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Abstract 

The practice of barrel aging of spirits has been used for centuries.  It began as an 

alternative storage and transportation method, but aging in an oak cask is now 

exclusively used as a means to impart flavor to the spirits.  Oak wood is the 

wood of choice for barrel making, not only for its physical characteristics that 

lend itself to manufacturing a barrel, but also for its unique chemical properties 

that impart key flavors to aged spirits.  Oak aging of spirits develops flavor in a 

number of different ways, all which contribute to a wide range of odor 

descriptions, creating the complex flavor with which we are familiar.  Extensive 

research has been performed on oak wood and oak aged spirits; however, the 

identity of the component(s) responsible for the “woody/incense” flavor attribute 

of age spirits was, prior to this investigation, unknown.  Experiments were 

conducted in order to unambiguously identify a compound responsible for a 

“woody/incense” odor note in oak aged spirits.  The target compound was 

isolated from oak wood chips followed by several purification steps, as well as 

the use of a custom built GC-MS/olfactometry system equipped with a heart-

cutting system/internal CryoTrap which enabled the acquisition of an 

interpretable electron-impact mass spectrum (EI-MS) for the compound.   The EI-

MS revealed that the unknown target compound possessed a molecular weight 

of 218.  A thorough investigation of naturally occurring organic compounds 

having a molecular weight of 218, along with deducing the nature of the 

functional groups on the molecule, indicated numerous compounds as possible 

candidates.  Most of these compounds were found to occur naturally in a number 

of roots, spices, oils, and herbs, which were subsequently analyzed.  Results of 

the analyses revealed that the compound was most likely the sesquiterpene 

ketone 5-isopropenyl-3,8-dimethyl-3,4,5,6,7,8-hexahydro-1(2H)-azulenone, or 
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rotundone.  This identification was confirmed by comparison of the compound’s 

EI-MS and GC retention indices against those of authentic rotundone obtained 

by chemical synthesis. The next question addressed was whether this compound 

is present in oak aged spirits.  Accurate quantification of this trace level target 

compound was done by stable isotope dilution analysis (SIDA).  The presence of 

rotundone in different aged spirits including bourbons, rye, scotch, whiskey, 

rum, and tequila was demonstrated.  Trends in aging were established, showing 

that rotundone increases with aging time; however, its quantity may also be 

influenced by other factors as there was a clear brand to brand variation.  

Interestingly, rotundone was also found in un-aged (silver) tequila, which 

suggests that the compound may also be present in the agave plant.  Results of 

quantification of all potent odorant in bourbons, aged 4, 8, and 12 years and 

calculation of their odor activity values (OAVs) demonstrated rotundone’s 

importance to the overall flavor of bourbon.  From the quantification data some 

interesting trends were established that demonstrate some effects of barrel aging.  

OAVs are used as a gauge for potency and, generally, any compound with an 

OAV above 1, provides evidence of whether a compound is important.  With an 

OAV of 42.8 to 56.6, rotundone lies well above this requirement and is among the 

top 10 odorants quantified in these samples. Thus, it is concluded that rotundone 

is an important contributor to the flavor of these aged spirits.  
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Chapter 1:  Introduction 

 

“Too much of anything is a bad thing, but too much of whiskey is barely enough.” 

(Mark Twain).  Distilled spirits are heavily ingrained into society and have enormous 

sociological, anthropological, and economical implications.  Whiskey, in particular, is 

legally defined as a fermented mash of grain that is distilled and must be stored in oak 

containers (Code of Federal Regulations).  The practice of oak barrel aging has been 

used for centuries in the production of distilled beverages and wine.  Although the 

identity of the inventors and date of development is uncertain, the most recent evidence 

indicates that the Celts were the first to use the wooden barrel around 900 BC (Preet 

2012).  Regardless of the exact origins of the wooden barrel, to this day this practice is 

still the main contributor to the flavor of whiskeys and nearly all other aged spirits.   

The flavor characterization of alcoholic beverages has been as important to food 

scientists as the cultural aspect of beverage alcohol is to historians.  Due to the 

significance of alcoholic beverages, both culturally and economically, massive grants 

and whole institutes have been created to generate new scientific information to 

understand the basis for the flavor and aroma of alcoholic beverages.  One of the most 

important historical advances in the manufacturing of alcoholic beverages is the 

invention and subsequent use of the wooden barrel, or “cask”.  Since the advent of the 

wooden cask, a large majority of alcoholic beverages are identified by and appreciated 

for the flavor imparted to the product as a result of being aged in the cask.  This step in 

production is notably important as many alcoholic beverages have legal standards 

regarding the use of the wood, the wood type, and the time of aging in the cask.  

Although several wood types have been used, oak is almost always the wood of choice 

for casks. While distilled spirits aged in oak casks rely heavily on the wood as the 

primary source of flavor, products like wines and beers may also undergo barrel aging 

to develop secondary flavorings.  Focusing on spirits, the flavor of an un-aged distillate 
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has been extensively researched, uncovering flavors developed from the starting grain 

as well as those that are byproducts of the fermentation.  Their flavors are considered to 

be important to the overall product, contributing to hot/solvent-like, fruity, green, 

sweet, and malty characteristics.  Flavors derived from the fermentation of grains 

include ethanol, fusel alcohols, acetates, and esters.  These are present in all spirits; 

however, the quantity and importance of each may vary (Cole et al. 2003).   

“Aging is among the most important and most costly factors influencing the quality of 

distilled beverages – fundamentally contributing to the finished taste and aroma.” 

(Mosedale et al. 1998).  Statements such as these resound throughout relevant literature 

and consistently indicate the importance that oak has on the flavor of aged distilled 

spirits.  Extensive research has been performed on both spirits and the oak wood itself.  

However, there is a noticeable lack of understanding of the connection between the 

woody attributes of aged spirits and specific wood-derived aroma compounds that 

contribute to those flavors.   

Oak cask aging post distillation develops flavor in several different ways, including:  1) 

ethanolysis of the wood acids 2) lignin pyrolysis from charring the barrel and 3) direct 

extraction of volatiles from the wood.  These have a wide range of odor descriptions, 

creating the complex flavor with which we are familiar.  Originating from the wood, the 

oak lactones, cis- and trans-β-methyl-γ-octalactone, are particularly important, even 

being nicknamed the “whiskey lactones”, and impart an aroma described as coconut-

like.  Other lactones are present, including γ-nonalactone, δ-nonalactone, γ-decalactone, 

δ-decalactone and cis-6-dodeceno-γ-lactone.  Additional wood extractives known to 

contribute to the flavor include:  eugenol, isoeugenol, β-ionone, syringol, β-

damascenone, syringaldehyde, and vanillin.  These provide clove, spicy, floral, smoke, 

apple, sweet smoke and vanilla aroma notes, respectively.  Ethanolysis of the wood 

acids results in the formation of fruity ethyl esters like ethyl propanoate, ethyl butyrate, 
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ethyl hexanoate, and ethyl octanoate. (Conner et al. 1993, Conner et al. 2001, Piggott et 

al. 2003, Poisson et al. 2008a, Poisson et al. 2008b, Lahne 2010).  

Numerous studies have been conducted to better understand the flavor of aged spirits 

(Otsuka et al. 1974, Nicol et al. 1989, Mosedale et al. 1998, Conner et al. 2001, 

MacNamara et al. 2001, Demyttenaere et al. 2003, Madrera et al. 2003, Netto et al. 2003, 

Piggot et al. 2003, Câmara et al. 2007, Poisson et al. 2008a, Poisson et al. 2008b, 

Fernanadez de Simon 2010, Lahne 2010, Pino et al. 2012).   While many important 

odorants have been identified, there appears to be many gaps in our understanding of 

the flavor chemistry of these products.  For example, several studies reported the 

presence of one or more unidentified “wood-like” odorants in whiskey and other aged 

spirits.  Studies done on rum described the product as exhibiting vanilla, dry fruit, 

coconut, caramel, and wood odor qualities, with the credit for the wood notes being 

given to the oak lactones (Pino et al. 2012). But actually the oak lactones were found to 

contribute more to the coconut-like characteristic of aged spirits (Abbot et al. 1995).  

Caninha, a regional specific rum from Brazil, was found to have wood-like odorants 

which were detected at high gas chromatography (GC) retention times.  These 

compounds were detected with high dilution flavor (FD) factors as determined by 

aroma extract dilution analysis-GC-olfactometry (AEDA-GC-O), thus indicating their 

high odor potencies in the product.  However, these notes could not be attributed to any 

of the volatile compounds identified by GC-MS (Netto et al. 2003). These researchers 

concluded that wood-like volatiles were present at very low concentrations and that 

further investigation was warranted.  Añejo tequila and whiskey share many of the 

same potent odorants since both products rely heavily on the oak cask for flavor (Lahne 

and Cadwallader 2012). Thus it is not surprising that wood-like odorants were also 

indicated in studies performed on tequila.  Several terpenes have been identified in 

tequila, including α-bisabolol, a woody compound typically found in sandalwood.  

Other wood-like odor descriptors were noted in the GC-O data at lower dilution factors, 
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although theses could not be identified due to their low concentration in the extract 

(Benn et al. 1996).  A study by Lahne and Cadwallader (2012) on añejo tequila flavor 

also detected an unidentified woody, incense-like odorant by GC-O.  Two additional 

studies which evaluated the potent compounds in brandy (Caldeira et al. 2002) and 

scotch whiskey (Conner et al. 2001) both mentioned the presence of a wood-like 

attribute that could not by identified by GC-MS analysis.  

The central hypothesis of this study is that knowing the identity of this/these 

“woody/incense” odorant(s) from oak wood will give an explanation for what causes 

the overall woody characteristic in oak aged spirits.  Thus, the goal of the present 

investigation was to identify an odorant in oak wood having a characteristic 

wood/incense-like aroma note and determine whether it is detectable within oak aged 

spirits, therefore, contributing to the flavor. 

This study was designed to answer three main questions: 1) what is the identity of the 

compound responsible for imparting wood- and incense-like flavor to oak aged spirits?; 

2) at what concentration is the compound found in various oak aged spirits?; and 3) 

how important is the compound to overall flavor of oak-aged spirits, with special 

emphasis place on bourbon whiskey? 

The spirits industry holds a position of enormous importance, both socially and 

economically.  The goal of this study was to expand and strengthen current knowledge 

of the flavor chemistry of oak-aged spirits.  Identification of a previously unknown, 

potent flavor compound which contributes a wood-like attribute will not only fill in 

gaps from past studies, but will also help frame better questions for future studies. 
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Chapter 2:  Literature Review 

 

2.1  Introduction 

Wooden barrels have been used for centuries to store and transport fermented and 

distilled beverages.  Although its history is still a subject of debate, recent evidence 

suggests that the Celts invented the wooden barrel around 900 B.C.  The Celts were not 

only extremely skilled metallurgists, having perfected the process of smelting rock and 

extracting ore, but also skilled woodcrafters.  While inhabiting the Danube River valley, 

the Celts are credited for combining their knowledge of woodworking and metallurgy 

to create the first wooden barrel (Preet 2012).  Wine and beer had been produced for 

millennia, long before the invention of the wooden barrel, with the first record of wine 

dating back to 6000 B.C. in Persia, (i.e. modern day Iran).  Wines at that time were 

transported using clay vessels. Although Greek and Roman methods for growing 

grapes and fermenting grape juice into wine were highly regarded, their use of fragile 

clay jugs (amphora) was an inferior method for storage and transportation of the wine, 

as they had a tendency to crack, leak, and break.  Modifying their methods to include 

use of wooden barrels not only provided secure transport, but storage in wooden 

barrels also serendipitously imparted a more desirable flavor and taste to their wines.  

When the Celts migrated to the Irish Isles, where the climate was unsuitable for 

growing and harvesting grapes, they turned to using honey to produce the fermented 

beverage mead, which was also stored in wooden barrels.   

Distilled spirits did not appear in the Irish Isles until the 12th century A.D., when Irish 

monasteries produced the first whiskey. Whiskey was broadly defined as ethanol 

distilled from a number of fermented cereal grains, and subsequently stored in wooden 

barrels.  Today whiskey is the best-selling distilled spirit in the world (Piggott et al. 

2003).   Aged distilled spirits, which are known worldwide, include whiskey, scotch, 
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bourbon, Irish whisky, rum, tequila, mescal, cachaça and brandy, as well as other 

regionally specific spirit varieties.  Barrel-aged distilled spirits rely on the wooden 

barrel, or cask, as their primary source for taste and flavor.  With fermented products, 

such as wine, which can be aged in either stainless steel or oak barrels, the use of 

wooden barrels is an optional step to add a more complex flavor.  Oak, in particular, 

stands out from other woods as being particularly good for aging fermented beverages.  

Its physical properties allow it to be shaped into a barrel with good tensile strength, 

high compression strength, elasticity and hardness.  In addition its unique chemical 

makeup gives oak wood the capacity to impart depth of flavor to fermented beverages.   

 

2.2  Chemistry of Oak Wood 

Molecular Structure of Wood 

The major structural components of wood cells are cellulose, hemicellulose, and lignin.  

Cellulose is the main constituent of wood, accounting for nearly 50% of its dry weight.  

Cellulose, only slightly soluble in water, is a polysaccharide consisting of tens of 

thousands of β-linked D-glucose moieties in a linear chain.  These chains are linked by 

hydrogen bonds to create microfibrils.  Microfibrils can either be present in a highly 

ordered crystalline structure of paralleled D-glucose chains, or in a less ordered 

amorphous type structure of antiparallel D-glucose chains.  Hemicellulose, which is 

soluble in water, is a hetero-polysaccharide with branched chains typically much 

shorter than cellulose.  The main hemicelluloses in wood are galactoglucomannan, 

arabinoglucuronoxylan, arabinogalactan, glucuronoxylan and glucomannan (Sjöström 

1993).  Hemicelluloses are used in the food industry as functional ingredients due to 

their solubility in water.  Gum arabic is an example of a hemicellulose that is commonly 

used as a stabilizer in emulsifications.  Lignin is the most complex structural component 

of wood and accounts for about 15-30% of the wood plant tissue.  It is a heterogeneous 
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organic polymer responsible for the thickening of cell walls to make them rigid and 

impermeable.  Its three main building blocks are monolignols, namely coumaryl 

alcohol, coniferyl alcohol, and sinapyl alcohol (Vanholme et al. 2010).  When 

incorporated into the lignin polymer these monlignols make up the p-hydroxyphenol 

(H), syringyl (S), and guaiacyl (G) units, respectively.  Lignin composition is very 

diverse depending not only on the species of tree, but also on the type of cells within 

the tree.  Lignin is a precursor of many aroma-active compounds responsible for the 

flavor oak casks impart to the aged spirits.  These are formed by pyrolysis of the wood 

lignin during the toasting or charring step when manufacturing the barrel.   

 

Sapwood 

Sapwood is essentially the “living” part of the tree structure.  Its function is the 

conduction of sap that caries water, mineral salts and nutrients from the roots to the 

leaves and other living tissues in the tree. It is also responsible for the synthesis and 

storage of photosynthates, the chemical products of photosynthesis, usually in the form 

of sugars or starch which are the main energy sources for the tree to maintain life and 

support further growth. 

 

Heartwood and Extractives 

The heartwood, in contrast to sapwood, is composed of essentially dead wood cells 

which no longer transport water, sap or nutrients.  The heartwood goes through several 

changes during the process of cell death.  A substantial loss of starch makes the 

heartwood less prone to microbial or insect attack because starch and free sugars, 

readily used by these invaders as energy sources, are no longer available.  The loss of 

starch also results in a harder texture, enabling the heartwood to serve as part of the 

tree’s structural support.   
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Wood extractives are also produced during the cell dying process.  Extractives are 

natural, low molecular weight compounds products present in the wood cells apart 

from the cell wall components.  They are extractable by either neutral organic solvents 

or water, hence the name extractives.  Properties of extractives include protecting the 

wood from decay, increasing the strength of its texture, and enhancing color and odor 

(Rowe 1979).  Odor is particularly important in repelling damaging insects.  Extractives 

can be either a primary or secondary metabolite.  Primary metabolites are biochemical 

compounds that are present in all living things, such as, simple sugars, amino acids, 

free fatty acids, etc.  Secondary metabolites are more complex compounds, often species 

specific and not required for plant survival.  Extractives are secondary metabolites 

common to all hardwood trees are phytosterols, simple terpenoids, phenylpropanoids, 

common flavonoids, simple tannins, and some coumarin type compounds.  In the 

heartwood, these aromatic compounds are synthesized by biochemical condensation 

reactions from either acetate via malonyl CoA or directly from glucose via shikimic acid 

pathway as seen in Figure 2.1 (Higuchi 1976). 
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These aromatics can include coumarins, ellagic acid, derivatives of cinnamic acid and p-

coumaryl alcohol.  Biosynthesis of the terpenoids, monoterpenes, diterpenes, 

sesquiterpenes and steroids, start with acetyl CoA and are formed from mevalonic acid 

as shown in Figure 2.2 (Umezawa 2001).   

Artifacts can also be found in the extractives of wood.  These are neither primary nor 

secondary metabolites, but are formed from autoxidation and non-enzymatic free-

radical or acid-catalyzed condensations (Rowe 1979).  Examples of artifacts include 

colored compounds, such as tannins.  The darker color of the heartwood is a visible way 

of differentiating it from the sapwood (Taylor et al. 2002).  Both the volatile extractives 

and the tannins are essential in flavoring distilled spirits during the barrel aging 

process.   
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Oak Volatiles 

Unlike other woods, oak is not used for its extractable oil.  It does, however, contain a 

highly desired aroma, particularly for flavoring fermented and distilled beverages 

through the aging process.  Since not all volatiles are aroma-active, only known 

odorants will be discussed in this review.  A large majority of oak volatiles are formed 

during two essential steps of oak cask manufacturing, post seasoning and toasting 

(Figure 2.3).  
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Seasoning is done by drying the cut wood, thereby equilibrating the moisture content to 

prevent further shrinkage or swelling.  This process prepares the wood for toasting or 

burning and creates a higher concentration of volatiles due to loss of water from the 

wood.  The toasting or charring step dramatically affects the volatile composition of oak 

through hydrothermolysis and pyrolysis reactions.  Some of the more familiar aroma 

compounds derived from pyrolysis of the lignin during heating are shown in Figure 2.4.  

These include guaiacol, 4-ethylguaiacol, 4-vinylguaiacol (smoky compounds), eugenol 

and isoeugenol (spice or clove-like), syringol and syringaldehyde (sweet smoke), p-

cresol (bandage), and vanillin (vanilla).  

 

 

Other aroma compounds are present. Terpenoids such as linalool and thymol 

contribute by giving floral or fresh wood attributes.  A unique characteristic of oak 

wood is the presence of carotenoids.  Both β-carotene and lutein are precursors to 



 14 

aroma compounds such as β-damascenone (cooked apple) and β-ionone (floral) 

(Chatonnet et al. 1998 and Alañón et al. 2009). Mailliard reaction type compounds arise 

from carbohydrates and proteins in the wood resulting in formation of furans:  furfural 

(caramel), maltol (cotton candy), and furaneol (burnt sugar).  Additional aldehydes, 

alcohols, and lactones are derived from lipids either by oxidation or rearrangement and 

include hexanal and nonenal (green), crotonolactone (buttery), butyrolactone (creamy), 

nonalactones and decalactones (fruity or peach-like).  Most importantly to oak volatiles 

is cis and trans-β-methyl-γ-octalactone (coconut ) shown in Figure 2.5 (Cutzach et al. 

1997 and 1999, Doussot et al. 2002, Cadahia et al. 2003, Fernandez de Simon et al. 2009 

and 2010).   

