A GENOMIC ANALYSIS OF THE INSECT PEST POPULATIONS OF COWPEA IN WEST AFRICA

BY
TOLULOPE ADEBIMPE AGUNBIADE

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:
Professor Barry R. Pittendrigh, Chair, Director of Research
Associate Professor George Czapar
Associate Professor Bettina Francis
Assistant Professor Brian Allan

Abstract

Cowpea [Vigna unguiculata (L.) Walp (Fabaceae)] is an important and major staple food crop in sub-Saharan Africa, especially in the dry savanna regions of West Africa. The crop provides food, cash, and fodder. As a food crop, cowpea is a primary source of protein for the ever-growing population of both rural and urban dwellers. The fodder and husks from cowpea also form an important source of protein, fiber, and energy for livestock. West Africa accounts for about 80% of the world's cowpea production. However, insect pests are major constraints to cowpea production in the West African sub-region. The crop is severely attacked at every stage of its growth by different insect pests from the pre-flowering stage right through storage. Damage by insect pests on cowpea can be as high as $80-100 \%$ if not effectively controlled. Current control measures against the insect pests, which mostly consist of chemical control, are not without limitations.

There is a need to develop a more comprehensive IPM strategy against cowpea insect pests by exploiting the knowledge of their biology, location of alternate host plants, and natural enemies, and combining these with the recent advances in genome sequencing technologies. This dissertation consists of five chapters and focuses on the integration of integrated pest management (IPM) and the current trends in genomic sequencing to cowpea IPM in West Africa with the aim of better understanding the insect pest populations of the cowpea crop and defining their population structure and movement patterns.

Chapter 1 which serves as the introduction to the whole thesis discusses in detail the advent of the genomics era and how IPM researchers must take advantage of the
recent development in genomic practices. It introduces the concept of IPM-omics and how this can be applied to cowpea cropping systems in West Africa. It also discusses the effective deployment of the research output to the end-users.

Chapters 2 and 3 answer questions regarding the timing and spatial scale of the migration patterns of one of the major insect pests of cowpea in West Africa, the legume pod borer (Maruca vitrata). I applied a set of microsatellite markers (Chapters 2 and 3) and mitochondrial cox1 haplotype data (Chapter 3) to characterize the M. vitrata populations across locations in West Africa [Burkina Faso, Niger and Nigeria (Chapter 2)] and also on four host plants of M. vitrata [cultivated cowpea (Vigna unguiculata), and three alternative host plants - Pueraria phaseoloides, Loncocarpus sericeus, and Tephrosia candida)] in southern Benin (Chapter 3). The findings from the studies in the two chapters enabled a much clearer understanding of the genetic variability, population structure, and gene flow among M. vitrata populations in those countries and the host plants sampled.

Chapter 4 compares the mitochondrial genome of M. vitrata from the New World (Puerto Rico) with the mitochondrial genome of the M. vitrata population from the Old World (Burkina Faso), and also with the mitogenomes of other Crambids. Species from the genus Maruca have a wide distribution from northern Australia and East Asia through sub-Saharan Africa to the Caribbean, Central America, and North America. The species are difficult to distinguish morphologically and have been surmised to be a species complex due to cryptic morphological differences. To be able to study evolutionary patterns among Maruca species, I sequenced and assembled the mitochondrial genome of the Maruca subspecies from Puerto Rico and compared this with the mitochondrial
genomes of M. vitrata from West Africa, and also with other available Crambid mitochondrial genomes. The study enabled the estimation of mutation tendencies in M. vitrata and also the construction of phylogenetic relationships, as well as comparative and molecular genome evolution patterns in M. vitrata.

Chapter 5 goes beyond my research on M. vitrata and concentrates on other destructive insect pests of cowpea in West Africa. In West Africa, besides M. vitrata, other serious insect pests also attack the cowpea crop. These insect pests include thrips (Megalurothrips sjostedti), aphids (Aphis craccivora) and pod sucking bug complex, (including Clavigralla tomentosicollis and Anoplocnemis curvipes). Collectively, these pests can wipe out a whole cowpea harvest. Part of the constraint in the application of effective control strategies against these pests is the lack of molecular markers that can enable the characterization of the pest populations. For this study, I applied Roche 454 sequencing technology to generate and subsequently assemble contigs from DNA sequencing reads for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti. These were then used to detect polymorphisms in the different populations of these insect pests across West Africa. Findings from this study identified putative single nucleotide polymorphisms (SNPs), which can be used for characterizing the populations of the different insect pests, and also identified candidate genes putatively involved in insecticide resistance, regulation of insect growth, and response to disease transmission.

Overall, the output from the studies in this dissertation will facilitate the effective evaluation, modification, and optimization of practical cowpea IPM strategies which will in the short- and long-term help in the monitoring of the insect pest populations as well as aid in making decisions as to how, when, and where to apply appropriate control measures.

To the loving memory of my father, Oladeji Adeniran,
To my mother, Omodunbi Adeniran,
To my husband, Olusegun Agunbiade

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Barry Pittendrigh, for his tremendous academic support and invaluable guidance, which helped in the completion of this dissertation. I also appreciate the input, time, and support of the members of my doctoral committee - Dr. George Czapar, Dr. Bettina Francis, and Dr. Brian Allan.

I am extremely grateful to Dr. Brad Coates for his insightful comments on the research, and for his critical revision of the manuscripts. I am also grateful to Dr. Kyung Seok Kim, Dr. Weilin Sun, Dr. Carmen Valero, Dr. Venu Margam, and our collaborators in Africa - Dr. Manuele Tamò, Dr. Ibrahim Baoua, Dr. Clementine Dabire-Binso, Dr. Malick Ba, and Dr. Rousseau Djouaka, for their helpful discussions on the research, and feedback on manuscripts. For assistance with obtaining insect samples for the studies in this dissertation, I would like to thank our collaborators in Africa. I also appreciate the assistance of students, and technicians that helped with insect sample collection and processing. I would like to thank both past and current members of the Pittendrigh lab. For assistance with paperwork and the administrative aspects of my graduate study, I would like to thank both past (Audra Weinstein and Karen Trame) and current (Adrienne Harris and Kimberly Leigh) departmental office staff.

I am grateful to the Legumes Innovation Lab, formerly Cowpea Collaborative Research Support Program (CRSP), and the Howard Hughes Medical Institute, for providing financial support for my graduate study. Support was provided by the Legumes Innovation Lab by the Bureau for Economic Growth, Agriculture, and Trade, United States Agency for International Development (USAID), under the terms of Grant No.

EDH-A-00-07-00005. Support by the Howard Hughes Medical Institute was provided through a three-year International Student Research Fellowship.

I would like to thank all the people who have provided moral support, friendship, and prayers. Every single act of your kindness and support is appreciated, and you have all made the journey a very memorable one for me.

A very special thanks goes to my family for their love, encouragement, and support. My deepest appreciation goes to my wonderful parents, Oladeji and Omodunbi, for their love and encouragement. I am grateful to both of them for laying a solid foundation for me in education, and for all their sacrifices. I also appreciate my siblings, Adebiyi, Adeola, Adetunji, and Olufunke, for their prayers and invaluable support. My special thanks goes to my dear husband, Olusegun, for his love and patience. I am grateful to him for his sacrifices and his unfailing support throughout this journey. In all, I give thanks to God.

LIST OF PUBLICATIONS ARISING FROM THIS DISSERTATION

Agunbiade T, Steele L, Coates B, Gassmann A, Margam V, Ba M, Dabire-Binso C, Baoua I, Bello-Bravo J, Seufferheld F, Sun W, Tamò M, Pittendrigh B (2012) IPMomics: From genomics to extension for integrated pest management of cowpea. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M, (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp. 231 - 248 (Chapter 1)

Agunbiade TA, Coates BS, Kim KS, Forgacs D, Margam VM, Murdock LL, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Tamò M, Pittendrigh BR (2012) The spatial genetic differentiation of the legume pod borer, Maruca vitrata F . (Lepidoptera: Crambidae) populations in West Africa. Bulletin of Entomological Research 102(5): 589-599 (Chapter 2)

Agunbiade TA, Coates BS, Datinon B, Djouaka R, Sun W, Tamò M, Pittendrigh BR (2014) Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: Implications for insect resistance management and biological control strategies. PLoS ONE 9(3): e92072 (Chapter 3)

Agunbiade TA, Coates BS, Sun W, Tsai M-R, Valero C, Tamò M, Pittendrigh BR (2014) Defining the species complex of the legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), by Comparative Mitochondrial Phylogenomics. Submitted (Chapter 4)

Agunbiade TA, Sun W, Coates BS, Djouaka R, Tamò M, Ba MN, Binso-Dabire C, Baoua I, Olds BP, Pittendrigh BR (2013) Development of reference transcriptomes for the major field insect pests of cowpea: A Toolbox for insect pest management approaches in West Africa. PLoS ONE 8(11) e79929 (Chapter 5)

LIST OF PUBLICATIONS RELEVANT TO THIS DISSERTATION BUT NOT FORMING PART OF IT

Margam V, Coates BS, Hellmich RL, Agunbiade T, Seufferheld JM, Sun W, Ba MN, Sanon A, Binso-Dabire C, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(2): e16444.

Margam VM, Coates BS, Bayles DO, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Kroemer JA, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011) Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(7): e21388.

Baoua I, Ba NM, Agunbiade TA, Margam V, Binso-Dabire CL, Sanon A, Pittendrigh BR (2011) Potential use of Sesbania pachycarpa DC (Fabaceae: Papilionoideae) as a refugia for the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). International Journal of Tropical Insect Science 31: 212-218.

Bello J, Seufferheld F, Steele LD, Agunbiade T, Guillot D, Cutz G, Pittendrigh BR (2011) Scientific Animations Without Borders ${ }^{\text {SM. }}$: An international collaborative approach for building applicable scientific educational materials for use on cell phones, and the Internet in developing nations. The International Journal of Science in Society 2(4): 49-62.

Bello-Bravo J, Seufferheld F, Agunbiade T, Steele LD, Guillot D, Ba NM, Binso-Dabire CL, Baoua I, N’Diaye M, Tamò M, Pittendrigh B (2012) Scientific Animations Without Borders ${ }^{\mathrm{TM}}$: Cell-phone videos for cowpea farmers. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M, (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp. 369 - 380
Olds BP, Coates BS, Steele LD, Sun W, Agunbiade TA, Yoon KS, Strycharz JP, Lee SH, Paige KN, Clark JM, Pittendrigh BR (2012) Comparison of the transcriptional profiles of head and body lice. Insect Molecular Biology 21(2): 257-268.

TABLE OF CONTENTS

CHAPTER 1. IPM-OMICS: FROM GENOMICS TO EXTENSION FOR INTEGRATED PEST MANAGEMENT OF COWPEA 1
ABSTRACT. 1
INTRODUCTION 2
CONCLUSIONS 18
REFERENCES 20
FIGURES AND TABLES 31
CHAPTER 2. THE SPATIAL GENETIC DIFFERENTIATION OF THE LEGUME POD BORER, MARUCA VITRATA F. (LEPIDOPTERA: CRAMBIDAE) POPULATIONS IN WEST AFRICA 39
ABSTRACT. 39
INTRODUCTION 40
MATERIAL AND METHODS 43
RESULTS 48
DISCUSSION 52
CONCLUSIONS 56
REFERENCES 58
FIGURES AND TABLES 64
CHAPTER 3. GENETIC DIFFERENTIATION AMONG MARUCA VITRATA F. (LEPIDOPTERA: CRAMBIDAE) POPULATIONS ON CULTIVATED COWPEA AND WILD HOST PLANTS: IMPLICATIONS FOR INSECT RESISTANCE MANAGEMENT AND BIOLOGICAL CONTROL STRATEGIES 70
ABSTRACT. 70
INTRODUCTION 71
MATERIALS AND METHODS 76
RESULTS 80
DISCUSSION 83
REFERENCES 90
FIGURES AND TABLES 97
CHAPTER 4. DEFINING THE SPECIES COMPLEX OF THE LEGUME POD BORER, MARUCA VITRATA (LEPIDOPTERA: CRAMBIDAE), BY COMPARATIVE MITOCHONDRIAL PHYLOGENOMICS 105
ABSTRACT. 105
INTRODUCTION 106
MATERIALS AND METHODS 109
RESULTS AND DISCUSSION 114
CONCLUSIONS 121
REFERENCES 123
FIGURES AND TABLES 129
CHAPTER 5. DEVELOPMENT OF REFERENCE TRANSCRIPTOMES FOR THE MAJOR FIELD INSECT PESTS OF COWPEA: A TOOLBOX FOR INSECT PEST MANAGEMENT APPROACHES IN WEST AFRICA 141
ABSTRACT. 141
INTRODUCTION 142
MATERIALS AND METHODS 146
RESULTS 151
DISCUSSION 155
CONCLUSION 162
REFERENCES 164
FIGURES AND TABLES 173
APPENDIX A. Characteristics of the M. vitrata individuals in the three West African countries 185
APPENDIX B. Characteristics of the M. vitrata individuals 186
APPENDIX C. Information on the insect mitogenomes included for phylogenetic analysis 189
APPENDIX D. Tandem repeats predicted in the mitogenome of M. vitrata 191
APPENDIX E. Multiple sequence alignment of mitogenome sequences from M. vitrata (Old World) and M. vitrata (New World) 192
APPENDIX F. Counts of all the genes identified in gene ontology analysis of all contigs 227
APPENDIX G. Species distribution of the top Blastx hits 283
APPENDIX H. InterProScan results from A. craccivora contigs that showed Blastn hits to B. aphidicola 287
APPENDIX I. Summary of all SNPs detected in contigs including sequence description, length, organism, minimum e-value, number of GOs, and number of SNPSs associated with each contig 298
APPENDIX J. List of all SNPs including consensus positions on contigs, alleles, coverage, and frequency 329

CHAPTER 1

IPM-OMICS: FROM GENOMICS TO EXTENSION FOR INTEGRATED PEST MANAGEMENT OF COWPEA ${ }^{1}$

Abstract

Insect pests often develop resistance to insecticides, and such resistance represents a serious management problem. Devising methods that concurrently delay resistance and minimize injury by insects to field crops and stored grain has long been a goal of integrated pest management (IPM). A centerpiece of IPM has been the combined use of biological control agents and prudent application of chemical insecticides. Unfortunately, successful application of IPM has remained a challenge. This chapter describes the use of emerging genomic technologies that may lead to a "systems" perspective of IPM for the control of pests of cowpea and other crops. This emerging field, which we refer to as "IPM-omics", builds upon recent advances in genome sequencing technologies and detection of large-scale gene polymorphisms, which are becoming economically feasible for pest insect systems. IPM-omics will also need to involve the use of information and communications technologies both to collect critical information on pest populations and to deploy practical IPM solutions. The information obtained on the temporal fluctuations, spatial distribution, and ecological diversification within target, non-target, and natural enemy populations can be overlaid on a geographic information systems (GIS) map to

[^0]predict pest outbreaks and to decide how to apply control measures. The "systems" perspective of organism communities provided through IPM-omics may also facilitate the effective evaluation, modification, and optimization of IPM strategies. However, any resultant IPM program for crop pests will also require that extension agents, government agencies, and non-governmental organizations (NGOs) have the ability to easily access and deploy the IPM research findings through information and communications technologies. Thus, we also outline the need for an online system that facilitates the sharing and peer review of practical IPM outputs. Many of these tools are currently being developed to help farmers manage insect pests of cowpea in West Africa.

INTRODUCTION

The Green Revolution, which introduced modern crop varieties and production techniques (Khush 1995; Evenson and Gollin 2003), greatly affected insect pest control. It caused a shift away from the use of crop rotation, field sanitation, flooding, and manual destruction of damaging insects and/or insect-infested plants (Smith et al. 1976) toward the use of high intensity monoculture cropping systems that depended on chemical insecticides to suppress pest insect populations. This shift began in industrialized nations in the 1940s and 1960s, and the consequent reliance on synthetic insecticides led to insecticide resistance, the suppression of beneficial insect populations, and the emergence of minor pests as major pests (Norris et al. 2003). Pesticides can provide excellent crop protection, but in addition to selecting for insecticide resistance, they have had numerous negative impacts on human health and the environment (Singh 2000; Wilson and Tisdell 2001; Georghiou 1986). In 1962, Rachel Carson’s book "Silent Spring" raised concerns
and public awareness of the environmental and ecological impacts of pesticide use, and toward the end of the 1970s, this concern and awareness motivated efforts to develop lower impact crop protection methods (Hassan and Bakshi 2005).

The term "integrated pest management" (IPM) was first used by Smith and van den Bosch in 1967 to describe concurrent application of multiple control measures to reduce damage caused by insects to crop plants. The development of IPM led to dramatic changes in the technologies available for pest management. Modern IPM approaches aim to provide economically viable and sustainable control of insect damage by relying upon biological, chemical, physical, host plant resistance, and cultural control tools. Conceptually, IPM strategies recognize that many environmental factors interact and work in concert to affect the abundance of insect pests. IPM strategies also strive to exploit the knowledge of the insect pest's biology, location of alternate plant hosts, and natural enemies to achieve more informed pest management decisions. Fundamentally, the application of an IPM strategy involves a holistic or "systems" approach to pest management, where interactions between pests and the community of natural enemies are evaluated in a tiered approach once the scale of the system in question is set (for more detail, see Wise and Whalon 2009). The systems approach to IPM requires an in-depth knowledge of how management practices affect the insect's biology and other trophic interactions. It also involves the monitoring of pest populations to identify appropriate control measures as well as aids in making decisions as to how, when, and where to apply them.

Analogous to a systems approach for IPM applications, the genomics "revolution" has led to efforts to understand an organism or community on a genome-wide scale.

Recent advances in genomics are now making it possible to better understand pest populations, and are likely to provide new approaches for studying and managing insects. Despite the decreasing costs of DNA sequencing and the development of affordable highthroughput platforms, with which entire genomes can be rapidly sequenced, IPM has not exploited the use of these genomic tools.

Researchers must begin to define how such genomic tools can be used in an inclusive manner with IPM to improve pest management decisions. In addition to the development of genomics, a second parallel "revolution" that has occurred in the past two decades is the ability to deploy pest management concepts through the electronic media. Many of the control strategies that have been developed remain difficult to deploy to extension agents and farmers in Africa and other developing regions because of the remoteness of the regions and the low literacy rates among the farming communities. IPM strategies will have large-scale impacts only if they can be coupled with effective educational deployment tools that can be rapidly updated as new and practical control approaches emerge. We use the term "IPM-omics" to describe the use of genomic (and other "omics") tools to better characterize pest populations and to provide a greater depth of knowledge for the development and deployment of IPM strategies. The remainder of this chapter describes how IPM-omics can be used in the management of cowpea insect pests and how IPM-omics has the potential to further cowpea IPM in West Africa.

Advent of the genomics era

Despite the apparent prominence of molecular biology methods within modern laboratories, it is a relatively young discipline. Molecular biology techniques have made
gene cloning, sequencing, organism transformation, and genotyping of individuals almost commonplace. Many of these techniques became accessible with the development of polymerase chain reaction (PCR), which essentially is in vitro synthesis of millions of copies of defined genome regions. The PCR procedure has been credited to Kary Mullis, and the technique has now been adapted for many different applications such that PCR is now a fundamental and indispensable tool of molecular biology (Bartlett and Stirling 2003).

The development of genomic practices depended on the ability to perform highthroughput DNA sequencing at dramatically reduced costs along with an increased capacity to analyze large data sets. The initial sequencing of DNA by chemical modification and subsequent cleavage of specific nucleotides (i.e., Maxam-Gilbert sequencing; Maxam and Gilbert 1977), and by incorporation of di-deoxynucleotides that resulted in truncation of primer extension reactions at specific bases (i.e., Sanger sequencing; Sanger and Coulson 1975; Sanger et al. 1977) was time consuming. It also required expertise to separate DNA fragments (via denaturing polyacrylamide gel electrophoresis) and to interpret the results. Sequencing throughput was increased by the use of capillary gel electrophoresis platforms that automated the separation of up to 384 individual reaction products at a time and by the use of computers to analyze the data in the form of electropherograms. Despite improving the scale at which DNA fragments could be sequenced, these technologies or "platforms" were still not time- or costeffective for the sequencing of entire genomes. For example, the human genome project, which was launched in 1990, required more than 10 years to complete at a cost of about three billion USD (Venter et al. 2001). These earlier sequencing platforms were also used
to acquire whole genome sequences (WGS) for insects, including the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae) (The International Aphid Genomics Consortium 2010); the mosquitoes, Anopheles gambiae Giles (Diptera: Culicidae) (Holt et al. 2002) and Aedes aegypti Linnaeus (Diptera: Culicidae) (Nene et al. 2004); the honey bee, Apis mellifera Linnaeus (Hymenoptera: Apidae) (Weinstock et al. 2006); the silkmoth, Bombyx mori Linnaeus (Lepidoptera: Bombycidae) (International Silkworm Genome Consortium 2008); the fruit flies, Drosophila melanogaster Meigen (Diptera: Drosophilidae) (Adams et al. 2000) and D. pseudoobscura Fabricius (Diptera: Drosophilidae) (Richards et al. 2005); the wasp, Nasonia vitripennis Ashmead (Hymenoptera: Pteromalidae) (Werren et al. 2010); the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) (Tribolium Genome Sequencing Consortium 2008); and the human body louse, Pediculus humanus humanus Linnaeus (Phthiraptera: Pediculidae) (Pittendrigh et al. 2006; Kirkness et al. 2010; Pittendrigh et al. 2011).

More recently, sequence-by-synthesis technologies that use pyrosequencing reactions to obtain DNA sequence data have been developed (Ronaghi et al. 1998; Morozova and Marra 2008; Simon et al. 2009). Adaptations to high-throughput platforms have the capacity to generate millions of de novo DNA base sequences from a single run (Margulies et al. 2005). These next generation sequencing (NGS) platforms have greatly facilitated the collection of DNA sequence data and have been especially useful for genomic research on non-model organisms (McCombie et al. 1992; Ellegren 2009). NGS has contributed to the emergence of insect genomics through the accumulation of WGS data for the wasp species, Nasonia giraulti and N. longicornis (Werren et al. 2010), and
(in ongoing projects) for Ixodes scapularis Say (Ixodida: Ixodidae), Rhodnius prolixus Stål (Hemiptera: Reduviidae), Glossina morsitans Westwood (Diptera: Glossinidae), Phlebotomus papatasi Scopoli (Diptera: Psychodidae), and Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae) (Megy et al. 2009). Additionally, NGS has proven useful for the rapid resequencing of wild strains of B. mori (Xia et al. 2009) and multiple Drosophila species (Hahn et al. 2007), as well as expressed sequence tags (ESTs) (Vera et al. 2008).

EST libraries are collections of short Sanger sequencing- or NGS-derived read data obtained from complementary DNA (cDNA). These sequences are representative of genes that are expressed in a particular tissue, at a specific developmental stage, by a particular phenotype, or under particular treatment conditions under which the libraries were constructed (Adams et al. 1991; Gaines et al. 2002; Nagaraj et al. 2006), and are derived from genomic regions that are actively transcribed. ESTs obviously provide information about gene-encoding regions and are considered as low-cost alternatives to a WGS project (Rudd 2003), even though ESTs are subject to sampling bias. More specifically, cDNAs are sampled from a larger pool of potential templates during the cloning and/or DNA sequencing phases, where errors of omission can occur because of stoichiometric differences between libraries (Liu and Graber 2006). Regardless, ESTs are recognized as an effective research approach for discovering genes (Bonaldo et al. 1996; Audic and Claverie 1997), obtaining gene expression information among tissues (Dimopoulos et al. 2000; Porcel et al. 2000), discovering alternate splicing patterns (Gupta et al. 2004), and predicting novel mutations (Coates et al. 2008). Moreover, the quantitative comparison of ESTs within and between libraries is increasingly used for
gene expression analysis (RNAseq; Simon et al. 2009; Fu et al. 2009). For further information on these developing aspects of genomics research, we direct the reader to the following review articles: Ungerer et al. 2008; Rokas and Abbot 2009; Wheat 2010.

The advent of NGS has also been paralleled by the development of molecular marker screening technologies that offer precision and reliability for differentiating allelic variations at single nucleotide positions. Precision and accuracy of allele calling also has been paired with high-throughput capacity that allows for hundreds to thousands of genotyping calls to be made within 24 h (Lyamichev et al. 1999; Tang et al. 1999; Kwok 2001; Tsuchihashi and Dracopoli 2002). These molecular genotyping assays and associated platforms used for detection rely on initial prediction of segregating mutations within individuals or populations of individuals.

Core concepts underlying IPM-omics

IPM-omics, as we envision it, involves five major steps: (1) discover polymorphisms within insect populations (Figure 1.1), (2) use the polymorphisms to answer critical questions about these pest populations through detailed analysis of sets of individual insects collected from the field (Figure 1.2), (3) overlay this information with other available data sets (e.g., GIS) (Figures 1.3 and 1.4), (4) use the knowledge and outcomes to make better pest management decisions (Figure 1.5), and (5) use information and communication technologies to efficiently extend these materials to the target communities (i.e., those involved in the control of pests associated with the target crop) (Bello-Bravo et al. 2012). These steps are now possible because of the following current conditions. The advent of NGS allows one to sequence genes from a large pool of insects
from a given region in order to discover polymorphisms within these populations. The polymorphisms can then be used in high-throughput polymorphism detection systems to investigate details of pest populations. This information on its own or in combination with GIS systems should give us the ability to gain insights into pest populations that have not been previously possible, allowing for better pest management decisions. Finally, the advent of the Internet and cell phones can be used to communicate information on pest populations between farmers and researchers, and these same communication technologies can be used to provide farmers with practical pest management recommendations.

