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Abstract

We present a new hybrid method for dilute gas flows that couples a continuum-fluid
description to the direct simulation Monte Carlo (DSMC) technique. Instead of using a
domain-decomposition framework, we adopt a heterogeneous approach with micro reso-
lution that can capture non-equilibrium or non-continuum fluid behaviour both close to
bounding walls and in the bulk. A continuum-fluid model is applied across the entire
domain, while DSMC is applied in spatially-distributed micro regions. Using a field-wise
coupling approach, each micro element provides a local correction to a continuum sub-
region, the dimensions of which are identical to the micro element itself. Interpolating
this local correction between the micro elements then produces a correction that can
be applied over the entire continuum domain. Key advantages of this method include
its suitability for flow problems with varying degrees of scale separation, and that the
location of the micro elements is not restricted to the nodes of the computational mesh.
Also, the size of the micro elements adapts dynamically with the local molecular mean
free path. We demonstrate the method on heat transfer problems in dilute gas flows,
where the coupling is performed through the computed heat fluxes. Our test case is micro
Fourier flow over a range of rarefaction and temperature conditions: this case is simple
enough to enable validation against a pure DSMC simulation, and our results show that
the hybrid method can deal with both missing boundary and constitutive information.

Keywords: heterogeneous multiscale simulation, hybrid methods, DSMC, heat flux
coupling, rarefied gas dynamics

1. Introduction

While the conventional hydrodynamic equations are generally excellent for modelling
the majority of fluid flow problems, the presence of localised regions of non-continuum
or non-equilibrium flow can result in some degree of inaccuracy. Such regions appear
when the flow is far from local thermodynamic equilibrium, for example, when there are
large gradients in fluid properties, or when surface effects become dominant. Although
molecular simulation tools can provide an accurate modelling alternative in these cases,
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they are usually much too computationally expensive for resolving engineering spatial and
temporal scales. Multiscale methodologies that exploit ‘scale separation’ have therefore
been developed over the past decade. Scale separation occurs when the variation of
hydrodynamic properties across small regions of space or periods of time is only very
loosely coupled with the flow behaviour on a much larger spatial or temporal scale.

Often referred to as ‘hybrids’, these multiscale methods combine continuum and
molecular descriptions of the flow. A traditional continuum description is employed
in macro flow regions, and a molecular treatment is applied in small-scale micro or nano
regions. Essentially, the aim is to combine the best of both solvers: the computational
efficiency associated with continuum methods, and the detail and accuracy of molecular
techniques.

In the literature, two different hybrid frameworks have emerged for fluid flows: a) the
domain-decomposition technique, and b) the Heterogeneous Multiscale Method (HMM).
For liquids, molecular dynamics (MD) is the appropriate molecular simulation tool. This
deterministic method is, however, inefficient for dilute gas flows, and the direct simu-
lation Monte Carlo (DSMC) method [1] can instead provide a coarse-grained molecular
description. Founded on the kinetic theory of dilute gases, DSMC reduces computational
expense by adopting a stochastic approximation for the molecular collision process.

Typically, thermodynamic non-equilibrium effects occur in the vicinity of bounding
surfaces or other interfaces. Recognising this behaviour, domain-decomposition has be-
come the most popular hybrid framework for both liquids [2, 3, 4, 5, 6] and dilute gases
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In this method, the simulation domain is partitioned
— a molecular solver is applied in the regions closest to the surfaces, while a conven-
tional continuum fluid solver is implemented in the remainder. These micro and macro
sub-domains are independent but communicate through an overlap region that enables
mutual coupling. This coupling is typically established by matching fluxes of fluid mass,
momentum, and energy, or by matching state properties. However, despite its popularity,
a fundamental disadvantage of this micro-macro decomposition approach is that compu-
tational efficiency can be increased above that of a full molecular simulation only when
non-continuum flow is confined to ‘near-wall’ regions. In highly non-equilibrium flows,
or when the temperature dependence of fluid properties such as dynamic viscosity or
thermal conductivity is not known a priori (for example, in unusual chemically-reacting
gas mixtures), the traditional fluid constitutive relations may be inaccurate in the bulk
of the domain.

Domain-decomposition techniques are also inappropriate for simulating flow through
micro or nanoscale geometries that have a high aspect ratio, e.g. one dimension of the
geometry is orders of magnitude larger than another. This class of flow presents a
challenge as it requires simultaneous solution of the microscopic processes occurring
over the smallest dimension and the macroscopic processes occurring over the largest
dimension, and is often too computationally intensive for a full molecular approach.
Such flows are generally beyond the reach of domain-decomposition as the majority (or
perhaps all) of the flowfield can be considered ‘near-wall’.

The less-common HMM framework overcomes the limitations of domain-decomposition
by adopting a micro-resolution approach that can be employed anywhere in the domain
— near bounding surfaces, or in the bulk flow. In this case, a continuum model is applied
across the entire flow field, and the molecular solver is applied in spatially-distributed
micro regions. These micro regions provide the missing data that is required for closure
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of the local continuum model, either in the form of unknown boundary conditions, or
unknown constitutive information. Existing HMM studies in the literature are mainly for
liquid flows, using MD as the molecular solver [18, 19, 20, 21]. Generally, these studies
consider flow problems where momentum transport is dominant and the transfer of heat
is negligible. Coupling is therefore based on momentum: velocity fields or strain-rates
are prescribed in each micro region, and the resultant stress is used to apply a correc-
tion back into the hydrodynamic momentum equation [18, 19]. Each HMM micro region
supplies information to a computational node on the continuum mesh. This point-wise
coupling approach [20] is ideal when there is a large degree of spatial scale separation in
the system, providing significant computational savings over a pure molecular simulation.
However, in flow problems with smaller, or mixed, degrees of spatial scale separation,
the molecular resolution required can result in the micro elements overlapping, making
HMM more expensive and less accurate than a pure molecular treatment.

