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Abstract 

In this study we use a novel approach to quantitatively investigate mechanical and 

interfacial properties of clonal β-cells using AFM-Single Cell Force Spectroscopy 

(SCFS). MIN6 cells were incubated for 48hrs with 0.5mM Ca2+ ± the calcimimetic R568 

(1μM). AFM-SCFS adhesion and indentation experiments were performed by using 

modified tipless cantilevers. Hertz contact model was applied to analyse force-

displacement (F-d) curves for determining elastic or Young's modulus (E). Our results 

show CaSR-evoked increases in cell-to-cell adhesion parameters and E modulus of 

single cells, demonstrating that cytomechanics have profound effects on cell 

adhesion characterization.  

 

Highlights 

 Influence of R568 on cell adhesion and mechanics of single cells are quantitatively 

evaluated.  

 Activation of CaSR increases the adhesive parameters between two cells. 

 Activation of CaSR increases the elasticity of single cells 

 Speed of separation between two attached cells increases adhesive parameters 

 Single cell mechanics contribute to the E-cadherin mediated adhesion 

 

 

 

 

 

 

 

 



Introduction  

The role of the calcium-sensing receptor CaSR in the systemic circulation is to sense 

changes in extracellular Ca2+ and evoke appropriate counter-regulatory responses to regain 

normocalcaemia (Brown, 2007). The functional link between the receptor and regulation of 

systemic calcium in normal physiology and disease has been extensively studied (Brown, 

2007). However, CaSR expression is not restricted to the cells involved in the control of 

systemic Ca2+ (Brown & MacLeod, 2001). It is firmly established that CaSR activation affects 

function in disparate tissue types, including pancreatic beta-cells (Squires et al, 2000; Gray 

et al, 2006; Jones et al, 2007; Kitsou-Mylona et al., 2008).  

Epithelial (E)-cadherin is an surface adhesionprotein involved in tethering adjacent cells and 

ensuring close cell-cell interaction. E-cadherin ligation mediates beta-cell-to-beta-cell 

coupling and regulates intercellular communication within islets (Brereton et al., 2006) A 

study by Rogers et al. (2007) suggested that E-cad mediated cell adhesion contributes to the 

enhanced secretory function of beta-cell clusters. Neutralization of E-cadherin reduced 

glucose-evoked synchronicity in calcium signals between adjacent cells and reduced insulin 

secretion (Rogers et al., 2007). These data imply that E-cadherin mediated cell adhesion 

has important repercussions for the islet function in terms of glucose responsiveness and 

insulin secretion.    

We have previously demonstrated that the activation of CaSR using the calcimimetic R568, 

increased the expression of E-cadherin, which in turn increased functional tethering between 

beta-cells (Hills et al., 2012). In the current study we quantitatively monitored changes in cell 

elasticity induced by activation of the CaSR by the calcimimetic R568. Atomic Force 

Microscopy based Single Cell Force Spectroscopy (AFM-SCFS) was used to perform cell-

cell adhesion and single cell indentation experiments. The SCFS system incorporates an 

improved positioner to allow for longer displacement measurements up to 100μm for 

separating two adherent cells, in a high force resolution (~pN) over a large dynamic range 

(~5pN to ~ 100nN). This system provides sufficient force and displacement ranges to ensure 



accurate detection of maximum unbinding force of ligand-receptor interactions in cell-to-cell 

adhesion measurement (Puech et al., 2006; Franz et al., 2007; Helenius et al., 2008). The 

instrument was also fitted with a spherical bead-attached cantilever beam to indent single 

cells and thereby calculate cell elasticity, i.e. Young’s modulus, from the measured force-

displacement curves using a simplified model (Vinckier & Semenza, 1998). The novel use of 

this improved AFM-SCFS system permits us to examine cellular adhesion, tethering of cells 

and cell elasticity and more importantly to elucidate the intricate interplay between these 

factors. 

  



Materials and Methods 

Materials 

MIN6 cells were obtained from Dr. Y. Oka and J-I. Miyazaki (Univ. of Tokyo, Japan). 

