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ABSTRACT

Metabolic pathfinding is the task of finding preferred metabolic pathways from

metabolic large reaction databases. Representing metabolism via networks

enables quick enumeration of paths between two compounds. Automated

pathfinding helps in working with ever increasing databases if reactions and

in finding novel pathways for metabolic engineering. However, the number

of pathways between two compounds can be as large as 500,000 in some

metabolic models and even more as the size of the input database grows,

which makes it imperative that the most relevant ones are ranked highly. While

graph theoretic representations of metabolic networks bring speed and ease

in enumeration of pathways, they also create the challenge of biochemically

insensible shortcuts through pool or currency metabolites.

In the past, strategies to circumvent such irrelevant pathways have included

weighing networks using the degree of nodes or the manual curation of edges

in the metabolic network. The former method wrongfully penalizes some

primary metabolites central to metabolism, while the latter requires someone

to complete manual curation. KEGG RPAIR database is an annotation to

describe reactions in terms of reactant pairs and has been used for metabolic

pathfinding. Here, I first study a few different centrality measures to identify

currency metabolites and identify one better than the degree centrality. I then

describe a method to augment the KEGG RPAIR based pathfinding method

using a chemical composition score and evaluate its ability to augment and

replace the role of RPAIRs in pathfinding. The new algorithm is validated

against a set of 30 biochemical pathways in E.coli. Since this method uses

chemical composition as a fallback measure, it can be used in the absence of

explicit RPAIR information, thus allowing the identification of putative paths

not possible via methods using the RPAIR database alone.
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CHAPTER 1

INTRODUCTION

One important aspect of how organisms work is to understand metabo-lism.

Common questions investigated include what energy sources can a cell survive

on? What compounds does it produce and release to the environment? To an-

swer these questions a key task is to identify metabolic pathways. Metabolism

encompasses nutrient uptake, energy production, synthesis of proteins, DNA

and other molecules that are required for a cell to survive and proliferate.

These processes are tightly regulated. Enzyme expression is one of the primary

ways regulating the rates of reactions and the uptake and release of compounds

from the surrounding environment. Metabolic pathways are a coherent series

of chemical reactions that convert nutrients from the environment to cell

products and by-products. Metabolic pathways abstract a specific set of bio-

chemical functions. We then have a description of how metabolism operates

in an organism. This knowledge can be applied to metabolic engineering

which is defined as “the improvement of cellular activities by manipulations

of enzymatic, transport, and regulatory functions in the cell with the use

of recombinant DNA technology” [1]. E.coli is a popular host for metabolic

engineering. Such applications in E.coli, include for example, the production

of glucaric acid using genes from Saccharomyces cerevisiae and mice [2], pro-

duction of terpenoids- amorphadiene from a synthetic gene and a gene from

Saccharomyces cerevisiae [3], 1,3-propanediol [4] and 1,2,4 butanetriol [5].
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A metabolic network is composed of reactions that connect metabolites. It

is a representation of all metabolic pathways and hence overall metabolism in

an organism. Of particular interest for metabolic engineering is small molecule

metabolism which is the set of chemical reactions that act upon small and

medium sized molecules. These molecules are essential macromolecules like

proteins,nucleic acids, lipids, sugars, co-factors, modulators of enzyme activity

[6]. Metabolic pathways have been inferred from mutation experiments on

model organisms such as E.coli and a few other bacteria, the yeast S.cerevisiae

and focused studies in mouse and human. In such methods a gene is mutated

and hence the corresponding enzyme is not produced. All products dependent

on the reactions catalyzed by this enzyme are not produced and need to be

provided in the environment, which is an auxotrophy phenotype. By observing

all mutated phenotypes genes can be clustered into groups. Each group then

corresponds to a metabolic pathway. With the large amount of genomic date

being generated these days there has been an effort at in− silico metabolic

reconstruction.

One set of tools are metabolic pathfinding tools. These methods model the

compounds and reactions as a graph and use graph theory to find metabolic

pathways which are difficult to infer using biochemical experiments. Apart

from the tedium involved, biochemical methods are limited in their inability to

identify pathways with lethal phenotypes or multiple alternatives (branched

pathways because there is a combinatorial explosion of possible pathways).

Some of the challenges in in− silico pathfinding are, poor quality of data,

inadequate quality of model, false positives (due to biochemically irrelevant

pathways), and false negatives due to incomplete networks [7].
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1.1 Data Sources and Nature of Data

MetaCyc [8, 9] and KEGG (Kyoto Encylopedia of Genes and Genomes )

[10, 11] are large metabolic pathways databases that have been maintained

and expanded for some years now and are the most popular. The number

of reactions in the two databases are similar. Metacyc (version 16.0 release

Feb 17th, 2012) has more reactions (8,692 vs. 10,262) while KEGG (as of Feb

17th, 2012) has a lot more compounds (16,586 vs 11,991) and total reactions.

