changes in the dynamic moduli. Schultz and Warwick [12] measured the forced 

vibration response of glass-fiber-reinforced epoxy beams at various intervals during fatigue 

loading. They found changes in the resonant frequencies to be relatively insensitive to 



damage. They also found, however, that the damping ratio and response magnitude were very 

sensitive to damage. Adams, et al. [13] tested and glass-reinforced plates to attempt to detect 

damage after both static and fatigue torsional loading. The main mode of failure was matrix 

shear cracking. They found damping changes to be more sensitive than frequency shifts for 

detecting the onset of damage. They also noted that some changes in dynamic properties in 

the early stages of damage could be recovered after a rest period. Cawley and Adams [14] 

apply a frequency-shift-based damage detection routine to several damage cases (holes, saw 

cuts, crushing with a ball bearing, local heating with a flame, and impact) in composite 

materials (CFRP plates and honeycomb panels with CFRP faces). They were able to locate 

low levels of damage accurately. This successful location did require, however, controlled 

temperatures and testing of the undamaged and damaged specimens in a short amount of time 

to prevent long-term frequency shift. Reddy, et al. [15] experimentally measured natural 

frequencies in composite plates containing delaminations. Graphite fiber/epoxy resin panels 

with a [±45,0,90]2s layup were used with delaminations comprising 10% of the total panel 

area. They found that the resonant frequencies were insensitive to the delaminations, even 

taking into account the higher modes. Lee, et al. [16] looked at the damping loss factor as a 

possible indicator for detecting and locating four types of damage in composites beam: 

notches that removed less than 5% of the cross-sectional area, matrix cracking in the 90 

degree plies of a [902/019/902] glass/epoxy composite, In all cases, cantilever beams were 

excited with a force hammer. They found that the change in the damping loss factor was 

always more sensitive to damage than the frequency change was. Tracy and Pardoen [17] 

experimentally examined frequency shifts in graphite-epoxy laminates with midplane 

delaminations. The resulting frequency shifts corresponded well with the analytical 

predictions. Engblom and Havelka [18] quantified, both numerically and experimentally, the 

effects of fibre breakage, matrix cracking, local buckling, and delamination based on 

variations in stiffness and damping characteristics. Sanders, et al. [19] measured modal 

parameters on damaged graphite/epoxy [0/903]s beams. Damage was induced by tensile 

loading the beams to 60%, 75%, and 85% of the ultimate tensile strength. Damage was 

predicted using a sensitivity method and the measured frequencies. Because the measured 

mode shapes were of poor resolution, they were not used in the prediction. Results agreed 

well with independently obtained results based on static stiffness measurements and crack 

densities from edge replication. Because this damage was approximately uniform throughout 

the beam, the ability of the method to localize damage was not demonstrated. Nokes and 

Cloud [20] used laser Doppler vibrometry and electronic speckle pattern interferometry to 



measure modal parameters on a composite beam at high frequencies (up to 10 kHz) with high 

spatial resolution. They found the damping loss factor to be a sensitive indicator of global 

material damage. Diaz Valdes and Soutis [21] used a novel method known as resonant 

ultrasound spectroscopy to determine the modal frequencies of a composite beam obtained 

from an eight-ply [0/90/90/0]s carbon/epoxy laminate of size 330 mm x 300 mm. The 

laminate was fabricated using T800-924C prepreg tapes. They used commercial, brass 

backed, piezoceramic transducer and a piezoelectric film element (AMP Inc., LDTO-028-K) 

bonded near the beam's fixed end and operated as actuator and sensor respectively. Changes 

of the modal frequencies after delamination initiation, compared to those of a non-

delaminated specimen, gave a good indication of the degree of damage,  demonstrating the 

feasibility of using measured changes in the vibration characteristics to detect damage. 

In this work, the VSHM is used to develop a simple delamination detection which is based 

only on changes in the harmonic frequencies of a structure.  The proposed method utilizes the 

first several natural frequencies of a structure which are a rather easy and straightforward to 

be precisely estimated from experiment. The study is based mainly on experimental results 

and numerical analysis are performed on delaminated beam only for the purpose to support 

the delamination localization. From the study it emerged that by a damage index based on the 

first natural frequency it is possible to discriminate the presence or absence of a critical 

delamination, and also that it was possible to determine, with a 95% of confidence, where the 

delamination is located. Moreover by the relation between the variation of first natural 

frequency (damage index) and the delamination length it is possible to determine the size of 

damage. 

