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Abstract — This paper concerns the development of a new 

approach to the simplification of representation of the spatial 

dimension of a large transmission network in order that the 

influences on bulk power transfers can be assessed in a practical 

way and the main routes that should be reinforced readily 

identified. The main challenge is to achieve a satisfactory 

clustering to deliver a number of zones that is small enough to 

make subsequent analysis of the expansion panning problem 

manageable but not so small as to neglect key regions of the 

original system. Two particular methods that have previously been 

proposed are described: a K-means algorithm and Dodu’s mixed 
integer linear programming based approach. Each of them has 

some disadvantages, in particular that a direct interface between 

two zones might be derived that has no equivalent on the real 

network; or that it is difficult to control the number of zones. 

Hence, this paper describes a new hybrid method that ensures that 

resulting zonal delineations make engineering sense from the point 

of view of physical connections and allow some control over the 

number of zones. Results are presented in respect of the 

transmission network in Great Britain. Applications of the 

simplified network are discussed, not only in long-term planning 

but also in respect of the potential for use in transmission charging. 

Keywords— transmission planning, electrical distance, mixed  

integer linear programming, K-means clustering 

I.  INTRODUCTION 

A transmission planner should design the network in order 

to facilitate its operation and avoid undue additional costs 

associated with insufficiency of network capacity. However, 

the operating conditions for which the network is being 

designed vary significantly, influenced by the variation of 

generation and demand of electricity. Those variations are three 

dimensional: temporal (hour, season, year...), spatial (regional, 

national…) and stochastic (best scenario, worst scenario…). In 
order to make sense of the design challenge and reach some 

decisions, approximations and simplifications are required. A 

collaboration between the French transmission system operator 

– Réseau de transport d'électricité (RTE) – and the University 

of Strathclyde aims to find ways to simplify a network around 

clusters of electrically close nodes.  

Various simplified networks are used by Transmission 

System Operators (TSOs). For example, three different sets of 

zones are defined in the GB Ten Year Statement [1]: the first 

one is used for generation use of system charging; the second is 

used for demand use of system charging; and the final one is 

used for power flow studies in which boundaries between zones 

are intended to represent the main power flow bottlenecks. In  

studies concerned with secondary voltage control, control areas 

were built up and pilot nodes chosen for each. To define the 

areas, nodes that had similar voltage sensitivities were 

identified. This pilot node would be used to control voltages 

within the area [2, 3]. Thus, various methods were tried in order 

to simplify the network [4-6]. However, long-term planning 

requires some specific criteria for a simplified network: long 

term planning must take into account any planned changes in 

the future network; the simplified network should be both 

representative of the real network and flexible enough to 

include any significant changes to generation and demand 

patterns; and the method should be formal, in order to be used 

on any large transmission network. As electrical distance, 

unlike generation and demand, is constant over time for a given 

physical network, it is used in this paper to simplify the 

representation of a network.  

The paper is organised as follows. Section II first introduces 

two existing algorithms: Dodu’s linear integer mathematical 
program and the K-means clustering algorithm. Then, a new 

algorithm that combines the previous two, with the aim to 

overcome their individual downfalls, is proposed. Results of the 

new algorithm are analyzed in section III and Conclusions are 

presented in Section IV. 

II. TWO EXISTING CLUSTERING METHODS 

Clustering is the process of grouping data so that objects 

within a cluster have high similarity in comparison to one 

another, but are dissimilar to objects in other clusters [7]. In 

transmission networks, similarity can be associated with the 

electrical properties of nodes. In this work, two nodes are 

regarded as electrically similar if they are electrically close to 

each other. A simplified network in long-term planning can 

therefore be a set of clusters (each represented by a single node), 

where nodes are electrically close to each other within a cluster 

and significantly far from nodes in other clusters. To achieve 

such a clustering, two approaches based on electrical distance 

are used. The first one consists of interpreting the problem as a 

linear mathematical program. This point of view is inspired by 

some studies in France in the 1960s [6]. The second approach 

is the K-means clustering algorithm which is a popular top-

down clustering algorithm [8]. The details of these two 

algorithms are introduced in this section. The main sample 

network used is the GB transmission network shown in Fig. 1. 

The voltages of this network are mainly 275kV (red lines) and 

400kV (blue lines). However, while there is a significant 

number of 132kV (black lines) lines throughout Britain, in 

England and Wales they are classified as distribution while in 



Scotland they are classified as transmission. Thus, black lines 

appear in Fig. 1 only in the north.  

