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Abstract—Existing works on multivariate distributions mainly focus on limited distribution functions and require that the associated 

marginal distributions belong to the same family. Although this simplifies problems, it may fail to deal with practical cases when the 

marginal distributions are arbitrary.  To this end, copula function is employed since it provides a flexible way in decoupling the marginal 

distributions and dependence structure for random variables. Among different copula functions, most researches focus on Gaussian, 

Student’s t and Archimedean copulas for simplicity. In this paper, to extend bivariate copula families, we have constructed new bivariate 

copulas for exponential, Weibull and Rician distributions. We have proved that the three copula functions of exponential, Rayleigh and 

Weibull distributions are equivalent, constrained by only one parameter, thus greatly facilitating practical applications of them. We have 

also proved that the copula function of log-normal distribution is equivalent to the Gaussian copula. Moreover, we have derived the 

Rician copula with two parameters.  In addition, the modified Bessel function or incomplete Gamma function with double integrals in the 

copula functions are simplified by single integral or infinite series for computational efficiency. Associated copula density functions for 

exponential, Rayleigh, Weibull, log-normal, Nakagami-m and Rician distributions are also derived. 
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1. INTRODUCTION 

In general, the marginal distribution functions can be derived through straightforward integration from a known multivariate joint 

distribution function. However, conversely, a unique joint distribution is not readily available from the marginal distributions. 

Although many multivariate distribution functions have been defined, in most cases the marginal distributions are assumed to be 

within the same family such as multivariate Gaussian distribution. In practical situations, this assumption does not always hold true, 

as practically the marginal distributions can be arbitrary and may belong to different families of probability distributions. For 

example, the probability distributions of pixel intensities for infrared image and visible images of the same objective are usually 

different. Consequently, some popular multivariate distributions such as the multivariate Gaussian distribution may not be the ideal 

choice in modeling real problems since it can only capture the linear dependence between random variables. 

Copula functions, however, make it possible to capture more sophisticated non-linear dependencies between random variable [1], 

[2]. Copulas have provided great potential in statistics and probability theory and have been successfully applied in many 

applications covering finance [3], signal processing [4]-[17], and communications [18]-[19]. Let FXY(x, y) be a joint cumulative 

distribution function (cdf) with two marginal cdfs FX(x) and FY(y) of two random variables x and y, respectively. According to the 

Sklar’s theorem [1], there exists a copula function C(.) for any x and y such that  

 

( , ) ( ( ), ( ))XY X YF x y C F x F y                (1) 

 

If FX(x) and FY(y) are continuous, the copula function C(.) is unique [1, eq. 2.3.1]. A bivariate copula is a bivariate 

cumulative distribution function defined on the unit cube with two uniform marginal distributions on the interval [0, 1]. 

Let u=FX(x) and v=FY(y), the copula function C (u, v) is defined as [1]:  

 

                                                           
1 1( , ) ( , ) [ ( ), ( )]XY XY X YC u v F x y F F u F v                                  (2) 

 

Note that FX() and FY() are increasing but may not be strictly increasing, 1

XF  () and 1

YF  () are quasi-inverse functions of FX() and 

FY(), respectively. If FX() and FY() are strictly increasing, the case certainly becomes the ordinary inverse. Detailed definition of 

Quasi-inverse function is given in [1, Sec. 2.3]. Due to the non-uniqueness of the definition of the associated inverse of the 

cdf for the case of discrete-valued random variables, the corresponding copula also becomes non-unique. As a result, in 

the remainder of this paper only continuous valued random variables are focused. 

A bivariate copula has the following properties [1, Sec. (2.2)]:  
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1) For any u, v   [0, 1],  C(u,0) = C(0,v) = 0, C(u,1) = u and C(1,v) = v                                                (3) 

2) For any u1, u2, v1, v2  [0, 1], and u1 ≤ u2, v1 ≤ v2, C(.) satisfy C(u2, v2)-C(u2, v1)≥C(u1, v2)-C(u1, v1)                 (4) 

 

Eq. (3) means that the joint probability is zero if any marginal probability is 0, and if one marginal probability is 1, the joint 

probability is the same as the probability of another marginal probability. Eq. (4) is called 2-increasing property of copula functions 

[1, Sec. 2.9].  

A significant advantage of the copula is that copula functions represent dependence structure without using marginal 

distributions. Actually, its variables u and v are both uniformly distributed, thus it is straight forward to transform u and v into the 

marginal variables x and y by the inverse marginal cdf, respectively [1, Sec. 2.9]. This characteristic implies that the marginal 

distributions can be arbitrary when a suitable dependence structure (copula) is given. Moreover, let ( , )XYf x y  represent a joint 

probability density function (pdf) for random variables x and y, and ( , )c u v  represent copula density function, according to the 

definition of copula density function, the joint pdf can be obtained as [3, Sec. 4.5] 

 
22 [ ( ), ( )] ( , )( , )

( , ) =
( ) ( ) ( ) ( )

X Y XY

X Y X Y

C F x F y f x yC u v
c u v

u v F x F y f x f y


 

   
               (5) 

 

where ( )Xf x  and ( )Yf y  represent the marginal pdfs of x and y, respectively. This means that the joint pdf can be expressed as the 

product of a copula density function and arbitrary marginal pdfs if a suitable copula is adopted. 