Metacyc contains many more pathways from plants, fungi, actinobacteria that

are not found in KEGG, while KEGG contains many pathways for xenobiotic

degradation, glycan metabolism, metabolism of terpenoids and polyketides

not present in Metacyc [12].

In these databases, pathways and reactions have varying levels of associated

data. For example Metacyc, KEGG pathways and reactions have EC (Enzyme

Classification) numbers [13] (Figure 1.1). Metacyc also has cross references to

KEGG compound and reaction identifiers. KEGG in addition has RPAIRS

(Reaction Pairs). RPAIRS are substrate-product pairs assigned to each reaction

based on chemical transformation patterns called RDM (Reaction Difference

Match) patterns and EC numbers [14, 15].

To generate RDM patterns and EC numbers, KEGG has classified atoms

and their microenvironments into 68 atom types. These atom types are used

in a graph based method to identify chemical similarities. This method uses an

algorithm to find common isomorphic subgraphs of two compound graphs. The

compound graphs are a 2D representation of the chemical structure with well

detailed vertex labels taking into account the physiochemical environmental

properties of atoms.
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Figure 1.1: An example pathway in Metacyc reused with permission from [8]

The vertex labelling is done computationally on the basis of connection

patterns of atoms and the functional groups they belong from the initial

MDL/MOL file which are manually curated. RDM patterns are created by

aligning the chemical structure of a substrate-product pair of compounds

and identifying the reaction center, matched region and difference region.

The RDM pattern is the KEGG atom type changes at these loci. The RDM

pattern is then used to assign a category to a reactant pair.
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The categories are:

Main describing main changes on substrates

Trans focused on transferred groups for transferases

Cofac describing changes on cofactors for oxidoreductases

Ligase describing the consumption of nucleoside triphosphates for ligases

Leave describing the separation or addition of inorganic compounds for such

enzymes as lyases and hydrolases

The EC number is also inferred from the RDM pattern [15]. However, the

reactant-pairs in the RPAIR database are further manually curated to weed

out any errors in computational assignment. The computational assignment

discussed above can be erroneous in cases where the overlapping atoms are

few compared to the atoms in the the reactant-pair.

Figure 1.2: An example RDM pattern for a pair of compounds. Reaction
center in red, Match in blue, Difference in Green. Reused with permission
from [15]
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1.2 Representation of Metabolism

Metabolism can be modelled using graph theory, flux balance analysis and

petri nets. Here we use a graph theory based approach to solve the problem

of pathfinding. A Metabolic network is a representation of metabolites (com-

pounds) and their conversions (reactions). Reactions may be spontaneous or

may be catalyzed by enzymes. While organisms regulate enzymes in response

to environmental conditions we make the approximation in pathfinding that

all annotated enzymes are expressed at all times and reactions are catalyzed

at a significant velocity. We therefore ignore reaction rates in such prob-

lems. A metabolic pathway is a coherent series of successive reactions for

a specific function (i.e it takes input compound(s) and converts them to

output compound(s)),e.g gluconeogenesis which accepts pyruvate as input

and produces glucose. When using graphs to model metabolism we can use

compounds as nodes and reactions as links (compound graphs) or the reverse,

that is reactions as nodes and compounds as links (reaction graph). In addi-

tion, a bipartite graph with both reactions and compounds as nodes can also

be used. The compound graph and reaction graph are useful for structural

analysis because some graph algorithms do not work with bipartite graph.

The drawback is that biochemically irrelevant shortcuts may occur in path

finding [16].

1.3 Structure of Metabolic Networks

Some early work using metabolic graphs was used to gain key insights into

the structure of metabolic graphs such as hub metabolites, small world nature

of metabolic graphs etc. [17, 18] These methods using a compound graph

structure found that like other real world networks metabolic networks too
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Figure 1.3: Different Graph Models.

follow the small world structure [19] and the node degrees follow a power law

distribution. A small number of compounds are highly connected and most

compounds have few connections. Additionally, most compounds are within 3

steps of each other and about 20 compounds are the most well connected in

metabolic models of all organisms studied. These compounds on inspection

were found to be currency metabolites or pool metabolites, e.g ATP, ADP,

NAD, H2O, H+ etc., which are typically cofactors involved in energy and

redox levels. A later study [20] on 80 organisms, with the removal of currency
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metabolites, found that the average length of all paths between two nodes was

7-8 steps and that the structure of metabolic networks could be grouped into

3 domains of organisms- eukaryokes, archea and bacteria. They also found a

different, more meaningful set of compounds that are hub nodes.

