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Abstract: As an important feature in characterising video content, camera motion has 

been widely applied in various multimedia and computer vision applications. A novel 

method for fast and reliable estimation of camera motion from MPEG videos is 

proposed, using support vector machine (SVM) for estimation in a regression model 

trained on a synthesised sequence. Experiments conducted on real sequences show that 

the proposed method yields much improved results in estimating camera motions whilst 

the difficulty in selecting valid macroblocks and motion vectors is skipped.  
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1. Introduction 

Camera motion estimation plays crucial roles in many multimedia and computer vision 

applications. In Tan et al [1], camera motion is estimated from compressed MPEG 

videos and used for video annotation. In Skulimowski and Strumillo [2], camera motion 

parameters are employed to refine extracted depth/disparity metrics. In Ren et al [3], 

camera motion is estimated from MPEG videos for event based video indexing and 

retrieval. In Jiang et al [4], the extracted camera motion are applied in detecting 

combined video events such as closing up of players in sports videos. In Ren et al [5], 

camera motion is estimated as global motion by using phase correlation and then applied 

to compensate frame difference for the detection of film dirt in archive restoration 

applications. 

Since compressed-domain processing can avoid time-consuming fully decoding of 

the video, camera motion estimation from compressed videos is preferred [1, 3, 4, 6, 7]. 

Among these approaches, the classic work in [1] needs particular attention as it has 

successfully directly motivated several other approaches [3, 4, 6].  

In Tan et al [1], a six-parameter affine transformation is simplified to three 

parameters, a zooming factor f  and a 2-D shifts ),( yx pp . These parameters are 

estimated using the motion vectors extracted from macroblocks of p-frames in 

compressed MPEG videos. The reason here is that unlike b-frames which contain bi-

directional motion vectors thus need more complex processing in partially decoding of 

the videos, p-frames have only forward motion vectors and can be easily parsed.   

Due to unavailable motion vectors in intra-coded marcobocks and inaccurate motion 

vectors in texture-free areas, Tan’s approach suffers a fundamental problem in choosing 

reliable motion vectors for camera motion estimation where it suggests abandoning 
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macroblocks with zero motion vectors for improved accuracy. In practice, noisy motion 

vectors can be non-zero hence this problem can be generalised as how to remove outliers 

of motion vectors for robustness [3]. In Nikitidis et al [7], a stochastic model is 

established from noisy motion vector fields for camera motion estimation with the 

assistance of heuristic rules.  

To overcome the problem in selecting macroblocks and motion vectors, a novel 

approach is proposed to apply machine learning for motion estimation, where support 

vector regression is employed. To the best of our knowledge, this is the first attempt to 

apply support vector machines in this field, and the approach and promising results are 

presented in the next two sections.  

 

2. The Approach 

In many video compression standards, such as MPEG and H.26x, block-based motion 

estimation and compensation is widely applied. Accordingly, the motion vector and the 

motion compensated resident can be used to restore the original image blocks. Since 

motion estimation is of very high computational cost, how to make use of these extracted 

motion vectors from compressed video sequences becomes a research trend [10].  

Typically, the 6-parameter projective camera model is used as defined below [1, 3],  
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where 
1p  is the zoom factor ( 11 p  represents zoom in and 11 p  represents zoom out) 

and ),( ii yx  and ),( 11  ii yx  are the image coordinates of corresponding points in two 

consequent frames 
if  and 

1if , respectively. Parameters 
3p  and 

4p  denote camera shift, 
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and 
5p  and 

6p  refer to perspective distortion effects. Finally, 2p  represents rotation 

about the axis of the camera lens. 

In general, inter-frame camera motion is relatively small and contains minimal lens 

distortion effects [1, 18]. For simplicity, the distortion and the camera rotation are 

ignored, so that the model contains only shift and zooming. Accordingly, the model 

becomes by setting 02 p , 05 p  and 06 p . 
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Actually, the simplified model has been successfully for content-based video 

annotation, indexing and retrieval [1, 3, 4, 6, 14, 18], where different videos such as 

sports, news, movies, surveillance and home generated videos are used. In most videos, 

rotation of the camera is rare, especially for surveillance, news and home generated 

videos. To this end, the simplification of the model is a reasonable practice in this 

context. 

