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Abstract

In this work we investigate a mathematical model describing tumour growth under a treatment by chemotherapy that
incorporates time-delay related to the conversion from resting to hunting cells. We study the model using values for the
parameters according to experimental results and vary some parameters relevant to the treatment of cancer. We find
that our model exhibits a dynamical behaviour associated with the suppression of cancer cells, when either continuous
or pulsed chemotherapy is applied according to clinical protocols, for a large range of relevant parameters. When the
chemotherapy is successful, the predation coefficient of the chemotherapic agent acting on cancer cells varies with the
infusion rate of chemotherapy according to an inverse relation. Finally, our model was able to reproduce the experimental
results obtained by Michor and collaborators [Nature, 435, 1267 (2005)] about the exponential decline of cancer cells
when patients are treated with the drug glivec.

Keywords: tumour, delay, chemotherapy

1. Introduction

Cancer is the name given to a cluster of more than
100 diseases that presents a common characteristic, the
disorderly growth of cells that invade tissues and organs
[1, 2]. These cells may spread to other parts of the body
rapidly forming tumours [3].

An important mechanism of body defence against a
disease caused by a virus, bacteria or tumour is the de-
struction of infected cells or tumours by actived cytotoxic
T-lymphocytes (CTL) cells also known as hunter lympho-
cytes. CTL are able to kill cells or to induce a programmed
cell death (apoptosis). The biological activation process
occurs efficiently when the CTL receive impulses gener-
ated by T-helper cells (TH). The stimuli occur through
the release of cytokines. This phenomenon is not instan-
taneous; besides the time elapsed to convert resting T-
lymphocytes in CTL, there is also a natural delay of the
cytological process [4, 5]. Banerjee and Sarkar studied the
dynamical behaviour of tumour and immune cells using
delay differential equations [6]. They observed the exis-
tence of oscillations in tumour cells when a time delay was
considered in the growth of T-cells.

A possible way to stop the growing of cancer cells is
chemotherapy. That is, the treatment with a drug or com-
bination of drugs through some protocol. There are many
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experimental and theoretical studies about the effects of
the chemotherapy on the cells. Moreover, mathematical
models have been considered to simulate the growth of
cancer cells [7], as well as, tumour-immune interactions
with chemotherapy [8].

In this paper we investigate a mathematical model for
the growth of tumours that not only take into considera-
tion the time delay character of the lymphocytes dynam-
ics, but also the effect of the chemotherapy. We extend the
model of Sarkar and Banerjee [6] by adding the chemother-
apy, and by considering some clinically plausible protocols.
Firstly, a continuous chemotherapy is analysed. Secondly,
the traditional or pulsed chemotherapy protocol is anal-
ysed, in which the drug is administered periodically. Ac-
cording to experimental protocols, we have used both a
constant amplitude [9] and an oscillatory amplitude [10]
for the continuous infusion rate of chemotherapy [11].

One of our main results is to show that there are a
large range of relevant parameters that lead to a successful
chemotherapy. In a successful chemotherapy is that the
predation coefficient of the chemotherapic agent acting on
the cancer cells and the infusion rate of the chemotherapy
are inversely related. For the continuous chemotherapy,
we have ensured the stability of the non-cancer state (i.e.,
a successful chemotherapy) by calculating the Lyapunov
exponents of the non-cancer solution. Finally, our model
was able to reproduce the experimental results obtained
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by Michor and collaborators [12] about the exponential
decline of cancer cells when patients are treated with the
drug glivec.

