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Abstract 

 

Hydrogen is an environmentally sustainable energy carrier that can be stored. It is not found 

naturally and therefore must be artificially produced. We can obtain hydrogen from renewable energy, 

such solar and wind energy, which is environmentally clean. One such a promising options is via 

electrolysis using electricity from a photovoltaic generator. In the first part of the dissertation we 

studied a microfluidic energy conversion device to produce hydrogen. Particularly, we proposed a new 

integrated system – a so-called “photovoltaic thermal water electrolyzer (PVTE)” – which consists of 

PV cells positioned on top of a planar micro-water electrolyzers in order to harness waste heat as a 

storable form of energy. The concept of PVTE has the outputs such as electricity and thermal storage, 

and also it provides hydrogen production efficiently. First, we provided a comprehensive analysis of 

the overall efficiency of the PVTE system. COMSOL Multiphysics software was used to predict the 

temperatures for the electrolyte and the PV cells operating at various temperatures and solar fluxes. 

Moreover, hourly and monthly efficiency analyses were accomplished for Phoenix, AZ in the year 

2010. This new integrated approach is advantageous over conventional PV modules (Chapter 2). 

Second, we fabricated a micro-water electrolyzer which utilizes heat from PV cell and works as a heat 

sink in order to eliminate additional energy input for electrolysis in order to operate at elevated 

temperatures. We also presented electrode preparation and fabrication of the electrolyzer. The increase 

in the hydrogen production rate affirms the predictions of our system that utilizes waste heat from PV 

(Chapter 3). Finally, we successfully fabricated a new water electrolyzer including hydrophobic 

porous membrane. This new design allows us to manage gas production and collection in the chamber. 

By using this method, we are able to collect gases on the top of the electrolyzer at low flow rates at 

elevated temperatures (Chapter 4). 
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Nanoporous membranes have received great attention in the fields of water desalination, 

biosensing, and chemical separations. Bare nanopores can be used as size-selective filters but if the 

surface chemistry of a nanopore is modified by coating it with another substance, however, enhanced 

separations based other properties can be achieved. Many studies have been performed on ion 

permselectivity across gold-coated charged surfaces and charged nanopores. In the second part of the 

dissertation, a focus of interfacial transport phenomena is proposed in order to achieve improved-

charge selective nanofluidic systems. There have been numerous studies on the quality of organic 

SAMs as a blocking mechanism for prevention of ion adsorption. First, we investigated the 

electrochemical interfacial properties of a well-ordered SAM of 1-undecanethiol (UDT) on evaporated 

gold surface by EIS in electrolytes without a redox couple. Using a constant phase element (CPE) 

series resistance model, prolonged incubation times (up to 120 h) show decreasing monolayer 

capacitance approaching the theoretical value for 1-undecanethiol (Chapter 6). Secondly, we 

fabricated a membrane permeate flow cell is described with the aim of studying the transport of methyl 

viologen (paraquat, MV2+) and napathalenedisulfonate disodium salt (NDS2-), using a conductive 

NCAM. A polycarbonate track etched (PCTE) membrane was made conductive by sputter coating gold 

on the membrane surface. Transport studies were done in a voltage range in which faradaic current 

was minimized at the surface of the gold-coated NCAMs. The goal of the transport studies is to 

demonstrate improved charge selectivity when a well-grown 1-undecanethiol monolayer is assembled 

at the surface of the NCAM for a wide range of applied potentials (-400 mV < Vappl < 400 mV). Results 

show the selectivity of charged analytes through the metallized NCAM can be improved by 

functionalizing the surface with a self-assembled monolayer (SAM). The selectivity coefficients for 

MV2+ and NDS2- increased with functionalization of undecanethiol on the gold-coated NCAM surface 

(Chapter 7). 
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CHAPTER 1 

 

PHOTOVOLTAIC THERMAL WATER ELECTROLYZER FOR 

HYDROGEN PRODUCTION 

 

 

1.1 Global Energy Challenges 

Global warming, fluctuating oil prices, and the depletion of fossil fuel resources have activated a 

tremendous research in the development of alternative and sustainable energy sources such as wind, 

solar and hydropower. Besides, national and international energy and environmental security concerns 

are motivated a transformation from fossil fuels to secure and clean fuels[1]. Alternative and 

sustainable energy sources are promising; however, the main challenges of these sources are capital 

cost and intermittent nature in power production. The power production of these energy sources are 

fluctuating based on changing of solar radiation, wind with seasons, months, days and hours [2]. In 

this respect, when high amount of power is produced within these time intervals, a storage medium is 

crucial to overcome this problem a convenient solution. 

Hydrogen is an environmentally friendly and sustainable energy carrier for our economy. We can 

produce electricity from hydrogen with only the formation of water by using fuel cells or burning 

hydrogen in conventional combustion engines [3]. Steam reforming of natural gas is the dominant 

process to generate hydrogen with CO2 as a by-product which is linked to global warming [4]. A 

sustainable way to produce hydrogen is electrolysis of water from renewable energy sources such as 

wind and solar. Although this tactic is expensive relative to steam reforming, it  is very promising for 

the future while considering the limitation and adverse environmental impact of fossil fuels [1]. 
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1.2 Hydrogen Production Technologies from Water Electrolysis 

The most prominent water electrolysis technologies for hydrogen production are: Alkaline electrolysis, 

proton exchange membrane (PEM) electrolysis and solid oxide (SO) electrolysis. 

Alkaline water electrolysis: This type of electrolyzer operates by having two metal electrodes at 

applied potential in a liquid alkaline electrolyte consisting of a solution with between 20%-40% 

potassium hydroxide. These electrodes are separated by diaphragm, separating the product gases and 

transporting the hydroxide ions from one electrode to the other. These electrolyzer is well established 

and commonly found in the market. Alkaline electrolyzer will be discusses in the next section in details. 

Polymer electrolyte membrane electrolysis: Another approach is to use a proton exchange 

membrane as electrolyte. This perfluorosulfonic acid polymer (also known as Nafion) has been used 

in electrolysis. PEM electrolysis is a process just reverse of a PEM fuel cell process. Water is split into 

oxygen, protons and electrons on the anode electrode. Protons pass through the polymer electrolyte 

membrane and on the cathode combine with electrons to form hydrogen. Passage of protons through 

the membrane is escorted by water transport The PEM electrolyzer was introduced to overcome the 

issues of partial load, low current density, and low pressure operation currently plaguing the alkaline 

electrolyzer. PEM electrolyzers have reached the commercial market, but only for small scale niche 

applications. PEM electrolyzers are almost exclusively operated at temperatures below 100 °C, at 

ambient pressure [5]. 

Solid oxide electrolysis: SO electrolyzers are operated at very high temperatures around 800 °C 

seems to be most common which results in higher efficiencies compared to alkaline or PEM 

electrolyzers. These electrolyzers require extremely high heat supply and they are commonly 

integrated with other energy plants in order to utilize waste heat energy. It operates in the reverse mode 

of solid oxide fuel cells (SOFCs). Both steam and recycled hydrogen are fed to the cathode, where 

water is reduced to produce hydrogen. The oxide anions generated in the cathode pass through the solid 
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electrolyte to the anode, where they recombine forming oxygen and closing the circuit with the released 

electrons. In SOs, the most common electrolyte is yttria (Y2O3) stabilized zirconia (ZrO2) (YSZ) [5]. 

1.3 Alkaline Water Electrolyzer 

In the electrolysis of water, a DC electric current passes across two electrodes separated by 

electrolyte and the two electrodes are connected through an external circuit. Water decomposes into 

hydrogen at cathode and oxygen at anode. Most of the commercially available electrolyzers are alkaline 

and concentrated KOH solutions are used as electrolyte [6]. The half reactions take place on the cathode 

and the anode are written as below, respectively: 

𝑐𝑎𝑡ℎ𝑜𝑑𝑒 ∶ 2𝐻+ + 2𝑒− → 𝐻2 (1.1) 
 

𝑎𝑛𝑜𝑑𝑒 ∶ 2𝑂𝐻− →
1

2
𝑂2 + 𝐻2𝑂 + 2𝑒− (1.2) 

 

The overall water splitting reaction via electrolysis is written as in Equation 1.3. 

𝐻2𝑂 → 𝐻2 +
1

2
𝑂2 (1.3) 

 

At standard conditions (25ºC and 1 bar) the splitting of water is a non-spontaneous reaction and 

the minimum amount of work that is required to split water can be obtained from the change in Gibbs 

free energy (ΔG°=237kJ/mol), or in terms of voltage: 

𝑈𝑟𝑒𝑣
𝑜 =

𝛥𝐺°

𝑧 ∗ 𝐹
=

237000𝐽

2 ∗ 96485𝐶
 (1.4) 

 

where z is the number of electrons transferred per hydrogen molecule and F is the Faraday’s constant. 

Water decomposition is an endothermic reaction where the total amount of energy needed in water 

electrolysis is equivalent to the change in enthalpy (𝛥𝐻°=286kJ/mol). The rest of the energy to achieve 
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ΔH° can be supplied via heat (𝑇𝛥𝑆° = 𝛥𝐻° − 𝛥𝐺°). Therefore the total energy demand can be 

expressed by the thermo-neutral cell voltage as below: 

𝑈𝑡ℎ
𝑜 =

𝛥𝐻°

𝑧 ∗ 𝐹
=

286000𝐽

2 ∗ 96485𝐶
 (1.5) 

 

Total energy demand for both 𝑈𝑟𝑒𝑣
𝑜  and 𝑈𝑡ℎ

𝑜  change slightly with temperature. At standard 

conditions (25ºC and 1 bar) 𝑈𝑟𝑒𝑣
𝑜 = 1.229𝑉 and 𝑈𝑡ℎ

𝑜 = 1.482𝑉 whereas at 80°C  𝑈𝑟𝑒𝑣
𝑜 = 1.184𝑉 and 

𝑈𝑡ℎ
𝑜 = 1.473𝑉. 

On the other hand, anodic and cathodic overpotentials are affected by temperature. As the operating 

temperature increases at a given current density, the overvoltages decrease due to faster electrode 

kinetics [7, 8]. Advanced commercial water electrolyzers do not require heating systems since a 

significant portion of the energy dissipated is used as heat input in order to operate the electrolyzer at 

adequate temperatures to reduce the cell overvoltages. The heat produced is described as the difference 

between the actual cell potential and thermoneutral voltage as seen in Equation 1.6 [9]. 

�̇�𝑔𝑒𝑛 = 𝐼 ∗ (𝑈𝑐𝑒𝑙𝑙 −𝑈𝑡ℎ) (1.6) 
 

The electrolyzer in this work aims to reduce actual cell potential by utilizing the excess heat in PV 

cells. Therefore, the additional energy input to operate the electrolyzer at elevated temperatures will 

be eliminated. 

1.4 Microfluidic Energy Conversion Devices 

Microfluidic energy conversion devices have been widely studied in the literature: common 

examples are micro fuels cells [10-12], microfluidic biofuel cell [13], and micro flow batteries [14, 

15]. Microfluidics are advantageous in comparison to conventional fluidic systems due the high surface 

area to volume ratio of small components facilitating rapid heat and mass transfer leading to rapid 

temperature changes and reaction kinetics. 
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One of the major practical challenges in microfluidics is the management of gas bubbles in the 

microchannels. Although bubbles can provide improved mixing for chemical reactions [16], and 

enhanced heat and mass transfer [17], they also accumulate and clog the channels [18] or reduce the 

electrode performance in the microfluidic device. Therefore, many efforts have been devoted to get rid 

of the gas bubbles in the microfluidics such as locally varying wetting properties of channels and 

capillarity restricted modifications in the channels [19, 20], or dynamic bubble traps [21]. 

One approach is diffusion based gas bubble removal by a gas-permeable membrane. A thin PDMS 

layer [22, 23] or a hydrophobic membrane [17] are used for an active bubble trap and removal. Meng 

et al. [24] used a hydrophobic membrane providing a gas-venting microchannel that directly removes 

CO2 gas bubbles from the electrochemical reactions of fuel cells without leakage. Another application 

of hydrophobic membranes in microfluidics is vapor venting two-phase microchannel heat exchanger 

[17, 25]. When they used a hydrophobic membrane that vents the vapor phase into separate vapor 

transport channels, they were able to reduce the pressure head with power consumption for high heat 

flux generating electronics. A similar approach was taken by Winther-Jensen et al. for water 

electrolyzer [26]. They proposed a breathable electrode design which allows the diffusion of O2 and 

H2 gases through a hydrophobic membrane leading to an improvement of the efficiency of the water 

splitting reaction. 

1.5 Photovoltaic Thermal Water Electrolyzer 

Solar energy is chief among renewables that has potential for great growth in a sustainable 

economy [27]. The sun’s energy is often harnessed by using a photovoltaic (PV) module that converts 

solar energy into electricity or a solar thermal collector which transforms solar energy into heat, e.g. 

for domestic hot water or room heating [28, 29] (Figure 1.1). A so-called photovoltaic/thermal (PVT) 

collector combines these two modules together [30]. PV cells generate electricity and also act as an 
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absorber for the thermal collector, which uses the remaining radiation energy for generating heat. 

Therefore, a PVT collector brings several advantages as compared to separately installed modules; 

firstly, it possesses a higher electrical and thermal yield per unit surface area; secondly, need for space 

on a roof should be reduced; and, thirdly, installations costs needs to be minimized [31]. 

Heat energy has been conventionally used for domestic hot water and/or room heating; it is, 

however, highly desirable to convert the released energy into alternative storable forms. Hydrogen is 

an environmentally benign and a sustainable energy carrier that can be stored. It is not found naturally 

and therefore must be artificially produced. One such method is to utilize the direct current created by 

a photovoltaic generator to generate hydrogen. Many studies have been done on coupling together a 

PV system and an alkaline water electrolyzer [32-35]. In these studies the systems were separately 

installed and analyses were done on optimizing the voltage and maximum power output of the PV to 

the operating voltage of electrolyzer. Currently, PV-assisted water electrolyzers available on the 

market have PV conversion efficiencies between 15% and 17% [36]. 

The reason why conversion efficiency of silicon based PV cells is not high is that a portion of solar 

spectrum is converted into electricity and the energy that is not transformed is dissipated as heat (Figure 

1.2). To this end, in order to harness waste heat as a storable form of energy, we have proposed a new 

integrated system – a so-called “photovoltaic thermal water electrolyzer (PVTE)” – which consists of 

PV cells positioned on top of a planar micro-water electrolyzer. Figure 1.3a shows a simple overview 

of the PVTE system, and Figure 1.3b depicts the working mechanism and design of the electrolyzer. 

As can be seen in Figure 1.3b, our electrolyzer design is based microfluidic energy devices which have 

been investigated extensively in the literature [37, 38]. PV cells generate electricity that is used in 

electrolysis. The excess heat dissipated from the cells is transferred through the water electrolyzer. The 

electrolyte in the electrolyzer functions as a heat-transport fluid to remove heat from the water 

electrolyzer. In this way, the operating temperature of PV panel decreases to yield an increase in the 
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electric efficiency as 0.05/°C [39]. The temperature of the electrolyte in the electrolyzer approaches 

the temperature of the PV cell. The raised temperature of the electrolyte in the electrolyzer aids to 

reduce the overpotentials for H2 and O2 gas evolution for a given current flux. Therefore, the energy 

consumption of the electrolyzer will be reduced with increasing efficiency of electrolysis. Electrolyte 

at an elevated temperature leaving the electrolyzer is circulated through tubing to transfer heat to an 

insulated water tank. 

1.6 Dissertation Overview 

The first part of dissertation will discuss the topics around the photovoltaic water electrolyzer for 

hydrogen production. 

In Chapter 2, we provided a comprehensive analysis of the overall efficiency of the PVTE system. 

COMSOL Multiphysics software was used to predict the temperatures for the electrolyte and the PV 

cells operating at various temperatures and solar fluxes. The electrical, thermal, exergetic, electrolysis, 

and overall system efficiencies were calculated to optimize the system by varying the chamber 

thickness and velocities of electrolyte in the electrolyzer. Moreover, hourly and monthly efficiency 

analyses were accomplished for Phoenix, AZ in the year 2010. This new integrated approach is 

advantageous over conventional PV modules. Water electrolyzer systems utilize heat into efficient 

hydrogen production, less space occupation with architectural uniformity, and reduces installation 

costs. 

In Chapter 3, we fabricated a micro-water electrolyzer which utilizes heat from PV cell and works 

as a heat sink in order to eliminate additional energy input for electrolysis in order to operate at elevated 

temperatures. Our approach is first to pump and reside the electrolyte in the chamber at specific time 

intervals in order to transfer heat to the electrolyte. Finally all the electrolyte and evaluated gases are 

evacuated from the chamber through two outlets by a syringe pump. Herein, we used a three 
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dimensional finite element (COMSOL Multiphysics) analysis of the temperature distribution of 

electrolyte. We also presented electrode preparation and fabrication of the electrolyzer. We applied a 

constant temperature on top of the water electrolyzer to see the effect of temperature on hydrogen 

production in this system. The increase in the hydrogen production rate affirms the predictions of our 

system that utilizes waste heat from PV. 

In Chapter 4, we successfully fabricated a new water electrolyzer including hydrophobic porous 

membrane. This new design allows us to manage gas production and collection in the chamber. By 

using this method, we are able to collect gases on the top of the electrolyzer at low flow rates at elevated 

temperatures. 
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1.8 Figures 

  

Figure 1.1. The current commercial technologies that harness solar energy: (a) PV module in which 

Si based materials converts photons into electricity, (b) solar thermal collector which transforms solar 

energy into heat, e.g. for domestic hot water or room heating (http://www.wikipedia.org/). 

 

 

Figure 1.2. Solar spectrum of silicon based photovoltaic cells  (http://www.vicphysics.org/). 
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Figure 1.3. (a) A Simple overview of the PVTE system, (b) Working mechanism and design of the 

electrolyzer. 

 

(b) 

(a) 
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CHAPTER 2 

 

COMPREHENSIVE ENERGY ANALYSIS OF PHOTOVOLTAIC 

THERMAL WATER ELECTROLYZER 

 

 

2.1. Introduction 

Hydrogen is an environmentally benign and a sustainable energy carrier that can be stored. It is not 

found naturally and therefore must be artificially produced. We can obtain hydrogen from renewable 

energy, such solar and wind energy, which is environmentally clean. One such a promising options is 

via electrolysis using electricity from a photovoltaic generator. Many studies have been done on 

coupling together a PV system and an alkaline water electrolyzer [1-4]. In these studies the systems 

were separately installed and analyses were performed on optimizing the voltage and maximum power 

output of the PV to the operating voltage of electrolyzer. On the other hand, one drawback of the PV 

cells is the lack of electrical yield per unit surface area. Currently PV-assisted water electrolyzers 

available on the market have PV conversion efficiencies between 15% and 17% [5]. Moreover, the 

energy that is not transformed into electricity is dissipated as heat. It causes an increase in the operating 

temperature of PV panel and this inclement yields a decrease in the electric efficiency as 0.05/°C [6]. 