Despite its advantages over domain-decomposition techniques, there has been little
development of HMM-type hybrids that use DSMC as the molecular treatment. In
2010, Kessler et al. [22] proposed the Coupled Multiscale Multiphysics Method (CM3)
that couples both momentum and heat transfer, with DSMC providing corrections to
both the hydrodynamic momentum and energy equations. This method was, however,
developed to simulate transient flows where a time-accurate solution is sought, and so
any computational advantage over a full DSMC simulation is achieved only through
decoupling of the time scales; the length scales remain fully coupled, with both the
continuum description and DSMC employed over the same region of space. More recently,
Patronis et al. [23] adapted the Internal-flow Multiscale Method (IMM) to simulate dilute
gas flows with DSMC. Originally developed by Borg et al. [21] for liquid flows, IMM
adopts a framework similar to HMM but is tailored to model flows in high-aspect-ratio
channels. Although large computational savings are presented, this method is tailored
specifically to deal with cases where the length scale in the direction of flow is significantly
larger than the length scales transverse to the flow direction.

In this paper we propose a new form of the HMM technique, with DSMC providing
the molecular description. We adopt the field wise coupling (HMM-FWC) approach
developed by Borg et al. [24] for liquid flows: rather than supplying a correction to a
node on the continuum mesh, each micro element instead corrects a continuum sub-
region, the spatial dimensions of which are identical to those of the micro element itself.
This means that, unlike point wise coupling, HMM-FWC is suitable for dealing with
flow problems with varying degrees of spatial scale separation. Also, the location of each
micro element is not restricted to the nodes of the computational mesh: both the position
and size of the micro elements can be optimised for each problem, independently of the
continuum mesh.

Our method is designed to cope with inaccuracy in the traditional flow boundary
conditions and/or constitutive relations, and is therefore able to deal with problems
which are beyond the reach of domain-decomposition. This includes problems where
the fluid behaviour is unknown in the bulk, i.e. the traditional constitutive relations fail
due to non-equilibrium effects (for example, in the wake of a re-entry vehicle), or the
transport properties are unknown (for example, in unusual gas mixtures). The method
is also suitable for simulating high aspect ratio geometries. While the IMM is designed to
simulate problems where the largest length scale is in the flow direction, our new method
has no such restriction and so provides a more general approach. It could therefore be
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useful when the largest length scale is transverse to the flow direction; for example, the
flow through microscale cracks in valves.

The form of the method we present in this paper is tailored to model heat transfer
problems in dilute gas flows. As a starting point we consider problems in which the gas is
essentially motionless, with large applied temperature gradients placing the focus on heat
transfer. With negligible transport of momentum, our coupling is performed through the
heat flux: we impose the local temperature fields on the micro elements and measure the
consequent heat flux from the relaxed DSMC particle ensembles. A suitable correction
is then applied to the hydrodynamic conservation of energy equation. (Full coupling of
mass, momentum, and heat transfer is a subject for future work.)

The level of translational non-equilibrium in a rarefied gas is generally characterized
by the Knudsen number Kn, defined as the ratio of the gas molecular mean free path
λ to a characteristic system dimension L. Typically, the traditional ‘no-temperature-
jump’ boundary condition at a bounding surface (wall) is only valid when Kn < 0.001;
the flow is then in thermodynamic equilibrium as the frequency of both intermolecular
and molecule-wall collisions is very high. As Kn increases above 0.001, this collision
frequency decreases, resulting in a temperature discontinuity between the wall and its
adjacent gas. For low Kn, the conventional conservation equations can be extended to
account for this by employing von Smoluchowski temperature-jump boundary conditions
[25]. However, as Kn increases, molecule-wall collisions become more frequent than
intermolecular collisions and a thermal Knudsen layer develops. This is essentially a
region of non-equilibrium that extends from the wall into the domain, with its thickness
determined by the degree of rarefaction. In this layer, the gas behaviour deviates from the
conventional linear heat flux/temperature-gradient constitutive relation. Even with the
use of temperature-jump boundary conditions, the conventional hydrodynamic equations
cannot model this phenomenon. Our hybrid method, however, aims to capture both the
temperature-jump and the thermal Knudsen layer at a lower computational cost than a
full-domain DSMC treatment.

This paper is organised as follows. In Section 2, we discuss the macro and micro
descriptions of the flow. We then present the general three-dimensional form of our mul-
tiscale coupling framework and its iterative algorithm. For simplicity, one-dimensional
heat transfer is considered when validating the method in Section 3, with results com-
pared with pure DSMC simulations at equivalent conditions. In Section 4 we draw our
conclusions.

2. Multiscale methodology

2.1. Continuum description

For simplicity in this paper, we restrict our attention here to steady-state problems
where the gas remains stationary, i.e. it has no streaming velocity. With negligible
transport of mass and momentum, the continuum description is based on the conservation
of energy,

∇ · q = 0, (1)

where q is the heat flux vector. To close this equation, a suitable constitutive relation
is required. For conventional gas flows, the traditional Navier-Stokes-Fourier (NSF)
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constitutive relations are accurate and so Fourier’s law can be used, i.e.

q = −κ∇T, (2)

where κ is the thermal conductivity of the gas. The energy equation then reads,

∇ · (κ∇T ) = 0. (3)

Assuming no-temperature-jump boundary conditions, solution of this conventional en-
ergy equation will produce a continuum NSF temperature field TNSF. This field is taken
as an initial condition for our hybrid method, and provides a starting point from which
the coupling framework iterates towards the correct temperature field.

While Eq. (2) is valid for typical flow problems, it fails in certain flow conditions, for
instance, in flows of complex fluids or in conditions of thermodynamic non-equilibrium.
Inaccuracy in the conventional constitutive model can therefore be quantified by a heat-
flux-correction field Φ, so that

q = −κ∇T + Φ. (4)

The flux-correction field incorporates not only the departure of the gas state from equi-
librium, but also any additional inaccuracy due to the assumed thermal conductivity
model. Using this relation to close Eq. (1) results in a ‘flux-corrected’ energy equation,

∇ · (κ∇T )−∇ ·Φ = 0. (5)

The general strategy of our heterogeneous hybrid approach is therefore as follows.
Across each individual micro element, the heat flux and temperature fields are mea-
sured. The flux-correction field across each element is then computed using Eq. (4). By
interpolating between all micro elements, the full flux-correction field Φ across the entire
flowfield is approximated. With this, and the boundary information obtained from micro
simulations located at the bounding walls, an appropriate continuum method (e.g. finite
difference, finite element, or finite volume) can be used to solve Eq. (5). This produces
a flux-corrected continuum temperature field TΦ across the domain. With continuing
iterations, this temperature field should converge towards that which would be obtained
from a full molecular simulation of the problem.