2. The model

We extend a mathematical model proposed by Baner-
jee and Sarkar [13] including the chemotherapic agent.
The model is based on the predator-prey system. The
T-lymphocyte is the predator, while the tumour cell is the
prey that is being attacked. The predators can be in a
hunting or a resting state. The resting cells do not kill tu-
mour cells, but they can become hunters. The activation
occurs not only due to cytokines released by macrophages
that absorb tumour cells, but also by direct contact be-
tween resting and tumour cells. As a result, the resting
cells suffer a degradation while the hunting cells are ac-
tived. The activated cells do not return to the resting
state. This way, the predator-prey model is a three di-
mensional deterministic system, consisting of tumour cells,
hunting cells, and resting cells. We added the chemothera-
pic agent in the equations as a predator on both cancerous
and lymphocytes cells. The time delay of about 60 days
considered in our model was observed by Balduzzi and col-
laborators [14, 15], when they were realising experiments
about lymphoblastic leukaemia. It incorporates many dif-
ferent phenomena in the system. It is one order of mag-
nitude larger than the one observed in Ref. [16]. In our
model, the time delay represents the total time interval for
cancer cells to be identified by T-cell receptors and trans-
fer this information to the killer cells, and the time related
to the process of cytolytic information in the resting cells
[16, 17]. The model is then given by

dC(t)

dt
= q1C(t)

(

1−
C(t)

K1

)

− α1C(t)H(t)

−
p1C(t)

a1 + C(t)
Z(t),

dH(t)
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= β1H(t)R(t− τ)− d1H(t)− α2C(t)H(t)

−
p2H(t)

a2 +H(t)
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dR(t)
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= q2R(t)

(
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R(t)

K2

)

− β1H(t)R(t− τ)

−
p3R(t)

a3 +R(t)
Z(t),

dZ(t)

dt
= ∆−

(

ξ +
g1C(t)

a1 + C(t)
+

g2H(t)

a2 +H(t)

+
g3R(t)

a3 +R(t)

)

Z(t), (1)

where C, H and R are the number of cancerous, hunt-
ing and resting cells, respectively, t is the time and Z is
the concentration of the chemotherapic agent. The can-
cerous and resting cells have a logistic growth. The term

−d1H(t) represents the natural death of the hunting cells.
The terms −α1C(t)H(t) and α2C(t)H(t) are the losses
due to encounters between the cancerous and hunting cells.
The term β1H(t)R(t−τ) is associated with the conversion
of resting to hunting state, where τ is the delay in the con-
version. The terms with Z correspond to interaction of the
chemotherapic agent with the cells.

Table 1 shows the parameters obtained from the lit-
erature, according to experimental evidence, and Table 2
shows the definition of some of the parameters. Table 3
presents the values that we consider in our simulations for
the sake of numerical integration.

Table 1: Parameters according to experimental evidence.

Parameter Definition Value Ref.

q1 growth rate of malig-

nant tumour cells

0.18 day−1 [18]

K1 carrying capacity of

tumour cells

5 x 106 cells [18]

α1 decay rate of tumour 1.101 x 10−7 [19]

cells by hunting cells cells−1 day−1

α2 decay rate of hunting 3.422 x 10−10 [19]

cells by tumour cells cells−1 day−1

d1 death rate of hunting

cells

0.0412 day−1 [19]

q2 growth rate of resting

cells

0.0245 day−1 [6]

τ time delay in conver-

sion from resting cells

to hunting cells

45.6 day [6]

K2 carrying capacity of

resting cells

1 x 107 cells [6]

β1 conversion rate from 6.2 x 10−9 [19]

resting to hunting cells cells−1 day−1

Table 2: Parameters according to the literature.

Parameter Definition Ref.

pi predation coefficients of chemotherapic [11]

agent on cells (C, H, R)

ai determine the rate at which C, H, R, [11]

in the absence of competition and

predation, reach carrying capacities

gi represent the combination rates of the [11]

chemotherapic agent with the cells

∆ represents the infusion rate [11]

of chemotherapy

ξ washout rate of chemotherapy [11]

Introducing the following dimensionless variables

t̄ =
t

day
, C̄ =

C

KT

, H̄ =
H

KT

,

R̄ =
R

KT

, Z̄ =
Z

∆M ξ−1
, (2)

where KT = K1 + K2 is the total carrying capacity and
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∆M is equal 1 mg m−2day−1. Combining (2) with (1),
and relabelling the variables {t̄, C̄, H̄, R̄, Z̄} as t, C, H,
R, Z, respectively, and the parameters {q̄1, K̄1, ᾱ1, p̄1, ḡ1,
ā1, β̄1, d̄1, ᾱ2, p̄2, ḡ2, ā2, q̄2, K̄2, p̄3, ḡ3, ā3, ∆̄, ξ̄} as {q1,
K1, α1, p1, g1, a1, β1, d1, α2, p2, g2, a2, q2, K2, p3, g3, a3,
∆, ξ}, respectively, we obtain the same equations for C,
H and R. However, the equation for Z presents a small
alteration,

dZ(t)

dt
= ∆ξ −

(

ξ +
g1C(t)

a1 + C(t)
+

g2H(t)

a2 +H(t)