Application of genomic tools to the current pest situation in cowpea

Cowpea, Vigna unguiculata (L.) Walp. (Leguminosae: Papilionaceae), is an important grain legume crop in the semi-arid and dry savannah areas of the tropics (Singh and van Emden 1979). Insect pests feed on and damage cowpea at virtually every crop developmental stage and also feed on and damage the stored grain. The pest species that seriously damage cowpea are numerous (see Table 1.1) and in addition to causing direct feeding damage to vegetative and reproductive tissues, Aphis craccivora Koch (Hemiptera: Aphididae) also vectors plant viruses that further decrease crop yields (Singh and van Emden 1979). Although all these insects cause serious damage to cowpea, the pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is probably the most destructive (Jackai and Singh 1988).

The control of cowpea pests has relied largely on chemical insecticides but the efficacy of this method is variable due to the evolution of resistance to multiple classes of
insecticides (Ekesi 1999). In addition, the insecticides are prohibitively expensive or otherwise unavailable to low-income farmers in West Africa (Giga and Biscoe 1989; Alghali 1991; Bottenberg 1995; Alebeek 1996). The effective control of insect pests of cowpea has therefore relied upon conventional methods (see Introduction), which have been enhanced through the introduction of IPM strategies (Jackai and Adalla 1997). IPMomics is currently being used to identify possible genetic variations in populations of pest species and their related natural enemies, and also to study their geographic distributions and movement patterns. These data are critical for targeting and timing appropriate control measures in the field as well as for determining the coincidence of endogenous natural enemy populations.

Although the genomes of a number of insect pests have been sequenced, there is little or no DNA sequence information for most of the cowpea pests. This scenario, however, is quickly changing. Recently, Margam et al. (2011a) used mitochondrial DNA sequence data and molecular genetic markers to determine that M. vitrata from West Africa and Puerto Rico represent two distinct groups and even proposed that the samples are possibly a complex of sibling species. Moreover, these data indicated that M. vitrata collected from West Africa (Burkina Faso, Niger, and Nigeria), Taiwan, and Australia likely constitute a single species. Previous field studies in West Africa also indicated that M. vitrata is more abundant throughout the year in the southern region (Sudanian zone) of the cowpea producing areas, where the rainfall is relatively high, than in the drier northern regions (the Sahelian zone) (Ba et al. 2009; Margam et al. 2010). Furthermore, light trap studies conducted in Burkina Faso (Ba et al. 2009) strongly support the hypothesis that M. vitrata adults migrate to the northern drier regions from the south during the rainy season.

To study these movement patterns in greater detail, researchers are developing additional molecular genetic markers from genomic sequence data. EST sequence data were collected from the larval M. vitrata midgut and salivary gland tissues as well as from whole adult tissues (Margam et al. 2011b; National Center for Biotechnology Information, NCBI, dbEST accessions HS097571-HS099476). The assembly of these EST data into 3729 contiguous or overlapping contig sequences has also been used to predict the location of ~ 1078 putative single nucleotide polymorphisms (SNPs). Preliminary genotyping data have been collected from Burkina Faso, Niger, and Nigeria at 70 SNP loci, and resulting analyses indicated genetic differences among populations. More specifically, individuals from three sample locations in Burkina Faso (in an East-West pattern of collection) were more genetically different than individuals collected from either Niger or Nigeria (collected in a North-South pattern) (Pittendrigh, unpublished data). These results also suggested that M. vitrata populations are isolated by distance in that sample sites most geographically separated show the most genetic divergence. The current and ongoing application of IPM-omics within West Africa has advanced the knowledge of the population structure for pest insects and will likely be used next to investigate the contribution of alternate host plants to the maintenance of population variability. Although cowpea pest dynamics are incompletely understood, the rapid advances in IPM-omics are increasing our understanding. This information should result in better decisions about which pest controls to deploy, and when and where to deploy them.

Several parasitoids have been identified for the biological control of most cowpea insect pests. Although some of these control agents are indigenous, whether they are or
can become sufficiently abundant to help control the pest populations is unclear. Nonnative species from Taiwan also have been identified as potential biological control agents, and one example is Apanteles taragamae Viereck (Hymenoptera: Braconidae), which has already been experimentally released in Benin (Tamò et al. 2012). To verify the success of parasitoid releases, researchers could potentially study the parasitoid and pest populations to determine whether the pests are being controlled by the indigenous or exotic parasitoids. Molecular markers with polymorphisms unique to the introduced populations can potentially be used to determine whether parasitoids identified from the field (postrelease) are in fact those that were introduced by the biological control program.

Integrating IPM with genomics: IPM-omics

In the last 60 years, the technologies available for pest management have changed dramatically. The previously described genomic tools provide IPM with new ways to understand and develop insect pest control strategies. We are now entering a time when molecular biology, or more precisely the new field of genomics, has the potential to be integrated into IPM to allow practitioners to make better decisions about pest control. The application of molecular genomics to the study of insect population ecology (i.e., ecological genomics) will become increasingly important as insect ecologists discover the power of these new tools (Sunnucks 2000). IPM can increase the durability of chemical and transgenic pest management tools by decreasing the selective pressure on pest populations to evolve resistance. Moreover, resistance management may be enhanced further if other management tools impose fitness costs on insecticide-resistant pests (Pittendrigh et al. 2008; Gassmann et al. 2009a). Fitness costs of resistance arise in the
absence of a control agent when those individuals with resistance alleles have lower fitness than homozygous susceptible individuals. Recent research on insects with resistance to insecticidal toxins produced by the bacterium Bacillus thuringiensis (Bt) indicates that ecological factors can magnify the fitness costs of Bt resistance (Gassmann et al. 2009a). This is an example of ecological negative cross-resistance (Pittendrigh et al. 2008). IPM agents that also increase fitness costs of $B t$ resistance include entomopathogenic viruses (Raymond et al. 2007; Sarfarz et al. 2010), entomopathogenic nematodes (Gassmann et al. 2006; Gassmann et al. 2008; Gassmann et al. 2009b; Hannon et al. 2010), entomopathogenic fungi, and host-plant resistance (Raymond et al 2005; Bird and Akhurst 2007). Computer modeling indicates that IPM agents that magnify fitness costs of resistance can delay or prevent the evolution of insecticide resistance within pest populations (Carrière and Tabashnik 2001; Pittendrigh et al. 2004; Gassmann et al. 2008; Gassmann et al. 2009b). IPM-omics could lead to more efficient and broader application of ecological negative cross-resistance (Gassmann et al. 2009c). By understanding the genetic basis of resistance, it may be possible to predict which IPM practices will elicit the largest fitness costs, thereby maintaining pest susceptibility and preserving the utility of newly developed pest management tools such as $B t$ crops and biopesticides.

The use of genomics for understanding pest populations can be broadly placed into two categories, functional genomics and population genomics (the later being a neologism of the term population genetics). Functional genomics (and other related analysis tools such as proteomics, metabolomics, and systems biology analyses) can be and have been used to understand the detailed mechanisms of how insects respond to and evolve specific responses to challenges that they experience in their environment, such as host-plant
resistance factors and pesticides (Pedra et al. 2004; Li et al. 2009). Unfortunately, functional "omics" tools are currently resource intensive and are only used in the laboratory. The use of genomics for practical applications like the development of new pesticides or the identification of new host plant-resistance factors is predicted to occur in the future (Grimmelikhuijzen et al. 2007). Additionally, genes known to be critical for insect survival may ultimately be target sites for the expression of RNA interference (RNAi) constructs by transgenic plants. However, the use of transgenic plants expressing RNAi specific to insect target genes for the control of pest insects is still in its infancy, and questions concerning resistance management for this control strategy remain to be resolved. Although little is known about potential RNAi resistance in insects, multiple resistance mechanisms to dietary RNAi have already been identified in C. elegans (Winston et al. 2007). It follows that practical insect control measures that may emerge out of functional genomics will probably not occur in the short term.

One of the other challenges for functional "omics" is the general need for a complete genome sequencing, annotation, assembly of the genome, and categorization of the gene classes observed. For many insect species, large genomes filled with a high number of repetitive elements may in the short term make the sequencing of these genomes prohibitively expensive, especially for crop pests, for which resources may be limited. Even when resources are sufficient, however, genomes with a large number of repetitive elements may be difficult to reassemble. An additional problem is that an increased availability of genomes will also reduce the availability of individuals able to perform manual assembly and annotation.

With the advent of high-throughput sequencing, population genomics tools have the potential to be useful in insect control in the short- and medium-term. Knowledge can be rapidly gained about polymorphisms in insect populations, and this information can be used to understand insect population structure and dynamics. Briefly, a large number of insects can be collected from a target region to optimize the amount of polymorphisms observed in a given EST sequencing run. Those polymorphisms identified in the initial sequencing runs can then be used to answer detailed questions about those insect populations. One example within the context of biological control is to use such molecular markers, in conjunction with traditional pest population sampling, to help determine the source populations of the pests during the seasons when the target crop is not grown. By determining the source of host plants or regions where the pest populations originate (e.g., testing the hypothesis that M. vitrata migrates from the south to the north during the rainy season), pest managers can decide where to release biological control agents.

Need for effective information sharing systems of polymorphism data and cost-effective

long-term extension strategies

Finally, a mechanism will be needed to facilitate the flow of information in both directions between those scientists who develop IPM-omics strategies and those end users who apply the strategies. The scientists will need such information sharing systems to obtain the large amounts of polymorphic data required to continually and efficiently build on previous efforts. Extension agents will also require a centralized system for information exchange so that they can access information about practical pest control strategies.

Geographic information systems (GIS)

The use of geo-statistics, GIS, satellite and photo aerial images, geographical positioning systems (GPS), and cellular technologies in combination with the latest advancements in molecular genetic analysis have dramatically changed the level of resolution applied in insect ecology and IPM. The spatial sciences combined with genetic studies of molecular markers such as polymorphisms are now being used to understand the major factors affecting the distribution of insects and to understand the mechanisms of dispersion and migration. These tools are also being used to study the spatial and temporal flow of genetic material within populations and to determine how biotic and abiotic factors along with selection-adaptation strategies may contribute to the genetic structure of an insect population (Lushai and Loxdale 2004).

The use of genomics data requires the development of databases that integrate information on genetic polymorphisms in insect pest populations with geo-referenced information such as geographic coordinates of collected specimens, the time of collection, and environmental conditions of the location. The information collected (or generated in the laboratory) is analyzed using geo-statistical methods and processed into a digital platform or GIS. The information can be displayed in multiple layers as synthetic maps where correlations are visually expressed (Manel et al. 2003; Ribes-Dasi et al. 2005). The revolutionary application of these technologies allows researchers to identify the insects that are being tracked and to track insect displacements at different geographic scales while enhancing the genetic resolution such that the genetics of an individual insect within a population could be characterized (Lushai and Loxdale 2004). From a methods perspective, the use of geo-statistical analysis and GIS programs may simplify the
collection, transmission, and handling of large databases. Through the analysis and manipulation of digital data, it is possible to generate scientific predictions based on a number of possible scenarios. A series of thematic maps are usually elaborated. These maps are very powerful application tools because they show values and correlations as visual variables, and this makes them easy to understand by technical personnel, decision makers, and participating producers (e.g., farmers).

If the current trends continue, our ability to access many polymorphisms across many loci and many insect samples will require a data repository that can then be linked with geographic and ecological data sets. These combined databases will allow researchers to answer important questions about insect pest populations and their environment such as: Does the population migrate? Is the population adapted to particular hosts? Is the population resistant to particular insecticides? With the answers to these and similar questions, researchers, government agencies, and farmers can make better decisions regarding human and environmental protection through the application of more rational pest management strategies.

Extension systems

Ultimately, the success of any IPM strategy will hinge on the development, adaptation, and rapid deployment of educational materials that inform scientists and farmers about cost-effective pest control strategies. These materials will be developed and used by various stakeholders including scientists, development organizations (e.g., NGOs and Peace Corps volunteers), extension services, farmer organizations, and farmers themselves. For example, live-action videos have been created that describe the best
practices for rearing and deploying biological control agents. The sharing of these videos and similar educational materials through the Internet will help institutions in host countries develop effective biological control release programs (Bello-Bravo et al. 2012). Additionally, as innovations in these programs arise, a centralized Internet-based system will be needed so that groups can share these materials for peer review to assure the quality and easy access of the content.

A centralized Internet-based system is also needed so that practical pest control strategies can be deployed directly to NGOs, extension agents, farmer organizations, and farmers. To this end, an online peer-reviewed system (termed the Sustainable Development Virtual Knowledge Interface) is currently in development to provide for an online platform for the sharing of extension materials in an easily and widely accessible manner (Bello-Bravo et al. 2010). For example, educational videos containing useful information for cowpea farmers and designed for transmission and viewing with cell phones have already been produced. The language of these videos can be easily changed to match the language of the users. In addition, this centralized Internet-based cell phone system can be used for deploying text, Powerpoint ${ }^{\circledR}$, audio, and PDF files. Thus, older extension materials can be added to the centralized system and deployed by cell phone to the community of cowpea farmers and extension agents.

CONCLUSIONS

Cost-effective educational strategies that produce tangible and useful educational materials will be critical for the long-term sustainability of any IPM program. Such materials will provide various stakeholders with the capacity to easily deploy such
information into their communities. It will also allow the end users to provide feedback on the educational materials. Thus, IPM-omics programs will need to integrate not only genomics (to increase the understanding of pest populations) but also GIS and other current tools that facilitate the efficient collection, analysis, and exchange of IPM information.

REFERENCES

Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidén-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287: 21852195.

Adams MD, Kelley JM, Gocayne JD, Dubmick M, Polymeropoulos MH, Xiao H, Merrill CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252: 1651-1656.

Agunbiade TA, Kim KS, Forgacs D, Margam VM, Murdock LL, Ba NM, Binso-Dabire CL, Baoua I, Ishiyaku MF, Tamò, Pittendrigh BR (2012) The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa. Bulletin of Entomological Research 102(5): 589-599.

Agunbiade TA, Sun W, Coates BS, Djouaka R, Tamò M, Ba MN, Binso-Dabire C, Baoua I, Olds BP, Pittendrigh BR (2013) Development of reference transcriptomes for
the major field insect pests of cowpea: A Toolbox for insect pest management approaches in West Africa. PLoS ONE 8(11) e79929.

Agunbiade TA, Coates BS, Datinon B, Djouaka R, Sun W, Tamò M, Pittendrigh BR (2014) Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: Implications for insect resistance management and biological control strategies. PLoS ONE 9(3): e92072.

Alebeek F (1996) Natural suppression of bruchid pests in stored cowpea, Vigna unguiculata (L.) Walp., in West Africa. International Journal of Pest Management 42: 55-60.

Alghali AM (1991) Studies on cowpea farming practices in Nigeria with emphasis on insect pest control. Tropical Pest Management 37: 71-74.

Audic S, Claverie J (1997) The significance of digital gene expression profiles. Genome Research 7: 986-995.

Ba NM, Margam VM, Binso-Dabire CL, Sanon A, McNeil JN, Murdock LL, Pittendrigh BR (2009) Seasonal and regional distribution of the cowpea pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) in Burkina Faso. International Journal of Tropical Insect Science 29(3): 109-113.

Bartlett JMS, Stirling D (2003) PCR Protocols, 2nd Edition. Humana Press, Totowa, New Jersey.

Bello-Bravo J, Diaz R, Venugopal S, Viswanathan M, Pittendrigh BR (2010) Expanding the impact of practical scientific concepts for low-literate learners through an inclusive and participatory virtual knowledge ecosystem. Journal of the World Universities Forum 3:147-164.

Bird LJ, Akhurst RJ (2007) Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera (Lepidoptera: Noctuidae). Biological Control 40: 196-203.

Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: Two approaches to facilitate gene discovery. Genome Research 6: 791-806.

Bottenberg H (1995) Farmers' perceptions of crop pests and pest control practices in rainfed cowpea cropping systems in Kano, Nigeria. International Journal of Pest Management 41: 195-200.

Carrière Y, Tabashnik BE (2001) Reversing insect adaptation to transgenic insecticidal plants. Proceedings of the Royal Society: Biological Sciences Series B 268: 14751480.

Chi YH, Ahn JE, Yun DJ, Lee SY, Liu TX, Keyan ZS (2011) Changes in oxygen and carbon dioxide environment alter gene expression of cowpea bruchids. Journal of Insect Physiology 57(1): 220-230.

Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2008) Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). Insect Molecular Biology 17: 607-620.

Dimopoulos G, Casavant TL, Chang S, Scheetz T, Roberts C, Donohue M, Schultz J, Benes V, Bork P, Ansorge W, Soares MB, Kafatos FC (2000) Anopheles gambiae pilot gene discovery project: Identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proceedings of the National Academy of Sciences USA 97: 6619-6624.

Ekesi S (1999) Variability of pathogenic activity of entomopathogenous fungi (Hyphomycetes) towards the legume flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae) and their potentials for biological control. PhD Thesis. Ahmadu Bello University, Zaria.

Ellegren H (2009) Sequencing goes 454 and takes large-scale genomics into the wild. Molecular Ecology 17: 1629-1635.

Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 - 2000. Science 300 (5620): 758-762.

Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R, Khaitovich P (2009) Estimating accuracy of RNA-seq and microarrays with proteomics. BMC Genomics 10: 161.

Gaines PJ, Brandt KS, Eisele AM, Wagner WP, Bozic CM, Wisnewski N (2002) Analysis of expressed sequence tags from subtracted and unsubtracted Ctenocephalides felis hindgut and Malpighian tubule cDNA libraries. Insect Molecular Biology 11: 299306.

Gassmann AJ, Stock SP, Carrière Y, Tabashnik BE (2006) Effect of entomopathogenic nematodes on the fitness cost of resistance to $B t$ toxin Cry1Ac in pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology 99: 920-926.

Gassmann AJ, Stock SP, Sisterson MS, Carrière Y, Tabashnik BE (2008) Synergism between entomopathogenic nematodes and Bacillus thuringiensis crops: Integrating biological control and resistance management. Journal of Applied Ecology 45: 957-966.

Gassmann AJ, Carrière Y, Tabashnik BE (2009a) Fitness costs of insect resistance to Bacillus thuringiensis. Annual Review of Entomology 54: 147-163.

Gassmann AJ, Fabrick JA, Sisterson MS, Hannon ER, Stock SP, Carrière Y, Tabashnik BE (2009b) Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes. Journal of Economic Entomology 102: 1224-1232.

Gassmann AJ, Onstad DW, Pittendrigh BR (2009c) Evolutionary analysis of herbivorous insects in natural and agricultural environments. Pest Management Science 65: 1174-1181.

Georghiou GP (1986) The magnitude of the resistance problem. In Pesticide resistance: Strategies and tactics for management. National Academy Press, Washington D.C. pp14-43.

Giga DP, Biscoe J (1989) Treating maize grains for storage with registered protectants in Zimbabwe: Technical, practical and economic considerations. Zimbabwe Science News 23: 101-103.

Grimmelikhuijzen CJP, Cazzamali G, Williamson M, Hauser F (2007) The promise of insect genomics. Pest Management Science 63: 413-416.

Gupta S, Zink D, Korn B, Vingron M, Haas SA (2004) Genome wide identification and classification of alternative splicing based on EST data. Bioinformatics 20(16): 2579-2585.

Hahn MW, Han MV, Han S-G (2007) Gene family evolution across 12 Drosophila Genomes. PLoS Genetics 3(11): e197.

Hannon ER, Sisterson MS, Stock SP, Carrière Y, Tabashnik BE, Gassmann AJ (2010) Effects of four nematode species on fitness costs of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. Journal of Economic Entomology 103: 18211831.

Hassan ASMR, Bakshi K (2005) Pest management, productivity and environment: A comparative study of IPM and conventional farmers of northern districts of Bangladesh. Pakistan Journal of Social Sciences 3(8): 1007-1014.

Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC,

Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the Malaria mosquito Anopheles gambiae. Science 298: 129-149.

Jackai LEN, Singh SR (1988) Screening techniques for host plant resistance to insect pests of cowpea. Tropical Grain Legume Bulletin 35: 2-18.

Jackai LEN, Adalla CB (1997) Pest management practices in cowpea: A review. In Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (Eds.), Advances in Cowpea Research. Co-publication of International Institute of Agriculture (IITA) and Japan International Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, Nigeria, pp 240-258.

Khush GS (1995) Breaking the yield frontier of rice. GeoJournal 35: 329-332.
Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubío JM, Ribeiro JM, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li HM, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguadé M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR. (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences USA 107: 12168-12173.

Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annual Review of Genomics and Human Genetics 2: 235-258.

Li CH, Yeakley JM, McDaniel TK, Shen R (2009) Medium- to high-throughput genotyping using VeraCode microbeads. Methods in Molecular Biology 496: 129142.

Liu D, Graber JH (2006) Quantitative comparison of EST libraries requires compensation for systematic biases in cDNA generation. BMC Bioinformatics 7:77.

Lushai G, Loxdale HD (2004) Tracking movement in small insect pests, with special reference to aphid populations. International Journal of Pest Management 50(4): 307-315.

Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, Kwiatkowski RW, Sander TJ, de Arruda M, Arco DA, Neri BP, Brow MA (1999) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnology 17: 292-296.

Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology and Evolution 18(4): 189-197.

Margam VM, Baoua I, Ba, NM, Ishiyaku MF, Huesing JE, Pittendrigh BR, Murdock LL (2010) Wild host plants of legume pod borer Maruca vitrata (Lepidoptera: Crambidae) in southern Niger and northern Nigeria. International Journal of Tropical Insect Sceince 30(2): 108-114.

Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL, Baoua I, Ishiyaku MF, Shukle JT, Hellmich RL, Covas FG, Ramasamy S, Armstrong J, Pittendrigh BR, Murdock LL (2011a) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Molecular Biology Reports 38(2): 893 - 903.

Margam VM, Coates BS, Hellmich RL, Agunbiade T, Seufferheld JM, Sun W, Ba MN, Sanon A, Binso-Dabire C, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011b) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(2): e16444.

Margam VM, Coates BS, Bayles DO, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Kroemer JA, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011c) Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(7): e21388.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 326-327.

Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proceedings of the National Academy of Sciences USA 74 (2): 560-564.

McCombie WR, Adams MD, Kelley JM, FitzGerald MG, Utterback TR, Khan M, Dubnick M, Kerlavage AR, Venter JC, Fields C (1992) Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologies. Nature Genetics 1: 124-131.

Megy K, Hammond M, Lawson D, Bruggner RV, Birney E, Collins FH (2009) Genomic resources for invertebrate vectors of human pathogens, and the role of VectorBase. Infection, Genetics and Evolution 9: 308-313.

Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92: 255-264.

Nagaraj SH, Gasser RB, Ranganathan S (2006) A hitchhiker's guide to expressed sequence tag (EST) analysis. Briefings in Bioinformatics 8: 6-21.

Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW (2004) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 17181723.

Norris RF, Caswell-Chen EP, Kogan M (2003) Concept in integrated pest management. Prentice-Hall of India Private Ltd, New Delhi. Journal of Invertebrate Pathology 105: 204-206.

Pedra JH, McIntyre LM, Scharf ME, Pittendrigh BR (2004) Genome-wide transcription profile of field- and laboratory-selected DDT-resistant Drosophila. Proceedings of the National Academy of Sciences USA 101(18): 7034-7039.

Pittendrigh BR, Gaffney PJ, Huesing JE, Onstad DW, Roush RT, Murdock LL (2004) "Active" refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. Journal of Theoretical Biology 231: 461-474.

Pittendrigh BR, Clark JM, Johnston JS, Lee SH, Romero-Severson J, Dasch GA (2006) Proposed sequencing of a new target genome: The human body louse, Pediculus humanus humanus. Journal of Medical Entomology 43(6): 1103-1111.

Pittendrigh BR, Huesing JE, Sun L, Gaffeny P (2008) Negative cross-resistance: Past, present, and future potential. In Onstad DW [Ed.], Resistance Management: Biology, Economics, and Prediction. Academic Press, Burlington, pp. 107-124.

Pittendrigh BR, Berenbaum MR, Seufferheld MJ, Margam VM, Strycharz JP, Yoon KS, Sun W, Reenan R, Lee SH, Clark JM (2011) Simplify, simplify: Lifestyle and compact genome of the body louse provide a unique functional genomics opportunity. Communicative and Integrative Biology 4(2): 188-191.

Porcel BM, Tran AN, Tammi M, Nyarady Z, Rydâker M, Urmenyi TP, Rondinelli E, Peterrsson U, Andersson B, Aslund L (2000) Gene survey of the pathogenic protozoan Trypanosoma cruzi. Genome Research 10: 1103-1107.

Raymond B, Sayyed AH, Wright DJ (2005) Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis. Proceedings of the Royal Society: Biological Sciences Series B 272: 1519-1524.

Raymond B, Sayyed AH, Hails RS, Wright DJ (2007) Exploiting pathogens and their impact on fitness costs to manage the evolution of resistance to Bacillus thuringiensis. Journal of Applied Ecology 44: 768-780.

Ribes-Dasi M, Sió J, Planas S, Almacellas J, Torà R, Avilla J (2005) The use of Geostatistics and GIS to optimize pest control practices in precision farming systems. Information and Technology for Sustainable Fruit and Vegetable Production. FRUTIC 05, 12-16 September 2005, Montpellier France.

Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP, Couronne O, Hua S, Smith MA, Zhang P, Liu J, Bussemaker HJ, van Batenburg MF, Howells SL, Scherer SE, Sodergren E, Matthews BB, Crosby MA, Schroeder AJ, Ortiz-Barrientos D, Rives CM, Metzker ML, Muzny DM, Scott G, Steffen D, Wheeler DA, Worley KC, Havlak P, Durbin KJ, Egan A, Gill R, Hume J, Morgan MB, Miner G, Hamilton C, Huang Y, Waldron L, Verduzco D, Clerc-Blankenburg KP, Dubchak I, Noor MA, Anderson W, White KP, Clark AG, Schaeffer SW, Gelbart W, Weinstock GM, Gibbs RA (2005) Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research 15: 1-18.

Rokas A, Abbot P (2009) Harnessing genomics for evolutionary insights. Trends in Ecology and Evolution 24(4):192-200.

Ronaghi M, Uhlén M, Nyrén P (1998) DNA sequencing: A sequencing method based on real-time pyrophosphate. Science 281 (5375): 363-365.

Rudd S (2003) Expressed sequence tags: Alternative or complement to whole genome sequences? Trends in Plant Science 8: 321-329.

Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology 94 (3): 441-448.

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA 74 (12): 54635467.

Sarfarz RM, Cervantes V, Myers JH (2010) Resistance to Bacillus thuringiensis in the cabbage looper (Tricoplusia ni) increases susceptibility to nucleopolyhedrovirus. Journal of Invertebrate Pathology 105(2): 204-206.

Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D, Meyers BC (2009) Short-read sequencing technologies for transcriptional analyses. Annual Review of Plant Biology 60: 305-333.

Singh RB (2000) Environmental consequence of agricultural development: A case study from the Green Revolution state of Haryana, India. Agriculture, Ecosystems and Environment 82: 97-103.

Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annual Review of Entomology 24: 255-278.

Smith RF, van den Bosch R (1967) Integrated control. In Kilgore WW, Doutt RL (Eds.), Pest Control: Biological, Physical, and Selected Chemical Methods. Academic Press, New York.

Smith RF, Apple JL, Bottrell DG (1976) The origins of integrated pest management concepts in agricultural crops. In Apple JL, Smith RF (Eds.), Integrated Pest Management. Plenum Press, New York, pp 1-16.

Sunnucks P (2000) Efficient genetic markers for population biology. Trends in Evolution and Ecology 15:199-203.

Tang K, Fu D-J, Julien D, Braun A, Cantor CR, Köster H (1999) Chip-based genotyping by mass spectrometry. Proceedings of the National Academy of Sciences USA 96:10016-10020.

The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology 8: e1000313.

The International Silkworm Genome Consortium (2008) The genome of a Lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 38: 1036-1045.

Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452: 949-955.

Tsuchihashi Z, Dracopoli NC (2002) Progress in high throughput SNP genotyping methods. Pharmacogenomics Journal 2: 103-110.

Ungerer MC, Johnson LC, Herman MA (2008) Ecological genomics: Understanding gene and genome function in the natural environment. Heredity100 (2):178-83.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M,

Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291: 1304-1351.

Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a non-model organism using 454 pyrosequencing. Molecular Ecology 17: 1636-1647.

Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, Maleszka R, The Honeybee genome sequencing consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: 931-949.

Werren JH, Richards S, Desjardins CA, Niehuis O, Jürgen G, Colbourne JK, The Nasonia Genome Working Group (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327: 343-348.

Wheat CW (2010) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138(4): 433-51.

Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics 39: 449-462.

Winston MW, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proceedings of the National Academy of Sciences USA104: 10565-10570.

Wise J, Whalon M (2009) A systems approach to IPM integration, ecological assessment and resistance management in tree fruit orchards. In Ishaaya I, Horowitz AR (Eds.), Biorational Control of Arthropod Pests: Application and Resistance Management. Springer Publishing Ltd., Dordrecht, Heidelberg, London, New York, pp. 325-345.

Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Li J, Yin X, Li D, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Wang J, Xiang Z, Wang J (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326: 433-436.

FIGURES AND TABLES

Figure 1.1. Hypothetical representation of the pooling of insect samples from different cowpea growing areas of West Africa for the construction of cDNA library (the arrows do not represent exact current sampling locations for any given insect species). The insects are taken from a diverse set of geographical locations, and the mRNA is pooled to create a cDNA library. Alignment of subsequent DNA sequence forms a set of expressed sequence tags (ESTs) potentially derived from the same locus, and thus representative of alleles at a locus. The presence of polymorphisms among alleles in the form of single nucleotide polymorphisms (SNPs) can readily be adapted for genotyping individuals with high-throughput systems.

Figure 1.2. Representation of a hypothetical population genomics study within the scope of IPM-omics in which individual insects from different locations (shown by the tubes) are collected from West Africa. Polymorphisms are detected among individual insect samples with high-throughput system(s) (shown as a blue plate), and are used to differentiate genotypes that are correlated back to geographic location, host plant, ecotype, or other ecological characteristics described at the initial collection. Polymorphisms detected between individual insects are indicated as the C/G to T/A differences at the bottom of the figure.

Figure 1.3. Hypothetical scenario of polymorphisms associated with the insect species in the different agro-ecological zones in West Africa. Scenario (A) would indicate a longitudinal movement pattern of an insect population, and scenario (B) would be consistent with the hypothesis that the insect populations are endemic in both areas with no major longitudinal movement patterns. These represent hypothetical situations in which polymorphisms could be used to test hypotheses associated with large-scale insect movement patterns.

Figure 1.4. Hypothetical use of molecular markers (short DNA sequences given in the blue and red boxes) for the study of local population structure in a pest population in the dry (I) and wet (II) seasons. When two defined source pest populations remain in the dry season (A and B in I), biocontrol agents are released in the areas where the pest populations are endemic (III) to suppress the pest population in the wet season (IV). During the wet season (II), the pest population without biocontrol agents expands as indicated by the sets of red and blue rings around the A and B source populations. In (IV), the biocontrol agents have reduced the pest population levels as indicated by the smaller and more lightly colored red and blue rings around the A and B source populations.

Figure 1.5. Hypothetical use of information gained from genomic studies of insect populations and how such information could be used in decisions associated with deployment of IPM strategies. Two hypothetical scenarios are illustrated: scenario A with biocontrol approach I and scenario B with biocontrol approach II. In scenario A, the insects move from the south to the north in the rainy season, and biocontrol agents are released in the south (in endemic regions) before migration for long-term suppression of the pest population (biocontrol approach I); temporary control measures (e.g., neem sprays) may be required in non-endemic regions if pest levels become too high. Apanteles taragamae is shown as an example of a biocontrol agent. In scenario B, the pest is endemic in both regions, with no significant longitudinal movement patterns. A possible pest control strategy in scenario B could involve the release of parasitoids (in both the south and north regions) (biocontrol approach II) as well as implementation of an education program concerning the temporary control (e.g., with neem sprays) if pest levels become damaging. Trichogramma eldanae is shown as an example of a parasitoid. The farmer in the figure is applying a plant-based extract spray and thus does not require personal protection equipment; if a synthetic pesticide were used in this extension material, the farmer would have to be shown with personal protection equipment.

Table 1.1. Summary of the major pests of cowpea in West Africa, important areas of research for IPM-omics strategies, genomics tools needed in the near future, and genomics tools currently available or currently being developed.

Pest Species	Important research areas of immediate concern	Current or potential control strategies	Genomic tools needed (short-term)	Genomic tools available or being developed
Maruca vitrata Fabricius	Local movement Patterns	1)	Bt cowpea	1)

Table 1.1. (cont.)

Megalurothrips sjostedti	1)	Population structure and dynamics Trybom (Thysanoptera:
Thripidae)	2)	Interactions: Host plant
	resistance/tolerance -	
	biological control	
	3)Insecticide resistance	

1) Host plant tolerance
2) Chemical pesticides
3) Bio-pesticides
4) Biological control
5) Cultural control
6) Population structure and dynamics
7) Interactions: Host plant resistance/tolerance biological control
8) Insecticide resistance
9) Presence of genetically different populations
10) Population structure and dynamics
11) Interactions: Host plant resistance/tolerance biological control
12) Insecticide resistance
13) Deployment systems for augmentative biological control
14) Host plant resistance/field tolerance
15) Chemical pesticides
16) Bio-pesticides
17) Biological control
18) Host plant resistance/field tolerance
19) Chemical pesticides
20) Biological control
21) EST libraries and sequence data generated
22) Molecular marker development for population studies
23) EST libraries sequenced and available (Agunbiade et al. 2013)

Aphis craccivora Koch (Hemiptera: Aphididae)

Clavigralla tomentosicollis Stål (Hemiptera: Coreidae)

1) EST libraries and sequence data generated
2) Molecular marker development for population studies
3) EST libraries sequenced and available (Agunbiade et al. 2013)
4) EST libraries sequenced and available (Agunbiade et al. 2013)

Table 1.1. (cont.)

Sericothrips adolfifriderici Karny (Thysanoptera: Thripidae)	1) 2) 3)	Population structure and dynamics Interactions: Host plant resistance/tolerance biological control Insecticide resistance	1) 2) 3)	Host plant resistance/field tolerance Chemical pesticides Biological control	1) 2)	EST libraries and sequence data generated Molecular marker development for population studies	1)	EST libraries in progress
Anoplocnemis curvipes Fabricius (Hemipera: Coreidae)	1) 2) 3)	Population structure and dynamics Insecticide resistance Deployment systems for augmentative biological control	1)	Chemical pesticides Bio-pesticides Biological control	1)	EST libraries and sequence data generated Molecular marker development for population studies	1)	EST libraries sequenced and available (Agunbiade et al. 2013)

CHAPTER 2

THE SPATIAL GENETIC DIFFERENTIATION OF THE LEGUME POD BORER, MARUCA VITRATA F. (LEPIDOPTERA: CRAMBIDAE) POPULATIONS IN

 WEST AFRICA ${ }^{2}$
Abstract

The legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa. The application of population genetic tools is important in the management of insect pests but such data on M. vitrata is lacking. We applied a set of 6 microsatellite markers to assess the population structure of M. vitrata collected at five sites from Burkina Faso, Niger and Nigeria. Observed polymorphisms ranged from one (marker 3393) to eight (marker 32008) alleles per locus. Observed and expected heterozygosities ranged from 0.0 to 0.8 and 0.0 to 0.6 , respectively. Three of the loci in samples from Nigeria and Burkina Faso deviated significantly from Hardy-Weinberg Equilibrium (HWE), whereas no loci deviated significantly in samples from Niger. Analysis of molecular variance (AMOVA) indicated that 67.3% level of the genetic variation was within individuals compared to 17.3% among populations. A global estimate of $F_{\mathrm{ST}}=0.1$ (ENA corrected $F_{\mathrm{ST}}=0.1$) was significant $(P \leq 0.05)$ and corroborated by pairwise F_{ST} values that were significant

^[${ }^{2}$ This chapter has been published as Agunbiade et al. 2012. The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa. Bulletin of Entomological Research 102(5): 589-599. It is reprinted with the permission of the copyright owner and is available at http://journals.cambridge.org and DOI: http://dx.doi.org/10.1017/S0007485312000156. I acknowledge the contribution of co-authors to the publication.]

among all possible comparisons. A significant correlation was predicted between genetic divergence and geographic distance between subpopulations $\left(\mathrm{R}^{2}=0.6, P=0.04\right)$, and cluster analysis by the program STRUCTURE predicted that co-ancestry of genotypes were indicative of three distinct populations. The spatial genetic variance among M. vitrata in West Africa may be due to limited gene flow, south-north seasonal movement pattern or other reproductive barriers. This information is important for the cultural, chemical, and biological control strategies for managing M. vitrata.

INTRODUCTION

The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), is one of the major pests of grain legumes in the tropics and subtropics. Its emergence as a serious pest is attributed to an extensive host plant range, distribution and persistence. The geographic range of M. vitrata extends from northern Australia and East Asia through sub-Saharan Africa (Taylor 1967; Raheja 1974; Katayama and Suzuki 1984; Ke et al. 1985; Sharma 1998) to the Americas (Wolcott 1933; Taylor 1967; Munroe 1995). The larval stages of M. vitrata are destructive within agricultural and forest eco-systems as they feed on the tender parts of the plant stems, peduncles, flower buds, flowers and pods (Singh and Jackai 1988) of more than 39 host plants belonging mostly to the family Fabaceae (Singh and van Emden 1979; Sharma et al. 1999; Arodokoun et al. 2006).

In West Africa, M. vitrata is one of the major pests of cowpea, especially in the countries of Nigeria, Niger and Burkina Faso, which are the major cowpea producing areas. Cowpea production in West Africa accounts for more than 80% of the world's production (Ortiz 1998; FAOSTAT 2000; Sawadogo 2009), but typical infestations by M.
vitrata can cause yield reductions of 20 to 80% (Taylor 1967; Raheja 1974; Katayama and Suzuki 1984; Ke et al. 1985; Singh et al. 1990; Sharma 1998). The year-to-year crop losses and challenges faced in the effective field control have led to the identification of this pest as a major threat to economic and humanitarian well-being in developing and under-developed nations. Efforts to enhance the effectiveness of biological control agents that attack M. vitrata were partially successful following the importation of the parasitoid wasp, Apanteles taragamae, into Benin from Taiwan by the International Institute of Tropical Agriculture (IITA) (Dannon et al. 2010). However, this has been hindered by the lack of population genetic data and information regarding the structure of M. vitrata populations in West Africa. Although significant advances have been made to understand the life-history and distribution patterns of M. vitrata using light trap and field studies (Ba et al. 2009; Baoua et al. 2011), extensive population-level data are still needed for deployment of biocontrol agents to be effective (Margam et al. 2011). The application of population genetic data to biological control of M. vitrata will provide better information on how many distinct genotypes exist and the effect this can have on the parasitoid population over time. If different distinct genotypes exist, then this could result in the formation of specialized parasitoid populations on the different host genotypes in a process termed sequential speciation. So, over time, parasitoids on a particular genotype or host population may be isolated from other parasitoids on other populations. As herbivorous insects and their parasitoids interact with their environment on a fine spatial and temporal scale, sequential radiation may be quite common (Feder and Forbes 2010). More importantly, detailed population genetics data can be used to better target biological control interventions. First, the origin of a given pest can be traced by comparing the
population genetics of the same organism across continents where it occurs, thus allowing to focus the search for efficient natural enemies in areas where both the pest and its antagonistic organisms have co-evolved (Roderick 1996). Once the most efficient natural enemies have been identified, their deployment in the field can be guided by the genetic structure of the target pest population in the likely area of introduction (Roderick and Navajas 2003).

Prior studies in sub-Saharan Africa, including Burkina Faso, have suggested that seasonal flowering patterns of the different host plants on a south-north gradient may influence the migration of M. vitrata (Ba et al. 2009). This seasonal movement occurs from temperate conditions along the coast into the Savannas of West Africa as the rainy season progresses (Bottenberg et al. 1997). Migrating M. vitrata find favorable feeding and reproductive conditions on a succession of different host plants and, thereby, increase the population size and density with each successive generation. Despite the results of previous studies, many questions remain regarding the timing and spatial scale of M. vitrata migration patterns. A preliminary survey that genotyped M. vitrata from West Africa using 11 single nucleotide polymorphism (SNP) markers indicated that the population may show population subdivision (Margam et al. 2011). Corroborating evidence is still necessary in order to validate the conclusions drawn from prior SNP analyses and it is yet to be seen whether alternate molecular genetic markers, such as highly polymorphic microsatellites, have a similar potential to differentiate populations.

We developed and applied a set of microsatellite markers to estimate the genetic variability, population structure and gene flow among M. vitrata in the West African countries of Niger, Nigeria and Burkina Faso. The main objective of this study was to
assess the genetic variability in the M. vitrata populations across West Africa, where these data will be useful for (i) determining effective areas for the release of biocontrol agents and, (ii) the recommendation of insect resistance management (IRM) protocols aimed at minimizing the threat of selection for insecticide resistance alleles in the major cowpea producing areas in West Africa.

MATERIAL AND METHODS

DNA sequence libraries

A combined assembly from Roche 454 reads of a premolt 4th to 5th instar M. vitrata larval EST library and Sanger-based EST reads from whole M. vitrata adults (referred to as the "reference assembly") was generated from M. vitrata collected from Maradi in Niger; Zaria in Nigeria; and Fada, Farakoba, and Kamboinse in Burkina Faso between 2005 and 2007 (see Margam et al. 2011; Figure 2.1 provides a map of the locations). Specifically, adult and larval samples from Nigeria were collected from a cowpea field around Zaria. The adults were collected using light traps. Samples from Niger were also collected from a light trap at Maradi field station while samples from Burkina Faso were collected in cowpea plots at the Institut de l'Environnement et de Recherches Agricoles (INERA) Fada, Farakoba, and Kamboinse stations. This microsatellite study was conducted using DNA samples from 72 individuals from Niger, 53 individuals from Nigeria, and 175 individuals from Burkina Faso (Fada - 40, Farakoba - 86, and Kamboinse - 49). Additionally, a microsatellite repeat enriched partial genomic library was constructed using biotinylated $(\mathrm{CA})_{15}$ and $(\mathrm{GA})_{15}$ probes. Biotin probeselected fragments were ligated into the pBluescript SK+ vector, which was used to
transform the Escherichia coli strain XL1 Blue (Stratagene) by electroporation. Transformants were plated on LB agar containing $20 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and clones were picked, cultured, and plasmid DNA purified at the Purdue University Genomics Core Facility (PUGCF), West Lafayette, Indiana. Additionally, PUGCF performed sequencing of plasmid inserts on an ABI 3730XL sequencer, as well as vector sequence trimming, and Phred quality parameter assessment and trimming at $\mathrm{q}<30$ (99% base call accuracy). Sanger sequence reads from the microsatellite-enriched library were assembled with CAP3 (Huang and Madan 1999) using default parameters, and contig and singleton sequences pooled into a single FASTA-formatted file.

Microsatellite prediction, repeat filtering, and marker development

The EST "reference assembly" and DNA sequence files were merged and used as input for the program SciRoKo (Kofler et al. 2007), where a search for arrays ≥ 10 units at di-, tri-, and tetranucleotide repeat loci was specified. The M. vitrata sequence from +250 to -250 of predicted microsatellite repeats was parsed from FASTA files using "SciRoKo’s Little Helper" application (Chunk size 50000000; overhead 0), and corresponding positional information exported in tab-delimited format. Repetitive DNA has been described in proximity to microsatellite loci in Lepidopteran genomes and proven problematic for the development of locus-specific molecular genetic markers (please see Discussion). In order to identify repetitive DNA adjacent to M. vitrata microsatellites, we employed a bioinformatic pipeline to predict loci with homologies to known Lepidopteran transposable elements and showing sequence similarity to other unrelated M. vitrata microsatellites. To do this, the Bombyx mori transposon database was microsatellite sequences using the Blastn algorithm and results filtered for E-values $\leq 1 \times$ 10^{-15} (low-complexity filter was not used). NCBI nr database accessions identified as microsatellite loci from Lepidoptera were downloaded and queried with M. vitrata microsatellite sequences as described previously. Maruca vitrata sequences that produced a "hit" with an E-value $\leq 1 \times 10^{-15}$ to a B. mori transposon or Lepidopteran microsatellite sequence were removed from the merged M. vitrata dataset.

The remaining M. vitrata sequence were used as input for BatchPrimer3 (You et al. 2008; http://probes.pw.usda.gov/batchprimer3/index.html) and primer pairs were picked with the SSR screening and primers module [Pattern type $=$ di-, tri- or tetranucleotide; Product Size $=90$ to $300(150$ opt $) ;$ Primer Size $=18$ Min. 21 Opt. 26 Max.; Primer Tm = 58 Min. 60 Opt. 65 Max). Primer and predicted PCR amplified genome sequence information was used as input for the program MultiPLX 2.0 (Kaplinski et al. 2005; http://bioinfo.ut.ee/multiplx/), where potential primer-primer interactions were predicted using a monovalent salt concentration of 50 mM and a Mg concentration of 1.5 mM . Alignment energies for all primer pairs and products, and locus groupings used the normal stringency conditions according to author instructions. Oligonucleotides were synthesized and 5'-dye labels were added to forward primers by Integrated DNA technologies (Coralville, Iowa).

Maruca vitrata sampling and genotyping

Maruca vitrata samples were collected from West African sites and genomic DNA extracted as described by Margam et al. (2011), and DNA concentrations were adjusted to $\sim 10 \mathrm{ng} / \mu \mathrm{l}$ with nuclease free water. PCR reactions of $25 \mu \mathrm{l}$ were set up with 2.0 mM $\mathrm{MgCl}_{2}, 150 \mu \mathrm{M}$ dNTPs, $\sim 15 \mathrm{ng}$ DNA, 1.75 pmol each primer (multiplex reactions indicated in Table 2.1), $2 \mu \mathrm{l} 5 \mathrm{X}$ PCR buffer and 0.3125 U GoTaq DNA polymerase (Promega, Madison, WI), then amplified using the touchdown thermocycler program TD2 (Coates et al. 2009). A total of $2 \mu \mathrm{l}$ of each of the 5 PCR product for individual samples was pooled, diluted to a total volume of $128 \mu \mathrm{l}$, and a $5 \mu \mathrm{l}$ aliquot submitted to the Roy J . Carver Biotechnology Center at the University of Illinois at Urbana-Champaign for separation on an ABI Prism 3730xl Analyzer with the LIZ500 internal standard. Fragment analysis was performed using Peak Scanner software 1.0 (Applied Biosystems, Foster City, CA) for data scoring and GeneMapper software for the identification and classification of alleles present per locus and per individual.

Genetic structure of M. vitrata

The mean number of alleles per locus, observed heterozygosity and expected heterozygosity were used to estimate within population genetic variability using Arlequin 3.5.1.2. (Excoffier and Lischer 2010). Analysis of molecular variance (AMOVA) was also performed using Arlequin 3.5.1.2. Variance components were used to compute fixation indices, and their significance was tested at 1000 permutations as described by Weir and Cockerham (1984) in Arlequin. The program Micro-Checker 2.2.3 (Van Oosterhout et al. 2004) was used to estimate the frequency of null alleles and other genotyping errors such
as stuttering and allele drop out. Null alleles are suspected for a given locus when the Micro-Checker 2.2.3 program rejects Hardy-Weinberg Equilibrium (HWE) among genotypes and if the excess homozygote genotypes are evenly distributed among allele size classes. Because some of the alleles harbored potential null alleles, corrected pairwise $F_{\text {ST }}$ estimates were calculated for all populations by applying the ENA correction in the FREENA package (Chapuis and Estoup 2007; Chapuis et al. 2008). F_{ST} values were estimated following Weir (1996) while the null allele frequencies for each locus and population was analyzed following the expectation maximization (EM) algorithm (Dempster et al. 1977). Exact tests using a Markov chain were used to test the deviation from HWE at each locus and population (Guo and Thompson 1992) as implemented in Arlequin 3.5.1.2. Locus-by-locus F-statistics and pairwise $F_{\text {ST }}$ estimates were also calculated using Arlequin 3.5.1.2. Due to the fact that pairwise $F_{\text {ST }}$ estimates among sample sites represent multiple comparisons that are considered simultaneously, applications of a significance threshold that treats these comparisons as a single comparison (that is $\alpha=0.05$) fails to recognize that as the number of comparisons increases the probability that any comparison will differ by random chance also increases (Miller 1981). Specifically, when multiple hypothesis tests are performed, the experimentwise (EW) Type I error is quickly increased at the rate of $1-(1-\alpha)^{k}$; where k is the number of hypothesis tests performed. To account for the presence of multiple dependent tests within our pairwise $F_{\text {ST }}$ estimates, we implicated a correction to the significance thresholds used and determined the critical value according to B-Y method by Benjamini and Yekutieli (2001). Isolation by distance (Slatkin 1993) was tested by analyzing the independence between geographical and genetic distances (Bohonak 2002). The
relationship was assessed by the Mantel test after 1000 permutations using a program IBD 1.52 (http://www.bio.sdsu.edu/pub/andy/IBD.html).

The program STRUCTURE 2.3.3 uses a model-based clustering to predict population structure using genotypic marker data from individual samples, where the model assigns proportions of individual genotypes to one of K populations (Pritchard et al. 2000). To accomplish this we used an admixture model to define individual ancestry and included data of sampling location as a priori informative descriptors of potential shared co-ancestry among the genotypes (LOCPRIOR command) according to the STRUCTURE 2.3.3 modification described by Hubisz et al. (2009). STRUCTURE 2.3.3 was run using an initial burn-in of 100,000 iterations followed by 100,000 iterations. We ran ten replicates with each value of K ranging from 1 to 10 . The "real" value of K (number of potential unique populations represented by the M. vitrata genotypes within our sample) was estimated from the $\ln \operatorname{Pr}(\mathrm{X} \mid K)$ values output for each replicate of $K=1$ to $K=10$ using the $\mathrm{mL} "(K) / \mathrm{sL}(K)$ statistic described by Evanno et al. (2005). In brief, the "real" value of K within our dataset was determined by where the $\ln \operatorname{Pr}(\mathrm{X} \mid K)$ maximized the value of $\mathrm{mL} "(K) / \mathrm{sL}(K)$. A graphical display of individual coancestry (Q-matrix) data generated within STRUCTURE 2.3.3 output was performed using the program Distruct (Rosenberg 2004).