 

 

The lactones, cis and trans-β-methyl-γ-octalactone, were first discovered by Masuda and 

Nishimura (1971) in volatile extracts from oak wood, and were later discovered in 

distilled liquor (Otsuka et al. 1973).  They are most famously known as “oak lactones”, 

or “whiskey lactones”, due to their importance in the aroma of oak wood.  They lend a 

unique aroma to oak wood, and subsequently to whiskeys aged in oak barrels, 

confirming that the aroma-active compounds from oak wood can be directly transferred 

to the distilled spirit and have a noticeable impact on the flavor.   
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2.3  Distilled Spirits – Whiskeys 

History 

The history of barrel-aged distilled spirits naturally started with the invention of the 

wooden barrel.  Wine can be traced back to as early as 6000 B.C. in Persia, modern day 

Iran, long before the invention of the wooden barrel. Originally wine resulted from the 

accidental spoilage of grapes.  Over thousands of years, improvements in wine making 

were made by noting colors, varietals, and the effect of ripening trends, as well as many 

other cultivation techniques that influenced the characteristics of the final product.  As 

the popularity of wine grew, the demand for exportation did as well.  Clay pots 

(amphora) were the storage and transport vehicles for wines, despite their obvious 

flaws of cracking, breaking, and leaking.  A less fragile option was needed, but it was 

neither the Romans nor the Greeks, both famous for manufacturing wine, that found a 

solution to this problem.  Credit for that is given to the Celts (Preet 2012).  Around 900 

B.C. the Celts, then inhabiting the Danube River valley in central Europe, combined 

their woodworking and metallurgy skills to create the first wooden barrel, or cask.  Not 

only was the barrel more efficient in storage and travel, but it was discovered that the 

wine underwent an unexpected change while in the barrel, with the barrel imparting a 

highly desirable flavor to the wine.  It was found to be so desirable that even today 

barrel aging is used throughout the world though the need for the barrel to provide 

physical strength is obsolete.  Thus the history of aged distilled spirits, in particular 

whiskey, stems from the invention of the wooden cask.  When the Celts migrated to the 

Irish Isles, they found that the climate was unsuitable for the cultivation of grapes thus, 

an alternative starting material was found for the production of fermented beverages.  

Honey, which was readily available and also easily fermentable, replaced grapes and 

led to the production of mead (Preet 2012).  It wasn’t until the 12th century A.D. that 

ethanol distilled from fermented grains appeared in Irish monasteries.  This beverage 
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was called uisge beatha, meaning “water of life” in Gaelic.  Distillation first made an 

appearance in Spain and Portugal in the forms of Port, Sherry, and Madeira, which are 

wines to which distilled spirits are added.  From there the practice of fermenting, 

distilling, and aging spread throughout the world (Fig 2.6).  The Spanish settlers in the 

Americas brought the process of distillation to the indigenous people, who then 

distilled their fermented agave “beer” to create tequila and mescal.  Rum, the product of 

sugarcane fermentation, made its first appearance after the British made their way to 

the Caribbean.  Lastly, Tennessee whiskey and bourbon originated during the US 

colonial period when native corn was used as the starting material for these fermented 

beverages.  

    



 17 

Manufacturing 

There are three major steps in the production of distilled spirits. The first is 

fermentation.  The starting or base material contains starch or sugars from which the 

fermented beverage is made. Whiskeys are generally made with grains, i.e. barley, rye, 

wheat, and/or corn, depending on the variety of whiskey being produced.  Certain 

whiskeys, like bourbon, require a specific grain for production.  By law, for a spirit to be 

called bourbon, the grain mixture must contain at least 51% corn by law (Code of 

Federal Regulations 2010).  Tequila is made using syrup from the agave plant, while 

rum is made from molasses or sugar cane juice.  Complex starches present in most of 

base materials require an extra step for yeast metabolism to occur.  Yeast are only able 

to ferment simple sugars thus starch, a carbohydrate polymer, must be broken down 

into its component simple sugars.  Malting is commonly used for this purpose.  During 

the malting process grain is allowed to germinate during which enzymes (e.g. 

amylases) break down starch into its simple sugar sub-units.  With the addition of yeast, 

commonly Saccharomyces cerevisiae, and sufficient water these free sugars are then 

fermented into ethanol (Figure 2.7).  Each type of spirit is fermented for a specific 

period of time. For example, whiskeys are fermented for only 40 to 48 hours (Piggot at 

al. 2003).   

 

The second step in spirit manufacturing is distillation.  Two methods exist, batch and 

continuous distillation, each with their own advantages.  Batch or pot distillation 

typically results in a highly flavored spirit, whereas continuous distillation results in 
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lighter spirits.  Batch distillation uses the pot, a swan neck vessel with a lyne arm, and a 

condenser, as shown in Figure 2.8.  The fermented product or wash (5-7% ethanol) is 

transferred to the pot which is then heated, either directly by flame or indirectly by 

steam jacket.  The pot is usually made of copper due to its good heat conduction and 

ability to remove unwanted odorous sulfur compounds (Whitby 1992).  The lyne arm 

and condenser can be altered in length and orientation to obtain the desired % ethanol 

in the reflux which may affect flavor (Nicol 1989).  This process is repeated in batches 

until a final ethanol content of 70-80% is obtained.  Continuous distillation was invented 

by Aeneas Coffey in 1827 for the production of scotch whiskey (Piggot et al. 2003).  In 

this process, shown in Figure 2.9, the wash is preheated by sending it through the 

second column (rectifier) and then fed into the top of the first column (analyzer), while 

steam enters at the base.  In contrast to batch distillation, the fermentation liquid is 

continuously fed into the process. The volatiles are stripped from the wash and taken 

out from the top of the rectifier while the vapor returns to the bottom where water and 

alcohol are separated (Piggot et al. 2003). 
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Maturation, the final step, is generally considered to be the most important step for the 

overall flavor of aged spirits.  Raw distilled whiskey has a very harsh, undesirable 

flavor.  However, aging in white oak casks creates a product with desirable flavor 

characteristics.  Prior to aging the distillate is cut with water to achieve an alcohol by 

volume (ABV) content of 60.0-62.5 percent.  Standards of identity for Tennessee 

whiskey and bourbon require the distillate to be aged in new, charred, white American 

oak barrels, which is thought to result in the finest of whiskeys.  Aging time is also 

controlled by law for Tennessee whiskey and bourbon, with a minimum time in barrel 

being at least two years (Waymack et al. 1995).  Corn whiskey is not required to be aged 

and is better known as “moonshine”.  If it is aged, it is done briefly for six-months, 

either in un-charred or used oak casks.  Whiskeys produced outside of the USA have 

their own standards.  Canadian, scotch, and Irish whiskeys all require a minimum of 

three years aging in an oak barrel, however, the barrels are not required to be new.  

Both scotch and Irish whiskeys don’t rely solely on oak aging for their flavor, as the 

malted grain is treated with peat smoke before fermentation, giving them their 

recognizably intense smoky aroma.   

 

Flavor of Whiskeys 

There are two major contributors to the flavor of whiskey, the starting grain and any 

subsequent treatment post distillation, i.e. oak aging.  The starting grain, which is 

barley, corn, wheat or rye, should result in a fairly aroma neutral fermentation product.  

During the malting process Maillard reaction type volatiles are formed, resulting in a 

fermentation product that is very similar to an un-hopped beer (Cole et al. 2003).  For 

Irish and scotch whiskey, the peating process on the malted grains adds a “smoky” or 

“peaty” flavor to the final product.  Many of these “smoky” compounds are the same as 

the ones that come from the post distillation treatment of barrels, specifically from the 

charring of the oak.  These include phenols, cresols, and guaiacols; such as syringol and 
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syringaldehyde, guaiacol, 4-ethyl guaiacol, 4-vinyl guaiacol, p-cresol, o-cresol, and m-

cresol (Piggot et al. 2003, Poisson et al. 2008a, Fernanadez de Simon et al. 2010).  This is 

likely the reason why Irish and scotch whiskeys don’t require aging in new charred oak 

barrels, as their distillate already has a higher amount of these compounds that 

contribute to the “smoky” or “peaty” flavor.  The aroma impacting compounds 

resulting from grain fermentation are fusel alcohols, acetates, and esters.  These 

compounds, which impart a fruity or solvent-like characteristic, include:  2-

methylbutan-1-ol, 3-methylbutan-1-ol, 2-methylbutyl acetate, acetaldehyde, isoamyl 

acetate and, 2-methyl-1-propanol.  

Post-distillation oak aging is considered to be the most important step in developing the 

flavor of whiskey.  The volatiles can come from three different sources:  1) ethanolysis 

of wood components, 2) lignin pyrolysis from charring the barrel and 3) direct 

extraction of wood volatiles.  These have a wide range of odor descriptions, creating the 

complex flavor of whiskeys.  The oak lactones, cis- and trans-β-methyl-γ-octalactone, are 

of particular importance, even being nicknamed “whiskey lactones”.  Other lactones 

present, including γ-nonalactone, δ-nonalactone, γ-decalactone, γ-dodecalactone and 

cis-6-dodeceno-γ-lactone contribute peachy and creamy flavors.  Additional wood 

extractives known to contribute to the flavor include:  eugenol, isoeugenol, β-ionone, β-

damascenone and vanillin.  Both eugenol and isoeugenol are described as clove-like, 

while β-ionone and β-damascenone impart floral and apple attributes.  Vanillin is most 

commonly known to contribute most to the flavor of the vanilla bean.  Lastly, 

ethanolysis of the wood acids results in fruity ethyl esters like ethyl propanoate, ethyl 

butanoate, ethyl hexanoate, and ethyl octanoate, along with several other branch chain 

ethyl esters (Conner et al. 1993, Conner et al. 2001, Piggot et al. 2003, Poisson et al. 

2008a, Poisson et al. 2008b, Lahne 2010).   

The importance of non-volatile, taste-active compounds extracted from the wood 

during maturation was recently studied with respect to both in-mouth flavor and 
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aroma-by-nose.  These were identified as the ellagitannins: vescalagin, castalagin, 

grandinin, roburin A, B, C, D, and E, and 33-deoxy-33-carboxyvescalagin.  These 

compounds contribute to astringency and bitterness along with matrix type effects.  As 

a result of these findings, a procedure to deodorize whiskey became widely practiced.  

This procedure forms a non-biased base for recreating aroma models that include the 

taste-active ellagitannins which could be a major influence on the sensory attributes 

(Glabasnia et al. 2006).   
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Chapter 3:  Identification of Rotundone, a “Woody/Incense” Aroma 

Component of Oak Wood Casks 

 

3.1  Abstract 

Experiments were conducted in order to unambiguously identify a compound 

responsible for a “woody/incense” odor note in oak aged spirits.  The target compound 

was isolated by rigorous simultaneous distillation extraction (SDE) of oak wood chips 

followed by several purification steps, as well as use of a custom built GC-

MS/olfactometry system equipped with a heart-cutting system/internal CryoTrap 

(Deans’ switch system), which enabled the acquisition of an interpretable electron-

impact mass spectrum (EI-MS) for the compound.   The EI-MS revealed the unknown 

compound possessed a molecular weight of 218; however, there was no match for the 

compound in the NIST database.  A thorough investigation of naturally occurring 

organic compounds having a molecular weight of 218, plus additional experiments to 

determine the nature of any functional group(s) on the molecule, indicated numerous 

compounds as possible candidates.  Most were found to occur naturally in a number of 

roots, spices, oils, and herbs, which were subsequently analyzed.  Results of the 

analyses revealed that the compound was most likely the sesquiterpene compound 5-

isopropenyl-3,8-dimethyl-3,4,5,6,7,8-hexahydro-1(2H)-azulenone, or rotundone.  This 

presumptive identification was confirmed by comparison of the compound’s EI-mass 

spectrum and GC retention indices on three different polarity phases against those of 

authentic rotundone obtained by chemical synthesis. 

 

3.2  Introduction 

Oak wood has been selected as the wood of choice for barrel making not only for its 

physical characteristics that lend itself to manufacturing a barrel, but also its unique 
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chemical properties that impart key flavors to aged spirits that are desired by the 

consumer.   

Volatiles from oak wood can either be naturally present in the wood, or formed during 

post-harvest treatment.  A common practice is to toast or char the wood, which is done 

to seal the wood, but this practice also creates hundreds of volatiles.  These volatiles 

come from several sources.  Lignin pyrolysis results in many phenolic compounds 

contributing to the aroma of toasted oak including:  guaiacol, 4-methyl guaiacol, 4-vinyl 

guaiacol, eugenol, isoeugenol, syringol, vanillin, and syringaldehyde (Fernandez de 

Simon et al. 2009 and 2010, Cutzach et al. 1997 and 1999, Cadahia et al. 2003, Doussot et 

al. 2002.)  Reactions with the lipids and carbohydrates present in oak result in the 

formation of a number of aldehydes, alcohols, esters, furans, lactones and most 

importantly cis and trans-β-methyl-γ-octalactone, endearingly called the “oak lactone” 

or “whiskey lactone” (Masuda et al. 1971 and Otsuka et al. 1973).  Degradation of 

carotenoids to form terpenoids is unique to oak wood as oak contains both β-carotene 

and lutein which break down to form volatiles such as, β-ionone, β-damascenone, 

dihydroactinolide, and megastigmatrienones (Nonier et al. 2004 and Sefton et al. 1990).  

As thoroughly researched as oak wood and oak aged spirits are, the identity of the 

component responsible for the “woodiness” flavor attribute of age spirits is unknown.  

Previous research cited the presence of an unknown compound with a 

“woody/incense” aroma character, and mentioned that additional research was needed 

to identify it. Thus, the main objective of this study was to find and identify this 

unknown “woody/incense” compound, herein referred to as the target compound.  It 

was hypothesized that this compound exists in both oak wood and in oak aged spirits 

potentially influencing the overall flavor of the spirit. 
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3.3  Materials and Methods 

Materials 

Toasted oak was purchased from Oak Chips Inc. (Waverly, OH).  These included white 

American oak in light and medium toast levels and at two different sizes (chips and 

powder), and French oak (medium toast, chips).   Commercially available oak wood 

extracts were purchased from commercial sources:  Sinatin 17 (Crosby & Baker Ltd. 

(Westport, MA) and liquid oak extract (RJ Spagnols, Delta, BC, Canada.).  Cyrpus 

rotundus “whole herb” (dried root) was purchased from Chinese Herbs Direct 

(Torrance, CA).  Ground white peppercorn, Piper nigrum,(Spice Islands Trading Co., San 

Francisco, CA) was purchased from a local grocery store (Champaign, IL).  Two 

samples of agarwood oil were provided by Orchidia Fragrances® (Downers Grove, IL). 

Chemicals 

The following chemicals used for volatile extraction, isolation, and chemical synthesis 

were purchased from Fisher Scientific Co. (Fair Lawn, NJ):  dichloromethane, n-

pentane, diethyl ether, sodium hydroxide, sodium bisulfite, sulfuric acid (conc), ethanol 

(99%)(Arcos Organics, Morris Plains, NJ), acetone, hydrochloric acid (concentrated), 

and sodium sulfite. 

The following chemicals used for isolation and chemical synthesis were purchased from 

Sigma-Aldrich Co. (St. Louis, MO): 2,4-dinitrophenylhydrazine, Dess-Martin 

periodinane, guaiac wood oil, pyridine, thionyl chloride, acetonitrile, cobalt acetate 

tetrahydrate, tert-butyl hydroxide (5.0-6.0 M in decane), and silica gel (high-purity 

grade, 60A, 230-400 mesh particle).  

 

Methods 

Isolations of volatiles for GC-O analysis 
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Oak wood was isolated by simultaneous distillation-solvent extraction (SDE, 

Chrompack, Middelburg, Netherlands) as described by De Frutos (et al. 1988).  Light 

and medium toasted American white oak chips (100 g) were added to a 1-L round 

bottom flask containing 500 mL of odor-free distilled-deionized water.  

Dichloromethane (50-75 mL) was used as a non-polar extraction solvent.  Extraction 

was conducted for 3 h (reflux time).  The extract was dried over anhydrous sodium 

sulfate and concentrated to 1 mL using a Vigreux column (45 °C) followed by further 

condensation of the extract using a gentle steam of N2 gas.   

The extract obtained from SDE of the oak wood was loaded onto a cooled (7 °C) 

jacketed glass column (45 cm x 1.5 cm) filled with silica 60A (pre-baked and then 

equilibrated with 5% w/w water post bake) in n-pentane.  Under pressure (using N2 gas 

at 1 psi), the extract was fractionated by polarity using five pentane : diethyl ether 

mixtures (v/v) (150 mL each; 100:0 (A), 95:5 (B), 90:10 (C), 80:20 (D), and 50:50 (E) as 

described by Poisson and Schieberle (2008a).  Each fraction was dried over anhydrous 

sodium sulfate and concentrated to 0.5 mL using a Vigreux column followed by a gentle 

stream of N2 gas.   

Identification of aroma active volatiles 

SDE extracts were subjected to evaluation by both gas chromatography-olfactometry 

(GC-O) and gas chromatography-mass spectrometry (GC-MS).  The retention index (RI) 

was calculated for each aroma compound by comparing its retention time (RT) to those 

of standard n-alkanes (Van der Dool and Kratz 1963).  Aroma-active compounds were 

identified based on three criteria 1) comparison of RIs on three different stationary 

columns (RTX-5, wax, and 1701) to that of literature values, 2) comparison of a 

compound’s odor properties to published values, and 3) comparison of the electron 

ionization (EI) mass spectrum obtained by GC-MS analysis to those in the National 

Institute of Standards and Technology (NIST) database.   
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Gas Chromatography – Mass Spectrometry (GC-MS) 

A 6890 GC-HP 5973N mass selective detector (Agilent Technologies Inc., Palo Alto, CA) 

was used for GC-MS analysis. Two µL of extract was injected into a cold splitless inlet 

CIS-4 inlet (Gerstel, Germany) held at -50°C for 0.10 min, then increased to 260°C at a 

rate of 12°C/sec.  Separations were performed using a Supelco® SAC-5 column (30.0 m 

length x 0.25 mm i.d. x 0.25 µm film thickness; Sigma, St. Louis, MO) or Stabilwax® 

(30.0 m length x 0.25 mm i.d. x 0.25 µm film thickness; Restek. Helium was used as the 

carrier gas at a constant flow of 1.0 mL/minute. MS transfer line temperature was 280°C. 

Oven temperature was programmed as follows: initial temperature, 40°C (5 min hold), 

ramp rate, 4 °C/min, final temperature, 225 °C (45.0 min hold). The MSD conditions 

were as follows: capillary direct interface temperature, 280 °C; ionization energy, 70 eV; 

mass range, 35 to 300 amu; electron multiplier voltage (Autotune + 200 V); scan rate, 

5.27 scans/s.  

Gas Chromatography – Olfactometry (GC-O) 

The GC-O system used for analysis of extracts consisted of a 6890 GC (Agilent  

Technologies Inc.) equipped with an flame ionization detector (FID) and sniff port 

(OD2, Gerstel, Germany). Separations were performed using a RTX®-Wax column (15 

m length x 0.53 mm i.d. x 1 µm film thickness; Restek),  RTX®-5 column (15 m length x 

0.53 mm i.d. x 1µm film thickness; Restek) and RTX®-1701 (15 m length x 0.53 mm i.d. x 

1 µm film thickness; Restek). Helium was used as the carrier gas at 5 mL/minute. FID 

temperature was 250C. Oven temperature was programmed as follows: initial 

temperature, 40C (5 min hold), ramp rate 80C/min, final temperature, 225C (30 min 

hold). 

Isolation of volatiles for unknown identification 

Oak 

Volatiles in oak wood were isolated by SDE as previous described with some 

modifications to the procedure.  Oak samples, received pre-ground, were finely ground 



 29 

using a Thomas Wiley® Mini Mill (Thomas Scientifict, Swedesborro, NJ) before 

addition of 500 g into a 5000 mL round bottom flask contaqining 2000 mL of odor-free 

DI water.  Dicholoromethane (200 mL) was used as the extraction solvent.  Extraction 

was conducted for 6 h (reflux time).  The extract was dried over anhydrous sodium 

sulfate and concentrated to 1 mL using a Vigreux column (45 C) followed by further 

concentration using a gentle stream of N2 gas.   

The extract obtained from oak wood was washed with 1M NaOH (3x 50 mL) to remove 

acids and phenolics before it was loaded onto a water-cooled glass column (45 cm x 1.5 

cm) filled with silica 60A (pre-baked at 180° C, with 5% w/w water added post bake) in 

n-pentane to a height of 23 cm in the column.  Under pressure, using N2 gas (1 psi) in 

the flash column, the extract was fractionated by polarity using a succession of five 50 

mL pentane:diethyl ether mixtures; 100:0, 90:10, 85:15, 80:20, 75:25, 50:50)  Fractions 

possessing a woody/incense-like aroma detected by GC-O were collected and pooled.   

This flash column procedure was repeated four times to obtain an extract from 2 kg of 

oak wood.   

Cyperus rotundus 

The volatiles present in C. rotundus were extracted by SDE in the same manner as 

described above using a 25 g ground sample and 10 mL of dichloromethane.  

Fractionation was performed using the flash column method described above.  

Fractions having a woody/incense-like aroma were pooled and reduced to 1 mL for 

analysis.   

White pepper 

White peppercorn (pre-ground) was subjected to simple solvent extraction by placing 

5g in a 50 mL test tube with 25 mL of diethyl ether and sealed with a PTFE cap.  The 

prepared test tube was shaken for 1hr (DS-500 Orbital Shaker, VWR Scientific 

Products).   After centrifugation, the solvent layer was drawn off, 25 mL of diethyl ether 

was added and a second extraction was performed.  The extracts were pooled, washed 
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with 1 M NaOH (20 mL x 3) to remove acids and phenolics and then condensed to 1 mL 

for analysis.   