The paper is organised as follows. In paragraph 2 the tested beams and the way used to 

introduce the delamination are presented. It also discusses the different sizes and positions of 

the delamination as well as the measurement points positions. The experiment performed and 

the numerical model are described here as well. Paragraph 3 presents the results for the 

natural frequencies of the healthy beam and the ones obtained for different delamination sizes 

and locations as well as for different positions of the delamination. It was done to track and 

find trends in the changes that the natural frequencies experience with delamination. A 

damage index based on the first natural frequencies is suggested. The last paragraph discusses 

the obtained results and makes conclusions regarding the application of the first several 

natural frequencies for damage detection, localization and quantification of delamination in 

composite beams.    



 

2. Materials and Methods  

The structures considered are composite beams made by prepreg of carbon fibers (T300) 

embedded in a epoxy resin (SE 84 SP-Gurit) with a 60% of fibers volume ratio and a density 

of 300 g/m
2
. Laminate lay-up was cross ply [0/90]10s. The beams were manufactured with a 

length of 350 mm, a width of 30 mm and 1.7 mm thick. The thickness is made of ten layers. It 

is used this kind of structure because its shape is appropriate for the purposes: it is thin, 

therefore it is possible to have wide amplitude with a small force. This fixing condition was 

adopted because it mimics better a real structural part than a free-free beam and also because 

the tests are quite easy to do. Delamination was introduced artificially by inserting a Teflon 

sheet in the desired position. The artificial introduction has the advantage that the 

delamination can be introduced exactly with the desired size and in the desired position but it 

has the disadvantage that different specimens are tested: for these reasons special care was 

taken that all the specimens are identical in terms of dimensions. Two different sizes of 

delamination were introduced: “long” and “short”. The small one is 115 mm long and the big 

one is 175 mm long. Three different positions of the delamination along the beam length were 

tested, namely back (starting at the clamped end), middle and front. The positions of the 

delamination are shown in Figure 1.    

 

Figure 1 – scheme of the position of the accelerometer and of the delamination   

 

Beams were excited with a “Bump Test”, which was done by clamping the beam at one end 

and  stimulating the structure at the free end, while an accelerometer, fixed above the beam 

registers the response. This kind of test is safer than others which use sine solicitation, and it 

is easier; moreover, for the purpose of this work the magnitude of the vibration is not 

considered, but only in the harmonic frequencies are studied. Typical excitation signals for 



this kind of tests are impulse, broadband, swept sine, and chirp. Each has its own advantages 

and disadvantages. In this work it is been used an impulse signal exerted by a hammer, hitting 

the free end of the samples. The quantity to be measured is the motion during the vibration, so 

it is necessary to use an accelerometer: a piezoelectric one was used.  To constrain beams it 

was decided to use a G – clamp on a stiff table. In order not to damage the item in the contact 

point with the clamp, a slab made of stiff rubber was interposed between the elements in 

contact (clamp-beam and table-beam). Beams were clamped in the way to leave a free length 

of 300 mm for all the experiments. Two different positions of the accelerometer were 

explored as well: it was placed in the middle of the beam, 150 from the clamping and close to 

the free end, 225 mm from the clamped end. The reason for this choices is that the different 

vibration modes have different node points where the displacement is null or very close to 

zero. The middle position is expected to be close to a node point for some modes e.g. the third 

and the fifth modes, but it is a point of large amplitude displacements for other modes e.g. the 

first, the second and the fourth mode. Thus it would be appropriate for analyzing some modes. 

The end position is not expected to be a node point for any of the lower modes for a cantilever 

beam. Six different configurations of delaminated beams were manufactured, each one of 

them tested twice, changing the position of accelerometer. Because of the possible errors in 

the manufacturing process, it was decided to manufacture 3 identical items for each 

configuration, and repeat each tests 5 times for every configuration obtaining in this way the 

harmonic frequencies from the average of the results for each signal: thus 30 data sets were 

obtained for each specimen, for every position of the transducer. It was the same for the non-

delaminated beams: the test was repeated on 3 identical items, 5 times for each position. In 

this way 3 specimens for each one of the 7 different configurations (1 undamaged and 6 

damaged) were obtained, and tests for each specimen were repeated 5 times for both position 

of the accelerometer.  