+
g3R(t)

a3 +R(t)

)

Z(t), (3)

where we consider

q̄1 = q1 day, ᾱ1 = α1KT day, K̄1 =
K1

KT

,

p̄1 =
p1 ∆M day

KT ξ
, ā1 =

a1
KT

, β̄1 = β1KT day,

d̄1 = d1 day, ᾱ2 = α2KT day, ḡ1 = g1 day,

ḡ2 = g2 day, ḡ3 = g3day, p̄2 =
p2 ∆M day

KT ξ
,

ā2 =
a2
KT

, K̄2 =
K2

KT

, p̄3 =
p3 ∆Mday

KT ξ
, (4)

ā3 =
a3
KT

, ∆̄ =
∆

∆M

, q̄2 = q2 day, ξ̄ = ξ day.

Table 3: Dimensionless parameters.

Parameter Value Parameter Value

q1 0.18 K1 1/3

α1 1.6515 α2 5.133 x 10−3

d1 0.0412 q2 0.0245

τ 45.6 K2 2/3

β1 9.3 x 10−2 p1 1 x 10−3

p2 1 x 10−3 p3 1 x 10−3

a1 1 x 10−4 a2 1 x 10−4

a3 1 x 10−4 g1 0.1

g2 0.1 g3 0.1

∆ 0 - 104 ξ 0.2

3. Continuous chemotherapy

In this section we consider the continuous application
of chemotherapy, without pause or interruption. That is,
the value of the ∆ is constant in time.

3.1. Cancer suppression

We consider the following initial conditions: C0 = 0.18,
H0 = 0.01, R0 = 0.48 and Z0 = 0. These initial condi-
tions are in the limit cycle region of the model solution.
The periodic behaviour implies that the tumor levels oscil-
late around a fixed point, a clinically observed behaviour
known as Jeff’s phenomenon. One cancer cell in the model

Figure 1: (Color online) Time evolution of the dimensionless quan-
tities according to the model (2) using (3). (a) Continuous infusion
rate of chemotherapy, (b) ∆ = 0.02 and (c) cancer suppression con-
sidering ∆ = 0.025. The red line represents the cancerous cells, black
line the hunter cells and blue line the resting cells.

(1) is equal to 66× 10−9 in the dimensionless model. Our
main aim is to find parameters that make the chemother-
apy successfully suppress cancer, but that preserves the
lymphocytes population.

Figure 1 displays the time evolution of the dimension-
less quantities and variables. Figure 1(a) shows the be-
haviour of the infusion rate of chemotherapy. For ∆ = 0.02
[Fig. 1(b)] there is no cancerous suppression and the sys-
tem presents stable oscillatory behaviour. If we increase
the value of ∆ to 0.025 [Fig. 1(c)], the system may present
cancerous suppression without the disappearance of lym-
phocytes. However, for larger ∆, not only the cancer cells,
but also lymphocytes disappear. To obtain a global pic-
ture of the parameters leading to different behaviour of our
model, we construct the parameter space shown in Figure
2, for the parameters ∆ and the predation coefficient of
chemotherapy, p1. For p1 = 0 the rate of cancer cells pro-
liferation is unaffected by the chemotherapic agent. This
case may be interpreted as the use of inappropriated drugs
or mechanisms related to drug resistance. When p1 is not
null, there is drug-induced killing of cancer cells. These
parameters are important due to the fact that they are di-
rectly related to the chemotherapy used in the treatment
of cancer. We can identify three behaviours in this pa-
rameter space. In the white region there are cancer cells.
The suppression of cancer occurs for the parameters in
the black region. The grey region presents an undesired
situation, the suppression of lymphocytes. Therefore, we
observe that it is possible to achieve cancerous suppression
by increasing infusion rate of the chemotherapy to a high
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Figure 2: Parameter space p1 versus ∆: the white region represents
parameters that lead to the existence of cancer cells, the black re-
gion to cancer suppression, and the grey region to the disappearance
of the cancer cells and lymphocytes. We consider the continuous
application of chemotherapy, without pause or interruption.