Wood oils and extracts were analyzed directly (without extraction) since they were 

already in a suitable form. 

Identification of target compound   

GC-MS/GC-O Deans’ switch system 

A custom built gas chromatograph equipped with a Deans’ switch heart-cutting system 

containing a CryoTrap on the cut section and a switching valve to direct flow to either 

the mass spectrometer or the olfactometer was used to selectively analyze for the target 

compound.   The entire system consisted of an 6890 GC (Agilent Technologies Inc.) 

equipped with an FID and sniff port (OD2, Gersel), a 5973N mass selective detector 

(MSD, Agilent Technologies Inc.), a Deans’ switch (Agilent Technologies Inc.), a JAS 

CryoTrap (Joint Analytical Systems; Newark, DE), and an Air and Electrically Actuated 

2 Position Valve (Valco Instruments Co. Inc., Houston, TX.).   

A schematic of this system is shown in Figure 3.1. 
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In initial analyses, the volatiles were allowed to bypass the cut valve and flow directly 

to the olfactory port in order to determine the retention time and retention index (RI) of 

the target odorant with respect to the standard alkanes.  This allowed the “cut” 

command to be programmed into the run at the correct time interval.  For the target 

odorant the cut was made between an RI of 2200 – 2300 (Wax column), RI of 1700 – 1800 

(5 column) and RI of 1800 -1900 (1701 column).  Cuts were made onto columns of 

different polarities from the first column in order to obtain orthogonal chromatographic 

resolution.  After samples were cut from the proper RI section to the MS, the valve was 

then switched for a second run to send the cut section to the olfactory port.  The cut 

section sent to the olfactory port was sniffed and the retention time for the target 

odorant was marked on the chromatogram using a hand-held input device.   The total 
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ion chromatogram (TIC) of the cut section from the MSD and the FID outputs were 

overlaid and the mass spectral data were evaluated for the target peak.  The entire 

experiment was repeated several times using three different types of column and six 

different column configurations in order to unambiguously match the correct mass 

spectrum with the target compound.  The Deans’ switch requires specific pressure 

settings to ensure that no leaking occurs to the cut section and no back leaking occurs 

during the cut to the first column.  This was adjusted through the front inlet pressure 

and a second pressure gauge installed which controls flow to the Deans’ switch.  

Pressures were also adjusted depending on whether the valve was directed towards the 

olfactory port, or to the MSD.  The pressures used are shown in Table 3.1 where valve 

position A directs the first column to the FID/O; cut section to the MS and position B 

directs the first column to the MSD; cut section to the FID/O.   

 

Table 3.1:  Pressure Settings for Deans’ switch/CryoTrap system 

Configuration Wax (1st)  5 (cut) 5 (1st)  Wax (cut) 5 (1st )  1701 (cut) 

Valve position A B A B A B 

Front inlet 

pressure (psi) 

60.0 37.0 60.0 37.0 60.0 57.0 

Deans’ switch 

pressure (psi) 

57.7 27.0 57.7 28.0 61.2 50.0 

 

Oven temperatures were programed with three ramps; the first functioned to control 

the oven during chromatography through the 1st column, the second as an oven cool-

down time while the cut section was trapped in the cryotrap, and the third functioned 

as to control the oven temperature during chromatography through 2nd column.  The 

first ramp consisted of an initial temperature of 50 °C (1 min hold), ramp rate 10 °C 

/min, final temperature 225 °C [1.95 min hold [5wax (A)], 0.70 min hold [5  wax (B)], 

0.00 min hold [5  1701 (A)], 1.16 min hold [5  1701 (B)], 5.30 min hold [wax  5 (A)], 
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2.50 min hold [wax  5 (B)].  The second, cool-down ramp was 25 °C/min to a final 

temperature of 50 °C (2.00 min hold time).  The third ramp consisted of an initial 

temperature of 50 °C (0.00 min hold), ramp rate 4 °C/min, final temperature 225 °C 

(20.00 min hold).  The cryotrap was kept at 0 °C until the oven cooled down, both the 

third oven ramp and the cryotrap ramp started at the same time with the cryo ramp rate 

of 500 °C/min, final temperature of 260 °C (10.00 min hold).     

Compound chemical characteristics 

The presence and nature of functional groups were determined through a series of 

experiments designed to detect the presence of an aldehyde, ketone, or alcohol group 

on the target compound. 

Reaction with sodium bisulfite  

A 2 mL portion of the target compound fraction in dichloromethane solvent was 

washed with a 25% aqueous solution of sodium bisulfite to generate a water-soluble, 

addition product of carbonyls and bisulfite (Benn 1998).  The solvent layer was then 

subjected to GC-O analysis to determine whether the target aroma was still present in 

the solvent phase.  This indicated whether a carbonyl functional group was a moiety on 

the unknown compound. 

Reaction with 2,4-dinitrophenylhydrazine 

Another method to detect the presence of aldehydes or ketones made use of 2,4-

dinitrophenylhydrazine (Allen 1930), where the a carbonyl group will react with 2,4-

DNPH to form a solid.  The 2,4-dinitrophenylhydrazine solution was prepared by first 

dissolving 4 g of 2,4-DNPH in 15 mL of concentration sulfuric acid then, with stirring, 

20 mL of water was added, followed by 70 mL of 95% ethanol.  A solution of 0.5 mL of 

2,4-DNPH was then added to 2 mL of the target compound fraction and allowed to 

react for 10 min.  This was quenched with water and the solvent layer was drawn off 

and subjected to GC-O analysis.   

Reaction with Dess-Martin Periodinane 
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The Dess-Martin reaction is an effective method of oxidizing alcohols into aldehydes as 

described by Meyer et al. (1994).  Briefly, water saturated dichloromethane was added, 

while stirring, to a mixture of 2 mL of the target compound fraction and 4 mL of DMP 

(0.3M in dicholormethane) (1.2  mmol). This was left to react overnight until all alcohols 

were oxidized to the aldehydes.  The reaction was worked up and the solvent layer was 

subjected to GC-O analysis.   

Compound Synthesis 

Rotundone 

The synthesis of rotundone was performed following the method of Mattivi et al. (2010) 

starting with the sesquiterpenoid alcohol, guaiol.  Guaiol was isolated from guaic wood 

oil following a series of crystallization steps;  first using acetone as the solvent followed 

by a 3:1 ethanol:water mixture (Minnaard et al. 1994).  This yielded  99% pure guaiol as 

a crystaline material.  The guaiol (10.0 g; 81 mmol) in pyridine (15 mL) was kept at -

30°C under N2 gas while thionyl chloride (6.18 g; 3.8 mL; 52 mmol) was added drop-

wise.  After 2 h, additional thionyl chloride (1.55 g; 0.95 mL; 13 mmol) was added.  The 

resulting solution was kept overnight at 30°C.  The product, a brown solution with 

white crystals, was worked up by adding a 25% HCl solution (50 ml) and extracting 

with diethyl ether.  This resulted in a crude mixture of guaiene (87% yield).  The crude 

mixture was passed through a bed of silica gel to remove any insoluble compounds.  It 

was then dissolved in acetonitrile and the catalyst cobalt acetate tetrahydrate (0.60 g) 

was added along with an oxidizing agent, tert-butyl hydroxide (5.0-6.0 M in decane).  

The solution was left to react at room temperature.  The reaction progress was 

monitored hourly by GC-MS until the guaiene peak was no longer detected.  The 

reaction was quenched with and then washed with aqueous sodium sulfite (1 M) 

solution and extracted with ether.  The ethereal extract contained the final product, 

rotundone, with a final yield of 8%.  A detailed description of the synthesis can be 

found in the Appendix A. 
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Purification of rotundone was carried out by first subjecting the extract to a high 

vacuum transfer apparatus to remove any highly volatile compounds and then 

applying the extract it to a silica (60A) flash column (200 mL volume).  Fractions 

fromvarying pentane:diethyl ether (v/v) mobile phase compositions (100:0, 94:6, 90:10, 

80:20) were collected.  Using this purification procedure, a 94% purity was achieved.  

EIMS, m/z (rel intensity) 219 (14), 218 ([M]+, 100), 204 (8), 203 (82), 189 (9), 175 (25), 163 

(46), 162 (35), 161 (55), 147 (53), 137 (59), 135 (25), 133 (42), 121 (32), 120 (40), 119 (61), 107 

(38), 105 (67), 95 (34), 93 (43), 91 (87), 79 (53), 77 (53), 67 (48), 55 (29), 41 (33).  Retention 

indices (RI) 1670 (RTX-1), 1715 (RTX-5), 1885 (DB-1701), 2260 (RTX-wax).   

 

1H NMR (500 MHz, CDCl3), δ 4.75 – 4.60 (2H, overlapping m, H10), 2.98 (1H, ddq, J = 

11.2, 3.4, and 7.3, H1), 2.64 – 2.42 (3H, overlapping m, H12, 13a, 5a), 2.34 (1H, m, H6b), 2.05 – 

1.9 (2H, overlapping m, H4, 13b), 1.81 – 1.75 (3H, overlapping m, H3, 2a), 1.76 (3H, s, H9), 

1.53 (1H, m, H2b), 1.10 (3H, d, J = 7.5, H16), 0.99 (3H, d, J =  6.4, H11) 

13C NMR (500 MHZ, CDCl3), δ 208.2, 177.2, 151.2, 145.6, 109.3, 46.4, 43.2, 38.1, 36.9, 32.8, 

30.9, 27.0, 20.4, 19.4, 17.7. 

1H NMR (500 MHz, CDCl3) and 13C NMR (500 MHZ, CDCl3) was obtained from the 

solutions in deuterochloroform with a Varian Unity (500 MHz, Quad Probe; Varian, 

Palo Alto, USA).  Chemical shifts were referenced relative to the corresponding residual 

solvent signal.  13C NMR spectra were obtained from the solutions in a 

deuterochloroform with a Varian VRX (500 MHz, Quad Probe).   
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The EI-MS and NMR spectra can be found in the Appendix B. 

 

 

3.4  Results and Discussion 

Volatile Identification 

Extracts were prepared from both toasted French and American oak products via SDE.  

Based on the results of GC-O American oak had the stronger intensity of most 

characteristic oak odorants (Appendix E, Table A1). This finding was consistent with 

previous studies which indicated that toasted American oak has higher concentration of 

characteristic oak volatiles than toasted French oak (Cadahía et al. 2003).  A comparison 

was also made between light and medium toasted American oak chips, revealing 

volatiles to be in higher abundance the medium toasted oak.  Continuing with medium 

toasted American oak, GC-O analysis consistently allowed for the detection of 40 odor-

active compounds (Table 3.2).  All of the identified aroma compounds were in 

agreement with previous studies on volatiles of oak wood (Alañon et al. 2009, 

Fernández de Simón et al. 2009, Cadahía et al. 2003, Chatonnet and Dubourdieu 1998, 

Cutzach et al. 1997).   

Of the 40 compounds detected, 7 were unknown including 2 (bolded, Table 3.2), which 

were described as “woody/incense”.  Other unknown compounds that may be of some 

interest imparted a “clove/pine” odor at RI 2099 (Wax column) and a“fresh 

wood/apple” odor at RI 2324 and 1463 (Wax and 5 columns, respectively).   

Not all of these compounds will necessarily impact the flavor of the aged spirits.  This 

may be due to how susceptible a compound is to ethanolic or aqueous extraction, or it 

might be present at a lower concentration that its detection threshold.  Based on 

previous studies on aroma active compounds in aged spirits (Lahne et al 2012, Benn at 

al 1996, and Netto et al 2003), as well as the findings of this study, it was confirmed that 



 37 

only the unknown compound [occurring at RIs of 2250 (Wax column), 1885 (1701 

column), and 1722 (5 column)] was present as odor-active in oak aged spirits and thus 

qualified to proceed with identification.   The GC-O analysis of the wood served to 

confirme that the target compound originates directly from the oak wood and that the 

target compound when extracted from the oak wood would be in a high enough 

concentration to be detectable by GC-MS since the oak wood extract will contain more 

volatiles than aged distilled spirits.    
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Table 3.2:  Odor Active Compounds Extracted from Jim Beam Bourbon Aged 8 years 
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GC-MS/O/FID using Deans’ switch system 

To obtain an interpretable electron-impact mass spectrum (EI-MS) of the target 

compound, the RI range of the unknown compound was cut both to a Olfactory 

port/FID and a mass spectrometer.  Figure 3.2 shows an example, in the RTX-wax (1st 

column)  RTX-5 (2nd cut section column) configuration, of comparing the two sections 

to find a peak corresponding to the odor.  During the GC-O analysis of the cut section 

the time that the correct target compound aroma was detected was marked using an 

Olfactory Intensity Device (Gerstel USA Inc., Linthicum, MD). 

This was repeated several more time using the RTX-5  RTX-wax configuration (Figure 

3.3) and the RTX-5  RTX-1701 configuration (Figure 3.4).   
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Only a certain mass ions were consistently present on all GC-MS/O/FID system 

configurations, occurring near the same area of the odor marks made during the GC-O 

run.  The best estimate EIMS for the target compound is shown in Figure 3.5. 

 

 

The results suggest that the target compound has molecular weight of 218.  However, a 

search of the NIST database did not contain any confirmed matches.  Additional 

experiments were required to narrow down possible compounds based on type of 

compound and present functional groups. 

Chemical characterization experiments 

Each experiment used to detect functional groups was run on a GC-O and revealed 

whether the target compound was present or absent in the solvent phase of the 

experiment.  The tabulated results are shown in Table 3.3.  

Table 3.3:  Results from the Characterization Tests 
Test Positive Negative 
Dess-Martin periodinane (DMP) + 

 sodium bisulfite 
 

+ 
2,4-dinitrophenylhydrazine (DNPH)   + 
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The presence of the target compound by GC-O during the DMP test indicated that the 

compound did not contain an alcohol group.  The DMP would have oxidized the 

alcohol and the unknown would not be detected.  Both the sodium bisulfite and the 

DNPH test for the presence of an aldehyde or a ketone. The sodium bisulfite test 

complexes and solubilized the target into the aqueous phase resulting in a negative 

result.  Meanwhile, the DNPH test forms a solid precipitate, thus also giving a negative 

result.  Since both tests yielded a negative result for detection of the target compound in 

the solvent phase (by GC-O), it was therefore assumed that the unknown was indeed 

converted or consumed and, thus, was either an aldehyde or ketone.  Based on the fact 

that aldehydes are unstable and are readily oxidized into acids, the unknown 

compound was assumed to be a ketone.  This is based on the fact that oak casks are 

used for years and considering the small amount of unknown present, an aldehyde 

would most likely decrease over time and eventually be undetectable.  Instead, this 

unknown remained detectable in spirits after many years of aging in an oak barrel. 

Discovery of rotundone by investigation of other natural extracts 

Spices, oil, and roots are used for their volatile content in many different applications 

ranging from cooking, medicine, insecticides and antimicrobials.  There are a vast 

number of aroma-active compounds that have the potential to be the unknown target 

compound present in oak wood.  A literature search revealed several possible 218 

weight compounds.   As a result an intense investigation of different wood oils, tobacco, 

hops, dried herbs and roots was undertaken using GC-O to confirm the identity of the 

target compound by using as the criteria odor property, retention index, potency, and 

chemical characteristics.  Both the SDE extraction from Cyperus rotundus and the 

Agarwood oil contained an intense woody/incense-like peak at the same retention time 

as the unknown compound in the oak wood extracts.  Investigations of these two 

samples resulted in the identifying the unknown in oak wood as 5-Isopropenyl-3,8-
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dimethyl-3,4,5,6,7,8-hexahydro-1(2H)-azulenone, or rotundone.  Its structure can be 

seen in Figure 3.6.  

As just stated, rotundone was also identified in previous studies in the following 

products:  Agarwood oil (Naef 2010, Ishihara et al. 1991), Cyperus rotundus (Kapadia 

1967), and white peppercorn (Wood et al. 2008).   

 

 

The successful synthesis of rotundone further confirmed the identity of the target 

compound in oak wood by providing an authentic standard for comparison.  The 

rotundone standard and the unknown were analyzed on three different column phases 

and were found to have the same RI values on all phases.  In addition, the proposed 

mass spectrum of the unknown was found to match that of the rotundone standard.  

Rotundone was first identified in the Cyperus rotundus root in 1967 (Kapadia et al. 1967).  

It went fairly unnoticed as a potent odorant except for being used in perfumery.  It is 

found in Agarwood oil, a rare and expensive oil extracted from the heartwood of a 

mold infected tree, and used in perfume formulations (Naef 2010 and Ishihara et al. 

1991).  Most recently it was noted as a potent odorant in grapes (Wood et al. 2008), and 

was also identified in a number of products including white pepper, black pepper, 

wine, marjoram, geranium, rosemary, saltbush, basil, thyme, and oregano (Wood et al. 

2009).  Its potency was confirmed by its calculated threshold of 8 ng/L (parts per trillion) 

in water, and 16 ng/L in a wine matrix (Wood et al. 2008).   
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The discovery of rotundone in oak wood opens doors to its subsequent analysis in oak 

aged products.  Importantly, it’s extremely low threshold would make it very potent in 

any material in which it is found.   
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Chapter 4:  Quantification of Rotundone in Oak Aged Distilled Spirits 

 

4.1  Abstract 

The intense, “woody/incense” smelling aroma compound rotundone (5-isopropenyl-

3,8-dimethyl-3,4,5,6,7,8-hexahydro-1(2H)-azulenone) was investigated as a potential 

aroma impact compound in oak aged distilled spirits.  Accurate quantification of this 

trace level compound was done by stable isotope dilution analysis (SIDA) combined 

with gas chromatography-mass spectrometry.  The analysis was conducted on a variety 

of distilled products including seven bourbons, which ranged in age from 4 to 12 years, 

rye whiskey, Tennessee whiskey, Scotch whiskey, aged rum, and añejo (aged) tequila.  

Interestingly, rotundone was also found in un-aged (silver) tequila which suggests that 

the compound may also be present in the agave plant.  Some concentration trends were 

noted in terms of degree of aging; however, brand-to-brand variation was evident.   

 

4.2  Introduction 

Rotundone has been a fairly unassuming compound, first noted in 1967 (Kapadia et al. 

1967) and not mentioned again in the flavor chemistry field until 2008, where it was 

identified as a potent odorant in Syrah grapes and wines (Wood et al. 2008).  Rotundone 

was first isolated from the rhizome (or root) of the Cyperus rotundus plant, rotundone’s 

namesake.  Cyperus rotundus, more commonly known as nut grass, is used in traditional 

medicine acting mainly on the digestive system as a cure for spasms and pain.  Claims 

were made that nut grass could also be used as an analgesic, antibacterial, 

antispasmodic, antitussive, aromatic, astringent, carminative, diaphoretic, diuretic, 

emmenagogue, litholytic, sedative, dermatological treatment, stimulant, stomachic, 

tonic and vermifuge (Anon. 2014a) .  A brief assessment of the dried root reveals that it 

has a very potent aroma, being reminiscent of incense or black pepper.  It was also 



 48 

noted with interest that nut grass is quite common and is classified as an invasive 

noxious weed in at least 46 states in the US (Anon. 2014b).   

Rotundone has also been identified in agarwood, a dark fragrant resinous material that 

develops primarily in the heartwood of trees in the genus Aquilaria.  Agarwood is far 

more precious than nut grass; it is prized in Buddhist, Hindu, and Islamic regions for 

use as incense during religious ceremonies.  It is also much harder to obtain, because 

the trees in which it develops grow in a fairly inaccessible region of India.  In addition 

the trees must be infected with a fungus which then produces the oleoresin in the 

hardwood, and subsequently the fragrance associated with the tree.  As a result of its 

rarity, agarwood oil has been priced as high at 100,000 (USD) per kilogram.  Rotundone 

was first identified in agarwood in 1991 (Ishihara et al. 1991) and later confirmed as a 

volatile sesquiterpene constituent of the heartwood of the infected tree in 2010 (Naef 

2010).  The aroma of agarwood oil has been described as warm, sandalwood-like, rich, 

woody, ambergris, with balsamic notes, and generally regarded as having elegant 

characteristics.   

The most recent report of rotundone being recognized as a potent odorant was its 

discovery in Syrah grape skin at a concentration of 0.62 µg/kg (Wood et al. 2008).  This 

study also reported the compound in peppercorns where it is far more abundant (e.g. 