The copulas that are most frequently applied are Gaussian copula [1, eq. 2.3.6], Student’s t copula [3, Sec. 4.8.2] and four 

Archimedean copula [1, Ch4] including Clayton [3, Sec. 4.8.4], Frank [3, Sec. 4.8.4], Gumbel [2, Sec. 4.8.4] and Ali–Mikhail–Haq 

copulas [1, Sec. 3.3.2]. In [8], [9] and [10], Gaussian copula is considered for supervised classification of synthetic aperture radar 

(SAR) images, validating  biometric authentication and modeling stochastic dependence in large-scale integration of wind power 

respectively. Gaussian and Student’s t copulas are used in [11] and [12] for unsupervised classification of radar signals and fusion of 

correlated sensor decisions. In [13], four Archimedean copulas, Clayton, Frank, Gumbel and Ali-Mikhali-Haq, are applied for 

change detection in remote sensing applications. Clayton, Frank, Gumbel, Gaussian and Student’s t copulas are used [14] and [15] 

for location estimation of random signal source and hypothesis testing using heterogeneous data, respectively. In [16], the four 

Archimedean copulas along with Gaussian and Student’s t copulas are employed for supervised SAR image classification.  In [17], 

Rayleigh copula is used for change detection from SAR images. 

Note that a copula function represents a specific dependence structure, thus choosing a suitable copula is always crucial for 

practical applications. Obviously, existing copulas used above are inappropriate to deal with real and complex cases, such as 

exponential, Rayleigh, Weibull, Nakagami-m and Rician distributions. As a result, there is a strong need to explore new copula 
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families, which has motivated our work in this paper to derive and construct  new copulas from existing bivariate distributions 

including exponential, Rayleigh, Weibull, log-normal, Nakagami-m and Rician as these have been widely used in modeling signal 

processing, communication and other stochastic problems [20]-[25]. Note that copulas of Rayleigh, log-normal and Nakagami-m 

distributions have been discussed in [4]-[6]. The Rayleigh copula function has been firstly presented with 3 parameters [4], and the 

number of parameter was then reduced to 1 [5], where its applications can be found in [17] for change detection in SAR images. In 

this paper, a new form of Rayleigh copula defined by a single parameter is derived. The log-normal copula was firstly given in [5], 

where in this paper, the log-normal copula is proved to be equivalent to Gaussian copula [1, eq. (2.3.6)].  The detail status about the 

current studies on bivariate copulas is summarized in Table 1. 

As can be seen, there are many N/A cells in the table which indicates new areas to be explored. Basically, we will focus on these 

unexplored parts, which inevitably form the novelty and main contributions of the paper as highlighted below. Firstly, new copulas 

families are proposed for exponential, Weibull and Rician distributions as well as a new expression for Rayleigh copula function. 

Secondly, the relationships among these copulas are revealed to discover the equivalence of log-normal to Gaussian and exponential 

to Rayleigh and Weibull. Thirdly, the copula density functions for all the six copula functions discussed above are derived. 

 

2. BIVARIATE COPULA FUNCTIONS 

Several methods for constructing a copula function have been summarized in [2, Sec. 1.14]. Here, we will adopt the inversion 

method to derive some new copula functions [2, Sec. 1.14.5]. 

2.1 Bivariate Gaussian Copula 

The Gaussian copula is perhaps the most popular copula in applications [2].  The bivariate Gaussian copula is defined by two 

standard Gaussian distributions, and written as: [1, Sec. 2.3], [3, Sec. 4.8.1]: 

 

dsdt
tsts

vuvuC

u v

 

 

















)( )(

2

22

2

11

1 1

]
)1(2

2
exp[

12

1
))(),((),(







           (6) 

 

where ]1,1[  is the only Gaussian copula parameter,  (.) denotes the cdf of standard univariate Gaussian distribution and 

 (.) denotes the standard bivariate Gaussian distribution function. The standard Gaussian cdf can be written as    

21
( ) exp( )

22

z t
z dt

 


    and 1 1( ) 2 (2 1)u erf u    . Here erf(.) function is called error function, which is defined as 

2

0

2
( ) exp( )

x

erf x t dt


  . 

Actually, according the theorem 2.4.3 in [1], we can prove that the Gaussian copula can be defined by two generalized 

(non-standard) Gaussian distributions as follows.  The theorem 2.4.3 in [1] can be described as: Let X and Y be continuous random 
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variables with copula CXY. If X  and 
Y  are strictly increasing on RanX and RanY, respectively, then 

X Y XYC C   . Thus 
XYC  is 

invariant under strictly increasing transformations of X and Y  [1, Sec. 2.4]. 

