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Abstract A new multi-objective evolutionary optimization approach for joint topology and pipe
size design of water distribution systems is presented. The algorithm proposed considers simul-
taneously the adequacy of flow and pressure at the demand nodes; the initial construction cost; the
network topology; and a measure of hydraulic capacity reliability. The optimization procedure is
based on a general measure of hydraulic performance that combines statistical entropy, network
connectivity and hydraulic feasibility. The topological properties of the solutions are accounted for
and arbitrary assumptions regarding the quality of infeasible solutions are not applied. In other
words, both feasible and infeasible solutions participate in the evolutionary processes; solutions
survive and reproduce or perish strictly according to their Pareto-optimality. Removing artificial
barriers in this way frees the algorithm to evolve optimal solutions quickly. Furthermore, any
redundant binary codes that result from crossover or mutation are eliminated gradually in a
seamless and generic way that avoids the arbitrary loss of potentially useful genetic material and
preserves the quality of the information that is transmitted from one generation to the next. The
approach proposed is entirely generic: we have not introduced any additional parameters that
require calibration on a case-by-case basis. Detailed and extensive results for two test problems are
included that suggest the approach is highly effective. In general, the frontier-optimal solutions
achieved include topologies that are fully branched, partially- and fully-looped and, for networks
with multiple sources, completely separate sub-networks.

Keywords Statisticalentropy.Reliability-baseddesign .Evolutionaryoptimization.Redundant
binary codes

1 Introduction

The planning for a water distribution system may include topology design and sizing of
components to evaluate the hydraulic properties of the system. Since failures may occur due to
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pipe material deterioration with time or sudden increase in pressure, for example, the system’s
reliability is worth considering also. With regard to the topology, branched systems are suitable
for small and low-density rural areas, while fully or partially looped systems are proper for
urban areas (Swamee and Sharma 2008). Branched systems have the disadvantage that a break
in any pipe puts all consumers downstream out of service. In fully looped systems, each
demand node can be supplied from the source(s) through at least two independent paths. Two
supply paths are said to be independent if they do not have a pipe in common. In the literature,
the joint effects of topology and pipe size optimization were dealt with typically as two
separate stages in which topology design followed by pipe sizing was carried out (Rowel
and Barnes 1982; Morgan and Goulter 1982, Kessler et al. 1990, Cembrowicz 1992).
However, such methods neglect the strong coupling between topology and components design
to varying degrees.

Also, the relationship between topology, pipe sizes and hydraulic reliability is strong.
However, previous studies that included reliability generally did not optimize the topology.
Various reliability measures that are easy to calculate have been suggested including statistical
entropy (Tanyimboh and Templeman 1993), resilience index (Todini 2000), network resilience
(Prasad and Park 2004), modified resilience index (Jayaram and Srinivasan 2008) and surplus
power factor (Vaabel et al. 2006). Among these measures, statistical entropy has been shown to
be the most consistent (Reca et al. 2008; Raad et al. 2010; Baños et al. 2011; Tanyimboh et al.
2011; Saleh et al. 2012). For water distribution systems, the statistical entropymay be considered
a measure of the uniformity of the pipe flow rates (Tanyimboh and Templeman 1993).

Awumah et al. (1989) developed a two-stage model for optimizing the pipe sizes and
topology. In the first stage, a topology model determines whether a link is to be included using
integer programming. In the second stage, pipe diameters are adjusted. Awumah and Goulter
(1992) also proposed an alternative approach using statistical entropy theory. Tanyimboh and
Sheahan (2002) also used statistical entropy in an approach in which the topology, pipe sizing,
reliability and redundancy were considered in successive stages.

Evolutionary optimization algorithms have been used also (Davidson and Goulter 1995;
Walters and Smith 1995; Geem et al. 2000; Afshar and Jabbari 2007). Evolutionary algorithms
often generate infeasible solutions when solving problems that involve constraints. Case-
specific constraint-violation penalties (Kougias and Theodossiou 2013) that require
calibration are frequently introduced to address this issue. Saleh and Tanyimboh (2013)
introduced an approach that optimizes both the topology and pipe sizes. The algorithm
provides a single optimal solution and reliability aspects beyond the topology were not
addressed.