These hub nodes are: Glycerate-3-phosphate, D-Ribose-5-phosphate, Acetyl-

CoA D-Ribose-5-phosphate, Acetyl-CoA Pyruvate, D-Xylulose 5-phosphate,

D-Fructose 6-phosphate, 5-Phospho-D-ribose 1-diphosphate, L-Glutamate,

D-Glyceraldehyde 3-phosphate, L-Aspartate, Propanoyl-CoA, Malonyl-ACP

Mal, Succinate Acetate, D-Ribose-5-phosphate, D-Fructose 6-phosphate, 5-

Phospho-D-ribose 1-diphosphate, D-Glucose 6-phosphate.

These compounds are intermediates in the pentosephoshpate pathway, the

citri acid cycle, glycolysis, TCA cyle, amino acid synthesis and are primary

metabolites central to most metabolism.

1.4 Currency Metabolites

One major problem in metabolic path finding is the distortion of pathfinding

solutions due to currency or pool metabolites pointed out by many papers

[21] [20]. Currency metabolites have a high degree centrality because they

are cofactors or side-products in many reactions. In a metabolic graph the

presence of these compounds leads to biochemically irrelevant shortcuts. The

following example illustrates this problem:

Methanol +H2O2 ↔ Formaldehyde+ 2H2O

N6 − Acetyl − L− Lysine+H2O ↔ Acetate+ L− Lysine

If we consider that all substrates are connected to all products we get a path

Methanol → H2O → L − Lysine which is meaningless. Lysine cannot be

produced from methanol via water.
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1.5 Motivation

In the next chapter we describe and do a thorough literature review of the most

successful methods for metabolic pathfinding. All methods require some level

of curated data. The requirement can range from complete description of ac-

ceptable compound transformation to some computational prediction followed

by manual curation. Even for the methods that have mostly computation

prediction of acceptable compound transformation, a complete description

of compound structure information is needed. While, annotating reaction

databases with the relevant information is a continuous process, there are

some gaps. We have described here a method that uses annotation data where

available and compensates in its absence.
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CHAPTER 2

METABOLIC PATHFINDING

The earliest pathfinding approaches involved enumeration of paths from source

to target in a directed graph. This was proved to be näıve when it was found

that there were approximately 500,000 paths from glucose to pyruvate [22]

and close to 350,000 from chorismate to tyrosine [23] due to the cyclic nature

of the graph.

2.1 Early Work

An algorithm using artificial intelligence was created to find metabolic paths

from a source to a target compound [24] [25]. This method used a small

database of 70 reactions and 100 compounds. It enforced the exchange of

carbon in biochemically valid pathways and required information of enzyme

mechanism for each reaction. Another algorithm [26] [27] [28] [29] also found

metabolic pathways but it required information about which compounds are

present in the pathway. This work used a database of 250 reactions and 400

compounds. The work of Kuffner et al. [22] used Petri-Nets. Petri-Nets are

bipartite graphs with two types of nodes- compounds (places) and reactions

(transitions). Pathways are generated based on a “firing rule”. A firing rule

typically if formed from the stoichiometry of a reaction. This method models

metabolism as a concurrent process. Such a method fails to capture common

situations involving, external metabolites or reversible reactions. These issues
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were addressed by using colored nodes and specific types of transitions [30]

[31] and used to model sucrose breakdown in potato tubers [32], pathway

from chorismate to tryptophan [33]. However, these methods do not account

for currency metabolites and enumerate a large number of pathways. To

avoid open enumeration the current focus in the field has shifted to finding

k-shortest pathways.

The key intuition in most path finding methods is that given a source and

a target compound a directed path will provide insights into the intermediate

reactions. Once the intermediate reactions are known the stoichiometry can

be easily calculated. McShan et al. [34] viewed metabolism as a biochemical

state space. Reactions are partitioned into two components- the chemical

component and the biocatalytic component which represent the tranformation

and the catalysis of a reaction respectively. Each compound is represented

as a vector of 145 features derived from the atoms and bonds, making a

compound a point in the feature hyperspace. A chemical transformation or

reaction is simply the difference in the feature vectors of the two compounds

involved. Metabolic pathfinding is then reduced to the problem of finding state

transitions from the source to the target compound. The state space is searched

using the A∗ algorithm and costs for transformations are calculated based

on the Manhattan distance or the Euclidean distance of the transformation

(difference of compound vectors).
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2.2 Graph Based Methods

Authors have tried to circumvent the currency metabolite problem in metabolic

graphs using different strategies. The earliest strategy was to remove a set

of currency metabolites from the graph [35] [36] [37] [38] which were the

most highly connected compounds, creating an adjusted graph. Removing

compounds such as H2O, NAD, ATP, AMP leaves the resulting graph intact

but removing a compound such as β-Alanine will break the graph into two

resulting in many compounds being not reachable to each other.

Another strategy was to use connectivity as a measure to weight compounds

and penalize them. This method has been used in a number of methods either

to bias paths against currency metabolites or to rank pathways [39] [40] [41]

[42].