Let FX and FY denote the standard Gaussian distribution functions of X and Y. Transforming X and Y to X   and Y  respectively 

as follow: 
X X XX     and 

Y Y YY     respectively, where 
X and 

Y are expected values, 
X and 

Y are standard 

derivations of X  and Y  respectively,  and then the standard Gaussian distribution becomes generalized Gaussian distribution. 

Note that 
X  and 

Y  are strictly increasing on RanX and RanY respectively, and therefore we can determine that the copula 

defined by two generalized normal distribution is consistent with the copula defined by two standard normal distribution. 

2.2 Bivariate Log-normal Copula 

Log-normal distributions are usually used to model the slow fading channel for communication systems [24]. Let two 

log-normal
 
pdfs of x and y be 2log( )1 1

( ) exp( ( ) )
22

X
X

XX

x
f x

x






   and 2log( )1 1

( ) exp( ( ) )
22

Y
Y

YY

y
f y

y






  , respectively. Note 

that both log(x) and log(y) have a normal distribution, where μX and μY are the corresponding mathematical expectations and σX and 

σY the corresponding standard deviations of the two random variables of log(x) and log(y), respectively.  Let FX and FY denote the 

standard Gaussian distribution functions of X and Y, we can respectively transform X to X   and Y to Y   using  

exp( )X X XX     and exp( )Y Y YY    , thus both X  and Y  satisfy a log-normal distribution. Note that X and Y are 

strictly increasing on RanX and RanY, respectively, thus the log-normal copula is consistent with the Gaussian copula. The 

log-normal copula, with four more parameters A, B, m, n used, was firstly derived in [5], but the author did not point out this 

equivalence. This does not affect the final definition of log-normal copula function, as we can simply transform X and Y as follows: 

log( / ) X
X

X

X A m

m







  and 

log( / ) Y
Y

Y

Y B n

n







 . Note that 

X  and 
Y  are strictly increasing on RanX and RanY respectively, 

and thus the definition of log-normal is invariant. 

2.3 Bivariate Weibull/Rayleigh/Exponential Copula 

The Weibull distribution is usually used for modeling channel fading of communications [22] and wind speed in power systems 

[26]. Let the two  Weibull pdfs be 1( ) exp( )
X

XX
X

X X

x
f x x


  

 
 and 1( ) exp( )

Y

YY
Y

Y Y

y
f y y


  

 
, respectively, where 0X   , 

0Y  , ( )X

x E x   and ( )Y

Y E y  , and (.)E  denotes the operator of mathematical expectation. Then, the associated marginal 

cdfs become  ( ) 1 exp( )
X

X

X

x
F x



  


 and ( ) 1 exp( )
Y

Y

Y

y
F y



  


. Thus, the corresponding bivariate Weibull density function is 

obtained as [22]: 
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1 1 2 2

0

21
( , ) exp[ ( )] ( )

(1 ) (1 ) (1 )

X Y

X Y X Y

X Y
XY

X Y X Y X Y

x yx y x y
f x y I

 

     

  

  
 

        
              (7) 

 

where 0 1   denotes the power correlation coefficient. The modified Bessel functions of the first kind with n
th

 order are defined 

as [27, Eq. 9.6.10]: 

 
2

0

( / 2)
( ) ( )

2 ! ( 1)

n
n

n

k

z z
I z

k n k






  

                                                         (8) 

 

where (.) is the Gamma function [27, eq. 6.1.1 and 6.1.6].Note that the inverse marginal cdfs are obtained as 

1

1( ) [ ln(1 )] X

X Xx F u u      and

1

1( ) [ ln(1 )] Y

Y Yy F v v     .  

As a result, the Weibull copula can be rewritten as: 

 
1 2 1 1

1 2 0 1 2

0 0

( , ) exp[ ( )] (2 )
'

X Y
b b

X Y

X Y

x y
C u v z z I z z dxdy

  




 

  
  

            (9) 

 

where we have )1ln(1 ub X   and )1ln(2 vb Y  ; ],0[)'( 1

1

1 wxz X

X    where '/)1log(1 uw   , and 

],0[)'( 2

1

2 wyz Y

Y     where '/)1log(2 vw   and  1' . 

Since the associated Jacobean determinant is determined as 
1 2

1 2

/ /

/ /

x z x z

y z y z

   

   
=

2

1 1

(1 )
X Y

X Y

X Y x y 



   

  
. Consequently, (9) can be re-written 

as: 

 

  
1 2

0 0

2121021 )2()exp('),(

a a

zdzzzIzzvuC          (10) 

 

where we have '/)1ln(1 ua    and '/)1ln(2 va  .  Consequently, we can find that ρ is the only parameter for Weibull 

copula. 

Next, we will discuss the case of exponential copula. Consider as an example, a single-server queuing system, as a common 

assumption, the inter-arrival time and the service time satisfy an exponential distribution. Downton’s bivariate exponential 

distribution is a suitable choice for the queuing system with infinitely servers [2, Sec. 5.14].   