RESULTS

DNA sequence libraries

The combined assembly of M. vitrata EST read data produced a total of 3499 contigs of $452.9 \pm 279.9 \mathrm{bp}$ (see Margam et al. 2011 for details). Sequencing of 480
clones from the $(\mathrm{CT})_{\mathrm{n}}$ and $(\mathrm{GT})_{\mathrm{n}}$ microsatellite repeat resulted in a total of 461 high quality sequences of $285.8 \pm 200.8 \mathrm{bp}(131.8 \mathrm{~kb}$ total; GenBank Accession Numbers JN685509 - JN685580). Assembly of the (CT) ${ }_{n}$ and $(G T)_{n}$ microsatellite repeat sequences using CAP3 resulted in 46 contigs (5.9 ± 7.2 sequences per contig) and 69 singletons that were merged into a single dataset with a mean length of $442.1 \pm 300.3 \mathrm{bp}$.

Microsatellite prediction, repeat filtering, and marker development

A search for microsatellite-like repeats within 115 sequences in file "MvMsatCAGA.fasta" predicted a total of 118,26 , and 11 di-, tri-, and tetranucleotide repeat motifs, respectively. All of the 118 putative dinucleotides were predicted from the (AC) and (AG) repeat enriched libraries, and respectively showed a mean length of 57.1 nt (28.5 repeats) and 56.6 nt (28.3 repeats; Table 2.2). In contrast, all putative tri- and tetranucleotide repeats were characterized from EST library sequences. The mean mismatch of nucleotides within the predicted array was ≥ 3.7-fold higher among dinucleotides compared to either the tri- or tetranucleotide repeat groups. Filtering of sequences $\pm 250 \mathrm{bp}$ of putative M. vitrata microsatellite repeats against B. mori transposon-like sequences resulted in identification of 12 putative repetitive elements (E values $\leq 2.0 \times 10^{-16} ;$ similarity $\geq 81.5 \% ; \mathrm{L}=164.7 \pm 111.0 \mathrm{bp}$; remaining data not shown). An analogous Blastn search of the NCBI nr nucleotide database accessions from Lepidoptera that contained microsatellite sequences indicated that sequence similarities existed with 28 M . vitrata microsatellite flanking sequences (E-values $\leq 2.0 \times 10^{-16}$; similarity $\geq 86.7 \% ; \mathrm{L}=245.5 \pm 77.8 \mathrm{bp} ;$ remaining data not shown). In total, 40 sequences were identified within M. vitrata microsatellite flanking sequences (34.8\%),
and were removed from the file prior to PCR primer design. All of the filtered sequences were derived from the anonymous (AC) and (AG) microsatellite-enriched library.

The design of oligonucleotide primers from the remaining 75 sequences using BatchPrimer3 resulted in 24 pairs (11 from anonymous microsatellite enriched library and 13 from EST sequence). Preliminary analysis by PCR resulted in the successful amplification for one of 11 anonymous microsatellite markers (9.1\%) and five of 13 ESTderived microsatellite markers (38.5\%; results not shown). PCR primer multiplex pair design using MultiPLX resulted in the prediction of two loci being suitable for coamplification (markers C3393 and C0444), where primer alignment energies were at a maximum of $-5.1 \mathrm{kcal} \mathrm{mol}^{-1}$ compared to $-6.0 \pm 0.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for all remaining possible primer pairs (remaining data not shown).

Genetic structure of M. vitrata

The six microsatellite loci used to screen M. vitrata samples collected at five African sites showed significant deviation from HWE at 13 instances following 30 locus-by-site calculations (Appendix A), thus subsequent estimations of population subdivision used ENA corrected values to account for potential influence of null alleles. The mean number of alleles per locus was similar across all sample sites, and the overall observed heterozygosity was less than expected ($F_{I S} \geq 0.1$) for all populations except at Fada, Burkina Faso $\left(F_{I S}=-0.0\right.$; Table 2.3). Also the $F_{I S}$ estimates were negative for only two loci (CO241 and CO325) across all populations (Table 2.4). The locus-by-locus $F_{\text {ST }}$ estimates derived from the five populations ranged from -0.0 (ENA corrected $F_{\mathrm{ST}}=0.0$; marker 32008) to 0.3 (ENA corrected $F_{\mathrm{ST}}=0.0$; marker 7_02K06; remaining data not
shown). The subsequent global estimates of $F_{\text {ST }}$ across all loci and all populations were moderate (uncorrected $F_{\mathrm{ST}}=0.1$, ENA corrected $\left.F_{\mathrm{ST}}=0.1\right)$ and significant $(95 \% \mathrm{CI}=0.0$ $-0.3,95 \%$ CI with ENA correction $=0.0-0.2$, with the lower bounds rounded to zero in one decimal place). The partitioning of population genetic variance from AMOVA results indicated that $\geq 67.3 \%$ resides within individuals, and correspondingly 17.3% and 15.4% of the total genetic variation, was among populations and among individuals (Table 2.5). Pairwise comparison of $F_{\text {ST }}$ estimations showed that a significant level of differentiation exist for all the possible comparisons after the sequential B-Y adjustment for the ENA corrected $F_{\text {ST }}$ estimates across all loci (Table 2.6). Specifically, a critical significance level was achieved at $0.05 / 2.929=0.017$. Results indicated that the P-values obtained from pairwise $F_{\text {ST }}$ estimates (≤ 0.005) were all statistically significant at the $\mathrm{B}-\mathrm{Y}$ adjusted thresholds (Table 2.6). Regression of uncorrected $F_{S T}$ estimates and geographic distance (km) among West African sample sites showed a significant dependence of genetic variation on geographic distance $\left(R^{2}=0.6\right.$, Mantel $\left.P=0.04\right)$, and showed the relative genetic similarity ($F_{S T}$ estimates) of genotypes at Niger and Nigeria, and among Burkina Faso samples (Figure 2.2). The "real" number of populations (K) estimated from the microsatellite-defined M. vitrata genotypes from the $\mathrm{mL} "(K) / \mathrm{sL}(K)$ statistic calculated from STRUCTURE 2.3.3 output achieved a maximum value of 14.5 at $K=3$ and suggested that three genetically-distinct M. vitrata ancestries exist in West Africa. The three genetically distinct ancestries across collection sites were represented in Figure 2.3 as vertical bars with Niger, Nigeria and Fada, Burkina Faso primarily red; Farakoba, Burkina Faso primarily green; Kamboinse, Burkina Faso primarily green and red and a minor cluster represented by yellow across all sites.

DISCUSSION

Microsatellite markers in Lepidoptera

The isolation and subsequent application of microsatellite loci as molecular genetic markers in Lepidopteran insects has often been difficult (Nève and Meglécz 2000; Ji and Zhang 2004; Zhang 2004), where studies have developed five or fewer loci for most species studied so far (reviewed in Ji et al. 2003). These difficulties have been attributed to the high degrees of nucleotide sequence similarity between regions that flank different microsatellite loci (Meglécz et al. 2004) or the low frequency of microsatellites in Lepidopteran genomes (Ji et al. 2003; Prasad et al. 2005). Additionally, evidence suggests that Lepidopteran microsatellites may be derived from and mobilized by transposable elements (TEs) (Coates et al. 2009, 2010, 2011, 2012; Tay et al. 2010). Despite these associations with repetitive DNA, microsatellite markers have been developed for more than 40 Lepidopteran species in 35 genera (GenBank, 15 August 2006) and have proven to be useful for population genetic analyses. Within this study, we initially identified 155 unique M. vitrata microsatellite loci from which six were eventually considered informative genetic markers. Forty of 155 loci (25.8%) contained known repetitive element-like sequences previously identified within the B. mori genome assembly, which suggests that M. vitrata microsatellites may be associated with repetitive DNA as observed in other Lepidopteran species (Meglécz et al. 2004). High failure rates observed during microsatellite marker development are rarely reported, and the extent to which repetitive DNA can cause these failures has not been thoroughly investigated (Tay et al. 2010). In the current study, we aimed to identify M. vitrata microsatellite loci, which may contain repetitive sequence and remove them from consideration for molecular
marker development. Despite these measures, an approximate 25% success rate for M. vitrata microsatellite markers suggest that screening for repetitive DNA from distantly related species may not be sufficient to identify all affected loci.

Microsatellite loci that deviate significantly from HWE show evidence of null alleles according to the distribution of homozygote-size classes. Microsatellite null alleles are commonly found among a wide range of taxa, but have a particularly high incidence among species of Lepidoptera (Meglécz et al. 2004), Diptera (Lehmann et al. 1997), and Orthoptera (Chapius et al. 2005). The extent to which null alleles tend to overestimate the true population differentiation has not been investigated (Chapuis and Estoup 2007), but can lead to overestimates of population differentiation due to effects on subsequent calculations of $F_{S T}$ and genetic distances (Slatkin 1995; Paetkau et al. 1997). Although null alleles were present at all microsatellite loci, correction with the ENA algorithm nonetheless allowed effective population genetic analysis. Specifically, analysis of these microsatellite markers resulted in conclusions analogous to those obtained from M. vitrata single nucleotide polymorphism (SNP) markers applied to the same populations (see next section).

Genetic structure of M. vitrata in West Africa

At the population level, our ENA corrected microsatellite genotype data suggested that a moderate level of genetic differentiation may be present among M. vitrata sample sites in West Africa. Consistent with previous studies in other insects, a majority of the total genetic variation is within individuals compared to between sample sites (Coates and Hellmich 2003; Juan et al. 2004; Timmermans et al. 2005). Furthermore, our
microsatellite results agree with an analogous study using M. vitrata SNP markers in West Africa (Margam et al. 2011), where genetic structure was detected between Niger and Nigeria, and Burkina Faso sample sites and an overall $K=3$ obtained from STRUCTURE results. The current study also indicated three distinct populations of M. vitrata in West Africa and suggests that analysis of microsatellite and SNP markers can provide equivalent results and conclusions. The findings from that study, however, showed significant pairwise $F_{\text {ST }}$ estimates between eastern (Niger and Nigeria) and western sample sites from Burkina Faso, and all other comparisons indicated a lack of genetic divergence while findings from our study indicated a significant divergence in all pairwise populations using a critical P-value determined using B-Y adjustment method (Benjamini and Yekutieli 2001). Our population differentiation results derived from microsatellite data may be expected since SNPs typically have two alleles per locus due to their low mutational rate (Hancock 1999; Zhang and Hewitt 2003) compared to multi-allelic microsatellites that have higher power per locus for estimating genetic divergence or gene flow when using F-statistics or assignment tests (Vignal et al. 2002; Brumfield et al. 2003; Morin et al. 2004). Studies further suggest that measures of pairwise genetic relationships using SNPs would require analysis of more than five times more loci as compared to microsatellites (Blouin et al. 1996; Glaubitz et al. 2003), and suggest that the current set of microsatellite markers will be more efficient at detecting population subdivision compared to SNP markers within future population genetic analyses.

Effect of migration on the population structure in M. vitrata

Migration is a fundamental population process and is crucial to understanding the dynamics and persistence of populations of insects (Dingle 1996). Despite the field observations that M. vitrata has high rates of migration, significant difference in $F_{S T}$ estimates and partitioning of 17.3% of population variance between sample sites within AMOVA analysis suggested that M. vitrata show reduced gene flow and genetic structuring in West Africa. This is evidenced in the $F_{I S}$ estimates obtained for almost all the study sites except Fada, Burkina Faso where there was some evidence of outbreeding suggesting high gene flow in this population. Specifically, an isolation by distance (IBD) model suggested that subpopulation differentiation $\left(F_{S T}\right)$ or structured gene flow is a function of the geographical distance between them (Slatkin 1993). Our analyses indicate that although M. vitrata has a seasonal south-north migration, there appears to be evidence of reduced gene flow. In agreement with this, Peterson and Denno (1998) reported that insect species with high- and low-dispersal rates tend to show less IBD compared to species with moderate dispersal capabilities. High levels of gene flow tend to homogenize the observed genetic variation across a geographic range, whereas low gene flow can result in the effective genetic isolation of subpopulations and genetic drift. We observed a positive correlation between geographic and genetic distances among the M. vitrata sample sites within this study $\left(R^{2}=0.56\right)$, suggesting that M. vitrata may have a structured migratory pattern. Although isolation by distance is not typical for species with high mobility (Arguedas and Parker 2000), it has been reported for other Lepidoptera such as Chazara briseis Linnaeus (Lepidoptera: Satyridae) (Johannesen et al. 1997), and Hesperia dacotae Skinner (Lepidoptera: Hesperiidae) (Britten and Glasford 2002). Light trap data
and sampling of M. vitrata in West Africa showed that M. vitrata does not infest cowpea during the dry season in the northern extremes of its geographic range, even if cowpea is present (Bottenberg et al. 1997; Ba et al. 2009). Climatic factors such as lack of rain, and temperature or relative humidity may influence this observed spatial restriction. Research has also shown that M. vitrata survive on alternate host plants within the more humid southern regions, and migrate to the northern regions over a period of several months (Bottenberg et al. 1997). During the seasonal migration, the population of M. vitrata finds favorable conditions for multiplying on a succession of different host plants, which may result in temporal mating barriers due to differential larval maturation rates on the alternate host plants. This serves to emphasize the importance of ecological migration (movement of individuals) on population genetic migration (transfer of alleles). Gene flow cannot occur without ecological migration, but the effects of ecological migration on the population genetic structure can be tempered by factors such as temporal mating barriers between dispersing and resident individuals.

CONCLUSIONS

The implementation of effective cultural, chemical, and biological control strategies to limit M. vitrata feeding damage to cowpea crops in West Africa is dependent upon a basic understanding of population structure and migration. Our results and previous ecological studies have implications for IRM strategies involving Bt-cowpea in West Africa. The implication is that in the north, resistance may spread only slowly among M. vitrata populations because the populations eventually die out during the dry season; in other words, the southern populations in endemic zones act as a source
population. Also, the long-distance migration from the south to the north might be a source of susceptible populations into the northern part, which can slow down the evolution of resistance (if there are pockets of M. vitrata populations that survive in the north throughout the year). In the more humid south, M. vitrata can be found on different host plants throughout the year. Further studies should be conducted on population characterization on the different host plants, especially in the more humid south, to determine if there are differences in populations on the different host plants or if geographic barriers restrict gene flow between them. Migration results in changes in allele frequencies that are greater in the short term and smaller in the long term, leading to under- and overestimation of effective population size, respectively, if it is ignored (Wang and Whitlock 2003). Using these polymorphic markers, studies should also be conducted to test how migration rate affects the effective population size of the M. vitrata populations. The results of this study also have implications for the implementation of control strategies involving the release of biocontrol agents against M. vitrata. In keeping with an endemic zone to migratory zone hypothesis, the conclusions of this study agree with the conclusions by Margam et al. (2011), which suggested that the deployment of biocontrol agents (for classical biological control) would be most logical in the endemic zone directly south of migratory regions where M. vitrata is a significant pest during the cowpea growing season.

REFERENCES

Arguedas N, Parker PG (2000) Seasonal migration and genetic population structure in house wrens. Condor 102: 517-528.

Arodokoun DY, Tamò M, Cloutier C, Brodeur J (2006) Larval parasitoids occurring on Maruca vitrata Fabricius (Lepidoptera: Pyralidae) in Benin, West Africa. Agriculture, Ecosystems and Environment 113: 320-325.

Ba NM, Margam VM, Binso-Dabire CL, Sanon A, McNeil JN, Murdock LL, Pittendrigh BR (2009) Seasonal and regional distribution of the cowpea pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) in Burkina Faso. International Journal of Tropical Insect Science 29(3): 109-113.

Baoua I, Ba NM, Agunbiade TA, Margam V, Binso-Dabire CL, Sanon A, Pittendrigh BR (2011) Potential use of Sesbania pachycarpa DC (Fabaceae: Papilionoideae) as a refugia for the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). International Journal of Tropical Insect Science 31: 212-218.

Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Annals of Statistics 29: 1165-1188.

Blouin MS, Parson M, Lacaille V, Lotz S (1996) Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology 5 (3): 393-401.

Bohonak AJ (2002) IBD (Isolation By Distance): A program for analyses of isolation by distance. Journal of Heredity 93: 153-154.

Bottenberg H, Tamò M, Arodokoun D, Jackai LEN, Singh BB, Youm O (1997) Population dynamics and migration of cowpea pests in northern Nigeria: Implications for integrated pest management. In Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (Eds.), Advances in cowpea research. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, Nigeria, pp 271-284.

Britten HB, Glasford JW (2002) Genetic population structure of the Dakota skipper (Lepidoptera: Hesperia dacotae): A North American native prairie obligate. Conservation Genetics 3: 363-374.

Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution 18 (5): 249-256.

Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24(3): 621-631.

Chapuis MP, Loiseau A, Michalakis Y, Lecoq M, Estoup A (2005) Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Molecular Ecology Notes 5: 554-557.

Chapuis MP, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Molecular Ecology 17(16): 3640-3653.

Coates BS, Hellmich RL (2003) Two sex-chromosome-linked microsatellite loci show geographic variance among North American Ostrinia nubilalis. Journal of Insect Science 3:29.

Coates BS, Sumerford DV, Miller NJ, Kim KS, Sappington TW, Siegfried BD, Lewis LC (2009) Comparative performance of single nucleotide polymorphism (SNP) and microsatellite markers for population genetic analysis. Journal of Heredity 100: 556-564.

Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2010) A Helitron-like transposon superfamily from Lepidoptera disrupts (GAAA)n microsatellites and is responsible for flanking sequence similarity within a microsatellite family. Journal of Molecular Evolution 70: 278-288.

Coates BS, Kroemer JA, Sumerford DV, Hellmich RL (2011) A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)n microsatellites. Insect Molecular Biology 20: 15-27.

Coates BS, Hellmich RL, Grant DM, Abel CA (2012) Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep 1 Helitrons. DNA Research 19(1): 11- 21

Dannon EA, Tamò M, Van Huis A, Dicke M (2010) Effects of volatiles from Maruca vitrata larvae and caterpillar-infested flowers of their host plant, Vigna unguiculata on the foraging behavior of the parasitoid Apanteles taragamae. Journal of Chemical Ecology 36: 1083-1091.

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1): 1-38.

Dingle H (1996) Migration: The biology of life on the move. New York: Oxford University Press.

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611-2620.

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567.

FAOSTAT (2000) Site internet : http//www. FAO. org/statistics.

Feder JL, Forbes AA (2010) Sequential speciation and the diversity of parasitic insects. Ecological Entomology 35: 67-76.

Glaubitz JC, Rhodes OE, Dewoody JA (2003) Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Molecular Ecology 12(4): 1039-1047.

Guo S, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372.

Hancock JM (1999) Microsatellites and other simple sequences: Genomic context and mutational mechanisms. In Goldstein DB, Schlötterer C. (Eds.), Microsatellites: Evolution and applications. Oxford University Press, Oxford, pp 1-9.

Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Research 9: 868-877.

Hubisz M, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322-1332.

Ji YJ, Zhang DX (2004) Characteristics of microsatellite DNA in Lepidopteran genomes and implications for their isolation. Acta Zoologica Sinica 50: 608-614.

Ji YJ, Zhang DX, Hewitt GM, Kang L, Li DM (2003) Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation. Molecular Ecology Notes 3: 102-104.

Johannesen J, Schwing U, Seufert W, Seitz A, Veith M (1997) Analysis of gene-flow and habitat patch network for Chazara briseis (Lepidoptera: Satyridae) in an agricultural landscape. Biochemical Systematics and Ecology 25: 419-427.

Juan A, Crespo MB, Cowan RS, Lexer C, Fay MF (2004) Patterns of variability and gene flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molecular Ecology 13: 2679-2690.

Kaplinski L, Andreson R, Puurand T, Remm M (2005) MultiPLX: Automatic grouping and evaluation of PCR primers. Bioinformatics 21: 1701-1702.

Katayama J, Suzuki I (1984) Seasonal prevalence of pod borers (Ostrinia scapulalis, Maruca testulalis and Matsumuraeses sp.) in azuki-beans and injury caused by larval infestation. Bulletin of Kyoto Prefectural Institute of Agriculture 12: 27-34.

Ke LD, Fang JL, Li ZJ (1985) Bionomics and control of the legume pod-borer, Maruca testulalis Geyer. Acta Entomologica Sinica 28(1): 51-59.

Kofler R, Scholtterer C, Lelley T (2007) SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinformatics 23: 1683-1685.

Lehmann T, Besansky NJ, Hawley WA, Fahey TG, Kamau L, Collins FH (1997) Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Molecular Ecology 6: 243-253.

Margam VM, Coates BS, Bayles DO, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Kroemer JA, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011) Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(7): e21388.

Meglécz E, Petenian F, Danchin E, D'Acier AC, Rasplus JY, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Molecular Ecology 13: 1693-1700.

Miller RG (1981) Simultaneous Statistical Inference 2nd Ed. Springer Verlag New York.
Morin PA, Luikart G, Wayne RK, SNP-Workshop_Grp (2004) SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution 19: 208-216.

Munroe EG (1995) Pyraustinae. In Heppner JB (Ed.), Atlas of neotropical Lepidoptera. Checklist: Part 2 Hyblaeoidea, Pyraloidea, Tortricoidea. Association for Tropical Lepidoptera, Gainesville, FL, pp 58-79.

Nève G, Meglécz E (2000) Microsatellite frequencies in different taxa. Trends in Ecology and Evolution 15: 376-377.

Ortiz R (1998) Cowpeas from Nigeria: A silent food revolution. Outlook on Agriculture 27(2): $125-128$.

Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147: 1943-1957.

Peterson MA, Denno RF (1998) Life history strategies and the genetic structure of phytophagous insect populations. In Mopper S, Strauss SY (Eds.), Genetic structure and local adaptation in natural insect populations: Effects of ecology, life history, and behaviour. New York, Chapman and Hall, pp. 253-322.

Prasad MD, Muthulakshmi M, Madhu M, Archak S, Mita K, Nagaraju J (2005) Survey and analysis of microsatellites in the Silkworm, Bombyx mori: Frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics 169: 197-214.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Raheja AI (1974) Report on the insect pests of grain legumes in northern Nigeria. In 1st IITA grain legume improvement workshop, 1973. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 295-299.

Roderick GK (1996) Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annual Review of Entomology 41: 263-290.

Roderick GK, Navajas M (2003) Genes in new environment: Genetics and evolution in biological control. Nature Reviews Genetics 4: 889-899.

Rosenberg NA (2004) Distruct: A program for the graphical display of population structure. Molecular Ecology Notes 4: 137-138.

Sawadogo A, Thio B, Kiemde S, Drabo I, Dabire C, Ouedraogo J, Mullens TR, Ehlers JD, Roberts PA (2009) Distribution and prevalence of parasitic nematodes of cowpea (Vigna unguiculata) in Burkina Faso. Journal of Nematology 41:120-127.

Sharma HC (1998) Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata: A review. Crop Protection 17: 373-386.

Sharma HC, Saxena KB, Bhagwat VR (1999) The legume pod borer, Maruca vitrata: Bionomics and management. Information bulletin 55. International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru, India.

Singh SR, Jackai LEN (1988) The legume pod-borer, Maruca testulalis (Geyer): Past, present and future research. Insect Science and its Applications 9: 1-5.

Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annual Review of Entomology 24: 255-278.

Singh SR, Jackai LEN, Dos Santos JHR, Adalla CB (1990) Insect pests of cowpea. In Singh SR (Ed.), Insect pests of tropical food legumes, Chichester, John Wiley \& Sons, Chichester and UK, pp 43-90.

Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264-279.

Slatkin M (1995) Hitchhiking and associative overdominance at a microsatellite locus. Molecular Biology and Evolution 12(3): 473-480.

Tay WT, Behere GT, Batterham P, Heckel DG (2010) Generation of microsatellite repeat families by RTE retrotransposons in Lepidopteran genomes. BMC Evolutionary Biology 10: 144.

Taylor MFJ, McKechnie SW, Pierce N, Kreitman M (1993) The Lepidopteran mitochondrial control region: Structure and evolution. Molecular Biology and Evolution 10:1259-1272.

Timmermans MJ, Ellers J, Mariën J, Verhoef SC, Ferwerda EB, Van Straalen NM (2005) Genetic structure in Orchesella cincta (Collembola): Strong subdivision of European populations inferred from mtDNA and AFLP markers. Molecular Ecology 14: 2017-2024.

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4(3): 535-538.

Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution 34: 275-305.

Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163: 429-446.

Weir BS (1996) Genetic Data Analysis II. Methods for discreet population genetic data Sinauer Associates, Inc, Sunderland, MA.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

Wolcott GN (1933) The lima bean pod borer caterpillars of Puerto Rico. Journal of the Department of Agriculture of Puerto Rico 17: 241-255.

You FM, Huo N, Gu YQ, Luo M-C, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9: 253.

Zhang DX (2004) Lepidopteran microsatellite DNA: Redundant but promising. Trends in Ecology and Evolution 19: 507-509.

Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects. Molecular Ecology 12 (3): 563-584.

FIGURES AND TABLES

Figure 2.1. Map showing locations in West Africa (Niger, Nigeria and Burkina Faso) where the M. vitrata samples were collected.

Figure 2.2. Geographic distance versus genetic distance among populations of M. vitrata using $\boldsymbol{F}_{S T}$. Correlations and probabilities were estimated from a Mantel test with $\mathbf{1 0 , 0 0 0}$ repeats of bootstrapping. Δ, Comparisons among Burkina Faso (Fada, Farkoba and Kamboinse; •, Niger and Nigeria; Δ, Niger and locations in Burkina Faso; \circ, Nigeria and locations in Burkina Faso are indicated.