In order to utilize the waste heat of the PV cells, one approach is employing a hybrid 

photovoltaic/thermal (PVT) collector which combines a photovoltaic (PV) module and a solar thermal 

collector [7]. The PV module converts solar energy into electricity and also acts as an absorber for the 

thermal collector which transforms the remaining radiation energy into heat [8, 9]. Heat energy has 

been conventionally used for domestic hot water and/or room heating; it is, however, highly desirable 
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to convert the released energy into other alternative storable forms. To this end, the aim of this current 

work is to propose a new integrated system – a so-called “photovoltaic thermal water electrolyzer 

(PVTE)” – which consists of PV cells positioned on top of a planar micro-water electrolyzers in order 

to harness waste heat as a storable form of energy. The concept of PVTE has not only the same outputs 

of PVT collector as electricity and thermal storage but also provides hydrogen production efficiently. 

Figure 2.1.a shows a simple overview of the PVTE system, and Figure 2.1.b depicts the working 

mechanism and design of the electrolyzer. During the day, the PV cells generate electricity which is 

used in electrolysis and the rest is sent to the grid. The excess heat dissipated from the cells is captured 

by the water electrolyzer as a heat sink. The temperature of the electrolyte in the electrolyzer 

approaches the temperature of the PV cell. The raised temperature of the electrolyte in the electrolyzer 

aids to reduce the overpotentials for H2 and O2 gas evolution for a given current flux. Therefore, the 

energy consumption of the electrolyzer will be reduced with increasing efficiency of electrolysis. The 

electrolyte in the electrolyzer also functions as a heat-transport fluid and the electrolyte at an elevated 

temperature leaving the electrolyzer is circulated through tubing to transfer heat to an insulated water 

tank. 

Herein, we provided a comprehensive analysis of the overall efficiency of the PVTE system. 

COMSOL Multiphysics software was used to predict the temperatures for the electrolyte and the PV 

cells operating at various temperatures and solar fluxes. The electrical, thermal, exergetic, electrolysis, 

and overall system efficiencies were calculated to optimize the system by varying the chamber 

thickness and velocities of electrolyte in the electrolyzer. Moreover, hourly and monthly efficiency 

analyses were accomplished for Phoenix, AR in the year 2010. The analysis indicated that electrical 

efficiency gain between the PV modules with and without water electrolyzer is 1%. The thermal and 

energetic efficiencies of the system vary between 55%-60% and 15%-16%, respectively. The PVTE 

system made an improvement in the efficiency of electrolysis is around 4%. This new integrated 
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approach is advantageous over conventional coupling of PV modules and water electrolyzer systems 

as it utilizes heat into efficient hydrogen production, less space occupation with architectural 

uniformity, and reduces installation costs. 

2.2. Modeling a Photovoltaic Water Electrolyzer Module 

2.2.1. PVTE Model 

In this work, we analyzed a unit PV cell (16 cm x 16 cm) with 16 water electrolyzers underneath 

it. A model drawing of the module with layers and thicknesses are seen in Figure 2.2.a. The solar cell 

portion of this module is sandwiched between two layers of ethylene vinyl-acetate (EVA) and a 

protective glass layer is located on them. Finally, a back layer (Tedlar) is added below the PV cell to 

protect it from environmental conditions. A cross-section view of an electrolyzer unit cell, in the 

dimensions of 40 mm length, 40 mm width and about 11 mm height, is shown in Figure 2.2.b. The size 

of the electrolyzer chamber is 20 mm x 20 mm x 0.4 mm. Two thin-film electrodes that are 1 cm2 in 

area are located in the chamber and on a non-electrically conductive glass substrate that is 0.5 mm 

thick. A 7 mm thick PDMS slab was chosen as the electrolyzer chamber material due to its low thermal 

conductivity. The PDMS reservoir includes an inlet, where electrolyte at ambient temperature enters, 

and two outlets for H2 and O2 gases with the heated electrolyte to exit the chamber. Properties of each 

material used in the COMSOL simulation are listed in Table 2.1. 

2.2.2. Theory, Assumptions and Governing Equations 

The PVTE module was studied using COMSOL Multiphysics software in order to evaluate the 

temperature of the PV cell, and the temperature of the electrolyte in the electrolyzer and while leaving 

the module at different ambient temperatures and solar fluxes. Moreover, effects of chamber thickness 

and electrolyte velocity as a coolant were studied. 
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In the COMSOL simulations, all forms of heat transfer are taken into consideration. A unit cell 

was taken into consideration and it is assumed that it is infinitely long on each side and insulated. 

Absorbed heat within the PV cell is transported via conduction to the electrolyzer. Heat is transferred 

to the surroundings by convection and thermal radiation. 

The absorption factor of the PV cell for both crystalline silicon and thin-film solar cells plays an 

important role in the thermal efficiency of PVT collector systems. Radiated solar energy on the PV 

cell is either reflected, absorbed, or transmitted. The absorption factor of the laminate (𝐴) is described 

as the ratio of the incident solar irradiance that is absorbed. All absorbed solar energy that is not 

converted into electricity is transformed into heat. The fraction of incident solar irradiance that is 

converted into heat is called the effective absorption factor, which is defines as: 

𝐴𝑒𝑓𝑓 = 𝐴 − 𝜂𝑒  (2.1) 
 

where 𝜂𝑒 is the electrical efficiency of the PV cell. Typical values for absorption factors and effective 

absorption factors can vary between 70-90% and 60-80%, respectively. In this model 𝐴𝑒𝑓𝑓 is taken as 

75% where 𝜂𝑒 is 15%. 

At steady state, the general heat conduction through the module is given in the Equation below. 

𝛻 ∙ (𝑘𝛻𝑇) = 0 (2.2) 
 

The heat loss by convection from the surfaces of the module to the environment is given in 

Equation 2.3. An average wind speed was taken as 1 m/s which means heat transfer coefficient ℎ𝑐 is 

6.5 W/m2/K [10]. 

𝑞𝑐𝑜𝑛𝑣 = −ℎ𝑐 ∙ 𝐴 ∙ (𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑎𝑚𝑏) (2.3) 
 

The heat loss by thermal radiation from the PV surface is calculated as given in the Equation below. 

𝑞𝑟𝑎𝑑 = 𝜖 ∙ 𝜎 ∙ (𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇𝑎𝑚𝑏

4 ) (2.4) 
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Average surface emissivity of silicon ϵ is selected as 0.85 and the Stefan-Boltzmann constant 𝜎 is 

5.67x10-8 W/m2/K4. 

The conjugate heat transfer module in COMSOL allows analysis of forced convection between the 

electrolyte as a heat carrier fluid and a high-temperature solar cell as a heat source using the continuity 

and momentum equations as seen in Equations 2.5 and 2.6. Heat transfer for the electrolyte is given in 

Equation 2.7. 

𝛻 ∙ (𝜌𝑢) = 0 (2.5) 

𝜌𝑢 ∙ 𝛻𝑢 = 𝛻𝑝 + 𝛻 ∙ (𝜇(𝛻𝑢 + (𝛻𝑢)𝑇)) (2.6) 

𝑝𝐶𝑝𝑢 ∙ 𝛻𝑇 = 𝛻 ∙ (𝑘𝛻𝑇) (2.7) 

 

It is assumed that the initial temperature of the electrolyte is equal to the ambient temperature [11]. 

The flow through the electrolyzer is considered laminar and incompressible. 

2.3. Evaluation of Overall Performance 

2.3.1. Efficiency Output of PV Module 

The operating temperature of the PV cell influences its electrical efficiency. There are many 

parameters which affect the temperature of the PV system. These parameters include ambient 

temperature, local wind speed, as well as solar radiation flux, material selection, and design for each 

PV system. In the literature, a number of equations and correlation coefficients have been proposed to 

calculate the electrical efficiency of the PV module depending on its temperature [12, 13]. In this work 

we use the equation below: 

𝜂𝑃𝑉 = 𝜂𝑃𝑉(𝑟𝑒𝑓)[1 − 𝛽𝑟𝑒𝑓(𝑇 − 𝑇𝑟𝑒𝑓)] (2.8) 
 



 

18 

 

where 𝜂𝑃𝑉(𝑟𝑒𝑓) and 𝛽𝑟𝑒𝑓 are 0.15 and 0.0041, respectively [12]. 

2.3.2. Energetic and Exergetic Performance of the Module 

The major evaluation approach for overall performance of PVT systems in the literature is to apply 

the first law of thermodynamics [11, 14]; this is called thermal energy and is described in Equation 

2.9: 

𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
𝐸𝑇
𝐸

 (2.9) 

𝐸𝑇 = 𝑚𝑤𝑎𝑡𝑒𝑟 ∗ 𝐶𝑊𝑎𝑡𝑒𝑟 ∗ 𝛥𝑇𝑤𝑎𝑡𝑒𝑟 (2.10) 

 

where 𝐸𝑇 is the thermal output power and 𝐸 is the irradiation per unit area. 

The first law for thermal energy estimates the amount of energy contained in the system. This fact 

itself, however, doesn’t give enough information to decide the work potential of the system. A 

temperature difference between the heat source and the heat sink is necessary in order to extract energy 

as useful work as known as 2nd law of thermodynamics. This concept is also called exergy or available 

energy. The exergetic efficiency of system is stated as in Equation 2.11 [15]: 

𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = (1 −
𝑇𝑎
𝑇𝑜𝑢𝑡

) ∗ 𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙  (2.11) 

 

where Ta is the ambient temperature and Tout is the temperature of the electrolyte leaving the 

electrolyzer. 

Therefore the PVT efficiencies based on the 1st (energetic) and 2nd (exergetic) laws are listed below, 

respectively 

𝜂𝑃𝑉𝑇 = 𝜂𝑃𝑉 + 𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (2.12) 
 

𝜀𝑃𝑉𝑇 = 𝜂𝑃𝑉 + 𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (2.13) 
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2.3.3. Analysis of the Hydrogen Production Efficiency 

In the electrolysis of water, a DC electric current passes across two electrodes separated by 

electrolyte and the two electrodes are connected through an external circuit. Water decomposes into 

hydrogen at cathode and oxygen at anode. Most of the commercially available electrolyzers are alkaline 

and concentrated KOH solutions are used as electrolyte [16]. The half reactions take place on the 

cathode and the anode are written as below, respectively: 

𝑐𝑎𝑡ℎ𝑜𝑑𝑒 ∶ 2𝐻+ + 2𝑒− → 𝐻2 (2.14) 
 

𝑎𝑛𝑜𝑑𝑒 ∶ 2𝑂𝐻− →
1

2
𝑂2 + 𝐻2𝑂 + 2𝑒− (2.15) 

 

The overall water splitting reaction via electrolysis is written as in Equation 2.16. 

𝐻2𝑂 → 𝐻2 +
1

2
𝑂2 (2.16) 

 

At standard conditions (25ºC and 1 bar) the splitting of water is a non-spontaneous reaction and 

the minimum amount of work that is required to split water can be obtained from the change in Gibbs 

free energy (ΔG°=237kJ/mol), or in terms of voltage: 

𝑈𝑟𝑒𝑣
𝑜 =

𝛥𝐺°

𝑧 ∗ 𝐹
=

237000𝐽

2 ∗ 96485𝐶
 

(2.17) 

 

where z is the number of electrons transferred per hydrogen molecule and F is the Faraday’s constant. 

Water decomposition is an endothermic reaction where the total amount of energy needed in water 

electrolysis is equivalent to the change in enthalpy (𝛥𝐻°=286kJ/mol). The rest of the energy to achieve 

ΔH° can be supplied via heat (𝑇𝛥𝑆° = 𝛥𝐻° − 𝛥𝐺°). Therefore the total energy demand can be 

expressed by the thermo-neutral cell voltage as below: 

𝑈𝑡ℎ
𝑜 =

𝛥𝐻°

𝑧 ∗ 𝐹
=

286000𝐽

2 ∗ 96485𝐶
 

(2.18) 
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Total energy demand for both 𝑈𝑟𝑒𝑣
𝑜  and 𝑈𝑡ℎ

𝑜  change slightly with temperature. At standard 

conditions (25ºC and 1 bar) 𝑈𝑟𝑒𝑣
𝑜 = 1.229𝑉 and 𝑈𝑡ℎ

𝑜 = 1.482𝑉 whereas at 80°C 𝑈𝑟𝑒𝑣
𝑜 = 1.184𝑉 and 

𝑈𝑡ℎ
𝑜 = 1.473𝑉. 

On the other hand, anodic and cathodic overpotentials are affected by temperature. As the operating 

temperature increases at a given current density, the overvoltages decrease due to faster electrode 

kinetics [17, 18]. Advanced commercial water electrolyzers do not require heating systems since a 

significant portion of the energy dissipated is used as heat input in order to operate the electrolyzer at 

adequate temperatures to reduce the cell overvoltages. The heat produced is described as the difference 

between the actual cell potential and thermoneutral voltage as seen in Equation 2.19 [19]. 

�̇�𝑔𝑒𝑛 = 𝐼 ∗ (𝑈𝑐𝑒𝑙𝑙 − 𝑈𝑡ℎ) (2.19) 

 

The electrolyzer in this work aims to reduce actual cell potential by utilizing the excess heat in PV 

cells. Therefore, the additional energy input to operate the electrolyzer at elevated temperatures will 

be eliminated. 

2.4. Results and Discussion 

2.4.1. COMSOL Simulation and Temperature Distribution 

Figure 2.3 depicts the results of COMSOL simulations for a 0.4 mm thick chamber at an irradiance 

of 1000W/m2, ambient temperature of 25°C and the velocity of 0.17 mm/s and 0.68 mm/s. For the 

velocity of 0.17 mm/s the temperature gradient across the module can be seen in Figure 2.3.a. The 

highest temperature is 54.8°C at the top of the glass layer and it is around 45°C at the bottom of the 

module. Figure 2.3.b represents the electrolyte in the chamber with the inlet temperature of 25°C and 

outlet of 52°C. The average temperature of the electrolyte in the chamber is 53°C. The velocity, as 

expected, plays an important role in the heat transfer for the PVT systems. Figure 2.3.c and 2.3.d 

represent the results for the velocity of 0.68 mm/s. The temperature of the solar cell, electrolyte in the 
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chamber and the outlet are 43°C, 42°C and 41.5°C, respectively. Higher velocities provide higher 

thermal recovery and allow the PV cells operate at lower temperatures with higher electrical efficiency. 

Meanwhile, the temperature of electrolyte approaches the ambient temperature and affects adversely 

the hydrogen production efficiency. At this point it is crucial to figure out the optimum velocity of the 

electrolyte and the chamber thickness to achieve the highest system efficiency. 

2.4.2. Optimization of Chamber Thickness and Fluid Velocity in the Chamber 

The overall efficiency of the system depends on the solar radiation, ambient temperature, chamber 

thickness and fluid velocity in the chamber. The first two parameters depend on the location and time. 

The effect of the last two parameters which can be controlled was investigated in the literature [7, 20]. 

It was reported that when the velocity increases the thermal recovery from the solar cell is improved 

whereas the temperature difference between the inlet and the outlet decreases. As expected, a larger 

channel diameter at a constant velocity allows higher heat storage in the fluid. In our design, our 

approach is to minimize the channel thickness down where the following criteria are provided. 

i) the temperature difference between the inlet and the outlet of the electrolyte should be larger 

than 15°C 

ii) the maximum overall efficiency is targeted 

In order to evaluate the overall efficiency of the system we take into account PVT and electrolysis 

efficiencies as described in the Equation below: 

𝜂𝑃𝑉𝑇𝐸 = 𝜂𝑃𝑉𝑇 ∗ 𝑈𝑟𝑒𝑣
𝑜  (2.20) 

 

We simulated the system at different chamber thicknesses and electrolyte velocities under standard 

test conditions – an irradiance of 1000W/m2 and 25°C – to find out the optimum parameters. In PEM 

water electrolyzers the thickness of the channel is taken as 1 mm in order to allow  better gas removal 

and management in the stacks [21, 22]. Therefore we limit the maximum thickness as 1 mm and go 
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down to 0.2 mm for our design. Figure 2.4 depicts temperature difference between the inlet and the 

outlet of the electrolyte and it decreases with increasing flow rate and increasing chamber thickness. 

We are able to achieve 25°C at the flow rate of 0.34 mm/s and the thickness of 0.4 mm. When we take 

the flow rate as 1.02 mm/s and the thickness as 1 mm, the temperature difference dropped to 10°C. 

The data points above the dash line in Figure 2.4 obeys the first criteria and these points are marked in 

orange color in Figure 2.5 which presents the overall efficiency for each chamber thickness at different 

velocities. The overall efficiency increases with the increase of flow rate and chamber thickness. 

Among the overall efficiencies which follows the constraint of temperature difference, when the 

chamber thickness is 0.4 mm at the velocity of 1.36 mm/s, it reaches its highest value. At this point the 

temperature difference is more than 15°C and the total efficiency is 43%. 

2.4.3. Hourly Variations of the System Efficiency 

We investigated how the efficiencies vary hourly in Phoenix, AR in May 2010. The average hourly 

radiation and ambient temperature data in May is shown in Figure 2.6. We used the optimum 

parameters for the chamber thickness and velocity as 0.4 mm and 1.36 mm/s, respectively. Figure 2.7 

represents the efficiency of a PV panel integrated with an electrolyzer system and a PV panel itself. As 

stated in the literature [15, 23], the temperature of the PV cells have the highest temperature at noon 

time and this increase is resulted in the minimum electrical efficiency for both cases. The PV cells with 

a module always perform better than the stand-alone PV system due to active cooling of the PV cells 

by electrolyzer. The improvement in the electrical efficiency is significant at noon time. The PV panel 

temperature decreases from 65°C to 48°C yielding an increase of 1.5% in the efficiency. Although at 

8AM and 6PM have the same radiation, the efficiencies are not identical due to the ambient temperature 

being around 30°C at 6 PM leading PV cells operate at relatively higher temperatures. 

The PVT efficiencies calculated based on 1st (Equation 2.12) and 2nd (Equation 2.13) laws can be 

seen in Figure 2.8. As we stated before, the 1st law represents the heat gain from the system whereas 
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2nd law indicates the work function. Although the heat recovery increases for the solar cell at noon, the 

energetic PVT efficiency decreases from 60% to 56%. The efficiency drop of 2.5% corresponds to 

thermal recovery and of 1.5% is for electrical efficiency. On the other hand, exergetic PVT efficiency 

makes a peak at noon time even the electrical efficiency decreases. The key parameter for exergetic 

thermal efficiency, the temperature difference between inlet and outlet of the electrolyzer, is expanding 

when the radiation and ambient values are getting larger as stated in the work by Chow et al [24]. The 

exergetic PVT efficiency gives an idea for the hydrogen production efficiency which has almost the 

same trend during the day as seen in Figure 2.9. It depicts the hydrogen production efficiency in the 

module and at ambient temperature. The solar radiation and ambient temperature have a direct effect 

on efficiency values. At 1PM the ambient temperature is 29°C and the electrolyte temperature in the 

chamber is at 48°C. The PVTE brings an efficiency gain from 74% to 78%. At 6PM the efficiency is 

higher than the value at 8AM due to a higher ambient temperature and higher module temperature at 

6PM. 