Setting aside or penalizing currency metabolites globally is misleading. Cur-

rency metabolites must be determined locally, in the context of the reaction.

For example in the following set of reactions:

ATP +D −Glucose− 1− phosphate↔ Diphosphate+ ADP − glucose

ATP + Pyridoxal↔ ADP + Pyridoxalphosphate

ATP +H2O ↔ ADP +Orthophosphate

ATP + AMP ↔ 2ADP

If we remove H2O, ATP, ADP and Orthophosphate the two reactions (D-

Glucose-1-phosphate→ ADP-glucose, Pyridoxal→ Pyridoxalphosphate ) can
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still be retrieved. However the last two reactions cannot be found. This can

happen when a currency metabolite is not only a co-factor in all reactions.

For example, in the production of 1-Methyl-4-pyridone-3-carboximide from

NAD+ if NAD+ is removed from the graph then the pathway from NAD+

Methyl-4-pyridone-3-carboximide cannot be recovered.

So, it is necessary to integrate chemical knowledge into the process of

pathfinding. Pathway Hunter [40] uses a metabolite mapping scoring function

to determine relevant links between compounds. It uses the fingerprint algo-

rithm in the CDK (Chemistry Development Kit) [43] to calculate the number

of ‘on’ bits in all compounds of a reaction. Then for each substrate-product

pair it calculates a similarity score using the Tanimoto coefficient [44].

S =
|A ∩B|
|A ∪B|

where the numerator is the number of bits ‘on’ in both compounds and the

denominator is the number of bits ’on’ in either of the two compounds. This

similarity score is multiplied by the percentage atomic mass contribution of

the pair in the reaction to decide the most biochemically relevant substrate-

product pair for a reaction.

A source for chemical knowledge is the group of KEGG databases. KEGG

RPAIR discussed earlier contains mapping between substrate-product pairs

that describe their biochemical relationship in a reaction. Faust et al. [41]

have leveraged this database to create a novel heuristic. They created two new

graph models: Rpair Graph and Reaction Specific Rpair Graph. The Rpair

Graph has one node for each RPAIR which is connected to its constituent
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compounds. The Reaction Specific Rpair Graph instantiates a separate node

for each reaction that an RPAIR is involved in, which amounts to a node for

each reaction with its associated RPAIRS connected to the compounds of the

RPAIRS. The best results were obtained using Rpair Graphs with compound

weighting and main-trans RPAIR filtering. However, these results are not

the most precise as they do not provide any information about the reaction.

The Reaction Specific Rpair Graph fills this void and is approximately as

accurate as the Rpair Graph. A peculiarity of this method is that it requires

the first and last reaction to be set. An analysis of this method [45] found that

accuracy declines considerably when only the input and output compounds

are specified.

2.3 Atom Mapping Based Methods

While the method described in [41] uses atom mapping rules, it does so to

construct the metabolic graph. Further generation of pathways is done using

graph theory. On the other hand there are methods that use atom mapping

rules to guarantee that the product metabolite has atleast one atom from the

source metabolite to target metabolite [46] [47] [48] or to ensure that there is

a sequence of transformations where substrate and target substructures are

isomorphic [49].

PathPred [49] uses the KEGG RDM pattern match and chemical structure

match to search for paths. It accepts a query compound and its MOL file

and does a global similarity search using SIMCOMP [14] [50] to generate

matched compounds with their RDM patterns. These RDM patterns are then

matched to the query compound to generate matched patterns. Next, the

14



Figure 2.1

matched patterns are used to create transformed compounds from the query

compound. These transformed compounds and their RDM patterns are added

to the a pool of compounds and previous two steps are repeated until no

more new matched patterns can be generated. In which case the transformed

compounds are used as query compounds in the first step and the cycle

continues a specified number of times. A Jaccard coefficient based scoring

function between the query compound and the matched patterns is used to

score and rank pathways. The method is restricted to two RDM pattern

15



Figure 2.2: PathPred Algorithm Flowchart. Reused with permission from
[49]

libraries- xenobiotic degradation in bacteria and biosynthesis pathways in

plants, and one must be selected as input.

Arita et al. [46] first used atom mapping to guarantee transfer of at least

one atom from source to target. It first enumerated all paths between source

and target in the metabolite graph and then evaluated whether a carbon (or

nitrogen or sulphur) atom was transferred from the source to the target. To do

this evaluation it generated an atom mapping database computationally which

was then thoroughly manually curated. The atom mapping generation method

finds topologically maximum common subgraphs in pairs of compound graphs.

However, this method fails in cases of isomerization, dimerization, cyclization,

rearrangement of carbon skeleton from linear to branched, transfer of chemical

16



Figure 2.3: An example Fragment Mapping by graph partitioning described
in [48]

groups, requiring manual curation.

