
Strathprints Institutional Repository

Imura, Kohei and Ueno, Kosei and Misawa, Hiroaki and Okamoto, Hiromi and McArthur, Duncan
and Hourahine, Benjamin and Papoff, Francesco (2014) Plasmon modes in single gold nanodiscs.
Optics Express, 22 (10). pp. 12189-12199. ISSN 1094-4087

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/20444297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Plasmon modes in single gold nanodiscs 

K. Imura,1,* K. Ueno,2 H. Misawa,2 H. Okamoto,3 D. McArthur,4 B. Hourahine,4  
and F. Papoff4 

1Department of Chemistry and Biochemistry, School of Science and Engineering, Waseda University, Okubo, 
Shinjuku, Tokyo 169-8555, Japan 

2Research Institute for Electronic Science, Hokkaido University, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan 
3Institute for Molecular Science and The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, 

Japan 
4SUPA, Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK 

*imura@waseda.jp 

Abstract: Optical properties of single gold nanodiscs were studied by 
scanning near-field optical microscopy. Near-field transmission spectra of a 
single nanodisc exhibited multiple plasmon resonances in the visible to 
near-infrared region. Near-field transmission images observed at these 
resonance wavelengths show wavy spatial features depending on the 
wavelength of observation. To clarify physical pictures of the images, 
theoretical simulations based on spatial correlation between electromagnetic 
fundamental modes inside and outside of the disc were performed. 
Simulated images reproduced the observed spatial structures excited in the 
disc. Mode-analysis of the simulated images indicates that the spatial 
features observed in the transmission images originate mainly from a few 
fundamental plasmon modes of the disc. 

©2014 Optical Society of America 

OCIS codes: (180.0180) Microscopy; (160.4236) Nanomaterials; (180.4243) Near-field 
microscopy; (240.6680) Surface plasmons; (290.5850) Scattering, particles. 
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1. Introduction 

Plasmonics has become an important research field in optics and materials science, with 
various applications that utilize the unique optical characteristics of plasmonic materials, such 
as chemical sensors [1,2], surface enhanced spectroscopies [3–6], nano-optical devices [7–9], 
and so forth. The investigation of spectral and spatial features of plasmons is important both 
for understanding the basic physical properties of plasmonic materials and to develop 
practical and useful applications of plasmons. The spectral properties of plasmonic materials 
have been widely investigated [10–12]. It has been well established that optical properties of 
single nanoparticles, whose spatial scales are sufficiently smaller than that of wavelength of 
the interacting light, are explained by the dipolar approximation. The dependence of the 
optical properties of nanoparticles on size and shape can be also explained by introducing the 
depolarization factor [12]. In large nanoparticles, on the other hand, the contribution of 
multipolar plasmon resonances becomes significant because of non-negligible retardation 
effects. In this situation, consideration of higher order plasmon modes is indispensable to 
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correctly understand the optical and spectroscopic properties of the nanoparticles. Moreover, 
an understanding of the spatial features of plasmons based on fundamental modes of the 
system is useful to provide clear physical pictures of the phenomena. 

Gold nanorods are an example of the importance of multipolar modes and retardation 
effects. In these almost one-dimensional particles, one can excite optically transverse and 
longitudinal plasmon modes which are polarized across and along the nanorod, respectively 
[13]. The transverse mode appears in a frequency region similar to that of the plasmon 
resonance of a small spherical nanoparticle. The resonance frequencies of longitudinal 
plasmon modes appear over a wide frequency range, and the mode with fewer nodes in its 
standing wave has the lower resonance frequency. The dipolar mode thus has the lowest 
resonance frequency, and all the resonances at higher frequencies are attributed to excitation 
of multipolar modes. The multipolar modes are not excited efficiently by conventional far-
field irradiation when the particle size is small enough compared to the wavelength of the 
light, but they become significant when the particle size is large and the retardation effects are 
non-negligible. The spatial structures of these longitudinal modes have been visualized by 
near-field optical microscopy [13] or recently by electron-microscope based techniques [14–
16]. 

