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 

Abstract— This paper is concerned with the development of 

new adaptive nonlinear estimators which incorporate adaptive 

estimation techniques for system noise statistics with the robust 

H  
technique. These include Extended H  Filter (EHF), State 

Dependent H Filter (SDHF) and Unscented H  Filter (UHF). 

The new filters are aimed at compensating the nonlinear 

dynamics as well as the system modeling errors by adaptively 

estimating the noise statistics and unknown parameters. For 

comparison purposes, this adaptive technique has also being 

applied to the Kalman-based filter which include extended 

Kalman filter (EKF), state dependent Kalman filter (SDKF) 

and Unscented Kalman filter (UKF). The performance of the 

proposed estimators is demonstrated using a two-state Van der 

Pol oscillator as a simulation example. 

I. INTRODUCTION 

Filter tuning which is usually performed manually by a 

trial and error method can be relatively difficult as it is not 

simple to designate the right noise covariance matrices Q ,

R  [1]. Although robust estimation approaches could handle 

uncertainties from modeling errors and system noises, the 

mean square error (MSE) of the output increases for H   

filter [2]. 

As a remedy, a significant body of research has been 

committed to deal with this issue through adaptive filtering. 

Different schemes of traditional adaptive approaches for 

noise covariance estimation have been derived in a variety of 

methods; Bayesian [2, 3], maximum likelihood (ML)[4, 5], 

covariance matching [6, 7], and correlation techniques [8-

11]. Other schemes that fall under off-line category that are 

available to estimate the noise statistics include subspace 

method [12, 13] and time series approach [14]. The Bayesian 

adaptive filter recursively obtain the a posteriori probability 

distribution function of the states and a vector of unknowns 

[15] while maximum likelihood method attempt to compute 

the unknown covariances by maximizing a likelihood 

function such as joint, marginal and conditional estimates, 

[5]. Both of these developments, however, are very 

computationally demanding.  On the other hand, covariance 

matching techniques generate the consistency between the 

covariances of the state estimate residuals and their 

theoretical covariances by increasing or decreasing the 

covariance of the state noises [7]. Meanwhile in the 

correlation method, the output of the system is being 

correlated either directly or after a known linear operation on 

 
 

it [8] using  autocorrelation function of the output or the 

autocorrelation function of the innovation. The common 

disadvantage of all these on-line estimation is that they have 

been designed for the linear systems only. 

In this paper, the Jazwinski [7] approach for  adaptive 

estimation is used to improve the performance of nonlinear 

filters. The system modeling errors and errors due to the 

neglected nonlinearities from linearization can be 

compensated by adaptively estimating the noise statistics 

and unknown parameters using the adaptive filters. 

The remainder of this paper is structured as follows: 

Section II presents a brief formulation of robust-based H  
filter. Section III describes an adaptive scheme that can find 

Q and R in real time even for nonlinear dynamics and 

observations, building on the ideas of Jazwinski. The 

comparison between the proposed filters is performed by 

simulation studies in Section IV. A general conclusion ends 

the paper.  

 

II. ROBUST-BASED H FILTERS FORMULATION 

The following discrete-time nonlinear equations are 
adopted: 

 
1 ( , , )k k k kx f x u k w    (1) 

 ( , )k k ky h x k v   (2) 

where n

kx   is the state vector, m

ky   is the 

observation vector.  and 

are process noise and measurement noise. 

A. Extended H
 filter (EHF) 

Suppose the standard nonlinear discrete-time system as in 

equation (1)-(2). Following is a complete solution to the 

discrete H
filtering [16]: 

 1
ˆ ˆ( , , )k k kx f x u k

   (3) 

 1
ˆT

k k k k kP F P F Q

    (4) 

 ˆˆ
k k kz L x  (5) 

  
1

ˆT T

k k k k k k kK P H H P H R


   (6) 

  1 1 1
ˆ ˆ ˆ

k k k k k kx x K y H x 

      (7) 

( ) ~ (0, ( ))w k N Q k ( ) ~ (0, ( ))v k N R k
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1 1 1 , 1

kT T

k k k k k e k k

k

H
P P P H L R P

L

    

   

 
     

 
 (8)  

where  
kF  and  

kH  denotes the Jacobian matrices of the 

nonlinear functions f and h. 
kL I with  I is an identity 

matrix of appropriate dimension. The matrix ,e kR is defined 

as 

 , 12

ˆ 0

0

k T Tk
e k k k k

k

HR
R P H L

LI





   
       

   
 (9) 

The purpose of this filter is to find the estimation of 
kz using 

the measurements of 
ky such [17]:

 
0 2

1 1 1
0

2

0 22

2 22
, ,

0 0 0 0

sup
ˆ

k

jj

k k
x w v l

j jP j jQ R

e

x x w v


  





 


  



 
 (10) 

where 0  is a given scalar.   