A major improvement was developed by Blum et al. [48]. They also used

the maximum common subgraph method to generate atom mapping rules

but first generated fragment mapping rules, from which atom mapping rules

were generated. Fragment mapping rules were generated using a chemical

graph partitioning algorithm. This algorithm, given a cut size C, removes C

edges from the graphs of all compounds in a reaction. This creates a sets

of connected components (fragments) for each reactant. Finally, to generate

fragment mapping rules, all pairs of combinations of connected components

of substrates and products that are chemically equivalent are selected. Now

that the fragments of substrates and products are mapped to each other

most of the cases where the method by Arita et al. failed can be handled. A

worked example for cut size 1 is shown in Figure 2.3. These become fragment

mapping rules which can be used to infer atom mapping rules. To handle

17



multiple mapping rules per reaction, the reactions were clustered according

to the first 3 digits of the EC number associated with the reaction and the

fragment mapping rule most common in the cluster is used to create a reaction

mechanism rule.

Alternatively, Heath et al. [47] used the manually curated alignment map-

ping for compounds in KEGG RPAIR to generate an atom mapping graph.

In this graph, for each RPAIR, compound nodes were connected mapping

nodes which stored information to map the atoms of the compound node on

the incoming edge to the compound node on the outgoing edge. Then using

a depth-first search all reachable nodes were found. During this depth first

search at each node the mapped atoms were also stored as a transition history.

Using the transition history k-shortest paths can be found.

18



CHAPTER 3

MATERIALS AND METHODS

3.1 Input Datasets

The graph model was built using data from the KEGG website. All reactions

were downloaded from the KEGG Reaction database [10, 51, 11]. For each

reaction downloaded, the reaction equation with stoichiometric coefficients,

KEGG reaction identifiers, chemical formulas and all RPAIRS [15, 14, 52]

were downloaded. Additionally all corresponding enzyme identifiers were also

downloaded [15, 14, 52]. To filter reactions for those present in E.coli MG1655,

all its genes were downloaded from the KEGG API using the list operation

(http://rest.kegg.jp/list/eco). This operation lists all genes with enyzme iden-

tifiers. Only complete enzyme identifiers were selected. Enzyme identifiers

representing a subclass or class of enzymes were discarded. These enzyme

identifiers were then cross linked with the enzyme identifiers corresponding to

downloaded reactions to filter non-E.coli MG1655 reactions. Further, to filter

generic reactions the KEGG IUBMB (International Union Biochemistry and

Molecular Biology) reaction heirarchy was utilized. An example of a generic

reaction is shown below.

R07326 : C00069 + C00003↔ C00071 + C00004 + C00080

Alcohol +NAD+ ↔ Aldehyde+NADH +H+

19



All generic reactions and reactions with substrates that also participate in a

generic reaction were removed. All glycans and their corresponding compound

identifiers were downloaded from KEGG. Any reaction with a glycan identifier

was modified to contain the corresponding compound identifier.

3.2 Reference Pathways

In order to test the pathfinding method a list of E. Coli reference pathways

was used [53]. These pathways were then looked up in EcoCyc [54] to curate

the putative paths. These pathways are listed in Table 3.1. Since pathfinding

does not find branched pathways unbranched linear paths were manually

curated and side compounds were removed.

Table 3.1: Test data set of the curated pathways

Reference Pathway Annotated Path

Gluconeogenesis

C00022 → C00074 → C00631

→ C00197 → C00236 →

C00118 → C00354 → C00085

→ C01172

Glycolysis

C01172 → C00085 → C00354

→ C00118 → C00236 →

C00197 → C00631 → C00074

→ C00022

Proline Biosynthesis
C00025 → C03287 → C01165

→ C03912 → C00148

* ———Continued On Next Page——— *
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Table 3.1: Test data set of the curated pathways

Reference Pathway Annotated Path

Ketoglutarate Metabolism
C02780 → C01062, C06473 →

C00257 → C00345

Pentose Phosphate Pathway

C01172 → C01236 → C00345

→ C00199 → C00117,C00231

→ C05382 → C00118

TCA cycle

C00036 → C00158 → C00417

→ C00451 → C00026 →

C00091 → C00042 → C00122

→ C00149

NAD Biosynthesis

C00049 → C05840 → C03722

→ C01185 → C00857 →

C00003

Arginine Biosynthesis

C00025 → C00624 → C04133

→ C01250 → C00437 →

C00077 → C00327 → C03406

→ C00062

Spemidine Biosynthesis C00019 → C01137 → C00315

Threonine Degradation C00188 → C03508 → C00037

Serine Biosynthesis
C00197 → C03232 → C01005

→ C00065

* ———Continued On Next Page——— *
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Table 3.1: Test data set of the curated pathways