Numerical analysis have to simulate the test condition, thus the most important and critical 

aspect is simulate the impulse. It is impossible with a modal analysis, so a Transient Analysis 

was used. The impulse for transient analysis was simulated by a squared function, shown in 

figure 2, that was applied to the free end of the beam.   

 



 

Figure 2 - Impulse characteristics and Numerical model details   

 

The elements used are PLANE182 to model the beam, MASS21 to simulate the mass of 

accelerometer, LINK1 to connect the concentrated mass of the accelerometer to the beam, 

TARGE169 and CONTA172 to introduce the Contact Condition in the delaminated zone. 

Delamination was inserted into the geometry as a discontinuity, modelling the beam with 

more areas as shown in figure 2. For the purpose of numerical simulation the following 

material characteristic have been used: Ex = Ey = 44000 MPa, ν = 0.28, density = 1600 kg/m
3
. 

This analysis allows to determine the vibration of the beam with the purposes of confirm the 

experimental results and support the delamination localization procedure (§3.2).    

 

 

3. Delamination detection and localization  

 

In this section the detection of the delamination, its localization and its length estimation 

using the natural frequencies is considered. In §3.1 it is discussed the way to determine the 

occurrence of a delamination in the composite beam. In §3.2 a simple method for the 

delamination localization based on the pattern recognition method is developed and applied to 

the delaminated beams. In §3.3 a methodology for the estimation of the delamination length 

based on the variation of the first natural frequency is shown.   

 

3.1 Delamination detection.  The main idea of this paragraph is to suggest a method to detect 

the presence of the delamination damage in the composite beam. This is done using the 

natural frequencies of the beam. As it is known that delamination results mainly in bending 



stiffness reduction then it can be expected to reduce the flexural natural frequencies of the 

structure [22] and especially the first natural frequency. In order to account this variation a 

damage index based on the variation of the first natural frequency is proposed. This index 

represents the experimentally obtained relative changes in per cent in the first natural 

frequency of the beam with the length of the delamination for different positions of the 

delamination. A further Finite Element analysis, which results in terms of variation of the first 

natural frequency are also summarized in figure 3, confirmed the experimental ones. 
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 Figure 3 – Per-cent variation of the first natural frequency estimated for specimens having 

the delamination respectively in the clamped edge (A), in the middle (B) and in the free edge 

(C). Results in all diagrams are obtained by both experimental tests and numerical analysis   

 

Another observation that can be done is that the changes are big enough even for the case of 

the smaller delamination length. Thus the following damage index can be suggested: 

 

undamaged

damagedundamaged
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The above index is supposed to change between 0 and 1. And thus the following detection 

rule can be suggested:  



ξ<ξ∗
 no delamination 

ξ>ξ∗
 presence of delamination  

 

In the above rule ξ* is a threshold value and below that one can assume that there is no 

delamination while above this value it can be assumed that delamination is present in the 

beam. Normally this threshold value can be set to about 0.05 or 5%. Changes below this value 

can be caused by a number of reasons including noise, temperature and environmental 

changes. Once the changes become bigger than the presence of delamination is quite likely so 

this might be set as an “alert” level in the detection. It was been created a testing sample of 

900 signals (half of these were with no delamination and the other 500 corresponded to 

different levels and different positions of delamination) by adding noise between 3% and 5% 

(Gaussian noise) to the experimentally obtained vibration signals. From these results it was 

determined the first natural frequency and used it in the delamination index suggested above 

by equation (1). The alarm level was set to 10%. The delamination index correctly detected 

the presence of delamination in 96% of the cases.   

 

3.2 Delamination localization.   

The question answered in this paragraph is whether localization of the position of the 

delamination with respect to the beam length is possible. The experimental results for the first 

several natural frequencies and the theoretically obtained ones were reviewed and it turned 

out a rather complicated task to find the boundaries for the different frequencies for the 

different delamination locations namely back (close to clamping), middle (around the 

midpoint of the beam) and front (close to the front of the beam, away from clamping). This is 

why the problem for damage detection and localization was formulated as a pattern 

recognition (PR) one [23-26]. Three different categories (classes) according to the possible 

location of the delamination are defined: delamination back (B), delamination middle (M) and 