2.2. DSMC technique

As we focus on heat transfer in dilute gases, we use DSMC as our molecular model in
the micro elements. DSMC has become the dominant method for simulation of dilute gas
flows that lie in the continuum-transition regime. The fundamental concept is to track
a large number of numerical particles, storing their position, velocity, and internal state
as they move through a computational mesh. During a simulation, the particles collide
with each other and with bounding surfaces while maintaining conservation of mass, mo-
mentum, and energy. A major advantage of the method is that two key approximations
significantly reduce computational expense: (a) each simulated particle typically repre-
sents a large number of real gas molecules, and (b) molecular motion and intermolecular
collisions can be decoupled over small time intervals. Particle movements are computed
deterministically, while interparticle collisions are treated statistically within numerical
mesh cells.
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Using expressions provided by Bird [1], local hydrodynamic properties (including the
temperature and the heat flux) can be recovered in DSMC by averaging microscopic
data over all of the particles in each cell. However, the inherent statistical scatter asso-
ciated with the method means that a large number of independent samples are usually
required to capture smooth fields, particularly for low speed flows. Therefore, time av-
eraging is typically used for steady state problems, while ensemble averaging is used for
transient flow problems. For continuum-molecular hybrids, the smoothing of statistical
fluctuations is particularly important as the transfer of noisy data to the continuum fluid
description may result in instability. Consequently, each DSMC simulation in this paper
is performed in two stages: a transient period enables the simulation to reach steady-
state, then a longer averaging period reduces the statistical scatter in the measured
hydrodynamic properties.

The open-source C++ toolbox OpenFOAM [26] incorporates a DSMC solver, dsmc-
Foam, which has been validated for various benchmark cases, including hypersonic and
microchannel flows [27, 28, 29]. This is used to perform all the micro and full-scale DSMC
simulations in this paper.

2.3. Coupling framework

In our framework, the continuum description is applied across the entire macro do-
main, while DSMC is performed in dispersed micro elements (the arrangement of which
depends on the flow problem being investigated). As discussed in the Introduction, we
propose a new strategy to achieve two-way coupling between these domains. The un-
derlying methodology presented here is general and may be applied to 1D, 2D, or 3D
problems.

2.3.1. Macro-to-micro coupling: constraint of the micro elements

It is crucial that the flux-correction information is extracted from DSMC elements
in which the gas state is properly representative of the local conditions in the macro
domain. There is, however, a fundamental problem in creating such elements: the par-
ticle distribution required at the boundaries of the element cannot be extracted directly
from the macroscopic continuum flowfield. For this reason, macro-to-micro coupling re-
mains a challenge in multiscale hybrids. In our method, we circumvent this problem by
not imposing an exact particle distribution at these boundaries; instead, we allow the
distribution to be dictated by the macroscopic continuum fields alone.

A natural evolution to the correct particle distribution and macroscopic state at
the boundaries of an element is possible by establishing an artificial relaxation region
(zone) around the element. It is not essential that the gas state in these relaxation
zones accurately represent the conditions in the corresponding macro domain; their sole
purpose is to develop the boundary conditions for the core of the element. Sampling of
property fields is performed only in the core region, which we refer to as the ‘sampling
zone’.

Suitable boundary conditions to the sampling zone are generated by enforcing the
continuum variation of macroscopic properties (i.e. in our case, the continuum tempera-
ture field) across the surrounding relaxation zone. This is done by implementing particle
controllers [30]. A particle distribution does, however, need to be applied at the outer
boundaries of the relaxation zone. This imposed distribution introduces error in the local
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distribution close to these boundaries, so it is important that the particle state within
the sampling zone is sufficiently independent of this introduced error. If the relaxation
zone is large enough (i.e. several molecular mean free paths), the form of the imposed
distribution1 is irrelevant — its effect will decay through the zone as the particle state
gradually relaxes through interparticle collisions. Complete relaxation needs to occur
over the extent of the relaxation zone such that the particle distribution in the sampling
zone is dictated solely by the applied continuum state. Once the hybrid method has
converged, the artificiality of the outer relaxation zone dissolves seamlessly into the true
particle distribution and fluid state in the inner sampling zone.

Figure 1(a) shows a typical ‘bulk’ micro element in 2D. Similarly, Fig. 1(b) shows an
example computational domain set-up for a 2D problem, including both bulk and ‘near-
wall’ micro elements. In summary, the sampling zone in a micro element is surrounded
by the relaxation zone over which the local continuum fields are imposed, and a chosen
particle distribution is applied at the outer boundaries. However, in order to capture
regions of non-equilibrium that often appear at solid bounding surfaces or walls, the
sampling zone in a near-wall micro element must be adjacent to the wall itself. The
arrangement of the micro elements is clearly crucial to the resulting accuracy of our
method, and the appropriate arrangement will vary from problem to problem.

To impose the local continuum temperature field, we divide the relaxation zone in
each micro element into a grid of control cells as shown in Fig. 1. Using particle controllers
[30], the appropriate temperature is then set in each control cell to create the desired
temperature variation. Similarly, the sampling zone of each micro element is divided
into a grid of measurement cells. We then extract the averaged hydrodynamic properties
from each measurement cell, enabling us to capture the property fields across the entire
sampling zone. Boundary information is also obtained from these measurement cells: we
extract the temperature of the gas in contact with the wall from the wall-adjacent cell
faces.

Essentially, these measurement and control cells form a measurement/control mesh
that is completely independent of the computational mesh used by DSMC itself. This
has the benefit of enabling us to define the resolution of the macroscopic fields that we
both extract and impose, and to control the noise in our measurements, without affecting
the accuracy of the DSMC calculations (i.e. the particle collision rate). In Fig. 1, the
measurement and control cells are shown to have the same dimensions, but this does not
have to be the case. Also, in Fig. 1(b), the measurement and control cells are shown to be
collocated with the computational cells of the continuum mesh; although this simplifies
the transfer of data between the micro elements and the continuum description, it is
only for convenience and is not essential. If these cells are not collocated, we simply
interpolate between the meshes.