Reference Pathway Annotated Path

Histidine Biosynthesis

C00119 → C02741 → C04896

→ C04916 → C04666 →

C01267 → C01100 → C00860

→ C01929 → C00135

Tyrosine Biosynthesis
C00251 → C00254 → C01179

→ C00082

Coenzyme A Biosynthesis
C03492 → C04352 → C01134

→ C00882 → C00010

Pentathenoate Biosynthesis
C00141 → C00966 → C00522

→ C00864 → C03492

Tetrahydrofolate Biosynthesis
C00568 → C00921 → C00415

→ C00101

Flavin Biosynthesis

C00044 → C01304 → C01268

→ C04454 → C04732 →

C04332 → C000255 → C00061

→ C00016

Heme Biosynthesis
C01051 → C03262 → C01079

→ C02191 → C00032

Pyrimidine Ribonucleotide Synthesis

C00064 → C00169 → C00438

→ C00337 → C00295 →

C01103 → C00105 → C00015

→ C00075 → C00063

* ———Continued On Next Page——— *
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Table 3.1: Test data set of the curated pathways

Reference Pathway Annotated Path

Pyrimidine DeoxyRibonucleotide Synthesis

C00075 → C00460 → C00365

→ C00364 → C00363 →

C00459

Rhamnose Degradation

C00507 → C00861 → C01131

→ C00424 → C00186 →

C00022

Fucose Degradation

C01019 → C01721 → C01099

→ C00424 → C00186 →

C00082

Entner Duodoroff Pathway C00345 → C04442 → C00118

Anearobic Respiration

C00022 → C00024 → C00158

→ C00417 → C00451 →

C00026

Arginine Biosynthesis

C00062 → C03296 → C03415

→ C05932 → C05931 →

C00025

Proline Degradation
C00148 → C03912 → C01165

→ C00025

Glycolate Degradation
C00160 → C00048 → C01146

→ C00258 → C00197

Glycerol Degradation
C00116 → C00093 → C00111

→ C00118

Glutamate Biosynthesis C00064 → C00006

* ———Continued On Next Page——— *

23



Table 3.1: Test data set of the curated pathways

Reference Pathway Annotated Path

Phenylalanine Biosynthesis
C00251 → C00254 → C00166

→ C00079

Allantoin Degradation
C02350 → C00499 → C02091

→ C00603 → C00048

Cysteine Biosynthesis C00065 → C00979 → C00097

3.3 Graph Structure

The reaction data was used to create a directed bipartite graph. For each

compound the graph has a compound node. For each reaction the graph has

a reaction node. Each reaction node has incoming directed edges from all

substrate compounds and outgoing edges to all products. If the reaction is

reversible the graph has directed edges from compounds to reaction in both

directions. An example is in the Figure 3.1.

Each node in the graph stores some data. Compound nodes store com-

pound formulas, and reaction nodes store a dictionary of RPAIRS, a list of

substrates, a list of products. Edges between compound and reaction nodes

store stoichiometric coefficients of the compounds in the reaction. The graph

was implemented using Networkx [55]
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Figure 3.1: Graph Structure. R1,R2 are reaction nodes and C1-C5 are
compound nodes. R1 is reversible, R2 is irreversible. Reaction nodes store
RPAIR dictionary, list of substrates, list of products. Compound nodes store
chemical formula

3.4 Centrality Measures

Various centrality measures were studied to differentiate between currency

metabolites and non-currency metabolites. Closeness centrality [56] [57] is a

measure of how close a vertex in a graph is to all other nodes.

c(vi) = 1/(
∑

j d(vi, vj)

Betweenness centrality [58] is the number of shortest paths from all vertices

to all other vertices that pass through v.

c(vi) =
∑

j 6=i

∑
k 6=i
k>j

njk(vi)/njk where njk is the number of shortest paths

between vertices vj and vk and njk(vi) is the number of such paths that
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contain vi

Page Rank centrality [59] measures direct and indirect importance of a vertex.

These centrality measures were calculated using the in-built functions in

Networkx [55]

3.5 Rpair Prediction

Since the RPAIR database is not complete, a method to fill in the gaps was

created. Any pair of compounds that is a main or trans or ligase RPAIR will

have significant structural and chemical similarity. Since there is a significant

proportion of reactions with RPAIR data, checking for chemical similarity

should suffice in pathfinding. The reactions with RPAIR data will restrict the

possible paths and for reactions without RPAIR data a chemical composition

constraint will eliminate the most irrelevant paths.

The chemical composition similarity score is a simple atomic composition

similarity. For a pair of compounds the atomic profile is generated which has

counts for each atomic element. For each common element between the two

input compounds min(ci, cj) where ci and cj are counts of the element in

the two compounds is added to the similarity score. This similarity score is

divided by the larger atomic count.