In order to adjust the filter performance, two weighting 

positive scalars Q and R, chosen by the designer and can be 

select practically as the covariance matrices of the process 

and measurement noises need to be tuned. The  act as a 

tuning parameter to control the tradeoff between H

performance and minimum variance performance where the 

extended H
 filter reduces to the extended Kalman filter 

when   . Previously proposed by [18, 19] for discrete-

time linear system, a method  to adjust  to its minimum is 

adopted [17] where 

 
1 1 1 2

1 1 0T

k k k kP P H R H I  

      (11) 

The above terms yields 

   
1

2 1 1

1max T

k k keig P H R H


 

   (12) 

where the maximum eigenvalue of the matrix 1A  

represented by  1max ( )eig A  . Therefore,  can be opt as 

   
1

2 1 1

1max T

k k keig P H R H 


 

   (13) 

where  is a scalar larger than one. 

 

B. State Dependent H
 filter (SDHF) 

Aiming to combine the advantages of both State dependent 

filter (SDF) and EHF, SDHF employs a state-dependent 

model where the equation can be represented by state-

dependent coefficient (SDC) form as 

 

 1 ( ) ( )k k k k k kx A x x B x u w     (14) 

 
( )k y k k ky C x x v 

 (15) 

respectively, where ( ), ( )A x B x and ( )yC x are the  state 

dependent matrices. Defining 
 

k z kz C x   (16) 

zC I
 

where I is an identity matrix of appropriate  

dimension. This filter then employs the H
design technique 

to estimate the system state and given by  

 

 1
ˆ ˆ ˆ( ) ( )k k k k kx A x x B x u

    (17) 

 1
ˆˆ ˆ( ) ( )T

k k k k kP A x P A x Q

    (18) 

  
1

ˆ( ) ( ) ( )T T

k k y k y k k y k kK P C x C x P C x R


   (19) 

  1 1 1
ˆ ˆ ˆ ˆ( )k k k k y kx x K y C x x 

      (20) 

 
1

1 1 1 , 1

( )
( )

y kT T

k k k y k z e k k

z

C x
P P P C x C R P

C

    

   

 
     

 
 (21) 

where 

 , 12

ˆ ( )0
( )

0

y T Tk
e k k y z

z

C xR
R P C x C

CI





   
       

   
 (22) 

Similar method to EHF should be used to find the value of
.
 

C. Unscented H
 filter (UHF) 

UHF integrates the advantages of both UKF and EHF.  The 

algorithms of this filter are given by 

 

 
( ) *( )

1 1 , 1,...,2i i

k kx x x i n

     (23)  

where:            

 

*( )

1

*( )

1
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i T

k i

T
n i

k
i

x nP i n
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


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

 

  
   

Time update:                      

 
( ) ( ) ( )

1 1( , , )
i i i

kk k kx f x u t 
 (24) 

 

2
( )

1

1

2

n
i

k k

i

x x
n





   (25) 

   
2

( ) ( )1 ˆ
2

n
T

i i
k k k kk k

i i

P x x x x Q
n

  



     (26) 

Measurement update: 

  ( ) ( )
,

i i
kk ky h x t  (27) 

 

2
( )

1

1

2

n
i

k k

i

y y
n





   (28) 

   
2

( ) ( )1

2

n
T

i i
y k kk k

i i

P y y y y
n

 



    (29) 



  

   
2

( ) ( )

0

1

2

n
T

i i
xy k kk k

i

P x x y y
n

 



    (30) 

Approximating the measurement covariance, 1

T

y k k kP H P H


  

and cross-correlation, 1
T

xy k kP P H
  using the statistical 

linear error propagation [20], the filtered estimates and  the 

remaining UHF equations can be rewritten as 

   1
k k xy y k kx x P R P y y        (31) 

 1
1 1 1 ,

1

T

xy

k k xy k e k T

k

P
P P P P R

P

   
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


  
       
  
  

 (32) 

where 

 ,
2

ˆ T

y xy

e k

xy y

R P P
R

P I P

     
   

 (33) 

Using the equation (13)  in EHF and approximate cross-

correlation covariance 1

T

xy k kP P H

 , the value of  can be 

derive [17]: 

  
1

2 1 1 1 1

1 1 1max
T

k k xy k xyeig P P P R P P 


   

  

 
    

 
 (34) 

III. NOISE ADAPTIVE ESTIMATOR FORMULATION 

The estimators presented in the following section are 

nonlinear adaptive algorithms, which are revised from the 

linear adaptive algorithm. This section presents the 

incorporation of the proposed adaptive filtering algorithms 

with the robust-based filters presented earlier for more 

enhanced nonlinear filtering algorithms. The objective of the 

integrated adaptive nonlinear filters is to take into 

consideration the erroneous time-varying noise statistics of 

dynamical systems, as well as to compensate the 

nonlinearity effects neglected by linearization. 