Let two marginal exponential probability density functions be ( ) exp( )Xf x x    and ( ) exp( )Yf y y   , where x ≥ 0, y ≥ 0, 

λ ≥ 0 and μ ≥ 0. The expectations of x and y can be decided as 1/λ and 1/μ, respectively. Thus, their two marginal cdfs can be 

determined as ( ) 1 exp( )XF x x    and ( ) 1 exp( )YF y y   , respectively. Finally, the associated Downton’s bivariate exponential 

distribution has a pdf as [2, Eq. 5.5.7] 
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0

2
( , ) exp( ) ( )

1 1 1 1
XY

x y
f x y I xy

  


   
  

   
         (11) 

 

where ρ is the correlation coefficient of x and y satisfying 0 1  , and I0 (.) is the  modified Bessel function of the first kind with 

0
th

 order.  Clearly, x and y are independent only if ρ=0. 

     From Eq. (10), we have found that ρ is the only parameter for Weibull copula. This implies that we can define the Weibull copula 

by two Weibull distributions with arbitrary parameters 
X and 

Y respectively. As a matter of fact, the Weibull distribution 

becomes exponential distribution when 1X  and 1Y  , while this will not affect the final definition of Weibull copula. 

Therefore, we can determine that the exponential copula equals to the Weibull copula.  

    Next, we will discuss the Rayleigh copula function. The Rayleigh distribution is frequently used in communication domain to 

model the received signal amplitudes in urban and suburban areas [23]. Let two marginal Rayleigh density functions be 

22
( ) exp( )X

X X

x x
f x  

 
 and

22
( ) exp( )Y

Y Y

y y
f y  

 
, where 0, 0x y  . The associated two marginal cdfs are 

2

( ) 1 exp( )X

X

x
F x   


 

and 
2

( ) 1 exp( )Y

Y

y
F y   


, where 2( )x E x   and 2( )Y E y  , and (.)E denotes the operator of mathematical expectation.  The 

corresponding bivariate Rayleigh density function can be derived as [25, Eq. 6.2]: 

 

)
'

2
()](

'

1
exp[

'

4
),( 0

22

YXYXYX

XY

xy
I

yxxy
yxf















           (12) 

 

where 0 1   is the power correlation coefficient of x and y. 

We have proven that ρ is the only parameter for Weibull copula in Eq. (10), and therefore we can define the Weibull copula by 

two Weibull distribution with arbitrary parameters 
X and 

Y respectively. We can simply let 2X  and 2Y  , then the Weibull 

distribution becomes Rayleigh distribution, and this will not change the final definition of Weibull copula. Consequently, we can 

determine that the Rayleigh copula equals to the Weibull copula as well. 

To compute the bivariate Weibull/exponential/Rayleigh copula, the following formula can be used to reduce the double integral 

to a single integral [28]: 

 

( )

0
0 0

(1 ) (2 ) (1 ) ( , ) ( , )
x y

s t y y y y x xe I st dsdt e e K y x e K y x                        (13) 

 

where ρ ≥0 and 


x
sy dssyIeeyxK

0
0 )2(),( . 

After algebraic manipulation, (10) can be replaced by the following formula that only includes a single integral for simplicity: 
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         (14) 

 

As 0

0

( , ) (2 )

x

y sK x y e e I sy ds   . K(x,y) can also be expressed by Marcum’s Q function as follows [29]:   

 
2 2

1 2
1( , ) ( ) ( )

x a

M

M M

b

x
Q a b x e I ax dx

a

 




              (15) 

 

Let Q1(a,b) denote the special case of Marcum’s Q function with M =1 and 

2 2

2
1 0( , ) ( )

x a

b

Q a b xe I ax dx

 


  , we have  

 

22

10
0

2/)( /)],/(1[)(
2

2

22

pebppaQdxaxIxe p

a
b

px


   (16) 

 

After algebraic manipulation, we can derive the relationship between K(x,y) and Q1(x,y) as 1( , ) 1 ( 2 , 2 )K x y Q y x  . As a result, 

Eq. (10) and (14) can be rewritten as [5, Eq. (4)]: 

 

)2,2(

)1)(1()1(1),(

2113

33

aaQa

auavvuC




          (17) 

 

Apparently, this has validated that Eq. (14) is a new representation of bivariate Rayleigh copula that only requires a single integral. 

The computation results of bivariate Weibull/Rayleigh/Exponential copula with the parameter ρ= 0.3 and  ρ= 0.8 are shown in 

Fig. 1(a) and Fig. 1(c), respectively,  and their contour plots are shown in Fig. 1(b) and Fig. 1(d) respectively, which have validated 

the properties of the copula as defined in Eq. (3) and Eq. (4). In the plots of generated contours, we can clearly find that the isolines 

have the following characteristics. Firstly, on each separate isoline, its curvature increases when the difference between u and v 

decreases, which reaches the maximum when u=v. Secondly, the isolines have lower curvaturess when (u+v) is large but higher 

curvaturess when (u+v) is small. Thirdly, when ρ increases from 0 to 1, the maximum curvature achieved in each isoline increases, 

though the remaining part of isolines becomes flatter than those of a smaller ρ. In an extreme case when ρ=0, perfectly parallel 

straight lines with the slope of -45 degrees will be produced in the contour plot. Moreover, the perpendicular lines with corners lying 

on the diagonal will appear when ρ=1. 