In two-dimensional systems such as a circular gold nanoplate (nanodisc), the spatial 
structures of the plasmon modes are much more complicated. In addition, as the volume 
damping effect [17] becomes significant for these systems compared with nanorods, the 
spectral widths of individual modes are broad and consequently spectral overlaps between 
plasmon resonances are observed [18,19]. As a result, the optical properties of plasmons in 
nanodiscs are not as well understood as those of nanorods. To fully utilize the unique 
properties of plasmonic materials in practical applications, detailed knowledge of the plasmon 
modes is essential. In this study, we experimentally visualized plasmon modes of gold 
nanodiscs at various excitation wavelengths by scanning near-field optical microscopy. In 
contrast to nanorods, the observed images show complex features, and we find that theoretical 
simulation of the observed images is indispensable to rationally interpret the complex mode 
structures obtained. However, the plasmon modes of discs cannot be treated with any 
analytical approach. With numerical electromagnetic simulation approaches such as the finite 
difference time domain (FDTD) method [20] and the discrete dipole approximation (DDA) 
methods [21], the concept of modes cannot be introduced, although they can treat 
nanostructures of arbitrary shapes. We thus carried out assignments of the observed images 
based on the theoretical framework recently developed [22–26]. This approach enables us to 
give clear physical pictures of the spatial features of plasmon modes of metal nanoparticles 
observed in the experiments. 

2. Experimental 

Gold nanodiscs (diameter 400-800 nm, thickness 35 nm) were fabricated on a cover-slip by 
the electron-beam lithography/lift-off technique [27]. A home-made apertured scanning near-
field optical microscope (SNOM) was operated under the ambient condition [28]. Aperture 
near-field fibre probes fabricated by chemical etching were purchased from JASCO Corp. 
The diameter of the aperture was determined to be 50-100 nm by using scanning electron 
micrographs and/or fluorescence images of single molecules. The sample substrate was 
mounted on the piezo-driven-stage for lateral scanning and the distance between the near-
field aperture tip and the sample surface was regulated at 10-20 nm by a shear-force feedback 
mechanism. For near-field transmission measurements, either a Ti:sapphire laser or a Xe 
discharge lamp was used as a light source. Incident polarization was controlled by a 
combination of a half and a quarter wave plates. A gold nanodisc was locally illuminated 
through the aperture of the near-field probe, and the transmitted light through the sample was 
collected by an objective lens and detected by a polychromator equipped with a charge-
coupled device (CCD). At each point in a whole scan area the intensity spectrum was 
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measured, and near-field extinction spectra were calculated as -(I- I0)/ I0, where I denotes the 
far field transmitted intensity taken with the sample present and I0 the intensity from the bare 
substrate. Near-field transmission images were obtained by mapping the transmission T = I/I0 
at a given spectral range. The polarization of the transmitted light was characterized by a 
polarizer installed in front of the detector. 

3. Results and discussion 

Figure 1(a) shows a scanning electron micrograph (SEM) image of the fabricated gold 
nanodiscs. The dimensions of the nanodisc were 400 nm in diameter and 35 nm in height, as 
determined by SEM and topography measurements. Plasmon resonances of the disc depend 
on the aspect ratio (diameter / height) and shape of the disc, and the dipolar resonance for the 
disc with 400 nm diameter is expected to occur at wavelengths longer than 1000 nm [29]. 
Figure 1(b) shows a far field extinction spectrum of the disc. The dipolar resonance of the 
disc is far beyond the observed spectral range, and a shoulder and a broad band were 
observed at around 620 nm and near the infrared spectral region, respectively. These features 
are assigned to higher order plasmon resonances with the aid of theoretical calculations as 
discussed later. Figure 1(c) shows a polarized near-field extinction spectrum taken at the edge 
of the disc. The spectrum exhibits multiple peaks in the visible to near-infrared region similar 
to the far field spectrum. A sharp negative extinction peak at ~650 nm is typical of the near-
field extinction measurements, and is attributed to the conversion of near-field radiation to 
propagating light [29,30]. The positive peaks at ~580 and ~780 nm are close to the shoulder 
and the band observed in the far field spectrum (Fig. 1b), and are attributed to plasmon 
resonances. We also found that the near-field transmission spectrum depends on the position 
of the probe with respect to the disc. For example, the negative peak is more pronounced at 
the center of the disc with respect to that observed at the edge. The position dependence of the 
near-field transmission spectrum implies that the spatial distribution of the oscillation 
amplitude of the mode excited at the longer wavelength is not uniform over the disc surface. 
Since the spatial characteristics of the mode are not directly apparent in the spectrum, which 
is a frequency-resolved data set, mode assignments of the plasmon resonances are not 
straightforward using only information from the spectrum. Near-field imaging enables spatial 
visualization of the mode and facilitates assignment of the mode by combining the data with 
theoretical simulations. 