enough value, but the threshold depends on the value of
p1. For the parameters ∆ and p1 in the black region the
number of malignant tumour cells goes to zero preserving
the immune cells. When the number of cancer cells is zero,
the treatment can stop and the tumour will not return.

3.2. Lyapunov exponents

To verify whether the suppression of cancer (C = 0) is
stable, that is, the cancer will not return after its elimi-
nation, we calculate the spectra of Lyapunov exponents of
our model with time delay. We present only the values of
the two largest Lyapunov exponents λi(t) (i = 1, 2) at time
t. We are interested in the maximal value of λi(t). Firstly,
we use a value of ∆ = 0.01, in that the therapy does not
eliminate the cancer. In this case, the system oscillates
in a stable limit cycle (Fig. 3a). The largest Lyapunov
exponent is about 0 and the second largest negative. To
determine that no cancer is an unstable solution of the
model, we calculate the conditional Lyapunov exponents
of the whole system but requiring the trajectory to lie in
the subspace C = 0. We obtain one positive Lyapunov
exponent [20], which must be associated with the stability
in this subspace since the Lyapunov exponents of the 3D
reduced version of our model in (3), without the variable
for C, are all negative. In other words, if ∆ = 0.01, cancer
will certainly not be eliminated.

For ∆ = 0.025, not only the cancer can be eliminated,
but also the dynamics in the subspace C = 0 is stable.
Figure 3(b) shows that the behaviour of the system is a
limit cycle. The result of the two largest Lyapunov expo-
nents for the case ∆ = 0.025 is given in Figure 3(c). The
maximum values λ1(t) and λ2(t), for t > 4400, are 0.0015
and -0.0001. Notice that this is only an upper bound for
the real value and it indicates that the real value, what-
ever it is, needs necessarily to be smaller than 0.0015, a
small number that we interpret as being 0, as required for
a limit cycle.
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Figure 3: Phase space plot for the variables R and H, where the
filled points is a Poincare map of the maximal values for the variable
H. We consider the parameters according to Table 3, (a) ∆ = 0.01
and (b) ∆ = 0.025. (c) Time evolution for the two largest Lyapunov
considering ∆ = 0.025.

4. Pulsed chemotherapy

Often chemotherapy treatments are carried out in cy-
cles. The repeated application of drugs for a short time is a
typical protocol for chemotherapy, called pulsed chemother-
apy [21]. For example, in this protocol, one may use the
drug doxorubicin combined with other drugs to treat some
types of cancer. The chemotherapy with these drugs is
given through cycles of treatment according to the type of
cancer [22].

In the following, we will consider two clinical protocols
for the chemotherapy with respect to their dependence on
the rate ∆. One protocol is to administer the drug at a
constant ∆ and the other for two values of this rate (∆1

and ∆2), both of which have been applied with a deter-
mined period P between two chemotherapic sessions. Our
aim is to obtain the cancer suppression, while preserving
the lymphocytes.

4.1. First protocol

Figure 4(a) exhibits the drug injection pattern for the
first protocol. When ∆ = 0.2, P = 10, and parameters
in Table 3, the tumour cell population does not vanish, as
depicted in Figure 4(b). However, considering the same
period P , it is possible to obtain cancer suppression for
∆ = 0.3 (Fig. 4c).