2.4 Bivariate Nakagami-m Copula 

Nakagami-m distribution is frequently used to model fading in wireless environment [23].  Considering two marginal 

Nakagami-m pdfs of random variables x and y as 
2 1 22

( ) exp( )
( )

m m

X m

X X

m x mx
f x

m



 
  

 and 
2 1 22

( ) exp( )
( )

m m

Y m

Y Y

m y my
f y

m



 
  

, respectively, 
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where x>0 and y>0. The marginal cdfs can be determined as 
2

( ) ( , )X

X

mx
F x P m


 and 

2

( ) ( , )Y

Y

my
F y P m


, where P(.) is the regulated 

lower incomplete Gamma function being  defined as  1

0

( , ) 1
( , ) exp( )

( ) ( )

z

aa z
P a z t t dt

a a

   
   [27, eq. (6.5.1)], and  (.) is the lower 

incomplete Gamma function defined as 1

0

( , ) exp( )

z

aa z t t dt   [27, eq. (6.5.2)]. The associated joint pdf can then be derived as [6]: 

 

)2()exp(
))((

)()1(4
),( 211211

1

zzIzz
m

mxym
yxf mm

YX

m

XY 











         (18) 

 

where 0 1   is the power correlation coefficient of x and y,  1' , 

X

mx
z




'

2

1


 and 

Y

my
z




'

2

2


. The copula function of the 

bivariate Nakagami-m distribution has been defined with two parameters ρ and m as [6]: 

 
1 1

0

(1 ) ( ) ( , ) ( , )
( , ) [ ] [ , ] [ , ]

( ) 2 ! 1 1

m k

k

m k P m u P m v
C u v P m k P m k

m k

 

 

 



  
  

  
       (19) 

 

The computation results of bivariate Nakagami-m copula with the parameter ρ= 0.3; m = 2, ρ= 0.8; m = 2 and ρ= 0.8; m = 5 are 

shown in Fig. 2 (a), Fig. 2 (c) and Fig. 2(e) respectively, and their contour plots are shown in Fig. 2. (b), Fig. 2(d) and Fig. 2(f) 

respectively, which have validated the properties of the copula defined in Eq. (3) and Eq. (4). Overall, the generated isolines have 

similar characteristics as those in the results of bivariate Weibull/Rayleigh/Exponential copula functions: the curvature decrease 

when u+v increases and reaches the extreme when u=v; When ρ increases, the maximum curvature achieved also increases. Again if 

the parameter ρ is set to 0, perfectly parallel straight lines with the slope of -45 degrees will be shown in the contour plot. If the 

parameter ρ is set to 1, the perpendicular lines with corners lying on the diagonal will be generated. In addition, the contours seem 

insensitive to the parameter m when its value is changed from 2 to 5. 

2.5 Bivariate Rician Copula 

Rician distribution is widely used to model the amplitude fluctuations of received signals from different multipath fading [23]. 

Considering two marginal Rician pdfs of random variables x and y as 
2 2

02 2 2
( ) exp( ) ( )

2
X

x x a ax
f x I

  


   and 

2 2

02 2 2
( ) exp( ) ( )

2
Y

y y a ay
f y I

  


  , respectively, where x≥0 and y≥0, and a is the non-centrality parameter. When a =0, the Rician 

distribution degrades to the Rayleigh distribution. The marginal cdfs of x and y are 1( ) 1 ( , )X

a x
F x Q

 
   and 

1( ) 1 ( , )Y

a y
F y Q

 
  , respectively [30, Eq. (2.18)], and the associated bivariate Rician pdf is given in [30], [31] as  
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where 0 1   is the correlation coefficient of x and y  and ɛ is the Neumann factor defined as 
1 0

2 0
m

m

m



 


 [30]. The 

associated bivariate Rican copula can be written as:     
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      (21) 

 

where )1,/(1

10 uaQx     and )1,/(1

10 vaQy    . 

Let 1

1

 xz , 1

2

 yz  and 1 az , thus we have 1

1 10 ( ,1 )z Q z u   and 1

2 10 ( ,1 )z Q z v   . The associated Jacobean 

determinant becomes 1 2 2

1 2

/ /

/ /

x z x z

y z y z


   


   
.  As a result, the bivariate Rician copula function in Eq. (32) can be derived as:   
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where 1

1 1 ( ,1 )b Q z u   and 1

2 1 ( ,1 )b Q z v  .  

