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A B S T R A C T

Renal complications of diabetes can be severe; however, the mechanisms that underlie the development and
progression of diabetic nephropathy are poorly understood. Recent evidence suggests that the serum- and
glucocorticoid-induced kinase-1 (SGK1) may be key to this process. SGK1 expression and function are increased in
models of diabetes, and polymorphisms of the SGK1 gene are associated with type 2 diabetes mellitus. A key regulator of
sodium transport within the renal epithelium of the distal nephron, SGK1 was originally isolated as a glucocorticoid-sensitive
gene that regulated the epithelial sodium channel (ENaC; also known as the sodium channel, non-voltage-gated 1,
SCNN1). It is now apparent that SGK1 modulates sodium reabsorption by a number of sodium transporters/channels
throughout the length of the nephron including the Na+/H+ exchange isoform 3 (NHE3), the Na+Cl2 co-transporter (NCC),
and the Na+/K+-ATPase. In addition, SGK1 is regulated by a diverse range of factors including insulin, glucose, intracellular
calcium, transforming growth factor-b1, flow rate, and osmolality. This brief review examines the evidence supporting an
involvement of SGK1 in diabetic nephropathy and discusses how dysregulated sodium transport may account for the
development of secondary hypertension associated with the condition. Furthermore, the article examines how aberrant
SGK1 expression and activity may be responsible for the cellular changes seen in the damaged nephron.
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INTRODUCTION
Diabetic nephropathy is the most common cause of

endstage renal disease and the requirement for renal

replacement therapy. The condition is characterized

by both structural and functional disturbances includ-

ing renal hypertrophy, fibrosis, altered glomerular

filtration rate, glomerular hypertension, proteinuria,

and systemic hypertension [1–3]. Of the mechanisms

that underlie progressive renal damage, dysregulated

Na+ reabsorption is an area that has received con-

siderable attention and is linked to the development of

hypertension in diabetes. Serum- and glucocorticoid-

induced kinase-1 (SGK1) is one of the key regulators of

Na+ reabsorption in the nephron. In models of diabetic

nephropathy, insulin and glucose have been shown to

stimulate the expression and phosphorylation of

SGK1, and SGK1 polymorphisms are also associated

with type 2 diabetes mellitus (T2DM) [4–8].

Furthermore, in models of T2DM, signaling molecules

upstream of SGK1 including protein kinase C (PKC),

diacylglycerol (DAG), Ca2+, and transforming growth

factor beta (TGF-b), all show increased expression.

This minireview examines SGK1-mediated Na+ reab-

sorption and discusses the consequences of disturbed

SGK1 activity and the consequential rise in Na+

reabsorption, in addition to commenting on the

development of those complications associated with

diabetic nephropathy.

SGK1
The serum and glucocorticoid kinase-1 (SGK1) is a

serine/threonine kinase, originally cloned as an aldos-

terone-responsive gene [9, 10]. A number of other roles of

SGK1 have also been identified including regulation of

apoptosis, ion transport, and cellular differentiation

(reviewed in [11]). Expressed in a variety of tissues

including the kidney, eye, liver, heart, pancreas, skeletal

muscle, and brain, SGK1 expression is regulated through

gene transcription and protein degradation, while

kinase activity is dependent on phosphatidylinositol-3-

kinase (PI3-K) activity and subcellular localization [8,

12–14]. These diverse regulatory mechanisms allow

SGK1 to respond to numerous stimuli via cell-type

specific pathways [15]. Three SGK1 splice variants have

been identified, and it is likely that these also dictate

cell-specific functions [16]. In addition to SGK1, two

closely related isoforms (80% amino acid identity), SGK2

and SGK3, have also been identified [17].
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SGK1 is predominantly localized to the distal region

of the nephron, where it is found in the thick

ascending limb of the loop of Henle, distal convoluted

tubule, and the cortical collecting duct [18]. Present in

the cytosol and co-localized with mitochondria under

basal conditions [19–21], high glucose or serum evokes

a translocation of the kinase to the nucleus [20, 22]. It

is also associated with the Na+/K+-ATPase in the

basolateral membrane [18].

SGK1 and the Regulation of ENaC-mediated

Na+ Transport

Sodium reabsorption is critical in maintaining blood

volume and is central to blood pressure control.