2.4.4. Monthly Variations of the System Efficiency 

We analyzed monthly variations in the electrical, thermal, and hydrogen efficiencies for the climate 

of Phoenix, AZ in 2010. The data represent the average efficiencies in each month which means these 

values can vary during the day as in Figure 2.7-9. The monthly variations in electrical output of the PV 

with and without the module are depicted in Figure 2.10. Between May and September there is a 5% 

increase in the electrical efficiency for the PV device with the module over the PV cells without the 

module. In the winter months it is 3%, and for the other months it is around 4%. It can be explained as 

during the summer time the cell temperatures go up to a higher value in which the thermal recovery 

from the solar cell panel becomes more significant. As is expected during the winter time, the 

temperature of the PV cell is close to normal standard operating temperatures, providing a higher 

electrical efficiency. 
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Figure 2.11 represents energetic and exergetic PVT efficiencies for each month. Both of these 

efficiencies decrease in the summer time due to a higher ambient temperature leading to higher heat 

energy accumulation in the PV cell. Although there is room to recover more heat from the PV cells, 

increasing the heat collection will compromise the system's overall performance. Moreover, Figure 

2.12 represents the thermal and exergetic gain in terms of kWh for each month. Although PVT 

efficiencies decrease during the summer, energetic and exergetic energy values increase. The month 

of May has the highest energy gain from the system. The gains follow the same trend as they increase 

until May, then they plateau during the summer and start to decrease again.  The thermal gain in May 

is double that of the month of January, whereas the exergetic gain in May is 2.95 times that of the value 

in January. If we take the month of January as a benchmark, these results suggest that the exergetic 

energy gain is more significant than energetic energy gain in May due to higher solar intensities and 

less ambient temperature differences than during the summer months. As a result, our system performs 

energetic efficiencies between 56% and 59% during the year where Chow et al reported [25] that the 

energetic PVT efficiency varies between 52% and 58%. 

The hydrogen production efficiency is at the highest value during the month of July, as can be seen 

in Figure 2.13. In month of July it reaches up to 78% whereas it is around 73% in the month of January. 

The efficiency gain, relative the electrolysis at ambient temperature, is more than 3% for the months 

from June to September. Although the radiation and ambient temperature is low during the winter, the 

efficiency gain is around 3%. These results indicate that our proposed system is able to increase the 

hydrogen production efficiency while the keeping the energetic PVT efficiency in the range stated in 

the literature. 
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2.5. Conclusion 

This proposed PVTE system has advantages over separate PV module and water electrolyzer 

systems; not only through utilizing heat into more efficient hydrogen production, but also it has less of 

a spatial footprint and less installation costs. Based on COMSOL Multiphysics software and numerical 

models, exergetic and hydrogen production analysis of the PVTE system has been done. Although the 

heat recovery from the PV cell can be increased by increasing the velocity of the electrolyte, this 

approach will decrease exergetic and hydrogen production efficiencies. The optimization results 

indicate that the maximum overall efficiency of the system was achieved when the chamber thickness 

is 0.4 mm at a velocity of 1.36 mm/s. The average electrolyte temperature difference of the inlet and 

the outlet of the system is greater than 15°C. 

Hourly and monthly efficiency analyses were studied using Phoenix, AZ in the year 2010 as a 

template. The PVTE system brought a 1% increase in electrical efficiency with respect to the stand-

alone PV system. The thermal efficiency changes between 56% and 59% whereas exergetic efficiency 

varies between 15% and 16%. The main motivation of this system, the water electrolyzer, presents 

improvements as high as 4% in the efficiency of hydrogen production.  

Our future reports will explore the fabrication and characterization of the photovoltaic thermal 

water electrolyzer. We will focus on the gas management in the electrolyzer. Another interest of our 

work will be how the performance of the electrolyzer changes at different potentials and temperatures. 
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2.7. Figures and Tables 

 

 

Figure 2.1. (a) A Simple overview of the PVTE system, (b) Working mechanism and design of the 

electrolyzer.  

  

a 
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Figure 2.2. (a) A model drawing of the module with layers and thicknesses, (b) A cross-sectional view 

of an electrolyzer unit cell. 

  

a b 
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Figure 2.3. Temperature gradient of the module (a,c) and the electrolyte (b,d) for 0.4 mm thick 

chamber at the radiation of 1000W/m2 and ambient temperature of 25°C at the velocity of 0.17 mm/s 

(a,b) and 0.68 mm/s (c,d). 

 

a b 

c d 
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Figure 2.4. Temperature difference between inlet and outlet of electrolyte is at different flow rates and 

chamber thicknesses at 1000W/m2 radiation and 25°C ambient temperature. 

 

 

Figure 2.5. Overall system efficiency is at different flow rates and chamber thicknesses at 1000W/m2 

radiation and 25°C ambient temperature. 
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Figure 2.6. The average hourly radiation and ambient temperature data in May, 2010. 

 

 

Figure 2.7. Average hourly variations in electrical efficiency of PV panel integrated with electrolyzer 

system and PV panel itself in May, 2010. 
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Figure 2.8. Average hourly variations in PVT efficiency of the system in May, 2010. 

 

 

Figure 2.9. Average hourly variations in hydrogen production efficiency of the PVTE system in May, 

2010. 
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Figure 2.10. Average monthly variations in electrical efficiency of PV panel integrated with 

electrolyzer system and PV panel itself in Phoenix, AR (2010). 

 

 

Figure 2.11. Average monthly variations in PVT efficiency in Phoenix, AR (2010). 
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Figure 2.12. Average monthly variations in thermal gain of the PVTE system in Phoenix, AR (2010). 

 

 

Figure 2.13. Average monthly variations in hydrogen production efficiency of the PVTE system in 

Phoenix, AR (2010). 

 

Table 2.1. Properties of each material used in COMSOL simulation 

Layer/material 
Density 

kg/m3 

Specific heat 

J/kg/K 

Thermal conductivity 

W/m/K 

Glass 2203 703 1.38 

EVA 950 3135 0.23 

PV cell (Si) 2330 700 130 

Tedlar 1200 1090 0.16 

PDMS 970 1460 0.15 
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CHAPTER 3 

 

FABRICATION OF PHOTOVOLTAIC THERMAL WATER 

ELECTROLYZER 

 

 

3.1. Introduction 

Hydrogen is an environmentally friendly and sustainable energy carrier for our economy [1]. A 

sustainable way to produce hydrogen is electrolysis of water from renewable energy sources. Among 

renewable energy sources, solar energy is chief among renewables that show potential for great growth 

[2]. Past literature has explored systems coupling together a photovoltaic (PV) system and an alkaline 

water electrolyzer to optimize the voltage and maximum power output of the PV to the operating 

voltage of electrolyzer [3-7]. In water electrolyzers, researchers have changed the electrode properties, 

the type of and concentration of electrolyte, as wells as operating pressure and temperature in order to 

promote the rate of hydrogen production [8, 9].The temperature has a positive effect on the efficiency 

of water electrolyzers. As the operating temperature increases at a given current density, the 

overpotentials at anode and cathode decrease due to faster electrode kinetics [10, 11]. In industrial 

applications of water electrolysis, operating temperatures vary between 60oC to 80oC under voltages 

of 1.8-2V in alkaline water electrolyzer [8]. Advanced commercial water electrolyzers do not require 

heating systems since they are designed to reach and hold this temperature at a specific current load 

through internal heat generation [12]. In order to operate within elevated temperature range, extra 

energy load increases operating cost of the system. 



 

37 

 

Currently PV-assisted water electrolyzers available on the market have PV conversion efficiency 

between 15% and 17%. The energy that is not transformed into electricity is dissipated as heat. We 

recently reported the concept and energy analysis of photovoltaic thermal water electrolyzer (PVTE) 

which consists of PV cells positioned on top of a planar micro water electrolyzer in order to harness 

waste heat as a storable form of energy. The similar concept is found in the market, a so-called 

photovoltaic/thermal (PVT) collectors which combines PV cells and solar thermal collector together 

in order to excess heat dissipated from the PV cells [13]. In PVT collector, solar energy is harnessed 

by using a photovoltaic (PV) module that converts solar energy into electricity or a solar thermal 

collector which transforms solar energy into heat, e.g. for domestic hot water or room heating [14, 15]. 

Figure 3.1.a shows a simple overview of the PVTE system, and Figure 3.1.b depicts the working 

mechanism and design of the electrolyzer. The PVTE design provides a new output in terms of 

generating hydrogen efficienctly. The harnessed energy increases the temperature of the electrolyte in 

the electrolyzer leading to overcome the overpotential of kinetics. In previous chapter showed that at 

the radiation of 1000W/m2 and ambient temperature of 35°C, the temperature of the electrolyte reaches 

to 60°C when we set the flow rate to 0.5 mL\min. It is possible to achieve elevated temperatures under 

higher radiation and higher ambient temperatures. 

In this work, we fabricated a micro-water electrolyzer which utilizes heat from PV cell and works 

as a heat sink in order to eliminate additional energy input for electrolysis in order to operate at elevated 

temperatures. Our approach is first to pump and reside the electrolyte in the chamber at specific time 

intervals in order to transfer heat to the electrolyte. Finally all the electrolyte and evaluated gases are 

evacuated from the chamber through two outlets by a syringe pump. We also presented electrode 

preparation and fabrication of the electrolyzer. To use a solar cell in this experimental setup is beyond 

the scope of this work. Instead we applied a constant temperature on top of the water electrolyzer to 
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see the effect of temperature on hydrogen production in this system. The increase in the hydrogen 

production rate affirms the predictions of our system that utilizes waste heat from PV. 

3.2. Design of Water Electrolyzer 

Microfluidic energy conversion devices have been  investigated in the field of micro fuels cells 

[16-18], microfluidic biofuel cell [19], and micro flow batteries [20, 21]. Microfluidics have high 

surface area to volume ratio of small components facilitating rapid heat and mass transfer leading to 

rapid temperature changes and reaction kinetics. Our design is based on a microfluidic chamber which 

utilizes excess heat of PV cells. The intention of planar design is not only to separate the gases but also 

to focus on the thermal management aspect. Briefly, a view of an electrolyzer unit cell, in the 

dimensions of 40 mm length, 40 mm width and about 11 mm height, is seen in Figure 3.1.c. We used 

1 mm thick non-electrically conductive glass substrate in which the temperature difference between 

each side is less than 1oC for 1000 W/m2 heat input. Two thin film electrodes that are 1 cm2 in area are 

located on the glass substrate and in the chamber. A 7 mm thick Polydimethylsiloxane (PDMS) slab 

was chosen as the electrolyzer chamber material due to its low thermal conductivity. The PDMS 

reservoir includes an inlet, where electrolyte at ambient temperature enters, and two outlets apart from 

each other by a separator for H2 and O2 gases with the heated electrolyte to exit the chamber. 

The size of the electrolyzer chamber is 20 mm x 20 mm x 0.4 mm. The thickness of the chamber 

is crucial for hydrogen production rate and efficiency of the all the system. After the detailed energy 

analysis of the PVTE system, we found out the optimum flow rate and chamber thickness as 

0.65mL/min and 0.4 mm, respectively. The other reason why we take the chamber thickness is a 

possibility of ohmic losses (IR drop). Ito et al [22] studied cyclic voltammograms of potassium 

ferrocyanide (0.01mol dm-3) in sodium sulfate buffer (0.5mol dm-3) of planar electrodes at different 

micro channel thickness (from 30 µm to 520 µm). They reported that the cell potential decreases with 
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increasing the channel thickness as the potential decreases dramatically by 200 µm and changes slightly 

between 200 µm and 500 µm. The attribution of this behavior is explained by an IR drop because the 

shallow microchannel increases the electrical resistance. Also in our preliminary experiments we 

compared the performance of the electrolyzer at the thickness of 200 and 400 um. The data showed 

that thicker chamber design provides higher hydrogen production at a constant potential and will be 

discussed in the section 4.3. 

3.3. Experimental 

3.3.1. Electrode Preparation 

Figure 3.2 (a-d) summarizes the electrode preparation. The electrode pattern was created on a glass 

slide (40mmx40mmx1mm) through photolithography. The thin film electrodes were obtained by 

electron-beam deposition of a 10 nm Ti adhesion layer, followed by 100 nm Au layer onto the glass 

slide while maintaining a vacuum of ~2x10-7 mbar. Then, Au deposited 1 cm2 electrodes were 

electrochemically cleaned by potential cycling from 0.2 to 1.45V (Ag/AgCl) at 25 mV/s in 0.5M H2SO4 

solution. After this cleaning step, electrodes were electrochemically platinized at 0.5 V (Ag/AgCl) for 

30 s in a 3 wt. % H2PtCl6 ·6H2O (Aldrich) + 0.03% Pb-acetate (Aldrich) solution in water to yield 

porous Pt electrodes. Following the deposition, the electrodes were thoroughly rinsed with milli-Q 

water and electrochemically cleaned by potential cycling from -0.2 to 1.1 V (Ag/AgCl) at 25 mV/s in 

0.5M H2SO4 solution. The experiments were performed in a conventional three-compartment 

electrochemical cell (Model 660D, CH Instrument), using a Pt-wire counter electrode and an Ag/AgCl 

reference electrode. 

3.3.2. Fabrication of the Water Electrolyzer 

Figure 3.2 (e-f) also explains the fabrication process. Rapid prototyping technique was used for the 

PDMS mold. The PDMS base and curing agent (Dow Corning) were mixed at a ratio of 10:1 and 
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poured onto the mold and cured at 70°C for 2 hours. The PDMS reservoir was peeled from the mold 

and an inlet and two outlet holes were formed by a biopsy punch. UV cleaning for 5 minutes was 

applied to both the glass slide and PDMS reservoir [16]. Both surfaces were brought into contact 

immediately to chemically bond them and the integrated of the water electrolyzer is seen in Figure 3.3. 

3.3.3. Electrochemical Testing 

All experiments were done after electrolysis in 1 M H2SO4 at 60oC and under applied voltage of 

1.8V for 2 hours. To calculate the polarization overpotential, each glass substrate with electrodes was 

immersed in 0.5 M H2SO4 electrolyte in a conventional three-compartment electrochemical cell with 

an Ag/AgCl reference electrode. The hot plate and probe were used to control the temperature of the 

electrolyte. Figure 3.4 depicts the electrolyzer experimental setup. In the experiments, 30 mm x 30 mm 

polyimide film insulated flexible heater (Omega Engineering) was attached on the glass substrate and 

a constant temperature was applied on the water electrolyzer through the glass side of the water 

electrolyzer. 1M H2SO4 at room temperature was sent to the chamber from the reservoir. Total voltage 

of 1.8V and 2V were applied to the electrodes continuously. After that all the electrolyte and evaluated 

gases are evacuated from the chamber through two outlets by a syringe pump (Harvard PHD-2000). 

3.4. Results and Discussion 

3.4.1. Electrode characterization 

Figure 3.5 represents the cyclic voltammetry of Au thin film and Pt-black catalyst after electro 

deposition on Au thin film. The characteristic behavior of Au and Pt was achieved in each case. Figure 

3.6 depicts polarization characteristics of the Pt-black electrode in electrolyte of 0.5 M H2SO4 at 

different temperatures. For the current density of 10 mA/cm2, the efficiency of the electrolysis is 60% 

when the temperature of the electrolyte is at room temperature. On the other hand, the efficiency goes 

http://www.google.com/url?sa=t&rct=j&q=cyclic%20voltammetry&source=web&cd=1&cad=rja&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCyclic_voltammetry&ei=ui2RUOysF8-_2QXS5YHQCg&usg=AFQjCNFn3gheVAGrWXzPNviU9poauxr-sg
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up to around 70% when the temperature of the electrolyte is increased to 60oC. It can be also seen how 

the overpotentials of the anode and cathode are positively affected by the increase in the temperature. 

Pt-black catalyst loses its activity during the electrolysis over time. Different approaches in the 

literature were taken such as temperature annealing or electrolysis at close to the desirable operating 

conditions for a specific time in order to be consistent in the experiments. We operated at 60oC under 

applied voltage of 1.8V. Figure 3.7 indicates that minimum 2 hour electrolysis is required to eliminate 

the effect of activity loses for the electrode in order to be consistent in the experiments. In Figure 3.8, 

SEM images can be seen before and after electrolysis at 60°C and under applied voltage of 1.8V for 2 

hours. The morphology changes after electrolysis resulting in lower surface area and lower hydrogen 

evaluation. 

3.4.2. Effect of Flow Rate on Hydrogen Production Rate 

The flow rate of the electrolyte pumping into the electrolyzer plays significant role on the 

performance of the electrolyzer. Figure 3.9 shows the hydrogen production in terms of current flux at 

temperature of 25°C and 50°C for different flow rates. For the temperature of 25°C, when the flow rate 

is 0.5 and 0.65 ml/min, the hydrogen production decreases over time. This result is attribution to the 

evolved gases are stuck in the chamber leading to loss of interaction between electrode and electrolyte. 

It can be seen that when the flow rate is increased to 5 mL/min, the current flux is consistent during 

the time and the results indicates the gases are not stuck in the chamber. As stated by Kjeang et al. [23] 

current density increases with flow rate, which indicates that mass transport limitations are significant 

and that the electrochemical reactions are relatively fast. On the other hand, when the electrolyzer is 

operating at 50°C, it can be definitely seen that increase in the temperature of the electrolyzer does not 

have an improvement in the hydrogen production for the flow rate of 5 mL/min due to less time contact 

for heat transfer. At the flow rate of 0.5 and 0.65 ml/min, the hydrogen production is higher than the 

temperature of 25°C. Unfortunately, the hydrogen production decreases over time due the stuck of the 
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gases in the chamber as the temperature of 25°C. As a conclusion, at low flow rates gas is stuck in the 

chamber but at higher flow rates heat recovery is not achieved when the temperature of the electrolyzer 

is increased.  

In order to overcome this challenge, we proposed a new approach as called residence time [24]. As 

can be seen in Figure 3.10, electrolyte is pumped into the electrolyzer chamber and allow it to reside 

in the chamber for a specific time interval to recover the heat. Then electrolyte with gases are flushed 

from the electrolyzer at high flow rate. In this work, we used the flow rate of 10 mL/min with the 

volume of 0.16 mL that corresponds to the volume of the chamber. Figure 3.11.a depicts the hydrogen 

production at the temperature of 25°C for the residence time of 60 seconds. It can be seen that after 

flushing the electrolyte in the chamber the hydrogen production rate regenerates itself and goes down 

to by the flushing out. When the operating temperature is at 50°C, as can be seen in Figure 3.11.b, after 

the flushing out the electrolyte in the chamber, three different section is observed for the hydrogen 

production rate. First the electrolyte temperature increases by the heat recovery. After a time, generated 

gases start to block the interaction between electrode and the electrolyte and hydrogen production rate 

starts to decrease dramatically. We can explain this attribute as mass transport limitations as described 

before [18, 23]. 

3.4.3. Effect of Chamber Thickness on Hydrogen Production Rate 

As the bulk systems, bubble formation on the electrode and inside the microchannel is the major 

cause of transport resistance. We investigated the effect of channel thickness on hydrogen production 

rate. Figure 3.12 depicts the hydrogen production current for two different channel thicknesses of 200 

and 400 μm. We applied 1.8 V at room temperature when the electrolyte is stationary in the 

microfluidic device. At 25oC it can be seen that for a constant applied potential 400 μm thick channel 

device gives higher current. We believe that the difference in hydrogen production between different 

channel thicknesses is dominantly affected by the mass transfer limitations. Because, Ito et al [22] 
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reported that the potential drop is only 0.01V when they changed the channel thickness from 400 μm 

to 200 μm. We repeated the same experiment as increasing the temperature of the electrolyte from 

25oC to 60oC. Figure 3.12 shows that hydrogen production current is almost same for two different 

thicknesses within the 5 seconds. In thinner design heat is transferred rapidly and it compensates the 

hydrogen production over thicker design. After 5 seconds when the temperature of electrolytes reaches 

to the same level for each thickness and we observe the same trend as at 25oC due to mass transport. 