Note that the Rician factor k can be defined as 
2

22

a
K


 , and thus 2z K . Therefore, the bivariate Rician copula function can 

also be written as:  
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where 1

1 1 ( 2 ,1 )b Q K u   and 1

2 1 ( 2 ,1 )b Q K v  . 

Also note that the bivariate Rician copula relies only on the parameters z (or K) and ρ. Also note that Marcum’s Q function 

QM(a,b) in Eq. (15) monotonically decreases from 1 to 0 as b varies from 0 to  , hence the bisection method [32] has been 

proposed for evaluating the inverse Marcum’s function in [33]. The form of the bivariate Rician copula is complicated, but it can be 

readily computed by the numerical integral method [32]. Note that the bivariate Rician distribution function can be represented by 

the infinite series representation by expanding the modified first kind of Bessel function as follows [31], [34]: 
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where knll ' , and  (.) is the lower incomplete Gamma function defined as [27, Eq. (6.5.2)] as 1

0

( , ) exp( )

z

aa z t t dt   . 

 Let u = FX(x), and v = FY(y), then 
1

1 ( ,1 )
x

Q z u


   and 
1

1 ( ,1 )
y

Q z v


  where
a

z


 , then we can derive the bivariate Rician 

copula function C(u,v)  expressed by infinite series from FXY(x,y) as: 
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Although Eq. (25) can be directly used to compute bivariate Rician copula, it suffers from the vast amount of computation needed 

in resolving the inverse Marcum Q function. Assume we need to determine the result of bivariate Rician copula C(u1,v1) with 

parameters ρ1 and z1, we need firstly calculate 1

1 1 1( ,1 )Q z u  and 1

1 1 1( ,1 )Q z v   for avoiding resolving the inverse Marcum Q 

function in the incomplete Gamma function of the infinite summation as they are irrelevant to k, l, m and n. Alternatively, Eq. (24) 

can be applied to compute bivariate Rician copula as follows. Assume we need to calculate the result of bivariate Rician copula 

C(u1,v1) with parameters ρ1 and z1, we can simply get x1 and y1 from 
1 1 1 11 ( , )u Q z x   and

1 1 1 11 ( , )v Q z y  . Next, we can substitute 

x1 and y1 to Eq. (24) and also let 
1a z  to compute the value of C(u1,v1) with parameters ρ1 and z1. In this way the difficulty in 

computing the inverse Marcum Q function in the infinite summation in Eq. (25) is also avoided though the whole process is still 

quite time consuming. The truncation error upper bound for the infinite series in (24) is given in [34], and the truncation is relevant 

to u, v, ρ and z. It also has been pointed out that computing the nested infinite summations is usually tedious even if they are 

truncated, since the calculation time and accuracy solely depend on the available computing power [34]. In addition, Eq. (22) and 

(23) can also be used to determine the bivariate Rician copula using numerical integration [32]. This method is adopted in this paper, 

since the former two methods using either Eq. (25) or Eq. (24) are too time consuming to compute the bivariate Rician distribution 

with 30 different values of u and v. 

The computation results of bivariate Rician copula with the parameter ρ= 0.3; z = 0.5, ρ= 0.3; z = 2 and= 0.8; z = 2 are shown in 

Fig. 3(a), Fig. 3(c) and Fig. 3(e) respectively, and their contour plots are shown in Fig. 3(b), Fig. 3(d) and Fig. 3(f) respectively, 

which have validated the properties of the copula defined in Eq. (3) and Eq. (4). In this group of plots, we can find that the generated 

contours are insensitive to the parameter z. On the other hand, the isolines feature the same characteristics as the previous two cases 

when u, v and ρ change.  

 

3. COPULA DENSITY FUNCTIONS 

In practical applications, copula density functions are often more frequently used than the copula function itself, e.g., copula 
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density has been applied to estimate mutual information [7].  From the copula function, its density function can be derived by 

definition in Eq. (26) below, where specific density functions for various copulas are discussed in detail in this section.  

22 [ ( ), ( )]( , )
( , )

( ) ( )

X Y

X Y

C F x F yC u v
c u v

u v F x F y


 

   
           (26) 

3.1 Bivariate Log-normal Copula 

We have proved in Section  (2.2) that the bivariate log-normal copula and bivariate Gaussian copula are equivalent. Therefore, 

the density functions of bivariate log-normal copula and bivariate normal copula are also equivalent and can be written as [7]: 

 
1 1 2 1 2 1 2

22

1 2 ( ) ( ) {[ ( )] [ ( )] }
( , ) exp( )
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u v u v
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      (27) 

 

where  (.) represents the cdf of standard Gaussian distribution.  

3.2 Bivariate exponential, Rayleigh and Weibull copulas 

Since bivariate exponential, Rayleigh and Weibull copulas have been proved to be equivalent, here only bivariate exponential 

copula is considered in deriving the density function. According to the Eq. (11), bivariate exponential copula has the form as  
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where /)1ln( ux    and /)1ln( vy  . Note that 
1 1

exp( )( )X
xF x  




 and 
1 1

exp( )( )Y
yF y  




. After algebraic 

manipulation, we can derive the copula density function as 
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2 ln( ') ln( ')1 [ln( ') ln( ')]
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1 1 1

u vu v
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          (28) 

 

where uu 1'  and vv 1' . 