3.6 k Shortest Paths

Yen’s k Shortest Path Algorithm was modified to find the k shortest paths

[60]. The shortest path function used was a modified Dijkstra’s algorithm.

The algorithm for shortest paths ensures that a reaction vertex cannot be

traversed twice. It also uses Rpair and chemical similarity scores to select

26



Algorithm 1 Modified Dijkstra’s Algorithm

1: procedure Shortest Path(source,sink,graph,previousVertex)
2: Q←makePriorityQueue()
3: insert(Q,(source,0))
4: for each vertex u 6= source do
5: insert(Q,(u,∞))

6: S← ∅
7: if previousVertex then
8: previous[source]=previousVertex

9: for i=1 to |V | do
10: (v,dist(s,v))=minPriorityQueue(Q)
11: S=S ∪{v}
12: if v is a Reaction vertex then
13: for u in Adj(v) do
14: if (prev[v],u) is an Rpair that is not of type leave then
15: rpair=True
16: else
17: if similarity(prev[v],u)>0.3 ∧ prev[v],u
18: not co-reactants then
19: sim=True
20: if rpair ∨ sim then
21: cost=distances[v] + weight(v,u)
22: if cost<distances[u] then
23: distances[u]=cost
24: Q[u]=cost
25: prev[u]=v

26: else
27: cost=distances[v] + weight(v,u)
28: if cost<distances[u] then
29: distances[u]=cost
30: Q[u]=cost
31: prev[u]=v
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acceptable paths. The similarity cutoff of 0.3 was chosen for similarity scores

based on similarity scores of all known Rpairs. In case the source vertex is a

reaction vertex the algorithm needs its previous vertex as a parameter. Such a

case occurs only when the method is called from the k shortest path method

and the previous vertex is known in this case.

The modified Yen’s k shortest paths algorithm is described in Algorithm 2.

Algorithm 2 uses the modified Dijkstra’s method (Algorithm 1) repeatedly

Algorithm 2 Modified Yen’s Algorithm

1: procedure K Shortest Paths(source,sink,graph,K)
2: A[0]=Shortest Path(source,sink,graph)
3: B=[ ]
4: for k from 1 to K do
5: for i from 0 to size(A[k-1])-1 do
6: spurVertex=A[k-1].vertex(i)
7: rootPath=A[k-1].vertices(0,i)
8: for p in A do
9: if rootPath==p.vertices(0,i) then

10: remove p.edge(i,i+1) from graph

11: if spurVertex is a Reaction vertex then
12: spurPath=ShortestPath(spurVertex,sink,graph,A[k].vertex(i-

1))
13: else
14: spurPath=ShortestPath(spurVertex,sink,graph)

15: totalPath=rootPath+spurPath
16: B.append(totalPath)
17: restore edges to graph

18: B.sort()
19: A[k]=B[0]
20: B.pop()

21: return A

to calculate a shortest path with a deviation from the root path. When it

calls the shortest path method with a reaction vertex as the source it passes

an extra parameter which is the previous vertex of the source in the root path.

All algorithms were implemented in python.
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CHAPTER 4

RESULTS

4.1 Centrality Measures

As described in the Material and Methods chapter, centrality measures were

studied for their ability to distinguish between currency and non-currency

metabolites. The Figures 4.1 4.2 4.3 are a series of histogram plots for

the different centrality measures tested. For the betweenness and closeness

centrality a list of currency compounds (ATP, ADP, NAD, NADH, NADH,

NADP, NADPH, H+, H2O, Pi, PPi, CMP, CO2, O2) was used. From the

figure it is evident that the centrality measures separate compounds into two

classes to some extent. However, the boundary between the classes is not

distinct. On inspection of the compounds in the currency metabolite group it

turns out that some non currency metabolites are also classified as currency

metabolites. Some compounds central to metabolism are misclassified in this

scenario. Another reason for errors is that centrality measures do not account

for chemical context. The same metabolite could act as a currency metabolite

in one reaction and act as a non-currency metabolite in another reaction.

For example, ATP is a currency metabolite in most reactions but is a main

metabolite in nucleotide synthesis reactions.
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Figure 4.1: Pagerank distribution for different damping factors

4.2 Pathfinding

To optimize a cutoff value for the similarity score, the similarity score for

all RPAIRS was calculated and the distribution of the similarity scores for

different categories of RPAIRS has been plotted in Figure 4.4. A good cutoff

value will maximize the number of main,trans and ligase RPAIRS while

minimizing the number of leave, cofac RPAIRS. On careful inspection of

the distributions, 0.3 was selected as a cutoff. All compound pairs with

similarity score less than 0.3 are considered as biochemically irrelevant and

compound pairs with a similarity score greater than 0.3 are considered as

biochemically relevant. Another possible strategy to use similarity score is to

weigh compound-reaction-compound edges in the metabolic graph using the

similarity score. But, it is misguided because many transferases transfer large
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chunks of a substrate onto the product and so the similarity scores for those

compound pairs are close to 0.5 which is quite low compared to the scores of

many main RPAIRS.