1200 µg/kg in black peppercorns and 2025 µg/kg in white peppercorns.  The discovery 

of rotundone in grapes prompted an interest in identifying and quantifying the 

compound in wines.  This was successfully accomplished by Siebert et al. (2008), 

Mattivi et al. (2010) and Wood et al. (2008).  Concentrations were reported in a range 

from 0.15 µg/L in Syrah wine (Wood et al. 2008) to 0.561 µg/L in vespolina wine 

(Mattivi et al. 2010).   Although these low concentrations of rotundone don’t at first 

sound impressive, one must consider that the compound has an odor threshold of about 

0.008 µg/L (or 8 parts-per-trillion) in water (Wood et al. 2008).  Therefore, even at 

extremely low concentrations rotundone may still be an extremely potent odorant. 
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In recent years, flavor chemists have relied on stable isotope dilution analysis (SIDA) to 

quantify compounds present at extremely low concentrations.  This sensitive and 

accurate technique makes use of an isotopically labeled internal standard, which is 

synthesized by labeling the target compound with either deuterium or carbon-13.  

Samples are then spiked with a known concentration of the isotope before extraction, 

thus accounting for any possible losses of volatiles during the isolation step.  The 

isotope varies slightly in mass from the target compound, so it is relatively easy to 

monitor both compounds by mass spectrometry.  The mass ion peak area of the internal 

standard (of known mass) is related to the mass ion of the unlabeled target analyte by 

use of a mass ion response factor, which enables the calculation of the initial 

concentration of the target compound in the sample.   

   

4.3  Materials and Methods 

Materials 

The seven bourbon whiskeys used in this study were:  Jim Beam Bourbon (4 year), Jim 

Beam Black Bourbon (8 year), Jim Beam Signature Craft (12 year), Bulleit Bourbon (at 

least 6 years), Bulleit Bourbon 10 year (10 years), Elijah Craig Bourbon (12 years), W.L 

Weller Bourbon (12 years).  Other aged spirits used in this study included:  Jack Daniels 

Tennessee Whiskey (at least 4 years), Johnnie Walker Black Label Scotch Whiskey (at 

least 12 years), Bulleit Rye Whiskey (at least 4 years), Appleton Estates Extra Rum (12 

years), Don Julio Añejo Tequila (18 months), and Milagro Tequila (un-aged).  All of the 

above were commercially available and purchased at a local liquor store (Binny’s 

Beverage Depot, Champaign, IL). The value in parentheses indicates the reported age 

for each product.  
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Chemicals 

The following chemicals, used for volatile extraction, isolation, and chemical synthesis, 

were purchased from Fisher Scientific Co. (Fair Lawn, NJ):  dicholormethane, diethyl 

ether, guaiac wood oil, hydrochloric acid (conc), n-pentane, sodium sulfite, sodium 

chloride, sodium sulfate.   

The following chemicals, used for isolation and chemical synthesis, were purchased 

from Sigma-Aldrich Co. (St. Louis, MO):  thionyl chloride, pyridine, acetonitrile, cobalt 

acetate tetrahydrate, tert-butyl hydroperoxide (5.0 – 6.0 M in decane), silica gel (high-

purity grade, 60A, 230-400 mesh particle), deuterium oxide (99.9% atom D), and sodium 

deuteride. 

Methods 

Rotundone Synthesis 

Rotundone was synthesized as previously described (Chapter 3).  The synthesis 

involved extraction of guaiaol from guaiac wood oil, followed by dehydration of 

guaiaol to form guiaene, and finally random allylic oxidation of guiaene to obtain a 

crude mixture, yielding less that 10% rotundone.  Purification of this crude mixture by 

flash column chromatography resulted in a final purity of 74% rotundone.   

d4-Rotundone Synthesis 

Isotopically labeled rotundone, d4-dotundone, was synthesized by a simple exchange 

reaction using the method of Kotseridis et al. (1998) as described below.   Sodium 

deuteride (3 drops) was added to a stirred solution (contained in a 40-mL amber vial 

and purged with N2 gas) of rotundone (46 µmol, 10 mg) in pyridine (5 mL) and 

deuterium oxide (>100 molar excess, 1 mL).  The vial was then purged with N2 and 

sealed, and the solution allowed to stir at room temperature overnight.  Exchange 

progress was monitored every few hours.  Once complete, the reaction mixture was 

quenched with ice cold water.  The pH of the solution was adjusted to 2 with aqueous 

HCl (4 N), and extracted with ether (3 x 10 mL).  The ether extract was concentrated (1 
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mL) and passed through a bed (20 g) of silica using a mobile phase consisting of 80:20 

pentane:ether to purify the target compound.  Final purity was 84.5%. 

Based on 1H NMR analysis, the signals associated with the protons on C13 (H13α and H13b) 

and C5 (H5α and H5β) were absent; confirming deuterium exchange at these two carbon 

atoms (Figure 4.1).   

 

 

d4-Rotundone:  EIMS m/z (rel intensity) 222([M]+ , 100), 221 (84), 207 (60), 206 (87), 166 

(61), 165 (56), 164 (70), 163 (56), 150(48), 141 (51), 140 (56), 122 (56), 121 (73), 120 (59), 107 

(56), 106 (48), 95 (58), 94 (44), 93 (60), 92 (48), 82 (50), 81 (47), 79 (52), 67 (44), 44 (40), 41 

(52) 

d4-Rotundone:  1H NMR (500 MHz, CDCl3), δ 4.76-4.68 (2H, m, H10), 2.99 (1H, m, H1), 

2.71 (1H, p, J=7.5, H12), 2.01 (1H, m, H4), 1.92-1.85 (3H, overlapping m, H3,2b), 1.74 (3H, s, 

H9), 1.53 (1H, m, H2b), 1.14 (3H, d, J=4.2, H15), 1.01 (3H, d, 7.0, J=7.0, H11) 

1H NMR (500 MHz, CDCl3) was obtained from the solutions in deuterochloroform with 

a Varian Unity (500 MHz, Quad Probe; Varian, Palo Alto, USA).  Chemical shifts were 

referenced relative to the corresponding residual solvent signal.   

The EIMS and NMR chromatograms can be found in the Appendix B. 



 52 

Volatile Extraction for Quantification 

Each spirit sample (10 mL) was transferred to a 50-mL glass centrifuge tube to which 10 

ng of d4-rotundone was added as the internal standard.  Ethanol in the sample was 

reduced to about 10% (alcohol by volume; ABV) by the addition of 30 mL of deodorized 

deionized-distilled water.  The tube was sealed with a PTFE-lined cap and vigorously 

shaken (5 min) by hand.  Dichloromethane (2 mL) was then added to the tube which 

was recapped, and again vigorously shaken (5 min) by hand.  The tube was then 

centrifuged at 7500 rpm for 15 min (IEC HN-SI; Damon/IEC Division, Needham 

Heights, Massachusetts) to separate the solvent from the aqueous phase.  The solvent 

(lower) phase (dichloromethane) was transferred to a 20 mL vial containing sodium 

sulfate (2 g) to remove any residual water.  The extraction, with dichloromethane (2 

mL), was repeated two more times.  The final dried extract was condensed to 0.25 mL 

using a gentle stream of N2 gas and stored at -20°C prior to analysis.  This 

dichloromethane extraction was performed in duplicate (or triplicate) on all samples. 

GC-MS analysis 

A 6890 GC-HP 5973N mass selective detector (Agilent Technologies Inc.) was used for 

GC-MS analysis. Two µL of spiked extract was injected into a CIS-4 inlet (Gerstel, 

Germany) in the cold splitless mode (-50°C for 0.10 min, then increased at 12°C/sec to 

260°C and held for 20 min).  Separations were performed using a Stabilwax® column 

(30.0 m length x 0.25 mm i.d. x 0.25 µm film thickness; Restek, Bellefonte, PA).  Oven 

temperature was programmed as follows:  initial temperature 50°C (5 min hold), ramp 

rate 4°C/min to a final temperature of 225°C (45 min hold time).  Helium was used as 

the carrier gas at a constant flow of 1.0 mL/minute. The MSD conditions were as 

follows: capillary direct interface temperature, 280 °C; ionization energy, 70 eV; mass 

range, 35 to 300 amu; electron multiplier voltage (Autotune + 200 V); scan rate, 5.27 

scans/s.  Data acquisition was performed using the simultaneous full scan (35-300 m/z) 

and selected ion monitoring (SIM) (ions 218, 203, 222, 221, 206 m/z) modes. 



 53 

Stable Isotope Dilution Analysis (SIDA) 

A calibration curve was generated using solutions of rotundone and d4-rotundone in 

varying mass ratios (unlabeled:labeled) of approximately 10:1, 5:1, 1:1:, 1:5, and 1:10.  

Each solution was analyzed by GC-MS using the aforementioned conditions.  Areas for 

both rotundone and d4-rotundone were taken by extraction of selected mass ions from 

the resulting SIM chromatograms, and peaks were integrated with the assistance of 

Enhanced Data Analysis Software (Agilent Technologies, USA).  The actual mass ratios 

(unlabeled:labeled) were plotted against the selected mass ion area ratios 

(unlabeled:labeled) and a best fit line equation was determined.  The slope of the best fit 

line was used to determine the response factor (Rf) for the compound.  Alternatively, 

the Rf can also be calculated using the following equation: 

    
                                      

                        
 

Rotundone was quantified in seven different bourbons (Jim Beam Bourbon (4 year), Jim 

Beam Black Bourbon (8 year), Jim Beam Signature Craft (12 year), Bulleit Bourbon (at 

least 6 years), Bulleit Bourbon 10 year (10 years), Elijah Craig Bourbon (12 years), W.L 

Weller Bourbon (12 years)), a Tennessee whiskey (Jack Daniels Tennessee Whiskey (at 

least 4 years)), a Scotch whiskey (Johnnie Walker Black Label Scotch Whiskey (at least 

12 years)), rye whiskey (Bulleit Rye Whiskey (at least 4 years)), rum (Appleton Estates 

Extra Rum (12 years)), aged tequila (Don Julio Añejo Tequila (18 months)), and un-aged 

tequila (Melagro Silver).  These sprits were selected to provide a full range of aged 

spirits but were biased on bourbons because they have strict requirements as to the type 

and treatment of the oak cask using in aging. The Jim Beam whiskeys were analyzed in 

triplicate to more strictly monitor the effect of aging time.  All other spirits were 

analyzed in duplicate.   

For rotundone quantification GC-MS data acquisition was conducted in the selected ion 

mode (SIM), which is more sensitive relative to a full scan mode, as rotundone could be 
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present in the low parts per trillion range.  The ions selected for SIM were:  218 and 203 

for rotundone and 222, 221, and 206 for d4-rotundone.  Due to small peak sizes, manual 

integration was necessary using the Enhanced Data Analysis Software.  Microsoft Excel 

was used to relate the actual mass ratios (unlabeled:labeled) with respect to the 

calculated selected mass ion area ratios (unlabeled:labeled) using 218 for rotundone and 

206 for d4-rotundone.  Ions were selected based on interference of other compounds in 

the extracts.  Concentrations of the compound were then calculated using the following 

equation: 

                                              
              

               
 

Statistical Analysis 

Data were analyzed by one-way Analysis of Variance (ANOVA) for each compound 

concentration using the Minitab 16 program (Minitab Inc, State College, PA).  For 

attributes with significant differences across products, Fisher's LSD was used for means 

separation, reporting differences at alpha=0.05. 

 

4.4  Results and Discussion 

This is the first report of the synthesis of deuterium-labeled rotundone using the 

methods described in this study.  A previously reported synthesis method involved the 

exchange of hydrogens under extreme alkaline conditions using sodium ethoxide in 

ethan(ol-d) (Siebert et al. 2008).  This method was attempted but it was found that the 

isotope exchange varied with time and that a consistent isotope exchange was difficult 

to achieve leading to a mixture of rotundone isotopologues with d4 to d6 exchanges.  

Considering the mild conditions and fairly high yield obtained in our current study, it 

is recommended that in future studies d4-rotundone be synthesized following the 

method described herein, using D2O and sodium deuteride in pyridine. 
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A SIM mode GC-MS scan of the spiked extract, where mass ions of 218 and 203 were 

monitored for rotundone and 222, 221, and 206 for d4-rotundone, revealed that ions 218 

and 206 were the best ions to monitor for the respective compounds on the basis of the 

m/z relative intensity and the ability to obtain resolved peaks with no interference from 

neighboring compounds.  An example taken from the analysis of W.L. Weller 12yr 

Bourbon is shown in Figure 4.2. 

 

 

 

The results from rotundone quantification in bourbons and other aged spirits are shown 

in Table 4.1.  These results indicate a unique success, as quantifying rotundone has been 

accomplished in only a few previous studies and never before in oak-aged spirits.  They 

also confirm that rotundone is, indeed, transferred from the oak wood into the distilled 

spirit, potentially having a significant impact on its flavor.  Of the oak-aged spirits 

analyzed, Johnnie Walker Black Label Scotch Whiskey and Appleton Estates Extra Rum 

had the lowest concentration of rotundone at 0.150 µg/L and 0.152 µg/L, respectively.  

This is not surprising as both of these employ used barrels in their manufacturing 
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procedure.  Scotch maturation is done in casks that are used, repaired and then reused 

for as long as they remain intact, or until they no longer have an effect on flavoring of 

the distilled spirit.  Even then, manufacturers may simply re-char the interior of the 

barrel to regenerate some of the aroma compounds (Piggott and Conner 2003).  

However, only certain compounds come from charring of the barrel, while others will 

be completely lost over time, so this technique is not an ideal solution for regenerating 

the oak cask.  Rum has no legal requirements as to the cask used in aging, but it is 

required that the casks be coded according to their origin or previous history, marking 

them F1 or F2 for fresh first or second fill, respectively, while an unclassified refill must 

be marked “UR” (Nicol 2003).  The only statement made on Appleton Estates Extra 

Rum was the guarantee that aging is done in “select American oak barrels.”  Jack 

Daniels Tennessee Whiskey was found to contain only a slightly higher concentration of 

rotundone (0.166 µg/L) than the rum and Scotch whiskeys analyzed.  It is difficult to 

make any assumptions about this finding as Jack Daniels does not put an age statement 

on their bottle.  Although Jack Daniels uses new charred white oak barrels, the 

company ages their whiskey to taste, not based on time elapsed, so the whiskey is not 

aged for a specific amount of time (Arnett 2014).  Thus, a correlation between aging 

time and rotundone concentration is not possible for Jack Daniels whiskies. 

In contrast, the bourbons and rye may be validly compared to one another, because 

they have the same legal aging requirements.  An interesting observation is that age is 

apparently not the only factor contributing to the rotundone concentration considering  

Jim Beam Signature Craft (12 year) had a lower concentration (0.342 µg/L) than the 

Bulleit Bourbon (at least 6 years) (0.694 µg/L).  Bulleit Bourbon 10 year contained the 

highest concentration of 1.345 µg/L.  This is almost 10 fold higher than samples that 

were aged the least (~4 yrs).   

Importantly, the two Bulleit bourbons and the Bulleit Rye were among those samples 

found to contain the highest rotundone concentrations, suggesting that factors in their 
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manufacturing process, other than age, affected their rotundone concentrations.  Such 

factors may include the climate under which aging occurs, the characteristics of the tree 

or wood used for the barrel, and variations in the coopering process.  

Humidity and temperature may influence volatile extraction.  Generally, in lower 

humidity climates, water evaporates from casks resulting in spirits with higher ethanol 

content as well as a higher concentration of extracted volatiles (Nose 2004).  Aging at 

higher temperatures has also been reported to result in an increase in the extraction of 

oak flavoring volatiles (Nicol 2003).  However, it is unlikely that environmental 

conditions alone account for different rotundone concentrations in these bourbons as 

they are produced in the same region of Kentucky, and are therefore, aged under 

similar environmental conditions.  It is important to consider that 10 different species of 

American Oak may be used for cooperage.  Distilleries may use different oak species for 

their barrels which will likely affect the concentrations of rotundone in a particular 

spirit.  Additionally, barrel size may affect extraction of volatiles.  It has been shown 

that the volume to wood surface area has a marked effect on volatile concentration, i.e. 

the smaller the barrel volume, the more concentrated the volatiles from oak (Pérez-

Prieto et al. 2002 and 2003).   

This is supported by a study which showed that the geographical origin of the trees 

used for the barrels, the seasoning of the wood, and the coopering method all have an 

effect on the volatile compounds in wine.  For example, cultivation at higher altitudes 

appeared to be an important parameter affecting volatile composition (Alañón et al. 

2011).  It is also notable that seasoning in Australia differs from seasoning in the USA or 

France (Spillman et al. 2004).   

Conclusive statements concerning the concentration of rotundone and aging time can 

be drawn from the data obtained in the current study as demonstrated both in the Jim 

Beam bourbons and the Bulleit bourbons.  The Bulleit bourbons almost doubled in 

rotundone concentration due to barrel aging, from 0.694 µg/L after ~6 years to 1.346 
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µg/L after 10 years.  The Jim Beam bourbons also showed an increase, although not as 

great, from 0.342 µg/L (4 year) to 0.403 µg/L (8 year), and finally to 0.453 µg/L (12 year).  

The linear (R2 = 0.9848) increase of rotundone was confirmed over time.  An ANOVA 

determined that these values were statistically significant (p-value <0.05) showing that 

rotundone concentrations increased with barrel aging time.     

One of our more interesting observations was that rotundone was present not only in 

aged tequila, but also in un-aged, silver tequila.  This was confirmed by direct injection 

GC-O analysis of the un-aged tequila in which an odorant peak was detected with the 

same retention index and had the same odor property as rotundone.  Quite possibly 

rotundone in the un-aged tequila originated from the agave leaves used its 

manufacture.  Agave leaves, the starting material for manufacturing tequila, are known 

to contain a wide variety of monoterpenes and sequiterpenes.  A study profiling the 

terpene content of a variety of agave leaves, by GC-MS, reported 9 in Agave salmiana, 8 

in Agave angustifolia, and 32 in Agave tequilana (Peña-Alvarez et al. 2004).  The research 

group followed up this report demonstrating that these terpenes are also in the final 

distilled spirit, tequila, by identifying 28 different monoterpenes and sequiterpenes by 

GC-MS (Peña-Alvarez 2006).  Rotundone was not among those identified, however, at 

low concentrations rotundone is difficult to detect unless it is specifically targeted.  It 

would be interesting to determine if Agave leaves were the source of the rotundone 

found in the silver tequila analyzed in the current study. 

It has only been in the past few years that rotundone has gone from an obscure 

sesquiterpene, known to exist in a single root, to being identified in an array of herbs, 

spices, fruits, and now oak trees and possibly agave leaves.  We can speculate that it 

probably exists in far more many natural materials, and the more well-known it 

becomes, the more likely it is to be viewed as a common odorant.  With an extremely 

low threshold of 8 ng/L, rotundone is likely to be potent in anything in which it is 

present.   
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Table 4.1:  Concentrations of Rotundone in Oak-Aged Distilled Spirits 

Product 
Concentration 

(µg/L)(ppb)
a RSD (%)

b 

Jim Beam Bourbon (4 year) 0.342
c 0.54 

Jim Beam Black Bourbon (8 year) 0.403
c 1.4 

Jim Beam Signature Craft (12 year) 0.453
c 1.9 

Bulleit Bourbon (~ 6 year) 0.694 0.12 
Bulleit Bourbon 10 (10 year) 1.35 0.85 
W.L Weller Bourbon (12 year) 0.393 1.8 
Elijah Craig Bourbon (12 year) 0.694 10 
Bulleit Rye Whiskey (~ 4 year) 0.434 0.58 
Jack Daniels Tenneesee Whiskey 0.166 0 
Johnnie Walker Black Label Scotch Whiskey (~ 12 year) 0.150 2.2 
Appleton Estates Extra Rum (12 year) 0.152 1.8 
Don Julio Añejo Tequila (18 month) 0.307 0.85 
Milagro Silver Tequila 0.100 1.1 
Age statements are indicative of years aged in an oak cask.  

a
 The mean value obtained by 

analyzing each product in duplicate samples taken from the same bottle. 
 b
 The relative 

standard deviation in %.  
c
 The mean value was obtained in triplicate samples for use in further 

studies. 
 

 

 

 

 

 

 

 

 

 



 60 

4.5  References 

Alañon, E., Pérez-Coello, M., Díaz-Maroto, I., Martín-Alvarez, P., Vila-Lameiro, P., 

Díaz-Maroto, M.  Influence of geographical location, site and silvicultural parameters, 

on volatile composition of Quercus pyrenaica Willd. Wood used in wine aging.  Forest 

Ecol Manage.  2011, 262, 124-130. 