The drugs have specific protocols of application accord-
ing to the type of tumour. For this reason we study the
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Figure 4: (Color online) (a)∆ versus t, where ∆ is not zero when the
drug is applied with a period equal to 10 (P = 10) with (b) ∆ = 0.2
and (c) ∆ = 0.3.

period of the drug injection. Figure 5 exhibits the time
interval P of the pulsed chemotherapy, where the points
are used to denote the minimum value of the rate ∆ in
which the cancer suppression occurs. When P increases,
it is necessary to increase the intensity of the chemother-
apy to obtain cancer suppression. As a matter of fact, the
infusion rate versus the period shows a linear increase with
the critical value of ∆ as P grows, ∆c(P ) ∼ P .

To verify the effect of the period on the behaviour of
our model, we show the parameter space in Fig. 6, simi-
lar to the one shown in Figure 2, but considering pulsed
chemotherapy with a period equal to 10. We also see
the three behaviours: white regions represent parameters
that lead to cancer, black regions represent parameters
that lead to the suppression of cancer, and the grey re-

Figure 5: ∆ versus P , where the points represent the minimum value
of ∆ for a given P to occur the cancer suppression.

Figure 6: Parameter space p1 versus ∆: the white region represents
parameters that lead to the existence of cancer cells, the black region
to cancer suppression, and the grey region to the disappearance of
the cancer cells and lymphocytes. The drug is applied with a period
equal to 10 (P = 10).

gion represent parameters that lead to the suppression of
lymphocytes. Therefore, it is still possible to obtain a
successful chemotherapy. However, the threshold of val-
ues of p1 and ∆ leading to a successful chemotherapy are
larger in the pulsed chemotherapy with P = 10, then these
threshold values for a continuous chemotherapy. This is a
realistic behaviour observed in treatments that prescribe
chemotherapic drugs in a continuous or pulsed way.

4.2. Second protocol

Another case for the pulsed chemotherapy consists in
infusions of drugs with different concentrations and peri-
ods. There is recent research about the successful rate of
each type of pulsed chemotherapy [10]. For instance, the
treatment for colon cancer adding oxaliplatin to bolus, flu-
orouracil mixed with leucovorin has been used with differ-
ent infusion rates [10]. Due to clinical treatment described
in the literature, we consider ∆ to oscillate between two
values.

Figure 7(a) shows the drug injection pattern with ∆1 =
0.3, ∆2 = 0.1, and P = 10. For these values of ∆ the
cancer cells do not disappear but they oscillate at regular
intervals (Fig. 7b). On the other hand, fixing ∆1 and
increasing ∆2 the cancer is suppressed, as can be observed
in Figure 7(c).

When the infusion rate is constant and chemotherapy
sessions are periodically repeated, the cancer suppression
depends on the time interval P . For this reason we fix ∆1

and vary P and ∆2 that results in the successful treat-
ment of cancer. As a result, we see in Figure 8, the lines
represent the minimal values of ∆2 for a given P that lead
to cancer suppression. The circles are for ∆1 = 0.212 and
the squares are for ∆1 = 0.3. Fixing ∆2 and varying ∆1,
we obtain the same result.

Through the Figure 5 and Figure 8, we can see a linear
relation between ∆ and P . Defining the frequency as f =
1/P , the infusion rate versus the frequency will show a
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Figure 7: (Color online) (a) ∆ versus t, where ∆1 = 0.3 and ∆2 =
0.1. (b) Time evolution according to model (3) with period equal 10,
∆1 = 0.3 and ∆2 = 0.1. (c) Applications of P = 10 with ∆1 = 0.3
and ∆2 = 0.15.

linear decreases with the critical value of ∆ as f decreases,
∆c(f) ∼ f−1. This way, when tuning the frequency, the
value of the rate ∆ in that the cancer suppression occurs
is altered.

The drug Diethylstilbestrol to prostate cancer can be
used in treatment by continuous or pulsed chemotherapy.
In a continuous treatment may be administered 50 mg
(oral) per day, every day, while in a pulsed treatment
this drug may be administered 500 mg (infusion) once
per week, many weeks. Comparing, we can see that the
value of the pulsed is ten times the value of the continu-
ous. Then, the values that we used are in accordance with
realistic values.