Figure 2.3. Partitioning of the co-ancestry among microsatellite-defined M. vitrata genotypes generated from STRUCTURE using the LOCPRIOR command for Maradi, Niger; Zaria, Nigeria; and Fada, Farakoba and Kamboinse locations in Burkina Faso. For each, the estimated co-ancestry was derived from the Q-matrix for each individual and represented as vertical lines showing the proportion of the $K^{\text {th }}$ segments that made up the individual genotype.

Table 2.1. M. vitrata primer sequences used for microsatellite amplification reactions.

Locus	Primer (dye label) and sequence (5'-3')	Repeat	Size (bp)
C32008 ${ }^{\text {E }}$	F- (MAX)AAAAAGCGCTTATATGTTTGTTATAGT	$(\mathrm{CATA})_{3}$	163
7_02K06 ${ }^{\text {A }}$	R-GAAATTTTTAACGGAGATACAATCA F-(FAM)ATTTGTCAGAATGGTATCTTACGT	$(\mathrm{GAT})_{6}$	151
C3393 ${ }^{\text {E, } 1}$	R-CCTCTGGGTCATAATTATATTGTTCA F-(ROX)AGACCCCCAAAGTGGAGAA	(GAA)5	91
C0444 ${ }^{\text {E, } 1}$	R-ACGTTCACGAACCTCCTGTT F-(FAM)AAAGGAACTACGCCGTCAGG	$(\mathrm{CAA})_{8}$	102
C0241 ${ }^{\text {E }}$	R-GTTGAGCGATCTTGGCACAG F-(TAM)GACGAAACAAGGCCTACCAG	$(\mathrm{GAT})_{9}$	165
$\mathrm{C} 0325^{\text {E }}$	$\begin{aligned} & \text { R-GGTACTTCYGACGTTGTTCG } \\ & \text { F-(ROX)CGAAAAGAAACACCGCTCTG } \\ & \text { R-CAGTCTGTTCAGWCTCTTCAGTGG } \end{aligned}$	$(\mathrm{GAA})_{7}$	173

E, EST-derived primer pair; A, anonymous genomic sequence-derived primer pair; 1, PCR multiplexed primers

Table 2.2. Microsatellite motifs predicted from M. vitrata DNA sequence sources (combined library), that was partitioned into (CA) and (GA) repeat enriched library (microsatellite library), and expressed sequence tag (EST) library (EST library) sources. The mean length of repeat arrays (L) and frequency of nucleotide mismatch within repeat arrays (MisMch).

Motif	Combined library			Microsatellite library		EST library			
	Count	L	MisMch	Count	L	MisMch	Count	L	MisMch
AC	107	57.1	1.6	107	57.1	1.6	0		
AG	11	56.6	1.3	11	56.6	1.3	0		
ATC	14	25.8	0.4	0			14	25.8	0.4
AAT	12	18.4	0.3	0			12	18.4	0.3
AAAT	11	17.8	0.2	0			11	17.8	0.2
	155								

Table 2.3. Characteristics of the M. vitrata individuals across West Africa showing sample size (N), number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity $\left(H_{\mathrm{E}}\right)$, and fixation index (F_{IS}) per sample site (values rounded up to 1 decimal place).

Location	Na (Mean per locus)	$\boldsymbol{H o}$	$\boldsymbol{H}_{\mathbf{E}}$	$\boldsymbol{F}_{\text {IS }}$	Loci not in HWE
Niger	$25(4.2)$	0.2	0.2	0.1	0
Nigeria	$27(4.5)$	0.2	0.3	0.2	4
Fada	$18(3.0)$	0.3	0.3	-0.0	3
Farakoba	$23(3.8)$	0.2	0.3	0.2	3
Kamboinse	$18(3.0)$	0.2	0.3	0.4	3

Table 2.4. Estimates of total number of alleles (Na), mean estimated frequency of null alleles, fixation index (F_{IS}) and $\boldsymbol{F}_{\mathrm{ST}}$ across microsatellite loci (values rounded up to 1 decimal place).

Locus	Na	Mean null frequency	alleles	$\boldsymbol{F}_{\text {IS }}$	$\boldsymbol{F}_{\text {ST }}$ (ENA corrected)
C0444	7	0	0.1	$0.0(0.0)$	
C32008	10	0.1	0.1	$-0.0(0.0)$	
C3393	3	0.1	0.9	$0.0(0.0)$	
7_02K06	6	0.2	0.7	$0.4(0.3)$	
CO241	7	0	-0.1	$0.0(0.0)$	
CO325	5	0	-0.1	$0.1(0.1)$	

Table 2.5. Analysis of Molecular Variance (AMOVA) for Maradi, Niger; Zaria, Nigeria; and Fada, Farakoba, and Kamboinse locations in Burkina Faso.

Source of Variation	Df	SS	\% of Variation
Among Population	4	56.1	17.3
Among Individuals	295	190.5	15.4
Within Individuals	300	133	67.3
Total	599	379.6	100

Table 2.6. Pairwise comparisons of M. vitrata samples showing the corrected $\boldsymbol{F}_{S T}$ estimates (below diagonal) and significance of corresponding comparisons (P-values) as indicated above the diagonal. Significance thresholds were evaluated using a Benjamini and Yekutieli (B-Y) adjusted $\alpha=0.017$.

	Niger	Nigeria	Fada	Farakoba	Kamboinse
Niger	-	0.005^{*}	$<0.001^{*}$	$<0.001^{*}$	0.001^{*}
Nigeria	0.2	-	$<0.001^{*}$	$<0.001^{*}$	0.004^{*}
Fada	0.2	0.2	-	$<0.001^{*}$	0.002^{*}
Farakoba	0.2	0.2	0.1	-	0.001^{*}
Kamboinse	0.2	0.2	0.2	0.2	-

CHAPTER 3

GENETIC DIFFERENTIATION AMONG MARUCA VITRATA F.

(LEPIDOPTERA: CRAMBIDAE) POPULATIONS ON CULTIVATED COWPEA AND WILD HOST PLANTS: IMPLICATIONS FOR INSECT RESISTANCE MANAGEMENT AND BIOLOGICAL CONTROL STRATEGIES ${ }^{3}$

Abstract

Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 ($\operatorname{cox} 1$) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global $F_{S T}$ estimate of 0.05 ($P \leq 0.001$). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68\%) or F-statistics ($F_{\mathrm{ST}}{ }^{L o c}=-0.01 ; P=0.62$). These

[^2]results were corroborated by mitochondrial haplotype data $\left(\varphi_{S T}{ }^{L o c}=0.05 ; P=0.92\right)$. In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation $\left(F_{\mathrm{ST}}{ }^{\text {Host }}=0.04 ; P=0.01\right)$, which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses $\left(\varphi_{S T}{ }^{\text {Host }}=\right.$ $0.06 ; P=0.27$). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa.

INTRODUCTION

Host plant adaptation by herbivorous insects has resulted in monophagous species that are highly specialized on a single host, whereas polyphagous insect species have evolved to feed upon a wide array of different host plants (e.g., Futuyma 1983; Jaenike 1990; Mitter and Farrell 1991). Host plants may have a major role in the differentiation and diversification of herbivorous insects, and are important in our current understanding of global biodiversity and niche exploitation by insect populations (Ehrlich and Raven 1964; Strong et al. 1984; Farrell 1998). The diversity of ecosystems, which polyphagous species encounter, makes the study of genetic variation based on host plants important for the understanding of adaptation and niche formation. Within a single species, genetic variation can arise among subpopulations that utilize different host plants through variation in oviposition or feeding preferences, rates of development on different host plants, as well as subsequent survivorship, fecundity and mating preferences of adults
(Funk et al. 2002). Mating barriers and reduced gene flow have been predicted among individuals from insect species that show adaptation to different host plants (Nason et al. 2002; Sword et al. 2005), and resulted in assortative mating within populations (Feder et al. 1998). In addition to broader implications in species formation, assortative mating based on host plant preference can impact the practical application of insect pest management strategies, such as the release of biocontrol agents and the implementation of insect resistance management (IRM) strategies based on genetically modified crops.

The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest of grain legumes that has a wide distribution throughout tropical and subtropical regions worldwide. Feeding damage caused by larval M. vitrata to cowpea crops occurs on flower buds, flowers and seed pods. This insect species develops without diapause and uses multiple alternative host plants during the dry season in West Africa when cowpea crops are not in cultivation (Taylor 1978; Bottenberg et al. 1997; Arodokoun et al. 2003). Larval M. vitrata feeding has been documented on over 50 alternative host plants (Taylor 1978; Arodokoun et al. 2003; Sharma 1998), and most often found on cultivated and wild host plants from the family, Fabaceae (Leumann 1994; Arodokoun 1996). Pterocarpus santalinoides L'Hér. ex DC., P. phaseoloides and Centrosema pubescens (except cv. Belalto) are used for oviposition and subsequent larval development during the long dry season, whereas Lonchocarpus sericeus and L. cyanescens (Schumach and Thonn.) Benth. are similarly used during the main rainy season, and Tephrosia platycarpa Guill. and Perr. during the short rainy season (Arodokoun et al. 2003). The reservoirs of M. vitrata maintained on alternative host plants results in difficulties for cultural and chemical insecticide control. As proposed by Tamò
et al. (2002), the possible Asian origin of M. vitrata may contribute to the lack of corresponding native natural enemies capable of regulating its populations in those alternative host plant habitats in West Africa, and thus might also lead to heavy infestations observed on cowpea crops. Efforts to introduce biological control candidate species have had limited success, and yet unrecognized biotic factors such as M. vitrata alternative host plant differentiation, could hinder the effective spread of introduced control agents (Tamò et al. 2012).

Protein crystalline (Cry) toxins produced by the gram-positive soil bacterium Bacillus thuringiensis (Bt) show insecticidal activities against many Lepidopteran insects. Transgenic cowpea that express the $B t$ toxin $C r y 1 \mathrm{Ab}$ are being developed for the protection of this crop for use in West African cropping systems (Huesing et al. 2011). Although transgenic Bt-cowpea offers a promising approach to crop improvement, sustainability of the technology will likely depend on the mitigation of resistance development in M. vitrata populations and availability of suitable alternative host plants to act as refuges. Specifically, the high-dose refuge model is the most widely accepted IRM strategy (Alstad and Andow 1995), and has been implemented as an effective resistance management plan to delay the development of resistance to $B t$ in target pest insect populations (Gould 1998). The high-dose component of this IRM strategy requires that crops express levels of $B t$ toxin sufficient to kill 100% of homozygous susceptible and heterozygous larvae. Refuges are non-Bt plants in proximity to $B t$ crops on which the targeted pests can also complete development (Gould 1998). In theory, refuge plants are able to produce a large population of adults that will mate randomly with any potential homozygous resistant individual that might complete development on a Bt crop plant. By
shear stochastic sampling, rare homozygous resistant individuals that emerge from $B t$ fields are most likely to mate with a refuge plant-derived homozygous susceptible individual. This increases the probability that any resistant insects emerging from the $B t$ crops are more likely to mate with a susceptible adult emerging from the refuges, thereby generating heterozygous progeny that are not capable of surviving exposure to the high dose of $B t$ toxin expressed by transgenic crop in order to delay or prevent an increase in resistance allele frequency within target insect populations (Bourguet et al. 2000). Wildgrowing alternative host plants can also serve as natural refuges for target pests, and have been reported as effective refuges for IRM of transgenic crops (Zhang and Tang 2000; Tan et al. 2001; Wu et al. 2004; Abney et al. 2007; Jackson et al. 2008). In the case of M. vitrata, there are several alternative host plants which are available throughout the cowpea growing season and which might act as natural refuges. Assessing the suitability of alternative hosts as effective refuge plants for Bt-cowpea will be important for developing IRM programs for M. vitrata in West Africa. However, it is not clear when Bt-cowpea will be used broadly in West Africa, which highlights the need to enhance the efficacy of current pest control solutions.

The control of M. vitrata in West Africa currently relies on the use of cultural and chemical control methods and increasingly on the use of biological control agents. Alternative host plant use and any potential genetic differentiation among populations based on this biological phenomenon may also impact how biocontrol agents are deployed (Olivieri et al. 2004). The lack of alternative hosts may be a contributing factor in the observation that, although many biological control introductions result in establishment, most are unsuccessful in reducing pest densities (Gurr and Wratten 1999). Therefore, most
managers of agricultural systems seek to manipulate habitat complexity to encourage the conservation and enhancement of natural enemies in the hopes of improving pest suppression (see reviews by Wratten and van Emden 1995; Gurr et al. 2005; Landis et al. 2000). A key factor that enhances predator and parasitoid populations in complex landscapes is the availability of nectar and pollen subsidies. Many natural enemies, particularly Hymenopteran parasitoids, lacewings, syrphid flies, and tachinid flies are herbivorous as adults and require carbohydrates for successful reproduction. A literature review by Altieri and Letourneau (1982) showed that the successful establishment of certain parasitoids in cropping systems depends on the presence of weeds that provide nectar for the adult female wasps. Laboratory and field studies have also demonstrated positive impacts on parasitoid fecundity, lifespan, or searching efficiency as a result of floral resources in bordering non-crop areas (Lavandero et al. 2006; Gourdine et al. 2005; Lee and Heimpel 2008; Bianchi and Wäckers 2008). However, although alternative host plants have been reported to enhance parasitoid and predator efficiency in conservation biological control strategies, extensive population-level data are still needed for deployment of biocontrol agents to be effective. The application of population genetic data to biological control of M. vitrata will provide better information on how many distinct genotypes exist on the different host plants and the effect this can have on the parasitoid population over time. The use of population structure data will therefore enable the identification of the genetic differentiation of M. vitrata on cultivated cowpea and available alternative host plants and the effective host plants that can be planted alongside the cultivated cowpea in order to maximize parasitoid efficiency.

Genetic variation among M. vitrata larvae on four host plants including cowpea in West Africa was assessed using haplotype sequencing of the mitochondrial cytochrome c oxidase-1 gene (cox1) fragment, as well as genotyping using a set of microsatellite markers previously developed by Agunbiade et al. (2012). Levels of genetic and haplotype variation, population structure, and gene flow were estimated among M. vitrata collected from different host plants in southern regions of Benin. The results of this research are important for assessing the effectiveness of alternative host plants for use as a refuge for $B t$-cowpea crops, and to potentially identify the most appropriate host plant to apply biocontrol agents. These data will be used to enhance ongoing efforts to reduce the impact of M. vitrata feeding damage and to improve yields in cowpea cropping systems of West Africa.

MATERIALS AND METHODS

Insect sampling and DNA extraction

Larval M. vitrata were collected from cultivated cowpea (Vigna unguiculata), and three alternative host plants $-P$. phaseoloides (dry season host), T. candida (short rainy season host), and L. sericeus (main rainy season host), in three divisions representing 6 departments in Southern Benin in 2012 (Figure 3.1). The divisions were Mono-Couffo, Zou-Collines and Ouémé-Plateau. Within each division, we collected from different locations to lessen the possibility that the same female individual laid larvae collected. Forty-nine, 50 and 49 individual M. vitrata samples were collected from V. unguiculata in Ouémé-Plateau, Zou-Collines, and Mono-Couffo, respectively. Forty-seven and 45 individual M. vitrata samples were collected from L. sericeus in Ouémé-Plateau, and Zou-

Collines, respectively. Fifty-two, 52 and 58 individual M. vitrata samples were collected from T. candida in Ouémé-Plateau, Zou-Collines, and Mono-Couffo, respectively, and 49, 49 and 48 individual M. vitrata samples were collected from P. phaseoloides in OuéméPlateau, Zou-Collines, and Mono-Couffo, respectively. Genomic DNA was extracted from the insect samples using DNeasy animal tissue kit and following manufacturer instructions (Qiagen, Valencia, CA). The DNA concentrations were adjusted to $10 \mathrm{ng} / \mu \mathrm{l}$ and used for genotyping.

Microsatellite genotypes

Microsatellite markers C0241, 7_02K06, C0444, C32008 and 01_B12 were used for genotyping M. vitrata samples (Table 3.1), amplified in multiplex PCR reactions and detected as previously described by Agunbiade et al. (2012). The microsatellite markers were obtained as previously described in Agunbiade et al. (2012) and the DNA sequence libraries submitted to GenBank under the accession numbers from JN685509 to JN685580. The mean number of alleles per locus, observed heterozygosity and expected heterozygosity were calculated for genotypes by location and by host plant within each location using Arlequin 3.5.1.3 (Excoffier et al. 2005). The potential occurrence of null alleles and other genotyping errors (stuttering and allele drop out) were tested using the program Micro-Checker 2.2.3 (Van Oosterhout et al. 2004), and null alleles were suspected at a given locus when Micro-Checker rejects Hardy-Weinberg Equilibrium (HWE) and excess homozygosity was evenly distributed among allelic size classes. Null allele-corrected pairwise F_{ST} estimates were calculated for all populations by applying the ENA correction in the FREENA package (Chapuis and Estoup 2007; Chapuis et al. 2008;
available at http://www1.montpellier.inra.fr/URLB/). Uncorrected F_{ST} values were estimated following Weir (1996), whereas corrected $F_{\text {ST }}$ estimates were made when null allele were predicted following the expectation maximization (EM) algorithm (Dempster et al. 1977).

Analysis of molecular variance (AMOVA), global F-statistics (Weir and Cockerham 1984) and pairwise $F_{S T}$ estimates were calculated also using Arlequin 3.5.1.3 (Excoffier et al. 2005). Four different analyses were performed based on assumed partitioning of the population based on host plant and/or geographic location; analysis 1 : variation among host plants (pooled across all locations), analysis 2: variation among geographic locations (pooled for all host plants), analysis 3: differentiation between host plant within each geographic location, and analysis 4: differentiation between geographic location for each host plant group. Significance for each comparison was corrected for Type I error by application of the B-Y method (Benjamini and Yekutieli 2001).

The program STRUCTURE 2.3.4 uses a model-based clustering to predict population structure using genotypic marker data from individual samples, where the model assigns proportions of individual genotypes to one of K populations (Pritchard et al. 2000). STRUCTURE analysis of microsatellite genotype data was run using an initial burn-in of 100,000 iterations followed by 100,000 iterations, and ten replicates with each potential value of K (range 1 to 10) were run with an assumed population admixture model. STRUCTURE runs were performed using LOCPRIOR command, where genotypes were defined based on host plant at each geographic location. The "real" value of K (number of potential unique populations represented by the M. vitrata genotypes) was estimated as described by Evanno et al. (2005) using the program Structure harvester
(Earl and vonHoldt 2012; available at http://taylor0.biology.ucla.edu/structureHarvester/). A graphical display of individual co-ancestry (Q-matrix) data was generated from STRUCTURE output using the program Distruct (Rosenberg 2004).

Isolation by distance (IBD) model of genetic differentiation was tested by comparing $F_{S T}\left(1-F_{S T}\right)$ with the logarithm of geographic distances, and significance evaluated using Mantel tests with 10,000 randomizations of the data. All IBD analyses were conducted using the IBDWS (Jensen et al. 2005; available at http://ibdws.sdsu.edu/~ibdws/).

Mitochondrial haplotypes

Oligonucleotide primers HC02198 5^{\prime}-TAA ACT TCA GGG TGA CCA AAA AAT CA-3' and LCO1490 5'-GGT CAA CAA ATC ATA AAG ATA TTG G-3' (Folmer et al. 1994) were used for PCR amplification of $\sim 650 \mathrm{bp}$ mitochondrial cytochrome c oxidase I (cox1) DNA barcode region. All PCR, SacI PCR-RFLP and DNA sequencing reactions were performed according to Margam et al. (2011a), except cycle sequencing using BigDye ${ }^{\mathrm{TM}}$ reactions (Applied Biosystems, Foster City, CA), which were performed at the Iowa State University DNA Sequencing and Synthesis Facility, Ames, IA where data was trimmed for Phred scores < 20. The haplotype data were submitted to GenBank under the accession numbers from KJ175700 to KJ176247.

DNA sequence data were aligned for each individual using CLUSTALX 1.8 (Thompson et al. 1997). Haplotype differentiation of sequence data was estimated among 1) host plant or 2) geographic location from which samples were collected using φ statistics, which is an approximation of F-statistics, based on haplotype frequencies
(Benjamini and Yekutieli 2001; Excoffier et al. 1992). The φ-statistics and AMOVA estimates were obtained using Arlequin as described previously, except the Kimura 2parameter model was used for φ-statistic calculation with an empirical estimated gamma parameter $=0.05$. AMOVA was used to partition haplotype variance between 1) host plants across geographic locations (sample sites) or 2) geographic location across different host plants. Pairwise $\varphi_{S T}$ estimates were made between host plant groups using Arlequin and significance for multiple tests within each comparison determined following application of the B-Y method (Benjamini and Yekutieli 2001) as described above.

RESULTS

Microsatellite genotypes

The observed heterozygosity $\left(H_{\mathrm{O}}\right)$ across all loci ranged from 0.02 to 0.89 while the expected heterozygosity ranged from 0.02 to 0.67 . Nineteen of the 55 exact tests across host plants and geographic locations showed significant deviation from HWE. Two of the markers were monomorphic (CO241 on L. sericeus at Zou-Collines and 7_02K026 on P. phaseoloides at Ouémé-Plateau) (Appendix B). Micro-Checker analysis indicated that markers 7_02K06 and C0241 showed evidence of null allele presence in all populations that were tested. There was no evidence of stuttering or allele drop out in any of the microsatellite markers. Results of genetic differentiation estimates among M. vitrata were based on four sets of analyses; analysis 1: variation among host plants (pooled across all locations), analysis 2: variation among geographic locations (pooled for all host plants), analysis 3: differentiation between host plants within each geographic location, and analysis 4: differentiation between geographic locations for each host plant group.

Analysis 1: When microsatellite genotypes were divided into four groups based on the host plants from which M. vitrata larvae were collected, the global estimates of subpopulation differentiation across all loci were low but significant based on uncorrected $\left(F_{S T}=0.06\right)$ and ENA-corrected microsatellite genotype data $\left(F_{S T}{ }^{\mathrm{ENA}}=0.05\right.$; Table 3.2). AMOVA results indicated that 93.03% of the genetic variation for M. vitrata was within host plant group while 5.71% was estimated among host plants (remaining data not shown). Pairwise $F_{S T}$ estimates of host plant differentiation based on uncorrected and ENA-corrected microsatellite data across all loci ranged from 0.01 to 0.09 (Table 3.3), and indicated that all comparisons were significant. Analysis 2: In comparison, microsatellite genotypes based on geographic location resulted in uncorrected $F_{S T}$ estimates of 0.02 $\left(F_{S T}{ }^{\mathrm{ENA}}=0.02\right.$; Table 3.2). Additionally, Mantel tests showed an absence of IBD through no detectable correlation between genetic and geographic distances $\left(R^{2}=-0.12 P=0.49\right.$; remaining results not shown). Analysis 3: Analysis of host plant variation within a single location effectively removed a potential confounding influence of geographic variation on host plant differentiation. Subsequent pairwise $F_{\text {ST }}$ estimates ranged from -0.01 to 0.28 , and significant differentiation was predicted for 11 of 15 comparisons at B-Y Method adjusted significant thresholds (Table 3.4). Analogously, Analysis 4 evaluated variation between geographic locations for M. vitrata collected from the same host plant, which predicted significant differentiation in 5 of 10 comparisons at B-Y adjusted significant thresholds (Table 3.5).

STRUCTURE analysis indicated that there were 2 populations among all the samples on the different host plants and across locations (Figure 3.2). A maximum value of 7.41 was generated for $\mathrm{mL} "(K) / \mathrm{sL}(K)$ at $K=2$, which represented the "real" population
number (K) that STRUCTURE predicted from microsatellite dataset. The estimated coancestries were partitioned into these two distinct clusters among the M. vitrata microsatellite genotypes, and were partitioned among host plant groups from 3 geographic locations (Figure 3.2). Cluster 1 (orange) was proportionately most common among M. vitrata samples from V. unguiculata at Ouémé-Plateau and Mono-Couffo, Benin as well as from T. candida at Mono-Couffo, Benin.

Mitochondrial haplotypes

The mitochondrial cox1 gene fragment that was PCR amplified in this study was also previously used to investigate haplotype variation among M. vitrata in West Africa by Margam et al. (2011a). Alignment of novel cox1 sequence data from 548 individuals collected from 4 different host plants at 3 different geographic locations resulted in a 619 bp consensus sequence which showed a mean nucleotide diversity of 0.0019 ± 0.0014 (mean number of pairwise sequence differences 1.17 ± 0.76). Results of AMOVA showed that 94.15% of the haplotype variation was within populations based on host plant from which larvae were collected, whereas 4.80% of the variation was among populations (remaining data not shown). A global estimate of haplotype differentiation among host plant groups was also low ($\varphi_{S T}=0.05$) but significant $(P<0.001)$. Pairwise $\varphi_{S T}$ estimates which was analogous to analyses 1 to 4 used for microsatellite data (see previous section), ranged from -0.01 to 0.20 (Table 3.6), and showed significant differentiation for 11 of 55 comparisons at the B-Y adjusted significance threshold of 0.01 (Appendix B). For example, these results showed significant variation between $\varphi_{S T}$ estimates between T. candida and both V. unguiculata and L. sericeus at Ouémé-Plateau, Benin. Also, M.
vitrata collected from V. unguiculata at Ouémé-Plateau, Zou-Collines and Mono-Couffo, Benin showed no significant mitochondrial haplotype variation ($P \geq 0.148$), but M. vitrata collected from T. candida showed significant variation between all 3 geographic locations ($P \leq 0.002$).