 

Anon. Cyperus rotundus – L.  Plants For a Better Future.  Visited April 2014a.  

www.pfaf.org 

 

Anon.  Cyperus rotundus L. nutgrass.  US Department of Agriculture.  Visited April 

2014b.  plants.usda.gov 

 

Arnett, J.  It’s Not Scotch (video).  Jack Daniels Distillery.  Visited April 2014.  

www.jackdaniels.com 

 

Kapadia, V.H., Naik, V.G., Wadia, M.S., Dev, S.  Sesquiterpenoids from the essential oil 

of Cyperus rotundus.  Tetrahedron Letters.  1967, 47, 4661-4667.  

 

Kotseridis, Y., Baumes, R., Skouroumounis, G.K., Synthesis of labeled [2H4]β-

damascenone, [2H2]2-methoxy-3-isobutylpyrazine, [2H3]α-ionone, and [2H3]β-ionone, for 

quantification in grapes, juices, and wines.  J. Chromatogr A.  1998, 824, 71-78. 

 

Mattivi, F., Caputi, L., Carlin, S., Lanza, T., Minozzi, M., Nanni, D., Valenti, L., 

Vrhovsek, U.  Effective analysis of Rotundone at below-threshold levels in red and 

white wines using solid-phase microextraction gas chromatography/tandem mass 

spectrometry.  Rapid Commun. Mass Spectrom.  2011, 25, 483-488. 

 

Naef, R.  The volatile and semi-volatile constituents of agarwood, the infected 

heartwood of Aquilaria species:  A review.  Flavour Fragrance J.  2010, 26, 73-89. 

 

Nicol, D.A. Rum, In Fermented Beverage Production, 2nd ed.; Lea, A.G.H. and Piggott, 

J.R., Eds.; Kluwer Academic/Plenum Publishers: New York, 2003. 

 

Nose, A., Hojo, M., Suzuki, M., Ueda, T.  Solute Effects on the Interaction between 

Water and Ethanol in Aged Whiskey.  J. Agric. Food Chem.  2004, 52, 5359-5365. 

 

Péna-Alvarez, A., Díaz, L., Medina, A., Labastida, C., Capella, S., Vera, L.E.  

Characterization of three Agave species by gas chromatography and solid-phase 



 61 

microextraction-gas chromatography-mass spectrometry.  J. Chromatogr A.  2004, 1027, 

131-136. 

 

Péna-Alvarez, A., Capella, S., Juárez, R., Labastida, C.  Determination of terpenes in 

tequila by solid phase microextraction-gas chromatography-mass spectrometry.  J. 

Chromatogr A.  2006, 1134, 291-297. 

 

Pérez-Prieto, L.J., López-Roca, J.M., Martínez-Cutilla, A., Pardo Mínguez, F., Gómez-

Plaza, E.  Maturing Wines in Oak Barrels.  Effects of Origin, Volume, and Ages of the 

Barrel on the Wine Volatile Composition.  J. Agric. Food Chem.  2002, 50(11), 3272-3276. 

 

Pérez-Prieto, L.J., López-Roca, J.M., Martínez-Cutilla, A., Pardo Mínguez, F., Gómez-

Plaza, E.  Extraction and Formation Dynamic of Oak-Related Volatile Compounds from 

Different Volume Barrels to Wine and Their Behavior during Bottle Storage.  J. Agric. 

Food Chem.  2003, 51(18), 5444-5449. 

 

Piggott, J.R.; Conner, J.M. Whiskies, In: Fermented Beverage Production, 2nd ed.; Lea, 

A.G.H. and Piggott, J.R., Eds.; Kluwer Academic/Plenum Publishers: New York, 2003. 

239-263. 

 

Seibert, T.E., Wood, C., Gordon, E.M., Pollnitz, A.P.  Determination of Rotundone, the 

Pepper Aroma Impact Compound, in Grapes and Wine.  J. Agric. Food Chem.  2008, 56, 

3745-3748.   

 

Spillman, P.J., Sefton, M.A., Gawel, R.  The effect of oak wood source, location of 

seasoning and coopering on the composition of volatile compounds in oak-matured 

wines.  Aust. J. Grape Wine Res.  2004, 10, 216-226. 

   

Wood, C., Seibert, T.E., Parker, M., Capone, D.L., Elsey, G.M., Pollnitz, A.P., Eggers, M., 

Manfred, M., Vössing, T., Widder, S., Krammer, G., Sefton, M.A., Herderich, M.J.  From 

Wine to Pepper:  Rotundone, an Obscure Sesquiterpene, Is a Potent Spicy Aroma 

Compound.  J. Agric. Food Chem.  2008, 56, 3738-3744.   

 

 

 

 

 

 

 

 



 62 

Chapter 5:  Potency of Rotundone in Bourbon Whiskey in Comparison to 

Other Aroma Actives Observed Over Barrel Aging Time 

 

5.1  Abstract 

A potent sesquiterepene ketone, rotundone, was recently identified and quantified in 

various oak aged spirits.  To demonstrate its potential importance to the overall flavor 

of aged spirits, in particular bourbon, aroma extract dilution analysis (AEDA) was 

performed followed by quantification of all potent odorants and subsequent calculation 

of their odor activity values (OAV).  Analyses were performed on bourbons of three 

different ages (4, 8, and 12 years) to determine the relationship between rotundone 

concentration and potency with increased aging.  Monitoring of all potent odorants at 

various ages revealed some interesting trends.  It was found that ethyl esters tended to 

increase over time due to continuous ethanolysis of wood acids.  Some typical charred 

oak compounds also increased over time.  These included vanillin, guaiacol, 

syringaldehyde and the cis- and trans-whiskey lactones.  Isoeugenol and eugenol 

showed an interesting inverse relationship over time in which eugenol decreased as 

isoeugenol increased.  The compound of interest, rotundone, also showed a linear 

increase over time.  The OAV of rotundone was calculated to be 42 (4 year) to 56 (12 

year) ranking it in the top 10 of 25 potent odorants in the bourbons.  It is generally 

regarded that any compound with an OAV over 1 is detectable, thus, the relatively high 

OAV of rotundone confirms that it is a potent odorant in bourbon.  

 

5.2 Introduction 

Until recently, rotundone was an ambiguous sesquiterpene discovered in tubers of the 

grass, Cyperus rotundus (Kapadia et al. 1967).  The first report of rotundone as a potent 

aroma compound demonstrated that it had a threshold of about 8 parts-per-trillion 
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(Wood et al. 2008), indicating that it had the potential to strongly impact the flavor of 

any material in which it was identified.  To date, its presence was confirmed in white 

pepper, black pepper, wine, marjoram, geranium, rosemary, saltbush, basil, thyme and 

oregano (Wood et al. 2009).  In the current study, its presence was confirmed in oak 

wood, and subsequently quantified in a range of oak aged spirits (Chapters 3 and 4).   

It is widely regarded that oak aging is the most important factor influencing the quality 

and flavor of distilled spirits, contributing to the complexity of the finished product. 

The volatiles can originate from three main sources:  1) ethanolysis of wood 

components, 2) charring of the barrel and 3) direct extraction of wood volatiles.  During 

the charring step, lignin pyrolysis creates “smoky” compounds, these include phenols, 

cresols, and guaiacols; such as syringol and syringaldehyde, guaiacol, 4-ethyl guaiacol, 

4-vinyl guaiacol, p-cresol, eugenol, isoeugenol, and vanillin (Poisson 2008a, Fernanadez 

de Simon 2010, Piggot et al. 2003).  Both eugenol and isoeugenol are described as clove-

like, while vanillin is most commonly associated with the flavor of the vanilla bean.   

Other flavor compounds resulting from charring come from the rearrangement of lipids 

to form lactones. The oak lactones, cis- and trans-β-methyl-γ-octalactone, are of 

particular importance, even being nicknamed “whiskey lactones”.  Other lactones 

present, including γ-nonalactone, δ-nonalactone, γ-decalactone, γ-dodecalactone and 

cis-6-dodeceno-γ-lactone, contribute a peachy and creamy notes.  Additional wood 

extractives known to contribute to the flavor include β-ionone and β-damascenone, 

which impart floral and cooked apple-like attributes, respectively.  Lastly, ethanolysis 

of the wood acids results in formation of fruity ethyl esters like ethyl propanoate, ethyl 

butanoate, ethyl hexanoate, and ethyl octanoate, along with several other branched 

chain ethyl esters (Poisson 2008a, 2008b, Conner 1993, Conner 2001, Piggot 2003, Lahne 

2010).   

To demonstrate a compound’s potency within a sample, it is a common practice to 

calculate its odor activity value (OAV), which is the ratio between the compound’s 
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concentration and its aroma detection threshold.  A compound must have an OAV of at 

least 1 to be considered detectable and, thus, important to the overall flavor.  Although 

rotundone was identified in oak wood and quantified in oak aged spirits, this is not 

exactly representative of its potency.  The goal of this current study is to prove that 

rotundone is important to the flavor of aged spirits, in particular whiskey, by 

calculation of its OAV along with all potent volatiles. 

 

 5.3 Materials and Methods 

Materials 

Three different commercially available bourbon whiskeys were purchased at a local 

liquor store (Binny’s Beverage Depot, Champaign, IL). Their reported age statements 

were:  Jim Beam Bourbon (4 year), Jim Beam Black Bourbon (8 year), Jim Beam 

Signature Craft (12 year).   

Chemical 

The following chemicals used for volatile extraction, isolation, and chemical synthesis 

were purchased from Fisher Scientific Co. (Fair Lawn, NJ):  dicholoromethane, ethanol, 

sodium sulfate, diethyl ether, and sulfuric acid, n-pentane. 

Octanoic acid, used for chemical synthesis, was purchased from Sigma-Aldrich Co. (St. 

Louis, MO).   

Standard Compounds 

The standard compounds used for quantification and listed in Table 5.2 were purchased 

or supplied from the following companies:  Sigma-Aldrich Co. (St. Louis, MO):  

phenthyl alcohol (1), ethyl octanoate (2), syringaldehyde (3), 3-methyl-1-butanol (4), 

isoamyl acetate (5), 2-methyl-1-butanol (6), ethyl hexanoate (7), phenethyl acetate (9), 

whiskey lactone mixture of cis/trans (10 and 18), ethyl butyrate (11), ethyl isobutyrate 

(13), ethyl vanillate (14), syringol (16), ethyl isovalerate (17), γ-nonalactone (19), eugenol 
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(20), 4-ethyl phenol (21), guaiacol (22), p-cresol (24); Fluka (Switzerland), vanillin (12); 

Alpha Aesar (Lancaster, UK),  isoeugenol (15); Firmenich (Switzerland), β-damascenone 

(23);  Fischer Scientific (Fair Lawn, NJ), and 2-methyl propanol (8).   

Isotope Standard Compounds 

Isotopically labeled standards obtained commercially (C/D/N Isotopes Inc., Pointe-

Claire, Quebec, Canada) included d7-ethyl butyrate (I-11), d3-guaiacol (I-22), d11-ethyl 

hexanoate (I-7) and d3-p-cresol (I-24).   

 

Methods 

Aroma Extract Dilution Analysis 

Each of the three bourbon samples (10 mL) was added to individual 50-mL glass 

centrifuge tubes.  The alcohol by volume ratio was lowered to about 10% ethanol by the 

addition of 30 mL of deodorized DI water.  Tubes were sealed with a PTFE-lined cap 

and vigorously shaken for 5 min by hand to obtain a fully mixed solution.  This was 

followed by the addition of dichloromethane (2 mL) after which the tube was recapped, 

and vigorously shaken for another 5 min.  The tube was then centrifuged at 7500 RMP 

for 15 min (IEC HN-SI; Damon/IEC Division, Needham Heights, Massachusetts) to 

separate the solvent from the aqueous phase.  The lower phase (dichloromethane) was 

transferred to a 20 mL vial with sodium sulfate (2 g) to remove any water.  Extraction 

with dichloromethane (2 mL) was repeated two more times.  The final dried extract was 

condensed to 1.0 mL using a gentle stream of N2 gas and stored at -20°C prior to 

analysis. 

Starting with 1.0 mL extract, AEDA was performed using a 1:3 dilution series. For this, 

0.5 mL was diluted into 1.5 mL of dichloromethane serially to obtain 1:3 (Log3FD = 1), 

1:9 (Log3 FD = 2), 1:27 (Log3FD = 3), 1:81 (Log3FD=4), 1:243 (Log3FD=5), 1:729 (Log3FD=6), 

1:2187 (Log3FD=7), and 1:6561 (Log3FD=8) dilution ratios. Each dilution was stored in a 

1.5 mL septum-capped Target DP vial (National Scientific, Rockwood, TN) at -20°C 
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prior to analysis.  The GCO system used for analysis of SAFE extracts consisted of a 

6890 GC (Agilent Technologies Inc.) equipped with an FID and Olfactory port (OD2, 

Gerstel, Germany). Two µL of spiked extract was injected into a CIS-4 inlet (Gerstel, 

Germany) in the cold splitless mode (-50°C for 0.10 min, then increased at 12°C/sec to 

260°C and held for 20 min).  Separations were performed using a RTX®-Wax column 

(15 m length x 0.53 mm i.d. x 1.0 µm film thickness; Restek; Bellefonte, PA). Helium was 

used as the carrier gas at 5.0 mL/minute.  FID temperature was 250°C. Oven 

temperature was programmed as follows: initial temperature, 40 °C (5 min hold), ramp 

rate 8 °C/min, final temperature, 225 °C (30 min hold). To aid in identification, analysis 

was also conducted using a RTX®-5MS column (15 m length x 0.53 mm i.d. x 1.0 µm 

film thickness; Restek). Evaluations were performed by three panelists.  Results are 

based on consensus scores on 2 out of 3 panelists.  Compound identifications were 

confirmed by comparison of retention indices (RI), odor properties, and EIMS spectra of 

unknowns with those of authentic reference standards. 

 

GC-MS Analysis   

A 6890 GC-HP 5973N mass selective detector (Agilent Technologies Inc.) was used for 

GC-MS analysis. One µL of extract was injected into a cold splitless inlet CIS-4 inlet 

(Gerstel, Germany) held at -50°C for 0.10 min, then increased to 260°C at a rate of 

12°C/sec. Separations were performed using a Stabilwax® column (30.0 m length x 0.25 

mm i.d. x 0.25 µm film thickness; Restek).  Oven temperature was programmed as 

follows:  initial temperature 50°C (5 min hold), ramp rate 8°C/min to a final temperature 

of 225°C (45 min hold time).  Helium was used as the carrier gas a constant flow of 1.0 

mL/minute. MS transfer line temperature was 280°C. 
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Stable Isotope Dilution Analysis (SIDA) 

Compounds chosen for quantification, shown in Table 5.2, were based on results from 

AEDA, shown in Table 5.1, and also abundance observed during GC-MS analysis. 

Compounds were included that may not have been deemed potent by results of AEDA, 

but were in high abundance and may have an influence on the overall flavor.   

Chemical synthesis  

d4-ethyl octanoate (I-2) was synthesized in a one-step acid-catalyzed esterification using 

ethanol, sulfuric acid and the corresponding C8 carboxylic acid, d4-octanoic acid, as 

described by Vogel (1989).  A large molar excess (1:100) of ethanol was added to d4-

octanoic acid in a vial followed by the addition of a few drops of sulfuric acid. The vial 

was capped and incubated at 40°C overnight. The reaction was quenched with water 

(50 mL) followed by extracting with pentane (3 x 10 mL).  The detailed synthesis is 

given in the Appendix A and EIM is given in Appendix B.   

Rotundone (25) was synthesized as previously described in Chapter 3 following the 

method of Mattivi et al. (2010) which involved the extraction of guaiaol from guaiac 

wood oil, dehydration of guaiaol to guiaene, and finally random allylic oxidation to 

obtain a crude mixture yielding less that 10% rotundone.  The rotundone yield of this 

mixture was increased to 74% using flash column chromatography purification.  The 

detailed synthesis is given in the Appendix A. 

Synthesis of d4-rotundone (I-25) was done as previously described in Chapter 4 

following the method of Kotseridis et al. (1998), involving a simple exchange reaction of 

Rotundone in D2O and sodium deuteride.  The detailed synthesis is given in the 

Appendix A.   

 

The following isotopes were prepared as previously described by Lahne (2010):  2‐[d3]‐

methoxy‐6‐methoxyphenol (I-16); 2‐[1,2‐13C2]‐phenethyl alcohol (I-1) using the method 

of (Schuh et al. 2006);  4‐[d5]‐ethylphenol (I-21); (E)‐1‐(2,6,6‐trimethylcyclohexa‐1,3‐dien‐
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1‐yl)‐[1‐2H3,3‐2H1]‐but‐2‐en‐1‐one (d4‐β‐damascenone)(I-23) following the method of 

(Kotseridis et al. 1998); cis‐/trans‐β‐methyl‐γ‐[3,4‐d2]‐octanolide (d2‐(cis/trans)‐whiskey 

lactone)(I-10 and I-18); [d5]‐ethyl isobutyrate (I-13); ethyl 3‐methyl‐[3,4‐d2]‐butyrate (d2‐

ethyl isovalerate) (I-17); [d5]‐ethyl vanillate (I-14); 2‐[d3]‐methoxy‐4‐(2‐propenyl)‐phenol 

(d3‐eugenol) (I-20); [3,4‐d2]‐γ‐nonalactone (I-19); 3‐methyl‐[3,4‐d2]‐butyl acetate (d2-

isoamyl acetate) (I-5); [1,2‐13C2]‐phenylethyl acetate (I-9) using the method of (Furniss et 

al., 1989); 4‐hydroxy‐3‐[d3]‐methoxy‐5‐methoxybenzaldehyde (d3‐syringaldehyde) (I-3); 

4‐hydroxy‐3‐[d3]‐methoxybenzaldehyde (d3‐vanillin) (I-12) using the method of 

(Schneider and Rolando 1992). 

[d3]-(E)-isoeugenol (I-15) were prepared as previously described by Lorjaroenphon 

(2012).    

The structures for all above labeled isotopes are shown in Figure 5.1. 

Calibration Curves 

Standards (Table 5.2) were divided into three groups to avoid of co-elution with other 

analytes, especially those containing similar mass ions.  Group 1 contained  vanillin/d3-

vanillin (12 and I-12), p-cresol/d3-p-cresol (24 and I-24), 4-ethyl phenol/4‐[d5]‐

ethylphenol (21 and I-21), ethyl isovalerate/d2‐ethyl isovalerate) (17 and I-17), 

guaiacol/d3-guaiacol (22 and I-22), isoeugenol/d3-isoeugenol (15 and I-15), and ethyl 

octanoate/d4-ethyl octanoate (2 and I-2).  Group 2 contained syringol/d3-syringol (16 and 

I-16), ethyl vanillate/d5-ethyl vanillate (14 and I-14), (cis/trans)-whiskey lactone/d2‐

(cis/trans)‐whiskey lactone)(10 and 18 and I-10 and I-18), β-damascenone/d4‐β‐

damascenone (I-23), eugenol/d3‐eugenol (20 and I-20), and syringaldehyde/d3‐

syringaldehyde (3 and I-3).  Group 3 contained ethyl butyrate/d7-ethyl butyrate (11 and 

I-11), γ-nonalactone/d2-γ-nonalactone (19 and I-19), isoamyl acetate/d2-isoamyl acetate) 

(5 and I-5), phenethyl acetate/13C2-phenethyl acetate (9 and I-9), phenethyl alcohol/13C2-

phenethyl alcohol (1 and I-1), ethyl hexanoate/d11-ethyl hexanoate (7 and I-7), and ethyl 

isobutyrate/d5-ethyl isobutyrate (13 and I-13).   
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A calibration curve was created for each target analyte using solutions of unlabeled and 

labeled standard in varying mass ratios (unlabeled:labeled) of approximately 10:1, 5:1, 

1:1:, 1:5, and 1:10.  Each solution was analyzed by GC-MS using cold splitless injection 

and an RTX-wax column as previous described.  Areas for each compound were 

determined using selected mass ions in the chromatogram. Peaks were integrated with 

the assistance of Enhanced Data Analysis Software (Agilent Technologies, USA).  The 

mass ratios (unlabeled:labeled) were plotted against the selected mass ion area ratios 

(unlabeled:labeled), and a best fit line equation was determined.  The slope of the best 

fit line was used to determine the Response Factor (Rf) for the specific compound, or the 

Rf can be calculated using the following equation: 

    
                                      

                        
 

Calibration curves for each target compound are found in the Appendix (pgs. ***-***). 

 

Quantification 

Compounds were quantified in three different bourbons (Jim Beam Bourbon (4 year), 

Jim Beam Black Bourbon (8 year), Jim Beam Signature Craft (12 year)).  These were 

selected as representing bourbons aged for three different sequentially spaced aging 

times that originated from the same distillery. All samples were analyzed in triplicate 

for statistical validity of calculated data. 