This paper describes a new multi-objective evolutionary approach for the simultaneous
topology, pipe size and entropy-based optimization of water distribution systems. Unlike
previous entropy-based approaches such as Tanyimboh and Sheahan (2002), the pipe flow
directions and candidate topologies are not specified in advance. Also, the algorithm promotes
full exploitation of all feasible and infeasible solutions generated to guide the search. Our
algorithm includes a robust measure for the infeasibility of any solution and a seamless generic
procedure for redundant binary codes. Results for two test problems in the literature are
included.

2 Optimization Approach

The difficulties associated with constraint-violation penalties that are commonly used in
evolutionary algorithms include time-consuming trial runs and parameter calibration (Dridi
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et al. 2008). On the other hand, penalty-free methods eliminate the need to design penalty
functions and are relatively straightforward to implement without sacrificing the computational
efficiency (Siew and Tanyimboh 2012). Also, penalty-free methods can maintain infeasible
solutions that may have useful properties that may not be common in feasible solutions in
successive generations of the optimization. Other constraint handling methods have been
proposed (Deb et al. 2002). For example, Ray et al. (2001) suggested three stages of
nondomination ranking using different combinations of the objective and constraint
functions. Constraint handling in Deb et al. (2002) involves a binary tournament in which
feasible solutions automatically dominate infeasible solutions. We developed a penalty-free
strategy that exploits all efficient solutions generated, without introducing additional measures
aimed at reducing the propagation of infeasible solutions.

2.1 Details of the Optimization Model

We used the EPANET 2 hydraulic simulation model (Rossman 2000) to determine the
hydraulic properties of all solutions generated in the optimization process and to ensure the
solutions satisfy conservation of mass and energy. The optimization model minimizes the
initial construction cost, f1, the infeasibility measure, f2, and the number of pipes, f3, as
explained below.

f 1 ¼
X
ij

f Lij;Dij

� � ð1Þ

f 2 ¼ l þ hþ S�−Sð Þ þ S�g−S
�

� �
: l ¼

X
i¼1

N

max 0;Rreq
i −Rið Þ; h ¼

X
i

max 0;Hreq
i −Hið Þ

ð2Þ

f 3 ¼
X
ij

pij ð3Þ

in which N=number of nodes; for pipe ij, Lij=length; Dij=diameter; pij=1 if pipe ij is included
in the topology and pij=0 otherwise; Hi and Hi

req=available and required residual head at
demand node i, respectively; Ri and Ri

req=actual and required number of independent supply
paths to node i, respectively; S=entropy; S*=maximum entropy; and Sg

* = global maximum
entropy.

The function l in Eq. 2 represents the total topological infeasibility of a candidate solution.
The topological infeasibility at node i was taken as the shortfall in the number of independent
supply paths Ri. The required number of independent supply paths, Ri

req, is typically 1 and 2,
respectively, for branched and fully looped configurations. The function h in Eq. 2 represents
the residual head infeasibility. If Hi≥Hi

req for all demand nodes, then the solution is hydrau-
lically feasible. The required residual headHi

req is the head at a node above which demands are
satisfied in full. Hi

req is typically not less than a minimum of about 7 m (OFWAT 2008).
For any feasible topology that has loops, there are multiple feasible sets of flow directions

each of which has a maximum entropy value. S* is the theoretical maximum value of entropy
for a particular feasible set of flow directions while Sg

* is the global maximum entropy value
considering all permissible topologies. The global maximum entropy value Sg

* is not known a
priori; our algorithm evolves the global maximum entropy solution by assuming it corresponds
to the largest entropy value it has so far identified. The infeasibility measure f2 seeks feasible
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solutions that have high values of entropy (a proxy for hydraulic reliability and redundancy).
Minimizing the infeasibility measure f2 promotes the inclusion of a range of maximum entropy
solutions for which, by definition, S=S*, in the nondominated set in addition to Sg

*.
To complete the characterization of the infeasibility function f2, the entropy functions are

described here briefly (Tanyimboh and Templeman 1993).

