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Abstract— The influence of the wind and wave climate on 

offshore wind operations and maintenance is well known. 

These environmental factors dictate to a large extent whether 

turbine crew transfer (carried out by small vessels) or major 

lifting actions (carried out by large vessels) can be executed at 

sea. However the role of helicopter operations has received 

much less attention. In this paper the authors explore the 

helicopter access problem via statistical forecasting and 

implement a model innovation, by including cloud base as a 

key access metric. By understanding the practical limits of 

helicopter operation, offshore wind access calculations will be 

much improved and reflect more closely the reality of 

operations at sea. 

Keywords- Wind Turbine; Helicopter Operations; Statistical 

forecasting;ARMA; Markov Chain; Fuzzy Logic; Wavelets.  

I.  INTRODUCTION 

The need to understand and control the costs of offshore 
wind is well known. A key aspect of the problem is 
operations and maintenance, contributing roughly 25% of the 
total cost of energy. In order to make better cost estimates, it 
is imperative that the practicalities of operation are captured 
in modeling tools. Helicopter operations have a key role to 
play in offshore operations as an augment to small crew 
transfer vessels for maintenance tasks not requiring heavy lift 
operations [1]. This paper therefore focuses on bringing 
together 3 key variables (wind speed, wave height, and cloud 
cover) in order to provide more realistic estimates of 
accessibility for helicopter operations.   

II. PREVIOUS WORK 

Early work on offshore wind farm maintenance and 
access modeling can be traced to the late 1990’s and the 
research of van Bussel et al. [2] and Rademakers et al. [3]. 
Many authors since then have attempted to analyse the 
installation, maintenance and logistics problem – such as 
Walker et al. [4]. One aspect of this problem which has not 
received much attention to date is helicopter access. 
Helicopter access has historically been crudely modeled as 
being constrained by wind speed only, or a mixture of wind 

speed and wave height. This paper moves a step beyond this 
by considering the impact of visibility – in the form of cloud 
cover – and its impact on helicopter access. For the purposes 
of this paper, this is considered as a short term forecasting 
and scheduling problem. Data from the North Sea are used in 
a case study comparing accessibility forecasts using a trio of 
different statistical methods.  

III. DATA 

The data used in this paper is derived from the British 

Atmospheric Data Centre’s MIDAS marine surface 

measurements [5]. The data set numbers over 100 

measurement locations on the seas around the UK. However 

the data quality is highly variable and a filtering procedure 

had to be developed to identify suitable sites. The result of 

this quality checking can be seen in Figure 1. The northern 

location of Sedco 711 (an oil rig drilling unit at the times of 

measurement operating in the North Sea) and Morecambe 

bay in the Irish Sea were selected as being the only two sites 

both with adequate data coverage (equivalent to 7 years with 

effective time resolution of 3 hours) and a location broadly 

representative of wind and wave conditions encountered at 

offshore wind sites. Figure 2 illustrates the geographical 

location of each site. Gaps in data were filled using a cubic 

interpolation between points. The consequence of data 

quality and this simplistic gap filling approach is discussed 

in the results section of this paper. 

 
Figure 1. Data quality for several locations 



 
Figure 2. Measurement locations off UK coast 

IV. FORECASTING MODELS 

A. ARMA 

Auto-Regressive approaches to describe time series data 

were originally developed in [6], and have since been 

applied to a diverse range of applications. Of particular 

relevance to this work, AR models have been used to 

describe significant wave height [7], mean wind speeds for 

wind turbine power generation [8] and wind turbine 

maintenance [9]. The AR model, normalized to the mean of 

the data is described in Eq. (1). 
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The model described in Eq. (1) is valid only for a 

normally distributed process. Neither annual wind speed nor 

significant wave heights follow a normal distribution and 

must therefore be transformed before Eq. (1) is applied to 

the data sets.  

For significant wave heights it is necessary to remove 

the fit of monthly mean and then apply a Box-Cox 

transformation on the data shown in Eq. (2) [7]. 
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The required order of AR model was determined using 

the auto-correlation function and partial autocorrelation 

function and determined as 4 for wave models. The 

determination of AR coefficients and model generation was 

performed using the MATLAB system identification 

toolbox 

B. Markov Chain 

Markov Chains have been deployed to solve several 
problems in the wind energy literature. Sayas & Allan [10] 
used this framework to model wind turbine failure rates and 
the influence of wind speed on reliability. In terms of 
forecasting applications, the work of Pinson and Madsen is 
prominent [11].  