DISCUSSION

Microsatellite markers developed from species of Lepidoptera can have high frequencies of non-PCR amplifying "null" alleles that potentially result in the overestimation of homozygosity, and have been reported in population genetic studies from a range of taxa (Dakin and Avise 2004; DeWoody et al. 2006). Microsatellite markers from Lepidopteran insects and molluscs have been reported to have particularly high frequencies of null alleles (review in Chapuis and Estoup 2007). Associations between null alleles and highly variable flanking regions have been repeatedly demonstrated (see Chapuis and Estoup 2007). Recent evidence suggests that null alleles at some microsatellite loci may be affected by movement of transposable elements (Coates et al. 2010). Indeed, two of the microsatellite loci (7_02K06 and C0241) showed the presence of null alleles, but the molecular basis for the non-PCR amplification of alleles was not investigated. Regardless of the cause, resulting $F_{S T}$ estimates from this study were corrected using the ENA algorithm, which has previously been shown to allow for accurate analysis of population genetic microsatellite data. Both ENA-corrected as well as uncorrected $F_{S T}$ estimates from microsatellite data analyses provided congruent results that suggested significant levels of genetic variation exist between M. vitrata collected
from the different host plants, but this variation is not consistently present among comparisons at different geographic locations.

Larval M. vitrata are a major pest of cultivated cowpea, V. unguiculata, in the tropics and subtropics, and are difficult to control through applications of chemical insecticides because sprays cannot contact larvae that have burrowed into the flowers and pods. The development and implementation of cowpea that expresses the Bt Cry1 Ab toxin holds the promise to effectively control M. vitrata feeding damage, but the evolution of resistance in several species of Lepidoptera to $B t$ toxin has also raised concerns regarding the longevity of this technology (Murdock 2002). Prior to release of cowpea varieties to farmers in West Africa, an understanding of the biology, ecology, and population structure is fundamental in making sound and effective IRM decisions, which may prolong the field efficacy of this $B t$ technology. Significant levels of genetic differentiation were previously estimated among M. vitrata collected from V. unguiculata in the West African countries of Niger, Nigeria and Burkina Faso using data from SNPs (Margam et al. 2011b) and microsatellite markers (Agunbiade et al. 2012). Genetic differentiation among M. vitrata populations was positively correlated with geographic distance (Margam et al. 2011b). Additionally, mitochondrial haplotypes were previously shown to be differentiated among M. vitrata collected from cowpea in the West African nations of Nigeria, Niger and Burkina Faso, with 2 distinct haplotype groups being predicted (Margam et al. 2011a). Winged insects that are capable of long distance flight (reviewed by Showers 1997) are typically genetically homogenous (den Boer 1978; Llewellyn et al. 2003; Wei et al. 2013), where admixture effectively results in a single random mating population that lacks any significant gene flow barriers (Lyons et al. 2012). Maruca vitrata persist in southern
coastal repositories during the dry season and undergo a seasonal range expansion as the population migrates to northern regions when climatic conditions become more favorable at the onset of the rainy season (Bottenberg et al. 1997; Ba et al. 2009). This pattern of seasonal migration may cause genetic structuring due to the Wahlund effect or other unknown population genetic factors (Margam et al. 2011b; Agunbiade et al. 2012), but the influence of a number of other potential confounding factors was not previously investigated.

IRM programs for Bt-cowpea in West Africa will likely use a high-dose/refuge strategy, where refugia of non-transgenic plants will be essential for maintaining a reservoir of susceptible alleles. The high-dose/refuge strategy is considered central to managing resistance to $B t$ toxins, but the level of gene flow and random mating within and between populations of target insects is also important for the spread of susceptible genotypes in the population (Bourguet et al. 2000; Onstad et al. 2012). Refugia can be comprised of cultivated non-transgenic crop plants or perhaps any other host plants that can support significant population sizes for the targeted insect pest species. Weedy species that are alternative hosts to arthropod pests may also serve as an effective form of refugia. Models based on studies of maize cropping systems suggest that increased habitat diversity, including weedy vegetation, could reduce the rate of spread of rotation-resistant western corn rootworm (Onstad et al. 2003). Studies have also reported that the utilization of wild host plants can be effective refuges within IRM strategies for transgenic crops (Zhang and Tang 2000; Tan et al. 2001; Wu et al. 2004; Abney et al. 2007; Jackson et al. 2008). Although M. vitrata are known to feed on multiple non-cowpea plants, the level of gene flow between individuals feeding on cowpea and these other plants remains
unknown, and may affect the efficacy of IRM strategies. Many species of Lepidoptera are polyphagous and are opportunistic insects that feed on multiple alternative host plants, but instances of differential rates of development are proposed to result in reduced gene flow due to temporal variation in adult mating periods, such that assortative or structured mating systems have evolved (Malausa et al. 2005; Calcagno et al. 2007). Breakdown of gene flow between sympatric populations of a species has been hypothesized to cause host race formation (Nason et al. 2002).

Low but significant levels of genetic differentiation was estimated from microsatellite marker and mitochondrial haplotype data between M. vitrata collected from cultivated cowpea (V. unguiculata) and alternative native host plants P. phaseoloides, L. sericeus and T. candida. Analogous sampling of M. vitrata from alternative hosts was not conducted in previous studies by Margam et al. (2011b), and Agunbiade et al. (2012), and provided new insights into possible genetic structure in West Africa. Results of the current study might suggest little host plant-related M. vitrata population structure from initial analyses of microsatellite $\left(F_{\mathrm{ST}}=0.05\right)$ and haplotype data $\left(\varphi_{S T}=0.04\right)$. Also in contrast to previous results by Margam et al. (2011b), and Agunbiade et al. (2012), genetic variation in this current study was shown to be low between the 3 collection sites and not correlated with geographic distance. This might be due to our sampling that was restricted to just the southern region of Benin. Additional analyses which potentially removed the confounding influence of geographic variance showed significant pairwise genetic differentiation between M. vitrata collected from all of the different host plants at Ouémé-Plateau, but this pattern was not consistent at the Zou-Collines or Mono-Couffo locations. Similar inconsistent results were observed among pairwise comparisons of M. vitrata from
different geographic locations but collected from the same host plant. These findings were supported by analysis with the program STRUCTURE, where co-ancestry represented by Cluster 2 (blue) was prevalent among M. vitrata collected from all different host plants, with the exception of individuals collected from V. unguiculata at Ouémé-Plateau and T. candida at Mono-Couffo.

With respect to the high dose-refuge strategy, the apparently weak and inconsistent genetic differentiation of M. vitrata on different host plants might suggest that high levels of gene flow would occur between susceptible individuals on wild alternative hosts and rare resistant individuals that survive on Bt-cowpea. Although not conclusive, our findings might also suggest that the wild hosts surveyed in this study may serve as effective refuge plants in any eventual implementation of Bt-cowpea in West Africa. Lack of consistent host plant differentiation among M. vitrata across multiple geographic locations might also suggest that the females have not become "tuned" for oviposition on specific host plants, such that host-races are not likely to have formed. More likely, complex temporal interactions between plant phenologies and attraction of female M. vitrata for oviposition may play a role in determining host plant usage and subsequent levels of gene flow at a specific locality in a specific year. Thus variation in local environments could influence oviposition and/or subsequent larval development on host plants, such that random and significant perturbations on genetic distribution might be detected. Alternatively, climatic conditions have been shown to support basal insect population sizes during conditions previously thought to be restrictive (Merret 1986), such that some alternative noncultivated hosts might harbor reservoirs of M. vitrata during the dry season. Sampling of these presumable small reservoir populations in this study might have inadvertently
skewed our estimates of within population differentiation, and could complicate any future population genetic studies where these confounding factors are not taken into account. Regardless, our data might not suggest that random mating will occur between rare resistant moths emerging from Bt-cowpea and susceptible moths derived from non Bt-cowpea or native host plant refuges. The rate of development among Bt resistant individuals has been documented, such that assortative mating might be possible due to temporal delay in emergence of subsequent adults. In such a scenario, the mating period of reproductive adults may show limited overlap and could result in reduced gene flow. Under the assumptions of the high-dose/refuge strategy, temporal delays between adult emergence from Bt-cowpea, non Bt-cowpea and alternative host plants will affect the probabilities at which the rare resistant individuals mate with susceptible adults, and could lead to the rapid increase in homozygous resistant genotypes within the pest insect population if significant temporal delays are encountered.

The interactions between insect pests, their natural enemies, and the natural vegetation often leads to more efficient biological control, not only because of the increased availability of refugia and alternative prey for natural enemies during offseasons, but also because of the higher diversity in the natural vegetation (e.g. Altieri et al. 1993; Waage and Hawksworth 1991). Tamò et al. (1997) reported that the availability of alternative host plants positively affects parasitism rates, and should consequently reduce overall pest densities. Because of the semi-migratory habit of M. vitrata, Tamò et al. (2003) suggested two different levels from which to consider possible biological control interventions. The first option during the cropping season in cowpea fields, would be the inundative release of locally available, mass-reared trichogrammatids, preferably in
conjunction with the use of pheromone trap-derived thresholds (Downham et al. 2002), particularly in areas where M. vitrata does not have suitable alternative host plants during the dry season, but rather invades the cowpea fields like a migrant pest (e.g., coming from the south, as it is the case for the Kano region, see Bottenberg et al. 1997). The second option would be more appropriate in areas where alternative host plants are abundant and constitute a major factor influencing the dynamics of M. vitrata populations. In this case, inoculative releases of larval parasitoids such as Therophilus javanus or T. marucae (Hymenoptera: Braconidae) will be targeting M. vitrata populations on those host plants, with the objective of reducing overall pod borer populations at the landscape level. Based on the results obtained in the present study, the second option would seem more appropriate in the introduction and release of biocontrol agents against M. vitrata.

REFERENCES

Abney MR, Sorenson CE, Bradley JR Jr (2007) Alternate crop hosts as resistance management refuges for tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae) in North Carolina. The Journal of Cotton Science 11: 35-39.

Agunbiade TA, Kim KS, Forgacs D, Margam VM, Murdock LL, Ba NM, Binso-Dabire CL, Baoua I, Ishiyaku MF, Tamò, Pittendrigh BR (2012) The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa. Bulletin of Entomological Research 102(5): 589-599.

Alstad DN, Andow DA (1995) Managing the evolution of insect resistance to transgenic plants. Science 268: 1894-1896.

Altieri MA, Cure JR, Garcia MA (1993) The role and enhancement of parasitic Hymenoptera biodiversity in agroecosystems. In LaSalle J. and Gauld ID (Eds.), Hymenoptera and biodiversity. CAB International, Wallingford, UK, pp 257-275.

Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Protection 1: 405-430.

Arodokoun D (1996) Importance des plantes-hôtes alternatives et des ennemis naturels indigènes dans le contrôle biologique de Maruca testulalis Geyer (Lepidoptera: Pyralidae), ravageur de Vigna unguiculata Walp. PhD thesis, University of Laval, Québec, Canada, 181 pp.

Arodokoun DY, Tamò M, Cloutier C, Adeoti R (2003) The importance of alternative host plants for the annual cycle of the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae). Insect Science and its Application 23: 103-113.

Ba NM, Margam VM, Binso-Dabire CL, Sanon A, McNeil JN, Murdock LL, Pittendrigh BR (2009) Seasonal and regional distribution of the cowpea pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) in Burkina Faso. International Journal of Tropical Insect Science 29(3): 109-113.

Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Annals of Statistics 29: 1165-1188.

Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biological Control 46: 400408.

Bottenberg H, Tamò M, Arodokoun D, Jackai LEN, Singh BB, Youm O (1997) Population dynamics and migration of cowpea pests in northern Nigeria: Implications for integrated pest management. In Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (Eds.), Advances in cowpea research. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, Nigeria, pp 271-284.

Bourguet D, Bethenod MT, Pasteur N, Viard F (2000) Gene flow in European corn borer Ostrinia nubilalis: Implications for the sustainability of transgenic insecticidal maize. Proceedings of the Royal Society of London Series B 267: 117-122.

Calcagno V, Thomas Y, Bourguet D (2007) Sympatric host races of the European corn borer: Adaptation to host plants and hybrid performance. Journal of Evolutionary Biology 20: 1720-1729.

Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24(3): 621-631.

Chapuis MP, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Molecular Ecology 17(16): 3640-3653.

Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2010) A Helitron-like transposon superfamily from Lepidoptera disrupts (GAAA)n microsatellites and is responsible for flanking sequence similarity within a microsatellite family. Journal of Molecular Evolution 70: 278-288.

Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93: 504-509.

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1): 1-38.
den Boer MH (1978). Isozyme and migration in the African armyworm Spodoptera exempta (Lepidoptera: Noctuidae). Journal of Zoology London 185: 539-553.

DeWoody J, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Molecular Ecology Notes 6: 951-957.

Downham MCA, Tamò M, Hall DR, Datinon B, Dahounto D, Farman DI (2002) Development of sex pheromone traps for monitoring the legume pod-borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae). In Fatokun CA, Tarawali SA, Singh BB, Kormawa PM and Tamò M (Eds.), Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria, pp 124-135.

Earl DA, vonHoldt BM (2012) Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4 (2): 359-361.

Ehrlich PR, Raven PH (1964) Butterflies and plants: A study in coevolution. Evolution 18: 586-608.

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611-2620.

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1:4750.

Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

Farrell BD (1998) 'Inordinate fondness' explained: Why are there so many beetles? Science 281: 555-559.

Feder JL, Berlocher SH, Opp SB (1998) Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae) a tale of two species for Charles D. In Mopper S, Strauss SY (Eds.), Genetic structure and local adaptation in natural insect populations. Chapman \& Hall, New York, pp 408-441.

Folmer MB, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5): 294-299.

Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: Model systems for the comparative study of speciation ecology. Genetica 116: 251-267.

Futuyma DJ (1983) Selective factors in the evolution of host choice by phytophagous insects. In S. Ahmad (Ed.), Herbivorous Insects: Host seeking behaviour and mechanisms. Academic Press, New York, pp 227-244.

Gould F (1998) Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annual Review of Entomology 43: 701-726.

Gourdine JS, Simmons AM, McCutcheon GS, Leibee GL (2005) Floral nectars and honey enhance survival of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of the diamondback moth (Lepidoptera: Plutellidae). Journal of Entomological Science 40: 96-99.

Gurr GM, Wratten SD (1999) "Integrated biological control": A proposal for enhancing success in biological control. International Journal of Pest Management 45: 8184.

Gurr GM, Wratten SD, Tylianakis J, Kean J, Keller M (2005) Providing plant foods for natural enemies in farming systems: Balancing practicalities and theory. In Wäckers FL, van Rijn PCJ, Bruin J (Eds.), Plant-provided food for carnivorous insects: A protective mutualism and its applications. Cambridge University Press, Cambridge, UK, pp 267-304.

Huesing J, Romeis J, Ellstrand N, Raybould A, Hellmich R, Wolt J, Ehlers J, Dabiré C, Fatokun C, Hokanson K, Ishiyaku MF, Margam V, Obokoh N, Mignouna J, Nangayo F, Ouedraogo J, Pasquet R, Pittendrigh B, Schaal B, Stein J, Tamò M, Murdock L (2011) Regulatory considerations surrounding the deployment of Btexpressing cowpea in Africa: Report of the deliberations of an expert panel. GM Crops 2: 211-224.

Jackson RE, Bradley JR, van Duyn J, Leonard BR, Allen KC, Luttrell R, Ruberson J, Adamczyk J, Gore J, Hardee DD, Voth R, Sivasupramaniam S, Mullins JW, Head G (2008) Regional assessment of Helicoverpa zea populations on cotton and noncotton crop hosts. Entomologia Experimentalis et Applicata 126: 89-106.

Jaenike J (1990) Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21: 243-273.

Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6: 13. v.3.23 http://ibdws.sdsu.edu/ Assessed 2014 Feb 20.

Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45: 175201.

Lavandero BI, Wratten SD, Didham RK, Gurr GM (2006) Increasing floral diversity for selective enhancement of biological control agents: A double-edged sword? Basic and Applied Ecology 7: 236-243.

Lee JC, Heimpel GE (2008) Effect of floral nectar, water, and feeding frequency on Cotesia glomerata longevity. BioControl 53: 289-294.

Leumann C (1994) Populations dynamik des Hülsenbohrers Maruca testulalis auf der Kuherbse Vigna unguiculata und auf Pterocarpus santalinoides, einer alternativen Wirtspfl anze, während der Trockenzeit im Süden von Bénin. Diplomarbeit, ETH Zürich, Switzerland, 83 pp.

Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, Clark SJ, Sunnucks P (2003) Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Molecular Ecology 12: 21-34.

Lyons JI, Pierce AA, Barribeau SM, Sternberg ED, Mongue AJ, De Roode JC (2012) Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Molecular Ecology 21(14): 3433-3444.

Malausa T, Bethenod MT, Bontemps A, Bourguet D, Cornuet JM, Ponsrard S (2005) Assortative mating in sympatric host races of the European corn borer. Science 308: 258-260.

Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL, Baoua I, Ishiyaku MF, Shukle JT, Hellmich RL, Covas FG, Ramasamy S, Armstrong J, Pittendrigh BR,

Murdock LL (2011a) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Molecular Biology Reports 38(2): 893-903.

Margam VM, Coates BS, Bayles DO, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Kroemer JA, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011b) Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(7): e21388.

Merret PJ (1986) Evidence of persistent populations of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae), in east-central Tanzania. Bulletin of Entomological Research 76: 247-263.

Mitter C, Farrell B (1991) Macroevolutionary aspects of insect- plant relationships. In E. Bemays (Ed.), Insect-Plant Interactions, CRC Press, Boca Raton 3: 35-78.

Murdock LL (2002) Bioassay data, Bt and Maruca, alpha-amylase inhibitor and cowpea weevil; a status report. In Workshop on the genetic transformation of cowpea, NGICA, Capri, Italy, 20 pp .

Nason JD, Heard SB, Williams FR (2002) Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae). Evolution 56(7):1475-1488.

Olivieri I, Singer MC, Magalhâes S, Courtiol A, Dubois Y, Carbonell D, Justy F, Beldade P, Parmesan C, Michalakis Y (2008) Genetic, ecological, behavioral and geographic differentiation of populations in a thistle weevil: Implications for speciation and biocontrol. Evolutionary Applications 1:112-128.

Onstad DW, Crowder DW, Mitchell PD, Guse CA, Spencer JL, Levine E, Gray ME (2003) Economics versus alleles: Balancing IPM and IRM for rotation resistant western corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology 96: 1872-1885.

Onstad DW, Kang J, Ba NM, Tamò M, Jackai L, Dabire C, Pittendrigh BR (2012) Modeling evolution of resistance by Maruca vitrata (Lepidoptera: Crambidae) to transgenic insecticidal cowpea in Africa. Environmental Entomology 41(5): 10451276.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Rosenberg NA (2004) Distruct: A program for the graphical display of population structure. Molecular Ecology Notes 4: 137-138.

Sharma HC (1998) Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata: A review. Crop Protection 17: 373-386.

Showers WB (1997) Migratory ecology of the black cutworm. Annual Review of Entomology 42: 393-425.

Strong DR, Lawton JH, Southwood R (1984). Insects on plants: Community patterns and mechanisms. Blackwell Scientific. Oxford. England.

Sword GA, Joern A, Senior LB (2005) Host plant-associated genetic differentiation in the snakeweed grasshopper, Hesperotettix viridis (Orthoptera: Acrididae). Molecular Ecology 14(7): 2197-2205.

Tamò M, Arodokoun DY, Zenz N, Agboton C, Adeoti R (2002) The importance of alternative host plants for the biological control of two main cowpea insect pests, the pod borer, Maruca vitrata (Fabricius) and the flower thrips, Megalurothrips sjostedti (Trybom). In Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (Eds.), Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Proceedings of the 3rd World Cowpea Conference, 5-10 September 2000, Ibadan, Nigeria, pp 81-93.

Tamò M, Bottenberg H, Arodokoun DY, Adeoti R (1997) The feasibility of classical biological control of two major cowpea insect pests. In Singh BB, Mohan Raj DR, Dashiell KE, and Jackai LEN (Eds.), Advances in cowpea research. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Center for Agricultural Sciences (JIRCAS). IITA Ibadan, Nigeria, pp 259-270.

Tamò M, Ekesi S, Maniania NK, Cherry A (2003) Biological control, a non-obvious component of IPM for cowpea. In Neuenschwander P, Borgemeister C, Langewald J (Eds.), Biological control in IPM systems in Africa. CAB International, Wallingford, Oxon, pp 256-309.

Tamò M, Srinivasan R, Dannon E, Agboton C, Datinon B, Dabire C, Baoua I, Ba M, Haruna B, Pittendrigh BR (2012) Biological control: A major component for the long-term cowpea pest management strategy. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp 249-259.

Tan S, Chen X, Li D, Zhang H (2001) Can other host species of cotton bollworm be nonBt refuges to prolong the effectiveness of Bt-cotton? Chinese Science Bulletin 46: 1804-1807.

Taylor TA (1978) Maruca testulalis, an important pest of tropical grain legumes. In Singh SR, Emden HF, Taylor TA (Eds.), Pests of grain legumes: Ecology and control. London, Academic pp 193-200.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research 25: 4876-4882.

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4(3): 535-538.

Waage JK, Hawksworth DL (1991) Biodiversity of microorganisms and invertebrates: Its role in sustainable agriculture. In Proceedings of the first workshop on the ecological foundations of sustainable agriculture (WEFSA 1), CAB International, Wallingford, UK, pp 149-162.

Wei S-J, Shi B-C, Gong Y-J, Jin G-H, Chen X-X, Meng X-F (2013) Genetic structure and demographic history reveal migration of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) from the southern to northern regions of China. PLoS ONE 8(4): e59654.

Weir BS (1996) Genetic Data Analysis II. Methods for discreet population genetic data Sinauer Associates, Inc, Sunderland, MA.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

Wratten SD, van Emden HF (1995) Habitat management for enhanced activity of natural enemies of insect pests. In Glen DM, Greaves MP, Anderson HM (Eds.), Ecology and integrated farming systems. Wiley, Chichester, UK, pp 117-145.

Wu K, Feng H, Guo Y (2004) Evaluation of maize as a refuge for management of resistance to Bt cotton by Helicoverpa armigera (Hubner) in the Yellow River cotton-farming region of China. Crop Protection 23: 523-530.

Zhang TZ, Tang CM (2000) Utilization and management of Bt transgenic cotton plants and their insecticidal activity. Chinese Science Bulletin 45(2): 119-127.

FIGURES AND TABLES

Figure 3.1. Map showing collection sites in southern Benin (red circles - MonoCouffo, blue circles - Zou-Collines, and green circles - Ouémé-Plateau).

Figure 3.2. Partitioned co-ancestries among microsatellite-defined M. vitrata genotypes generated using the program STURUTURE with the LOCPRIOR command. For each, the estimated co-ancestry was derived from the Q-matrix for each individual and represented as vertical lines showing the proportion of the $K=2$ segments that made up the individual genotype. Genotypes identified from the host plants V. unguiculata, L. sericeus, P. phaseoloides and T. candida across the locations are defined [OPV - Ouémé-Plateau (V. unguiculata), ZCV - Zou-Collines (V. unguiculata), MCV - Mono-Couffo (V. unguiculata), OPL - Ouémé-Plateau (L. sericeus), ZCL - Zou- Collines (L. sericeus), OPP - Ouémé-Plateau (P. phaseoloides), ZCP - Zou-Collines (\boldsymbol{P}. phaseoloides), MCP - Mono-Couffo (P. phaseoloides), MCT -Mono-Couffo (T. candida), ZCT - Zou-Collines (T. candida) and OPT - OuéméPlateau (T. candida)].

Table 3.1. M. vitrata primer sequences used for microsatellite amplification reactions.

Locus	Primer (dye label) and sequence ($5^{\prime}-3{ }^{\prime}$)	Repeat	Size (bp)
C32008 ${ }^{\text {E }}$	F-(MAX)AAAAAGCGCTTATATGTTTGTTATAGT	(CATA)3	163
	R-GAAATTTTTAACGGAGATACAATCA		
$7 _02 \mathrm{~K} 06{ }^{\text {A }}$	F-(FAM)ATTTGTCAGAATGGTATCTTACGT	$(\mathrm{GAT})_{6}$	151
	R-CCTCTGGGTCATAATTATATTGTTCA		
C0444 ${ }^{\text {E, } 1}$	F-(FAM)AAAGGAACTACGCCGTCAGG	$(\mathrm{CAA})_{8}$	102
	R-GTTGAGCGATCTTGGCACAG		
C0241 ${ }^{\text {E }}$	F-(TAM)GACGAAACAAGGCCTACCAG	$(\mathrm{GAT})_{9}$	165
	R-GGTACTTCYGACGTTGTTCG		
01_B12	F--(TAM)CGGGATGTTACATATACCCAGCA	(CA) ${ }_{12}$	119
	R-CGTACCAATTCATTGAGACTCTCTT		

E, EST-derived primer pair; A, anonymous genomic sequence-derived primer pair; 1, PCR multiplexed primers.

Table 3.2. Global and locus-by-locus estimates of subpopulation differentiation using uncorrected ($F_{\mathbf{S T}}$) and ENA-corrected microsatellite genotype data ($F_{\mathbf{S T}}{ }^{\mathrm{ENA}}$) between four host plant groups (V. unguiculata, P. phaseoloides, L. sericeus, and T. candida) or geographic location in Benin (Ouémé-Plateau, Zou-Collines and Mono-Couffo).