S ¼ S0 þ
XN

i¼1
PiSi; ð4Þ

S=entropy; S0=entropy of source supplies; Si=entropy of node i; Pi=Ti/T=fraction of the
total flow through the network that reaches node i; Ti=total flow that reaches node i; T=total
demand;

S0 ¼ −
X
i∈I

Q0i

T
ln

Q0i

T

� �
; ð5Þ

Q0i=inflow rate at source node i; I=the set of source supply nodes;

Si ¼ −
Qi0

Ti
ln

Qi0

Ti

� �
−

X
ij∈out Nið Þ

Qij

T i
ln

Qij

T i

� �
; i ¼ 1; :::::;N ; ð6Þ

Qi0=demand at node i;Qij=flow rate in pipe ij; and out(Ni)=set of all pipe flows from node i.
For a typical node with, say, two incident pipes downstream, it can be shown that Si≤ln(3)≈

1.1 (Shannon 1948). Given that Pi=Ti/T≤1.0, it is expected that the value of the network
entropy S in Eq. 4 will be relatively small for the typical water distribution system. Therefore,
it is expected that the contributions of the entropy terms (S*−S) and (Sg

*−S*) to the infeasi-
bility measure f2 in Eq. 2 will be relatively small. The objective function f2 may be considered
an entropy-augmented infeasibility measure. Minimizing f2 aims simultaneously to satisfy
residual head and topology requirements and maximize entropy. Eqs. 4–6 are an extension of
the statistical entropy function that is a measure of uncertainty (Shannon 1948). In a probabi-
listic system the uncertainty is a maximum if all possible system states or outcomes are
equally likely. Conversely, the uncertainty decreases as the probabilities associated with the
states or outcomes become more unequal. The term [(S*−S)+(Sg*−S*)]=(Sg*−S) in the infeasi-
bility measure f2 may be considered an estimate of the unrealized entropy potential; by
definition its value is zero for S=S*=Sg

*.

2.2 Practical Topology Confirmation and Redundant Binary Codes

We developed a topology confirmation algorithm coded in C, to enable a consistent and bias-
free fitness assessment of all feasible and infeasible solutions. The total number of paths NPi
supplying demand node i from all sources collectively was determined with regard to the pipe
flow directions obtained from EPANET 2. We used an efficient path enumeration algorithm
proposed by Yassin-Kassab et al. (1999). If NPi=0, the node cannot be supplied. If NPi=1, the
node can be supplied. If NPi≥2, for all nodes, a path inter-dependency investigation is carried
out to check whether the network is fully looped. We adopted a practical procedure that does
not involve an exhaustive enumeration of all the paths supplying each node. For a pair of
independent supply paths, removing a pipe from one path does not affect the other path.
Therefore, the procedure entails removing all pipes one at a time and in each case observing
whether all nodes can be reached. If all nodes can be supplied from one or more sources after
the removal of all pipes one by one with replacement, then all nodes have at least two
independent supply paths. It is worth observing that EPANET 2 sets default values of node
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pressures and pipe flows within parts of a network that are not connected to a source. We
addressed this by assigning zero flows and pressures, respectively, to such pipes and nodes.

In order to represent the vector of decision variables in a genetic algorithm, an n-bit binary
string gives rise to 2n different n-bit codes and, depending on the number of decision variables,
some codes may be redundant. We assumed redundant codes represent closed pipes whose
flow-carrying capacity is zero. The closed pipes are allocated pipe sizes taken from just above
the upper end of the real set of available pipe diameters. The data required to implement the
procedure are the unit costs for the fictitious or assumed diameters. As the fictitious diameters
have no functional value, it is anticipated they will become extinct through evolution and
natural selection. The benefits of this novel approach are that it is entirely generic and very
practical; additional parameters that require special calibration are not introduced and pre-
optimization trial runs are not required. The premature loss of potentially useful genes is thus
avoided, and the genetic code that is transmitted in successive generations is not degraded
(Herrera et al. 1998).