2.3.2. Micro-to-macro coupling: correcting the continuum description

The ease in converting microscopic particle information into macroscopic fields means
that, generally, micro-to-macro coupling is less problematic than macro-to-micro cou-
pling. Based on the property fields extracted from the DSMC solver, a suitable correction

1We implement local Maxwellian distributions at the outer edges of the relaxation zones for simplicity.
Chapman-Enskog distributions could also be used; as these include perturbations from equilibrium, they
may reduce the required size of the relaxation zones.
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Figure 1: Schematic of (a) a 2D bulk micro element showing the control and measurement cells, and (b)
an example computational domain for a 2D problem. Note that the control and measurement cells are
independent of the DSMC computational cells, and can also be independent of the continuum mesh.

can be applied to the continuum description. In our coupling strategy, this correction is
in the form of a heat-flux-correction field Φ, as discussed in section 2.1.

In our DSMC simulations, the average translational temperature (for a single species
gas) in each measurement cell is computed from,

Ttr =
1

3kB
mc′2 =

1

3kB
m
(
c′2x + c′2y + c′2z

)
, (6)

where kB is the Boltzmann constant, m is the molecular mass and c′x, c′y, and c′z are
the x, y, and z components of the thermal velocity vector c′. Assuming the gas has no
vibrational energy, the average heat flux q in each measurement cell is obtained from,

q ≡ qj =
1

2
mnc′2c′j + nεrotc′j , (7)

where j represents the x, y, and z components, n is the number density of the gas, and
8



εrot is the rotational energy of a single molecule. Note that we consider monatomic gas
flows in this paper, and so εrot = 0 and the macroscopic temperature T = Ttr. By
computing the average macroscopic temperature and heat flux in each measurement cell,
we capture the temperature and heat flux fields across the sampling zone of each micro
element. Substituted into Eq. (4), these then provide the flux-correction field across this
zone. However, the continuum description is applied across the full simulation domain,
and so Eq. (5) requires the flux-correction field across the full domain. This field can be
approximated using appropriate interpolation between all the sampling zones.

This hybrid methodology not only corrects for inaccurate constitutive information,
but also provides missing boundary information, i.e. the temperature jump. In each
near-wall sampling zone, we measure the temperature of the gas in contact with the wall
by summing over all particles that strike the surface [31], i.e.

Tgas,wall =
m

3kB

∑
[(m/|cn|) (‖c‖)]−

∑
(m/|cn|)U2

slip∑
(1/|cn|)

, (8)

where cn is the particle velocity normal to the wall, ct is the particle velocity tangential
to the wall, ‖c‖ is the velocity magnitude, and Uslip is the slip velocity which, with zero
wall velocity, is given by

Uslip =

∑
[(m/|cn|) ct]∑

(m/|cn|)
. (9)

We then interpolate this boundary gas temperature between the near-wall sampling zones
to produce an estimate of the gas temperature at all bounding surfaces.

Using this boundary information and the full flux-correction field Φ, solution of
Eq. (5) then produces a new (flux-corrected) temperature field TΦ across the whole
domain. The process is then repeated until TΦ relaxes to a solution that is close to that
obtained from a full DSMC simulation.

2.4. Iterative algorithm

The general iterative coupling procedure of this method is:

(0) Assuming no-temperature-jump at bounding surfaces, solve the conventional energy
equation (3) to obtain an initial estimate for the temperature field across the entire
simulation domain, TNSF.

(1) Constrain each micro element by applying boundary conditions:

(a) Using particle control in each control cell, enforce the local continuum tem-
perature variation throughout the relaxation zone.

(b) At the outer boundaries of the relaxation zone, impose Maxwellian particle
distributions at the local continuum temperature.

(2) Execute DSMC in each micro element as described in section 2.2. When steady-
state is reached, perform averaging of properties in all measurement cells across
the sampling zone of each element. Extract the temperature and the heat flux
values from each of these cells. Also, from each wall-adjacent measurement cell
face, extract the temperature of the gas at the wall surface.
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(3) Compute the flux-correction in each measurement cell using the temperature and
heat flux values extracted from that cell in the flux-corrected constitutive relation
(4). From this, obtain the flux-correction field across each sampling zone.

(4) Carry out appropriate interpolations between sampling zones to approximate the
flux-correction field Φ across the full simulation domain. Similarly, perform appro-
priate interpolations between near-wall sampling zones to obtain a gas temperature
at all bounding walls.

(5) Using the boundary gas temperature information and the full flux-correction field,
solve the flux-corrected energy equation (5) across the full domain to obtain a new
flux-corrected temperature field TΦ.

(6) Repeat from Step (1) until TΦ does not change between iterations to within a
user-defined tolerance.

3. Validation: one-dimensional Fourier flow

A simple validation test case is chosen in order to assess the performance of the
coupling method, and to easily validate it against a full DSMC simulation. We therefore
demonstrate the method on the case of one-dimensional heat transfer, i.e. the classical
Fourier flow problem. This problem has a motionless gas (in this case argon) confined
between two infinite parallel planar walls at different temperatures, Tcold and Thot.

3.1. Numerical implementation

We assume that the variation of the gas thermal conductivity κ with temperature
is unknown. We therefore take a reasonable reference value κr that is independent of
the temperature field across the system domain; as discussed in section 2.1, the flux-
correction field Φ will automatically adjust for any error resulting from this assumption.

Discretizing the domain in one-dimensional space, the macroscopic computational
mesh consists of N macro nodes, including a node at each wall. An example computa-
tional domain set-up is shown in Fig. 2, where we have a micro element at each wall,
and one in the bulk. This element arrangement is an example only — the appropriate
arrangement will in practise depend on the case itself, as will be discussed further in
section 3.2.1. For this 1D problem, each near-wall element comprises a single sampling
zone and a single relaxation zone, while each bulk element consists of a single sampling
zone with a relaxation zone on either side, as indicated in Fig. 2.