Locus	Host plant groups		Geographic location	
	F_{ST}	$F_{\mathrm{ST}}{ }^{\mathrm{ENA}}$	F_{ST}	$F_{\mathrm{ST}}{ }^{\mathrm{ENA}}$
Global	0.056	0.054	0.016	0.024
C0241	0.003	0.013	0.002	0.018
7_02K06	0.109	0.111	0.055	0.077
01_B12	0.123	0.111	0.012	0.019
C32008	0.011	0.011	0.006	0.005
C0444	-0.001	0.002	-0.002	0.002

Table 3.3. Pairwise estimates of subpopulation differentiation across all microsatellite loci with and without ENAcorrection ($F_{S T}$) (below diagonal) and significance of corresponding comparisons (P-values) as indicated above the diagonal.

	V. unguiculata	L. sericeus	T. candida	P. phaseoloides	V. unguiculata	L. sericeus	T. candida	P. phaseoloides
	Uncorrected				Corrected			
V. unguiculata	-	0.001*	0.010*	<0.001*	-	0.001*	<0.001*	<0.001*
L. sericeus	0.09	-	<0.001*	<0.001*	0.13	-	<0.001*	<0.001*
T. candida	0.02	0.03	-	0.010*	0.01	0.09	-	0.010*
P. phaseoloides	0.04	0.03	0.01	-	0.04	0.13	0.01	-

Table 3.4. Estimates of M. vitrata subpopulation differentiation from pairwise $\boldsymbol{F}_{\text {ST }}$ between host plant groups at each geographic location (below diagonal) and significance of corresponding comparisons (P-values) as indicated above the diagonal.
a) Differentiation between host plant group within Oueme-Plateau, Benin (B-Y corrected $\alpha=0.020$)

	V. unguiculata	L sericeus	T. candida	P. phaseoloides
V. unguiculata	-	$<0.001^{*}$	$<0.001^{*}$	$<0.001^{*}$
L. sericeus	0.277	-	$<0.001^{*}$	$<0.001^{*}$
T. candida	0.196	0.063	-	$<0.003^{*}$
P. phaseoloides	0.22	0.172	0.028	-

b) Differentiation between host plant group within Zou-Collines, Benin (B-Y corrected α $=0.020$)

	V. unguiculata	L sericeus	T. candida	P. phaseoloides
V. unguiculata	-	0.85	0.285	0.082^{*}
L. sericeus	0.074	-	$<0.001^{*}$	$<0.001^{*}$
T. candida	-0.005	0.056	-	0.301
\boldsymbol{P}. phaseoloides	0.001	0.1	0.001	-

c) Differentiation between host plant group within Mono-Couffo, Benin (B-Y corrected α $=0.027$)

	V. unguiculata	L sericeus	T. candida	P. phaseoloides
\boldsymbol{V}. unguiculata	-	NA	0.010^{*}	0.017^{*}
\boldsymbol{L}. sericeus	NA	-	NA	NA
\boldsymbol{T}. candida	0.011	NA	-	0.055
\boldsymbol{P}. phaseoloides	0.005	NA	0.013	-

Table 3.5. Estimates of M. vitrata subpopulation differentiation from pairwise $\boldsymbol{F}_{\text {ST }}$ between locations from the same host plant (below diagonal) and significance of corresponding comparisons (P-values) as indicated above the diagonal.
a) Differentiation between geographic location for V. unguiculata (B-Y corrected $\alpha=$ 0.027)

	Oueme-Plateau	Zou-Collines	Mono-Couffo
Oueme-Plateau	-	$<0.001^{*}$	$<0.001^{*}$
Zou-Collines	0.157	-	0.082
Mono-Couffo	0.084	0.01	-

b) Differentiation between geographic location for L. sericeus (B-Y corrected $\alpha=0.05$)

	Oueme-Plateau	Zou-Collines	Mono-Couffo
Oueme-Plateau	-	0.608	NA
Zou-Collines	-0.006	-	NA
Mono-Couffo	NA	NA	-

c) Differentiation between geographic location for T. candida (B-Y corrected $\alpha=0.027$)

	Oueme-Plateau	Zou-Collines	Mono-Couffo
Oueme-Plateau	-	0.604	$<0.001^{*}$
Zou-Collines	-0.003	-	$<0.001^{*}$
Mono-Couffo	0.072	0.046	-

d) Differentiation between geographic location for P. phaseoloides (B-Y corrected $\alpha=$ 0.027)

	Oueme-Plateau	Zou-Collines	Mono-Couffo
Oueme-Plateau	-	0.141	0.004^{*}
Zou-Collines	0.005	-	0.219
Mono-Couffo	0.023	0.004	-

Table 3.6. Pairwise estimates of mitochondrial cox 1 haplotype differentiation among M. vitrata collected from different host plants ($\varphi_{S T}$) (below diagonal) and significance of corresponding comparisons (P-values) as indicated above the diagonal. Significance determined at a B-Y adjusted significance threshold of $\alpha \leq 0.020$.

	V. unguiculata	L. sericeus	T. candida	P. phaseoloides
V. unguiculata	-	0.010^{*}	$<0.001^{*}$	0.020^{*}
L. sericeus	0.02	-	$<0.001^{*}$	$<0.001^{*}$
T. candida	0.02	0.01	-	$<0.001^{*}$
P. phaseoloides	0.01	0.04	0.06	-

CHAPTER 4

DEFINING THE SPECIES COMPLEX OF THE LEGUME POD BORER, MARUCA VITRATA (LEPIDOPTERA: CRAMBIDAE), BY COMPARATIVE MITOCHONDRIAL PHYLOGENOMICS

Abstract

Mitochondrial DNA are useful tools for defining phylogenetic and evolutionary relationships of animal species. The legume pod borer, Maruca vitrata (Lepidoptera: Crambidae) is a pan-tropical species of Lepidoptera that is comprised of two unique strains that respectively inhabit the American continents (New World strain), and regions spanning from Africa through Southeast Asia, and Northern Australia (Old World strain). In this study, we present the complete mitochondrial genome sequence of M. vitrata from the New World, assembled de novo from whole genome shotgun sequence data generated on an Illumina HiSeq 2000. Phylogenomic comparisons were made to other previously published mitochondrial genome sequences from Crambid moths including Old World strain of M. vitrata. The 15, 385 bp M. vitrata (New World) sequence has a $80.7 \% \mathrm{~A}+\mathrm{T}$ content, and encodes the 13 protein-coding, 2 ribosomal RNA, and 22 transfer RNA genes that have the typical orientation and arrangement of Lepidopteran mitochondrial DNAs. The derived arrangement of $t R N A^{M e t}-t R N A^{I l u}-t R N A^{G l n}$ following the A+T-rich control region, which has also been found in all Lepidoptera, is observed in M. vitrata (New World). The intergenic spacer region between $t R N A^{s e r}$ and $n a d 1$ genes contains the ATACTAA motif, which is also present in all the six available Crambid mitogenomes, included in this study. The A+T-rich control region contains an 18 bp poly-T repeat

preceded by ATAG motif, and three tandem repeats $(A T)_{3},(A T)_{4}$ and $(A T)_{9}$. Sequence variation between M. vitrata New World and Old World strains show an excess of synonymous substitution as a result of purifying selection, and suggest that divergence occurred ~ 1.87 mya. The phylogenetic relationships constructed based on amino acid sequences of the 13 protein coding genes also support the previously defined relationships among species of Lepidoptera. The mitochondrial genome of M. vitrata (New World strain) shares features common to those of other Crambid species, and prove quantitative estimation of divergence with the Old World strain. Furthermore, the de novo assembly of this mitochondrial genome from next generation sequencing (NGS) reads represents a readily available tool for the generation of data for similar phylogenomic studies.

INTRODUCTION

The mitochondrial genome (mitogenome) encodes proteins that are involved in electron transport and oxidative phosphorylation that is essential for energy production of the cell (Wolstenholme 1992; Boore 1999; Cameron 2014). Insect mitogenomes are circular double stranded DNA (dsDNA) molecules that typically range in size from 14 to 20 kb (Boyce et al. 1989; Wolstenholme 1992), and contain a conserved set of 13 protein coding genes (PCGs), 22 transfer RNAs (tRNAs) and 2 ribosomal RNA genes (rRNAs) that are required for translation of mitogenome-encoded proteins (Boore 1999). The A+Trich non-coding control region that functions in the initiation of transcription and replication tends to be large in insect mitogenomes (Wolstenholme 1992), where the length is highly variable among different insects due to high rates of nucleotide substitution, insertions/deletions, and variable numbers of tandem repeats (Fauron and

Wolstenholme 1980; Inohira et al. 1997). Animal mitogenomes have a highly conserved gene content, maternal inheritance, and lack recombination (Avise 2000), which has facilitated their use in studies of phylogenetic relationships, population genetic structuring, as well as comparative evolution (Zhang et al. 1995; Boore 1999; Nardi et al. 2003; Arunkumar et al. 2006). Comparisons have allowed for estimation of short-term evolutionary patterns within and between closely related species (Ballard 2000; Coates et al. 2005). Although the gene content of the metazoan mitogenomes is highly conserved, variable lengths of A+T-rich coding regions, and gene order and orientation of tRNAs and PCGs are observed among insects (Hong et al. 2009).

To date, complete or near complete mitogenomes has been sequenced from more than 600 arthropod species (Cameron 2014). Although the insect order Lepidoptera contains approximately 200,000 species, 72 complete or near complete mitogenomes in 17 families and belonging to the Lepidopteran lineage Ditrysia are available (Cameron 2014). Among the family Crambidae, mitogenomes have been obtained for six species - Ostrinia nubilalis and O. furnacalis (Coates et al. 2005), Diatraea saccharalis (Li et al. 2011), Maruca vitrata (Old World) (Margam et al. 2011), Cnaphalocrocis medinalis (Chai et al. 2012), and Chilo suppressalis (Chai et al. 2012). Complete mitogenome sequences for Lepidoptera have been used to study the divergences between sibling and congeneric species (Yukuhiro et al. 2002; Coates et al. 2005), and as a stepping-stone to facilitate population level studies (Kim et al. 2006). Furthermore, full mitogenomes for Lepidoptera are important for the determination of phylogenetic relationships and identification of cryptic species (Lee et al. 2006; Chai et al. 2012).

Obtaining full mitogenome sequences has been a challenging and resource demanding task, where long-range PCR and subsequent primer walking (Huyse et al. 2007), or overlapping PCR products methods have been used to generate data by Sanger sequencing (Coates et al. 2005). Recently, next-generation sequencing (NGS) technologies have led to more straightforward pipelines for the assembly of complete mitogenome sequences (Jex et al. 2010a; Knaus et al. 2011; Ma et al. 2012). Mitogenomes have been sequenced from NGS libraries prepared from long-PCR amplified sequences (Maricic et al. 2010; Morin et al. 2010; Horn et al. 2011) or from sequence captured DNA molecules (Vasta et al. 2009). The long-range PCR strategies may remain useful for NGSbased sequencing, especially when limited genetic material can be recovered from small invertebrates (Jex et al. 2010b). Ultra-deep sequencing on NGS platforms can acquire data that is sufficient for the subsequent assembly of full mitogenomes at high read depth (Knaus et al. 2011; Ma et al. 2012). Also, due to the high copy number of mitochondria in most eukaryotic cells, NGS can reduce the impact of rare nuclear-integrated copies of mitochondrial DNAs or other non-target products (Ho and Gilbert 2010; Gilbert et al. 2007).

Species from the genus Maruca (Lepidoptera: Crambidae) are serious insect pests that feed on cowpea crops throughout the tropical and subtropical regions from northern Australia, and East Asia through sub-Saharan Africa to the Caribbean, Central America, and Hawaii (see Agunbiade et al. 2012 for references). Feeding by M. vitrata cause considerable crop loss and reduced yields to cultivated cowpea in many developing African countries, and is a target for improved and sustainable control methods (Agunbiade et al. 2012). Comparison of M. vitrata mitochondrial cytochrome c oxidase
subunit I (cox1) sequence data originating from samples collected in Africa and Puerto Rico revealed a high and unexpected levels of sequence variation, which suggested the existence of related subspecies or strains - M. vitrata in Africa (Old World) and the subspecies of M. vitrata from Puerto Rico (New World) (Margam et al. 2011). An analogous relationship among New and Old World species of Lepidoptera has also been predicted between Helicoverpa zea and H. armigera (Behere et al. 2007), but accurate estimates of time since divergence between these species is often lacking. In this study, Illumina HiSeq2000 sequencing reads were obtained from M. vitrata (New World), and used to successfully assemble the full mitogenome sequence. These data were applied to detect mitogenome-wide variance with its sister species, M. vitrata (Old World) and estimate time divergence between these New and Old World species. Furthermore, this study provides a pipeline for the rapid NGS acquisition and assembly of mitogenomes.

MATERIALS AND METHODS

Sample collection and DNA extraction

Insect samples of M. vitrata adults were collected from white bean (Phaseolus vulgaris) near Lares, Puerto Rico. All specimens were preserved in 100% ethanol and stored at $4^{\circ} \mathrm{C}$. Total genomic DNA was extracted from a single individual adult using the DNeasy animal tissue kit following the manufacturer's instructions (QIAGEN, Valencia, CA) according to Margam et al. (2011). The quality of the DNA was assessed through electrophoresis on a 1% agarose gel before submission for library construction and sequencing.

Illumina HiSeq2000 ${ }^{\text {TM }}$ library construction and sequencing

A shotgun genomic DNA library was constructed using the TruSeq DNA Sample prep kit (Illumina, San Diego, CA). Briefly, $1 \mu \mathrm{~g}$ of genomic DNA was sonicated on a Covaris M220 (Covaris, Woburn, MA) using the default methods for sonication to a size of 500 bp library as described by the manufacturer. Sonicated DNA was blunt-ended, 3'end A-tailed and ligated to an indexed adaptor. The adaptor-ligated gDNA was amplified by PCR to selectively enrich for those fragments that have adapters on both ends. Amplification was carried out for 8 cycles with the Kapa HiFi polymerase (Kapa Biosystems, Woburn, MA) to reduce the likeliness of multiple identical reads due to preferential clonal amplification. The library was size selected on a 2% agarose gel for fragments 600 bp to 800 bp in length. The size selected library was run on Agilent bioanalyzer DNA 7500 LabChips (Agilent, Santa Clara, CA) to determine the average fragment size and to confirm the presence of DNA of the expected size range and quantitated by qPCR on an ABI 7900. The indexed library was loaded onto a single lane of an 8-lane flowcell for cluster formation and paired-end sequenced at 100-bp lengths on an Illumina HiSeq 2000^{TM} using the TruSeq SBS sequencing kits version 3. The raw .bcl files were converted into fastq files using the software Casava 1.8.2 (Illumina). All shotgun genomic DNA library construction and Illumina HiSeq 2000^{TM} sequencing was carried out at the W. M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign.

Mitogenome assembly

Fastq output of read data was trimmed with Phred quality scores < 20 using the script TrimmingReads.pl (NGSToolKit; Patel and Jain 2012). A total of 30 million reads from the trimmed fastq sequence were loaded into the Velvet Assembler program 1.2.10 (Zerbino and Birney 2008) and assembled using the de Bruijn graph method with a hash size $(k$-mer $)=21$, no coverage cutoff, and a minimum contig length $\left(-m i n _\right.$contig_lgth $)=$ 10000. Querying the National Center for Biotechnology Information (NCBI) nonredundant (nr) nucleotide database with the Blastn algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al. 1997) identified resulting contigs containing mitogenome sequence. The contigs that produced database "hits" were filtered for those with E-values $\geq 10^{-40}$ and percent similarities ≥ 75 to identify contigs with encoded mitochondrial gene sequences.

Sequence annotation

The FASTA-formatted consensus sequence was imported into the MITOS web server (Bernt et al. 2013; http://mitos.bioinf.uni-leipzig.de/index.py), a program used for de novo metazoan mitogenome annotation. To better define the limits of PCGs, coding sequences for each mitochondrial gene were aligned to that from published Crambid mitogenomes (See Appendix C) using the alignment algorithm on the CLC Genomics Workbench 6.5.2. The 5^{\prime} end of the mitochondrial genes were inferred to be the first legitimate start codon in the open reading frame, and manual adjustments were made when needed. The 3 ' ends were inferred to be at the first in-frame stop codon encountered. When the stop codon was located within the sequence of a downstream gene encoded on
the same strand, a truncated stop codon (T) adjacent to the beginning of the downstream gene was designated as the termination codon. The positions and secondary structures for the tRNAs genes were confirmed using ARWEN 1.2 (Laslett and Canback 2008; http://mbio-serv2.mbioekol.lu.se/ARWEN/index.html). The graphical circular structure of the mitogenome was drawn using GenomeVx, a suite of tools for generating physical maps of plastids and mitogenomes (Conant and Wolfe 2008; http://wolfe.ucd.ie/GenomeVx/). All annotations were transferred to Sequin 13.05 (http://www.ncbi.nlm.nih.gov/Sequin/), and submitted to the NCBI nr database under accession number KJ466365.

Genome sequence analysis

The nucleotide sequences of the 13 PCGs of previously published 32 Lepidoptera species (Appendix C) were downloaded from the METAMIGA database (Feijao et al. 2006; http://amiga.cbmeg.unicamp.br/). The nucleotide compositions, codon usage and relative synonymous codon usage (RSCU) in the M. vitrata (New World) mitogenome were calculated with MEGA 5.2.2 (Tamura et al. 2011). The composition skew analysis was carried out to describe the base composition of nucleotide sequences, by measuring the relative number of As to Ts using the formula: AT skew $=[\mathrm{A}-\mathrm{T}] /[\mathrm{A}+\mathrm{T}]$ and GC skew $=[\mathrm{G}-\mathrm{C}] /[\mathrm{G}+\mathrm{C}]$, respectively (Perna and Kocher 1995).

The DNA and protein sequence similarities were calculated between PCGs of M. vitrata (New World) and orthologous genes from other species in the Family Crambidae using FASTA program, a tool for biological sequence comparison (Pearson and Lipman 1988; http://fasta.bioch.virginia.edu/fasta_www2/). The online program, microsatellite
repeats finder (http://insilico.ehu.es/mini_tools/microsatellites/) was used to analyze the A+T-rich control region for tandem repeats.

Phylogenetics and comparative genomic analysis

The 13 PCGs from 32 complete or near complete mitogenome sequences for the Lepidopterans, and also the complete mitogenome of Drosophila melanogaster within GenBank (Appendix C) were downloaded using METAMIGA (Feijao et al. 2006; http://amiga.cbmeg.unicamp.br/). The PCGs of these mitogenomes and that of M. vitrata (New World) were then concatenated for each insect species and imported into MEGA 5.2.2 (Tamura et al. 2011) and a multiple sequence alignment was performed with the ClustalW algorithm using default parameters (gap opening penalty 15, gap extension penalty 6.66 , weight matrix IUB, and transition weight of 0.5). The mitogenome of D. melanogaster was included as an out-group. Maximum likelihood (ML) analysis of derived amino acid sequences, to infer the phylogenetic relationships among mitogenome sequences, was performed on MEGA 5.2.2. Support at each bifurcating node of the consensus tree was provided by 1000 bootstrap pseudo-replicates of the data (Felsenstein 1985). All gaps were deleted. Initial tree for the heuristic search was obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances estimated using the Jones, Taylor, and Thorton (JTT) probability matrix (Jones et al. 1992), and then selecting the topology with best log likelihood value.

The Bayesian inference (BI) analysis was performed based on the concatenated 13 PCG amino acid sequences of the mitogenomes of the 34 insects, including M. vitrata (New World) using MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001; Ronquist and

Huelsenbeck 2003) and the Markov's chains were run simultaneously for $1,000,000$ generations sampled every 1000 generations. The tree generated was viewed using FigTree 1.4.0 (Rambaut 2012).

Estimation of divergence times

The nucleotide sequence of M. vitrata (Old World; GenBank accession HM751150.1) was downloaded in FASTA format, and aligned with the nucleotide sequence obtained in this study for the M. vitrata New World sample (GenBank accession KJ466365) using MEGA 5.2.2 (Tamura et al. 2011) with the parameters described above. Gaps in the resulting alignment due to ambiguous bases (Ns) in HM7511150.1 as well as overhangs were deleted. The number of nucleotide differences between the two aligned sequences were calculated using DiffSeq from the EMBOSS Package (Rice et al. 2000). A clock-like rate of 2% mitochondrial DNA sequence change per million years has been estimated among Drosophila species (Powell 1986). Since no analogous estimates are available among Lepidoptera, we applied the Drosophila rate estimation as described by Coates et al. 2005.

RESULTS AND DISCUSSION

Mitogenome assembly and annotation

Paired-end Illumina sequencing generated a total of 336, 472, 660 million reads, of which 30 million were subsampled, and used to successfully generate a $15,385 \mathrm{bp} \mathrm{de}$ novo assembly of the previously uncharacterized M. vitrata (New World) mitogenome (Table 4.1 and Figure 4.1). The size of the complete mitogenome from M. vitrata (New

World) is similar to the size previously reported from other species of Lepidoptera; ranging from 15, 314 bp in Coreana raphaelis (Kim et al. 2006) to 15, 928 bp in Bombyx mandarina (Yukuhiro et al. 2002). The annotated M. vitrata (New World) mitogenome contains the 13 PCGs, 22 tRNAs, and 2 rRNA genes which are typical for metazoans (Wolstenholme 1992; Table 4.1 and Figure 4.1). Analogous to all other Lepidopteran mitogenomes, of the total 37 genes, 23 were encoded on the major (forward) strand, whereas the 14 others were encoded on the minor (reverse) strand (Table 4.1 and Figure 4.1). The 13 PCGs spanned $11,369 \mathrm{bp}$, and accounted for 73.9% of the entire M. vitrata (New World) mitogenome sequence. The M. vitrata (New World) mitogenome has the typical Lepidopteran gene order $t R N A^{\mathrm{Met}}-t R N A^{\mathrm{Il}}-t R N A^{\mathrm{Glu}}-n a d 2$ (Yukuhiro et al. 2002; Kim et al. 2006; Lee et al. 2006; Cameron and Whiting 2008a; Hong et al. 2008; Coates et al. 2005; Taylor et al. 1993), which differs from the ancestral gene order $t R N A^{\mathrm{Ie}}-t R N A^{\mathrm{Glu}_{-}}$ $t R N A^{\text {Met }} n a d 2$ found in other insects (Boore 1999). This translocation of $t R N A^{M e t}$ was also present in the M. vitrata (New World) mitogenome. This was first reported by Taylor et al. (1993) in Lycaenids and Noctuids, but has now been found in five Lepidopteran superfamilies (Papilionoidea, Noctuoidea, Pyraloidea, Tortricoidea, and Bombycoidea) and is likely a synapomorphic character of all Lepidopteran mtDNAs (Salvato et al. 2008).

The whole M. vitrata (New World) mitogenome showed a high A+T content of $80.70 \%(\mathrm{~A}=40.30 \%, \mathrm{~T}=40.4 \%, \mathrm{G}=7.99 \%$ and $\mathrm{C}=11.31 \%)$ (Table 4.2), which is consistent with the high A+T content of insect (Clary and Wolstenholme 1985; Crozier and Crozier 1993) and Lepidopteran mitogenomes (Liu et al. 2008). The nucleotide composition of the PCGs of the M. vitrata (New World) mitogenome, the A+T\%, and $\mathrm{G}+\mathrm{C} \%$ values for the PCGs as well as the AT- and GC-skews, were calculated for all
available complete mtDNA genomes of the Crambids and are presented in the scatter plots of Figure 4.2. The average AT-skew of the Crambid mitogenomes is 0.01 , ranging from 0.002 to 0.03 , whereas the average GC-skew is -0.20 , ranging from -0.17 to -0.26 . The AT-skew of M. vitrata (New World) is -0.002 and the GC-skew is -0.17 . A similar negative AT-skew (-0.02%) was also previously reported for C. medinalis (Chai et al. 2012) (Table 4.2).