 
Fig. 1 GB existing transmission network [1] 

A. Electrical Distance Matrix 

The term ‘electrical distance’ is most commonly connected 

with short-circuit computing issues or, more precisely, 

determination of the short-circuit contribution of individual 

generators. In fact, electrical distance is a fictitious quantity that 

can be used to represent certain properties of a real network [8]. 

This fictional quantity is calculated using a sensitivity matrix, 

e.g. ሾ߲ݒȀ߲ܳሿ  or the impedance matrix  ሾܼ௕௨௦ሿ . (See, for 

example, [2, 3, 8, 9]). This study uses the impedance matrix 

only but, the method is equivalent if using ሾ߲ݒȀ߲ܳሿ instead. 

Given a small change in the current injected at a node k, the 

ratio of changes in voltages at nodes i and j can be found as ௓ೖ೔௓ೖೕ, ݇ א ሾͳǡ Ǥ Ǥ ǡ ݊ሿ where n is the number of nodes in the network [2]. 

This ratio is argued in [2] to be reflective of the electrical 

coupling between nodes i and j, i.e. the electrical distance 

although the exact value found depends on the choice of k. In 

[2] and [10], it is further argued that the maximum attenuation 

between nodes i and j can be obtained by dividing the i, jth 

element of the impedance matrix by a corresponding diagonal 

element from the impedance matrix, e.g. : 

 
ȟ ௜ܸȟ ௝ܸ ൌ ܼ௜௝௝ܼ௝ (1) 

where ܼ௜௝  is the i, jth element of impedance matrix ሾܼ௕௨௦ሿ . 

However, although ሾܼ௕௨௦ሿ is symmetrical, it cannot be assumed 

that ܼ௜௜  is equal to ௝ܼ௝ 

If  ݀௜௝  is the electrical distance between nodes i and j, ݀௜௝  is 

expected to show the following mathematical properties: 

 ቐ ݀௜௝ ൌ ௝݀௜ ՜ ௜௝݀ܿ݅ݎݐ݁݉݉ݕݏ ൌ Ͳ ՜ ݅ ൌ ݆݀௜௝ ൌ λ ՜  (2) ݆ ݉݋ݎ݂ ݎ݂ܽ ݅

According to [10], to fulfill properties from (2), the 

electrical distance ൣ݀௜௝൧ may be defined as : 

 ݀௜௝ ൌ െ ln ቆܼ௜௝௝ܼ௝ ௝ܼ௜ܼ௜௜ቇ (3) 

With this mathematical expression, the electrical distance is 

a quantity without units and is used in [2,3]. This expression has 

been chosen for this work because it is one of the more accurate 

ways to build electrical distance. Others ways are explained in 

[5]. However, more complex formulations make the 

computation slow and are judged not to be necessary for the 

work reported here. 

B. Linear Integer Mathematical program 

In 1960, when trying to plan generation and the high voltage 

transmission network, French engineers faced the same 

problems as described above of having several spatial and 

temporal variables to take into account. They looked for a 

method to reduce the spatial variables by grouping electrically 

close nodes into clusters. They used a mathematical program 

approach. 

The aim of this approach is to cluster together nodes that are 

electrically close to each other. A threshold of electrical 

distance ߝ is introduced such that for two nodes i and j, with   ݀௜௝  the electrical distance between i and j:  

 ൜ ݀௜௝ ൑ ߝ ՜ ௜௝݈ܾ݀݁݅ݐܽ݌݉݋ܿ ݁ݎܽ ݆ ݀݊ܽ ݅ ൐ ߝ ՜  (4) ݈ܾ݁݅ݐܽ݌݉݋ܿ݊݅ ݁ݎܽ ݆ ݀݊ܽ ݅

To say that nodes i and j are compatible means they are 

similar (close) enough to be in a same cluster; to say they are 

incompatible means they are dissimilar (far enough apart) and 

cannot be in the same cluster. An integer number ݐ௜  is 

introduced to represent the index of the cluster to which the 

node i belongs, i.e. if node i is in the third cluster, then ݐ௜ ൌ ͵. 

With the electrical distance matrix  ൣ݀௜௝൧  and a given 

threshold ߝ, the list of all pairs of incompatible nodes is built. 