This paper applies a pure Markov chain (that is memory-
less and time-homogenous parameters) with discrete time (dt 
=3 hours) and discrete state space to model and forecast 
wind, wave and cloud cover data. The main criteria when 
setting up the chain is the bin size, which determines how the 
state space is partitioned. This is established first by 
determining the maximum value in the data set. Then an 
appropriate bin size is chosen, which is specific to the 
variable being modeled (for example, the modeler should 
take into account the resolution of the original data when 
selecting the bin size). This process is illustrated in Table I. 
In this way the Markov chain states map to the physical 
variable. 

TABLE I.  TYPICAL PARAMETER VALUES (MARKOV CHAIN) 

 

Wind speed (kts) Sig. wave ht (m) Cloud base (dec) 

Maximum value 35.0 11.0 250.0 

Bin size 1.0 0.05 5.0 

Number of states 36 221 51 

 

The parameter estimation process is based on the 

normalized frequency of transition from one state to another 

(eg state a to b, in time step k), and the frequency balance 

method in [12] and is summarized below.  

 

Pa,b=P(sb,tk+1| sa,tk) k=1,2,3…N  (3) 

 

C. Wavelets/Neural Network 

A problem of all forecasting methods is that the quality 
of input data influences in the accuracy of the prediction. A 
solution is to use a filter to eliminate the uncertainty of high 
frequency. This method [10] has two phases: Filter phase 
and forecasting phase. 

a) Filter phase 

A signal f(t) can write as an “approximation” plus 
“details” (4) according to wavelet analysis [11]. 
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The coefficients cj(k) and dj(k) that multiple to functions 

j0,k(t) and j,k(t) can be calculated with a digital filter, Fig. 
3. 



 
 

Figure 3. Signal decomposition 

 

The “details” are neglected and forecasting is made only on 

the “approximation”. 
 

b) Forecasting phase 

In this phase, a method based on neural network [12] is 
used to obtain the prediction of the signal. In this case, a 
multilayer perceptron find the nonlinear relations in the time 
series: 
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where ’j and ’k  are layers thresholds, and wji and wkj 
are layers weights, i and j are the number of neurons in each 
layer, g is the activation function. 

 

V. RESULTS 

A. Model Testing 

Each of the forecasting models previously described was 
tested on the available data sets to allow their performance to 
be benchmarked. The model parameters were fitted using a 
training period and then forecasts generated at 3, 6 and 9 
hour look-ahead periods over the remaining duration of the 
time series. For the North Sea location the training period 
consisted of years 2007-2009 and forecasting period of 
2007-2010. For the Morecombe Bay location the training 
period consisted of years 2002-2006 and forecasting period 
of 2007-2008. In addition, to the described model, 
persistence forecast was performed where the forecast value 
is equal to the last observation. This represents the simplest 
forecasting approach and provides a baseline with which to 
compare the more advanced modeling approaches. 

B. Forecasting Benchmark 

The standard forecasting accuracy metric, Root Mean 
Square Error (RMSE) was initially used in order to give an 
indication of the forecasting performance of each model on 
different climate data sets. The benchmark results of all cases 
are shown in Figures 4 to 8.  

 

Figure 4. RMSE for Morecambe Bay Wind Speed 

 

Figure 5. RMSE for North Sea Wind Speed 

 

 

Figure 6. RMSE for Morecambe Bay Significant Wave Height 

 

Figure 7. RMSE for North Sea Significant Wave Height 
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Figure 8. RMSE for Morecambe Cloud Cover Level 