To test the path finding algorithm we compared our algorithm against [41]

which relies solely on RPAIR annotation. This method is one of the most

accurate tools available to the best of our knowledge. It also is the the only

tool designed to accept any set of reactions and is not limited to the reactions

of just one organism.

We implemented the Reaction Specific Rpair Graph from that paper be-

cause it is the more precise than the Rpair Graph since it provides reaction

information too. We then compared the our method to it under 4 settings
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(Table 4.1). Our results for the list of annotated pathways in Table 3.1 ex-

actly matched the Reaction Specific Rpair graph method run under the same

settings. This is expected since the test pathways are all well studied and

annotated with complete RPAIR data.

RPAIR Filtering Edge Weight

Main Unit

Main Degree

Main-Trans Unit

Main-Trans Degree

Table 4.1
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To, illustrate the efficacy of the similarity score we calculated the similarity

score of each pair of compounds in a pathway not in our annotated pathway

list and from an organism different than E.coli. We here look at the lysine

biosynthesis pathway in M.tuberculosis H37Rv stored in MetaCyc. This

pathway has reactions involving 5 of the 6 enzyme classes include a lyase

reaction adding a pyruvate, a relatively smaller compound to L-aspartate-

semialdehyde, a relatively larger compound in comparision . All compound

pairs have a similarity score higher than the cutoff. So, even in case there was

no RPAIR data available this pathway was successfully found.
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4.3 Robustness

The RPAIR method depends upon the RPAIR annotation find pathways. In

fact, if an RPAIR is missing, its corresponding reactions are not present in

the metabolic network, potentially severly affecting its performance. Other

methods discussed in chapter 2 are also similarly dependent on the annotation

of reactions for accuracy. We have performed the analysus done on the lysine

biosynthesis pathway on all annotated pathways in Figure 3.1 to check for

robustness of our method vis-à-vis the RPAIR method. The results are in

Table 4.2.

Table 4.2: Similarity Score for all reactions in pathways from Table 3.1.

Reference Pathway Reaction Scores

Gluconeogenesis

Glycolysis

Proline Biosynthesis

Ketoglutarate Metabolism

Pentose Phosphate Pathway

TCA Cycle

NAD Biosynthesis

Arginine Biosynthesis

Spemidine Biosynthesis

Threonine Degradation

Serine Biosynthesis

Histidine Biosynthesis

* ———Continued On Next Page——— *
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Table 4.2: Similarity Score for all reactions in pathways from Table 3.1.

Reference Pathway Reaction Scores

Tyrosine Biosynthesis

CoenzymeA Biosynthesis

Pentothenate Biosynthesis

Tetrahydrofolate Biosynthesis

Flavin Biosynthesis

Heme Biosynthesis

Pyrimidine Ribonucleotide Synthesis

Pyrimidine Deoxy Ribonucleotide Synthesis

Rhamnose Degradation

Fucose Degradation

Entner Duodoroff Pathway

Anearobic Respiration

Arginine Biosynthesis

Proline Degradation

Glycolate Degradation

Glycerol Degradation

Phenylalanine Biosynthesis

Allantoin Degradation

Cysteine Biosynthesis

Lysine Biosynthesis
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Only two reactions in TCA cycle fall below the cutoff. These reactions

transform: 2−oxoglutarate→ succinyl−CoA succinyl−CoA→ succinate

The similarity score for these reactions are below the cutoff because of the

transfer of CoA, which is a large compound. Very few, if any reactions will be

of this type because CoA is a coenzyme and hence much larger than typical

secondary metabolites.
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CHAPTER 5

SUMMARY AND FUTURE WORK

I have presented here a relaxed easy to compute criterion to predict reactant

pairs. We have also implemented a graph model that utilizes this criterion as

well as KEGG RPAIR data for metabolic pathfinding, for which we imple-

mented a modified k-shortest path algorithm adapted to the graph model. On

the test set of annotated pathways we were able to show that a pathfinding

method using just our similarity score performed as well as the method based

on the KEGG RPAIR data. One key insight obtained is that for a large num-

ber of metabolic pathways, compound transformations maintain significant

amount of atomic content between the substrate and product.

The work done here can be extended to incorporate stoichiometry and

develop a truly automatic pathfinding tool using both stoichiometry and

pathfinding. Incorporating stoichiometric information can help elucidate an

organisms preference for alternative pathways under different metabolic con-

ditions. Currently, the only method using both pathfinding and stoichiometry

requires manual specification of acceptable transformations and is restrictive

in its definition of acceptable transformations to significant carbon exchange

[61]. My similarity score can be computed automatically and is a more relaxed

criterion.
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