From (28), it also can be found again that the bivariate exponential (and also Rayleigh and Weibull) copula rely only on the 

parameter ρ. Plots of the bivariate exponential (also Rayleigh and Weibull) copula density functions with ρ= 0.3 and ρ= 0.8 are given 

in Fig. 4(a) and Fig. 4(b) respectively. If the parameter ρ is set to 0, we have c(u,v) = 1 for arbitrary values of u and v. When the 

parameter ρ increases from 0 to 1, higher values of c(u,v) occur when u and v are close. On the other hand, c(u,v) decreases and 

approaches to 0 when the values of u and v are dissimilar.  

3.3 Bivariate Nakagami-m copula 

The copula function of bivariate Nakagami-m distribution has been defined in [5] as 
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. Note that the partial derivatives of the regulated lower incomplete Gamma function 

have been evaluated in [27, eq. (6.5.25)] as 
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z aP a z e z
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              (29) 

 

Thus we have 
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. After algebraic manipulation, 

we can derive the copula density of Nakagami-m distribution as  
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m
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      (30) 

 

where ),(1 umPu 


, ),(1 vmPv 


, (.) is the Gamma function [27, Eq. 6.1.1 and 6.1.6] and P(.) is regulated lower incomplete 

Gamma function. From (40), again it validates that the bivariate Nakagami-m copula rely only on the parameters ρ and m.  

Plots of the bivariate Nakagami-m copula density with parameter ρ= 0.3; m = 2, ρ= 0.8; m = 2 and= 0.8; m = 5 are shown in Fig. 

5 (a), Fig 5(b) and Fig. 5(c) respectively. If the parameter ρ is close to 0, the value of c(u,v) approaches 1 for arbitrary values of u and 

v. If the parameter ρ is close to 1, higher values of c(u,v) occur when the values of u and v are close to each other; c(u,v) decreases 

and approaches to 0 when the difference of u and v increases. If the parameter is fixed, for small values of u and v, c(u,v) increases 

when m is increasing; whilst for high values of u and v, c(u,v) decreases when the parameter m increases.  

3.4 Bivariate Rician copula 

The copula function of bivariate Rician distribution has been defined in (32) as: 
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12 vzQa   . Note that the partial 

derivative of Marcum’s Q function can be represented as [35] 
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Therefore, we have 
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.  Finally, we can derive the 

density function of bivariate Rician copula density function as: 
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From (42), it can be found again that the bivariate Rician copula rely only on the parameters ρ and z. Plots of the bivariate of 

Rician copula density with parameter ρ= 0.3; z = 0.5, ρ= 0.8; z = 0.5 and= 0.8; z = 2 are shown in Fig. 6 (a), Fig 6(b) and Fig. 6(c) 

respectively. If the parameter ρ is close to 0, c(u,v) is close to 1 for arbitrary values of u and v. If the parameter ρ is close to 1, higher 

values of c(u,v) occur when u and v are close to each other; c(u,v) decreases and approaches to 0 when the difference between u and 

v increases. If the parameter ρ is fixed, for small values of u and v, the values of c(u,v) increases when m increases; whilst for high 

values of u and v, c(u,v) will decrease even m is increasing. 

 

4. CONCLUSIONS 

Although copulas have been successfully applied for many signal/image processing and communication problems, their 

applications are constrained due to the lack of suitable copulas and in-depth analysis of these functions. As a result, we focus on 

extension and generalization of copulas. Firstly, copula functions associated with the bivariate exponential, Weibull and Rician 

distributions are derived. Secondly, a new representation of bivariate Rayleigh copula with a single parameter, using single integral, 

is also derived. Thirdly, we have proved that log-normal copula is equivalent to Gaussian copula that has only one parameter, and 

Rayleigh copula is equivalent to exponential and Weibull copula that also has only one parameter. The Rician copula is derived to 

have two parameters. Fourthly, all the modified Bessel function or incomplete Gamma function involved double integrals in the 

copula functions are represented by single integral or infinite series. Finally, the density functions of log-normal, exponential, 

Rayleigh, Weibull, Nakagami-m and Rician copulas are also derived. Since only bivariate copulas are focused in this paper, 

multivariate cases will be studied in the future for further improved applicability. Relevant details on random variables generation of 

these new copulas and criteria for optimal copula selection as well as simulation and case studies will be discussed in the Part II of 

the paper. 
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List of Figure Captions: 

 

 Fig. 1: Bivariate Weibull/exponential/Rayleigh copula 

  

Fig. 2: Bivariate Nakagami-m copula 

  

Fig. 3: Bivariate Rician copula 

 

Fig. 4: Bivariate Weibull/exponential/Rayleigh copula density 

   