3 Computational Solution

We used the Nondominated Sorting Genetic Algorithm (NSGA) II that has been used
extensively, and its merits have been reported elsewhere (Deb et al. 2002; Dridi et al. 2008).
Selection for crossover was carried out with a binary tournament. Single-point crossover was
used to produce two offspring from two parents. Once the offspring population was created,
the mutation operator reversed the selected bits. The optimization problem was posed as:

Minimize f ¼ f 1; f 2; f 3ð ÞT ð7Þ
The decision variables are the pipe diameters Dij and link selection variables pij for the

entire network. To make all three objectives in Eq. 7 roughly similar in magnitude, each fi
m, i.e.

the value of objective m for solution i, was normalized as

f nmi ¼ f mi − f
m
min

� �
= f mmax− f

m
min

� �
;∀i;∀m ð8Þ

In the generation in question, fmin
m and fmax

m = minimum and maximum value of objective m,
respectively; and fni

m = normalized value of objective m for solution i.
In each generation of the optimization algorithm, each solution in the population is analysed

using EPANET 2. The resulting pipe flow rates are used to calculate the entropy (Eq. 4). In
general, numerical nonlinear optimization is required to calculate the maximum value of the
entropy S*. However, computationally efficient path entropy methods that do not involve
numerical optimization directly are available. We used the “simplified path entropy method”
developed by Ang and Jowitt (2005) for the single-source network example (Section 4.1) and
an algorithm known as the “α-method” developed by Yassin-Kassab et al. (1999) for the
multiple-source network example (Section 4.2). Application of the α-method involves solving
a non-linear system of equations and, for a two-source network, it reduces to the solution of a
single nonlinear equation for which we used the bisection method (Press et al. 2003).

4 Results and Discussion

Two networks from the literature were considered. The Hazen-Williams roughness coefficient
for all pipes is 130. For each network, the optimization algorithm was executed 30 times on a
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(a)Network 1 

(b) Network 2

Fig. 1 Topologies of Networks 1 and 2 with all the candidate pipes
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desktop personal computer (Processor: Intel Core 2 Duo, CPU: 2.99 GHz, RAM: 3.21 GB).
The population size, cross-over probability and stopping criterion were: 100, 1.0 and 106

hydraulic simulations, respectively. The 100 solutions in each of the 30 nondominated sets
achieved were then merged. Out of the 30×100 i.e. 3,000 solutions the final set of 100
nondominated solutions was obtained by a screening procedure that considers the Pareto-
optimality and diversity (i.e. crowding distance) of the solutions in the objective space (as in
NSGA II). The convergence point in the optimization was taken as the point after which there

Table 1 Results and convergence statistics for 30 optimization runs

(a) Network 1

Properties Minimum Mean Median Maximum Standard deviation

GME entropy 3.380570 3.560733 3.561684 3.592494 0.041524

SME entropy 2.401622 2.489328 2.476941 2.660135 0.059723

GME cost (£106) 2.177413 2.787246 2.730261 3.552885 0.349057

SME cost (£106) 1.181715 1.293399 1.292801 1.496615 0.074389

Number of fully looped feasible solutions
(out of 100)

36 48.533 50 57 5.778

Number of partially looped and branched
feasible solutions per 100

0 6.2 5 13 3.219

Smallest surplus residual head for feasible
solutions (m)

0.007 0.629 0.464 2.691 0.654

Function evaluations (FEs) for convergence 314,700 733,413 806,050 979,200 208,529

Extinction of all fictitious pipes (FEs) 1,500 4,600 3,850 17,300 3,725

Extinction of 750 mm pipes (FEs) 500 2,050 1,650 8,500 1,594

Extinction of 700 mm pipes (FEs) 900 2,583 1,950 5,700 1,406

Extinction of 650 mm pipes (FEs) 900 4,003 2,600 17,300 3,885

Hypervolume 0.653 0.661 0.660 0.682 0.004

CPU time for convergence (minutes) 27.35 63.75 70.06 85.11 18.13

(b) Network 2

Properties Minimum Mean Median Maximum Standard deviation

GME entropy 4.476402 4.872415 4.895875 5.190007 0.185378

SME entropy 2.981072 3.140691 3.136344 3.306349 0.089291

GME cost (millions of CU) 5.626414 6.814409 6.843641 7.738914 0.561343

SME cost (millions of CU) 2.253554 2.549198 2.502468 2.925169 0.179179

Number of fully looped feasible solutions
(out of 100)

37 46.207 46 52 2.631

Number of partially looped and branched
feasible solutions per 100

2 8.586 9 14 3.275

Smallest surplus residual head for feasible
solutions (m)