That list is called C, thus: 

 ሺ݅ǡ ݆ሻ א ܥ ՜ ௜ݐ ്  ௝ (5)ݐ

If k is the total number of clusters, the aim of the study 

becomes: 

Min (the number of clusters k) 

Subject to: 

 หݐ௜ െ ௝หݐ ൒ ͳ (6) ͳ ൑ ݐ ൑ ݇ 
The problem can be solved by a linear integer program [11]. 

The objective function aims to obtain the minimum number of 

clusters such that two incompatible nodes are not in the same 

cluster. The approach is detailed in [6]. AMPL, a 

comprehensive and powerful algebraic modeling language for 

linear and nonlinear optimization problems, in discrete or 

continuous variables [12], has been combined with a solver of 

integer linear programs, developed and used at RTE, PNE, to 

implement and test the clustering algorithm. . 

This algorithm has been tested first on a small network (22 

nodes) and then on the whole French network (7000 nodes). 

Results for the small network were found after a couple of 

minutes, while after 72 hours of computation, there was still no 

result for the entire French network. The speed of the algorithm 

needs to be improved. Especially for large networks, the 

number of possible combinations of nodes into clusters should 

be reduced in order to improve the computation time. 



Some operations may be done upstream from the program 

to reduce the number of nodes to be processed. A process 

dubbed ‘pre-colouring’ is introduced to find sets of nodes that 

are incompatible with each other the nodes that must be in 

different clusters. Nodes in different clusters have different 

‘colours’. The ‘pre-colouring’ proceeds as below and as shown 
in Fig. 2. 

Before starting the operation, the electrical distance matrix ܮ  needs to be calculated and the threshold of the electrical 

distance ߝ needs to be defined. The details of this operation are: 

compare the element ݈௜௝  of matrix L with electrical distance ߝ. 

If ݈௜௝ ൐  nodes i and j are incompatible. Otherwise, they are ,ߝ

compatible. Since the electrical distance matrix L is a 

symmetrical matrix, only the upper diagonal (or the lower 

diagonal) elements need to be checked. Once each element in 

either the upper or lower half has been checked, the number of 

other nodes that are incompatible with each node can be known. 

This number is defined as the “degree” of each node. ‘Pre-

colouring’ now proceeds as follows: 
1. All the nodes are sorted from the highest degree to the 

lowest degree.  

2. Each node has two statuses: checked status (1 for checked 

and 0 for unchecked) and colour status (0 for uncoloured 

and an integer value larger than 0 representing the ‘colour’ 
of the node). Initially, all nodes are marked as unchecked 

and uncoloured.  

3. Starting with the node with the highest degree, a value of 1 

is assigned to its colour status and it is marked as checked.  

4. Move to the next unchecked node and compare it with all 

colored nodes. If the current node is not compatible with 

any of the colored nodes, assign a new color to this node. 

Mark it as checked. If a node is compatible with more than 

one coloured node, its colour is set to that of the first 

compatible coloured node that was found. 

5. Continue the process until all nodes have been checked.  

 

With the above pre-processing operation, the number of 

nodes to be clustered by using the linear programming method 

described in Section II.B has been decreased. The computation 

is faster. It now took less than 10 minutes to run the French 

network and a couple of minutes for the GB network. For the 

latter, superimposed on a map of GB network taken from [1], 

the resulting clusters are shown in Fig. 3.   

Despite the algorithm being fast and logically correct, the 

result is not physically correct. Cluster boundaries in Fig. 3 are 

drawn in red. Green is used to represent some particular areas 

inside clusters. It can be seen from Fig. 3 that Area 1 and Area 

2 have been allocated by the algorithm to be in the same cluster. 

However, although, for the given threshold value İ, they are 
electrically close (in this case by virtue of the 400kV system), 

they are not physically directly connected to each other but have 

a connection via Area 3 which is in another cluster. This result 

is not acceptable because it does not reflect the real network in 

which there is no physical connection between Areas 1 and 2. 

So, even after speed improvement, this method has drawbacks. 

 

Fig. 2 The flowchart of “pre-coloring” 

 

 
Fig. 3 The clustering result of the GB network 

C. K-means Clustering 

The K-means algorithm is one of the simplest unsupervised 

learning algorithms that solve the well-known clustering 

problem [8]. The procedure follows a simple and easy way to 

classify a given data set through a certain number of clusters 

(assume k clusters) fixed a priori. The main idea is to define k 

nodes called centroids, one for each cluster. Then, each point 

belonging to a given data set is associated with the nearest 

centroid to form a cluster. After the initial centroids have been 

selected randomly, an initial grouping can be determined by 

calculating the distance between each node and each centroid. 