The results show that the probabilistic models presented are 
capable of reducing forecast error when compared to a 
baseline persistence model in most cases. However, the 
performance of the models is shown to be sensitive to the 
quality of the training and forecast data, in particular for 
significant wave height time series. Considering Figures 4 
and 5 all models outperform persistence when there is good 
quality data in the Morecambe Bay site with the ARMA and 
Wavelet models performing best. However, when the data 
quality is poorer, the simpler persistence model outperforms 
the more complex models. This is attributed to the simplistic 
cubic spline approach adopted to gap filling which results in 
a gradual change in value leading to small errors when 
compared to the preceding time step. The Wavelet model 
appears most robust to dealing with poor quality data. This is 
also evident from Figures 7 and 8 which also correspond to 
the North Sea data set where the Wavelet model performs 
best. The ARMA model outperforms all other models for the 
high quality wave time series and this is attributed to ability 
of the model to preserve the strong auto-correlation 
characteristics observed between time steps in the wave data. 
The Markov Chain forecast only improves on persistence for 
the case when high quality wind speed data is available 
suggesting it is a less robust model. 

C. Helicopter Access Forecast Metric 

RMSE is a useful metric, as it provides a general indication 
of forecast accuracy. However the value of a forecast may 
not be fully understood by RMSE benchmarking. 
Understanding the decision that should be supported by the 
forecast is crucial in establishing the overall value of a 
forecast to the end user. Access is determined based on the 
three climate characteristics being below the threshold values 
in Table II which are representative of current operational 
practices for offshore wind. 

TABLE II.  TYPICAL PARAMETER VALUES (MARKOV CHAIN) 

Variable Typical Values 
 

Significant Wave Height  1.5 m 
 

Wind Speed  10 m/s (~19.5 kts) 
 

Cloud Level  30 decameters (~1000 feet) 
 

 

For helicopter operations, there are two general 
implications of a bad forecast.  

 False positive (F+) Forecast. Helicopter is 
dispatched but weather does not allow operation 
to be completed. Potentially, this impacts on 
fuel cost. 

 False negative (F–) Forecast. Helicopter is not 
dispatched however a weather window does 
exist. This impacts lost energy from the wind 
turbine. 

These metrics (shown in Fig. 9) were used to benchmark the 
forecasters with respect the 3 individual variables at 
Morecambe bay, and also to do a comparison in which all 3 
variables are combined to come to a helicopter access 
decision.  

Inspection of Fig. 9 shows that the performance of the 
forecasters is dependent on the variable in question, and that 
performance in relation to decision making also varies 
widely in terms of quality. F+ and F- forecasts can vary 
widely for the same variable at the same time horizon.  Of 
particular interest is a comparison of the panel in Fig. 9 with 
the RMSE plots for the same site (Figs 5, 7, 8). In several of 
the RMSE plots, the forecasters outperform persistence. 
However, when the actual decision to be supported in 
factored in to the evaluation, as in Fig. 9, it appears that 
persistence is the best solution. 

This illustrates the importance in forecasting of 
understanding the decision supported by the forecast. 
Benchmarking on metrics which do not necessarily relate to 
the decision, such as RMSE, may not yield the best results 
for the end-user – in this case and offshore wind farm 
operator, whose crew dispatch decisions drive O&M costs. 

 

 



  

  

Figure 9. Panels show F+ and F- for each variable, and the combined forecast 

 

VI. CONCLUSIONS 

A variety of short term forecasting methods have been 
applied to the area of helicopter accessibility for offshore 
wind turbine maintenance. Considering standard metrics an 
improvement over a basic persistence approach have been 
demonstrated for the three key accessibility metrics, wave 
height, wind speed and visibility via cloud cover. The 
improvement offered over persistence is sensitive to data 
quality, with little improvement or poorer forecasting 
performance observed for poorer quality data sets. This is of 
particular importance in the offshore environment where 
collection of data is expensive and prone to large periods of 
downtime.  

The limitations of using error metrics when considering 
the impact of forecasting accuracy have been identified. 
Consequently the ability of the models to correctly predict 
operations based on access thresholds has been investigated 
for each access parameter and for a combined forecast. The 
simple statistical forecasting models presented in this paper 
fail to provide an improvement over the baseline persistence 
model. Exploration of more sophisticated but 
computationally demanding simulation models may provide 
improved performance and have been identified for future 
work. An investigation into the capabilities of the models 
with more complete data sets or using more sophisticated 
gap filling approaches has been identified as an area for 
future research. 
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