Fibronectin, Dulbecco’s Modified Eagles Medium (DMEM), Hams-F12, glutamine, penicillin-

streptomycin and phosphate buffered saline (PBS) were from Sigma-Aldrich (Poole, Dorset, 

UK). The calcimimetic R568 was from Amgen Inc. (Thousand Oaks, CA, USA). Tissue 

culture plastic-ware was from Invitrogen Life Technologies (Paisley, UK).  

Maintenance of MIN6 cells 

MIN6 cells (passage 35-40) were maintained at 37C in a humidified atmosphere of 5% CO2 

in air in DMEM supplemented with 15% FCS, glutamine (2mM) and penicillin/streptomycin 

(100U/ml/0.1mg/ml). Prior to treatment, cells were seeded onto 40mm petri-dishes and 

serum starved overnight. Cells were then placed for 48hrs in DMEM containing both low 

glucose (5mM) and low calcium (0.5mM) +/- the calcimimetic R568 (1M) (Hills et al., 2012). 

Suspended (free) cells were prepared under identical conditions before being physically 

scrapped off the T25 flasks with gentle agitation and re-suspended in fresh DMEM. 

 

Atomic Force Microscopy 

Experiments were performed using the CellHesion®200 module (JPK Instruments,  

Germany) installed on an Eclipse TE 300 inverted microscope (Nikon, USA). During each 

experiment, cells were maintained at 37°C using a BioCell™ temperature controller (JPK 

Instruments, Berlin, Germany). All experiments were performed in CO2 - independent media. 

Phase microscopy images were acquired using a CCD camera connected on the side port of 

the microscope. The entire set-up was supported on an anti-vibration table (TMC 63-530, 

USA).  



Tip-less silicon nitride cantilevers (Arrow TL-1, NanoWorld, Switzerland), with force constant 

0.03N/m, were used for conducting cell-to-cell adhesion and single cell indentation 

experiments. The actual spring constant of the cantilever was determined before 

experiments by using the manufacturer’s software (JPK instruments, Germany) based on the 

thermal noise method (Hutter & Bechhoefer, 1993).  Since the resonance of soft cantilevers 

in fluid is much lower and very susceptible to noise a correction factor of 0.251 was used 

(Butt & Jaschke, 1995). 

  

Cell-cell adhesion experiments 

The tip-less cantilevers were chemically functionalized for a single suspended cell to be 

attached. Initially the cantilevers were sterilised by UV treatment (15mins), before being 

incubated in poly-L-lysine (25μg/ml in PBS, 30mins, RT) and then fibronectin (20μg/ml in 

PBS, 2h, 37°C) (Hills et al., 2013). After functionalization cantilevers were stored in PBS 

solution at 4°C and used within 3 days. To record a force curve for calibration, the cantilever 

was configured to approach the base of a cell-free petri-dish once to minimize the loss of 

coating (set-point 2V). Suspended cells were dispensed into the petri dish using a pipette. 

Free cells stick on the substrate within 5min, hence the cell-cantilever attachment procedure 

was performed rapidly (2min). With the aid of optical microscope the cantilever was pressed 

against a single free cell by performing a force curve. The set-point force and contact time 

was 0.5nN and 5secs respectively. During the contact period, the instrument was set in a 

constant force mode, in which force is kept constant by adjustments of the piezo-actuator 

height. Once a single cell was attached to the cantilever, it was left to recover for at least 5 

mins to form strong binding with the functionalized surface (Friedrichs et al., 2010). Figure 1 

shows a single cell attached to fibronectin coated cantilever.    

The cantilever-attached cell was brought in contact with another cell adhering on the 

substrate, until a preset contact force of 0.8nN was reached. The cells remained in contact 

for 5secs, in which surface bonding was formed. Next, the cantilever was retracted and force 



versus displacement measured until the two cells were completely separated. The procedure 

was repeated three times for each cell tested, with 30s intervals between each procedure. 

The attached cell was used to perform measurements on approximately 3-5 cells for each 

dish, using multiple dishes from at least 3 separate samples of cells in each experiment 

(n=3). An applied force of 0.8nN and contact time of 5 secs was selected to enable complete 

separation between cells under 5μm/secs speed (Hills et al.,2012). 

