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Abstract 

This document describes a one-dimensional heat and mass transfer numerical model that was 

developed to study the temperature and freezing of raindrops in free-fall. The numerical model 

included the effects of ventilation and mass transfer on the disposal of heat, as well as the effects 

of mass transfer on drop size and drop fall speed. For liquid raindrops, the temperature 

distribution inside the drop is simulated by considering the heat conduction problem within the 

liquid drop. A modified version of the one-dimensional model is also presented to simulate 

raindrop freezing. 
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Nomenclature 

List of Symbols 
cp specific heat capacity 
d drop diameter 
D diffusivity 
fv ventilation factor defined by Eq. (18) 
h heat transfer coefficient or enthalpy 
hsf latent heat of melting 
hsg latent heat of sublimation 
m mass fraction 
m mass flow rate 
m " mass flux 
NPr Prandtl number 
Nu Nussult number 
NRe Reynolds number 
NSc Schmidt number 
q" heat flux 
r spatial coordinate 
R drop radius 
t time coordinate 
t* nondimensional time coordinate defined by Eq. (4) 
T temperature 
T* nondimensional temperature defined by Eq. (3) 
u velocity 
x nondimensional spatial coordinate defined by Eq. (2) 
a thermal diffusivity 
λ heat conductivity 
v kinematic viscosity 
p density 

List of Subscripts 
0 initial condition v vapor 
conv convection w water 
mt mass transfer by evaporation/condensation environment condition 
i ice o outer edge 
m air-vapor mixture s drop surface 
max maximum t time coordinate 
min minimum 
subl sublimation 

2 



The Heat Conduction Problem 

Following the discussion of Incropera and Dewitt (1985), the equation governing unsteady 

one-dimensional heat diffusion in a spherical coordinate system (0 < r < R) can be written in 

nondimensional form as: 

with the nondimensional parameters defined as: 

The left-hand side of Eq. (1) represents the rate of change of internal energy of the medium per 

unit volume. From conservation of energy, the left-hand side of the equation is equal to the net 

heat flux into the control volume. 

Equation (1) presents a classic boundary value problem depending on the physical boundary 

conditions and initial time. For this problem, the conditions were: 
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where is the heat flux conducted from the drop to the environment. Equation (6) is the 

symmetrical boundary condition, which states that initially there is no temperature gradient at the 

center of a water drop. Equation (7) is the boundary condition for a convective and evaporating 

surface at r = R. The heat flux conducted out of water drop , must be disposed of and carried 

away into the environment, and can be written as: 

where is the heat flux to be dissipated from the drop to the environment due to heat 

convection, and is the dissipated heat flux due to evaporation/condensation. The initial 

condition for the heat diffusion equation is: 

which states that the initial drop temperature is uniform throughout the drop. 

Convective Cooling 

The convective heat flux from a water drop to the environment may be expressed by 

Newton's law of cooling as: 

where h is the average convective heat transfer coefficient for the entire surface, Tw(r = R,t) is 

the surface temperature of a water drop at time t, and is the environment temperature at time 

t. Thus, results from a temperature difference between the drop and the environment flow 

field. The average convective heat transfer coefficient can be expressed as: 
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where λm is the thermal conductivity of the air-vapor mixture and Nu is the Nussult number. 

The correlation of Ranz and Marshall (1952) has sometimes been used to obtain Nu for a 

freely falling liquid water drop. However, Beard and Pruppacher (1971) found that Ranz and 

Marshall's correlation overestimated the Nussult and/or Sherwood numbers, which might be due 

to their experimental setup which used a glass capillar to suspend the drops. Beard and 

Pruppacher (1971) obtained improved parameterization of Nu from laboratory experiments with 

freely suspended drops in a wind tunnel. Their experimental results for drop diameters in the 

range of 40 to 1200 µm showed that: 

This relationship was found to be in good agreement with the numerical results of Woo and 

Hamielec (1971). In addition, Pruppacher and Rasmussen (1979) investigated the evaporation 

rate of large water drops falling at terminal velocity in air. Their results showed that the 

applicable range of Eq. (12) can be extended to drop diameters up to 5000 µm. 