Fig. 5: Bivariate Nakagami-m copula density 

  

Fig. 6: Bivariate Rician copula density 
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TABLE 1: SUMMARY OF EXISTING RESEARCH AND OUR WORKS IN THIS PAPER 

 

Copulas 

Copula function Copula Density function 

Existing Our work Existing Our work 

Exponential N/A Eq. (10) and (14) N/A Eq. (28) 

Rayleigh 
[4][5] Deriving new forms in Eq. (10) and (14) N/A Eq. (28) 

Weibull N/A Eq. (10) and (14) N/A Eq. (28) 

Log-normal 
[5] 

To prove log-normal copula equals to 

Gaussian copula. See Eq. (13) 

N/A Eq. (27) 

Nakagami-m 
[6] Using results in [6], see Eq. (19) N/A Eq. (30) 

Rician N/A Eqs. (22), (23) and (25) N/A Eq. (32) 

       

* Note that it is proven in this paper that bivariate exponential, Rayleigh and Weibull copulas are equivalent 

         ** N/A in cells represents unexplored areas. 
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Fig. 1: Bivariate Weibull/exponential/Rayleigh Copula 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

a:Bivariate Weibull/exponential/Rayleigh copula 

with parameter ρ =0.3 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

b: Contour plot of Bivariate Weibull/exponential/Rayleigh 

copula with parameter ρ =0.3 

 

 

 

 

 

 

 

 

 
 

 

 

c: Bivariate Weibull/exponential/Rayleigh copula 

with parameter ρ =0.8 

 

 

 

 

 

 

 

 

    

 
 

 

 

d: Contour plot of Bivariate Weibull/exponential/Rayleigh 

copula with parameter ρ =0.8 
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d: Contour plot of Bivariate Nakagami-m copula with 

parameter ρ =0.8; m=2 

b: Contour plot of Bivariate Nakagami-m copula with 

parameter ρ =0.3; m=2 

 

 

f: Contour plot of Bivariate Nakagami-m copula with 

parameter ρ =0.8; m=5 

Fig. 2: Bivariate Nakagami-m Copula 

a: Bivariate Nakagami-m copula with 

parameter ρ =0.3; m=2 

 c: Bivariate Nakagami-m copula with  

parameter ρ =0.8; m=2 

 

e: Bivariate Nakagami-m copula with  

parameter ρ =0.8; m=5 



 21 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

uv

C
(u

,v
)

0
.1

0
.1

0.1

0.1
0.1

0
.2

0.2

0.2

0.2

0
.3

0.3

0.3

0.3

0
.4

0.4

0.4

0
.5

0.5

0.6

0.6

0.7

0.8

0.9

u

v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
   

 

 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

uv

C
(u

,v
)

0
.1

0
.1

0.1

0.1
0.1

0
.2

0.2

0.2

0.2

0
.3

0.3

0.3

0.3

0
.4

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.8

0.9

u

v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
 

 

 

 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

uv

C
(u

,v
)

  

0
.1

0
.1

0.1
0.1 0.1

0
.2

0.2

0.2 0.2

0
.3

0
.3

0.3 0.3

0
.4

0.4
0.4

0
.5

0.5

0.5

0
.6

0.6

0
.7

0.7

0.8

0.9

u

v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

b: Contour plot of Bivariate Rician copula with  

parameter ρ =0.3; z=0.5 

 

 

a: Bivariate Rician copula with parameter  

ρ =0.3; z=0.5; 

 

 c: Bivariate Rician copula with parameter  

ρ =0.3; z=2 

 

d: Contour plot of Bivariate Rician copula with  

parameter ρ =0.3; z=2 

Fig. 3: Bivariate Rician Copula 

e: Bivariate Rician copula with parameter 

 ρ =0.8; z=2 
f: Contour plot of Bivariate Rician copula with 

parameter ρ =0.8; z=2 
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Fig. 4: Bivariate Weibull/expontial/Rayleigh copula density 

 

 

 

 

 

 

 

 

 

 

    

 

 

 
a: Bivariate Weibull/exponential/Rayleigh copula 

with parameter ρ =0.3 
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b:  Bivariate Weibull/exponential/Rayleigh copula 

with parameter ρ =0.8 
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Fig. 5: Bivariate Nakagami-m copula density 
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a: Bivariate Nakagamik-m copula density with  

parameter ρ =0.3; m=2 
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b: Bivariate Nakagamik-m copula density with  

parameter ρ =0.8; m=2 
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c: Bivariate Nakagamik-m copula with  

parameter ρ =0.8; m=5 
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Fig. 6: Bivariate Rician copula density 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0.5

1

1.5

2

2.5

uv

c
(u

,v
)

 
 

 
a: Bivariate Rician copula with parameter ρ =0.3; z=0.5 
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b: Bivariate Rician copula with parameter ρ =0.8; z=0.5 
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c: Bivariate Rician copula with parameter ρ =0.8; z=2 