Cell Indentation Experiments  

Using a small amount of two-part fast setting epoxy glue (5mins), colloidal probes were 

prepared by gluing an 11μm polystyrene microsphere (Polybeads ®, Polysciences, USA) on 

a tipless TL-1 cantilever. The attachment procedure was performed on the stage of AFM 

with the aid of the inverted optical microscope. The microsphere was attached immediately 

by performing an approach curve directly above the sphere. Figure 2 shows optical images 

of polymeric bead attached to a tipless cantilever.  

Each substrate cell was indented 5 times with an interval pause of 60secs, while force-

displacement (F-D) curves were recorded simultaneously. For consistency, all cells were 

indented immediately above the nucleus. To determine height of the cell, approach curves 

with low set-point (0.2nN) were performed in the area surrounding the cell and on its surface. 

The height of each cell was calculated by their displacement difference, as illustrated in 

Figure 2b. Since, the indentation depth was pre-determined for each cell, indentation 

experiments were performed to measure the force-displacement curves up to the pre-set 

indentation depth, according to the height measurement of the cell. Approach and retraction 

speed was kept constant at 5μm/sec to minimize hydrodynamic forces acting on the 

cantilever (Franz & Puech, 2008). 

 

 



Theoretical model 

Force-displacement curves acquired by indentation experiments were analyzed using Hertz 

model. When a cell is indented by a spherical probe, the force F applied on the cell was 

determined as function of  indentation depth δ as follows, 

 

(eq.1) 

 

                                                                                                       (eq.2)   

where E and v are the Young’s Modulus and  Poisson’s ratio of the cell respectively, α is the 

radius of probe-cell contact circle, and RS is the radius of the spherical probe. 

The Hertz model is only valid for indentations up to 10% of the samples height, where 

substrate effects are considered insignificant (Dimitriadis et al., 2002). To meet such a 

criterion, all the force-displacement curves obtained from cell indentation experiments were 

fitted in the range of 5-10% of the height of each cell. The Poisson’s ration was set to 0.5 in 

the study and since this value is generally accepted for soft biological cells (Mahaffy et al., 

2004)  

 

Data analysis 

To process all force-displacement curves the JPK Data analysis software was used. To 

signify statistical differences data were evaluated using a paired t-test. Data are expressed 

as mean ± SEM and 'n' shows number of experiments. P<0.05 was taken to indicate 

statistical significance.   

  



















 S

S

SS aR
aR

aRRaE
F ln

21

22

2

aR

aRa

S

S




 ln

2




Results  

A few sets of measurements were performed to confirm the selected the parameters for 

adhesion measurements. Using identical experimental specifications 10-12 cells were 

examined and the results are shown in Figure 3. Retraction force-displacement (F-d) curves 

provide important information regarding the adhesion between two cells, such as the energy 

of detachment WD, the maximum unbinding force Fmax, the distance of complete separation 

ds and the number of tethering rupture events (TREs) (Figure 3a). The determination of the 

point at which the cells are completely separated represents the x-axis baseline, which acts 

as a reference for further analysis. The unbinding force is the force required to break the 

ligation bonding between E-cadherin on coupled cells, whilst the energy of detachment is the 

total energy that is consumed until the two cells are completely detached. The pulling length 

from the highest negative deflection of the cantilever and the point of complete separation 

represents the distance of complete separation ds between two cells. Retraction F-d curves 

acquired during cell-to-cell adhesion experiments typically exhibit a step-like pattern that is 

resulted from the rupture of surface ligations. In the early part of the retraction curve complex 

unbinding events occur ('j' events), while as the pulling distance increases a plateau in the 

displacement indicates that membrane tethering extrudes rupture of ligation ('t' events).  

(Friedrichs et al., 2010). The results indicate that the calcimimetic R568 (1μM) increased the 

number of tether rupture events by 48%, resulting in an increase of the maximum unbinding 

force by 30%. However, the detachment energy was increased more significantly by 39%, 

consistent with the detachment distance increasing by 37% (10-12 cells, n=3, p<0.001) 

(Figure 3b-e).  