0.002 0.082 0.058 0.335 0.083

Function evaluations (FEs) for convergence 552,000 905,224 949,800 997,500 106,861

Extinction of all fictitious pipes (FEs) 13,400 39,314 41,100 80,600 14,452

Extinction of 800 mm pipes (FEs) 5,400 25,914 24,600 78,200 16,222

Extinction of 750 mm pipes (FEs) 11,800 39,028 41,100 80,600 14,800

Hypervolume 0.642 0.645 0.645 0.648 0.002

CPU time for convergence (minutes) 69.10 113.32 118.90 124.87 13.38
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was no further improvement in both the entropy and cost for the feasible solution with the
highest entropy value.

Given a set of nondominated solutions, the hypervolume is a measure of the fraction of the
objective space dominated by the said solutions. Its value increases as the achieved solutions
approach the real Pareto-optimal front. The value increases also as the range of solutions in the
nondominated set increases or their distribution becomes more uniform. Larger hypervolume
values are thus preferred (Knowles 2005). The hypervolume was calculated after normalizing
the objectives according to Eq. 8, for each optimization run and the union of all the 30 runs.

4.1 Sample Network 1

The network shown in Fig. 1a (Awumah et al. 1990) has one supply node, 17 pipes and 11
demand nodes. The elevation of the nodes is 0 m. The head at the supply node is 100 m.Hi

req=
30 m for all demand nodes. All pipes have length of 1,000 m. Ri

req=2 specifies a fully looped
topology. We used 12 pipe diameters (100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550
and 600 mm) i.e. 1317=8.65×1018 solutions including pipe omission. Given 106 hydraulic
simulations the sampling ratio was 106/8.65×1018=8.65×10−12. Each solution was represent-
ed by a 68-bit chromosome based on a 4-bit pipe-size representation scheme. A 4-bit binary
string produces 24=16 codes three of which are redundant as there are 13 pipe-size alterna-
tives. We allocated three assumed pipe diameters of 650, 700 and 750 mm to the three
redundant codes. The pipe costs were taken as 800D1.5 (£/m) where D is the pipe diameter
(in metres). The absolute probability of bit mutation was 1/68≈0.015.

Table 1 shows the general characteristics of the optimization algorithm. The minimum cost
achieved for the global maximum entropy (GME) solution was £2,177,413. The maximum
value of entropy for the GME solutionwas 3.592494. Themean number of function evaluations
and CPU time required to achieve convergence were 733,413 and about 64 min, respectively.
There is a multiplicity of maximum entropy values and one of the aims of the optimization is to

Cost 

(£10
6
)

Layout and head infeasibility (10
2
) Entropy

Fig. 2 Pareto-optimal fronts for Network 1 showing 30 optimization runs
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provide a wide range of maximum entropy solutions. The maximum entropy value that is the
smallest gives rise to the smallestMaximum Entropy (SME) solution. Theminimum cost of the

Fig. 3 a Topologies and flow directions of fully looped hydraulically feasible maximum entropy families for
Network 1. The solid circles represent nodes with the smallest residual heads. b Topologies and flow directions of
branched and partially looped hydraulically feasible maximum entropy families for Network 1. The solid circles
represent nodes with the smallest residual heads. c Topologies of looped and partially looped feasible solutions
for Network 2. The rectangles represent sources. d Topologies of branched and partially branched feasible
solutions for Network 2. The rectangles represent sources
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SME solution was £1,181,715. The maximum value of entropy for the SME solution was
2.660135. The minimum surplus head at the critical node was 0.007 m. The optimization model
includes multiple conflicting objectives. Therefore, it is not guaranteed that any minimum node
pressure constraints will be active. Furthermore, the slack for a limitingminimum node pressure
constraint need not be exactly zero, due to the discrete pipe diameters.

Fig. 3 (continued)
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Figure 2 shows the frontier-optimal solutions achieved of which the most infeasible
solution has cost = 0; entropy = 0; topological infeasibility = 24 (i.e. 2 independent paths
per node × 12 nodes); and residual head infeasibility = 330 m (i.e. 11 demand nodes × 30 m of
residual head for each demand node). This solution survives until the end of the optimization
because the algorithm is bias-free with respect to constraint violations. Any crossover between
this solution and another solution will likely create new layouts. Also, the hypervolume value
for the final merged Pareto-optimal front was 0.676. This is similar to the values in Table 1 for
the individual optimization runs.