Each node is associated with the centroid to which it is closest. 

All the nodes associated with a particular centroid form a 

particular cluster.  

In order to improve the clustering, the centroids are 

adjusted. For each cluster i, this involves finding the node li 

within the cluster for which the sum of distances to all the other 

nodes in the cluster is least, i.e.: 

Start

Take next unchecked node

Node is 

compatible with 

at least one 

coloured node?

Colour the node with a new colour

All nodes have 

been checked?

Stop

No

Yes

Yes

No

Mark all nodes as unchecked and 

uncoloured; sort by degree

Mark node as checked

Take highest degree node; 

assign colour 1



 ෍ ݀௟೔௠௟೔ǡ௠ீא೔ǡ௟೔ஷ௠ ൌ minሺ௡ீא೔ሻ ෍ ݀௡௠ሺ௠ீא೔ǡ௠ஷ௡ሻ  (7) ݅ א ሺͳǡ ǥ Ǥ ǡ ݇ሻ 

Each new central node replaces the old centroid of the 

cluster it belonged to. In this way, a new list of k-centroids is 

built. Each node is then tested again to see which centroid it is 

nearest to. If it turns out that a node is nearer to the centroid for 

cluster j than for its initial cluster i, it is removed from i and put 

into j. When each node has been tested, there is a new set of 

clusters. If any of the clusters have changed, equation (7) should 

be applied again to find the new centroid for the cluster. The 

process continues until no centroids move.  

This method has its inconveniences. In particular, the 

optimization depends on the initial number of centroids, k, and 

where they are initially placed. The algorithm adjusts nodes and 

clusters according to the first clusters obtained with the first 

centroids. To highlight the problem, the algorithm has been 

tested on a small network of ten nodes shown in Fig. 4 and Fig. 

5. 

Consider the diamond, triangle and square nodes in Fig. 4 

In Fig. 4, the square and diamond nodes were chosen as initial 

centroids (case (a)). As the triangle node is closer to the 

diamond node than the square node, it is associated with the 

diamond node. In Fig. 5, the square and the diamond nodes were 

chosen as initial centroids (case (b)). This time the diamond 

nodes is closer to the square node. But, in reality, those three 

nodes are so close together that they should have been grouped 

in the same cluster. This result would have been obtained if only 

one of them had been an initial centroid.  

To ensure that nodes in different clusters will be dissimilar 

and node in the same cluster will be similar, initial clusters have 

to be as far away from each other as possible [4]. For the 

previous example in Fig. 4 and Fig. 5, an optimal clustering is 

represented in Fig. 6. 

 
Fig. 4 An example network of 10 nodes, simplified using the K-

means clustering algorithm, with the first centroids chosen randomly 

– case (a) 

 
Fig. 5 An example network of 10 nodes, simplified using the K-

means clustering algorithm, with the first centroids chosen randomly 

– case (b) 

 
Fig. 6 Example of 10 nodes network, optimally clustered by 

the K-means algorithm, k=5 

III. NEW HYBRID METHOD 

A. Outline of the method 

The mathematical program described in section II.B gives 

results that are logically exact but electrically incoherent. The 

K-means results depend on the initial clusters. A new algorithm 

is therefore proposed that combines the previous two, with the 

aim to overcome their individual downfalls.  

A more optimal choice of k centroids is to place these initial 

nodes as far away from each other as possible [13]. At the very 

least, in the context of the power network simplification 

problem described above, they should all be incompatible with 

each other. If the pre-colouring algorithm described in section 

II.B is used here, according to a given threshold value, it gives 

a list of pre-coloured nodes in which nodes of a certain colour 

are incompatible with nodes of a different colour. Moreover, for 

the given electrical distance threshold ߝ  , the list gives the 

minimal number of clusters needed, which can help answer the 

question: what is an appropriate value of k in the K-means 

algorithm. The first set of k centroids can be chosen as one node 

of each colour where each colour represents a separate cluster. 

In this way, the electrical distance between each of the initial 

centroids will be at least ߝ. 

Only those nodes near the boundary between two clusters 

and at a comparable distance between two centroids might be 

in different cluster. Clusters are iteratively refined using the K-

mean algorithm as described above. 



B. Threshold of electrical distance 

A limitation of the above approach is that the pre-colouring 

needs the threshold of electrical distance to be given. This value 

is an input chosen by the user. The effect of this is illustrated in 

the following example.  