3.4.4. Effect of Residence time on Hydrogen Production Rate 

For each temperature and applied voltage, hydrogen production rate will be different and 

optimization of residence time becomes important. We investigated the hydrogen production rate when 

the electrolyte resides in the chamber within 60 seconds. The data in Figure 3.13 reveals the behavior 

of rate at the voltage of 1.8 V and 2 V for different temperatures. When operating conditions are set to 

the potential of 1.8 V and the temperature is 40°C, the rate increases and is almost constant during the 

time. The behavior of rate changes when the temperatures are increased to 50°C and 60°C. The rate 

increases rapidly within 10 seconds and then decreases over the time. As explained in previous section 

higher temperatures provides higher rate within shorter time intervals. As the operating potential is set 

to 2 V, the rate reaches peak point within 5 seconds for all temperatures. If we compare the rates in the 

electrolyzer with polarization curve data (Figure 3.8) the highest rate of the potential of 1.8V within 

60 seconds for each temperature is close to data. But for the voltage of 2 V, they are far away from 

data in Figure 3.8 due to mass transfer limitations. The more hydrogen and oxygen gases are generated, 

the more mass transfer limitations occur in the chamber of electrolyzer. 

3.4.5. Effect of Residence time on Total Hydrogen Production 

In order to estimate the amount of hydrogen production for each residence time we calculated the 

area under curves in Figure 3.13. Figure 3.14 presents the data for the voltage of 1.8 V and 2 V for all 
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temperatures investigated in this work. For the temperature of 40°C and 50°C at 1.8 V, 60 second 

residence time is necessary. When the electrolyte temperature is 60°C, 30 second residence time gives 

the highest hydrogen production. For the potential of 2V, hydrogen production reaches the highest 

amount when the residence time is set to 15 seconds for all temperatures. The extended time will be 

result in mass transfer limitations in the electrolyzer which leads to decrease in the hydrogen 

production.  

Table 3.1 summarizes the ratio of total hydrogen production with respect to temperature of 25oC 

for different temperature and different residence time at the potentials of 1.8V and 2 V. As can be seen 

hydrogen production is achieved 7 times of the case when the temperature of the electrolyte is 25oC at 

the temperature of 60oC and the potential of 1.8 V for the 30 second residence time. On the other hand, 

at 2 V and 60oC, hydrogen production is obtained 2.5 times of the case when the temperature of the 

electrolyte is 25oC when the residence time is set to 15 seconds. Although the ratio is less for the 

potential of 2 V than of the 1.8, we should pay attention that the total hydrogen production is higher 

for the potential of 2V. 

3.5. Conclusion 

We summarize by noting that the micro-water electrolyzer fabrication described here can be 

integrated with a PV cell to enable utilizing heat recovery from PV cell. It works as a heat sink in order 

to eliminate additional energy input for electrolysis in order to operate at elevated temperatures. The 

aim of planar design is not only to separate the gases but also to provide the heat recovery. The 

challenge of this electrolyzer design is that at low flow rates gas is stuck in the chamber but at higher 

flow rates heat recovery is not achieved when the temperature of the electrolyzer is increased. Our 

approach is first to pump and reside the electrolyte in the chamber at specific time intervals in order to 
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transfer heat to the electrolyte then all the electrolyte and evaluated gases are evacuated from the 

chamber. 

We optimized the residence time for the hydrogen production rate within 60 seconds. Whereas, for 

the voltage of 1.8 V more than 30 second residence time is necessary for all temperature, for the voltage 

of 2 V less than 15 second residence time is necessary. When the electrolyte temperature is 60°C, 30 

second residence time gives the highest hydrogen production. For the potential of 2V, hydrogen 

production reaches the highest amount when the residence time is set to 15 seconds for all temperatures. 

Hydrogen production is achieved 7 times of the case when the temperature of the electrolyte is 25oC 

at the temperature of 60oC and the potential of 1.8 V for the 15 second residence time. On the other 

hand, at 2 V and 60oC, hydrogen production is obtained 2.5 times of the case when the temperature of 

the electrolyte is 25oC when the residence time is set to 15 seconds. The increase in the hydrogen 

production rate affirms the predictions of our system that utilizes waste heat from PV. 
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3.7. Figures and Tables 

 

 

 

 

Figure 3.1. (a) A Simple overview of the PVTE system, (b) Working mechanism and design of the 

electrolyzer, (c) A cross-sectional view of an electrolyzer unit cell. During the day, the PV cells 

generate electricity which is used in electrolysis and the rest is sent to the grid. The excess heat 

dissipated from the cells is captured by the water electrolyzer as a heat sink. The temperature of the 

electrolyte in the electrolyzer approaches the temperature of the PV cell. The raised temperature of the 

electrolyte in the electrolyzer aids to reduce the overpotentials for H2 and O2 gas evolution for a given 

current flux. Therefore, the energy consumption of the electrolyzer will be reduced with increasing 

efficiency of electrolysis. The electrolyte in the electrolyzer also functions as a heat-transport fluid and 

the electrolyte at an elevated temperature leaving the electrolyzer is circulated through tubing to 

transfer heat to an insulated water tank. 

a 

b c 
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Figure 3.2. Micro-water electrolyzer fabrication flow scheme: (a)–(d) electrode preparation, (e)–(f) 

chamber fabrication, (g) integration of glass slide and chamber. 

 

 

Figure 3.3. The fabricated water electrolyzer cell. 40 mm x 40 mm glass slide, 1 cm2 electrode area 

(each) and 7 mm thick PDMS chamber with 0.4mm thick chamber height. 
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Figure 3.4. The experimental setup of the system for water electrolyzer. The flow rate is controlled 

with the syringe pump and the temperature is set with flexible heater with PID system. 
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Figure 3.5. Cyclic voltammetry of (left) Au thin film catalyst and (right) Pt-black catalyst after 

electrodeposition on Au thin film in 0.5 M H2SO4, at 50 mV / s. 
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Figure 3.6. (a) “Total potential” of the system and (b) ‘potentials’’ of the anode and cathode versus 

Ag/AgCl reference electrode at constant current densities at temperatures of  room, 50  oC, 60 oC, 70 

oC, and 80 oC. All experiments were performed after electrolysis at 60oC and under applied voltage of 

1.8V for 2 hours. 
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Figure 3.7. The loss of Pt-black catalyst activity within 12 hours at 60oC and under applied voltage of 

1.8V in the electrolyte of 1M H2SO4. 

 

 

Figure 3.8. SEM images of Pt-black catalyst (a) before and (b) after electrolysis @60oC and under 

applied voltage of 1.8V for 2 hours in the electrolyte of 0.5 M H2SO4. The morphology changes after 

electrolysis resulting in lower surface area and lower hydrogen evaluation. 
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Figure 3.9. The effect of flow rate on the hydrogen production at the temperature of 25oC and 50oC at 

the potential of 1.8V in the electrolyte of 1M H2SO4. 
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Figure 3.10. This illustration represents the constant applied potential to the cell and the pulsed 

electrolyte velocity in the chamber. Residence time depicts the time interval in which the electrolyte 

rests in the chamber without any flow. The flow is applied in each 60 seconds at 10mL/min for a 

volume of 0.16 mL. 
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Figure 3.11. The residence time effect on the hydrogen production at the temperature of (a) 25oC and 

(b) 50oC. At 50oC the sections indicate three different behavior during the time; i) heat recovery and 

rate increases, ii) generated gases block the interaction between electrode and electrolyte, mass transfer 

limitations. The electrolyte is 1M H2SO4. 
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Figure 3.12. The hydrogen production current at the temperature of 25oC and 60oC when we apply the 

potential of 1.8 V for the channel thicknesses of 200 um and 400 um in the micro electrolyzer. The 

flow rate is set to 0 mL/min. The electrolyte is 1M H2SO4. 
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Figure 3.13. The hydrogen production rate in terms of current within in 60 seconds at different 

temperatures and at the potential of 1.8V and 2V. The electrolyte is 1M H2SO4. 
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Figure 3.14. Total hydrogen production for different residence time and different temperatures at the 

potentials of 1.8 V and 2 V. 
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Table 3.1. The ratio of total hydrogen production with respect to temperature of 25oC for different 

temperature and different residence time at the potentials of 1.8V and 2 V. 

Temperature  

(oC) 

residence time 

 (sec) 

the ratio wrt RT  

@1.8V 

 The ratio wrt RT  

@2V 

RT 15-60 1 1 

40 

15 2.75 1.8 

30 3.135 1.4 

45 3.23 1.1 

60 3.33 1.1 

50 

15 4.2 2.3 

30 4.7 1.9 

45 4.85 1.5 

60 5 1.3 

60 

15 6.4 2.5 

30 7 2.0 

45 6.8 1.8 

60 5.6 1.7 
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CHAPTER 4 

 

GAS MANAGEMENT IN PHOTOVOLTAIC THERMAL WATER 

ELECTROLYZER  

 

 

4.1. Introduction 

Hydrogen is a sustainable energy carrier for our economy [1]. A renewable way to produce 

hydrogen is electrolysis of water from electricity by photovoltaic cells [2]. We have recently reported 

the fabrication and characterization of the “photovoltaic thermal water electrolyzer (PVTE)”. In PV 

cells, the energy that is not transformed into electricity is dissipated and PVTE provides an efficient 

way to benefit from this energy in hydrogen production. We describe in this chapter the fabrication 

and performance of a microfluidic water electrolyzer which is comprised of gas permeable membrane 

allowing gas removal from the chamber. 

Microfluidic energy conversion devices have been widely studied in the literature: common 

examples are micro fuels cells [3-5], microfluidic biofuel cell [6], and micro flow batteries [7, 8]. 

Microfluidics are advantageous in comparison  to conventional fluidic systems due the high surface 

area to volume ratio of small components facilitating rapid heat and mass transfer leading to rapid 

temperature changes and reaction kinetics. 

One of the major practical challenges in microfluidics is the management of gas bubbles in the 

microchannels. Although bubbles can provide improved mixing for chemical reactions [9], and 

enhanced heat and mass transfer [10] , they accumulate and clog the channels [11] or reduce the 

electrode performance in the microfluidic device. Therefore, many efforts have been devoted to get rid 



 

61 

 

of the gas bubbles in the microfluidics such as locally varying wetting properties of channels and 

capillarity restricted modifications in the channels [12, 13], or dynamic bubble traps [14]. 

One approach is diffusion based gas bubble removal by a gas-permeable membrane. A thin PDMS 

layer [15, 16] or a hydrophobic membrane [10] are used for an active bubble trap and removal. Meng 

et al. [17] used a hydrophobic membrane providing a gas-venting microchannel that directly removes 

CO2 gas bubbles from the electrochemical reactions of fuel cells without leakage. Another application 

of hydrophobic membranes in microfluidics is vapor venting two-phase microchannel heat exchanger 

[10, 18]. When they used a hydrophobic membrane that vents the vapor phase into separate vapor 

transport channels, they were able to reduce the pressure head with power consumption for high heat 

flux generating electronics. A similar approach was taken by Winther-Jensen et al. for water 

electrolyzer [19]. They proposed a breathable electrode design which allows the diffusion of O2 and 

H2 gases through a hydrophobic membrane leading to an improvement of the efficiency of the water 

splitting reaction. 

The design of the water electrolyzer proposed previous chapter is challenging as the gas is stuck in 

the chamber at low flow rates –mass transfer limitations- and heat recovery is not achieved at high 

flow rates when the electrolyzer is operating at higher temperature increased. In order to overcome this 

drawback, we proposed a residence time approach. Although this approach shows an improvement in 

the heat utilization, the system is practically difficult to operate at varying the temperature of the 

electrolyte during the day. Herein, we propose a new design including a hydrophobic membrane 

allowing us to collect generated gases on top of the electrodes and overcome the clog of the bubbles in 

the chamber (Figure 4.1). Our fabrication technique is based on multilayer soft lithography in which a 

hydrophobic membrane can be located between two chambers of the electrolyzer. 
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4.2. Gas Management in Microchannels 

In order to solve the bubble-clogging problem of microfluidic devices, particularly, microfuel cells 

such as μDMFC, a hydrophobic venting approach has been developed to directly remove gas bubbles 

from methanol aqueous solutions in the anodic microchannel [17]. Additionally hydrophobic PTFE 

membrane vents the vapor phase into separate vapor transport channels in microfluidic cooling systems 

[18]. 

In our design, a hydrophobic porous membrane is placed between the chamber and gas collection 

outlets. As seen in Figure 4.2, the surface tension and capillary actions upon interaction with the 

hydrophobic membrane prevent the liquid solution from flowing through the membrane pores. Only 

the generated vapor can escape from the chamber to the gas collection outlets through the hydrophobic 

membrane, which realizes the liquid–vapor separation. The pressure of the generated vapor is higher 

than any other bulk fluid pressure leading to a non-equilibrium system: the pressure difference between 

the solution and vapor side of the membrane acts as a driving force for vapor to escape through the 

hydrophobic membrane. 

4.3. Experimental 

4.3.1. Fabrication of the Water Electrolyzer 

In the electrolyzer fabrication, the critical step is embedding PFTE hydrophobic membrane of 1 

µm pore size (Sterlitech Corporation) into the chamber. It is crucial to have a solid and leak free device. 

Our design has two different chamber layers and the membrane is sandwiched between them. A 

straightforward soft lithography techniques does not work in terms of a leak free electrolyte. Unger et 

al. [20] developed a fabrication technique based on multilayers of PDMS microchannels for valves and 

pumps. The principle mechanism of this technique is to partially cure the PDMS base and curing agent 

at different mixing ratios, bring together and complete the curing. Figure 4.3 explains the fabrication 
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process. The PDMS with a mixing ratio of 15:1 is poured on the bottom mold. The thickness of the 

PDMS layer was controlled with a spin-coater. To reach a thickness of 0.45 mm, we spin the PDMS 

at 120 rpm for a minute. For the top part of the PDMS chamber, the PDMS with mixing ratio of 5:1 is 

poured on the other mold. The thickness of this part is around 7 mm and it includes two separate 

chambers in 1 mm height for O2 and H2 gases. These two PDMS parts are partially cured at 70oC for 

25 minutes. The top part is peeled off from the mold and located on the bottom part including the 

membrane. The integrated PDMS chamber is cured at 70°C for 2 hours to complete the curing process. 

After peeling off from the mold, first the thin layer under the membrane is removed and inlet and outlet 

holes are formed by a biopsy punch. 

More details regarding the Pt black electrode preparation is described previous chapter. Briefly, 

thin film electrodes obtained by electron-beam deposition of 10 nm Ti adhesion layer, followed by 100 

nm Au layer onto the glass slide (40mmx40mmx1mm). Electrodes are then electrochemically 

platinized at 0.5 V (Ag/AgCl) for 30 s in a 3 wt. % H2PtCl6 ·6H2O (Aldrich) + 0.03% Pb-acetate 

(Aldrich) solution in water to yield porous Pt electrodes. The electrode characterization is done in 0.5M 

H2SO4 solution in a conventional three-compartment electrochemical cell (Model 660D, CH 

Instrument), using a Pt-wire counter electrode and a Ag/AgCl reference electrode. 

The glass slide and PDMS reservoir are cleaned with a UV light treatment for 5 minutes [3]. Both 

surfaces are brought into contact immediately to chemically bond them and the integrated water 

electrolyzer is seen in Figure 4.4. 

4.3.2. Electrochemical Testing 

All experiments were done after electrolysis in 1 M H2SO4 at 60oC and under applied voltage of 

1.8V for 2 hours. Figure 4.5 depicts the electrolyzer experimental setup. In the experiments, a 

polyimide film insulated flexible heater (Omega Engineering) was attached on the glass substrate and 

a constant temperature was applied on the water electrolyzer through the glass side. 1M H2SO4 at room 
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temperature was sent to the chamber from the reservoir. Total voltages of 1.8V and 2V were applied 

to the electrodes continuously. After that all the electrolyte and evaluated gases were evacuated from 

the chamber through two outlets by a syringe pump (Harvard PHD-2000). 

4.4. Results and Discussion 

Current water electrolyzers are suffering from the coverage of all electrode surfaces with bubbles 

causing decreased conductivity and increased ohmic drop [21]. Additionally, the low pressure and high 

current density trigger off larger diameter gas bubbles formation causing a chaotic system [22]. A 

number of efforts on the bubble management has been investigated such as adding additives to reduce 

the surface tension of the electrolyte so that the bubble can leave the system easily, modification of the 

electrode surface geometries and properties to be less attractive to the gas bubbles, and employing 

mechanical circulation of the electrolyte [23]. The nature of microfluidics system has also bubble 

problem as discussed previously so the gas management is vital in the micro water electrolyzers. 

The flow rate plays a significant role in the utilization of heat from PV cells and prevents bubble 

clogging in the membraneless electrolyzer chamber. We tested the electrolyzer at temperature of 25oC 

and 50oC. As can be seen in Figure 4.6 when the flow rate is low, bubble is stuck in the chamber and 

if we increase the flow rate at that time we do not give a chance to increase in the temperature of the 

electrolyte.  

Figure 4.7 represents the hydrogen production currents for the potential of 1.8V and 2V for the 

membrane based electrolyzer. In the first section, the temperature is at 25oC and the flow rate is 0.5 

mL/min. In the second section, the temperature is elevated to 60oC and current increases because heat 

transfer is provided between the heat source and electrolyte. When the flow rate is raised to 5 mL 

keeping the temperature same in the last section, the current goes back to the value in the first section. 

These data prove that at higher flow rates, utilization of heat cannot be achieved. 
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Figure 4.8 depicts the hydrogen production at different temperatures and voltages. In all cases, it 

can be easily seen that the production is consistent with fluctuations related with the growth and the 

departure of gas bubble on the electrode. Fluctuations are more significant at high temperatures due to 

the formation of bubbles with large diameters. The current flux reaches to 10 mA/cm2 for the 

temperature of 60oC at 1.8 V and to 22 mA/cm2 for the temperature of 60oC at 2 V. When we compare 

the results at the potential of 1.8 with the results of membraneless electrolyzer (Figure 4.6) we showed 

that hydrophobic membrane aids the gas bubbles to departure from the chamber as the current is stable 

and it is higher than the membraneless design. de Jong et al. [24] indicated that mass transport control 

can be provided with gas permeable membrane in microfluidic systems and our results also explains 

that mass transfer limitations can be minimized by employing hydrophobic membrane in the 

electrolyzer. Table 4.1 compares the total hydrogen production and comparison with respect to 

temperature of 25°C. For a potential of 1.8V, the hydrogen production is 1.20 mL/hr at 25oC and 3.41 

mL/hr at 60oC. At elevated temperature (60°C) the hydrogen production is 2.84 times higher in 

comparison to the room temperature. When we apply 2 V, at the temperature of 60oC the hydrogen 

production is 2.82 times of the temperature of 25oC. 

4.5. Conclusion 

We summarize the fabrication and the characterization of the membrane based water electrolyzer. 