Defects in the regulation of Na+ transport underlie

all of the known inherited forms of hypertension, and

disturbed Na+ transport is likely to be responsible for

the development of secondary hypertension associated

with diabetes [23]. Sodium is reabsorbed along the

entire length of the nephron by a number of apical

transporters [24, 25]. However, it is in the distal

nephron and collecting duct where the fine control of

Na+ reabsorption occurs under the auspices of the

renin–angiotensin–aldosterone system. Key to this

process is the epithelial sodium channel (ENaC). The

ENaC (now also known as sodium channel, non-

voltage-gated 1; SCNN1) is a member of the ENaC/

degenerin gene family [26]. It is an apical amiloride-

sensitive channel that facilitates Na+ transport across

the epithelium in a wide variety of tissues including

renal tubules, distal colon, skin, lungs, and eyes [13,

14, 27]. Although five ENaC subunits have been

cloned, a-, b-, c-, d-, and e-ENaC, the formation of a

functional channel appears to require only the a-, b-,

and c- subunits, although recent studies have high-

lighted additional potential interactions with the d-

subunit [28, 29].

Liddle’s syndrome, an autosomal dominant form of

arterial hypertension characterized by salt sensitivity,

hypokalemia, and low aldosterone and renin levels, is

associated with activating mutations in the b- and c-

subunits of the ENaC [30–32]. In contrast, loss of

function mutations result in pseudohypoaldosteronism

type I (PHA-1), a condition associated with salt

wasting, hyperkalemia, metabolic acidosis, and hypo-

tension [33, 34]. ENaC expression is increased by

glucose, and mineralocorticoid receptor antagonists

are effective in reducing renal damage in models of

type 1 and 2 diabetes [35–37].

Aldosterone-stimulated Na+ reabsorption in the

collecting duct and distal colon occurs by increasing

the rate of Na+ entry through the ENaC [27]. When

aldosterone levels are low, ENaC is reportedly con-

fined to a vesicular pool [38]. It is proposed that the

rapid response to aldosterone indicates that early

responses are dependent on the action of existing

ENaCs. An important regulator of this process is

SGK1. Stimulation of SGK1 by aldosterone causes

phosphorylation of SGK1 at serine 422 and threonine

256 via the two downstream 3-phosphoinositide (PIP3)-

dependent kinases PDK2 and PDK1 [39, 40]. SGK1

then binds to and phosphorylates Nedd4-2 (neural

precursor cell-expressed, developmentally downregu-

lated gene 4 isoform), a ubiquitin ligase that directs

proteasome-mediated degradation of ENaCs and inhi-

bits cell surface expression of ENaCs [41, 42].

Therefore, phosphorylation of Nedd4-2 by SGK1

promotes apical membrane localization of the ENaC,

inhibits ENaC degradation, and stimulates ENaC

transcription [43, 44]. Interestingly, this also induces

ubiquitination and degradation of SGK1 [45]. In the

absence of SGK1, the association of Nedd4-2 and ENaC

induces channel retrieval from the plasma membrane

and subsequent proteasomal degradation (reviewed in

[46]). In Liddle’s syndrome, binding of Nedd4-2 to the

ENaC is impaired [47]. This effect is augmented by

reduced Nedd4-2 protein expression as a consequence

of a low salt diet or raised aldosterone [48].

Genetic variants of the SGK1 gene correlate with

slightly increased blood pressure [49, 50]. However, it is

interesting to note that the effects of SGK1 on salt

wasting and blood pressure are not as severe as seen in

either mineralocorticoid or ENaC mutants [51, 52]. This

may be explained by studies that have indicated that

SGK1–Nedd4-2 interactions are not the sole regulators

of ENaC function. While aldosterone increases SGK1-

mediated Nedd4-2 phosphorylation, it does so to a lesser

extent than SGK1 phosphorylation [53]. Likewise,

studies in SGK1 knockout mice have indicated that

ENaC-mediated changes in blood pressure are not

solely mediated by SGK1 (reviewed in [11]). Under

normal dietary conditions, lack of SGK1 has little effect

on salt or fluid retention. However, when fed a low salt

diet, SGK12/2 mice are unable to retain sufficient Na+

to maintain their blood pressure [54]. Similarly, in

SGK12/2 mice fed a high salt diet, blood pressure was

not increased [55, 56]. More recently, it has been shown

that, in SGK12/2 mice, ENaC processing, but not

activity, is attenuated [57].