In Tan et al [1], corresponding pair of points are obtained automatically by checking 

the two macroblocks in 
if  and 

1if , where the two blocks are connected by the motion 

vectors extracted in P-frames of compressed MPEG video. Finally, 
1p  is determined 

below, where N  refers to the number of inter-coded macroblocks:  
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Since the above solution suffers from false alarms caused by object motion and 

unreliable / non-exist motion vectors, selection of suitable motion vectors connected 

macroblocks to be used in (4) and (5) is required. For different videos, this seems quite 

arbitrary as different strategies need to be applied [11, 12]. 

The initial motivation to apply the SVM for camera motion estimation is to 

overcome the difficulty in selecting such suitable macroblock pairs. As a result, all 

macroblocks are used in training the SVM model. For those macroblocks without valid 

motion vectors, we simply assign the average motion vector over all available ones to 

them. To achieve this, firstly we extract motion vectors from all other macroblocks and 

calculate their mean as ),( yx vv . Then, ),( yx vv  is assigned as the motion vector for all the 

invalid motion vectors mentioned above.  

For a given input vector x , the output of the SVM is determined as follows [21], 

bfSVM  )()( T
xwx       (6) 

where the two parameters w and b respectively refer to a weight vector and a bias that 

can be determined in the training process through minimizing a given cost function, and 

)(  is a linear or nonlinear mapping to map the input vector x  into a higher dimensional 

space for easily separated by a linear hyperplane. 

A training sample ),( ii yx is a support vector if it satisfies 1)( iSVMi fy x , where iy  is 

the designed output. If we denote ks  as extracted support vectors, ],1[ Mk  , the SVM 

function can be re-written as  
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where ),( K  is a kernel function to represent the effect of the mapping )(  in 

prediction, including both classification or regression.  

Three commonly used kernel functions are summarized as follows, which include 

linear and two nonlinear functions. If the training samples are non-separable in linear 

cases, non-linear kernels like polynomial and Gaussian RBF functions are preferred. In 

addition, the associated parameters in the kernel functions, such as p  and  , can be 

determined in the training process.   
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With the finally extracted motion vectors, for each of the three parameters in (3), i.e. 

yx ppf ,, , a regression model is learnt by using the SVM on a manually synthesised 

sequence generated by Maya with known camera parameters (as shown in Fig. 1). The 

generated video is converted to MPEG-1 format for training, where the macroblock size 

is 16*16 pixels. Motion vectors which were estimated using block-matching as defined 

in MPEG are then directly extracted from these macroblocks and used in learning the 

regression model.  

Using 2-fold cross validation, the optimal parameters for SVM are determined via a 

grid search, as suggested by many other researchers [22, 23]. Usually, the SVM is trained 

with various combinations of parameter values, and the one which generates the best 

training results is selected as the best. For the generated ground truth, both polynomial 

kernel and Gaussian kernel are respectively employed for training. Not surprisingly, the 

Gaussian kernel produces more accurate training results as it is preferred in many 

applications [21-23]. However, the testing results using polynomial kernel for cross 
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validation seem much better, which indicates that Gaussian kernel causes severe over-

fitting of the problem.  

To avoid over-fitting, the polynomial kernel rather than the Gaussian kernel is 

adopted in our experiments, using the platform of libSVM [8] for implementation. The 

motion vectors are normalised into [-1,1] before they are inputted to SVM as features for 

prediction. For the training sequence, we then compare the mean squared error (MSE) of 

estimated camera motion vectors against known ground truth over all frames. The MSE 

for yx ppf ,,  is found as 0.032, 0.081 and 0.083, which shows a very high performance 

in training. Finally, the learnt regression models are applied on real sequences to valid 

the efficacy of the proposed approach.  