The use of the hydrophobic membrane enables the collect the gas bubbles on top the electrodes leading 

to operate at low flow rates with an increase in the temperature of electrolyte. We assist the multilayer 

soft lithography fabrication technique in order to insert the hydrophobic membrane between two 

PDMS layers. The partial curing temperature and time are found as 60°C and 25 minutes for our device, 

respectively. 
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When the electrolyte temperature is 60°C, the hydrogen production current reaches up to 22 

mA/cm2 for the potential of 2V. It means we can achieve 2.82 times faster kinetics with respect the 

temperature of 25°C. In addition, for the potential of 1.8 V at 60°C, the achievement in the hydrogen 

production is 2.84 times higher of the temperature of 25°C. The increase and the consistency in the 

hydrogen production rate affirms that the hydrophobic membrane flushes the electrode surface from 

generated gas bubbles and  utilizes waste heat from PV cells. 
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4.7. Figures and Tables 

 

Figure 4.1. Working mechanism and design of the membrane based water electrolyzer. The generated 

gases diffuse through the hydrophobic porous membrane. 

 

 

 

Figure 4.2. Bubble extraction working principle: an air–liquid meniscus is pinned at the entrance of 

the pore and the surface tension holds the pressure difference across the meniscus and prevents water 

from leaking through the pore 
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Figure 4.3. Fabrication scheme of the micro-water electrolyzer (a)–(b) layers formation with partially 

curing, (c) integration of layers with fully curing, (d) removing the thin PDMS layer under the 

membrane. 

 

 
Figure 4.4. The fabricated water electrolyzer cell. 40 mm x 40 mm glass slide, 1 cm2 electrode area 

(each), 7 mm thick PDMS chamber.  
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Figure 4.5. The experimental setup of the system for water electrolyzer. The flow rate is controlled 

with the syringe pump and the temperature is set with flexible heater with PID system. 
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Figure 4.6. For the membraneless design electrolyzer; the effect of flow rate on the hydrogen 

production at the temperature of 25oC and 50oC at the potential of 1.8V in the electrolyte of 1M H2SO4. 
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Figure 4.7. For the membrane based electrolyzer; the hydrogen production current during the time: (I) 

at 25oC and the flow rate is 0.5 mL/min, (II) at 60oC and the flow rate is 0.5 mL/min, (III) at 60oC and 

the flow rate is 5 mL/min. 
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Figure 4.8. For the membrane based electrolyzer; the hydrogen production current during the time at 

different temperatures and potentials 
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Table 4.1. Hydrogen Production rate and the ratio with respect to respect to 25oC. 

Potential 

(V) 

Temperature 

(oC) 

Hydrogen Production 

(mL/hr) 

the ratio wrt 25oC 

1.8 

25 1.20 1.00 

40 2.03 1.70 

50 2.74 2.28 

60 3.41 2.84 

2 

25 2.43 1.00 

40 3.96 1.63 

50 5.49 2.26 

60 6.85 2.82 
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CHAPTER 5  

 

SPECIES SEPARATION THROUGH SELF-ASSEMBLED 

MONOLAYERS MODIFIED NANOPOROUS MEMBRANES 

 

 

 Ionic and Molecular Transport through Nanoporous Membrane 

Nanoporous membranes have received great attention in the fields of water desalination, 

biosensing, and chemical separations [1-17]. Bare nanopores can be used as size-selective filters but if 

the surface chemistry of a nanopore is modified by coating it with another substance, however, 

enhanced separations based other properties can be achieved. In the work by Savariar, they modified 

the polymeric membrane surface with SnCl2 leads to separation based not only size but also charge 

and hydrophobicity (Figure 5.1.a) [18]. In another work, metallized silicon nitride nanopores 

chemically modified with a type of acetic acid receptors can be used for the stochastic sensing of 

proteins (Figure 5.1.b) [19]. 

Many studies have been performed on ion permselectivity across gold-coated charged surfaces and 

charged nanopores. Many authors have used the electroless gold-coated PCTE membrane to study 

different mechanisms of ionic transport based on the influence of charge, hydrophobicity, steric effects, 

and pH [20-32]. Nguyen et al. fabricated ion-tracked polyethylene terephthalate (PET) membranes, 

which had a surface and pore-wall carboxylate terminal group [3]. The membranes selectively 

transported cations and prevented diffusion of anions. They were able to reverse the selective properties 

of the membrane by making an amino terminal group on the surface and pore wall of the membrane. 

Other studies have included the study of mass transport of molecules based on the hydrophobicity of 
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the pore, which was made conductive through the electroless gold deposition process. The gold-coated 

nanotubules were modified with a fluorinated thiol [20]. Zenglian et al. used an electroless gold-

deposited PCTE membrane with a modified thiol surface that was hydrophobic to study mass transport 

experiments of two molecules and the effects of adding alkyl surfactants to change the hydrophobic 

properties of the membrane surface [21]. Hou and coworkers used an electroless gold deposited PCTE 

membrane that was modified with carboxylic-acid functionalized thiols onto gold to study the pH 

dependency of mass transport of molecules through the membrane [22]. In addition to separation based 

on hydrophobicity and electrostatic interactions, it has been demonstrated that analytes can be excluded 

based on size. Martin and coworkers were able to use electroless gold-coated nano-capillary-array 

membrane (NCAMs) to exclude ions by molecular sieving [22-24]. There have been numerous studies 

for separation of biomolecules and analytes based on charge selectivity [25-30]. It has been 

demonstrated that proteins can be separated by applying potentials across conductive alumina 

membranes [31]. Cheow et al. developed a platinum coated nanoporous alumina membrane to 

demonstrate the permselectivity of proteins by applying different potentials across the membrane [32]. 

All these studies indicate that surface modification is crucial in order to enhance separation methods 

with nanoporous membranes. 

 Specific Ion Adsorption and Properties of well-ordered Self-Assembled 

Monolayers 

Self-Assembled Monolayers (SAMs) provide a unique way to control and functionalize the 

interfacial properties at a solid liquid/interface. There have been numerous studies on the quality of 

organic SAMs as a blocking mechanism for prevention of ion adsorption [33-38], with applications 

ranging from biosensors to nanoscale transport. The applications of SAMs are often limited by the 

immersion time allocated for the growth of the SAM. Past work has focused on studying the properties 
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of a well-ordered SAM by electrochemical impedance spectroscopy (EIS) [39-41]. It was found that a 

minimum of 48 hours is needed to grow a well-ordered SAM [39, 41]. 

If specific adsorption of a molecule occurs on the surface of a membrane, ion selectivity for 

separation will be inhibited by the loss of interaction between the membrane surface and analyte as 

shown in Figure 5.2.a. If the membrane surface is well covered by the SAM in order to minimize ion 

adsorption, ion selectivity can be enhanced for a specific molecule of interest as can be seen in Figure 

5.2.b. 

The interaction between the protein and nanopore wall can be quantified by the time constant 

associated with adsorption and desorption events. Without the presence of a SAM on the surface, non-

specific protein adsorption can occur on the walls of the nanopore. This can lead to effective blockage 

within the nanopore with non-targeted proteins, leading to a smaller measurable current (lower S/N 

ratio) across the nanopore [42]. Moreover, redox currents typically increase the background noise for 

electrochemical sensors. If detection can be accomplished with lower applied potentials, S/N ratios can 

be improved for electrochemical sensing of specific analytes [43]. 

Studies on charge selectivity have been done on electroless gold coated polycarbontate track etched 

membranes (PCTE) [44]. An alkanethiol was used to prevent anion (e.g. chloride ions) adsorption to 

the gold surface. The membrane was immersed in 1 mM thiol solution for 24 hours. However, it was 

observed that an irreversibility of charge selectivity occurred due to the poor quality of the monolayer 

over the gold-coated membrane surface. In addition to prevention of ion adsorption, the diffuse layer 

potential at the monolayer surface can act as a screening mechanism for nanoscale transport 

applications [45]. The model of a SAM-covered electrode-electrolyte interface include the following 

features: a potential of the metal (φm), a potential drop across the monolayer (assumed to be linear), 

and a potential at the surface of the monolayer (φs); and, a potential drop in the diffuse layer, all relative 

to some remote point in the solution (φref) [36]. For a smooth surface, the zeta potential should be close 
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to, if not coincident with the diffusive double-layer potential [2]. As the ionic strength is increased, the 

diffuse-layer potential becomes a linear function of the applied potential. A calculation of diffuse layer 

potential for HO(CH2)14SH monolayer coated Au electrode in 1 mM electrolyte resulted in a range of 

roughly ±40 mV results from ±300 mV of applied potential [36]. Additional studies have shown the 

surface charge density of alkane monolayers to be dependent on the pH of the electrolyte solution [46, 

47]. The diffuse layer potential decreases for the same applied potential as the ionic strength is 

increased, due to the compaction of the diffuse layer. 

 Electrochemical Impedance Spectroscopy 

EIS is used to determine the resistive and capacitive nature of a system over a set of frequencies. 

EIS measurements are done by applying an AC potential (with known amplitude) over a range of 

frequencies and measuring the current response of the system. By measuring the current of the 

electrochemical cell, the overall impedance may be determined by dividing the phasor voltage by the 

phasor current. The impedance may be represented as a real and imaginary part as shown in Equation 

5.1 [48]. 

𝑍 =
𝐸𝑡
𝐼𝑡

=
𝐸𝑜𝑠𝑖𝑛(𝑤𝑡)

𝐼𝑜𝑠𝑖𝑛(𝑤𝑡 + ∅)
= 𝑍𝑜

𝑠𝑖𝑛(𝑤𝑡)

𝑠𝑖𝑛(𝑤𝑡 + ∅)
 (5.1) 

 

The real and imaginary part describes the ohmic and capacitive nature of the system respectively. 

Figure 5.3.a-c demonstrates a Bode plot, Nyquist plot, and an equivalent linear circuit model used to 

fit the mechanistic behavior of the electrochemical system being studies. The Bode plot demonstrates 

the behavior of an electrochemical system over a range of frequencies. At low frequencies, the two 

plots exhibit that the system’s impedance is real as a result of ion conduction through a SAM or redox 

reactions at the working electrode. At higher frequencies, the phase of the system approaches a value 

of - 90°, displaying the capacitive component of the system. This capacitive nature of the system is a 
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result of the double layer charging at the surface of the electrochemical system. Figure 5.3.c is a 

Randles circuit, which models an electrochemical system in which the solution resistance is in series 

with an RC circuit. The model is used when a SAM is considered to be a “nonperfect” insulator to ion 

conduction [48]. 

EIS has been used to characterize ionic transport through nanoporous membranes [49]. EIS has 

been applied to the detailed analysis of through-film and at-defect electron transport paths in thiol-

modified gold electrode in a solution containing a diffusing redox species [34, 37]. Several studies 

used EIS to show that a defect-free monolayer obeys the Helmholtz ideal capacitor exhibiting a phase 

shift ≥ 80° [50-56]. Further, the impedance spectra can be fitted to an equivalent circuit of a solution 

resistance Rs in series with a constant phase element (CPE), which accounts for double-layer 

capacitance and SAM capacitance. Equation 5.2 is impedance of the CPE model expressed as 

𝑍𝐶𝑃𝐸 =
1

𝑌𝜊(𝑗𝑤𝑎)
 (5.2) 

 

where 𝑌𝜊 is the capacitance (F), ω is the frequency of the applied electric field, and α is the constant 

which represents the ideality of the capacitor. The constant-phase element (CPE) is analogous to a 

distributed capacitance, with α being a measure of variation of the dielectric coating thickness, since 

we assume that the monolayer formation has no effect on gold electrode surface roughness [57]. 

 Dissertation Overview 

The second part of dissertation will discuss the topics around the ionic transport across the 

nanoporous membrane under applied potential and investigation of surface coverage of SAMs on the 

Au surface in order to increase reversibilities in charge selectivity. 

In Chapter 6, we investigated the electrochemical interfacial properties of a well-ordered SAM of 

1-undecanethiol (UDT) on evaporated gold surface by EIS in electrolytes without a redox couple. 
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Using a constant phase element (CPE) series resistance model, prolonged incubation times (up to 120 

h) show decreasing monolayer capacitance approaching the theoretical value for 1-undecanethiol. The 

EIS data shows that UDT (methylene chain length n=10), incubated for 120 h, forms a monolayer 

whose critical voltage range extends from -0.3 to 0.5 V vs. Ag/AgCl, previously attained only for 

alkanethiol at n=15. At low frequencies where ion diffusion occurs, almost pure capacitive phase (-

89°) were attained with lengthy incubation. 

In Chapter 7, we fabricated a membrane permeate flow cell is described with the aim of studying 

the transport of methyl viologen (paraquat, MV2+) and napathalenedisulfonate disodium salt (NDS2-), 

using a conductive NCAM. A polycarbonate track etched (PCTE) membrane was made conductive by 

sputter coating gold on the membrane surface. Transport studies were done in a voltage range in which 

faradaic current was minimized at the surface of the gold-coated NCAMs. The goal of the transport 

studies is to demonstrate improved charge selectivity when a well-grown 1-undecanethiol monolayer 

is assembled at the surface of the NCAM for a wide range of applied potentials (-400 mV < Vappl < 400 

mV). Results show the selectivity of charged analytes through the metallized NCAM can be improved 

by functionalizing the surface with a self-assembled monolayer (SAM). The selectivity coefficients for 

MV2+ and NDS2- increased with functionalization of undecanethiol on the gold-coated NCAM surface. 
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 Figures 

 

Figure 5.1. Protein separation based on charge and hydrophobicity after modification of membrane 

surface with SnCl2 (left) [18] and stochastic sensing of proteins after modified with a type of acetic 

acid receptors (right) [19]. 

 

 

Figure 5.2. Schematics (a) and (b) of a gold coated NCAM, which illustrates the improvement when 

a well-grown SAM is attached to the monolayer. 

 

(a) (b) 
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Figure 5.3. The plots above are examples of common EIS plots and circuit models used for analyzing 

EIS data. Figure (a) is a Bode plot, which displays the magnitude of the impedance and phase of the 

system. Figure (b) is a Randles circuit model, which is used to fit EIS data when the system contains 

exhibits a resistive behavior either from ion conduction through a monolayer or redox reactions at the 

surface of the working electrode. Figure (c) is an example of a Randles circuit, which can be used to 

linearly fit EIS data [48]. 
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CHAPTER 6 

 

INSULATING PROPERTIES OF ALKANETHIOL SAMS FORMED 

UNDER PROLONGED INCUBATION USING ELECTROCHEMICAL 

IMPEDANCE SPECTROSCOPY 

 

The text and figures in this chapter are reproduced with permission from the work: 

Damena D. Agonafer, Edward Chainani, Muhammed E. Oruc, Ki Sung Lee, and Mark A. Shannon. 

"Study of Insulating Properties of Alkanethiol Self-Assembled Monolayers Formed Under Prolonged 

Incubation Using Electrochemical Impedance Spectroscopy." Journal of Nanotechnology in Engineering 

and Medicine 3, no. 3 (2012): 031006-031006. 

 

 Introduction 

Interfacial transport at the micro and nanoscale plays a crucial role due to high surface area to 

volume ratio of micro and nanosytems [1]. SAMs provide a unique way to control and functionalize 

the interfacial properties at a solid liquid/interface. There have been numerous studies on the quality 

of organic self-assembled monolayers (SAMs) as a blocking mechanism for prevention of ion 

adsorption [2-7], with applications ranging from biosensors to nanoscale transport. Studies on charge 

selectivity have been done on electroless gold coated polycarbontate track etched membranes (PCTE) 

[8]. An alkanethiol was used to prevent anion (e.g. chloride ions) adsorption to the gold surface. The 

membrane was immersed in 1 mM thiol solution for 24 hours. However, it was observed that an 

irreversibility of charge selectivity occurred due to the poor quality of the monolayer over the gold-

coated membrane surface. In addition to prevention of ion adsorption, the diffuse layer potential at the 

monolayer surface can act as a screening mechanism for nanoscale transport applications [9]. The 

model of a SAM-covered electrode-electrolyte interface include the following features: a potential of 
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the metal (φm), a potential drop across the monolayer (assumed to be linear), and a potential at the 

surface of the monolayer (φs); and, a potential drop in the diffuse layer, all relative to some remote 

point in the solution (φref) [5]. For a smooth surface, the zeta potential should be close to, if not 

coincident with the diffusive double-layer potential [10]. As the ionic strength is increased, the diffuse-

layer potential becomes a linear function of the applied potential. A calculation of diffuse layer 

potential for HO(CH2)14SH monolayer coated Au electrode in 1 mM electrolyte resulted in a range of 

roughly ±40 mV results from ±300 mV of applied potential [5]. Additional studies have shown the 

surface charge density of alkane monolayers to be dependent on the pH of the electrolyte solution [11, 

12]. The diffuse layer potential decreases for the same applied potential as the ionic strength is 

increased due to the compaction of the diffuse layer. 

The applications of SAMs are often limited by the quality of the monolayer. In the biosensor arena, 

SAMs on a metal electrode allow the direct electron transfer of an enzyme immobilized on the 

monolayer, facilitating the investigation of enzyme kinetics using electrochemical techniques [13-18]. 

Ideally, the catalytic current through the enzyme is detected as increased tunneling current through the 

monolayer at the enzyme’s Nernst potential, but conduction through pinholes (areas where metal is 

exposed to solution due to absence of monolayer) and collapsed sites may affect the outcome. Studies 

have been performed to characterize how the temperature of the thiol solution can affect the growth of 

the monolayer on a gold substrate. Using STM measurements, it has been demonstrated that the 

vacancy island area does indeed change over a wide range of temperatures, but the overall defect 

fraction area does not change [19, 20]. As the temperature is increased, the number of vacancy islands 

decrease, but the area of each vacancy island increases. This is a result of the Ostwald ripening process, 

in which larger vacancy islands grow at the expense of smaller gold islands [21, 22]. Some of the 

contributions that dictate how well a monolayer is grown can be determined by the roughness of the 

SAM on the substrate. 
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Douglass Jr. et al. studied the roughness factor for electrodes that had dodecanethiol grown on a 

gold substrate [23]. It was determined that the macroroughness (≥10nm) of the substrate influenced 

the capacitive nature of the system, while the microroughness (1-10 nm) had a larger effect on the 

quality and structure of the SAM. In addition to monolayers containing defect sites (pinholes), 

monolayers may include collapsed sites that are present on the substrate. Studies have been done to try 

and distinguish the properties of SAMs when defect or collapsed sites are present. The electron rate 

constant for a monolayer with a collapsed sites were found to be two orders of magnitude smaller than 

that for a defect site [24]. This is evidence that tunneling effects occur for regions within the monolayer 

that contain collapsed sites. The investigation of pH on the variation of charge transfer resistance (Rct) 

and the apparent rate constant have been done using EIS [25]. Furthermore, EIS measurements that are 

done over a range of potentials, give insight to the permeability of the monolayer to penetration by 

solution ions. Ion penetration into the monolayer manifests as a parallel conduction path from solution 

to the electrode, necessitating a shift in the model from the series Constant Phase Element (CPE)-

resistor to a Randles circuit composed of two resistors, one of which is in parallel with a capacitor. The 

positive and negative potential limits where the shifts occur are termed as the critical voltages Vc. 