SGK1 in the Proximal Tubule

To date, the majority of studies have focused on the

role of SGK in ENaC-mediated Na+ reabsorption in the

collecting duct, and little is known about the role of

SGK in the proximal tubule, a major site of glycemic

injury. The principal route by which Na+ is reabsorbed

in this region of the nephron is through the Na+/H+

exchange isoform 3 (NHE3), and experiments in NHE3

knockout mice have confirmed that it also mediates

blood pressure [58]. Several studies have confirmed

that the expression of NHE3 is stimulated by SGK1 in

response to high glucose [59–61]. In addition, SGK1

has also been shown to increase proximal tubular cell

proliferation and reduce cell apoptosis [62]. These
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effects are, in part, mediated through the epidermal

growth factor receptor (EGFR) [62]. It is known that

the glucose-mediated increased in the synthesis of

angiotensin II in the proximal tubule increases NHE3-

mediated Na+ reabsorption in diabetic nephropathy

[63], and Stevens et al recently demonstrated that this

response is also regulated by SGK1 [63].

SGK1 and Cell Volume Regulation

Renal epithelial cells have developed a range of

mechanisms to regulate osmotically induced cell

volume changes. A volume-regulated isoform of SGK

(hSGK), sensitive to hypertonic cell shrinkage, med-

iates the hyperosmotic induction of SGK1 transcription

[64, 65]. Activation of this pathway in response to

hypertonic cell shrinkage is mediated via p38 mitogen

activated protein kinase (MAPK) with phosphorylated

levels of p38 detected 1–2 h after hyperosmotic induc-

tion [66]. Furthermore, application of pharmacological

inhibitors of p38 MAPK significantly reduced the

induction of SGK1 expression in response to hyperto-

nicity [65]. Glucosuria will result in an osmotic diuresis,

leading to high urine flow, and hyperosmotic urine will

cause cell shrinkage of renal epithelial cells. These

changes activate SGK1, increasing ENaC-mediated Na+

reabsorption, water uptake, and chloride channel

expression, thereby restoring cell volume [66, 67].

SGK1 also alters the expression and insertion of the

glucose transporters, GLUT1 and SGLT1, into cell

membranes and increases glucose transport [59, 68–

70]. Metabolism of intracellular glucose to sorbitol will

increase intracellular osmolarity [71]. Likewise, it has

been shown that SGK1 stabilizes the myo-inositol

transporter (SMIT1) in the plasma membrane [72]. The

accumulation of myo-inositol and sorbitol will instigate

an osmotic cell volume increase, which would in turn

initiate a Ca2+-dependent cell volume decrease. This is

likely to be mediated by increased TRPV4 (a mechan-

osensitive transient receptor potential channel), a Ca2+-

permeable channel that responds to numerous stimuli

including increased flow and cell swelling and initiates

a concomitant reduction in SGK1 activity [73, 74].

Elevated levels of cytosolic calcium in proximal and

distal tubular cells have been linked to hyperglycemia

[20, 75, 76], and cell swelling in the proximal tubule is

also associated with increased intracellular Ca2+ [77].

Mechanical stimulation (a surrogate form of osmotic

stress) of cells of the human collecting duct (HCD

cells) evokes a rapid, TRPV4-mediated increase in

[Ca2+]i, which propagates to adjacent cells via gap

junctions [76]. This response counteracts the hyper-

osmotic induction of SGK. However, in diabetes,

sustained expression of SGK1 and TRPV4 may com-

promise this counter-regulatory mechanism. A rise in

[Ca2+]i from constitutive TRPV4 action will further

induce both SGK1 and a-ENaC expression, exacerbat-

ing aberrant renal Na+ handling.

SGK1 and TGF-b1

The molecular and cellular events that give rise to

both structural and functional complications of dia-

betic nephropathy include the release of a number of

different growth factors and cytokines. Among these

regulators is transforming growth factor beta (TGF-b).