Target compounds (Table 5.2) were placed into three different groups based on 

predicted concentration.  The high abundance target group consisted of phenethyl 

alcohol (1), ethyl octanoate (2), syringaldehyde (3), isoamyl acetate (5), and vanillin (12).  

The medium abundance group included ethyl hexanoate (7), phenethyl acetate (9), 

cis/trans-whiskey lactone (10 and 18), ethyl butyrate (11), ethyl vanillate (14), isoeugenol 

(15), syringol (16), γ-nonalactone (19), eugenol (20), and guaiacol (22).  The low 

abundance target group contained ethyl isovalerate (17), 4-ethyl phenol (21), β-
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damascenone (23), p-cresol (24), and rotundone (25).  The high and medium target 

compounds were monitored on the Mass Spectrometer (MS) by Scan Mode, whereas, 

the low target compounds required the Selected Ion Monitoring (SIM) mode to be used 

during MS analysis.  For SIM analysis, retention times (RTs) were obtained using 

authentic standards and used time‐windows around each expected RT to fully capture 

both target compound and labeled compound peaks.  To confirm the target peak, two 

ions for the target compound and two ions for the labeled analogue were monitored 

during SIM analysis. 
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Table 5.1:  Compounds, Selected Ions and Response Factors used for SIDA 

 

 

Areas for target compounds and isotopically labeled compounds were determined by 

integrating only selected mass ions in the chromatogram shown in Table 5.1.  Peaks 

were integrated with the assistance of Enhanced Data Analysis Software (Agilent 

Technologies, USA).  Ratios of the integrated area for labeled and unlabeled selected 
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mass ions were calculated and used to determine the actual mass of the target 

compound as follows: 

                                              
              

               
 

 

Volatile extraction 

Spirit samples (10 mL) in the high abundance group were placed in individual 20 mL 

vials along with the internal standards.  The vial was sealed with a PTFE-lined cap and 

vigorously shaken for 5 min by hand. Samples were then analyzed by direct injection. 

Spirit samples (10 mL) from the medium abundance group were added to individual 

50-mL glass centrifuge tubes containing the internal standards.  The alcohol content by 

volume was reduced to about 10% ethanol with the addition of 30 mL deodorized DI 

water.  The tube was resealed and shaken as described above to obtain a fully mixed 

solution.  After, dichloromethane (1 mL) was added and the tube was recapped and 

vigorously shaken by hand for another 5 min.  The tube was then centrifuged at 7500 

RMP for 15 min (IEC HN-SII, Damon/IEC Division, Needham Heights, Massachusetts) 

to separate the solvent from the aqueous phase.  The lower phase (dichloromethane) 

was transferred to a 1.5 mL vial with sodium sulfate (100 mg) to remove any water and 

was stored at -20°C prior to analysis. 

Low abundance - spirit samples (10 mL) and the internal standards were added to 

individual 50-mL glass centrifuge tubes.  The alcohol content by volume was reduced to 

about 10% ethanol with addition of 30 mL of deodorized DI water.  The tube was sealed 

with a PTFE-lined cap and vigorously shaken 5 min by hand for to obtain fully mixed 

solution.  This was followed by the addition of dichloromethane (2 mL) after which the 

tube was recapped and vigorously shaken by hand for another 5 min.  The tube was 

then centrifuged at 7500 RMP for 15 min to separate the solvent from the aqueous 

phase.  The lower phase (dichloromethane) was transferred to a 20 mL vial with sodium 
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sulfate (2 g) to remove any water.  The extraction with dichloromethane (2 mL) was 

repeated two more times.  The final dried extract was condensed to 0.25 mL using a 

gentle stream of N2 gas and stored at -20°C prior to analysis. 

Quantification of 2-methyl-propanol, 2-methyl-1-butanol, and 3-methyl butanol 

The compounds 2-methyl-propanol (8), 2-methyl-1-butanol (6), and 3-methyl-1-butanol 

(4) were quantified by internal standard methodology and calibration curves were 

based on the target compound as compared to 2-pentanol.  Bourbon samples (10 mL) 

were spiked with 5 µL of 2-pentanol as the internal standard.  The vial was sealed with 

a PTFE-lined cap and vigorously shaken for 5 min by hand.   

Calibration solutions were prepared by spiking a whiskey mimic matrix [40% ABV, 

prepared by mixing 95% grain alcohol (Everclear®) by volume with 100% natural spring 

water (ICE mountain, Nestlé Waters North America Inc., Stamford, CT)] with the 

internal standard, 2-pentanol (5 µL), while varying the amount of target compound 

added (2, 5, 10, or 15 µL).  Each solution was analyzed by gas chromatography using an 

Agilent 6890 GC equipped with an FID detector.  Separations were performed on a DB-

5 column (50m length x 0.32 mm i.d. x 1 µm film thickness, J&W Scientific, Folsom, CA).  

Samples were introduced directly using hot split injection (30:1 split ratio; 260 °C).  GC 

oven temperature was programmed as follows:  40 °C (5 min hold), ramp rate 10°C/min 

to a final temperature of 225°C (40 min hold time).  Helium was used as the carrier gas 

at a constant flow of 1.6 mL/minute.  Calibrations were created as previously described 

using the area under the compound peak.  Samples for quantification were performed 

in triplicate. 

 

Statistical Analysis 

Data were analyzed by one-way Analysis of Variance (ANOVA) for each compound 

concentration using the Minitab 16 program (Minitab Inc., State College, PA).  For 
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attributes with significant differences across products, Fisher's LSD was used for means 

separation, with reporting differences at alpha=0.05. 
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5.4 Results and Discussion 

 

Identification of Potent Odorants in Bourbon Whiskey by aroma extract dilution 

analysis (AEDA) 

A total of 38 odorants were identified in the extracts of three bourbon whiskies by 

AEDA (Table 5.2).  Results show that the three bourbons analyzed were consistent with 

respect to one another’s potency rankings of the majority of compounds detected.  The 

present identification results are in agreement with previous studies on the volatile 

analysis of whiskey (Câmara et al. 2007, Conner et al. 2001, Demyttenaere et al. 2003, 

Lahne 2010, MacNamara et al. 2000, Poisson et. al. 2008).  Interestingly, only two earlier 

studies reported using AEDA to investigate spirits.  One of these studies examined 

bourbon whiskey (Poisson et al. 2008) and the other rye whiskey (Lahne 2010). 

Almost all of the potent odorants identified in our study were derived from the oak 

barrel during aging.  The only exceptions were the branched short-chained alcohols 2/3-

methyl-1-butanol (4,6), and phenethyl alcohol (1), which are products of fermentation.  

The studies on bourbon and rye, noted above, also ranked 2/3-methyl-1-butanol as a 

high potency odorant.   

There were two exceptions in our study with respect to consistency in compound 

potency rankings among the three bourbons analyzed. These were for p-cresol (24), 

described as “band aid”, and an unknown compound described as “cereal/burnt”.  The 

compound p-cresol was detected on the Rtx5 column in two of the bourbons (JB 12 and 

JB 8) at higher log3FD factors than on the wax column.  Previously, p-cresol was 

undetected in bourbon (Poisson et al. 2008), but was identified as an odorant in rye 

whiskey (Lahne 2010).  The study on rye compared dilutions prepared using two 

different extraction methods: 1) continuous liquid-liquid extraction dilution and 2) 

dilution of the neat sample.  It was found that p-cresol was actually more potent when 
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using the dilution of a neat sample method.  This indicated that p-cresol may be 

ineffectively isolated by solvent extraction, which might explain the inconsistent results 

of that compound in the present study. 

In our study, the most potent odorants in bourbon whiskey, detected consistently in the 

last or second to last dilution on both columns and all samples, were vanillin (12), cis-

whiskey lactone (10), syringol (16), phenethyl alcohol (1), and guaiacol (22).  The 

medium potency compounds were mostly ethyl esters (7, 17, 11, 13, 14 and 2).  These 

are sometimes reversed between samples; which is to be expected.  Ethyl esters are 

formed during the aging process in which ethanol reacts with the wood acids to 

produce ethyl esters.  As these samples were of different ages, the degree at which ethyl 

esters are formed would be expected to differ, and thus, would not be consistent among 

the samples.  Our study was the first to identify the presence of rotundone (25), the 

target compound of interest, in bourbon whiskey.  It ranked among the medium 

potency odorants, being detected at log3FD factors from 2 to 4, thus indicating its 

potential impact on the overall flavor of bourbon.  The remaining compounds identified 

in the medium potency range are well known in oak aged spirits. These included: 

eugenol (20), exhibiting a clove-like aroma, and its isomer isoeugenol (15), which has a 

more fresh/sweet clove aroma; β-damascenone (23), typically described as “cooked 

apple”; syringaldehyde (3), a relatively volatile smoky vanilla compound; 4-ethyl 

phenol (21), similar to p-cresol with a “bandage” aroma; γ-nonalactone (19), described 

as peach-like and reported to be the second most potent in the previous bourbon study 

(Poisson et al. 2008) ; phenethyl acetate (9), having a floral aroma and resulting from 

fermentation; and  2-methylpropanol (8), described as chocolate or malty.  

A ranking of compounds, shown in Table 5.3, was made to determine which 

compounds would be subjected to quantification and determination of odor activity 

values (OAV). These calculations were based on AEDA results, and included 

compounds detected at log3FD of 3 or above. Also included were potentially important 
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compounds noted in previous studies (e.g. p-cresol (24)) (Lahne 2010) and compounds 

that were expected to be in high abundance [e.g., isoamyl acetate (5), and trans-whiskey 

lactone (18)].  Quantification and subsequent OAV calculation provided the necessary 

evidence for proof of rotundone’s potency among all bourbon odorants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 79 

Table 5.2:  Odor Active Compounds Extracted From Bourbon Whiskey  
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Concentrations and odor activity values (OAV) of potent odorants in bourbons aged in 

oak (4, 8, and 12 years). 

A total of 25 odorants identified in bourbon whiskeys were subject to quantification by 

SIDA (Table 5.3).  Before a discussion of rotundone’s ranking among the potent 

odorants, some interesting observations as to its concentration with respect to aging 

times can be made.  An ANOVA, performed considering each compound’s 

concentration as compared to the time aged in an oak barrel, revealed that all 25 

compounds significantly differed over time.  Furthermore, 16 of the 25 compounds 

showed a defined linear trend.  Although concentrations changed over time, the order 

from most to least concentrated within each sample was fairly consistent with 

phenethyl alcohol (1) being the most abundant while compounds 22-25, although the 

least abundant across all ages, were consistent with respect to order.  Our target 

compound, rotundone, was consistently present at the lowest concentration among all 

odorants across all samples.   

Several reports were published about the effect of aging on the concentration of 

volatiles in wine (Pérez-Prieto et al. 2003 and Arapitsas et al. 2003), cider (Fan et al. 2006 

and Madrera et al. 2003), and whiskey (MacNamara et al. 2000).  They report that the 

ethyl esters (ethyl ocatanoate, ethyl hexanoate, ethyl butyrate, ethyl isobutyrate, ethyl 

vanillate, and ethyl isovalerate) increased over time.  These findings illustrates that 

ethanolysis was not selective as to the acid backbone structure with which it reacts.  

This was supported in the present study as aliphatic, branched chain, and aromatic 

acids showed similar trends, i.e. increasing concentrations over an 8 year aging period 

(4 years to 12 years). These observations also agree with the past studies done on cider 

which monitored changes in ethyl acetate, octanoic acid, and ethyl octanoate (Madrera 

et al. 2003) and which demonstrated that ethyl acetate steadily increased showing a 

change in as little as 30 months aging time.   
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Table 5.3:  Concentrations of Selected Odorants in Bourbons Aged at Different Times 

 

More interestingly, both octanoic acid and its corresponding ethyl ester, ethyl octanoate, 

were monitored in the same study and, as expected, octanoic acid decreased over time 

while ethyl octanoate gradually increased.  It is noteworthy that in the current study an 

increase in ethyl octanoate was observed even in bourbons aged for 12 years.   

MacNamara et al. (2000) also observed this trend occurring with ethyl vanillate in 
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whiskeys aged 10 years.  One might expect that a plateau would eventually be 

observed, as the starting material for the ethanolysis becomes depleted.  However, the 

concentrations could also increase as a result of ethanol evaporation.  As the ethanol 

decreases reducing the total volume, the resulting product would be more concentrated.  

One way of confirming if there is a steady increase in the ethyl ester over time would be 

to monitor the acids to see if, in fact, they are still available after many years, or if the 

increase is due to other factors.   

A linear increase with time was also observed for the important oak wood extractives 

vanillin, guaiacol, syringaldehyde, cis-whiskey lactone and the trans-whiskey lactone.  

These compounds are derived directly from the oak wood, so a valid assumption may 

be that the longer the spirit is in contact with the wood, the greater the amount that 

would be extracted.  The whiskey lactones, in particular, are considered to be among 

the most important components of the oak influence on whiskey and correlate with a 

positive assessment of whiskey flavor (Otsuka et al. 1974).  An increase in the 

concentration of whiskey lactones over time was consistently observed in previous 

studies. Their high concentration in spirits is attributed to the layer of active carbon on 

the cask, produced during the charring step, which increases the extraction of the 

whiskey lactones (Madrera et al. 2003).  In our study, vanillin had the strongest linear 

relationship to increased aging time with an R2 value of 0.988.  This is in agreement with 

previous reports (Spillman, et al. 1998).  The compound vanillin was observed to form 

not only during the charring step, and subsequently extracted into the spirit, but it also 

was formed while aging by a hydrolytic mechanism, in which whiskey being slightly 

acidic causes the acid hydrolysis of the lignin during the aging process resulting in the 

formation of vanillin (Spillman, et al. 1998).  Guaiacol and syringaldehyde are also 

formed during the charring step as a result of lignin pyrolysis.  However, the 

concentration of guaiacol, with an odor threshold of about 10 ppb, was found at 

considerably lower concentrations than vanillin, only being found in the 30 ppb range 
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in the 4 year bourbon.  Its increase over time has the potential to impact the flavor of an 

older whiskey resulting in a more pronounced smoky note, whereas in a young 

whiskey it may be undetected.   

The relationship between eugenol and isoeugenol is also of great interest.  Both have a 

linear trend during aging.  However, the isoeugenol concentration increased over time; 

whereas, the concentration of eugenol decreased over time.  This was also observed in 

model studies involving the artificially aging of apple cider using oak chips (Fan et al. 

2006).  Commonly, isoeugenol is synthesized from eugenol by migration of the double 

bond (Kishore et al. 2004), but it has also been observed in nature in some plants which 

contain a high level of isoeugenol.  These plants produce an enzyme which catalyzes the 

formation of isoeugenol from eugenol (Koeduka et al. 2006).  It can, therefore, be 

speculated that oak wood might also contain such an enzyme.  Both phenethyl alcohol, 

2-methyl-propanol and 2-methyl-1-butanol, products of yeast fermentation, increased 

as a function of aging time.  Although they increased linearly with time, it is unlikely 

that their increasing concentrations are related to extraction from the oak cask.  The 

concentrations would naturally be influenced by fermentation time, yeast species 

present, and distillation technique.  Their increasing during barrel aging, however, may 

be a result of concentration effects due to evaporation of water over time.  The last 

compound to increase linearly over time was rotundone, our target compound of 

interest.  Although it was found at the lowest concentration among all compounds 

quantified, this was not a direct reflection of its potency.   

It is common to calculate the odor activity value (OAV), the ratio of the concentration of 

a compound to its odor detection threshold, for each compound.  For this purpose, 

aroma thresholds, previously measured using a ~10% ABV wine matrix, were used as 

we diluted our bourbon sample to 10% to obtain maximum aroma extraction.  Results 

from the OAV calculation are shown in Table 5.4.  Generally the odor of a compound 

with an OAV above 1 is considered to be detectable in a product.  Of the compounds 
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quantified, 18 out of the 25 have OAVs above 1.  Most of the ethyl esters fall into this 

category with the exception of ethyl vanillate, which was much lower than 1.  Of the 

oak derived odorants, 4 of the 13 did not qualify as potential flavor contributors.  The 

OAV of syringol, described as smoky/sweet, is close to or just at about 1.  At this value 

it could be manipulated by increasing its concentration during wood production to 

potentially create a whiskey with a more pronounced smoky/sweet note of syringol. 

 Those compounds with OAVs well above 1 are:  isoeugenol, β-damascenone, 

rotundone, eugenol, cis-whiskey lactone, vanillin, guaiacol, and γ-nonalactone.  The 

compound 4-ethyl phenol was well above 1 in the 4 year bourbon, but well below that 

in the 8 and 12 year bourbons.  This was noted elsewhere (Lahne 2010) with 4-ethyl 

phenol differing by 10 fold between 2 similar rye whiskeys, suggesting that several 

factors contribute to its concentration in aged spirits.  The trans-whiskey lactone along 

with p-cresol and syringaldehyde were all below 1.  Both syringaldehyde and trans-

whiskey lactone have fairly high thresholds, meaning their concentrations would need 

to relatively high to be detectable.   

This was the first study in which rotundone was identified and quantified in spirits.  

Although rotundone was measured in the parts-per-trillion range, it’s extremely low 

threshold yielded an OAV well above 1, i.e. 42.8 in 4 year to 50.4 in 8 year to 56.6 in 12 

year aged bourbons.  Thus, it can be concluded that rotundone was distinctly detectable 

and impacted the flavor of these bourbon whiskeys.   
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Table 5.4:  Odor Activity Values of Potent Aroma Compounds in Bourbon 
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Chapter 6:  Summary, Conclusions, and Future Research 

 

The practice of barrel aging of spirits has been used for centuries.  It may have begun as 

an alternative storage and transportation method, but aging in an oak cask is now as so 

used as a means to impart flavor to the spirits.  Oak wood has been selected as the 

wood of choice for barrel making not only for its physical characteristics that lend 

themselves to manufacturing a barrel, but also due to its unique chemical properties 

that impart to aged spirits the key flavors that are desired by the consumer.  All woody 

and plant material contain lignin.  When heat treated, as occurs during the charring step 

of barrel making, lignin degrades to produce volatile compounds which impart smoky, 

spiced, vanilla, etc. notes to the aged spirits.  Oak, however, has additional components 

that when charred bring out unique flavor characteristics.  One example is the 

formation of lactones formed by rearrangement of free fatty acids.  The most infamous 

of these in oak are cis/trans-β-methyl-γ-octalactone isomers, also known as the “oak” 

lactone, or “whiskey” lactone.  These lactones and in particular the cis isomer is 

considered one of the most important flavor compounds in whiskey, contributing a 

coconut-like aroma.  Not only is it relatively abundant, but it is also very potent.  

Another example is the presence of two distinct carotenoids, β-carotene and lutein, in 

oak wood.  Flavor compounds derived from these carotenoids include β-damascenone 

and β-ionone.  Both of these are also found in aged spirits, and attribute a cooked apple 

and floral note, respectively.  As thoroughly researched as oak wood and oak aged 

spirits are, the identity of the component responsible for the “woodiness” flavor 

attribute of age spirits was, prior to this report, unknown.  Previous research cited the 

presence of an unknown compound with such an aroma character, and mentioned that 

additional research was needed to discover its identity.  Thus, the main objective of this 

study was to find and identify this unknown woody compound.  It was hypothesized 
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that this compound exists in both oak wood and in oak aged spirits.  The goal was to 

isolate the compound; quantify it; and calculate its relative potency within whiskey to 

establish if it contributes to the overall flavor of aged distilled spirits.  

Aroma actives in oak wood were first identified via gas chromatography-olfactometry 

(GC-O) and gas chromatography-mass spectrometry (GC-MS) analysis.  The presence of 

an unknown compound was confirmed, and described as “woody/incense”.  Due to its 

extremely low abundance within an extremely complex extract, i.e. oak wood contains 

thousands of compounds, a custom built GC-MS/O/FID instrument equipped with a 

heart-cutting Dean’s switch and a CyroTrap was implemented to acquire interpretable 

and searchable electron-impact mass spectrum (EI-MS) for the compound.  While 

positive EI-MS match was not initially found for the compound, the spectrum did 

indicate that it had a molecular mass of 218.  A widespread search for compounds with 

this mass previously identified in other aromatic woods, spices, herbs, and roots was 

performed in hopes of finding a source containing a higher abundance of the 

compound.  With clues of its molecular weight from the EIMS and its functional groups 

from reactionary experiments, a highly potent sesquiterpene ketone from an obscure 

root, Cyperus rotundus, was a suspect and identified to be 5-isopropenyl-3,8-dimethyl-

3,4,5,6,7,8-hexahydro-1(2H)-azulenone, or rotundone.  The compound was then 

positively identified by comparison of its chromatographic (retention indices) and 

spectral data (EI-MS) to those of the authentic reference standard (obtained by 

synthesis). 