A typical indentation F-d curve for investigating the elastic properties of single cells is shown 

in figure 4a. By applying the Hertz model for elastic indentation to F-d curves recorded 

during indentation, information about the local elastic or Young’s modulus (E) was extracted. 

The contact point is defined as the point where cantilever deflection starts to rise and in fact 

accurate determination of the contact point is crucial for a reliable calculation of the elastic 



modulus. By fitting discrete parts of the extension curve to the model, the point where the 

probe is in contact with the plasma membrane can be identified. Figure 4b shows a 

histogram of elastic modulus E obtained from the F-d curve measurements of cells 

measured on a central region above the nucleus. More than 100 curves were analysed and 

the average calculated value of E for the control cells is 503 Pa while for the treated cells is 

331 Pa. The results indicate that the calcimimetic R568 (1μΜ) decreased the elastic 

modulus by 34% (30 cells, n=3, p<0.001) (Figure 5). 

To further assess the effects of viscoelastic deformation on cell-to-cell adhesion, F-d curves 

were performed with incremental speed. Figure 6a illustrates the effects of increasing pulling 

velocities to the retraction curve. Due to the soft nature of the cells, date were analysed up to 

speed of 12.5μm/sec, since a significantly higher displacement range than 100μm was 

required for higher velocities. The results demonstrate a tenfold increase of the WD in 

comparison to the Fmax as the pulling speed increases, up to the pulling distance of 100μm 

(10-12 cells, n=3) (Figure 5b, c). The decrease of number of TREs for a displacement range 

of 30μm after Fmax was two times higher for the cells treated with the calcimimetic in 

comparison to the untreated. 

  



Discusion 

The most characterised cell adhesion protein is E-cadherin (Perez-Moreno et al., 2003). 

Extracellular calcium promotes the interaction between the extracellular domains of E-

cadherin on adjacent cells, whilst the intracellular domain of the trans-membrane protein 

binds to β-catenin, α-catenin and the actin cytoskeleton. Ligation of E-cadherin to a partner 

protein on an adjacent cell, stimulates other down-stream cytoskeletal-binding proteins 

including the phosphoinositide 3-kinase PI3K (Vaezi et al, 2002). In keratinocytes it was 

suggested that the CaSR was involved in regulating calcium stimulated formation of the E-

cadherin complex (Tu et al, 2008).  Our previous results suggest that the activation of the 

receptor improves β-cell function by increasing cell adhesiveness through enhanced 

expression of E- cadherin and via PI3K-dependent cytoskeletal reorganisation (Hills et al., 

2012). Under appropriate conditions MIN6 cells grow as 3-dimensional cell clusters known 

as pseudoislets (Hauge-Evans et al., 1999). Analysis of whole cell protein suggested that 

CaSR expression is higher in monolayers compared to pseudoislets (Jones et al., 2007). As 

adhesion and indentation experiments are only possible on monolayers, and due to the fact 

that CaSR expression is greater in this type of cell configuration, all experiments were 

performed on monolayers. 

Surface protein binding affinity was responsible for the increase in Fmax, however our results 

suggest that this was only partially responsible for the increase in WD, which was dominated 

by the changes in the elastic mechanical properties of the cell. An increase in WD could 

mirror changes in the compliance of cells, since WD is partly contributed from the elastic 

deformation of an elastic sphere apart from the adhesion due to surface contact (Johnson & 

Greenwood, 1997). This is clearly demonstrated in this study by the increase in E as well as 

by the dramatic increase of WD when pulling speed was increased. The comparison between 

increasing pulling speeds also suggests that although the surface properties were significant 

for changes in Fmax, changes in the mechanical properties in response to cytoskeleton 

reorganization rather than ligation binding affinity or surface density of E-cadherin, contribute 



to the dramatic changes of the WD. Besides, the increase in Fmax  with increased pulling 

speed could be contributed to the viscoelastic deformation of the surface proteins 

themselves and membrane tethers. Diz-Munoz et al. (2010) measured the dynamics of 

tethering force between the AFM tip and cell membrane, also concluding that the unbinding 

force increased as the separation velocity increased. Both our adhesion and indentation 

measurements clearly suggest that the viscoelastic deformation has a significant influence 

on the adhesion energy between two adherent cells and that cytomechanics contribute to 

the E-cadherin mediated adhesion in our system.      