Evaporative Cooling 

Mass Transfer in a Quiescent Environment 

Several assumptions were made in calculating the evaporative flux of water vapor from the 

stationary drop to the surroundings: 1) that a one-dimensional quasisteady system existed; 2) that 

the flux of water toward or away from the drop does not change the environment; and 3) that the 

drop surface reaches thermodynamic equilibrium. Hence, following the discussion of Kays and 
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Crawford (1980) the water vapor species equation for a two-component mixture of water vapor 

and air (for R < r < ) using a one-dimensional spherical coordinate system can be written as: 

where mv is the mass fraction of water vapor, pm is the density of the mixture, um is the bulk 

velocity of the mixture, and D is the diffusivity of water vapor in air. The boundary conditions 

for the water vapor species equation were: 

where is the mass fraction of vapor at the water drop surface, and is the mass fraction of 

vapor at the environment. By considering mass conservation at the water drop surface and the 

solution of the species equation (Eq. 13), the evaporation rate of mass flux from the water drop 

surface to the sounding can be written as: 

Finally, the heat flux from a stationary water drop to the water-air interface that provided the 

energy required to evaporate the water can be written as: 

where hw is the enthalpy of the liquid water, and hm is the enthalpy of the vapor-air mixture at the 

drop surface. 
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Mass Transfer in a Convective Environment 

The effect of convection on the mass transfer from a water drop to the surroundings due to 

the drop's motion was approximated by means of a ventilation coefficient, fv, defined by: 

where mmtis the evaporation rate of a moving drop, and mmt,0 is the evaporation rate of a 

stationary drop. Relationships for fv have been found experimentally for water drops 

evaporating in air during free-fall (Beard and Pruppacher 1971; Pruppacher and Rasmussen 

1979): 

where NSc = v / D is the Schmidt number given as the ratio of the kinematic viscosity v to the 

diffusivity D of water vapor in air. With the ventilation factor fv, the latent heat required to 

evaporate the liquid water was obtained from: 

Simulation of Drop Freezing 

When ice nucleates within a supercooled drop, complete solidification occurs in two major 

stages (see for example, Pruppacher and Klett, 1980; Dye and Hobbs, 1968). In the first stage, a 

small fraction of liquid water is frozen and releases latent heat, which almost immediately raises 

the temperature of the whole drop to near 0°C. In this stage, a thin ice shell forms over the drop 

surface. In the second stage, the drop freezes radially inward at a speed depending on the rate at 
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which latent heat can be disposed of into the environment, a physical effect that becomes 

increasingly limited as the ice shell thickens. 

For this model formulation, it was assumed that a dendrite formed uniformly during the 

initial freezing stage, and that the initial freezing time was negligible compared with the freezing 

time for the second stage. The rate of freezing in the second stage was determined by the heat 

flux transferred away from the ice shell to the environment. Following the discussion in 

Pruppacher and Klett (1980) and assuming that inward propagation of the ice shell is radially 

symmetric, then the energy balance at the water-ice interface may be written as: 

The left-hand side of Eq. (21) is the rate of latent heat release due to freezing at the water-ice 

interface, which is equal to the heat being conducted through the spherical ice shell to the 

environment, as expressed by the right-hand side of the equation. 

The heat being conducted through the ice shell from the water-ice interface (i.e., the inner 

edge of the ice shell) to the ice-air interface (i.e., the outer edge of the ice shell) is disposed of to 

the environment by means of convective heat and mass transfer, which is written as: 

where is the rate of mass flux of ice due to sublimation, and hsg is the latent heat of 

sublimation. The ice shell surface temperature was obtained by solving Eq. (22) 

iteratively. The under-relaxation method of Gerald and Wheatley (1984) was used to improve 

the rate of convergence. After the surface temperature of the ice shell was determined, the inner 
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edge of the ice shell (r) was calculated by Eq. (21), while the outer edge of the ice shell (r0) was 

calculated using: 

where pi is the density of ice. 

Finite Difference Solution of the Heat Diffusion Equation 

Because the calculation allowed conditions in the environment air to change at each time 

step, the unsteady heat diffusion equation (Eq. 1) was solved by the finite difference method. 

The heat diffusion equation was discretized by the first-order forward time and second-order 

implicit central space differencing scheme. A set of simultaneous algebraic equations was 

formed after the discretization. Results from the convective heat and mass transfer analysis 

provided the boundary conditions for the heat diffusion equations. The resulting system equation 

for each time step was then solved by the LU decomposition method (Gerald and Wheatley, 

1984) to obtain the temperature distribution inside the water drop as a function of time. 
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