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Abstract. An experimental demonstration of an error free 100Gbit/s 

optical time division multiplexing (OTDM) broadcast star computer interconnect 

is presented.  A highly scalable novel node design provides rapid inter-channel 

switching capability on the order of the single channel bit period (1.6 ns). 

I. Introduction 

Although lightwave technology is meeting the demand for point-to-point and long-haul 

transport of digital information, routing packets at the nodes of the network has typically been 

carried out using electronically switched backplane routers.  The growing capacity on the 

Internet is placing an ever greater demand on electronic routing technologies.  While WDM 

can support large aggregate traffic bandwidths, it is difficult to perform routing functions 

which may involve challenging techniques such as dense wavelength conversion.  

Additionally, present WDM laser and filter tuning techniques rely upon slow technologies 

which increase the channel access latency and reduce the effective network bandwidth.  

Recent advances in optical time division multiplexing (OTDM) have proven this 

technology’s capability to handle the switching and routing needs for future.  Channel access 

in OTDM networks is achieved by using time slot tuners and all-optical demultiplexers.  

Timing precision of less than 1ps is required to tune, multiplex, and demultiplex individual 

channels within the OTDM frame.  

The computer interconnect we are constructing is based upon an OTDM broadcast star 

architecture.  The high-level architecture and node design is shown in Fig. 1.  Nodes transmit 

information at a slow data rate, B, by modulating picosecond optical pulses.  By using a 

scalable time slot tuner, the pulse is appropriately delayed to correspond to the desired 

destination time slot.  Data pulses from all nodes are multiplexed into a time frame with an 

aggregate bandwidth of NB, where N is the number of nodes in the network.  The pulse 

spacing between adjacent channels is (NB)
-1

 or typically less than 10ps to achieve 100+ Gbit/s.  

Ultrafast all-optical demultiplexers like the TOAD are used to extract the desired channel 

from the high capacity OTDM frame at the node receivers.  Nodes can select the received time 

slot by using a time slot tuner to align the clock with an incoming time slot within the frame 

for all-optical demultiplexing. 

To perform the functionality of a router, addresses are mapped to specific time slots 

within the network.  Routing is achieved by sending each bit of the packet in a unique time 

slot corresponding to its destination node.  All nodes in the network are synchronized by 

splitting and amplifying the optical output of a single modelocked fiber laser.  Packet routing 

is performed by rapidly changing the state of the time slot tuner to transmit into time slots 

corresponding to destination addresses on the network. 



 

Fig. 1 OTDM router and node architecture 

 

Recently, several experimental demonstrations [1-3] have shown that OTDM can meet 

many of the demanding needs of a router and a multiprocessor interconnect system which 

include full connectivity, low latency, and high aggregate throughput, reliability, and 

scalability.  We report the demonstration of a testbed for a bit-interleaved 100-Gbit/s OTDM 

broadcast star architecture that was previously proposed [4].  Unique to our network is a 

highly scalable, novel node design that provides inter-channel switching within the single 

channel bit period (1.6 ns).  By combining this hardware with a highly efficient arbitration 

protocol [4], near lossless channel allocation with low latency is achievable for high speed 

switching applications such as future all-optical routers. 
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II. Experimental Demonstration and Results 

Fig. 2 shows the network and novel node architecture experimental setup.  The two key 

optical components of the node are the recently developed fast tunable delay line (FTDL) [5] 

and the terahertz optical asymmetric demultiplexer (TOAD) [6].  A controller card residing in 

a workstation sends electronic NRZ data at the single channel bit rate, B, and control bits to 

the driver board specially designed to control the two FTDLs on the clock and data fibers.  

The FTDLs consist of cascaded feed-forward Mach-Zehnder fiber delay lattices designed to 

produce optical copies of the incoming pulse stream organized into 2
k
-bit subcells spaced by T 

with inter-subcell bit spacing  [5].  The two modulators controlled by the driver board select 

one of the 2
k
x2

k
 (= N) time slots into which one of the copies is transmitted.  The FTDLs in 

the node are used to transmit data into a selected time slot within the OTDM frame and align 

the clock with a given time slot for optical demultiplexing.  Ultimately, the dimensionality of 

the network, N, is determined by k, the number of stages in the FTDL.  The intermediate 

processing bandwidth, B' (= 1/T), of the driver controller and the electro-optic modulators is 

designed to match the repetition rate of the picosecond pulsed fiber laser source and is related 

to the single channel bit rate as B' = 2
k
B.  Pulses are amplified by EDFAs and distributed to 

the individual nodes by 1xN splitters.  After node data modulation and time slot selection, the 

data is multiplexed by precision fiber delays feeding an NxN star coupler.  The high 

bandwidth OTDM frame is broadcast to all nodes in the network.  Each node can demultiplex 

any single channel from the frame using an FTDL on the clock and a TOAD. 