Generally in different conditions, Q and R are changing. 

These noise covariances reflect the uncertainties or 

discrepancies between the assumed dynamic model and the 

actual re-entry phenomena. Therefore, determining the 

suitable values of R and Q plays an important role to obtain 

a converged filter [21].  The residuals of the Kalman-based 

filter should be a zero-mean white noise process if it is based 

on a fully and ideally tuned model. If the residuals are not 

white noise, the filter does not operate optimally, and this 

implies the poor design. A good way to verify whether the 

filter needs tuning is to monitor the residuals.  

The work presented herein is motivated by Jazwinski  [7, 

22] who treated the case of a scalar Gaussian measurement 

noise with a single predicted residual processed by an 
adaptive filter. A scheme for updating Q which appears to 

have such adaptive features is presented here. The predicted 

residuals are defined to be 

  ( ) ( ) ( ) ( ) , 0r k l y k l y k l y k l       (35) 

By use of the Kalman filter relations, this equation may be 

written as 

 

 

1

ˆ( ) ( ) ( , ) ( ) ( )

( ) ( , ) ( 1) ( )
l

i

r k l H k l F k l k x k x k

H k l F k l k i w k i v k l


    

       
 (36) 

It follows directly that 

 

  




1

( ) ( ) ( ) ( , )

( ) ( 1) ( )

( ) ( , ) ( )

( , ) ( ) ( )

T T

l

i

T T

E r k l r k m H k l F k l k

P k F k i H k m

H k l F k l k i Q k i l

F k m k i H k m R k l



    

   


     


     


 (37) 

To generate consistency between actual covariance 
(residuals) and their theoretical covariances (statistics): 

  2 2

1 1k kr r    (38) 

Assuming the process noise covariance by a scalar 

parameter q and expressly Q qI , equation (37) and (38) 

will yield: 

 
2

1 1 1 1 1 1

T T

k k k k k k kr H P H qH H R         (39) 

for the case where one residual is used. Then, q may be 
recursively formed according to: 

 

 2 2

1 1

1 1
1

0
if 0

  

0                       otherwise

k k

T

k k

r r q
q

H H
q

 

 

  
 


 




 (40) 

The estimator of equation (40) is of little statistical 

significance since it is based on a single residual. However, 

by employing a sliding window to compute the sample mean 

for N predicted residuals; the problem of using a single 

residual is overcome. Jazwinski (Jazwinski, 1969) 

demonstrates that for the subsequent sample mean: 

 

1

1/2
1

1 N
k

r

l k l

r
m

N R



 

 
 (41) 

and attain the following estimator by maximizing ( )rm :   

 

 2 2 0
if 0

  

0                       otherwise

r r

N

m m q
q

Sq

  
 


 




 (42) 

where 

 

 2

1 1

1 1 1 1

10 ,

...

T

r N k k k N

T T T

N N N N

m q S F P F S
N

S S S S S S S

 

 

   

   
 (43) 

and 



  

 

, 11/2
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1 1
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1 1
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N

N k l k l k

l k l

N

N k l k l k

l k l

N
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l k N

S H F
N R

S H F
N R

S H
N R

  

 

   

 



 










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 (44) 

The length N of the moving window employed to update q 

has to be choose wisely. The algorithm will place more 

emphasis on fitting the incoming data than fitting the 

previous data and it might never converge, if the window 

size is too small. On the other hand, if the window size is too 

large, then the algorithm will fail to fit promptly to new 

situations. In this study, deciding the right window length is 

done manually. The estimate of the plant noise variance to 

be used in the adaptive filter is then 

 ˆ
N NQ q I  (45) 

This algorithm takes care of the problem of filter divergence 

and stiffness observed when the filter becomes 

overconfident and the impact of incoming observations is 

very limited. The Jazwinski algorithm detects such 

behaviour and action is taken in order to modify the 

sensitivity of the filter by inflating the system noise variance 

in a suitable manner. We can also obtain the following 

estimator for covariance R where: 

 

 2 2 0
if 0

0                       otherwise

r rm m q
q

Sr

  
 


 




 (46) 

The results of Jazwinski [7] approach from the adaptive 

estimation field will be embedded to improve the existing 

algorithms with nonlinear filters presented in section II and 

III. Using the integrated filters, the system modeling errors 

and errors due to the neglected nonlinearities from 

linearization can be compensated by adaptively estimating 

the noise statistics and unknown parameters 

Theoretically, an adaptive filter can estimate both the 

system and the measurement errors. However, it is not easy 

to distinguish between errors in Q and R; thus, making 

adaptive filtering algorithms that attempt to update both the 

system and the measurement noises are not robust. Since the 

measurement noise statistics are relatively recognized 

compared to the system model error, the adaptive estimation 

of the process noise covariance Q is considered in this paper. 