 

3. Experimental Results 

In our experiments, in total eight test sequences are used as summarised in Table 1.  Four 

MPEG-1 sequences, Movie11, Movie3, River and Under the Sea of frame size 352*288, 

and four MPEG-2 video clips of frame size 720*576 and 720*480 are employed for 

performance validation. The MPEG-1 videos are from [9], which have all three camera 

motions, i.e. pan, tilt and zooming. Two MPEG-2 video clips are from youTube, which 

are for the football game between two teams, the Real Madrid and AC Milan, on Aug. 8, 

2012, in which large object motions and fast camera movement are contained.  In other 

two MPEG-2 sequences, one is from a surveillance camera in an airport and the other is 

cycling video. These test videos are selected to cover a wide range of video contents. 

This is not only reflected in the change of spatial resolutions, but also change of contents 

in various aspects. For example, we choose videos of single or multiple objects, 

indoor/outdoor scenes, home captured/professional videos, slow/fast movement as well 

as changes of illumination. Corresponding results are given as follows. 
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With the SVM models learnt from the synthesised sequence, we apply these models 

to estimate camera motions from the test sequences, where again motion vectors are 

extracted as input features of the SVMs. It is worth noting that the training is carried out 

on the simulated sequence, i.e. independent on any testing sequence. Consequently, the 

test results will inevitably prove the effectiveness of the proposed approach. 

Since there is no ground truth information for these test sequences, motion 

compensated frame difference is calculated for performance evaluation. Let yx ppf ,,  be 

the estimated camera motion of two frames mI  and 1mI , motion-compensated difference 

is given by  
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Accordingly, the average frame difference over all frames,  , and the standard 

derivation  , are obtained below, where M  is the number of frame pairs.  
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For the eight test sequences, the average frame differences   and the standard 

derivations   are obtained and compared in Table 2, where the classic approach from 

Tan et al [1] and the more recent work in [6] are used for benchmarking. The running 

time of the two approaches are also shown in Table 2 for comparisons.  

As can be seen, in general our approach yields the best performance among all three 

methods in terms of the sum of average frame differences  . In fact, our results are 

consistently better than Tan’s approach, also it slightly outperforms Weng’s approach. 

Regarding the standard derivation  , the results from the three approaches are quite 
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comparable, though our approach generates slightly less sum of standard derivation as 

summarized in Table 2. Detailed comparisons over four sequences are also illustrated in 

Fig. 2 and Fig. 3, respectively. 

Regarding running time, the performance of the three approaches are quite 

comparable and all satisfy real-time requirements, though Weng’s approach seems more 

efficient, followed by ours and Tan’s approach. This is because the majority efforts in 

common are used to extract motion vectors from compressed videos, yet estimation of 

camera motion itself requires much less computational power. However, in at least two 

sequences when there are complex (object) motions, Movie3 and Airport, Weng’s 

approach generates the worst results. This has demonstrated that Weng’s approach fails 

to deal with such complex cases, although the running time is reduced. 

It is worth noting that in all the three approaches, ours and those in [1] and [6], as a 

standard procedure, no object detection is required. As a result, object motion may affect 

the estimated results as the extracted motion vectors become unreliable or inaccurate, 

especially when the object is too large [19, 24]. In this case, the basic assumption that the 

camera motion will be the dominant one in the frame will become invalid. One possible 

solution is to remove the outliers of motion vectors that do not fit well with the global 

motion model and re-estimate the camera motion model in an iterative process [24]. 

However, if the object is too large and persists for a certain period, the accuracy of 

estimation will be still questionable.  

To illustrate how object motion affects the accuracy of camera motion estimation, 

Fig. 4 gives the motion compensated residual images for the Movie11 sequence, using 

the results from our approach. If we compare the original frame image in Fig. 2 with the 

residual image in Fig. 4, we can clearly find that these residuals are mainly caused by 

object motion. Therefore, detection of objects for improved estimation of camera motion 
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can be a possible solution, although it needs fully decoding the video thus the overall 

efficiency may be degraded. On the other hand, compressed domain processing has 

provided a reasonable comprise in this context.  