 

Fig. 1. (a) A SEM image of gold nanodiscs (diameter 400 nm × height 35 nm). (b) Far field 
transmission spectrum of the disc. (c) Near-field transmission spectrum taken at the edge of the 
disc. 

Figures 2(a) and 2(b) show polarized near-field transmission images of the gold nanodiscs 
observed at 780 nm. The dotted circle indicates the approximate shape of the disc and the 
arrow shows the incident polarization direction. In the image, dark parts represent higher 
extinction (i.e. larger reduction of transmitted light due to scattering and absorption of 
incident light). Dark dots are roughly aligned perpendicularly to the polarization direction. 
The transmission image rotates 90 degrees as the polarization direction is rotated 90 degrees. 
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We reported previously, on the near-field excitation of a gold nanorod, that the extinction 
intensity of the longitudinal plasmon mode showed a cos2θ dependence upon the incident 
polarization direction, where θ is the angle between the long axis of the rod and the 
polarization direction [31]. This indicates that the excitation near-field is almost linearly 
polarized, and that there is no significant transfer of energy between orthogonal polarizations 
due to the interaction of the rod with the probe. The polarized optical near-field at an 
apertured probe tip utilized to visualize orientations of single-molecule transition moments 
with fluorescence excitation imaging [32] also indicates approximately linear polarization 
near the tip. 

 

Fig. 2. (a,b) Polarized near-field transmission images of gold nanodiscs (diameter 400 nm × 
height 35 nm) observed at 780 nm. Arrows indicate the direction of incident polarization. (c-e) 
Unpolarized near-field transmission images for the gold nanodiscs. Observed wavelength: 
~780 nm for (c), ~640 nm for (d), and ~520 nm for (e). Dotted circles indicate the approximate 
shape of the disc. Image size: 4 μm × 4 μm. Scale bar: 500 nm. 

In addition to the polarized near-field transmission measurements described above, we 
performed near-field transmission measurements with unpolarized illumination and polarized 
light detection, and found that the near-field images show essentially the same spatial features 
and polarization dependences observed in Figs. 2(a) and 2(b). These observations support that 
the observed near-field images exhibit distributions of the polarized plasmon amplitudes 
excited by the incident light. An unpolarized near-field transmission image exhibits a 
doughnut-like spatial pattern as shown in Figs. 2(c) and 2(d). Spatial features of the near-field 
transmission image strongly depend on the observed wavelength. The transmission image 
observed at 520 nm in Fig. 2(e) shows a monotonous spatial feature, which is nearly identical 
to the topographic image (giving the geometrical shape) of the disc. The doughnut-like spatial 
feature with unpolarized light appears at wavelengths longer than ~580 nm. For discs smaller 
than 150 nm, the doughnut-like spatial feature was not observed at 800 nm. These 
observations show qualitative agreement with the electron energy loss spectroscopy (EELS) 
maps visualized by a high-resolution transmission electron microscope [33], while the 
polarization-dependent information is available only with the near-field measurements. 