Fig. 3 (continued)

R2 = 0.976 (Network 1)

R2 = 0.978 (Network 2)
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Fig. 4 Achieved vs theoretical maximum entropy values of Networks 1 and 2

Optimal Design of Water Distribution Systems Based on Entropy



Tables 2 and 3 (in the appendix) illustrate the range of feasible solutions achieved. The final
Pareto-optimal set has 23 hydraulically feasible fully-looped solutions and 11 different fully
looped topologies (see Fig. 3a). All infeasible solutions in the final Pareto-optimal set were
found to be topologically infeasible (i.e. ∃i:Ri<Rireq=2), of which only three were hydrauli-
cally feasible (i.e. Hi≥Hi

req=30 m; ∀i) (see Fig. 3b). Fig. 4 provides further confirmation that
the solutions achieved are essentially maximum entropy solutions.

Figure 5 shows the progress of the optimization. The fictitious pipe diameters were
eliminated in the early stages consistently (Fig. 5b-c). Prior to their complete elimination,
fictitious pipe diameters were present in both hydraulically feasible and infeasible solutions.
Also, the observed rates of elimination reflected the pipe sizes and costs (Table 1 and Fig. 5c).
On average the larger more expensive assumed diameters were eliminated more quickly. These
results suggest convergence of the algorithm is very quick and the proposed procedure for
handling redundant binary strings is highly effective.

4.2 Sample Network 2

The network shown in Fig. 1b has two supply nodes, 18 demand nodes and 37 pipes. The
node demands, required residual heads, pipe lengths and costs are available in Morgan and
Goulter (1985). There are 13 pipe sizes, i.e. 1437=2.55×1042 solutions including pipe
omission. Given 106 hydraulic simulations the sampling ratio was 106/2.55×1042=3.92×
10−37. A 4-bit binary substring for each pipe size gave a chromosome with length of 148
bits. The absolute probability of bit mutation was 1/148. With 14 options for each pipe, two
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codes (out of 24=16) were redundant. Two fictitious pipe diameters of 750 mm and 800 mm, with
costs of 520.9/m and 591.7/m respectively, were allocated to the two redundant codes by extending
the cost function of the real pipe diameters. The costs are in generic currency units (CU).

Table 1 summarizes the results achieved. The final Pareto-optimal front had 31 feasible
solutions based on 26 layouts (Fig. 3c) that are fully non-dendritic (i.e. layouts with no dead
ends). Additionally, seven branched and partially-branched feasible solutions were achieved
(Fig. 3d). The cheapest fully-looped feasible solution (Layout 24 in Fig. 3c) with a cost of
2,374,070 CU (Solution 29 in Table 4) had 12 pipes removed. The most expensive fully-
looped feasible solution (Layout 2 in Fig. 3c) with a cost of 7,738,914 CU (Solution 4 in
Table 4) had one pipe removed. Figure 6 shows the relationship between the cost, entropy and
infeasibility.

5 Conclusions

A new approach to the simultaneous topology and reliability-based pipe-size optimization of
water distribution systems has been developed. The method provides a multiplicity of cost-
effective candidate solutions distributed among a diverse range of optimal topologies. We used
statistical entropy as a computationally efficient surrogate measure of the hydraulic reliability/
redundancy and reduced the computational complexity by introducing a new entropy-aug-
mented infeasibility measure. Our optimization model includes the following essential fea-
tures: (a) entropy maximization within individual feasible sets of flow directions; (b) entropy
maximization across all feasible sets of flow directions within individual topologies; (c)
entropy maximization across all topologies; (d) minimization of initial construction cost; (e)
promotion of a wide variety of alternative solutions; (f) satisfaction of minimum topological
adequacy (i.e. supply node and demand node reachability); (g) satisfaction of minimum
topological redundancy (i.e. alternative independent supply paths); and (h) adequacy of nodal
flows and pressures.