Each sampling zone is divided into a number of measurement bins. Similarly, each
relaxation zone is divided into a number of control bins. In order to keep the transfer of
data between the macroscopic mesh and the micro elements as simple as possible here,
the bin arrangement in each element is set such that the centre of each bin coincides
exactly with a macro node, i = 1, 2, ..., N . Again this is merely for convenience, and
does not generally need to be imposed. The length of each 1D bin is then equal to the
spacing between each macro node, ∆x.

Application of the general coupling algorithm of section 2.4 to this 1D system is as
follows:
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Figure 2: Schematic of the computational set-up for a one-dimensional Fourier flow problem.

(0) An initial estimate for the temperature field across the simulation domain is com-
puted by solving the 1D conservation of energy equation,

dqx
dx

= 0, (10)

where qx is the streamwise component of the heat flux vector. This expression can
be closed using the 1D form of Fourier’s law,

qx = −κ
[
dT

dx

]
. (11)

Using the reference thermal conductivity κr, the 1D energy equation becomes,

κr

[
d2T

dx2

]
= 0, (12)

and can be approximated using a second order central finite difference scheme.
With no temperature-jump at the solid walls (i.e. T1 = Tcold and TN = Thot),
solution results in the initial continuum temperature field TNSF.

(1) As the micro element size can change at each iteration (as will be discussed in
section 3.2.1), each element is initialised at equilibrium before boundary condi-
tions are applied. This is done by sampling particle velocities from a Maxwellian
distribution. For consistency between the micro and macro domains, the tempera-
ture and density for initialisation are obtained from the local continuum solution:
continuum values of these properties are averaged over a sub-region of the macro
domain that corresponds to the particular micro element.

Each micro element is then constrained:

(a) The local continuum temperature field is imposed throughout each relaxation
zone by implementing a thermostat in each control bin.

(b) Maxwellian particle distributions are imposed at the outer boundaries of each
relaxation zone via a diffuse solid wall condition at the local continuum tem-
perature.
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(2) DSMC is executed in each micro element. When steady-state conditions are reached,
time averaging of properties is performed in each measurement bin. From each
bin, time-averaged values of the temperature and the heat flux are extracted. Also,
from both near-wall sampling zones, the temperature of the gas in contact with the
bounding wall is extracted.

(3) Using the temperature and the heat flux extracted from each measurement bin,
the flux-correction in each bin can be computed by applying the 1D flux-corrected
constitutive relation with constant conductivity κr,

Φx = qx + κr

[
dT

dx

]
. (13)

For this calculation, the temperature gradient in each measurement bin is ap-
proximated using a central finite difference scheme (or a forward/backward finite
difference scheme for bins at the edges of the sampling zone). By computing the
flux-correction in each measurement bin, the flux-correction field across each sam-
pling zone is captured.

(4) To obtain Φx at every point in the domain, interpolation between sampling zones
is required. A study was performed showing that a simple linear interpolation
provides an adequate representation of the full flux-correction field for this 1D case.
Note that, for this 1D geometry, interpolation of the boundary gas temperature is
not required.

(5) Using Eq. (13) to close Eq. (10) provides the 1D flux-corrected energy equation,

κr

[
d2T

dx2

]
− dΦx

dx
= 0, (14)

which can be approximated using a second order central finite difference scheme.
As discussed in section 2.3.2, temperature-jump boundary conditions are applied:
the temperature of the gas at each bounding wall is set to be that measured in
the corresponding near-wall element during Step (2). Solving this equation then
results in the flux-corrected temperature field TΦ across the entire domain.

(6) Replacing the initial temperature field TNSF with TΦ, the process is repeated from
Step (1). This continues until TΦ converges to within a user defined tolerance, i.e.

ζ =
1

N

N∑
i=1

∣∣∣∣TΦ(i)l − TΦ(i)l−1

TΦ(i)l

∣∣∣∣ ≤ ζtol, (15)

where N is the number of macro nodes, l is the iteration index, and ζtol is the
tolerance parameter.

3.2. Results

The overall level of non-equilibrium in the gas is characterized here by a global Knud-
sen number Kn, where the characteristic dimension is the separation between the heated
walls L, i.e.

Kn =
λ

L
. (16)
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We use a Variable Hard Sphere (VHS) collision model in our DSMC simulations, and so
the gas mean free path is given by [1],

λ =
1√

2πd2n
, (17)

where d is the VHS molecular diameter, and n is the number density of the gas. Localised
regions of non-equilibrium can also result from large gradients in the macroscopic fluid
properties, for example, temperature gradients. Varying both Kn and the temperature
gradient across the system, we simulate a range of test cases here. These explore the
ability of the hybrid method to deal with both missing constitutive and boundary in-
formation, while remaining simple enough for validation against an equivalent full-scale
DSMC simulation.

For simplicity, we simulate monatomic argon gas with the following VHS parameters:
a reference temperature Tref = 273 K, a reference diameter dref = 4.17×10−10 m, and
viscosity exponent ω = 0.81. For all test cases, the separation between the walls L is 1
µm. In order to accurately capture the variation of the property fields, we set the number
of macro nodes N across the domain to be 201 for all cases, making the constant spacing
∆x between each macro node 5 nm. For each test case, we then set the gas density and
the temperature of the walls to obtain the desired Kn and temperature gradient.

To ensure a fair comparison between each hybrid simulation and the equivalent full-
scale DSMC simulation, we use the same cell-size and time-step in both the hybrid DSMC
elements and the full-scale simulation. The cell size is set as a fraction of the gas mean
free path λ. The DSMC time-step must be a fraction of the mean collision time tmc:
a time-step ∆t = 1×10−12 s is sufficiently small for all cases simulated in this paper.
In our testing, we found that an initial start-up run of 3 million time-steps allowed all
DSMC simulations to reach steady state. To minimise the statistical scatter associated
with the averaging of the field properties, all simulations were then run for a further 50
million time-steps.