Conclusion 

In the current study we have investigated the effects of whole cell elasticity under the 

influence of the calcimimetic R568 in the MIN6 clonal β-cell line and we have provided 

quantitative evidence that the mechanical properties of cell have an effect on cell-to-cell 

interaction. Activation of CaSR increases the expression of the surface adhesion protein E-

cadherin (Hills et al., 2012), whilst affects on the intracellular domain of the protein by 

increasing the elasticity of the cell. The changes in the inner mechanical properties of the 

cells had a strong effect on cell-to-cell adhesion energy, mainly due to viscoelastic 

deformation. As a consequence, adhesion parameters were altered not only due to 

biomolecular changes in cell surface expression of E-cadherin, as previously reported, but 

also due to changes in the biomechanical properties of the cell. Therefore, in improving beta 

cell function, activation of CaSR not only increases E-cadherin expression and cell-to-cell 

adhesiveness but it also potentially initiates &/or modulates intracellular signalling of the F-

actin cytoskeleton via the catenins. The net result is a change in the mechanistic behaviour 

of whole cell. 
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Figure Legends: 



 

Figure 1: Phase contrast image of a cell attached to a TL1 arrow tipless cantilever. Width of 

the cantilever (rectangular part): 100μm. Note the laser spot (purple) used for measuring the 

deflection of the cantilever.  

 

                            (a)                                                                   (b) 

Figure 2: (a) An optical image showing the side view of a 10μm silica microsphere attached 

to the end of an arrow TL1 tipless cantilever. (b) An optical image showing the top view of 

the cantilever-bead and MIN6 cells on the substrate. The determination of cell height prior 

indentation experiments is also demonstrated; a low set-point force (0.2nN) was used for the 

AFM cantilever to  touch a point in a clean area, such as B and C, next to a measuring cell, 

A area, and the surface of the cell A. The displacement difference between B (or C) and A 

was used to determine the height of the cell. 
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                                 (d)                                                                              (e)          

Figure 3. (a) Example of a retraction force-distance curve obtained by cell-to-cell adhesion 

measurement. Fmax is the difference between the minimum force value and the baseline, 

while WD (grey region) is the integral of the continuous area under the baseline. ds can be 

determined by the difference between Fmax and the point of complete separation. Unbinding 

of ligations during the pulling phase mainly falls in two areas, those events in which a ramp 

in the deflection of the cantilevers is preceded ('j' events) and those which a deformation of 

membrane tethering is preceded ('t' events). Zooming in the x-axis displays detection of 

early unbinding events. The effects of the calcimimetic R568 (1μM) on (b) the maximum 

unbinding force (increased by 30%), (c) the number of tethering rupture events (increased by 

48%), (d) the work of detachment (increased by 39%) and (e) the distance to complete 

separation (increased by 72%) are shown. Data are expressed as mean ±SEM of 10-12 

cells from 3 separate experiments, where key significances are shown, ***p<0.001.  

 

 

 

 

 

 

 

 



 

                                     

                                          (a)                                                                                (b) 

Figure 4. (a) A typical force displacement curve obtained by a nanoindentation 

measurement. Elasticity can be calculated by fitting Hertz model into the extended part of 

the curve, which is free of any adhesion events. (b) A histogram of elastic modulus E 

obtained from the F-d curve measurements of  MIN6 cells measured on a central region.  
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Figure 5. The effects of calcimimetic R568 (1μM) on the elastic modulus (decreased  by 

54%). Data are expressed as mean ± SEM of at least 30 cells from 3 separate experiments, 

where key significances are shown, ***p<0.001. 
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(e)      

Figure 6. (a) Retraction F-d curves 

acquired by adhesion measurements with incremental pulling speed. Effects of increasing 

pulling speed on (b) maximum unbinding force, (c) work of detachment and (d) number of 

tethering rupture events.  

(*Figure 5b-d alternative appearance as a single figure, please consider which one suits better) 



 

 

 

 

 

 

 

 