 

4. Conclusions 

A novel machine learning based approach is presented for camera motion estimation 

from compressed MPEG videos, using support vector regression with extracted motion 

vectors as feature of input. When the support machine models is learnt from synthesised 

sequence, the test results on real sequences produce much improved performance in 

terms of motion compensated frame difference. Since selection of valid macroblocks and 

motion vectors is skipped, our proposed approach provides a more feasible solution in 

this context. 
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           Table 1. Sample frames of the 8 test sequences 

    

Movie11 River Movie3 Under the sea 

Single object 
slow motion 

Fast camera motion, 
outdoor 

Multi-object, home-
video, indoor 

Natural outdoor scene 
multi-object 

    

Airport Cycling Football-1 Football-2 
Multi-object 

indoor 
Multi-object, fast 
outdoor motion 

Multi-object, slow 
motion, sports 

Multi-object, slow 
motion, sports 
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Table 2: Performance comparison of our method and those in [1] and [6].  

Sequences 
Frame pairs  

and (size) 

  ( )  Running time (s) 

Tan [1] Weng [6] Ours Tan [1] Weng [6] Ours 

Movie11 88 (352x288) 14.00(2.163) 13.22(2.160) 12.15(2.161) 0.55 0.51 1.14 

Movie3 176 (352x288) 25.93 (0.705) 26.04 (0.688) 20.38 (0.643) 1.41 1.38 1.42 

River 205 (352x288) 15.30 (0.552) 15.09 (0.551) 14.87 (0.527) 1.52 1.29 1.54 

Under the sea 383 (352x288) 5.64(0.971) 5.41(0.971) 5.36(0.975) 2.98 2.17 2.34 

Airport 212 (720x576) 10.70(0.536) 11.66(0.540) 11.23(0.541) 8.95 4.26 4.33 

Cycling 41 (720x480) 37.64 (1.307) 35.25 (1.329) 34.53 (1.287) 1.14 0.98 1.65 

Football clip 1 201 (720x576) 10.77 (0.160) 10.23 (0.139) 9.39 (0.149) 1.69 1.50 1.57 

Football clip 2 315 (720x576) 13.49 (0.165) 12.79 (0.141) 12.16 (0.167)  2.20 1.96 2.10 

Sum 1621 133.47 (6.559) 129.69 (6.519) 120.07 (6.450) 20.44 14.05 16.09 
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List of Figure Captions: 

 

Fig.1. Virtual Scene constructed by Maya. 

 

Fig. 2. Comparisons of motion compensated frame difference of the Movie11 sequence 

using Tan’s approach [1], Weng’s approach [6] and ours. 

 

Fig. 3. Comparisons of motion compensated frame difference of the Movie3 sequences 

using Tan’s approach [1], Weng’s approach [6] and ours. 

 

 

Fig. 4. Comparisons on two football sequences of higher resolution and large object 

motions. 

 

Fig. 5. Examples of residual images after motion compensation from Movie11 sequences 
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Fig.1. Virtual Scene constructed by Maya 
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           frame #1                               frame #22                                 frame #44                                pair #66                           pair #88 

 

Fig. 2. Comparisons of motion compensated frame difference of the Movie11 sequence 

using Tan’s approach [1], Weng’s approach [6] and ours. 
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frame #1                       frame #35                       frame #70                          frame #105                       frame #140                      frame #175 

Fig. 3. Comparisons of motion compensated frame difference of the Movie3 sequence 

using Tan’s approach [1], Weng’s approach [6] and ours. 
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Fig. 4. Comparisons on two football sequences of higher resolution and large object 

motions. 
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 Frame pair #1 Frame pair #22 Frame pair #44 Frame pair #66 Frame pair #88 

Residual 

image  

     

Ourse  12.7756 22.5303 11.2387 3.95588 8.81223 

Fig. 5. Examples of residual image after motion compensation using our approach 

from the Movie11 sequence 

 

 
 