As discussed in section 3.1, we monitor convergence of the hybrid procedure using
Eq. (15), which quantifies the difference in the temperature solution between the current
iteration and the previous. The tolerance parameter ζtol depends on the case itself,
with typical values of O(10−2) and below. We then require a measure of the overall
accuracy for the converged hybrid solution when comparing with the corresponding full-
scale DSMC solution TFull. Here we consider the mean percentage error ε̄ in the hybrid
temperature profile, i.e.

ε̄ =
1

N

N∑
i=1

[
TFull(i)− TΦ(i)

TFull(i)

]
× 100%. (18)

The value of this error depends on the hybrid’s ability to capture the ‘true’ flux-correction
field across the simulation domain. The true flux-correction is that which can be com-
puted from the full-scale DSMC solution Φx, Full, using the measured temperature field
TFull and the measured heat flux field qx, Full in Eq. (13).

3.2.1. Micro resolution

The temperature-jump and associated thermal Knudsen layer are modelled within
the micro element at each wall. To obtain a high level of accuracy for this Fourier flow
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problem, the sampling zone in each of these elements should extend to capture the entire
Knudsen layer. This means that the required size of our near-wall elements increases with
the level of rarefaction, i.e. Kn. Note that, for high values of Kn, the required size of the
near-wall micro elements may result in the hybrid approach (over a number of iterations)
becoming less efficient than a full-scale DSMC treatment. For low values of Kn (where
the Knudsen layers remain close to the walls), micro elements could be required in the
bulk to capture non-equilibrium behaviour caused by strong temperature gradients. Even
when the bulk of the domain is near-equilibrium, bulk micro elements may still be needed
to provide a correction for any error in the assumed thermal conductivity κr. The micro
resolution (i.e the number of micro elements Π and their size) required for a particular
problem is therefore dependent on both the level of rarefaction, and the temperature
conditions.

To explore the effect of the micro element arrangement, we consider an example
test case with Kn = 0.01. For a separation L = 1µm, we require a global mean free
path λ = 0.01µm, corresponding to a gas number density n = 1.295×1026 m−3 from
Eq. (17). Setting an average gas temperature Tav = 273 K, we assume a value of κr =
0.0164 W/mK [32]. The temperature difference between the walls ∆T is set to 50 K (i.e.
Tcold = 248 K and Thot = 298 K), resulting in a temperature gradient of 50×106 K/m
across the domain.

For this initial test case, with this Knudsen number and temperature gradient, the
bulk of the domain will be in equilibrium. However, the flux-correction field Φx in the
bulk will be non-zero to correct for the assumption of a constant thermal conductivity.
Over a temperature range of 200 K to 350 K, the thermal conductivity of argon varies
approximately linearly with temperature, so Φx will also be approximately linear in the
bulk. Direct linear interpolation between the sampling zones of the near-wall elements
should therefore provide an adequate representation of the full flux-correction field, and
bulk micro elements are not needed for this initial case. Two near-wall elements should
be sufficient, i.e. Π = 2.

Ideally, the sampling zones of these near-wall micro elements should capture the
thermal Knudsen layers fully. Also, the relaxation zones must be large enough to allow
full relaxation of the particle distribution. The size of both of these zones is therefore
key to the accuracy of the hybrid method, and it is important that we are able to
make an estimate of the appropriate size depending on the flow conditions. Typically,
thermal Knudsen layers extend several mean free paths from a wall surface. Similarly, the
relaxation of a particle state typically occurs over several mean free paths. We therefore
express the extents of both the sampling and relaxation zones as some number of local
mean free paths λl.

Two sensitivity studies have been performed to find the appropriate extent for each
zone. In the first study, we keep the length of the sampling zone LSZ at 5λl and consider
the effect of the relaxation zone length LRZ by incrementally increasing its value from
1λl to 7λl. Then, in the second study, we consider the impact of LSZ by increasing it
from 1λl to 7λl, keeping LRZ constant at 5λl. Note that, for the first iteration, λl is
assumed equal to the global mean free path, λ = KnL. In subsequent iterations, λl is
updated for each micro element using Eq. (17), where n is the average number density
measured in the sampling zone of the element in the previous iteration.

With elements in this size range, we need to see convergence of the hybrid method
within 3 to 4 iterations for there to be any computational advantage over a full DSMC
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simulation. For this test case, we set the tolerance parameter ζtol to be 0.001. Figure 3(a)
shows that, for all relaxation zone lengths, convergence of the method is reached within
4 iterations. However, convergence is not reached within 4 iterations when the sampling
zone lengths are 1λl or 3λl, as shown in Fig. 3(b). We therefore require larger sampling
zones of either 5λl or 7λl, both of which provide convergence in only 2 to 3 iterations.
Note that, for all simulations, the level of convergence fluctuates slightly due to noise.
The converged temperature profiles from the hybrid are shown in Fig. 4; also plotted is
the initial temperature field TNSF, and the full DSMC temperature field TFull.
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Figure 3: Convergence of the hybrid method for (a) LSZ = 5λl and various LRZ , and (b) LRZ = 5λl
and various LSZ .

The accuracy of the hybrid method is, however, more apparent from the mean per-
centage error at each iteration, presented in Fig. 5. The error at iteration l = 0 is the
error in the initial hydrodynamic NSF solution. It is seen that the final mean error is
less than 0.1% when relaxation and sampling zone extents are both 5λl or 7λl. This
accuracy is due to the hybrid method’s ability to capture the flux-correction field across
the domain, as shown in Fig. 6.

Essentially, the element size depends on the desired balance between accuracy and
computational savings. Although sampling and relaxation zone extents of 7λl provide
slightly higher accuracy, we select an extent of 5λl for both zones. This provides a
sufficient level of accuracy while also enabling greater computational saving over a full-
scale DSMC simulation. For the problems we study in this paper, each near-wall element
therefore has a total extent of 10λl, while each bulk element has a total extent of 15λl.
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Figure 4: Final hybrid temperature solutions TΦ for (a) LSZ = 5λl and various LRZ , and (b) LRZ =
5λl and various LSZ . These are compared to the corresponding full DSMC temperature solution TFull,
and the hydrodynamic temperature solution TNSF. Insets show results close to each wall.