The concentration of rotundone in various oak aged spirits was measured though 

application of stable isotope dilution analysis (SIDA) and the synthesis of a labeled 

isotope of rotundone.  A representative sampling set of spirits, including seven bourbon 

whiskeys, Tennessee whiskey, Scotch whiskey, rye whiskey, aged rum, and añejo 

tequila were selected and analyzed.  Results confirmed that rotundone is indeed 

transferred from the oak wood into the aged spirits and that it was present in an 
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extremely low concentrations ranging from 0.150 µg/L to 1.345 µg/L in this particular 

set of samples.  It became clear that the amount of rotundone was influenced by several 

factors including aging time and potentially species of oak wood, location of tree 

cultivation, post-harvest wood handling, humidity and temperature of the storage 

conditions while aging, and barrel size to spirit volume ratio.   

It is suggested that future studies determine rotundone’s origin and concentration 

within the oak wood to potentially control its migration into the spirits.  It is also 

strongly suggested that the kinetics of rotundone’s extraction from oak and into the 

ethanol/water matrix be determined as this current study does show evidence of aging 

time being a direct influence of rotundone within aged spirits.  

During this study, interestingly rotundone was also found to be present in un-aged, 

silver tequila.  It is hypothesized that agave leaves, which are already known to contain 

monoterpenes and sesquiterpenes, might also contain rotundone.  It would be 

important to any future studies on tequila to confirm whether or not rotundone also 

comes from agave, and to show how much in the final aged product comes from the 

raw distillate versus the oak barrel.    

Although rotundone was identified in oak wood and quantified in oak aged spirits, it 

was important to determine its relative potency or influence to the flavor of aged spirits.  

This study performed an aroma extract dilution analysis (AEDA) on three bourbons of 

different oak aging times to determine which compounds were the most potent.  

Compounds were ranked more accurately in order of importance through the 

calculation of their odor-activity values (OAVs).  To calculate OAVs, each compound 

was first quantified in the three different bourbons aged 4, 8, and 12 years.  From the 

quantification data some interesting aging trends were established that demonstrate 

some effects of barrel aging.  In general, potent ethyl esters, as a result of ethanolysis of 

the wood acids increased with time as well as some other compounds derived from the 

oak such as guaiacol, vanillin, syringaldehyde, β-damascenone and the cis/trans-
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whiskey lactone.  The compounds eugenol and isoeugneol both showed a linear trend 

over time, not surprisingly as isoeugenol increased, eugenol decreased.  It is generally 

thought that isoeugenol is formed from eugenol via a double bond migration.  The 

compounds originating from fermentation did not show clear trends during oak aging, 

and are best monitored during that step in spirit manufacturing.  The target compound, 

rotundone, also increased with aging time; showing its potential to be more impactful 

in longer aged spirits.  It would be important for future studies to monitor the 

concentration of these important compounds starting from time zero.  Although we 

showed the trends from 4 to 12 years, it is unknown what happened during the first 

four years of aging.  It would be useful to know whether compounds rapidly increased 

in concentration early in the aging process and slowly level out, or whether there was a 

steady increase in concentration over time.    

Calculation of OAVs was the final step in demonstrating the importance of rotundone 

to whiskey flavor.  It is generally understood that compounds with an OAV above 1 

(i.e., when a compound’s concentration is higher than its aroma threshold), are 

considered detectable in the product.  With an OAV of 42.8 - 56.6, rotundone lies well 

above this requirement and is among the top 10 odorants quantified in these samples. 

Thus we conclude that rotundone is an important contributor to the flavor of bourbon 

whiskey.  Future studies are suggested, possibly employing aroma models and 

omission studies, to demonstrate our conclusion of rotundone as an important 

contributor.  Lastly, it would be interesting to see how the concentration of rotundone 

affects the overall flavor attributes of whiskey, and whether it conclusively increases the 

woody descriptor in aged spirits as its concentration increases.   
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Appendix A:  Chemical Synthesis 

Rotundone 

1)  In a 100 mL round bottom flask, with a N2 gas purge, guaiaol (10 g; 45 mmol) in 

pyridine (15 mL) was kept at -30°C while thionyl chloride (6.18 g; 3.8 mL; 52 

mmol) was added drop-wise. 

2) After 2 hours, additional thionyl chloride (1.55 g; 0.95 mL; 13 mmol) was added 

and keep under N2 gas overnight at -30°C. 

3) Quench with 25% HCl (50 mL) and extract with diethyl ether (3 x 30 mL). 

4) After removal of the solvent, add the crude mixture containing guaiene to 

acetonitrile (125 mL) in a 250 mL round bottom flask  kept 0°C.  While stirring 

the solution, using a magnetic stir bar, add cobalt acetate tetrahydrate catalyst 

(0.600 mg) and tert-butyl hydroperoxide (60 mL of 5.0-6.0 M in decane).   

5) Leave stirring at 0°C and check hourly by GC-MS until the guaiene peak is gone. 

6) Quench with saturated sodium sulfite (150 mL) to remove acetonitrile and 

extract with diethy ether (3 x 30 mL). 

7) Wash diethyl ether extract with saturated sodium bicarbonate  (3 x 50 mL), and 

subject crude mixture, containing rotundone to purification by silica flash 

column. 

d4-Rotundone 

1) In an amber vial equipped with a stir bar, rotundone (10 mg, 0.0459 mmol) in 

pyridine (5 mL) was placed under a gentle stream of N2 gas. 

2) While stirring, add 2H2O (1.0 mL; molar xs) and 3 drops of NaOD, purge the vial 

and leave stirring at room temperature for 24 hrs.  Check for completion 

periodically by extracting 50 µL of reaction mixture and transfer to a vial 

containing 1 mL of aqueous HCl (1 N) and 0.5 mL diethyl ether.  Mix the 

contents and check the solvent layer by GC-MS analysis. 

3) Quench with ice cold water (25 mL) and slowly adjust the pH to ~2 with HCl and 

extract with diethyl ether (3 x 10 mL). 

4) Wash ether extract with aqueous saturated sodium chloride (3 x 5 mL) and dry 

over 2 g anhydrous sodium sulfate.   
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d4-Ethyl octanoate 

1)  In a vial (25 mL) add d4-octanoic acid (0.2 g; 1.35 mmol), ethanol (5 mL) and 3 

drops of sulfuric acid. 

2) Bake at 60°C for 3 hours. 

3) Quench reaction with water (50 mL) and extract with diethyl ether (3 x 30 mL). 

4) Dry over sodium sulfate. 
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Appendix B:  Chemical Spectrum 
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Appendix C:  Calibration Curves 

Response Factor of d7-ethyl butyrate 
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Response Factor of d2-γ-nonalactone 
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Response Factor of d2-isoamyl acetate 
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Response Factor of 13C2-phenethyl alcohol 
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Response Factor of 13C2-phenethyl acetate 
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Response Factor for d3-vanillin 
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Response Factor for d3-p-cresol 
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Response Factor of d3-syringol 
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Response Factor of 4‐[d5]‐ethylphenol 
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Response Factor of d2-ethyl isovalerate 
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Response Factor of d11-ethyl hexanoate 
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Response Factor of d5-ethyl isobutyrate 
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Response Factor of d5-ethyl vanillate 
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Response Factor of d2-cis-whiskey lactone 
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Response Factor of d2-trans-whiskey lactone 
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Response Factor of d4-β-damascenone 
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Response Factor of d3-guaiacol 
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Response Factor of d3-isoeugenol 
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Response Factor of d3-eugenol 
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Response Factor of d3-syringaldehyde 
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Response Factor of d4-ethyl octanoate 
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Response Factor of d4-rotundone 
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2-Methyl-1-butanol Calibration and Quantification 

 
 

 

 

 

 

 

 

 

3-Methyl-1-butanol Calibration and Quantification 
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2-Methyl-1-propanol Calibration and Quantification 
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Appendix D:  Statistics 

 
One-way ANOVA: phenethyl alcohol versus product  
 

Source   DF        SS        MS      F      P 

product   2  42148541  21074270  12.55  0.007 

Error     6  10073637   1678940 

Total     8  52222178 

 

S = 1296   R-Sq = 80.71%   R-Sq(adj) = 74.28% 

 

                        Individual 95% CIs For Mean Based on Pooled StDev 

Level  N   Mean  StDev     -+---------+---------+---------+-------- 

JB 12  3  39058   1738     (------*-------) 

JB 4   3  44260   1347                          (------*------) 

JB 8   3  40780    451            (------*------) 

                           -+---------+---------+---------+-------- 

                        37500     40000     42500     45000 

 

Pooled StDev = 1296 

 

Grouping Information Using Fisher Method 

 

product  N   Mean  Grouping 

JB 4     3  44260  A 

JB 8     3  40780    B 

JB 12    3  39058    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product  Lower  Center  Upper  -------+---------+---------+---------+-- 

JB 4      2614    5203   7792                          (-------*------) 

JB 8      -866    1723   4312                 (------*------) 

                               -------+---------+---------+---------+-- 

                                  -3500         0      3500      7000 

 

product = JB 4 subtracted from: 

 

product  Lower  Center  Upper  -------+---------+---------+---------+-- 

JB 8     -6069   -3480   -891  (------*------) 

                               -------+---------+---------+---------+-- 

                                  -3500         0      3500      7000 

  

One-way ANOVA: syringaldehyde versus product  
 
Source   DF         SS        MS     F      P 

product   2   76097567  38048783  9.32  0.014 

Error     6   24488396   4081399 

Total     8  100585963 

 

S = 2020   R-Sq = 75.65%   R-Sq(adj) = 67.54% 

 

                        Individual 95% CIs For Mean Based on 
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                        Pooled StDev 

Level  N   Mean  StDev  -------+---------+---------+---------+-- 

JB 12  3  14432    429                      (-------*-------) 

JB 4   3   7526    264  (--------*-------) 

JB 8   3  12488   3463                 (-------*-------) 

                        -------+---------+---------+---------+-- 

                            7000     10500     14000     17500 

 

Pooled StDev = 2020 

 

Grouping Information Using Fisher Method 

 

product  N   Mean  Grouping 

JB 12    3  14432  A 

JB 8     3  12488  A 

JB 4     3   7526    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product   Lower  Center  Upper     --+---------+---------+---------+------- 

JB 4     -10943   -6906  -2870     (-------*-------) 

JB 8      -5981   -1944   2092               (-------*-------) 

                                   --+---------+---------+---------+------- 

                                -10000     -5000         0      5000 

 

product = JB 4 subtracted from: 

 

product  Lower  Center  Upper     --+---------+---------+---------+------- 

JB 8       926    4962   8998                             (-------*-------) 

                                  --+---------+---------+---------+------- 

                               -10000     -5000         0      5000 

 

 One-way ANOVA: ethyl octanoate versus product  
 
Source   DF        SS        MS       F      P 

product   2  68963240  34481620  393.30  0.000 

Error     6    526040     87673 

Total     8  69489279 

 

S = 296.1   R-Sq = 99.24%   R-Sq(adj) = 98.99% 

 

                        Individual 95% CIs For Mean Based on 

                        Pooled StDev 

Level  N   Mean  StDev  -----+---------+---------+---------+---- 

JB 12  3  15507    459                                (--*-) 

JB 4   3   9379     85  (-*-) 

JB 8   3   9928    212     (-*-) 

                        -----+---------+---------+---------+---- 

                         10000     12000     14000     16000 

 

Pooled StDev = 296 

 

Grouping Information Using Fisher Method 

 

product  N     Mean  Grouping 

JB 12    3  15506.6  A 
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JB 8     3   9928.2    B 

JB 4     3   9379.3    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ----+---------+---------+---------+----- 

JB 4     -6718.9  -6127.3  -5535.7  (--*--) 

JB 8     -6169.9  -5578.3  -4986.8     (--*--) 

                                    ----+---------+---------+---------+----- 

                                    -6000     -4000     -2000         0 

 

product = JB 4 subtracted from: 

 

product  Lower  Center   Upper  ----+---------+---------+---------+----- 

JB 8     -42.6   549.0  1140.6                                    (--*--) 

                                ----+---------+---------+---------+----- 

                                -6000     -4000     -2000         0 

  

One-way ANOVA: vanillin versus product  
 
Source   DF      SS      MS       F      P 

product   2  935901  467950  851.43  0.000 

Error     6    3298     550 

Total     8  939198 

 

S = 23.44   R-Sq = 99.65%   R-Sq(adj) = 99.53% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  -------+---------+---------+---------+-- 

JB 12  3  1406.0   26.4                                  (*-) 

JB 4   3   619.5   14.3  (-*) 

JB 8   3   949.6   27.3                (*) 

                         -------+---------+---------+---------+-- 

                              750      1000      1250      1500 

 

Pooled StDev = 23.4 

 

Grouping Information Using Fisher Method 

 

product  N     Mean  Grouping 

JB 12    3  1405.98  A 

JB 8     3   949.59    B 

JB 4     3   619.46      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ----+---------+---------+---------+----- 

JB 4     -833.36  -786.52  -739.69  (-*) 
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JB 8     -503.23  -456.39  -409.55            (*) 

                                    ----+---------+---------+---------+----- 

                                     -700      -350         0       350 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  ----+---------+---------+---------+----- 

JB 8     283.29  330.13  376.97                                  (*-) 

                                 ----+---------+---------+---------+----- 

                                  -700      -350         0       350 

 

  

One-way ANOVA: isoamyl acetate versus product  
 
Source   DF        SS       MS     F      P 

product   2   7834480  3917240  7.44  0.024 

Error     6   3159207   526534 

Total     8  10993687 

 

S = 725.6   R-Sq = 71.26%   R-Sq(adj) = 61.68% 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  ---+---------+---------+---------+------ 

JB 12  3  6415.0  1240.6                    (-------*--------) 

JB 4   3  5964.5    97.3                (--------*-------) 

JB 8   3  4249.3   176.0  (-------*--------) 

                          ---+---------+---------+---------+------ 

                          3600      4800      6000      7200 

 

Pooled StDev = 725.6 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  6415.0  A 

JB 4     3  5964.5  A 

JB 8     3  4249.3    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center   Upper  --------+---------+---------+---------+- 

JB 4     -1900.2   -450.5   999.2          (-------*------) 

JB 8     -3615.3  -2165.6  -715.9  (------*------) 

                                   --------+---------+---------+---------+- 

                                       -2000         0      2000      4000 

 

product = JB 4 subtracted from: 

 

product    Lower   Center   Upper  --------+---------+---------+---------+- 

JB 8     -3164.8  -1715.1  -265.4    (------*-------) 

                                   --------+---------+---------+---------+- 

                                       -2000         0      2000      4000 
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One-way ANOVA: ethyl butyrate versus product  
 
Source   DF      SS      MS       F      P 

product   2  924611  462305  164.47  0.000 

Error     6   16865    2811 

Total     8  941476 

 

S = 53.02   R-Sq = 98.21%   R-Sq(adj) = 97.61% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  ------+---------+---------+---------+--- 

JB 12  3  1204.2   25.2                                 (--*--) 

JB 4   3   421.1   70.7  (--*--) 

JB 8   3   861.4   52.9                   (--*--) 

                         ------+---------+---------+---------+--- 

                             500       750      1000      1250 

Pooled StDev = 53.0 

 

Grouping Information Using Fisher Method 

 

product  N     Mean  Grouping 

JB 12    3  1204.23  A 

JB 8     3   861.44    B 

JB 4     3   421.13      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper   --+---------+---------+---------+------- 

JB 4     -889.02  -783.09  -677.17   (-*--) 

JB 8     -448.71  -342.79  -236.87              (-*--) 

                                     --+---------+---------+---------+------- 

                                    -800      -400         0       400 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper   --+---------+---------+---------+------- 

JB 8     334.38  440.30  546.23                                 (--*--) 

                                  --+---------+---------+---------+------- 

                                 -800      -400         0       400 

 

 One-way ANOVA: y-nonalactone versus product  
 
Source   DF    SS   MS     F      P 

product   2  1617  809  7.65  0.022 

Error     6   634  106 

Total     8  2251 

 

S = 10.28   R-Sq = 71.84%   R-Sq(adj) = 62.45% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  ----+---------+---------+---------+----- 

JB 12  3  164.36   6.53      (---------*--------) 
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JB 4   3  158.84   9.69  (---------*---------) 

JB 8   3  189.64  13.44                       (--------*---------) 

                         ----+---------+---------+---------+----- 

                           150       165       180       195 

 

Pooled StDev = 10.28 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 8     3  189.64  A 

JB 12    3  164.36    B 

JB 4     3  158.84    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product   Lower  Center  Upper  -------+---------+---------+---------+-- 

JB 4     -26.06   -5.52  15.02          (------*------) 

JB 8       4.74   25.27  45.81                     (-----*------) 

                                -------+---------+---------+---------+-- 

                                     -30         0        30        60 

 

product = JB 4 subtracted from: 

 

product  Lower  Center  Upper  -------+---------+---------+---------+-- 

JB 8     10.26   30.79  51.33                      (------*------) 

                               -------+---------+---------+---------+-- 

                                    -30         0        30        60 

 

  

One-way ANOVA: phenethyl acetate versus product  
 
Source   DF      SS      MS      F      P 

product   2  815397  407698  20.80  0.002 

Error     6  117617   19603 

Total     8  933013 

 

S = 140.0   R-Sq = 87.39%   R-Sq(adj) = 83.19% 

 

                         Individual 95% CIs For Mean Based on Pooled StDev 

Level  N    Mean  StDev     +---------+---------+---------+--------- 

JB 12  3  2026.5   99.8                          (------*-----) 

JB 4   3  2046.5  219.1                           (-----*------) 

JB 8   3  1398.2   29.4     (------*-----) 

                            +---------+---------+---------+--------- 

                         1200      1500      1800      2100 

 

Pooled StDev = 140.0 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 4     3  2046.5  A 

JB 12    3  2026.5  A 

JB 8     3  1398.2    B 
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Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product   Lower  Center   Upper  ---------+---------+---------+---------+ 

JB 4     -259.7    20.0   299.7                (----*-----) 

JB 8     -908.0  -628.3  -348.6   (----*-----) 

                                 ---------+---------+---------+---------+ 

                                       -500         0       500      1000 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  ---------+---------+---------+---------+ 

JB 8     -928.0  -648.3  -368.5  (-----*-----) 

                                 ---------+---------+---------+---------+ 

                                       -500         0       500      1000 

 

  

One-way ANOVA: syringol versus product  
 
Source   DF     SS    MS     F      P 

product   2   6006  3003  2.50  0.162 

Error     6   7195  1199 

Total     8  13202 

 

S = 34.63   R-Sq = 45.50%   R-Sq(adj) = 27.33% 

 

                         Individual 95% CIs For Mean Based on Pooled StDev 

Level  N    Mean  StDev   -+---------+---------+---------+-------- 

JB 12  3  219.04  10.44       (-----------*-----------) 

JB 4   3  204.53  27.78   (-----------*-----------) 

JB 8   3  265.12  52.12                  (-----------*------------) 

                          -+---------+---------+---------+-------- 

                         160       200       240       280 

 

Pooled StDev = 34.63 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 8     3  265.12  A 

JB 12    3  219.04  A 

JB 4     3  204.53  A 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product   Lower  Center   Upper  ---------+---------+---------+---------+ 

JB 4     -83.70  -14.51   54.67         (---------*---------) 

JB 8     -23.10   46.08  115.27                  (---------*--------) 

                                 ---------+---------+---------+---------+ 

                                        -70         0        70       140 
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product = JB 4 subtracted from: 

 

product  Lower  Center   Upper  ---------+---------+---------+---------+ 

JB 8     -8.59   60.60  129.78                    (---------*---------) 

                                ---------+---------+---------+---------+ 

                                       -70         0        70       140 

 

  

One-way ANOVA: ethyl hexanoate versus product  
 
Source   DF       SS       MS       F      P 

product   2  3217687  1608843  252.94  0.000 

Error     6    38163     6360 

Total     8  3255850 

 

S = 79.75   R-Sq = 98.83%   R-Sq(adj) = 98.44% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  ----+---------+---------+---------+----- 

JB 12  3  3308.6   45.3                              (-*-) 

JB 4   3  1893.7  101.6  (-*-) 

JB 8   3  2273.3   81.9         (-*--) 

                         ----+---------+---------+---------+----- 

                          2000      2500      3000      3500 

 

Pooled StDev = 79.8 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  3308.6  A 

JB 8     3  2273.3    B 

JB 4     3  1893.7      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ------+---------+---------+---------+--- 

JB 4     -1574.2  -1414.8  -1255.5  (-*--) 

JB 8     -1194.6  -1035.3   -876.0        (--*-) 

                                    ------+---------+---------+---------+--- 

                                      -1200      -600         0       600 

 

product = JB 4 subtracted from: 