The hybrid method is applied to the GB network shown in 

Fig. 1 with two values of threshold (ߝ) which are 30 p.u. and 20 

p.u.. The results are shown in Fig. 7 and Fig. 8 respectively in 

which the clusters are represented by dashed purple lines. From 

these two figures, it can be observed that the smaller the 

threshold is, the more likely nodes are to be incompatible to 

each other which leads to the network having more clusters. As 

a consequence, more centroids are required to group the 

network. A criterion is required to choose the threshold suitable 

for the specific study  

 
Fig. 7  The clusters of GB network by using the hybrid method 

with ߝ ൌ ͵Ͳ ݌Ǥ  Ǥݑ

  
Fig. 8 The clusters of GB network by using the hybrid method 

with ߝ ൌ ʹͲ ݌Ǥ  Ǥݑ
In order to find a criterion to determine an electrical distance 

threshold, the effect of different values of the threshold on the 

number of clusters obtained is observed below and two new 

indicators Ƚ and Ⱦ are introduced. ߙ is the normalized value of 

the number of clusters, i.e. number of clusters relative to the 

number of nodes in the original network, and Ⱦ  is the 

normalized value of the threshold, i.e. the value of the threshold 

relative to maximum electrical distance between any two nodes 

in the network. ߙ and ߚ are found by: 

 ൞ ߙ ൌ ݇݊
ߚ ൌ ௠௔௫݀ߝ

 (8) 

where: 

n: the number of network nodes ݀௠௔௫: the maximum electrical distance between two nodes ߝ: the threshold of electrical distance between two nodes 

k: the number of clusters obtained after computation. 

Two network models are used to evaluate the relationship 

between ߙ and Ⱦ: the GB network which has multiple voltage 

levels, and a part of the French transmission network which has 

1126 nodes most of which are at 400kV. The results for these 

two networks are shown in Fig. 9 and Fig. 10 respectively 

which show the value of Ƚ for given values of ߚ. The red dotted 

line is the trend of the black curve. For GB network, ݀௠௔௫  is 

equal to approximately 200 p.u. while the French network’s ݀௠௔௫  is 7 p.u.. The maximum electrical distance is much longer 

in the GB model due to the inclusion of 132kV circuits in the 

north plus 275kV. For comparison, the trend of Ƚ versus ߚ for 

the northern part of GB is shown in Fig. 11. (The maximum 

electrical distance in this network model is still around 200 

p.u.).  

 
Fig. 9 The relationship between ߙ and ߚ for the GB network 

whose maximum electrical distance is approximately 200 p.u. 

 

 
Fig. 10 The relationship between ߙ and ߚ for the French network 

whose maximum electrical distance is 7 p.u. 
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Fig. 11 The relationship between ߙ and ߚ for the northern part of 

the GB network, mainly 132kV, whose maximum electrical distance 

is approximately 200 p.u 

   The curves in Figs. 9-11 are exponential. The equations of the 

Fig. 10 and Fig. 11 curves are approximately: ߙ ൌ ͲǤͲͲʹͷ ൈ ߙ ଵǤଷିߚ ൌ ͲǤͲͲ͹ͷ ൈ  ଵǤଵିߚ

    They are very close to each other. Although it has not been 

rigorously tested for many different transmission networks, it 

may be expected that all curves have approximately the same 

trend, at least when the networks comprise only one or two 

voltage levels (discussed in the next section); then, in order to 

achieve a network simplification to give approximately a 

certain number of clusters, users should calculate the maximum 

electrical distance in the network for which the number of nodes 

is already known, and use the curves to identify an appropriate 

threshold value İ. For example, if the desired number of clusters 

is one twentieth of the number of nodes, then  ߙ ൌ ͲǤͲͷ, which 

leads to the corresponding value of ߚ, and hence the value of İ  
to use in the simplification process.  

C. Voltage level 

 In the results shown in Figs. 7 and 8, it can be seen that, 

unlike when Dodu’s linear integer programming method was 

applied in its original form, the nodes are physically linked to 

each other within same cluster. In addition, the results are 

determined by voltage level.  

 In Fig. 7, the northern and southern areas of the system are 

shown (by mean of solid, blue circles). The northern network 

operates at a lower voltage level (132kV and 275kV with some 

400kV) than the southern network (all 275kV and 400kV). It 

can be seen that there are many more clusters in area one than 

in area two, although area two is physically bigger than area 

one.  