3.2.2. Various rarefaction and temperature conditions

We now demonstrate the method’s ability to capture temperature jump and the
associated thermal Knudsen layer under various rarefaction conditions (study A) and
various temperature conditions (study B). In each test case, we maintain a wall separation
L = 1µm, and an average gas temperature Tav = 273 K.

In study A, we consider the global Knudsen numbers: Kn = 0.01, 0.02, 0.03. This
is achieved by varying the gas density for each case according to Eqs. (17) and (16).
For all three cases, the temperature difference ∆T between the walls is set to 50 K.
In study B, we simulate a range of temperature conditions by varying the temperature
difference between the walls: ∆T = 50 K, 100 K, 150 K. For all three cases, the gas
density is set to maintain Kn = 0.01. For every test case considered, both Kn and the
temperature gradient are small enough that the bulk of the domain will be in equilibrium.
As in section 3.2.1, two near-wall elements should therefore be sufficient to capture the
flux-correction field.

For all the cases, convergence of the hybrid solution occurs within 3 iterations to a
tolerance parameter of ζtol = 0.001. This is shown in Figs. 7(a) and 7(b), for studies A and
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Figure 5: Mean error ε̄ in the hybrid solutions for (a) LSZ = 5λl and various LRZ , and (b) LRZ = 5λl
and various LSZ .

B, respectively. In Fig. 8(a), we present the converged temperature profiles from all three
hybrid simulations of study A, along with the corresponding full DSMC temperature
profiles. Also shown is the initial NSF temperature profile: as this is independent of Kn,
it is the same for all test cases in study A. Similarly, the converged temperature profiles
from all three hybrid simulations of study B are shown in Fig. 8(b). The corresponding
full-scale DSMC and initial NSF temperature profiles are also shown, with the NSF
solution different for each value of ∆T .

Again, a clearer measure of accuracy is to consider the mean percentage error of the
hybrid solution (compared with the corresponding full DSMC solution) at each iteration.
This is presented in Fig. 9 and, for each case, the error at iteration l = 0 represents the
error in the initial NSF solution. For all three values of Kn in study A, the hybrid
technique reduces ε̄ to approximately 0.07% as shown in Fig. 9(a). Figure 10(a) shows
that, for all Kn, the final hybrid flux-correction representation is in fairly good agreement
with the corresponding full DSMC flux-correction. However, as ∆T is increased in study
B, Fig. 9(b) shows that the overall accuracy of the hybrid method decreases. This is
a reflection of the lower quality of the hybrid flux-correction representation, as seen in
Figure 10(b). However it should be noted that, for all values of ∆T , the hybrid solution
provides a considerable improvement over the corresponding NSF solution.

For higher temperature gradients, the accuracy of the hybrid could be improved by
slightly increasing the extent of the near-wall elements (i.e. larger LRZ and LSZ), or by
adding a element in the bulk. This would, however, reduce the computational savings
obtained. As discussed in section 3.2.1, there must be a balance exercised between the
accuracy required from, and the computational speed-up offered by, the hybrid method.
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Figure 6: Final hybrid flux-correction fields Φx for (a) LSZ = 5λl and various LRZ , and (b) LRZ = 5λl
and various LSZ . These are compared with the full-scale DSMC flux-correction Φx,Full.

3.2.3. Extreme temperature conditions

For the cases in sections 3.2.1 and 3.2.2, we used only two near-wall elements in
our hybrid approach. However, even if the bulk of the domain is near-equilibrium,
higher temperature conditions might result in a non-linear variation of conductivity with
temperature. If so, the use of linear interpolation of the flux-correction field between
opposite near-wall elements is not likely to produce the most accurate solution. Accuracy
should be improved by the addition of micro elements within the bulk, i.e. increasing the
micro resolution.

To verify the method’s ability to deal with more extreme temperature conditions,
we consider a case where the global Knudsen number is set to Kn = 0.01, but Tav is
increased to 500 K. The assumed value of κr is therefore increased to 0.027 W/mK [32].
The temperature difference ∆T between the walls is then set equal to 600 K (i.e. Tcold =
200 K and Thot = 800 K). We consider two hybrid configurations: in the first, we have
only two near-wall elements, i.e. Π = 2; in the second, we add a bulk element in the
centre of the system, i.e. Π = 3.

Setting ζtol = 0.01 for this test case, convergence occurs within 3 iterations for both
configurations, as seen in Fig. 11. The converged temperature profiles from both hybrid
simulations, along with the initial NSF and the full-scale DSMC temperature profiles,
are presented in Fig. 12.

Once again, the accuracy of the hybrid is more clearly visible from the mean per-
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Figure 7: Convergence of the hybrid method for (a) various Kn (study A), and (b) various ∆T (study
B).

centage error, shown for each iteration in Fig. 13. As we would expect, the addition of
a bulk micro element results in a more accurate temperature solution. In fact, in com-
parison with the initial NSF solution, this configuration provides an order of magnitude
reduction in the mean error. This increased accuracy is the result of the higher quality
flux-correction representation, as shown in Fig. 14.

The accuracy of the hybrid could be further improved by increasing the molecular
resolution either by increasing the element lengths, or by adding more bulk elements, or
both. It should be noted however that even with only two near-wall elements the hybrid
solution still provides a considerable improvement over the NSF solution.

3.2.4. Computational savings

In this paper we have not exploited time-scale separation — the full-scale and the
hybrid element simulations are run for the same number of DSMC time-steps. Compu-
tational savings therefore come only from length-scale separation. The dimensions of the
Fourier flow test cases considered here have been restricted by the need for a full-scale
DSMC simulation in order to validate the hybrid method. With the degree of length-
scale separation fairly small, the required micro elements occupy a significant portion of
the domain. The computational savings provided by the hybrid on this particular heat
transfer problem are therefore modest.

A measure of the computational speed-up S can be obtained from the ratio of the
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Figure 8: Final hybrid temperature solutions TΦ for (a) various Kn (study A), and (b) various ∆T
(study B). These are compared with the corresponding initial NSF temperature solutions TNSF, and the
corresponding full DSMC temperature solutions TFull. Insets show results close to each wall.

total processing time of the full DSMC approach, to the total processing time of the
hybrid approach. For each simulation, the total processing time can be computed from
the total number of DSMC time-steps M × the average clock time per DSMC time-step
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tc, i.e.