 

product  Lower  Center  Upper  ------+---------+---------+---------+--- 

JB 8     220.2   379.5  538.9                                (-*--) 

                               ------+---------+---------+---------+--- 

                                 -1200      -600         0       600 

 

  

One-way ANOVA: ethyl vanillate versus product  
 
Source   DF      SS     MS       F      P 

product   2  140571  70286  244.26  0.000 
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Error     6    1726    288 

Total     8  142298 

 

S = 16.96   R-Sq = 98.79%   R-Sq(adj) = 98.38% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev   -+---------+---------+---------+-------- 

JB 12  3  421.54  19.85                                  (-*--) 

JB 4   3  115.49  13.24   (--*-) 

JB 8   3  274.35  17.14                   (-*--) 

                          -+---------+---------+---------+-------- 

                         100       200       300       400 

 

Pooled StDev = 16.96 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  421.54  A 

JB 8     3  274.35    B 

JB 4     3  115.49      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ---+---------+---------+---------+------ 

JB 4     -339.94  -306.05  -272.16  (--*-) 

JB 8     -181.08  -147.19  -113.30             (-*-) 

                                    ---+---------+---------+---------+------ 

                                    -300      -150         0       150 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  ---+---------+---------+---------+------ 

JB 8     124.97  158.86  192.75                                 (--*-) 

                                 ---+---------+---------+---------+------ 

                                 -300      -150         0       150 

 

  

One-way ANOVA: cis-oak lactone versus product  
 
Source   DF      SS      MS      F      P 

product   2  579360  289680  80.02  0.000 

Error     6   21721    3620 

Total     8  601081 

 

S = 60.17   R-Sq = 96.39%   R-Sq(adj) = 95.18% 

 

                         Individual 95% CIs For Mean Based on Pooled StDev 

Level  N    Mean  StDev     +---------+---------+---------+--------- 

JB 12  3  1694.1   70.3                                   (----*---) 

JB 4   3  1077.9   41.3     (---*---) 

JB 8   3  1456.4   64.9                        (---*---) 

                            +---------+---------+---------+--------- 

                         1000      1200      1400      1600 
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Pooled StDev = 60.2 

 

Grouping Information Using Fisher Method 

 

product  N     Mean  Grouping 

JB 12    3  1694.05  A 

JB 8     3  1456.41    B 

JB 4     3  1077.91      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper    -+---------+---------+---------+-------- 

JB 4     -736.35  -616.14  -495.93    (--*---) 

JB 8     -357.85  -237.64  -117.44               (--*---) 

                                      -+---------+---------+---------+-------- 

                                    -700      -350         0       350 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper    -+---------+---------+---------+-------- 

JB 8     258.29  378.49  498.70                                (---*--) 

                                   -+---------+---------+---------+-------- 

                                 -700      -350         0       350 

  

One-way ANOVA: trans-oak lactone versus product  
 
Source   DF       SS      MS       F      P 

product   2  11257.1  5628.6  116.03  0.000 

Error     6    291.1    48.5 

Total     8  11548.2 

 

S = 6.965   R-Sq = 97.48%   R-Sq(adj) = 96.64% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  ----+---------+---------+---------+----- 

JB 12  3  205.31   9.71                               (--*---) 

JB 4   3  119.08   1.61  (---*--) 

JB 8   3  169.39   6.97                   (--*---) 

                         ----+---------+---------+---------+----- 

                           120       150       180       210 

 

Pooled StDev = 6.96 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  205.31  A 

JB 8     3  169.39    B 

JB 4     3  119.08      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

Simultaneous confidence level = 89.08% 
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product = JB 12 subtracted from: 

 

product    Lower  Center   Upper     +---------+---------+---------+--------- 

JB 4     -100.15  -86.23  -72.32     (--*--) 

JB 8      -49.83  -35.92  -22.00               (--*--) 

                                     +---------+---------+---------+--------- 

                                  -100       -50         0        50 

 

product = JB 4 subtracted from: 

 

product  Lower  Center  Upper     +---------+---------+---------+--------- 

JB 8     36.40   50.31  64.23                                (--*--) 

                                  +---------+---------+---------+--------- 

                               -100       -50         0        50 

  

One-way ANOVA: guaiacol versus product  
 
Source   DF       SS      MS      F      P 

product   2   956.01  478.01  60.36  0.000 

Error     6    47.51    7.92 

Total     8  1003.53 

 

S = 2.814   R-Sq = 95.27%   R-Sq(adj) = 93.69% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  -----+---------+---------+---------+---- 

JB 12  3  63.510  2.753                           (---*--) 

JB 4   3  39.055  2.963  (---*---) 

JB 8   3  56.710  2.720                    (---*---) 

                         -----+---------+---------+---------+---- 

                             40        50        60        70 

Pooled StDev = 2.814 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  63.510  A 

JB 8     3  56.710    B 

JB 4     3  39.055      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper    +---------+---------+---------+--------- 

JB 4     -30.078  -24.455  -18.833    (---*--) 

JB 8     -12.422   -6.800   -1.178                (--*---) 

                                      +---------+---------+---------+--------- 

                                    -30       -15         0        15 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper    +---------+---------+---------+--------- 

JB 8     12.033  17.655  23.277                                (---*---) 

                                   +---------+---------+---------+--------- 

                                 -30       -15         0        15 
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One-way ANOVA: iso eugenol versus product  
 
Source   DF     SS    MS      F      P 

product   2  18236  9118  21.82  0.002 

Error     6   2507   418 

Total     8  20743 

 

S = 20.44   R-Sq = 87.91%   R-Sq(adj) = 83.89% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  -----+---------+---------+---------+---- 

JB 12  3  416.18  32.22                        (-----*-----) 

JB 4   3  306.24   7.22  (-----*-----) 

JB 8   3  368.48  12.77               (-----*----) 

                         -----+---------+---------+---------+---- 

                            300       350       400       450 

 

Pooled StDev = 20.44 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  416.18  A 

JB 8     3  368.48    B 

JB 4     3  306.24      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center   Upper   --+---------+---------+---------+------- 

JB 4     -150.78  -109.94  -69.10   (-----*-----) 

JB 8      -88.54   -47.70   -6.86            (-----*-----) 

                                    --+---------+---------+---------+------- 

                                   -140       -70         0        70 

 

product = JB 4 subtracted from: 

 

product  Lower  Center   Upper   --+---------+---------+---------+------- 

JB 8     21.40   62.24  103.08                            (-----*-----) 

                                 --+---------+---------+---------+------- 

                                -140       -70         0        70 

 

  

One-way ANOVA: eugenol versus product  
 
Source   DF       SS      MS       F      P 

product   2  10118.6  5059.3  119.17  0.000 

Error     6    254.7    42.5 

Total     8  10373.3 

 

S = 6.516   R-Sq = 97.54%   R-Sq(adj) = 96.73% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 
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Level  N    Mean  StDev   -+---------+---------+---------+-------- 

JB 12  3  131.22   6.91   (--*---) 

JB 4   3  206.77   8.02                                 (---*--) 

JB 8   3  196.89   3.90                             (---*--) 

                          -+---------+---------+---------+-------- 

                         125       150       175       200 

 

Pooled StDev = 6.52 

 

Grouping Information Using Fisher Method 

 

product  N     Mean  Grouping 

JB 4     3  206.768  A 

JB 8     3  196.889  A 

JB 12    3  131.216    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product   Lower  Center   Upper  --------+---------+---------+---------+- 

JB 4     62.534  75.552  88.569                               (---*----) 

JB 8     52.656  65.673  78.691                            (---*---) 

                                 --------+---------+---------+---------+- 

                                         0        30        60        90 

product = JB 4 subtracted from: 

 

product    Lower  Center  Upper  --------+---------+---------+---------+- 

JB 8     -22.896  -9.879  3.139  (----*---) 

                                 --------+---------+---------+---------+- 

                                         0        30        60        90 

  

One-way ANOVA: ethyl isobutyrate versus product  
 
Source   DF      SS      MS       F      P 

product   2  266520  133260  127.57  0.000 

Error     6    6268    1045 

Total     8  272788 

 

S = 32.32   R-Sq = 97.70%   R-Sq(adj) = 96.94% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev   -+---------+---------+---------+-------- 

JB 12  3  600.37  51.48                               (--*--) 

JB 4   3  178.87  20.31   (--*--) 

JB 8   3  393.97   8.43                 (--*--) 

                          -+---------+---------+---------+-------- 

                         150       300       450       600 

Pooled StDev = 32.32 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  600.37  A 

JB 8     3  393.97    B 

JB 4     3  178.87      C 
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Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ----+---------+---------+---------+----- 

JB 4     -486.07  -421.49  -356.92  (--*--) 

JB 8     -270.97  -206.40  -141.82            (---*--) 

                                    ----+---------+---------+---------+----- 

                                     -400      -200         0       200 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  ----+---------+---------+---------+----- 

JB 8     150.52  215.10  279.67                                  (--*--) 

                                 ----+---------+---------+---------+----- 

                                  -400      -200         0       200 

  

One-way ANOVA: 4-ethyl phenol versus product  
 
Source   DF        SS        MS         F      P 

product   2  853230.0  426615.0  13364.19  0.000 

Error     6     191.5      31.9 

Total     8  853421.6 

 

S = 5.650   R-Sq = 99.98%   R-Sq(adj) = 99.97% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  -------+---------+---------+---------+-- 

JB 12  3   91.21   8.31   (* 

JB 4   3  727.32   5.14                                   *) 

JB 8   3   58.35   0.48  * 

                         -------+---------+---------+---------+-- 

                              200       400       600       800 

Pooled StDev = 5.65 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 4     3  727.32  A 

JB 12    3   91.21    B 

JB 8     3   58.35      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product   Lower  Center   Upper  ---------+---------+---------+---------+ 

JB 4     624.82  636.11  647.40                                       * 

JB 8     -44.15  -32.86  -21.57                    * 

                                 ---------+---------+---------+---------+ 

                                       -350         0       350       700 
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product = JB 4 subtracted from: 

 

product    Lower   Center    Upper  ---------+---------+---------+---------+ 

JB 8     -680.26  -668.97  -657.68  * 

                                    ---------+---------+---------+---------+ 

                                          -350         0       350       700 

 

 One-way ANOVA: ethyl isovalerate versus product  
 
Source   DF      SS      MS       F      P 

product   2  266520  133260  127.57  0.000 

Error     6    6268    1045 

Total     8  272788 

 

S = 32.32   R-Sq = 97.70%   R-Sq(adj) = 96.94% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev   -+---------+---------+---------+-------- 

JB 12  3  600.37  51.48                               (--*--) 

JB 4   3  178.87  20.31   (--*--) 

JB 8   3  393.97   8.43                 (--*--) 

                          -+---------+---------+---------+-------- 

                         150       300       450       600 

 

Pooled StDev = 32.32 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  600.37  A 

JB 8     3  393.97    B 

JB 4     3  178.87      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ----+---------+---------+---------+----- 

JB 4     -486.07  -421.49  -356.92  (--*--) 

JB 8     -270.97  -206.40  -141.82            (---*--) 

                                    ----+---------+---------+---------+----- 

                                     -400      -200         0       200 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  ----+---------+---------+---------+----- 

JB 8     150.52  215.10  279.67                                  (--*--) 

                                 ----+---------+---------+---------+----- 

                                  -400      -200         0       200 

  

One-way ANOVA: p-cresol versus product  
 
Source   DF      SS      MS      F      P 

product   2  0.5969  0.2985  17.51  0.003 

Error     6  0.1023  0.0170 
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Total     8  0.6992 

 

S = 0.1305   R-Sq = 85.37%   R-Sq(adj) = 80.50% 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  ------+---------+---------+---------+--- 

JB 12  3  2.3594  0.1843                         (------*-------) 

JB 4   3  1.7950  0.0779  (-------*------) 

JB 8   3  2.3213  0.1054                       (-------*------) 

                          ------+---------+---------+---------+--- 

                              1.75      2.00      2.25      2.50 

 

Pooled StDev = 0.1305 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  2.3594  A 

JB 8     3  2.3213  A 

JB 4     3  1.7950    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  -------+---------+---------+---------+-- 

JB 4     -0.8252  -0.5643  -0.3035  (-----*----) 

JB 8     -0.2988  -0.0380   0.2228             (----*----) 

                                    -------+---------+---------+---------+-- 

                                        -0.50      0.00      0.50      1.00 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  -------+---------+---------+---------+-- 

JB 8     0.2655  0.5263  0.7871                        (-----*----) 

                                 -------+---------+---------+---------+-- 

                                     -0.50      0.00      0.50      1.00 

  

One-way ANOVA: ethyl isovalerate versus product  
 
Source   DF      SS      MS       F      P 

product   2  266520  133260  127.57  0.000 

Error     6    6268    1045 

Total     8  272788 

 

S = 32.32   R-Sq = 97.70%   R-Sq(adj) = 96.94% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev   -+---------+---------+---------+-------- 

JB 12  3  600.37  51.48                               (--*--) 

JB 4   3  178.87  20.31   (--*--) 

JB 8   3  393.97   8.43                 (--*--) 

                          -+---------+---------+---------+-------- 

                         150       300       450       600 

Pooled StDev = 32.32 
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Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  600.37  A 

JB 8     3  393.97    B 

JB 4     3  178.87      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ----+---------+---------+---------+----- 

JB 4     -486.07  -421.49  -356.92  (--*--) 

JB 8     -270.97  -206.40  -141.82            (---*--) 

                                    ----+---------+---------+---------+----- 

                                     -400      -200         0       200 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  ----+---------+---------+---------+----- 

JB 8     150.52  215.10  279.67                                  (--*--) 

                                 ----+---------+---------+---------+----- 

                                  -400      -200         0       200 

 

 

One-way ANOVA: B-damascenone versus product  
 
Source   DF     SS     MS      F      P 

product   2  3.684  1.842  15.88  0.004 

Error     6  0.696  0.116 

Total     8  4.380 

 

S = 0.3406   R-Sq = 84.11%   R-Sq(adj) = 78.81% 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  ---------+---------+---------+---------+ 

JB 12  3  3.0179  0.2261       (------*------) 

JB 4   3  2.6264  0.2194  (------*-----) 

JB 8   3  4.1364  0.4988                       (------*------) 

                          ---------+---------+---------+---------+ 

                                 2.80      3.50      4.20      4.90 

 

Pooled StDev = 0.3406 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 8     3  4.1364  A 

JB 12    3  3.0179    B 

JB 4     3  2.6264    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 
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product = JB 12 subtracted from: 

 

product    Lower   Center   Upper  --------+---------+---------+---------+- 

JB 4     -1.0720  -0.3915  0.2890           (-----*----) 

JB 8      0.4380   1.1185  1.7990                        (----*-----) 

                                   --------+---------+---------+---------+- 

                                        -1.2       0.0       1.2       2.4 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  --------+---------+---------+---------+- 

JB 8     0.8295  1.5100  2.1905                           (-----*----) 

                                 --------+---------+---------+---------+- 

                                      -1.2       0.0       1.2       2.4 

 

 One-way ANOVA: 2-methyl-propanol versus product  
 
Source   DF       SS       MS      F      P 

product   2  2728485  1364243  22.90  0.002 

Error     6   357521    59587 

Total     8  3086007 

 

S = 244.1   R-Sq = 88.41%   R-Sq(adj) = 84.55% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev   --+---------+---------+---------+------- 

JB 12  3  2780.9  323.7                          (----*-----) 

JB 4   3  1449.0  227.4   (-----*-----) 

JB 8   3  1931.6  149.2           (-----*-----) 

                          --+---------+---------+---------+------- 

                         1200      1800      2400      3000 

Pooled StDev = 244.1 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  2780.9  A 

JB 8     3  1931.6    B 

JB 4     3  1449.0    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center   Upper  ------+---------+---------+---------+--- 

JB 4     -1819.7  -1332.0  -844.3  (------*------) 

JB 8     -1337.0   -849.4  -361.7         (------*------) 

                                   ------+---------+---------+---------+--- 

                                     -1400      -700         0       700 

 

product = JB 4 subtracted from: 

 

product  Lower  Center  Upper  ------+---------+---------+---------+--- 

JB 8      -5.1   482.6  970.3                            (------*------) 

                               ------+---------+---------+---------+--- 

                                 -1400      -700         0       700 
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One-way ANOVA: 2-methyl-butanol versus product  
 
Source   DF       SS       MS      F      P 

product   2  8437405  4218702  58.81  0.000 

Error     6   430423    71737 

Total     8  8867828 

 

S = 267.8   R-Sq = 95.15%   R-Sq(adj) = 93.53% 

 

                         Individual 95% CIs For Mean Based on Pooled StDev 

Level  N    Mean  StDev    -+---------+---------+---------+-------- 

JB 12  3  4242.9  253.6                                 (----*----) 

JB 4   3  1871.4  104.0    (---*----) 

JB 8   3  3037.0  374.3                  (----*----) 

                           -+---------+---------+---------+-------- 

                         1600      2400      3200      4000 

Pooled StDev = 267.8 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  4242.9  A 

JB 8     3  3037.0    B 

JB 4     3  1871.4      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  ----+---------+---------+---------+----- 

JB 4     -2906.7  -2371.6  -1836.5  (---*----) 

JB 8     -1741.1  -1205.9   -670.8           (----*---) 

                                    ----+---------+---------+---------+----- 

                                    -2400     -1200         0      1200 

 

product = JB 4 subtracted from: 

 

product  Lower  Center   Upper  ----+---------+---------+---------+----- 

JB 8     630.5  1165.6  1700.7                               (----*---) 

                                ----+---------+---------+---------+----- 

                                -2400     -1200         0      1200 

  

 
One-way ANOVA: 3-methyl butanol versus product  
 
Source   DF        SS        MS      F      P 

product   2  21178891  10589445  13.01  0.007 

Error     6   4882495    813749 

Total     8  26061385 

 

 

S = 902.1   R-Sq = 81.27%   R-Sq(adj) = 75.02% 

 

 

 

 



 144 

                       Individual 95% CIs For Mean Based on 

                       Pooled StDev 

Level  N  Mean  StDev   --+---------+---------+---------+------- 

JB 12  3  9334    634                         (-------*-------) 

JB 4   3  5797    801   (-------*-------) 

JB 8   3  8663   1182                     (-------*-------) 

                        --+---------+---------+---------+------- 

                       4800      6400      8000      9600 

 

Pooled StDev = 902 

 

Grouping Information Using Fisher Method 

 

product  N    Mean  Grouping 

JB 12    3  9334.5  A 

JB 8     3  8663.1  A 

JB 4     3  5797.0    B 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  --------+---------+---------+---------+- 

JB 4     -5339.7  -3537.5  -1735.2  (-----*-----) 

JB 8     -2473.6   -671.4   1130.9            (-----*-----) 

                                    --------+---------+---------+---------+- 

                                        -3000         0      3000      6000 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  --------+---------+---------+---------+- 

JB 8     1063.8  2866.1  4668.4                        (-----*-----) 

                                 --------+---------+---------+---------+- 

                                     -3000         0      3000      6000 

 

  

One-way ANOVA: Rotundone versus product  
 
Source   DF       SS       MS       F      P 

product   2  1.86470  0.93235  242.00  0.000 

Error     6  0.02312  0.00385 

Total     8  1.88781 

 

S = 0.06207   R-Sq = 98.78%   R-Sq(adj) = 98.37% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  -----+---------+---------+---------+---- 

JB 12  3  4.5304  0.0887                                  (-*--) 

JB 4   3  3.4171  0.0185  (--*-) 

JB 8   3  4.0264  0.0579                    (-*--) 

                          -----+---------+---------+---------+---- 

                             3.50      3.85      4.20      4.55 

 

Pooled StDev = 0.0621 

 

Grouping Information Using Fisher Method 
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product  N    Mean  Grouping 

JB 12    3  4.5304  A 

JB 8     3  4.0264    B 

JB 4     3  3.4171      C 

 

Means that do not share a letter are significantly different. 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of product 

 

Simultaneous confidence level = 89.08% 

 

 

product = JB 12 subtracted from: 

 

product    Lower   Center    Upper  -----+---------+---------+---------+---- 

JB 4     -1.2373  -1.1133  -0.9893  (--*-) 

JB 8     -0.6280  -0.5040  -0.3800              (--*-) 

                                    -----+---------+---------+---------+---- 

                                      -1.00     -0.50      0.00      0.50 

 

 

product = JB 4 subtracted from: 

 

product   Lower  Center   Upper  -----+---------+---------+---------+---- 

JB 8     0.4853  0.6093  0.7333                                     (-*--) 

                                 -----+---------+---------+---------+---- 

                                   -1.00     -0.50      0.00      0.50 
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Appendix E:  Additional Results 
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