Studies have shown that the critical voltage range can be dependent on the length of the alkane chain 

[26]. Boubour and Lennox studied the critical voltages for linear chain alkane thiols [26], where it was 

found that the critical voltage range was chain length dependent. For an alkanethiol of chain lengths 

n=7 to 15, the Vc ranged from -0.15 V—0.3 V, but Vc for chain lengths below n=15 were all less than 

-0.3 V. The greater impermeability of longer chains may be ascribed to increased chain-chain 

interactions [27]. These attractive lateral interactions, driven by van der Waals forces, generally 

increase with chain length [28]. The use of EIS to study the quality of a monolayer for different 

immersion times has been done to explore the evolution of SAMs over different time scales. Daio et 

al. studied self-assembled monolayers of octadecanethiol (ODT) on gold by electrochemical 
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impedance spectroscopy (EIS) with a redox couple, in order to make a quantitative analysis of the 

change of the fractional coverage, pinhole size and separation as a function of incubation time [29]. 

The range of incubation times in that study was from 5 seconds to 24 hours. Their results showed that 

the defective monolayers exhibited Warburg impedances at low frequencies with a redox couple in 

solution, an indication that the ions were mass transport limited while diffusing through the defect 

sites. Monolayer formation kinetics were characterized by an initial fast step (chemisorption) followed 

by a slow step of surface coverage (through lateral bonding), and the size of the pinholes remain the 

same, but the number density decreases over time. However, because redox species were used, it is 

difficult to understand the insulative behavior of a monolayer when charge transfer resistance is always 

present due to tunneling effects. In another investigation utilizing EIS, experiments were performed 

without a redox couple in the electrolyte to study the quality of a monolayer for different incubation 

times of a gold electrode immersed in dodecanethiol (CH3(CH2)11SH) solution [30]. A minimum of 40 

hours was found necessary to achieve phase shifts φ≥-88°. For an ideal insulating (capacitive) 

monolayer, φ=-90° is expected. The EIS measurements for the monolayers incubated at various times 

were done at a single applied potential of 0 V vs. Ag/AgCl. Because ion penetration is exacerbated at 

anodic and cathodic potentials, it is important to understand how the monolayer incubation time can 

affect the insulative properties of a monolayer over a range of voltages [2, 3]. Furthermore, as the 

applied potential approaches the PZC, a field can induce a torque on the headgroup, resulting in 

conformational changes in the SAM [31]. These conformational changes can lead to a lower barrier 

for ion penetration through the monolayer to occur. It is therefore imperative to understand the 

incubation time of a SAM. This work explores how incubation time on growing the monolayer can 

affect the critical voltage range. 



 

91 

 

 Experimental 

 Electrochemical Instrumentation and Measurements 

Electrochemical measurements were performed using a Gamry Reference 600 (Gamry 

Instruments, Warminster, PA) employing a three-electrode cell: the monolayer-coated gold surface 

acted as the working electrode, an Ag/AgCl wire in 3 M NaCl (Bioanalytical Instruments, West 

Lafayette, IN) as the reference, and a gold wire as the counter electrode. Gold wire counter electrodes 

(Alfa Aesar, Ward Hill, MA) were used for the impedance measurements. Gold-coated microscope 

slides were mounted in a custom-designed cell. The gold layer was used as the working electrode. All 

potentials are reported with respect to the Ag/AgCl electrode. Phosphate buffer solutions (PB) were 

prepared as a ratio of mono- and dihydrogen potassium phosphate salts (Sigma-Aldrich, St. Louis, 

MO) in DI water serves as electrolyte. The total concentration and pH of the electrolyte is reported. 

The electrolyte solutions were bubbled for 15 minutes with nitrogen to remove oxygen prior to 

electrochemical characterization. The pH of the electrolyte solution was monitored before and after the 

experiments. Because each experiment was performed in less than 10 minutes, the pH of the solution 

did not change within the small time interval. 

 Preparation of Monolayer Surfaces 

1-undecanethiol was purchased from Sigma Aldrich, and dissolved in absolute ethanol (Pharmaco-

Aaper, Shelbyville, KY) at a concentration of 1 mM. SPR-quality glass slides (EMF Corp., Ithaca NY) 

coated with evaporated titanium (5 nm) and gold (100 nm) thin films were washed in a heated SC-1 

bath (100mL of DI water/25 mL of H2O2/2 mL of NH4OH) and rinsed thoroughly with DI water 

(resistivity 18 MΩ-cm) and ethanol. The clean gold surfaces were incubated in a sealed Petri dish for 

immersion times ranging from 3 hours to 5 days. The monolayer gold coated substrates were first 

electrochemically polished. Electrochemical polishing was done as follows: in 0.1 M NaOH was de-
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aerated with nitrogen gas for 15 minutes, with two cycles being required. The first was a wide and fast 

sweep from -1.2 to +1.5 V vs. Ag/AgCl at 1 V/s (21 segments were required to obtain a stable 

voltammogram). The voltage range chosen was based on previous studies, which ensure a monolayer 

formation of gold oxide from whose reduction current the electrochemical surface area is determined 

[32, 33]. Secondly, without removing the electrode from solution, another (narrow and slow) sweep 

from -0.8 to 0.6 V vs. Ag/AgCl at 0.05 V/s (21 segments) was performed. Cycling through these 

potentials ensures removal and formation of an oxide layer, which smoothens out the surface by 

removing an atomic layer of gold atoms. The gold surface is subsequently rinsed with DI water and 

absolute ethanol. The Au substrates were then incubated in thiol solutions in the manner described 

above. All monolayers were grown at room temperature. The monolayer-coated gold were rinsed with 

absolute ethanol and DI water and blow-dried with N2 before use. 

 Surface Characterization 

AFM measurements of bare gold substrates were made under ambient conditions using an Asylum 

MFP-3D (Santa Barbara, CA). AFM probe tips used were from BudgetSensors (Sofia, Bulgaria). 

Images were obtained in intermittent contact mode. Roughness was calculated using the built-in 

software, Igor Pro from Wavemetrics (Portland, OR). Samples were prepared by SC-1 cleaning, 

followed by electrochemical polishing. 

 Results and Discussion 

 Determination of Electrochemical Surface Area 

The area of the gold substrate was measured by oxygen adsorption in 0.1 M NaOH, cyclic 

voltammetry at 50 mV s-1. The amount of charge necessary for complete surface coverage was 

reported to be 677 µC cm-2 for polycrystalline gold [32]. The Au substrate was SC-1 cleaned for 30 

minutes with 100:20:1 of DI water, H2O2, and NH4OH.  The solution was de-aerated with nitrogen 
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for 15 minutes. Two CV scans were done between -0.061 V and 1.239 V (vs. Ag/AgCl) with a scan 

rate of 50 mVs-1. The total charge was then calculated by integrating the oxide peak area. The 

electrochemical area was calculated to be 0.59 cm2. 

 AFM measurements 

The AFM measurements provided information on surface topography of the gold substrate. The 

main parameter used in quantitative analysis of the surface is the rms roughness. The rms roughness 

was measured to be 1.7 nm for electrochemical polished substrates. The peak-to-peak values 

(maximum height difference) were 14 nm shown in Figure 6.1. These values are consistent with those 

found in previous studies for gold coated glass slides with a titanium adhesion layer [34], which were 

also used as substrates for monolayer formation. 

 EIS and CV measurements 

EIS and CV experiments were done on a 1-undecanethiol monolayer that was immersed in a 1mM 

thiol solution from 3 to 120 hours. A gold-coated microscope slide was used as the working electrode. 

The system was purged with nitrogen for 15 minutes before experiments were started. To rule out the 

possibility of other redox species, several CV scans were done which showed the absence of faradaic 

current with scan rates from 100 mVs-1 – 1 Vs-1 and voltage ranges from -0.5 V-0.5 V with only 

phosphate buffer as the electrolyte solution.  The ionic strength (I) of the buffer solution was I = 

0.0316 M. 

Self-assembled monolayers of alkanethiols on gold have been shown to strongly block 

electrochemical oxidation of gold as well as electron transfer with redox couples in solution. The 

behavior of the SAMs has been ascribed to their ability to limit access of solution-phase molecules 

(water, electrolyte ions and redox molecules) to the electrode surface. The insulating abilities of thiol 

monolayers on gold were demonstrated in studies that used methyl-terminated alkanethiols (11, 13, 15 
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and 17 methyl groups) could suppress gold oxide anodic stripping by 3-5 orders of magnitude [4, 24]. 

The present study has confirmed that cyclic voltammetry of bare gold surfaces in electrolyte containing 

no redox species shows the peaks where gold oxidation and reduction of the oxide occurs, as well as 

the double layer region where there is only charging current. The CVs compare well with bulk gold 

and gold sputtered on glass microscope slides. Upon the adsorption of thiol monolayers on the gold 

surface, gold oxide formation and reduction is suppressed, as evidenced by the lack of peaks in the CV 

seen in Figure 6.2, which compares two CV experiments between a bare gold polycrystalline surface 

and of a gold substrate with a monolayer grown for several days. 

Cyclic voltammetry of alkanethiol monolayer-coated electrodes in electrolyte solutions show that 

the charging current drops dramatically in comparison to the bare metal electrode and becomes 

constant with electrode potential. This constant potential is consistent with the presence of a low 

dielectric constant between electrode and electrolyte. Equation 6.1 is an expression for the differential 

capacitance Cd, which is modeled by a series combination of two capacitances, the monolayer 

capacitance Cm (which replaces the Helmholtz capacitance CH of the bare metal), and the diffuse layer 

capacitance CD [35]. Monolayer capacitance is a property of the spacer length, while the diffuse layer 

capacitance is a function of the electrolyte concentration and applied potential with a minimum at the 

potential of zero charge (Epzc), such that 

1

𝐶𝑑
=  

1

𝐶𝐷
+  

1

𝐶𝑚
 (6.1) 

 

To account for the Faradaic currents, investigators postulated that electron transfer could occur at 

pinholes (sites exposed to electrolyte due to the absence of adsorbate) in the monolayers. Pinholes are 

thought to occur mainly at grain boundaries, steps and kinks in polycrystalline gold. Even then, at these 

sites, the gold surface may be partially protected by a collapse of the monolayer, producing a defect in 

the monolayer where molecules and ions can approach the electrode surface at a distance shorter than 
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the distance of the SAM. The presence of pinholes and defect sites is evidenced by departure from 

perfect blocking behavior. Potential dependent background currents are observed for gold-monolayer-

electrolyte systems, even in the absence of redox species. Such currents are explained by ion migration 

through pinhole defects in the monolayer film or charge transport, through the monolayer phase [2]. 

Even in the absence of pinholes and defects, tunneling through the full width of the monolayer 

contributes to a current. However, it is not easy to assess quantitatively the fraction of the surface that 

is composed of pinholes or defects [7]. Electrochemical impedance spectroscopy is used to determine 

the resistive and capacitive nature of a system over a set of frequencies. It has been used to characterize 

ionic transport through nanoporous membranes [36]. EIS has been applied to the detailed analysis of 

through-film and at-defect electron transport paths in thiol-modified gold electrode in a solution 

containing a diffusing redox species [3, 6]. Several studies used EIS to show that a defect-free 

monolayer obeys the Helmholtz ideal capacitor exhibiting a phase shift ≥ 80° [28, 37-42]. Further, the 

impedance spectra can be fitted to an equivalent circuit of a solution resistance Rs in series with a 

constant phase element (CPE), which accounts for double-layer capacitance and SAM capacitance. 

Equation 6.2 is impedance of the CPE model expressed as 

𝑍𝐶𝑃𝐸 =  
1

𝑌𝜊(𝑗𝑤𝑎)
 (6.2) 

 

where 𝑌𝜊 is the capacitance (F), ω is the frequency of the applied electric field, and α is the constant 

which represents the ideality of the capacitor. The constant-phase element (CPE) is analogous to a 

distributed capacitance, with α being a measure of variation of the dielectric coating thickness, since 

we assume that the monolayer formation has no effect on gold electrode surface roughness [31]. 

Several theoretical models have demonstrated that the roughness, or the degree of disorder of a 

monolayer, can be estimated by the CPE exponent α [43-47]. The proof of the presence of the SAM 

can be observed from Table 6.1. The capacitance of the bare gold substrate is approximately 1.4 to 60 



 

96 

 

times greater than the capacitances for SAMs grown from 3 hours to 120 hours. In addition, as shown 

in Table 6.1, the α value increases as incubation time of monolayer growth increases. An ideal capacitor 

has α=1, while α>0.88 suggests an adequately smooth gold surface. As mentioned above, a CPE model 

fits better than a simple series RC model. For alkanethiol SAMs with n=9 (1-dodecanethiol), a CPE of 

1.36 to 1.67 µF/cm2 was reported over the range -0.2 to 0.4 V (vs. Ag/AgCl). [37]. Above 10-2 M 

electrolyte concentration the diffuse layer capacitance is greater than 10 µF/cm2, so Cm dominates the 

interfacial capacitance. 

Figure 6.3 is a Bode phase plot that shows the insulative behavior of monolayers for two different 

immersion times. For the monolayer grown for 48 hours, the EIS data shows that the phase angle peaks 

between 1-10 Hz at -68 to -75 degrees for the electrolyte concentrations of 1 mM and 10 mM. The 

dependency is due to the contribution of the diffuse layer capacitance, which is strongly dependent on 

concentration. The model used here is from Gouy-Chapman theory, where the capacitance of the space-

charge between the electrolyte and the electrode is at a minimum at the potential of zero-charge and 

rises at higher and lower potentials. At the minimum, at 25° C with a z:z electrolyte, this capacitance 

is 

CGC (µF/cm-2) = 228 z c*1/2 (6.3) 
 

where c* is bulk electrolyte concentration in mol L-1 [35]. For a 1:1 electrolyte at 50 mM concentration, 

the double-layer capacitance is calculated to be 50 µF cm-2. This relatively high capacitance is 

characteristic of the gold-solution interface when it is not blocked from electrolyte by a monolayer, 

which corresponds to pinhole areas in a SAM. 

The monolayer-covered gold/solution interface forms a second kind of interfacial capacitance. This 

capacitance (neglecting charge on the head group) is dominated by the monolayer capacitance Cm, 

determined by the relative permittivity of the alkanethiol chain and the film thickness δ of the 

monolayer, such that 
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𝐶𝑚 =  
𝜖𝑜𝜖𝑟

𝛿
 (6.4) 

 

For a well-ordered monolayer, characterized by a permittivity value of around 2 expected for 

hydrocarbon chains and thickness δ ≤ 2 nm, Cm values in the range of 1 to 1.8 µF cm-2 are expected, 

with longer chain thiols having lower capacitance due to the higher thickness [48]. Since Cm<<CGC in 

the series capacitance model of the Guoy-Chapman-Stern (GCS) model, the impedance of the smaller 

capacitance Cm dominates as the frequency approaches zero (DC), and the measured CPE can be 

ascribed to Cm. 

Collapse sites where the monolayer thickness is lower than that of the well-ordered monolayer 

form a third type of capacitor. Since the electrolyte ions are blocked from approaching the gold surface, 

but can approach the electrode much closer than the full width of the monolayer, the measured CPE 

here would then be lower than that of a bare electrode/electrolyte but higher than that of the well-

ordered monolayer. In the case of incomplete monolayer coverage, with the possibility of pinholes, 

these three capacitances co-exist. With increased incubation time, it is reasonable to assume that with 

reorganization of the monolayer results in reduction of coverage by defects. In this case we can expect 

a decrease in capacitance, as well as an increase in α values with incubation time implying that the 

monolayer thickness is becoming more uniform. 

Therefore, for defect-free monolayers, the phase shift should be independent of concentration due 

to the monolayer capacitance exhibiting behavior similar to the Helmholtz capacitance, which is 

independent of electrolyte concentration. A similar gold surface incubated for 5 days exhibited a -88° 

phase shift at 1 Hz shown in Figure 6.3. At this frequency, the phase angle varied less than 1.2% 

between 1 and 10 mM for the Au substrate immersed for several days. This is evidence of a monolayer 

that has minimal pinholes and defects, due to the improved ordering of the monolayer afforded by 

prolonged incubation in thiol solution. It has been reported that the structure of SAMs do not change 
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significantly when exposed to a 1 mM solution for 12-18 hours [28]. However, evidence has shown 

that immersion times of 7-10 days can reduce the number of pinholes in the SAM and the 

conformational defects in the alkane chain to decrease [28]. Thus, for applications such as the study of 

electron transport by tunneling through monolayers or preparation of surfaces that need to be well 

insulated from solution redox species, longer immersion times for improved monolayer regularity and 

stability are needed. It is also important to note that an inductance was present at high frequencies 

above 10 kHz for the EIS experiments with 1 mM electrolyte concentration. A survey of the literature 

was made as to find the causes of inductance in a circuit with only capacitances and resistances. These 

effects have been divided into inductances that appear at low frequencies (<10 Hz) and those that 

appear at high frequencies (>100 KHz). For low frequencies, these have been ascribed to adsorbed 

intermediates [49] or relaxation of adsorbed anions on a metal surface [50]. However, these inductances 

appear at frequencies (1 and 0.1 Hz) much lower than what we have observed (10 kHz). At high 

frequencies, the usual suspects are stray inductances from wire leads. Indeed at these frequencies (>100 

kHz) we do see an inductive phase shift. However, neither of the high or low frequency explanations 

account for the fact that the inductive phase in our data appears at 10 kHz, a frequency intermediate 

between low and high frequency situations above. Vanysek and Birss have suggested that this may be 

partly due to the potentiostat itself (capacitance at the reference input in conjunction with high 

capacitance and low resistance at the working electrode) at frequencies greater than about 10 kHz [51]. 

Using various model circuits with the above characteristics, we were unable to recreate the peaked, 

positive phase shift at 10 kHz by using model circuits, thus we are continuing to investigate the matter. 

One other possibility is the coupling of the capacitance of the electrodes and wires to the Faraday cage 

where the experiments on the monolayers were carried out [52]. 

To develop models for categorizing SAMs into those that are defect-free or those having induced 

defects, the corresponding impedance data were fitted to equivalent circuits by using the algorithms 
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built into the Echem Analyst software package (Gamry, Inc.). Models were constructed using the built-

in Model Editor. The Levenberg-Marquardt method was used to fit the data to the CPE-resistor circuit 

shown in Figure 6.4a. The results are shown in Table 6.1. The 1-Hz frequency was chosen for 

measurements due to the relaxation times in which diffusion related phenomena occur for alkane 

SAMs. This has been consistent with previous studies, which have characterized SAM layers on gold 

using EIS [30, 38]. 

For a monolayer that does not exhibit purely capacitive behavior, a Randles circuit was used. Figure 

6.4b is a Randles circuit, which includes a solution resistor in series with an RC circuit. The RC circuit 

includes the double layer capacitance of the surface and the charge transfer resistance, due in part to 

the ionic transport through the monolayer. 