Equations (41) - (45) are integrated with the robust-based 

filter presented in section II and kalman-based filter 

(because of limited spaces, these algorithms are not shown 

here) where new adaptive nonlinear filters are proposed and 

named as Adaptive Extended H filter (AEHF), Adaptive 

State Dependent H filter (ASDHF), and Unscented H

filter (AUHF), Adaptive Extended Kalman filter (AEKF), 

Adaptive State Dependent Kalman Filter (ASDKF) and 

Adaptive Unscented Kalman filter (AUKF). 

 

IV. NUMERICAL SIMULATION 

 

To exemplify the performance improvement of the 

proposed adaptive robust and Kalman-based filter 

techniques over the usual standard filters, the Van der Pol 

oscillator is considered to investigate the performance of the 

filters and also to compare the robustness of the estimator 

due to noise errors using MATLAB/Simulink facilities. 
Consider the following discrete-time model of the Van 

der Pol Oscillator: 

 
 

1, 2,1, 1

2

2, 1, 1, 2,2, 1
( 9 ) 1

k kk

k

k k k kk

x xx
w

x x x xx



 





  
   

       

 (47) 

where 0.05  is the sampling time and 2  .  Let the 

output ky be given by  

 1,k k ky x v 
 (48) 

The Jacobian for the process and measurement are defined 

as: 

  

 

2

1, 2, 1

1

(2 9 1 1

1 0

k

k k

k

F
x x x

H



  

 
  

     



 (49) 

while state dependent coefficient (SDC)  are as follow: 

 

  

 

1, 2,

1
( ) , ( ) 0

9 1

( ) 1 0 , ( ) 0

k k

h
A x B x

x x

C x D x

  

 
  

    

 

 (50) 

Process noise with a covariance of 
210 I

 and measurement 

noise with a covariance of 0.05I is added to the system 

states and measurements, respectively. The initial state is 

chosen  3 1
T

ox  . The initial state estimate is chosen as 

 ˆ 0 6
T

ox  and the initial state covariance matrix oP  and 

the value of Q̂  and R̂ are chosen as 5 ,0.000001I I and 0.05, 

respectively In order to validate the effect of new adaptive 

filters in the case of which process and measurement noises 

are not really known, incorrect values noise covariance are 

introduced to these methods to examine their potential to 

extract the real values. The adaptive filter with estimator 

equation (41) - (45) are simulated on a noisy measurement. 
The length of the sliding window of the adaptive noise 

algorithms was set to 20 time steps. To confirm these results, 

Monte Carlo simulations with 50 runs are executed. The 

mean square error (MSE) are defined as follows: 

  
2

( )

1

1
ˆ

MCN
j

k k

jMC

MSE x x
N 

   (51) 



  

where  MCN is the number of Monte Carlo simulations.   

 

Figure 1-Figure 2 shows the performance comparison of the 

filters in terms of their mean of MSEs. Figure 3 and Figure 4 

plot the MSEs for 50 random runs when using the standard 

nonlinear filters and the new adaptive nonlinear filters for 

incorrect process noise.  It shows clearly that the proposed 

new adaptive method is the best choice for practical cases in 

which the real values of noise variances are unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

The simulations indicate that under incorrect noise 

information, the new adaptive nonlinear filters provide a 

more accurate estimate than that of the standard nonlinear 

filters (EKF, SDKF, UKF, EHF, SDHF, UHF). It is also 

shown that the adaptive robust-based H filters (AEHF, 

ASDHF, AUHF) are more robust than the usual adaptive 

kalman-based filters (AEKF, ASDKF, AUKF). Therefore, 

less noise contaminated residuals can be obtained to design a 

more accurate fault detection and isolation system.  
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Figure 1. Performance comparison of the filters in terms of their mean 

 of MSEs for x1 

 

Figure 2. Performance comparison of the filters in terms of their mean 

 of MSEs for x2 

 



  

 

 

 

 
Figure 3. MSE for state x1 across 50 random runs 

 

 

 
Figure 4. MSE for state x2 across 50 random runs 
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