Clearly, many complex objectives and constraints are involved. The entropy-augmented
infeasibility measure introduced here simplifies the optimization and reduces the computa-
tional complexity considerably as the objectives have been reduced to only three (Saxena
et al. 2013; Deb et al. 2002). The optimization problem addressed has six objectives. Sinha
et al. (2013) emphasize that the computational solution of a six-objective optimization
problem is a ‘formidable task’ for most evolutionary multi-objective optimization algo-
rithms that aim to generate the entire Pareto-optimal front. Some of the challenges include:
difficulties in achieving at once both diversity of solutions and convergence on the true
Pareto-optimal front; and difficulties arising from the inability to visualize the Pareto-
optimal front geometrically.

The genetic algorithm approach proposed allows full exploitation of all the efficient feasible
and infeasible solutions generated in the optimization. Any redundant binary codes created are
eliminated in a seamless and generic way through natural selection. This avoids arbitrary loss
of potentially useful genetic material and preserves the quality of the information that is
transmitted from one generation to the next. The results for the two test problems considered
are sufficiently encouraging to suggest further research to improve and extend the algorithms
proposed may be beneficial.
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Appendix

Table 2 Nondominated feasible solutions achieved for Network 1

(a) Fully looped feasible solutions

Solution
number

Cost (£106) aSurplus
head (m)

bCritical
node

Achieved
entropy
(S)

Maximum
entropy
(ME)

ME − S GME − ME dME
family

1 2.52235 19.734 9 3.592494 3.592800c 0.000306 0.000000 1

2 1.592572 9.817 10 3.257305 3.330590 0.073285 0.262210 2

3 1.823409 2.083 11 3.439667 3.489588 0.049921 0.103213 3

4 2.756591 21.594 8 3.581014 3.581115 0.000101 0.011685 4

5 1.977641 11.642 6 3.545526 3.546760 0.001234 0.046041 5

6 3.138684 38.903 9 3.449581 3.449665 0.000084 0.143135 6

7 3.067751 38.729 9 3.449580 3.449665 0.000085 0.143135 6

8 2.930185 36.096 9 3.449268 3.449665 0.000397 0.143135 6

9 2.235305 8.626 9 3.448149 3.449665 0.001517 0.143135 6

10 1.871266 5.864 10 3.395190 3.398060 0.002870 0.194740 7

11 1.292923 1.350 2 2.850790 2.891747 0.040958 0.701053 8

12 1.271386 3.443 10 2.647933 2.723657 0.075724 0.869144 9

13 2.969728 33.350 2 3.265855 3.269803 0.003947 0.322998 10

14 1.173127 1.910 10 2.367236 2.469176 0.101940 1.123624 11

15 2.849506 35.237 3 2.940251 2.940255 0.000004 0.652545 12

16 2.839981 34.462 3 2.940250 2.940255 0.000005 0.652545 12

17 2.769049 34.041 3 2.940247 2.940255 0.000008 0.652545 12

18 2.729939 32.628 3 2.940223 2.940255 0.000033 0.652545 12

19 2.683465 32.394 3 2.940159 2.940255 0.000097 0.652545 12

20 2.605798 30.773 3 2.940102 2.940255 0.000154 0.652545 12

21 2.535235 23.781 3 2.939597 2.940255 0.000659 0.652545 12

22 1.529674 9.394 9 2.614232 2.624432 0.010200 0.968369 13

23 1.721305 6.330 10 2.419348 2.425825 0.006477 1.166975 14

(b) Branched or partially looped feasible solutions

Solution
number

Cost (£106) Surplus
head (m)

Critical
node

Achieved
entropy (S)

Maximum
entropy
(ME)

ME − S GME − ME ME
family

24 1.508359 18.840 8 2.447343 2.447345 0.000002 1.145456 15

25 1.075510 0.842 11 2.387568 2.404150 0.016582 1.188651 16

26 1.050212 0.503 11 2.360799 2.360799 0.000000 1.232002 17

a Refers to the excess residual head at the node with the smallest residual head
b Refers to the node with the smallest residual head
c The global (i.e. greatest) maximum entropy (GME) value found
d The maximum entropy family here refers to any subset of solutions whose topology and pipe flow directions are
identical
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