 The main purpose of network simplification for long-term 

planning is to identify the main regions that tend to import or 

export power under different future operational conditions and 

market scenarios. The areas found by a clustering algorithm 

such as those described above should contain the main 

generation and demand centres as well as showing the strength 

of connection between. The electrical distance method succeeds 

in doing the latter but fails in the former if multiple voltage 

levels are included in the original network model, and these 

voltage levels are not well spread across the network. 

A system planner using a network simplification method 

may choose to exclude lower voltages, e.g. sub-transmission 

and distribution voltages, when calculating the electrical 

distance of the transmission network. For many systems, this 

represents little contradiction between the function of the 

simplification process and the aims of long-term planning since 

the distribution or sub-transmission systems generally do not 

interconnect main generation or demand centres. However, for 

both geographical and historical reasons, in the north of Britain 

especially in the north of Scotland, large areas are covered by 

132kV lines that do form part of the main interconnected 

network. This will not always be the case, though, as the 

connection of wind generation in the north is driving investment 

in additional transmission capacity, including uprating to 

275kV and 400kV [1]. A ‘naïve’ application of the electrical 
distance would actually have helped to reveal this need – a 

threshold value of over 20 p.u. (ߚ ൒ ͲǤͳ) in Fig. 9 leads to some 

clusters in lower voltage level while nodes at higher voltage 

levels are hardly partitioned at all. The threshold needs to be 

less than 10 p.u. (ߚ ൑ ͲǤͲͷ) for the high voltage network in Fig. 

9 to be partitioned. However, one of the things the electrical 

distance based clustering can do is to reveal the likely main 

bottlenecks restricting power flow; the density of clusters in the 

north of Britain would have confirmed what is true, that the 

network there is relatively weak. 

IV. CONCLUSIONS 

The study reported here has sought to develop a 

methodology to reduce the size of a large network in order that 

long-term network planning studies can be more easily carried 

out. In addition, in order that planning studies can be carried out 

by a number of different transmission owners responsible for 

different parts of a large network and to enable a new round of 

studies after any changes to the network, the methodology 

developed should be easy to apply in a consistent way.  

In order to avoid dependency on a particular scenario of 

generation capacity or its dispatch, the methodology developed 

is based on electrical distance with the objective being to 

identify groups of nodes that are electrically close to each other 

and can each be represented in a simplified planning model by 

a single node.  

It is concluded that two clustering approaches described in 

the literature, one based on a linear integer programming 

approach to the minimization of the number of clusters in which 

nodes that are closer to each other than a certain threshold are 

associated with each other, the other on K-means clustering, 

have significant limitations. In the case of the former, it is that 

nodes can be placed within the same cluster even when they are 

physically connected only via nodes in a different cluster. In the 

case of the latter, it is that the results depend to a large extent 

on the choice of the initial set of centroids.  

A hybrid method has been proposed that uses the idea of a 

threshold of electrical distance from the first method to 

determine the initial set of centroids for the K-means clustering.  

In testing on the GB transmission network, it is revealed 

that, in a network with multiple voltage levels, the highest 

voltage level might all be included within a single cluster 
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whereas the lowest level is split into many. When one of the 

purposes of long-term network planning is to reveal the effects 

on bulk system transfers of different scenarios regarding the 

development of generation and demand and different operating 

patterns, this can mean that some key generation and demand 

centres are contained within a single cluster. This has the result 

that power transfers between them are not revealed. On the 

other hand, it does show the weakest areas of the system that, 

depending in particular on how generation is developed, require 

significant transmission expansion. 

A further issue concerns the choice of electrical distance 

threshold. Through a number of tests on the GB and France 

transmission networks, it has been found that the relationship 

between the degree of simplification of the network and the 

distance threshold relative to the maximum found on the 

network can be quite well generalized. Although tests should be 

done using other networks to confirm this generalization, it 

suggests that, if a planner has an idea of how many equivalent 

nodes they want in their simplified network, they can identify 

an appropriate value of electrical distance threshold for the 

simplification algorithm. 

As well as being useful for long-term network planning in 

order that the planner can devote more time to the practical 

exploration of stochastic aspects of generation expansion and 

operational patterns that affect bulk power flows, the network 

simplification methodology can be used for identification of 

system zones for transmission charging in which (for 

generation) electrical distance from demand centres is key or 

(for demand centres), distance from generation is key. 

.  
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