 

Fig. 2 Experimental OTDM computer interconnect and node architecture 

 

In our experimental testbed, we populated 16 (= N) time slots in the OTDM frame by 

constructing 2 (= k) stage FTDLs.  The single channel data rate was chosen to match the OC-

12 rate (B = 622.08 Mbit/s).  The 2-ps pulsed 1550-nm fiber laser repetition rate and 

intermediate electronic processing bandwidth were set to the OC-48 rate (B' = 1/T = 2.48832 
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GHz).  The simple electronic design of the driver board permits the rapid control of the FTDL 

and provides low latency, arbitrary channel selection.  The driver board was constructed using 

4-bit electronic multiplexers (Vitesse) and simple logic operating at the OC-48 rate.  To 

produce an OTDM frame with an aggregate bit rate of 100 Gbit/s,  = 10 ps was chosen.  

Each TOAD was designed with a demultiplexing window width of about 10 ps at FWHM and 

a polarization splitter was used to separate data from clock at the output. 

The 100-Gbit/s multiplexing and demultiplexing experimental results are shown in Fig. 

3.  According to the design of the FTDL, the 16 time slots in our OTDM frame are arranged in 

4 subcells each containing 4 time slots spaced by 10 ps.  Our network demonstration focused 

on one of the subcells within the frame.  Fig. 3a shows the aggregate eye diagram for a subcell 

with multiplexed data from 4 nodes with a fixed pattern, 1 – pseudorandom – 1 – 0, on a 

bandwidth limited detector (34-GHz photodetector, 50-GHz oscilloscope).  Upon 

demultiplexing by TOADs tuned to the individual channels, each is resolved in Fig. 3b (the 

4th time slot is omitted as it is 0). 

Fig. 3 100 Gbit/s multiplexed data OTDM subcell eye diagram on bandwidth limited 

detector, and demultiplexed TOAD output eye diagrams for three channels in subcell. 

a)  100 Gbit/s multiplexed data OTDM subcell eye diagram 

b)  Demultiplexed TOAD output eye diagrams 

 

We constructed two fully functional nodes to measure the bit error rate (BER) and 

demonstrate the rapid inter-channel switching capability of the network nodes using an 

arbitration protocol.  These experiments were performed using adjacent channels in the same 

100-Gbit/s subcell (Channels 0 and 1).  Fig. 4a shows a plot of the BER versus the single 

channel average data input power at the TOAD when Chan 0 and Chan 1 were modulated 

with pseudorandom data.  For average data and clock input powers greater than –21 dBm (13 

fJ pulse energy) and -8 dBm (250 fJ pulse energy) respectively, several hours of error free 

operation have been achieved.  Additionally, we have observed that the TOAD can provide 

gain to the demultiplexed signal.  The inset to Fig. 4a shows the eye diagram of the data input 

(upper trace) and demultiplexed output (lower trace) of a TOAD demultiplexing a single 

channel of pseudorandom data with identical oscilloscope settings.  The demultiplexed output 

is larger in amplitude than the input by approximately 6 dB. 
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The fast inter-channel switching capability of the network was also demonstrated by 

using a previously proposed, low latency arbitration protocol [4] and two nodes of the 

network.  The receivers of both nodes are fixed to listen to their own time slots.  Each node 

transmits its binary address at the single OC-12 channel rate into its own time slot.  If 

successfully received, each node then transmits its address into the time slot of the other node.  

Fig. 4b shows a demonstration of the protocol using two nodes in the network whose time 

slots are adjacent in the 100-Gbit/s subcell. The addresses assigned to Node 0 and Node 1 

were 0101 and 0111 respectively.  The traces shown are the demultiplexed TOAD outputs 

directly from the analog output of the receivers for the two nodes.  After each node 

successfully receives its own address, the FTDLs rapidly reconfigure within a single bit period 

to transmit into the time slot of the other node.  Note that each node now successfully receives 

the address of the other in its own time slot.  The FTDLs and driver board electronics are 

capable of tuning to any one of the 16 time slots in the network within 1.6 ns, greatly reducing 

the hardware latency of the protocol. 

 

 

Fig. 4 BER of channels 0 and 1 against average single channel input power, and 

demonstration of rapid channel selection on bandwidth limited analogue detector  

a)  BER of channels 0 and 1 against average single channel input power 



      Inset: TOAD input and output eye diagrams demonstrating gain 

o  -channel 0 

  +  -channel 1 

b)  Demonstration of rapid channel selection 

III. Conclusion  

We have demonstrated a fully connected 100-Gbit/s OTDM network architecture that offers 

fast switching among data channels with reliable, error free operation and low latency.  Since 

the active components of the FTDLs do not scale with the number of nodes [5], simply adding 

another stage, k = 3, (3 dB additional loss per node), scales the interconnect up to 64 (= N) 

nodes without taxing the power budget significantly.  If OC-24 (B = 1.24416 GHz) is chosen 

as the single channel data rate and 10-GHz (= B' ) intermediate processing bandwidth 

electronics are used, an 80-Gbit/s interconnect with a rapid inter-channel switching speed of 

800 ps is feasible.  In such a 64-processor architecture, coherent crosstalk does not limit the 

BER performance significantly [7].  Since the demultiplexer [8] and other optical components 

in the node can be integrated, we believe this network is practical for future, high-speed 

multiprocessor interconnect systems.   
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