A ubiquitous cytokine that has a broad spectrum of

biological functions in a variety of cell types, of the

three TGF-b isoforms (b1, b2, and b3), TGF-b1 is

thought to be the principal mediator of diabetic

complications [78–82]. TGF-b1 initiates its cellular

response by binding to its distinct receptor, TGF-b
receptor II (TbRII), which activates the TbRI kinase

prior to phosphorylation of the receptor-regulated

Smads (R-Smads). Activated R-Smads form oligomeric

complexes with the common Smad (Co-Smad). These

oligomeric complexes then translocate into the

nucleus, where they may regulate gene transcription

by binding to DNA directly and acting as transcrip-

tional activators [83]. Alternatively, they may associ-

ate with nuclear transcription factors such as AP-1

[84]. In many cell lines, TGF-b1 positively regulates its

own expression [85]. Autoinduction of TGF-b1 tran-

scription appears to be mediated through binding of an

AP-1 complex to the TGF-b1 promoter [84].

Increased expression of TGF-b1 and its receptor has

been described in experimental models of renal disease

including membranous nephropathy, obstructive

nephropathy, and diabetic nephropathy [20, 86]. In

both human and experimental diabetes, TGF-b1 gene

expression and protein secretion are increased [87].

The resultant phenotypic and morphological changes

arising from this maladaptive TGF-b signaling con-

tribute to the development of renal fibrosis and the

formation of the fibrotic scar, complications that have

recently been shown to be reversed by the exogenous

application of C-peptide, a cleavage product of the pro-

insulin molecule that has numerous renoprotective

effects [88–90]. The increased levels of TGF-b1

observed in hyperglycemia arise from the activation

of key signaling molecules whose expression is

promoted in response to high circulating glucose

levels. These include UDP-N-acetylglucosamine,

PKC, and members of the MAPK pathway. Although

the downstream targets of TGF-b1, which mediate the

pathophysiology of diabetic nephropathy, remain

largely elusive, the cell hypertrophy observed in

response to these elevated levels of circulating TGF-

b1 may in part be mediated by induction of SGK1. A

downstream target of TGF-b1, SGK1 has been shown to

be transcriptionally upregulated by TGF-b1 in various

cell types [5, 20, 91, 92]. Furthermore, both exhibit

elevated levels of expression in response to high

glucose [20]. Studies have demonstrated that augmen-

ted SGK1 expression in response to exogenous TGF-b1

is negated in the presence of a p38 MAPK inhibitor

[91]. This would suggest that activation of SGK1

Asia-Pacific Journal of Endocrinology jen202339.3d 10/9/09 18:46:43
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 9.0.225/W (Oct 13 2006)

www.slm-apjoe.com 3 APJOE 2009; 000:(000). Month 2009



transcription via TGF-b1 is mediated by, and reliant

on, activation of the p38 MAPK signaling pathway.

Activation of SGK1 via p38 MAPK occurs as a result

of cross-talk between the TGF-b1 Smad signaling

pathway and the MAPK signaling cascade, thus

suggesting synergy between the induction of SGK1 in

response to either TGF-b1 or hyperosmotic stress [65].

In addition, in the collecting duct, both mechanical

and glucose-evoked increases in cell–cell communica-

tion are TGF-b1 dependent [93]. The ability of TGF-b1

to function as a key transcriptional regulator of SGK1

has led to its implication as a signaling component

whose enhanced expression may exacerbate the cell

hypertrophy associated with the constitutive patho-

physiological induction of SGK1 seen in diabetes.

The role of TGF-b in the kidney is more commonly

associated with the extracellular matrix and its role in

fibrosis [94]. Renal fibrosis is the leading cause of

endstage renal disease in patients with diabetic

nephropathy and, although there are more than a

dozen fibrogenic factors, TGF-b1 is generally consid-

ered to be the major or predominant isoform involved

in the fibrogenic process. While the role of TGF-b2 and

TGF-b3 remains less clear, published studies to date

support a pro-fibrotic role for all three isoforms, with

the upregulation of all three described in both animal

and human models of diabetes [95–98]. The contribu-

tion of TGF-b in the progression of renal fibrogenesis

is highlighted by studies demonstrating that improved

renal function coincides with a reduction in TGF-b
expression, especially that of the b1 and b2 isoforms

[99]. These observations make the pro-fibrotic actions

of TGF-b an ideal target for therapeutic intervention

and have led to a great deal of emphasis being placed

on blockade of the TGF-b pathway [100]. Inhibition of

TGF-b1, TGF-b2, or TGF-b3 by isoform-specific neu-

tralizing antibodies is accompanied by a reduction in

renal scarring and improved kidney function [101–104].