Taken as a whole, the results show that the CPE value decreases, while the α parameter approaches 

unity as the incubation time increases. The high CPE (although lower than the bare gold CPE value) at 

3 h, suggests the presence of defect collapsed sites, implying a thinner dielectric. The presence of 

pinholes leading to α = 0.944 means that the electrolyte has access to the metal, further adding to the 

overall capacitance. A low α could also imply low uniformity of dielectric thickness. Increasing 

incubation time anneals the alkanethiolate into a sufficiently uniform, very close to defect-free, 

blocking monolayer as evidenced by the low CPE value and α approaching unity for 120 h. Figure 6.5 

shows the evolution of the SAM surface with incubation time. This is consistent with the results of 

kinetic studies of alkanethiol adsorption as reviewed by Ulman [53] and Schreiber [27] where two 

distinct steps in the absorption kinetics were observed: a very fast step and a second slow step, which 

can be described as a surface crystallization process. The kinetics of the second step is related to chain 

disorder, chain-chain interaction (van der Waals) and mobility of the surface chains. As previously 

suggested, the pinhole size remains invariant, while the number of pinholes decrease with increasing 

immersion time in thiol solution [29]. More importantly, however, the present study demonstrates that 
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beyond 24 h, an improvement of the insulating character of the SAM is possible; and EIS is a sensitive 

tool for monitoring the state of the monolayer. Figure 6.6 shows a Bode plot of each monolayer at 

different incubation times. At 3 h, it is apparent that the number of defects and pinholes greatly affects 

the impedance at frequencies in the 1-10 Hz range in terms of both magnitude and phase. 

The results of Table 6.2 also show that beyond the critical voltage, the charge transfer resistance 

increases as the incubation time of the monolayer increased. Table 6.2 demonstrated that the critical 

voltage is not only dependent on chain length, but also the amount of time that the monolayer is grown. 

For monolayers grown for 120 h, the critical voltage was extended to larger anodic and cathodic 

potentials, which in this case is -0.3 V to +0.5 V vs. Ag/AgCl. The critical voltage behavior of this 

shorter chain alkanethiol (n=10) was previously achieved only for longer alkane chain lengths (n=15) 

[37]. 

Figure 6.7 is a plot of the CPE and α values from the fit of the EIS data obtained for various thiol 

incubation times (15-, 24- and 120- h), and recorded at different DC potentials. The voltage ranges 

vary for each SAM, since SAMs grown for lower incubation times have lower resistances for ion 

conduction to occur through the SAM. The motivation behind these two plots is to show the potential 

in which the SAM behaves as an ideal capacitor. Beyond the critical voltage for each SAM, the CPE 

model is no longer valid. As incubation time is increased, the critical potentials are extended from -0.1 

and +0.2 V (15 h) to -0.3 to +0.5 V at 120 h. This extends the useful range of the Au/SAM electrode 

for use in biosensor applications where applied potentials are needed to induce signal transduction 

currents. Figure 6.8 shows the phase shift from EIS measurements performed at a range of voltages. 

As can be seen, the monolayer grown for 15 h exhibits a small voltage range before ion transport 

through the monolayer becomes relevant. The 48 h monolayer exhibits a larger potential range up to -

0.2 V (vs. Ag/AgCl). It can be seen that the phase shift is > -80° for cathodic potentials beyond -0.2 V 

(vs. Ag/AgCl). However, the monolayer grown over 5 days exhibits a phase shift ≤ -80 for voltages 
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ranging from -0.3 to 0.5 V (vs. Ag/AgCl). The authors of this study consider this to be evidence that 

the number of pinholes within the monolayer has been reduced, thus increasing the resistance for ions 

to transport through the monolayer. 

The bi-modal shape of the CPE curve for 120-h incubation is intriguing, as it suggests two different 

pzc values. This behavior implies two sites governed by different charge environments. The more 

negative of the two (-0.1 V) probably corresponds to the alkanethiol pzc, however this is expected to 

be at more negative potentials. The PZC of an n=11 alkanethiol was reported to be in the vicinity of -

0.37 V vs. SCE [54], to -0.49 vs. Ag/AgCl [31, 55] for UDT SAMs on Au(111). More studies are 

required to understand the reason a shift in PZC is observed. The minimum at +0.2 V probably 

corresponds to pzc of pinholes or defects where electrolyte can access small areas of bare gold. The 

PZC of Au(111) was measured by cyclic voltammetry in the absence of specific adsorption (HClO4 

and NaClO4, 0.1M) to be about 0.23 V vs. SCE [38] or 0.275 V vs. Ag/AgCl. Due to specific adsorption 

of phosphate anions, we expect a shift towards more negative pzc as seen in the plot, where a minimum 

is seen at 0.1 V for 15 and 48 h incubations. It is interesting to note that unlike the rest of the 

monolayers, the 120 h incubation positive pzc has shifted from 0.1 V to 0.2 V (vs. Ag/AgCl). At this 

point, further comment is not warranted without additional data. The measured CPE corresponding to 

this PZC, however, is not an indication of the surface concentration of pinholes, as its capacitance is 

expected to be much higher than that of a full monolayer. The high α values and the low CPE, as well 

as the ion flux for 120 h incubated sample is an indication of a crystalline, uniform monolayer that has 

the lowest number of defects across the various incubation times. 

 Conclusion 

We have shown that EIS is a sensitive probe of monolayer condition. Defects in the monolayer are 

readily detected as deviations from capacitive behavior with the appearance of charge transfer 
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resistance and critical voltage behavior, and are evident even at the usual incubation times reported in 

the literature. These results have ramifications for investigation and application of electrochemical 

sensors based on immobilized enzymes on SAMs. EIS is a facile method of screening SAM electrodes 

for defects, especially since the same equipment (potentiostat in CV or CA mode) used in the enzyme 

electrode studies is also utilized to check the monolayer (potentiostat in EIS mode). Short-chain thiols 

(n<7) generally do not form well-ordered monolayers and sensors built on these thiols are expected to 

have high double-layer charging from pinholes and background currents from redox species in 

solution, competing with enzyme catalytic current; and thus, reducing the sensitivity of the method 

[18, 56]. Sensors made with longer-chain thiols that were not allowed sufficient time to anneal, will 

likewise suffer from background currents from pinhole conduction [16]. Although the tunneling barrier 

at long-chain thiols (n≥14) limits the transduction current, the reduction in electron transport rate is not 

as severe at medium chains and the ability to form highly-ordered layers resulting in decreased 

background current is advantageous [17]. The larger range of working potentials afforded by well-

ordered monolayer resulting from lengthy incubation times allows a larger repertoire of enzymes with 

a wider range of E0. For transport studies utilizing a SAM on a gold-coated nanoporous membrane, 

EIS can be used similarly as a probe of the insulating property. Insulation is especially crucial for short 

length scales found in microchannels and nanopores. A wider range of electrode potentials can be 

applied when the monolayer is highly ordered, allowing a greater range of available diffuse layer 

potentials. Permeation of ions into a well-ordered monolayer is reduced, extending the usable life of 

the device. The present work has laid the groundwork for finding the limits of applied potentials on a 

blocking monolayer with minimal faradaic current. In future work, studies of ionic transport under 

diffuse layer potential control at blocking monolayer-gold-coated nanopillary array membranes 

(NCAMs). 
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 Figures and Tables 

 

 

Figure 6.1. AFM measurement of bare gold substrate obtained in intermittent contact mode. The scan 

area shown is 1 μm by 1 μm. 

 

 

Figure 6.2. Cyclic voltammograms of a bare polycrystalline gold surface scanned (▼) and an Au 

substrate with a “defect- free” thiol monolayer (■), which was grown for 5 days. The supporting 

electrolyte used was 10 mM (I=0.0316 M) phosphate buffer solution, pH 7 and scan rate 1 V s-1. 
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Figure 6.3. Phase angle plot of undecanethiol SAMs formed at different immersion times, with an 

applied potential of -0.2 V. The phase angle at low frequencies of the 48-hour grown monolayer 

exhibits a phase angle less than -88 degrees, for 1mM and 10mM concentrations.  The substrate 

immersed in thiol solution for 5 days shows a phase angle of -88°, an indication of a monolayer without 

defects for 1mM and 10mM concentrations. 

 

 

Figure 6.4. Equivalent circuits of the thiol monolayer: a) CPE in series with a solution resistance, 

indicative of a “defect-free” SAM and b), an equivalent Randle circuit of a SAM with potential induced 

defects. 

 

(a) 

(b) 
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Figure 6.5. Schematic of alkanethiolate SAM evolution on a gold surface over a range of incubation 

times. 

 

 
Figure 6.6. Bode plot of undecanethiol applied at 0 V (vs. Ag/AgCl) for different incubation times. 
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Figure 6.7. Plot of model data (CPE and α) obtained from fitting the EIS data for various incubation times. 

The DC potential was varied from -0.3 V (vs. Ag/AgCl) to 0.5 V. For immersion times shorter than 120 h, 

the CPE model did not hold over the full DC potential range due to ion penetration. 
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Figure 6.8. Plot of phase shift at 1 Hz from EIS measurements performed at voltages ranging from -

0.3 V-0.5 V (vs. Ag/AgCl). 

 

Table 6.1. Model data for at applied potential of 0 V vs. Ag/AgCl at various incubation times. 

Immersion Time 

(Hours) 

Rs (Ω • cm2) CPE (µS • sα cm-2) α 

0 (Bare Gold) 

3 

15 

48 

120 
 

282 

269 

277 

280 

281 
 

95 ± .002 

68 ± .008 

1.73 ± .02 

1.6 ± .02 

1.58 ± .02 
 

0.940 ± .009 

0.944 ± .001 

0.986 ± .004 

0.992 ± .004 

0.995 ± .004 
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Table 6.2. Fitting parameters for the impedance measurements of SAMs incubated at different times. 

Calculated using the Levenberg − Marquardt method† 

 

 

Immersion 

Time 

 

 

E/V 

(vs. Ag/AgCl) 

CPE in series 

with Resistor 

Equivalent 

Circuit b CPE 

(μS*sα 8cm-2) 

 

 

 

α 

Randles 

Equivalent 

Circuit b Rion 

(MΩ/cm2) 

 

 

 

Cdl (μF/cm2) 

 

 

 

 

 

 

15 hours 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

 

 

 

1.69 ± 0.02 

1.64 ± 0.02 

1.73 ± 0.02 

1.69 ± 0.02 

 

 

 

 

 

 

0.984 ±0.004 

0.988 ±0.004 

0.986 ±0.004 

0.986 ±0.004 

 

 

 

0.721 ± 0.025 

1.28 ± 0.07 

1.47 ± 0.010 

‡ 

‡ 

‡ 

‡ 

2.73 ± 0.02 

0.788 ± 0.03 

0.456 ± 0.02 

1.60 ± 0.07 

1.56 ± 0.07 

1.53 ± 0.05 

‡ 

‡ 

‡ 

‡ 

1.34 ± 0.07 

1.5 ± 0.07 

1.59 ± 0.07 

 

 

 

 

 

48 hours 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

1.88 ± 0.02 

1.73 ± 0.02 

1.74 ± 0.02 

1.68 ± 0.02 

1.61 ± 0.02 

1.60 ± 0.02 

1.55 ± 0.02 

1.56 ± 0.02 

 

 

0.972 ± 0.004 

0.977 ± 0.004 

0.976 ± 0.004 

0.983 ± 0.004 

0.991 ± 0.004 

0.992 ± 0.004 

0.992 ± 0.004 

0.988 ± 0.004 

 

 

 

 

 

‡ 

‡ 

‡ 

‡ 

‡ 

1.26 ± 0.02 

0.573 ± 0.02 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

1.46 ± 0.07 

1.57 ± 0.05 

 

 

 

 

 

5 days 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

1.73 ± 0.02 

1.63 ± 0.02 

1.59 ± 0.02 

1.54 ± 0.02 

1.55 ± 0.02 

1.58 ± 0.02 

1.53 ± 0.02 

1.55 ± 0.02 

1.63 ± 0.02 

 

0.988 ± 0.004 

0.991 ± 0.004 

0.992 ± 0.002 

0.994 ± 0.004 

0.994 ± 0.004 

0.995 ± 0.004 

0.994 ± 0.004 

0.987 ± 0.004 

0.973 ± 0.004 

 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

1.26 ± 0.002 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

‡ 

1.37± 0.01 

Two equivalent circuit models 
†  were used to describe the insulative behavior of the SAMs depending on the 

potential applied to each SAM. 

A CPE model 
‡  is (Figure 4a) used due to the insulative behavior of the SAM. 
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CHAPTER 7 

 

STUDY OF IONIC TRANSPORT THROUGH METALIZED 

NANOPOROUS MEMBRANES FUNCTIONALIZED WITH SELF-

ASSEMBLED MONOLAYERS 

 

The text and figures in this chapter are reproduced with permission from the work: 

Damena D.Agonafer, Muhammed E. Oruc, Edward Chainani, Ki Sung Lee, Huan Hu, and Mark A. 

Shannon. "Study of Ionic Transport through Metalized Nanoporous Membranes Functionalized with Self-

assembled Monolayers." Journal of Membrane Science, 461 (2014): 106-113. 

 

 Introduction 

Nanoporous membranes have received great attention in the fields of water desalination, 

biosensing, and chemical separations [1-17]. There have been numerous studies for separation of 

biomolecules and analytes based on charge selectivity [18-23]. It has been demonstrated that proteins 

can be separated by applying potentials across conductive alumina membranes [24]. Cheow et al. 

developed a platinum coated nanoporous alumina membrane to demonstrate the permselectivity of 

proteins by applying different potentials across the membrane [25]. Several studies have also been 

done demonstrating charge selectivity through nanoporous membranes [26-31]. Studies have included 

fabrication of ion-tracked polyethylene terephthalate membranes, with the membrane surface 

terminated with carboxylate terminal groups [3]. The membranes selectively transported cations and 

prevented migration of anions. Attaching amino moieties on the membranes surface and pore wall 

proved to reverse the selective properties of the membrane. It has also been demonstrated that 

functionalizing gold nanotubule membranes with self-assembled monolayers (SAMs) could alter the 

pH responsiveness of the membrane [32]. Selective transport through nanopores has also been found 
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to be dependent on the hydrophobic interaction between the analyte and membrane surface. Zenglian 

et al. used an electroless gold-deposited PCTE membrane modified with a hydrophobic terminated 

thiol surface. The competing effects between the interactions of the entrance and surface of the 

nanopore were compared. It was concluded the entrance effect had the most influence on the transport 

of analyte across the nanopores [33]. 

Several studies have shown that anion adsorption on a conductive NCAM surface can affect the 

exclusion enrichment effect of coions and counterions.  Mun et al. demonstrated charge selectivity 

using electroless gold coated polycarbonate track etched membranes (PCTE) [34]. The PCTE 

membranes are fabricated by bombarding a polycarbonate film with a collimation of high-energy 

nuclear fission fragments, which results in damaged tracks through the film. The damaged tracks are 

then etched by an aqueous base solution to create cylindrical pores within the polycarbonate film [35]. 

The PCTE gold-coated surface was functionalized with propanethiol for prevention of anion adsorption 

(e.g. chloride ions) on the surface of the membrane. However, it was observed that the permselectivity 

of the membrane was inhibited when positive potentials (anodic) were applied at the membrane 

surface. It was concluded that the poor quality of SAM layer led to irreversibilities on the charge 

selective system as a result of adsorption of anions. Although the membrane was immersed in thiol 

solution for 24 hours, studies have shown that more allocated time is necessary to grow a well ordered 

(SAM) [36-38]. Authors have shown that detection of analytes can be achieved by interactions with 

the membrane surface/pore wall [39-41]. Schmuhl et al. investigated electric field-driven transport of 

ions through supported mesoporous γ-alumina membranes, with surfaces metalized with gold [42]. 

The studies showed that the electrolyte composition could affect the flux of copper ions through a 

permselective membrane. It was demonstrated that the flux of copper ions (Cu2+) was enhanced by the 

presence of adsorbed chloride ions on the gold-coated alumina surface. The same experiments were 

done with solutions containing fluoride (F-) and nitrate (NO3-) ions. Flux enhancement of Cu2+ was not 
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present when electrolyte solutions containing F- and NO3- were used. As a result from XPS analysis, it 

was found that chemisorption of chloride on to the gold-coated membrane surface occurred, resulting 

in a negatively charged surface. It was concluded that the negatively charged membrane surface led to 

a local accumulation of counter ions, which enhanced the flux of Cu2+ ions. 

If specific adsorption of a molecule occurs on the surface of a membrane, ion selectivity for 

separation will be inhibited by the loss of interaction between the membrane surface and analyte as 

shown in Figure 7.1a. If the membrane surface is well covered by the SAM in order to minimize ion 

adsorption, ion selectivity can be enhanced for a specific molecule of interest (Figure 7.1b). The 

applications of SAMs are often limited by the immersion time allocated for the growth of the SAM. 

Past work has focused on studying the properties of a well-ordered SAM by electrochemical impedance 

spectroscopy (EIS) [37, 43]. It was found that a minimum of 48 hours is needed to grow a well-ordered 

SAM [37, 38]. 

Surface functionalization is crucial for bioseparation and biosensing applications. Savariar, et al. 

functionalized the surface of a polymeric membrane with SnCl2, which led to separation of analytes 

by electrostatic and hydrophobic interactions [44]. Additional work has focused on studying the 

transient current response based on the interaction between proteins and walls of single nanopores [41, 

45]. Wei et al were able to immobilize proteins by using an OH- terminated thiolated SAM to act as a 

protein receptor. The interaction between the protein and nanopore wall can be quantified by the time 

constant associated with adsorption and desorption events. Without the presence of a SAM on the 

surface, non-specific protein adsorption can occur on the walls of the nanopore. This can lead to 

effective blockage within the nanopore with non-targeted proteins, leading to a smaller measurable 

current (lower S/N ratio) across the nanopore [41]. Moreover, redox currents typically increase the 

background noise for electrochemical sensors.  If detection can be accomplished with lower applied 

potentials, S/N ratios can be improved for electrochemical sensing of specific analytes [46]. 
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In this work, we study the transport of methyl viologen (paraquat, MV2+) and 

napathalenedisulfonate disodium salt (NDS2-) across a conductive NCAM while applying a range of 

potentials at with respect to the membrane surface at the entrance side. A polycarbonate track etched 

(PCTE) membrane was made conductive by sputter coating gold on the membrane surface. Transport 

studies were done in a voltage range in which faradaic current was minimized at the surface of the 

gold-coated nano-capillary-array-membranes (NCAMs). The goal of the transport studies is to 

demonstrate improved charge selectivity when a well-grown 1-undecanethiol monolayer is assembled 

at the surface of the NCAM for a wide range of applied potentials (-400 mV<Vappl<400mV). Results 

show the selectivity of charged analytes through the metallized NCAM can be improved by 

functionalizing the surface with a self-assembled monolayer (SAM). 

 Experimental 

7.2.1. Preparation of Gold-Coated NCAMs 

PVP coated polycarbonate membranes (PCTE) (Osmonics Inc., MN) membranes were sputter-

coated with 50 nm of gold on each side of the membrane surface, with a 6 nm thick titanium adhesion 

layer. The membrane thickness, nominal pore size, and pore size density were 6 µm, 30 nm, and 6 × 

108 cm-2, respectively. The sputtering power was 300 W with a 23 nm/min deposition rate. The chamber 

pressure during sputtering was 5 mTorr, and the distance between the gold target and sample was 

approximately 30 cm. To avoid electrical shortage between each side of the membrane, the edges 

around the permeation area were not coated. After 2 minutes of gold sputtering, the inner pore diameter 

of the NCAM did not exhibit any noticeable decrease in pore size (Figure 7.2). 11-undecanethiol, 

purchased from Sigma Aldrich, was dissolved in absolute ethanol (Pharmaco-AAPER, Shelbyville, 

KY) in order to prepare 1mM thiol solution. The NCAM was placed in a membrane holder and 

immersed in undecanethiol solution for 48 hours. 
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7.2.2. Preparation of Monolayer Surfaces 

Figure 7.3 shows a summary of steps involved for preparation of a gold-coated NCAM 

functionalized with a SAM. The steps include sputter-coating gold on the membrane surface followed 

by functionalizing the gold-coated NCAM with undecanethiol. The monolayer-coated membrane 

surface is then rinsed with absolute ethanol and DI water, followed by blow-drying the NCAM surface 

with N2. Prior to experiments, the NCAM was subjected to the channel outgas technique [47] in order 

to saturate the membrane pores with electrolyte solution. While the membrane was immersed in 

phosphate buffer solution, the membrane was placed in vacuum conditions for 48 hours in order to 

release any trapped bubbles within the pores. Prior to experiments, the NCAM was pretreated with a 

1mM phosphate buffer solution, in order to establish equilibrium conditions for the transport 

experiments. 