Spatial features of the images depend strongly on the size of the disc. Figures 3(a) and 
3(b) show near-field transmission images of a larger gold disc (diameter 800 nm, thickness 35 
nm) observed at 710 and 790 nm, respectively. The polarization direction of the detected light 
was vertical in the images. From the images, we found that fine spatial structures of excitation 
probability were observed, which varied depending on the wavelength of observation. For 
instance, the image observed at 710 nm exhibits a double-doughnuts-like feature, whereas 
that at 790 nm shows an extinction spot at the center combined with a single doughnut 
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feature. For the 400-nm diameter disc, the doughnut-like feature was observed only with 
unpolarized light detection, while for the 800-nm disc, the doughnut-like feature was 
observed with the polarized detection. Line profiles along the dotted lines through the centers 
of the discs in Figs. 3(a) and 3(b) are shown in Figs. 3(c) and 3(d), respectively. Transmission 
intensities oscillate along the lines. The period of the oscillation depends on the observed 
wavelength: the period increases as the wavelength increases. This finding qualitatively 
agrees with that for the spatial properties of longitudinal plasmon modes of gold nanorods. In 
the gold nanorod, the wave number of the longitudinal plasmon mode gets larger when its 
frequency gets higher, following the dispersion relation of the plasmon. Since the spatial 
feature observed in the near-field image of the disc is two-dimensional, it is not 
straightforward to interpret the feature based on the dispersion relation as in the one-
dimensional case like nanorods. However, for the disc we also find a qualitative tendency for 
the spatial frequency of the image to increase with the frequency of the light for detection, 
which suggests that the two-dimensional waves of the disc plasmons follow a kind of 
dispersion relation between temporal and spatial frequencies. 

 
Fig. 3. (a,b) Near-field transmission images of gold nanodiscs (diameter 800 nm × height 35 
nm). Observed wavelength: 710 nm for (a), 790 nm for (b). (c,d) Line profiles taken along the 
dotted lines in (a,b), respectively. 

As we mentioned above, the near-field imaging provides valuable information on spatial 
features of plasmons, and is useful for assignments of the spectroscopic features of the metal 
nanoparticles to fundamental plasmonic modes. On the other hand, the spatial features of two-
dimensional systems, such as the discs, are much more complex than those of one-
dimensional rods, because of the higher degree of spatial freedom. The mode assignments for 
the discs are thus much more difficult than for rods. Consequently, to assign the plasmon 
resonances in the two-dimensional systems, a combination of imaging experiments and 
theoretical approaches is useful and in some cases essential. In the next section, we will 
analyze the near-field transmission images observed for the gold nanodics, based on a 
recently developed theoretical framework [22] where a set of fundamental electromagnetic 
modes are employed to expand the fields near the scattering object. 

4. Theoretical analysis 

In this section, we apply the theory of the principal modes of optical structures [22] to 
reproduce the spatial structures of experimental near-field transmission images of nanodiscs 
with diameters of 400 and 800 nm. In this theory, we find orthonormal sets of modes for the 
internal and scattered electromagnetic fields at the surface of the particles which are spatially 
correlated pairwise. The spatial correlations between pairs of internal and scattered modes can 
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be formulated in terms of “principal angles” and principal sine functions, sin ξ. This theory 
allows the identification of the physical mechanisms that determine the way in which these 
patterns evolve with the frequency of incident light and, correspondingly, the information that 
the experimental images provide. By applying this theory and using an approximate model of 
the experimental conditions, we reproduce all three kinds of images observed with polarized 
light (Figs. 2 and 3), as shown in Fig. 4, and explain the spatial structures and their 
transformation as the wavelength changes in terms of a relatively low number of optical 
modes. This approach allows us to analyze the spatial feature of the collective oscillation of 
conduction electrons that yields the near-field transmission image observed. A more detailed 
analysis of near field illumination will appear elsewhere. Briefly, the four fundamental 
components of the physical experiment that are included in the model are the SNOM aperture 
tip, the nanoparticle, the detector and the scattering medium (substrate). As in the experiments 
we consider the following two configurations. When the field sent through the SNOM tip is 
linearly polarized, the total intensity of the light is detected in the far field. When the field is 
unpolarized, the detector in the far field has a polarizer in front of it and collects only linearly 
polarized light. In the first case, the field radiated by the SNOM tip is represented by a 
coherent combination of one electric and one magnetic radiating point dipole, both located at 
the center of the planar aperture of the probe [34]. In the second case, the radiated field is 
represented by the incoherent superposition of two pairs of electric and magnetic dipoles at 
right angles. We use a dispersion relation for the gold material that includes both the bulk 
contribution and the effect of surface collisions [35]. The inclusion of collisions allows us to 
match accurately the pattern obtained at the experimental height of the tip above the particle. 