Furthermore, intervention of the downstream signal-

ing effects of TGF-b, through exogenous application of

various agonists including BMP7, HGF and, more

recently, the PPARc agonist troglitazone and C-

peptide, dramatically improves renal function, redu-

cing inflammation and fibrosis [105–108]. However, the

underlying events that mediate TGF-b-induced fibrosis

are complicated, with numerous cell types and multi-

ple signaling pathways together promoting develop-

ment of the fibrotic lesion. SGK1 has been shown to be

expressed in numerous fibrosing tissues including

cases of Crohn’s disease, lung fibrosis, liver cirrhosis,

fibrosing pancreatitis, diabetic nephropathy, and

glomerulonephritis [5, 108–112]. As SGK1 has been

proven to act as a downstream target of TGF-b1, it

seems sensible to suggest that SGK1 may mediate some

of these downstream fibrotic effects. Therapeutic

intervention using the SGK inhibitor, GSK650394,

may inhibit the pro-fibrotic actions of TGF-b1 as

mediated by SGK, and thus unmasks SGK1 as a

potential therapeutic target in amelioration of TGF-

b-induced fibrotic complications [113]. Recent studies

by Stevens et al have shown that SGK1 potentiates the

effect of high glucose on fibronectin formation. In

human fibroblasts, this is dependent on the presence

and abundance of the EGFR [114]. Furthermore,

glucose-evoked changes in SGK1 have been found to

mediate fibronectin formation in diabetic mice [115].

Although both TGF-b2 and TGF-b3 exhibit pro-fibrotic

actions in the kidney, a role for either TGF-b2 or TGF-

b3 in the stimulation of SGK1 in the kidney remains to

be confirmed.

CONCLUDING REMARKS
Expressed in a variety of tissues, SGK is tightly

regulated by numerous signaling cascades. This level

of control enables SGK to participate in a number of

cellular functions that include epithelial transport,

excitability, cell proliferation, and apoptosis.

Although there are three isoforms of SGK, in the

current article, we have focused on SGK1 as localized

to the kidney and have discussed its role in the control

of electrolyte balance via the epithelial sodium

channel (ENaC) and the Na+/K+-ATPase. Studies using

models of salt-sensitive hypertension demonstrate

increased SGK1 expression, and variants of the gene

correlate with elevated blood pressure, which point to

a role for SGK1 in the fine regulation of sodium

reabsorption. However, knockout models of SGK1

suggest that the kinase is not the sole determinant of

ENaC-mediated changes in blood pressure and that

this process relies on a complex interplay of signaling

molecules. Similarly, changes in Na+ reabsorption and

the development of secondary hypertension seen in

diabetes are not limited to alterations in the ENaC.

SGK1 also regulates the NHE3 transporter in the

proximal tubule, suggesting that SGK1 may play a

pivotal role in sodium retention in the proximal

tubule. SGK1 also regulates the expression and

activity of the basolateral Na+/K+-ATPase and the

increase in the Na+Cl– co-transporter (NCC) seen in

animals under salt restriction. These effects are

attenuated in SGK2/2 animals. This suggests that

SGK1 contributes to subtle alterations in the control

of Na+ reabsorption throughout the nephron. Under

normal physiological conditions, these actions will

maintain circulating blood volume and, in conjunction

with TRPV4, also maintain cell volume. In diabetes,

renal epithelial cells are exposed to a number of

signals, including hyperinsulinemia and hyperglyce-

mia, that act to increase SGK1 expression and

function. Furthermore, hyperglycemic-induced TGF-

b1 formation together with flow and osmotically

driven increases in SGK1 provide a link between

poorly controlled plasma glucose and the development

of excess Na+ reabsorption that underlies secondary

hypertension. While SGK1-induced Na+ reabsorption

is clearly important in the pathophysiology of diabetic
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nephropathy, SGK1 also plays a part in fibrosis and

increased proliferation, which further promote the

renal cellular damage seen in diabetes.
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