4.3. Exponential decline of cancer cells

Michor and collaborators [12] analysed 169 chronic mye-
loid leukaemia patients, a cancer of the white blood cell, or
leukocytes. They studied the dynamics of different treat-
ment responses to tyrosine kinase inhibitor imatinib, which
is also known as glivec. The imatinib is used to treat some
types of leukaemia and soft tissue sarcoma. The treatment
with this drug causes the death of cancer cells by inhibit-
ing the signals exchanged by the cancer cells responsible
to produce the growth and the division of the cancer cells.

In Ref. [12] was showed that a successful therapy us-
ing imatinib leads to a biphasis exponential decline of
leukaemic cells in time. The value of the first slope (quanti-
fying the exponential time decay rate of cancer cells) is ap-
proximately −0.05, and represents the death of leukaemic
differentiated cells. The second slope is around −0.008,
and is due to the death of leukaemic progenitors. If the

8 12 16
P

0

0.25

0.50

∆ 2

Figure 8: ∆2 versus P , where the lines correspond to cancer sup-
pression. ∆1 = 0.212 is for circles and ∆1 = 0.3 for squares.
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Figure 9: (Color online) Time evolution of the dimensionless quantity
C according to the model (2) using (3), where we consider P = 10
and ∆ = 0.3. The value of the first slope is −0.06 (black line), the
second is −0.005 (blue line), and the third is 0.08 (green line).

imatinib therapy is interruped the slope is approximately
0.09. Without imatinib the differentiated leukaemic cells
arise from leukaemic stem cells. Figure 9 shows the slopes
obtained through the model (2). We consider P = 10,
∆ = 0.3, and two values for p1. We use for the time inter-
val 0 < t ≤ 175 that produces the first slope (black line)
p1 = 0.001, and for the time interval 175 < t ≤ 300 that
produces the second slope (blue line) p1 = 0.0009. For
t > 300, time interval that produces the third slope (green
line) there is not chemotherapy. As a result, we obtain
the slopes −0.06, −0.005, and 0.08, which are remarkably
similar with the slopes obtained in Ref. [12].

In our model, the case without therapy can be sim-
ulated by setting the parameter pi equal to zero. This
parameter can be also used to simulate a case where the
cancer cells become resistante to the drug. The leukaemic
cells may present resistance to imatinib therapy. Resis-
tance can be modelled decreasing the effect of chemother-
apy to cancer cells (i.e., decreasing p1), while leaving the
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effect on immune cells constant (maintaining p2 and p3).

5. Conclusions

We propose a delay differential equations model for the
evolution of cancer under the attack of both the immune
system and chemotherapy. The novelty in this model is the
introduction of the chemotherapy and the adjustment of
parameters according to recent experimental evidence. We
considered some types of protocols aiming at the cancer
suppression.

We studied a continuous administration of drugs. The
solutions of the system are stable, presenting a limit cycle
behaviour. We identified domains of cancer suppression
for a wide parameter range of the predation coefficient p1
of the chemotherapic agent and of the continuous infusion
rate of chemotherapy, ∆. Our main results in this session
was to show that (i) p1 and ∆ that lead to a successful
cancer treatment (elimination of cancer cells) are inversely
related; (ii) too large values of p1 and ∆ eliminate cancer
but also eliminate the lymphocytes.

The success of the chemotherapic treatment is highly
dependent on the values of the parameters p1 and ∆, re-
sponsible for the interactions between the tumour and the
drug. By varying p1 we were able to obtain the biphasic
exponential decline observed in chronic myeloid leukaemia
[12]. Moreover, the variation of p1 permits to simulate
cases in which the tumour develops drug resistance.

We examined the behaviour of the cancer cells with
pulsed chemotherapy and its dependence on the chemo-
therapic dosing regime. We verified the possibility of can-
cer suppression through two clinical protocols. In fact,
we investigated infusions of drugs with equal and different
concentrations. The protocol with different concentrations
is more used in the case of drug combination. Our results
enabled us to predict the values of the relevant param-
eters for cancer suppression through protocols related to
the treatment of ill people.

Acknowledgements

This study was partially supported by the following
Brazilian Government Agencies: CNPq, CAPES, FAPESP
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