Experiments have shown that the spatial structure of the observed near-field transmission 
image patterns are weakly dependent on the environment, although this may shift the range of 
wavelengths at which any given pattern is observed. For this reason, and for simplicity, we 
assume that the gold nanodiscs are immersed in the material of which the substrate is made, 
in this case borosilicate crown glass (BK7). However, the experiments could be more 
accurately modeled by considering the particle in a stratified medium [36]. We match the 
transmission image at the experimental resonance wavelength for the small disc of diameter 
400 nm, Fig. 4(a) which corresponds to Fig. 2(b), and for the larger particle of diameter 800 
nm at wavelength ca. 710 nm, Fig. 4(b) which corresponds to Fig. 3(a). We observe the 
longer wavelength near-field transmission pattern for the larger particle at wavelength blue-
shifted with respect to the experiment by ca. 25 nm, Fig. 4(c) corresponding to Fig. 3(b). We 
simulate a detector with an effective numerical aperture of 0.85 (corresponding to a 60° cone 
in the far field). We have also simulated data for a variety of collection angles between 40 and 
80 degrees. No significant change is found in the spatial structure of the simulated image, 
although the contrast between the bright and dark regions reduces slightly as the angle 
increases. 

 
Fig. 4. (a) The theoretical near-field transmission image for the 400-nm diameter disc at an 
incident wavelength of 780 nm, corresponding to Fig. 2(b), calculated using an incident field 
linearly polarized along the vertical direction of the figure, where the colour scale corresponds 
to the unpolarized signal collected by the detector in the far field I normalized by the intensity 
of the incident field I0. The corresponding images for the 800-nm diameter disc at (b) 705 nm 
and (c) 765 nm where the incident field is unpolarized and instead the signal collected by the 
detector is linearly polarized along the vertical direction of the figures. 
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The near-field transmission patterns can be understood in terms of groups of radiating 
modes which, due to the cylindrical symmetry of the discs, have an angular phase dependence 
exp(imφ), where φ is the azimuthal angle around the disc and m is the index of the component 
of the optical angular momentum along the symmetry axis. Therefore, we can group the 
modes according to their m index into separate scattering channels. Although there are an 
infinite number of possible optical angular momentum channels which may contribute to the 
surface field, only the channels with m = 0, ± 1, ± 2, and ± 3 contribute significantly to the 
observed transmission patterns, with the higher index channels having significantly less 
ability to transport energy into the far field. This is because the higher index m channels 
oscillate more rapidly around the disc and, due to the limited radial dimensions of these 
particles, the variations become much shorter than the wavelength of the incident light in the 
scattering medium, making it difficult for these channels to transport energy effectively. We 
in fact find that the m = 0 and ± 1 channels scatter the majority of the light and provide the 
basis of the near-field image patterns, with the higher index channels only adding fine 
structure. Within each channel, the incident field may excite many modes to an appreciable 
amplitude, which then combine to give the surface field. However, only a selection of these 
modes are capable of carrying energy [22], or information, into the far field and these are the 
modes that have the largest effect on the near-field transmission images. For the discs 
considered here, the light scattered by each channel can therefore be attributed to just a 
handful of modes. 

For the figures, the direction of polarization is chosen to be along the vertical direction of 
the page. The images are normalized by the intensity of the incident field, I / I0, where I is the 
intensity with the particle present and I0 the intensity at the bare substrate without the particle. 
Near-field transmission images show the amount of light received at the detector due to the 
response of the particle to the near-field source. The effects of the particle on the amount of 
light transmitted towards the detector fall into 4 categories. Firstly, the disc can scatter light 
preferentially towards the detector, increasing the amount of light received. Alternatively, 
light may be scattered away from the detector, reducing the light received. The disc can also 
absorb light (again reducing the signal). Finally, for reasonably coherent sources of light, 
interference between the incident light and the light scattered by the disc may either increase 
or reduce the intensity in the far-field detecting aperture. 