S =
MFulltc,Full

MHybridtc,Hybrid
. (19)

Note that M is the total number of time-steps over both the transient and steady-state
periods and, for all cases in this paper, MHybrid = MFull = 53×106. The computational
cost of the hybrid approach depends on both the micro resolution, and the number of
iterations required. As the physical extent of each element is updated after each iteration
based on the local mean free path, the average clock time per time step tc for a particular
element will differ for each iteration. The total average clock time per time-step for the
hybrid approach tc,Hybrid is therefore calculated as the sum of tc for all micro elements
Π, over all iterations I, i.e.

tc,Hybrid =

I∑
l=1

[
Π∑

k=1

tc(k, l)

]
. (20)

For all test cases in section 3.2.2, our hybrid requires only two near-wall elements and
convergence is reached inside 3 iterations. With Π = 2 and I = 3, the computational
speed-up S is presented in Table 1 for each case. These speed-ups are determined by the
extents of the near-wall subdomains, (LSZ + LRZ)left and (LSZ + LRZ)right which are
each 10λl. These extents during the final iteration (I = 3) of each case are also presented
in Table 1. If Kn = 0.01, (LSZ + LRZ)left and (LSZ + LRZ)right are small enough that
we see a modest computational speed-up (S > 1). However, when Kn is increased to
0.02 and 0.03, these extents become larger so that we see no speed-up at all (S < 1).
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Figure 10: Final hybrid flux-correction fields Φx for (a) various Kn (study A), and (b) various ∆T
(study B), compared with the corresponding full DSMC flux-correction Φx,Full.
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Figure 11: Convergence of the hybrid method for both Π = 2 and Π = 3 elements.

Convergence of the multiscale method is also reached inside 3 iterations for both
element configurations considered in section 3.2.3, where Kn = 0.01 and ∆T = 600 K.
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With I = 3, the computational speed-ups for this case for both Π = 2 and Π = 3 are
shown in Table 2. For the configuration with only near-wall elements, (LSZ + LRZ)left

and (LSZ +LRZ)right are again small enough for us to see a modest computational speed-
up. However, the increase in accuracy that comes with the addition of the bulk element
increases the computational cost. In fact, with a bulk element length (LSZ + 2LRZ)bulk

corresponding to 15λl, there is no computational speed-up at all, and S < 1.

Study A
Kngl ∆T (K) (LSZ + LRZ)left (µm) (LSZ + LRZ)right (µm) I S
0.01 50 0.1 0.1 3 1.77
0.02 50 0.19 0.21 3 0.88
0.03 50 0.29 0.31 3 0.59

Study B
0.01 50 0.1 0.1 3 1.77
0.01 100 0.09 0.11 3 1.73
0.01 150 0.09 0.11 3 1.77

Table 1: Computational speed-ups for the test cases of section 3.2.2.

Π (LSZ + LRZ)left (µm) (LSZ + 2LRZ)bulk (µm) (LSZ + LRZ)right (µm) I S
2 0.07 - 0.12 3 1.71
3 0.07 0.15 0.12 3 0.96

Table 2: Computational speed-ups for the configurations of section 3.2.3.

In summary, while several cases in this paper demonstrate moderate computational
savings by using the hybrid method, a number of cases are more computationally expen-
sive than the equivalent full-scale DSMC simulation. It is important to note, however,
that these Fourier flow cases have been chosen simply to test and validate the hybrid
methodology itself. Future simulations of larger, more realistic, 2D and 3D problems will
highlight any computational advantages of our multiscale approach. In transient flows,
when temporal variations in the macroscopic property fields are much slower than the
molecular time scales, computational savings can also be obtained by exploiting time
scale separation, i.e. by controlling the time-steps in the macro and micro models as
described by Lockerby et al. [33].

4. Conclusions

Based on a HMM-FWC approach, we have proposed a hybrid multiscale method that
couples a continuum-fluid solver with the DSMC particle technique. The key advantage
of this hybrid over existing continuum-DSMC hybrids is that DSMC micro elements of
any size can be placed at any location in the flow, i.e. close to walls or in the bulk of the
domain, independent of the continuum description. Therefore, unlike traditional HMM
techniques, our method is able to simulate problems with any degree of scale separation.
The micro resolution can be adjusted for each problem to obtain the desired balance
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between accuracy and computational cost. Another useful feature of our approach is
that the size of the micro elements adapts dynamically depending on the local mean free
path of the gas.

For heat-transfer problems, the coupling in our method is performed through the
computed heat fluxes. As a simple validation test, the method was demonstrated on
micro Fourier flow. For a range of rarefaction and temperature conditions, we have
shown the method’s ability to compensate for inaccurate boundary and constitutive
information. The hybrid procedure was found to converge very quickly, inside 3 iterations
for all test cases considered. Generally, good agreement with the equivalent full-scale
DSMC simulations was observed, with the exact level of accuracy depending on the
micro element arrangement.

Due to the small degree of scale separation in the Fourier flow cases considered here,
the computational speed-ups observed (over the full DSMC simulations) were modest.
This problem was, however, selected only to provide a simple example on which to test
and validate the underlying methodology. Much greater speed-ups can be expected when
simulating larger, more realistic engineering problems.

Before tackling 2D and 3D problems, the method needs to be developed to enable
full coupling of mass and momentum, as well as heat transfer. Extension to 2D/3D then
presents some additional challenges, including the application of mass, momentum, and
heat transfer boundary conditions within 2D/3D relaxation zones, and 2D/3D interpola-
tion of the flux-correction field between sampling zones. However, with this development,
the method has the potential to tackle a variety of problems, such as the flow of com-
plex gas mixtures, or the flow through micro heat exchangers. The modelling of thin
bow shockwaves at the front of a planetary re-entry vehicle is another example which
could benefit from the development of this hybrid as it encompasses both complex fluid
behaviour (including chemical reactions of many gas species) and a high aspect ratio
geometry. Our method also has the potential to be used in an inverse manner to obtain
the transport properties of a gas.
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