delamination front (F). This formulation suggests that one already suspect the presence of 

delamination in the structure. A PR problem suggests the recognition of the signals measured 

for the three different delamination locations on the basis of some features that can be 

extracted from these signals. Since it is clear that the natural frequencies are sensitive to 

damage and consequently to delamination six of the natural frequencies as features were 

chosen. These were chosen on the basis of the numerically obtained natural frequencies from 

the FE model of a clamped undamaged carbon fiber beam. The natural frequencies used are 

given in Table 1. It was also observed that the spectra of the  measured responses for the 

undamaged as well as for the delaminated beams exhibit peaks close to these six frequencies 

with a certain variance which is also given in Table 1. These particular frequencies were 

chosen because they are not double ones and there are no other natural frequencies within the 

interval  f±2σ.    Table 1 - The six natural frequencies used as features and the corresponding 

standard deviations. 
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 In order to solve a PR problem it is been created a training sample of 1200 signals (400 for 

each category) measured for 1 second and sampled at 500 Hz (according to our model this is 

the expected range for the first six natural frequencies of the beam). This sample was created 

using 100 measured signals and adding Gaussian noise between 3% and 5% to the measured 

acceleration response signals. The next step was to test whether it is possible to recognize 

signals from the three defined categories using the first 6 natural frequencies. For the purpose 

a new testing of another 1200 signals was created, obtained using another 100 measured 

signals and adding Gaussian noise between 3% and 5%. The recognition was done using the 

1-NN method. According to the method each new signal is assigned to the category of its 

nearest neighbour. The Euclidean distance between vectors made of the first 6 natural 

frequencies of the beam was used a measure.  
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Thus for each new vector of the testing sample the distances to all the vectors from the 

training sample were obtained and a vector f was categorized to the class j if its nearest 

negihbour f 
j
 belonged to that class:  
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where f 
k
 are the vectors from the training sample.  The results from the testing are presented 

in terms of “confusion matrix” which contains the percentage of all the correctly classified 

and the miss-classified vectors f from the testing sample.  The confusion matrix is given in 

Table 2. It can be seen that for the B and M categories about 95% of the signals were 

correctly classified and only for the category F(front delamination) 89% were correctly 

recognized while the rest 11% were miss-classified.   

 

Table 2 - Confusion matrix for the testing sample  
 

True category Category B Category M Category F 

Category B 95 3.5 1.5 

Category M 3 94 3 

Category F 4 7 89 

 

 



3.3 Delamination Length. The main idea of this paragraph is to suggest a method to 

determine the dimensions of the delamination located with the previous PR. This will be done 

using the damage index already mentioned above. It was been written the Damage Index for 

the different configurations of damaged beams, and the results are shown in Figure 4.   
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Figure 4. Delamination index for different positions of delamination along the beam 

length   

 

When the delamination presence is confirmed as proposed in §3.1, and located as described 

by the methodology exposed in §3.2, the knowledge of damage index ξ enable the estimation 

of the delamination length.    

 

4. Conclusions.  

This investigation considered the problem for delamination detection, localization and 

quantification in a composite beam. It shown that it is possible to detect delamination in an 

easy and straightforward way with a rather high confidence: in more than 90% of the cases 

the presence of delamination is detectable and it is possible to locate and quantify it.  The 

starting point was to hypothesize that the structure can be affected only by delamination, and  

the first step was to detect it. This first step was done using the vibration response of the 

structure, and comparing it with one another, done before the working period, in the same 

condition. The focus was on the first natural frequency for the both signals, and it was been 

possible to establish if the delamination was present on the structure. If the delamination was 

detected, the second step is to locate it, and it was possible with a Pattern Recognition 

method, which used the first several natural frequencies of the signal obtained with the 

vibration analysis. The investigation shown that the localization was possible with a rather 

high confidence which is about 95%. This again permits the development of an automatic 

process which will deliver an answer about the location of delamination along the beam 

length with a rather high precision. The last step was to give information about the length of 

the delamination. It was possible automatically by using the proposed graphs and comparing 

it to a threshold value. Concluding, it is shown that it is possible, with one single experiment- 

a vibration test- and using only the response vibration signal, to answer all the three questions 



mentioned above. It is a very good achievement, because in most damage assessment methods 

another experiment (e.g. acoustic emission) is needed to locate and/or quantify the fault.   
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