For the smaller particle (diameter 400 nm), the only significant contributions are from the 
m = 0 and ± 1 channels to the far field pattern, of which the m = 0 channel dominates the 
scattered light. To understand the properties of a scattering mode we consider the spatial 
correlation between this mode and the internal modes on the surface of the particle. Each 
principal scattering mode is spatially correlated with at most one principal internal mode, and 
this correlation is expressed as cos ξ, which is the overlap integral of the tangent components 
of the pair of internal and scattering principal modes. (sin ξ)–1 represents the efficiency of this 
pair of modes to couple to an incident field with tangent components on the particle that are 
spatially correlated to the tangent components of the modes (even at resonance, when the 
efficiency is maximal, the mode pairs do not couple to incident fields with tangent 
components uncorrelated to those of the modes). Figure 5(a) shows the increase in efficiency 
of the dominant m = 0 mode as it approaches it’s resonance at ~725 nm. Figure 5(b) shows  
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Fig. 5. (a) Plot of (sin ξ)–1 as a function of wavelength for the dominant m = 0 mode of the 400-
nm diameter disc, where the cos ξ is the spatial correlation of internal and scattered surface 
fields of the mode. The plot shows the increase in excitability of the mode as it approaches its 
resonance at ~725 nm. (b) The amount of energy scattered towards the detector (Ps) for the two 
positions of the fibre tip marked in (c), normalized by the power of the incident field (P0), as 
functions of wavelength. The feature at ca. 675 nm is due to two pairs of modes becoming 
almost degenerate and mixing properties. (c) The surface electric field intensity and 
polarization of the real part of the electric field for the dominant m = 0 mode. (d) Excitation 
map showing the contribution of the linearly polarized component of the dominant mode for 
the same channel. The scattered intensity, depicted by the color bar, is normalized to be in 
units of the incident field. (e) Excitation map, as in (d), but for all modes of the m = 0 channel. 
(f) As in (c) but for the superposition of the dominant modes of the m =  ± 1 channels. 

the amount of energy scattered towards the detector for two positions of the fibre tip marked 
in Fig. 5(c) as a function of the wavelength. The ratio between the energy scattered for these 
two positions of the tip has a 20% variation for the range of wavelengths shown in Fig. 5(b). 
This is due to a change in the overlap between the mode and the input field caused by the 
dependence of the input field and of the mode on the wavelength. We note that for the disc 
considered here, contrary to what happens with spheres and infinite cylinders, the Maxwell's 
equations do not separate into a tangent and normal part, therefore there may be small 
variations in the tangent components of the modes at the surface of the disc as the wavelength 
is changed. 

Figure 5(c) shows the surface electric field intensity and real part of the polarization for 
the dominant mode of the m = 0 channel, which is symmetrical about the axis of the particle. 
We expect that linearly polarized incident light will excite this mode in regions where the 
polarization of its surface electric field is closely aligned with the polarization of the incident 
field. This explains the two bright lobes shown in Fig. 5(d), where the electric fields are 
antiparallel. This mode accounts for over 85% of the light scattered by all of the modes in the 
m = 0 channel at 780 nm resulting in Fig. 5(d) almost exactly matching the scattered intensity 
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pattern of the entire m = 0 channel, shown in Fig. 5(e). This corresponds to the bright parts in 
the transmission pattern of Fig. 4(a), where I is nearly equal to I0, i.e. the amount of scattered 
light received by the detector matches that without the disc present. The faint extra lobes 
evident horizontally in the outer parts of the transmission image of the m = 0 channel shown 
in Fig. 5(e) are due to a weakly excited secondary mode. 

We can conclude that the bright parts of the image depicted in Fig. 4(a) are primarily due 
to a single mode of the disc. The two dark lobes in Fig. 4(a), aligned horizontally along the 
direction perpendicular to the polarization of excitation, can be attributed mainly to the 
destructive interference of the two dominant modes of the m =  ± 1 channels with the incident 
field. We find that the electric fields in these two dark lobes, towards the edges of the disc, 
are parallel as shown in Fig. 5(f). We also examined the origin of the negative peak around 
650 nm observed in Fig. 1(c), by calculating the correlation between spatial modes exited in 
the near-field and the scattering channels transporting the radiation energy to the far-field. We 
found from the simulations that two modes of m =  ± 1 channels are responsible for scattered 
light at ~650 nm, and one of the modes predominantly yields forward scattering and makes a 
major contribution to the negative peak. 