7.2.3. Preparation of Kapton Electrodes 

To establish an electrical connection to the conductive membrane surface, two pieces of gold- 

coated Kapton (Du Pont 500 HN, 127 μm) were used as electrodes to apply a potential at each surface 

of the membrane. Kapton films were scored in a long rectangular shape with a 5 mm diameter punched 

permeation hole for ionic transport. The Kapton film was cleaned with solvents followed by 1 min of 

oxygen plasma treatment at 100 W, which removed organic matter from the surface in order to improve 

bonding between the adhesion and gold layers. A 5 nm titanium layer was deposited as an adhesion 

layer, followed by a 100 nm deposited gold layer. Wires were soldered to the electrodes for electrical 

connection to the bipotentiostat. 

7.2.4. Transport Experiments 

Figure 7.4 is a schematic of the membrane permeate flow cell (MPFC).  The membrane was 

sandwiched between two gold-coated Kapton electrodes. The Kapton electrodes were then clamped 



 

118 

 

between the feed and MPFC. Ag/AgCl reference and gold counter electrodes were placed in the feed 

cell.  A CBP Pine Instruments bipotentiostat (Pine Instrument Co., Grove City, PA) was used to apply 

a potential at each side of the gold-coated NCAM. 1mM phosphate buffer solution (PBS) was prepared 

as a ratio of mono- and dihydrogen potassium phosphate salts (Sigma-Aldrich, St. Louis, MO) in DI 

water, serving as an electrolyte. The permeate cell initially had 1mM potassium phosphate buffer 

solution (PBS) with pH of 7. The total dead volume of the circulating solution was 1 mL. A peristaltic 

pump (Masterflex L/S 7520-47) was used to circulate PBS solution from the MPFC through a Z-cell 

(FIAlab Instruments, Bellevue, WA) for UV detection of molecules. 

The two molecules being investigated for transport experiments were methyl viologen dichloride 

(MV2+) and naphthalene 1,5 napthalenedisulfonic acid disodium salt (NDS2-), each purchased from 

Sigma Aldrich. Initial concentrations of each molecule in the feed cell were 1mM in a 1 mM PBS 

solution of pH 7. The flowrate used for all experiments was 2.16 ml/min. The effective membrane 

permeation area was 0.2 cm2. Ionic transport through the NCAM was measured by UV absorption 

spectroscopy using a DH-2000 deuterium/tungsten-halogen light source and Jaz spectrometer, (Ocean 

Optics, Dunedin, FL). The concentrations of ionic spices was determined according to wavelengths: 

MV2+ at 257 nm and NDS2- at 228 nm, as shown in Figure 7.5. 

The potential of the permeate side of the membrane was held at 0V (vs. Ag/AgCl) in all 

experiments in order to provide consistent electrochemical conditions. The potential of the feed side 

of the membrane was varied to study the influence of the diffuse layer potential on the transport of 

charged species. 
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 Results and Discussion 

7.3.1. Effects of Transport of NDS2- and MV2+ when NCAM is Functionalized with a SAM 

Figures. 7.6a and 7.6b are permeation experiments for NDS2- with and without the presence of an 

alkane-terminated SAM on the NCAM surface. The fluxes for NDS2- are higher for applied potentials 

of -0.4V, 0V, and +0.4V (vs. Ag/AgCl) when the NCAM is functionalized with undecanethiol. The 

increase in flux for NDS2- with the presence of a SAM layer on the membrane surface can be attributed 

to the reduction of anion adsorption (e.g. phosphate, NDS2-). Several studies have confirmed that 

adsorption of anions on a bare gold surface, which functions as a working electrode, occur over a range 

of applied electrochemical potentials [48-52]. In those studies, phosphate buffer solutions (PBS) were 

used as a background electrolyte. While rarely used as supporting electrolyte in electrochemical 

studies, phosphate buffer solutions are prevalent in physiological and biochemical studies. There are 

few studies of phosphate anion adsorption on gold [53-57], and even fewer done at close to neutral pH 

[55]. Those studies suggest that phosphate adsorption is higher than sulfate adsorption, but is 

considerably weaker than halide (Cl-, Br-) ion adsorption [57]. 

Figure 7.7 illustrates the entrance length of the gold-coated membrane layer is approximately 1.5 

times greater than the characteristic pore diameter, which means the surface interaction at the 

membrane surface can have a strong influence on the transport of ionic species. The ratio between the 

thickness of the gold layer and pore diameter can be thought as an access resistance in terms of 

electrostatic interaction of ions at the wall entrance of the pore [58, 59]. As the ratio increases, the 

interaction of ions at the gold layer can become significant; whereas a smaller gold thickness-pore 

diameter ratio will lead to a less effective entrance effect as a result of a smaller effective surface area 

for ions to interact with the charged gold layer. As a result, the functionalization of the gold-coated 

NCAM surface with an alkane-terminated SAM can play a crucial role for influencing the wall 

interaction with analytes (e.g. Cl-, NDS2- , phosphate ions) present in the electrolyte solution. The effect 
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of adding SAMs on the NCAM surface is significant at positive applied potentials (Figure 7.6). This 

suggests that there is specific adsorption of NDS2- as observed in previous work [34]. Although the 

adsorption of phosphate ions and NDS2- is weaker for neutral and negative applied potentials, there is 

still a slight increase in flux of NDS2- when functionalized with a SAM. The thickness of the Au coated 

layer is only a small fraction of the total thickness of the NCAM (50 nm << 6 um). It can be concluded 

that the thickness of the gold layer does not have any significant impact on the flux of ionic species 

related to the total thickness of the membrane. 

As discussed earlier, anions adsorb on the gold-coated NCAM surface without the presence of an 

alkane-terminated monolayer. This can lead to specific adsorption of anions (e.g. NDS2- and Cl-) [42, 

57]. As a result, the charge from an external applied potential on the membrane surface can be 

countered by more than an equivalent charge of anion adsorption [60]. The adsorption of anions creates 

a negative surface charge density, which creates a diffuse layer potential at the membrane-electrolyte 

interface. This in turn distorts the local concentration of ions at the surface around the pore entrance. 

Although the bulk concentration of NDS2- is believed to not change over the time of the experiment, 

the local concentration of anionic species at the entrance of the membrane pore can decrease, leading 

to a smaller local concentration gradient across the nanopore. This in turn can reduce the driving 

mechanism for diffusion of NDS2- across the NCAM. As a result of the absence of a SAM on the 

membrane surface, NDS2- molecules are screened due to a negatively charged membrane surface. With 

the functionalization of a SAM on the NCAM surface, the negative surface charge density is reduced, 

lowering the driving mechanism for enrichment and screening of counter and coions, in order to 

preserve electroneutrality. This enables NDS2- molecules to transport across the NCAM with less 

electrostatic interaction ascribed from the surface charge at the membrane surface; which in turn 

enables NDS2- to permeate with a higher flux across the NCAM. As can be observed from Figures 7.6a 
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and 7.6b, the flux of NDS2- increases when a monolayer is present over a range of potentials applied 

at the membrane surface as a result of the reduction of irreversibilities from anion adsorption. 

Figures 7.8a and 7.8b show that fluxes for MV2+ are higher for applied potentials of +0.4V, -0.4V 

and 0V (vs. Ag/AgCl) without the presence of a SAM layer on the NCAM.  The results are in contrast 

with transport of NDS2- through the NCAM. The decrease in flux of MV2+ can be attributed to the 

presence of Cl- counter ions from the dissolution of paraquat molecules. Past work has demonstrated 

that working electrodes immersed in KBr electrolyte solution can create a surface excess of K+ at 

anodic and cathodic potentials, due to specific adsorption of Br- on the electrode surface [60]. The 

excess of K+ ions at positive applied potentials can be elucidated by the necessity to partially 

compensate specific adsorbed bromide ions [61]. As a result of the absence of a SAM on the gold-

coated membrane surface, the negatively charged NCAM can attract counterions (MV2+), which can 

lead to local accumulation at the membrane surface. This in turn, increases the local concentration of 

MV2+ at the entrance of the membrane, resulting in an increase of diffusional flux of MV2+ across the 

nanopore. As mentioned earlier, the net negative surface charge on the membrane surface is 

significantly reduced when undecanethiol is functionalized at the NCAM surface. This leads to a 

reduction of a negative surface charge attributed from the specific adsorption of anions. Reduction of 

anion adsorption subsequently acts to reduce the accumulation of MV2+ at the membrane surface. The 

decrease in accumulation of MV2+ leads to a smaller flux across the NCAM compared to the condition 

when the gold-coated NCAM surface is not functionalized with an alkane-terminated SAM. Although 

the variation of diffusional flux varies at all applied potentials, the effect of surface functionalization 

with SAMs is significant for potentials at 0V and +0.4V. In contrast, the addition of a SAM layer has 

minimal contribution for diffusional flux experiments for NDS2- at an applied potential of 0V. As 

previously discussed, the different mechanism for ion selectivity between NDS2- and MV2+ can be 

attributed to the difference in electrolyte composition. Chloride ions are present in the buffer solution 
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of MV2+, but absent in the electrolyte solution containing NDS2-. As also discussed earlier, Cl- ions 

have a higher affinity to adsorb as NDS2- or phosphate ions. This can lead to a higher impact on 

minimization of the ion exclusion-enrichment-effect over a wider range of potentials due to the 

reduction of adsorption with the presence of a SAM. 

7.3.2. Effects of Ion Selectivity when Monolayer Formation is Present 

Table 7.1 summarizes the flux and selectivity coefficients for transport experiments for NDS2- and 

MV2+. For NDS2-, the percentage of increase in flux with the presence of a SAM is approximately 20%, 

12%, 73% for potentials of -0.4V, 0V, and 0.4V. The results show that with the addition of an alkane-

terminated monolayer, the enrichment effect of NDS2- at positive applied potentials is increased, due 

to a reduction of irreversibilities on the membrane surface. The addition of the monolayer increases 

the ability to enhance flux of anions when the contributions of a negative surface charge density are 

reduced.  The percent decrease of flux of MV2+ when a monolayer is added is 0.5%, 26%, and 52% for 

applied potentials of -0.4V, 0V, and 0.4V respectively. 

The selectivity coefficient for anions is defined as: 

𝛼+0.4/−0.4 = (𝑓𝑙𝑢𝑥 𝑜𝑓 𝑎𝑛𝑖𝑜𝑛 𝑎𝑡 0.4𝑉/𝑓𝑙𝑢𝑥 𝑜𝑓 𝑎𝑛𝑖𝑜𝑛 𝑎𝑡 − 0.4𝑉) (7.1) 
 

The selectivity coefficient for cations is defined as: 

𝛼−0.4/+0.4 = (𝑓𝑙𝑢𝑥 𝑜𝑓 𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 − 0.4𝑉/𝑓𝑙𝑢𝑥 𝑜𝑓 𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 0.4𝑉) (7.2) 
 

The selectivity coefficient increases from 4.3 to 6.2 when undecanethiol is attached to the gold-

coated NCAM.  This supports the argument that irreversibilities on the surface of a gold-coated NCAM 

can be reduced when a monolayer is grown on the surface. This can be attributed to the surface charge 

density formed on the bare gold surface, which aids in screening the NDS2- molecules from 

transporting across the NCAM. When the alkane-terminated monolayer is added, the electrostatic 
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repulsion towards anions is reduced, leading to a higher flux of NDS2-. With the reduction of specific 

ionic adsorption, the contributions of ionic transport are mainly from the externally applied potential 

at the membrane surface and surface charge density at the PVP coated walls, which will be discussed 

later in the next section. Similarly, MV2+ displays a distinct improvement for selectivity when 

undecanethiol is functionalized at the surface. As mentioned earlier, the selectivity of methyl viologen 

is improved with the addition of a monolayer, due to an increased ability of the membrane to selectively 

screen MV2+ at positive applied potentials. 

7.3.3. Effects of a Charged Nanopore and EDL Thickness on the Transport of Ions 

The mechanism for ionic transport across the NCAM is by passive transport.  At low ionic strength, 

the exclusion enrichment effect of ionic species can occur as a result of the surface charge at the walls 

of the nanopore. This can reduce the effective permeability and cross sectional area of the nanopore 

for transport of coionic species due to the electrostatic forces at the walls of the nanopore. Although 

there is no electric double layer (EDL) overlap, it has been postulated that EDL overlap is not required 

in order to distort the local equilibrium concentration within a nanopore [3, 22, 62]. 

At an ionic strength of 7mM, the EDL covers about 27% of the NCAM with nominal pore size of 

30 nm. This means that electrostatic effects within the nanopore cannot be ignored.  Equation 7.3 is an 

index for comparing the ratio size of the nanopore to the Debye length 

𝜅𝑎 = 𝑎 (
𝜀2 ∑ 𝑛𝑖

∞
𝑖 𝑧𝑖

2

𝜀𝑜𝜀𝑟𝑘𝐵𝑇
)

1
2

 (7.3) 

 

where κ and a are defined as the inverse Debye length and diameter of the nanopore. 

The surface charge of PVP-coated PCTE membranes contain a negative surface charge density at 

a pH level of 7 [63]. As previously discussed, the ionic mobilities of NDS2- and MV2+ are comparable 

due to similar molecular volumes (0.637 nm3 for NDS2- and 0.680 nm3 for MV2+), hydrophobic 
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properties (each contain two benzyl rings), and same valencies (z=2) with opposite charge. However, 

as shown in Figure 7.9, the flux of MV2+ at a potential of 0V (vs. Ag/AgCl) is 8 and 12 times larger 

for NCAMs with and without the presence of a SAM layer. It should also be pointed out that the ratio 

of flux between NDS2- and MV2+ decreases as the irreversibilities from anion adsorption at the 

membrane surface is reduced. Although the EDL only covers approximately 27% of the pore area, 

screening effects of coions still occur.  Figure 7.10 shows a schematic of diffusion transport of anionic 

species through a gold-coated NCAM. Figure 7.10a shows that at high ionic strength, the electrostatic 

interactions at the pore wall are negligible due to a small Debye length. Figure 7.10b shows that at low 

ionic strength, the EDL extension across the nanopore creates a non-homogenous concentration of 

coionic species. It can be concluded that the flux of NDS2- is significantly less than MV2+ due to 

electrostatic screening from the walls of the PVP-coated PCTE membrane. Although the surface charge 

density from the surface of the membrane affects ionic transport, the electrostatic effects from the walls 

of the nanopore prove to be significant. More studies are needed to conclude the relative significance 

of each electrostatic interaction. 

 Conclusion 

It has been demonstrated that functionalizing a metalized NCAM surface with undecanethiol can 

enhance charge selectivity. For a well-grown alkane-terminated SAM, ionic species can be 

electrostatically separated from the diffuse layer potential at the monolayer/electrolyte interface 

(neglecting charge on the head group) at the membrane surface. It was demonstrated that entrance 

effects at low ionic strengths are not negligible and can dictate the transport of analytes across a 

nanopore. This work opens up the possibility of utilizing SAMs with different charged head groups to 

manipulate ionic species based on the diffuse layer potential at the surface of the membrane. EIS 

experiments in previous work have demonstrated monolayers grown for several days can significantly 

enhance the quality of a SAM [38], which opens the possibility of improving when incubation times 
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for monolayer growth occur longer than 48 hours. Future work should investigate transport 

mechanisms at lower and higher ionic strengths to find the critical concentration in which entrance 

effects become negligible. More studies are needed to study the influence of surface charge from the 

walls and surface of the NCAM effect ionic transport. This may give more insight in how to improve 

charge selectivity at both anodic and cathodic potentials. 
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 Figures and Tables 

 

Figure 7.1. Schematics (a) and (b) of a gold coated NCAM, which illustrates the improvement when 

a well-grown SAM is attached to the monolayer. 

 

 

Figure 7.2. SEM image of the surface of a gold-sputtered PCTE 30 nm, PVP coated membrane. 
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Figure 7.3. Fabrication steps for coating the membrane surfaces and functionalizing the surface with 

an alkane SAM. 

 

 

Figure 7.4. Schematic of the membrane permeate flow cell connected to the UV spectrometer system 

and the bipotentiostat. . WE1, WE2, RE and CE represent working electrode #1, working electrode #2, 

reference electrode, and counter electrode connections to the bipotentiostat. 
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Figure 7.5. UV absorption spectra for NDS2- and MV2+ 

 

 

Figure 7.6. Diffusional flux measurements of NDS2- through a conductive NCAM when the gold 

surface of the NCAM is not functionalized with a SAM (a), and when functionalized with 

undecanethiol (b). 
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Figure 7.7. Schematic representation of a 50 nm sputtered-gold layer at the surface of the NCAM.  The 

thickness of the gold layer is the same order of magnitude of the NCAM pore diameter, indicating the 

relevance of the interaction of analytes at the gold-electrolyte interface. 

 

 
Figure 7.8. Diffusional flux measurements of MV2+ through a conductive NCAM when the gold 

surface of the NCAM is not functionalized with a SAM (a), and when functionalized with 

undecanethiol (b). 
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Figure 7.9. Diffusional flux measurements of NDS2- and MV2+ through a conductive NCAM at 0 V. 

Figures (a) and (b) are permeability measurements performed when the NCAM was not functionalized 

(a) and functionalized with undecanethiol (b). 

 

 
Figure 7.10. Schematic of the EDL effect on anionic transport. At high ionic strength (a), the Debye 

length is small, therefore anions can diffuse easily through the nanochannel. At low high ionic strength 

(b), the Debye length is relatively higher then it reduces the flux of counterions through the nanopore. 
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Table 7.1. Summary of Fluxes of NDS2- and MV2+ and Selectivity Coefficients 

 Flux of NDS2- (nmoles • min-1 • cm-2) Flux of MV2+ (nmoles • min-1 • cm-2) 

Applied Voltage (V) Unmodified Modified Unmodified Modified 

0 1.44*10-2±5.71*10-4 1.61*10-2±1.30*10-3 1.70*10-1±4.42*10-3 1.26*10-1±7.61*10-3 

+0.4 4.75*10-2±3.23*10-3 8.24*10-2±2.18*10-3 1.62*10-1±5.71*10-3 7.81*10-2±3.73*10-3 

-0.4 1.11*10-2±5.71*10-4 1.33*10-2±8.33*10-4 2.03*10-1±3.65*10-3 2.02*10-1±6.34*10-3 

 

Selectivity Coefficient for NDS2- Selectivity Coefficient for MV2+- 

Unmodified Modified Unmodified Modified 

𝜶+𝟎.𝟒/−𝟎.𝟒 4.3 6.2   

𝜶−𝟎.𝟒/+𝟎.𝟒   1.25 2.6 
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