The near-field transmission images of the larger 800 nm diameter disc contain significant 
contributions from more than one m channel, each consisting of a greater number of modes 
than the smaller disc. The observed change of pattern with incident wavelength for the large 
disc, and indeed the relative contributions of the individual channels, can be explained in 
terms of modes moving on or off from resonance as the wavelength changes. When a 
radiating mode is close to resonance, it is excited with a greater amplitude and typically 
produces the majority of the observed far field intensity associated with that particular 
channel. Furthermore when a mode approaches the peak of its resonance it eclipses the 
contributions from the other modes, with up to 60% of the total energy radiated by that 
channel passing through the dominant mode in that case. For the 800 nm diameter disc at 705 
nm, Fig. 4(b), we observe modes in both the m =  ± 1, shown in Fig. 6(a), and m =  ± 3 
channels approaching resonance. As such these channels strongly influence the observed 
pattern at shorter wavelengths. For the pattern at 765 nm, Fig. 4(c), the m =  ± 1 and ± 3 
modes have moved away from resonance and on the contrary, the modes of the m = 0 and ± 2 
channels have moved towards resonance and therefore have more influence upon the 
observed accumulated pattern, highlighted in Fig. 6(a). Taking the m = 0 channel as an 
example, the dominant mode is near the peak of a resonance for the transmission image at 
765 nm, Fig. 6(c), while its scattered intensity is four times weaker at 705 nm, Fig. 6(b). 
Scattering, combined with interference between some modes within both the m = 0 and m =  ± 
1 channels determines the major features of the patterns, however there is also absorption 
present, particularly at the shorter wavelengths (primarily due to the m =  ±  = 1 resonant 
modes). These effects are also present for the 400 nm diameter disc, but are small compared 
to scattering by the dominant m = 0 mode. 

We remark that in our calculation we have assumed a perfect axial symmetry; as a 
consequence, only the m =  ± 1 and (assuming some small polarization in the z direction) the 
m = 0 channels can be excited by the incident field when the tip is on the symmetry axis (i.e., 
z-axis). This is the origin of the bright spots at the very center of Figs. 4(a)–4(c); breaking the 
axial symmetry would modify the center of these images. As a result we would expect this 
region of the pattern to show the largest discrepancy between experiment and theory. 

The agreement of this analysis with the experiments demonstrates the advantage of the 
theoretical framework described here over numerical methods such as FDTD or DDA in 
identifying the plasmon modes responsible for near-field transmission images. 
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Fig. 6. (a) Plots of (sin ξ)–1 as functions of wavelength for the dominant modes of the m = 0 
and m = 1 channels for the 800-nm diameter disc are shown where the axes are the same as 
Fig. 5(a). (b,c) The normalized scattered intensity for the m = 0 channel far from resonance at 
705 nm, (b), and close to it at 765 nm, (c). 

4. Conclusion 

We studied localized plasmons in single gold nanodiscs by near-field spectroscopic imaging 
measurements, and we found theoretically the plasmon modes that give rise to the spatial 
features of the experimental near-field transmission images. The observed near-field 
transmission images of the discs have characteristic spatial features that depend on the 
dimensions of the discs and the wavelength of observation, and can be quite complex. In 
contrast to one-dimensional systems like nanorods, it is not straightforward to assign 
fundamental plasmonic modes to the near-field images of two-dimensional discs. We 
achieved it by comparing the experimental images with the results of calculations based on a 
recently developed theoretical framework. We found that the simulated results reproduced the 
observed spatial features, and successfully assigned the observed images to fundamental 
modes of the systems. The theoretical method presently adopted enables us to interpret optical 
images of the systems based on the concept of fundamental electromagnetic oscillation 
modes. This approach is advantageous because it gives a clear physical explanation of the 
experimental transmission images of non-spherical metal nanoparticles. To extend the 
applicability of this approach, it is essential to generalize the numerical implementation of the 
theory to various particle shapes in a practical manner, which is in principle possible and now 
under way. 
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