Protein-coding genes

The arrangement of the PCGs is consistent with those of other animal mitogenomes (Table 4.1 and Figure 4.1). Nine of the PCGs were on the forward strand (nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6 and cytb) while the remaining 4 were on the reverse strand (nad1, nad4, nad4l and nad5). The putative start codons of PCGs used by M. vitrata (New World) (ATN; Table 4.1) are identical to those previously known in animal mitogenomes (Wolstenholme 1992). CGA was used as the start codon for cox 1 as previously reported for D. yakuba (Clary and Wolstenholme 1985) and also for Lepidopteran species such as B. mori (Yukuhiro et al. 2002), O. nubilalis and O. furnacalis (Coates et al. 2005), Adoxophyes honmai (Lee et al. 2006), C. raphaelis (Kim et al. 2006), Antheraea pernyi (Liu et al. 2008), B. mandarina (Pan et al. 2008), Ochrogaster lunifer (Salvato et al. 2008), Artogeia melete (Hong et al. 2009), Eriogyna pyretorum (Jiang et al. 2009), Hyphantria cunea (Liao et al. 2010) and M. vitrata (Old World) (Margam et al. 2011). The termination codon TAA was used in all PCGs with the exception of nad3, which had TAG. Also, consistent with some other insect mitogenomes, cox1 and cox2 both had incomplete stop codon, T (Coates et al. 2005; Clary and

Wolstenholme 1985) (Table 4.1). The presence of incomplete stop codons is a feature shared with all Lepidopteran mitogenomes sequenced to date (Yukuhiro et al. 2002; Kim et al. 2006; Lee et al. 2006; Cameron and Whiting 2008; Hong et al. 2008; Coates et al. 2005) and more in general with many arthropod mitogenomes (Boore 1999). Although the motif TTAG has been observed to be located immediately upstream of the putative CGA start codon of some Lepidopteran mitogenomes and proposed to serve in a non-standard initiation process (Yukuhiro et al. 2002), we observed the motif ATAG immediately upstream of the CGA start codon of the M. vitrata (New World) cox1 gene. This motif was and has been conserved in some Lepidopteran mitogenomes but lacking in some (Margam et al. 2011). Among the available Crambid mitogenomes, O. furnacalis and O. nubilalis both have the motif TTAG upstream of the start codon of the cox 1 gene while M. vitrata (Old World) has ATAG, which is similar to what obtains in M. vitrata (New World) mitogenome. Reduction in mitogenome size has led to minimal intergenic space as well as overlap between adjacent genes, where M. vitrata (New World) atp8 and atp6 PCGs have a predicted seven nucleotide overlap (Table 4.1). This feature is common to all Lepidopteran mitogenomes known (Yukuhiro et al. 2002; Kim et al. 2006; Lee et al. 2006; Cameron and Whiting 2008a; Hong et al. 2008; Coates et al. 2005) and is found in many animal mitogenomes (Boore 1999).

The A+T content of the PCGs is 79.4%, which is lower than the $\mathrm{A}+\mathrm{T}$ content of the mitogenome as a whole (80.7%). The total number of codons in the forward strand excluding stop codons was 3777 and showed a strong bias toward AT-rich codons with the four most prevalent codons being Leu, UAA (481); Ile, AUU (443); Phe, UUU (344); Met, AUA (267) (Table 4.3). The codon usage prevalence is consistent with what obtains
in M. vitrata (Old World). Comparison of the 13 PCGs with the other six available Crambid mitogenomes showed between 75.3% and 97.9% nucleotide similarity, and 88.9% and 100% amino acid similarity with M. vitrata (New World) (Table 4.4). At the protein level, the average percentage similarity was highest in comparisons with M. vitrata (Old World) than with other Crambids. Derived cox1, cox3, atp6 and nad3 peptide sequences showed 100% similarity between M. vitrata (New World) and M. vitrata (Old World) (Table 4.4).

Transfer and ribosomal RNA genes

The M. vitrata (New World) mitogenome encoded 22 tRNAs typically found in animal mitogenomes (Boore 1999), and all formed cloverleaf-like secondary structures with the exception of $t R N A^{\text {Serl }}$, in which its dihydrouridine (DHU) arm formed a simple loop (Figure 4.3). The lack of DHU arm in $t R N A^{\text {Serl }}$ is a common condition in metazoan mitogenomes (Lavrov et al. 2000) but is not reported for all Lepidopterans. For example, A. honmai has all the tRNAs with a complete clover leaf structure (Lee et al. 2006). Of the 22 tRNA genes, 14 genes are encoded on the forward strand while 8 are encoded on the reverse strand. The length of the tRNAs ranged from 63 bp to 71 bp .

Consistent with what is observed in all other insect mitogenomes, the mitogenome of M. vitrata (New World) contained two rRNAs with a total length of 2369 bp . The large rRNA ($r r n L$) had a length of 1304 bp while the small rRNA ($r r n S$) had a length of 765 bp (Table 4.1).

Non-coding regions

The M. vitrata (New World) mitogenome contains characteristics typical of other Lepidopteran mitogenomes. The 7 bp intergenic spacer located between $t R N A^{\text {Ser2 }}$ and nadl contains the ATACTAA motif (Figure 4.4), which is conserved across the order Lepidoptera (Cameron and Whiting 2008). This motif is possibly fundamental to site recognition by the transcription termination peptide (mtTERM protein) (Taanman 1999) and is present in most insect mitogenomes (Cameron and Whiting 2008). Insect mitogenomes often contain a non-coding A+T-rich region, which varies considerably in length among insect species, or even within the same species (Zhang and Hewitt 1997). Another intergenic space and which is the largest consisted of the A+T-rich control region, which ranges in size in Crambid moth and is consistent with previous findings from other insects (Hua et al. 2008; Oliveira et al. 2008; Ma et al. 2009). Tandem repetitive sequences are common in the control region for most insects that can vary in length and copy number (Dotson and Beard 2001), but repeats in Lepidoptera are considered to share greater degrees of conservation compared to other insect groups (Cameron and Whiting 2008). The $\mathrm{A}+\mathrm{T}$ rich control region in M. vitrata (New World) was estimated at 341 bp and contained (AT) tandem repeats (Figure 4.5 and Appendix D). The A+T-rich region contained a conserved ATAG motif followed by an 18 bp poly-T stretch (Figure 4.5). This is similar to the pattern found in C. medinalis, C. suppressalis and D. saccharalis but the length of the poly-T stretch varies between species. This structure is suggested to function as a signal for mitochondrial DNA replication initiation (Hu et al. 2010; Yin et al. 2010; Kim et al. 2010). A poly-A commonly observed in other Lepidopteran mitogenomes was also found immediately upstream of $t R N A^{\text {Met }}$ but in M.
vitrata (New World), is 9bp long. The control region also has tandem repeats with the most common repeat being AT $-(\mathrm{AT})_{3},(\mathrm{AT})_{4}$ and $(\mathrm{AT})_{9}$ (Appendix D). Similar patterns were observed in Hyphantria cunea (AT) 8_{8} (Liao et al. 2010) and Ochrogaster lunifer (AT) 7 (Salvato et al. 2008).

Phylogenetic and comparative genomic analysis

Phylogenetic analyses were carried out using nucleotide sequences of mitogenomes from 32 Lepidopteran insects, and rooted with D. melanogaster as an outgroup (Figures 4.6a and 4.6b). BI and ML analyses generated identical tree topologies (Figures 4.6a and 4.6b). The major division in Ditrysia, between moth and butterfly species was weakly supported, but the relationship among moth superfamilies Bombycoidea, Noctuoidea, Geometroidea, Pyraloidea and Tortricoidea mostly showed high levels of bootstrap support. The inter-relationships among superfamilies conformed to those proposed by Kristensen and Skalski (1999). These results suggest that molecular phylogenies based on derived protein sequence from complete mitogenomes may be valuable for deciphering Lepidopteran evolutionary lineages, although higher rates of mutation observed in mitochondrial sequences compared to nuclear loci may cause long branch attraction or other phenomenon which reduce the ability to resolve deeper branches within the tree. As expected, phylogenetic analysis of the mitogenome indicated that M. vitrata (Old World) and M. vitrata (New World) are highly related, and may comprise sister species similar to that shown between O. nubilalis and O. furnacalis (Coates et al. 2005).

Protein-coding sequence was shown to be highly similar between M. vitrata (New World) and M. vitrata (Old World) mitogenomes (see above; Table 4.4). Comparison between M. vitrata (New World) and M. vitrata (Old World) mitochondrial gene coding sequences predicted a total of 476 nt substitutions from a $11,250 \mathrm{nt}$ consensus (4.23% divergence) of which 74 were non-synonymous mutations that resulted in an amino acid change. This suggests that purifying selection may act to curb the rate of amino acid change in the genus Maruca, but has also been shown for most, if not, all insect mitogenomes. Alignment of entire mitogenome sequences from M. vitrata (Old World) and M. vitrata (New World) resulted in a 14,039 consensus (gaps excluded) and showed a total of 526 nucleotide differences (3.75\%) (Appendix E). Making a simple assumption of a clock-like rate of 2% change per million years estimated from the Drosophila species group (Powell 1986) and acknowledging the potential that variance in this rate may have affected the degree of haplotype divergence among Maruca subspecies, these species may have diverged ~ 1.87 mya. This simple method for estimation was used due to lack of fossil evidence to assist in calibrating a molecular clock.

CONCLUSIONS

The mitogenome from M. vitrata (New World) is typical of mitogenomes from the insect Order Lepidoptera. Short-term evolutionary change in mitogenomes with the sister species M. vitrata (Old World) showed a distinct bias for substitution at non-synonymous sites. These results are important in ongoing efforts to define genetic and genomic variation between these two recently described sister species, and along with phylogenetic analyses presented herein suggest that whole mitogenome sequences may be tools for
species delineation. Furthermore, this study indicates that mitogenomes can be de novo assembled from NGS sequence data, and procedures outlined here may offer a rapid and computationally accessible method for future mitochondrial genomic studies.

REFERENCES

Agunbiade T, Steele L, Coates B, Gassmann A, Margam V, Ba M, Dabire-Binso C, Baoua I, Bello-Bravo J, Seufferheld F, Sun W, Tamò, Pittendrigh BR (2012) IPM-omics: From genomics to extension for integrated pest management of cowpea. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp. 231-248.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.

Arunkumar KP, Metta M, Nagaraju J (2006) Molecular phylogeny of silk moths reveals the origin of domesticated silk moth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Molecular Phylogenetics and Evolution 40: 419-427.

Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, Cambridge, MA 447pp.

Ballard JWO (2000) Comparative genomics of mitochondrial DNA in Drosophila simulans. Journal of Molecular Biology 51(1): 64-75.

Behere GT, Tay TW, Russell AD, Heckel GD, Appleton RD, Kranthi KR, Batterham P (2007) Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evolutionary Biology 7: 117.

Bernt AD, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2): 313-319.

Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Research 27: 1767-1780.
Boyce TM, Zwick ME, Aquadro CF (1989) Mitochondrial DNA in the bark weevils: Size, structure and heteroplasmy. Genetics 123: 825-836.

Cameron SL (2014) Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology 59: 95-117.

Cameron SL, Whiting MF (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408: 112-123.

Chai HN, Du YZ, Zhai BP (2012) Characterization of the complete mitochondrial genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). International Journal of Biological Sciences 8: 561-579.

Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22: 252-271.

Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. International Journal of Biological Sciences 1:13-18.

Conant GC, Wolfe KH (2008) GenomeVx: Simple web-based creation of editable circular chromosome maps. Bioinformatics 24: 861-862.

Crozier RH and Crozier YC (1993) The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 133(1): 97-117.

Dotson EM, Beard CB (2001) Sequence and organization of the mitogenome of the Chagas disease vector, Triatoma dimidiata. Insect Molecular Biology 10: 205-215.

Fauron CMR, Wolstenholme DR (1980) Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Research 8: 2439-2452.

Feijao PC, Neiva LS, Azeredo-Espin AML, Lessinger AC (2006) AMiGA: The arthropodan mitochondrial genomes accessible database. Bioinformatics 22: 902-903.

Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4): 783-791.

Gilbert MT, Tomsho LP, Rendulic S, Packard M, Drautz DI, Sher A, Tikhonov A, Dalén L, Kuznetsova T, Kosintsev P, Campos PF, Higham T, Collins MJ, Wilson AS, Shidlovskiy F, Buigues B, Ericson PG, Germonpré M, Götherström A, Iacumin P, Nikolaev V, Nowak-Kemp M, Willerslev E, Knight JR, Irzyk GP, Perbost CS, Fredrikson KM, Harkins TT, Sheridan S, Miller W, Schuster SC (2007) Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317: 1927-1930.

Ho SYW, Gilbert MTP (2010) Ancient mitogenomics. Mitochondrion 10: 1-11
Hong G, Jiang S, Yu M, Yang Y, Li F, Xue F, Wei Z (2009) The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochimica et Biophysica Sinica (Shanghai) 41: 446-455.

Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Hwang JS, Jin BR, Kang PD, Kim KG, Han YS, Kim I (2008) Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other Lepidopteran insects. Gene 413: 49-57.

Horn S, Durka W, Wolf R, Ermala A, Stubbe A, Stubbe M, Hofreiter M (2011) Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers
(Castor), one of the largest rodent species. PLoS ONE 6:e14622.
Hu J, Zhang D, Hao J, Huang D, Cameron S, Zhu C (2010) The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): Sequence, gene organization and a unique tRNA translocation event. Molecular Biology Reports 37: 3431-3438.

Hua JM, Li M, Dong PZ, Cui Y, Xie Q (2008) Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera). BMC Genomics 9: 610.

Huelsenbeck JP and F Ronquist (2001) "MrBayes: Bayesian inference of phylogenetic trees". Bioinformatics 17(8): 754-755.

Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA, Bachmann L, Littlewood DTJ (2007) The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes: Monogenea), a pathogen of Atlantic salmon (Salmo salar). Parasitology 134: 739-747.

Inohira K, Hara T, Matsuura ET (1997) Nucleotide sequence divergence in the A+T-rich region of mitochondrial DNA in Drosophila simulans and Drosophila mauritiana. Molecular Biology and Evolution 14: 814-822.

Jex AR, Hall RS, Littlewood DTJ, Gasser RB (2010) An integrated pipeline for next-generation sequencing and annotation of mitogenomes. Nucleic Acids Research 38: 522-533.

Jex AR, Littlewood DTJ, Gasser RB (2010b) Toward next-generation sequencing of mitochondrial genomes - focus on parasitic worms of animals and biotechnological implications. Biotechnology Advances 28:151-159.

Jiang S, Hong G, Yu M, Li N, Yang Y, Liu Y, Wei Z (2009) Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae). International Journal of Biological Sciences 5: 351-365.

Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8: 275-282.

Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR (2006) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Molecular Biology 15(2): 217-225.

Kim MJ, Wan X, Kim KG, Hwang JS, Kim I (2010) Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). African Journal of Biotechnology 9: 735-754.

Knaus BJ, Cronn R, Liston A, Pilgrim K, Schwartz MK (2011) Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecology 11: 10 .

Kristensen NP, Skalski AW (1999) Phylogeny and paleontology. In Kristensen NP (Ed.), Lepidoptera: Moths and Butterflies, 1: Evolution, Systematics, and Biogeography. Handbook of Zoology. Berlin and New York: De Gruyter. Volume IV, Part 357-25.

Laslett D, Canbäck B (2008) ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172-175.

Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences USA 97(25): 13738-42.

Lee E-S, Shin KS, Kim M-S, Park H, Cho S, Kim C-B (2006) The mitochondrial genome of the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Gene 373: 52-57.

Li W, Zhang X, Fan Z, Yue B, Huang F, King E, Ran J (2011) Structural characteristics and phylogenetic analysis of the mitochondrial genome of the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). DNA and Cell Biology 30(1): 3-8.

Liao F, Wang L, Wu S, Li YP, Zhao L (2010) The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). International Journal of Biological Sciences 6: 172-186.

Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z (2008) The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Acta Biochimica et Biophysica Sinica (Shanghai) 40: 693-703.

Ma C, Liu C, Yang P, Kang L (2009) The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus. BMC Genomics 10: 112.

Margam V, Coates BS, Hellmich RL, Agunbiade T, Seufferheld JM, Sun W, Ba MN, Sanon A, Binso-Dabire C, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(2): e16444.

Maricic T, Whitten M, Pääbo S (2010) Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5: e14004.

Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Nielsen SCA, Rasmussen M, Willerslev E, Gilbert MTP, Harkins T (2010) Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Research 20: 908-916.

Nardi F, Caeapelli A, Dallai R, Frati F (2003) The mitochondrial genome of the olive fly, Bactrocera oleae: Two haplotypes from distant geographic locations. Insect Molecular Biology 12: 605-611.

Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren (2008) Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Molecular Biology and Evolution 25: 2167-2180.

Pan M, Yu Q, Xia Y, Dai F, Liu Y, Zhang Z, Xiang Z (2008) Characterization of mitochondrial genome of Chinese wild mulberry silkworm, Bombyx mandarina (Lepidoptera: Bombycidae). Science in China Series C: Life Sciences 51: 693-701.

Patel RK, Jain M (2012) NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 7: e30619.

Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences USA. 85(8): 2444-8.

Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitogenomes. Journal of Molecular Evolution 41: 353-358.

Powell JR (1986) Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proceedings of the National Academy of Sciences USA 83(23): 90909093.

Rambaut A (2012) FigTree v1.4.0. Available from: http://tree.bio.ed.ac.uk/software/figtree/.
Rice P, Longden I, Bleasby A (2000) EMBOSS: The European molecular biology open software suite. Trends in Genetics 16(6): 276-277.

Ronquist F and JP Huelsenbeck (2003) "MrBayes 3: Bayesian phylogenetic inference under mixed models". Bioinformatics 19(12): 1572-1574.

Salvato P, Simonato M, Battisti A, Negrisolo E (2008) The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics 9: 331.

Taanman JW (1999) The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta 1410: 103-123.

Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences USA 101: 11030-11035.

Taylor MFJ, McKechnie SW, Pierce N, Kreitman M (1993) The Lepidopteran mitochondrial control region: Structure and evolution. Molecular Biology and Evolution 10: 1259-1272.

Vasta V, Ng SB, Turner EH, Shendure J, Hahn SH (2009) Next generation sequence analysis for mitochondrial disorders. Genome Medicine 1: 100.

Wolstenholme DR (1992) Animal mitochondrial DNA: Structure and evolution. International Review of Cytology 141: 173-216.

Yin J, Hong GY, Wang AM, Cao YZ, Wei ZJ (2010) Mitochondrial genome of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and comparison with other Lepidopterans. Mitochondrial DNA 21: 160-169.

Yukuhiro K, Sezutsu H, Itoh M, Shimizu K and Banno Y (2002) Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Molecular Biology and Evolution 19 (8): 13851389.

Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821-829.

Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology 25: 99-120.

Zhang R, Lu Z, Zhao H, Zhang X, Diasio RB, Habus I, Jiang Z, Iyer RP, Yu D, Agrawal S (1995) In vivo stability, disposition and metabolism of a "hybrid" oligonucleotide phosphorothioate in rats. Biochemical Pharmacology 50: 545-556.

FIGURES AND TABLES

Figure 4.1. Gene arrangements in the circular mitogenome of M. vitrata (New World).

Figure 4.2. Scatter plot of the AT\% vs AT-skew and GC\% vs GC-skew in Crambid mitogenomes.

Figure 4.3. Inferred secondary structures for the 22 tRNAs of M. vitrata (New World) mitogenome. The tRNAs are labeled with the abbreviations of their corresponding amino acids. Watson-Crick base pairing is indicated as pairs by lines.

Figure 4.3. (cont.)
M. vitrata (New World)
M. vitrata (Old World)
C. medinalis
O. furnacalis
O. nubilalis
C. suppressalis
D. saccharalis

ATACTAAAAATAATATAATAAT
ATACTAAAAATAATATCT
ATACTAAATAATATATTT
ATACTAATAATATTAACTTAAT-
ATACTAAAAATATTAACTTACTTACTTAA
ATACTAAATATATTAATA
ATACTAAATTTATTTATA

Figure 4.4. Alignment of the ATACTAA spacer region ($\operatorname{nad} 1-\boldsymbol{t R N A}{ }^{\text {SER2 }}$) across the six available Crambid mitogenomes including M. vitrata (New World).

TATTGTAGGATTTTAGACATAGTTTTTTTTTTTTTTTTTTATATATATAAAATTTAATATAAATTATTAAATATTAA ATAT

Origin of light strand replication $\quad(A T)_{4}$ Tandem repeats
TTTСТTTCTTTTTCTTCTTTATAACATTAATATTAAAAATTAATACGTAGATTCATCGATTAATAATCATTTAAATA AATAATTAATTAATATATTTTAAAATTAATTAAATTGAAATTTAAAATATTAATTTTACTAAATTAATTAATTAAT TTAATTAA
$(A T)_{3}$ Tandem repeats
TATTAAAAATATTAATAAATTAAATATTTAATATATATATATATATATAAATATAAACCGTTTTTAATATTTTTTC TATA
$(A T)_{9}$ Tandem repeats
AATAAAAAAAAA
9 bp Poly-A stretch

Figure 4.5. The structure of the A+T-rich Region of M. vitrata (New World) mitogenome.

Figure 4.6a. Phylogenetic relationships among species from the insect order Lepidoptera, which is rooted with D. melanogaster (Insecta: Diptera) as an out-group. Numbers at each node indicate maximum likelihood bootstrap support. The tree is based on a concatenated sequence of 13 derived proteins from complete or near-complete mitogenomes. GenBank accessions used for all species in the phylogenetic analysis are listed in Appendix C.

Figure 4.6b. Phylogenetic relationships among species from the insect order Lepidoptera, which is rooted with D. melanogaster (Insecta: Diptera) as an out-group. Numbers at each node indicate Bayesian posterior probabilities. The tree is based on a concatenated sequence of 13 derived proteins from complete or near-complete mitogenomes. GenBank accessions used for all species in the phylogenetic analysis are listed in Appendix C.

Table 4.1. Annotation of the full mitogenome of M. vitrata (New World).

Gene	Strand	CDS Positions	Size (bp)	Start Codon	$\begin{array}{\|l\|} \hline \text { Stop } \\ \text { Codon } \\ \hline \end{array}$	Anticodon
tRNAMet	F	1.. 68	68			CAT
tRNAIle	F	$69 . .133$	65			GAT
tRNAGIn	R	$130 . .200$	69			TTG
nad2	F	269..1255	987	ATA	TAA	
tRNATrp	F	1257..1324	68			TCA
tRNACys	R	1316..1382	65			GCA
tRNATyr	R	1383.. 1451	67			GTA
cox 1	F	1458.. 2988	1531	CGA	T--	
tRNALeuUUR	F	2988.. 3056	67			TAA
cox 2	F	3056..3737	682	ATG	T-	
tRNALys	F	3737.. 3809	71			CTT
tRNAAsp	F	3811.. 3878	68			GTC
atp8	F	3879.. 4040	162	ATC	TAA	
atp6	F	4034.. 4708	675	ATG	TAA	
cox 3	F	4715..5503	789	ATG	TAA	
tRNAGly	F	$5505 . .5573$	67			TCC
nad3	F	5570.. 5926	357	ATA	TAG	
tRNAAla	F	$5924 . .5992$	66			TGC
tRNAArg	F	5990.. 6054	63			TCG
tRNAAsn	F	$6054 . .6119$	66			GTT
tRNASerAGN	F	$6122 . .6189$	66			GCT
tRNAGlu	F	6189.. 6256	66			TTC
tRNAPhe	R	6255.. 6324	68			GAA
nad5	R	6307.. 8058	1752	ATT	TAA	
tRNAHis	R	8058.. 8126	67			GTG
nad4	R	8125.. 9465	1341	ATG	TAA	

Table 4.1. (cont.)

nad4L	R	$9465 . .9746$	282	ATA	TAA	
tRNAThr	F	$9758 . .9823$	66			TGT
tRNAPro	R	$9823 . .9890$	66			TGG
nad6	F	$9892 . .10422$	531	ATT	TAA	
Cytb	F	$10426 . .11574$	1149	ATG	TAA	
tRNASerUCN	F	$11573 . .11638$	66			TGA
nad 1	R	$11660 . .12790$	1131	ATG	TAA	
tRNALeuCUN	R	$12791 . .12859$	69			TAG
rrnL	R	$12894 . .14197$	1304			
tRNAVal	R	$14210 . .14276$	67			TAC
rrnS	R	$14280 . .15044$	765			
A+T-rich region		$15045 . .15385$	341			

Table 4.2. Nucleotide composition in the whole mitogenomes of M. vitrata (New World) and other available mitogenomes from 6 additional species from the Lepidopteran family Crambidae.

Species	A	T	A+T	AT-Skew	G	C	G+C	GC-Skew
Cnaphalocrocis medinalis	40.36	41.58	81.94	-0.02	7.45	10.61	18.06	-0.17
Chilo suppressalis	40.64	40.03	80.67	0.01	7.39	11.94	19.33	-0.23
Diatraea saccharalis	40.87	39.15	80.02	0.02	7.42	12.56	19.98	-0.26
Ostrinia furnacalis*	41.46	38.92	80.38	0.03	7.91	11.71	19.62	-0.19
Ostrinia nubilalis*	41.36	38.81	80.17	0.03	8.02	11.82	19.83	-0.19
Maruca vitrata (Old World)*	40.14	39.89	80.03	0.003	8.21	11.76	19.97	-0.18
Maruca vitrata (New World)	40.27	40.44	80.70	-0.002	7.99	11.31	19.30	-0.17

[^3]Table 4.3. Codon usage and relative synonymous codon usage (RSCU) in M. vitrata (New World) mitogenome.

Amino Acid	Codon	Count	RSCU	Amino Acid	Codon	Count	RSCU
Ala (A)	GCU	78	2.22	Pro (P)	CCU	75	2.21
	GCC	7	0.21		CCC	9	0.29
	GCA	40	1.21		CCA	43	1.14
	GCG	1	0.05		CCG	2	0.06
Cys (C)	UGU	26	1.31	Gln (Q)	CAA	63	2.00
	UGC	4	0.23		CAG	0	0.00
Asp (D)	GAU	65	1.32	Arg (R)	CGU	13	0.90
	GAC	3	0.22		CGC	0	0.00
Glu (E)	GAA	72	1.72		CGA	41	2.71
	GAG	6	0.13		CGG	1	0.08
Phe (F)	UUU	344	1.81	Ser1 (S)	AGU	32	0.75
	UUC	32	0.19		AGC	3	0.05
Gly (G)	GGU	67	1.23		AGA	81	1.89
	GGC	4	0.09		AGG	0	0.00
	GGA	122	2.15	Ser2 (S)	UCU	109	2.77
	GGG	15	0.22		UCC	4	0.06
His (H)	CAU	57	1.34		UCA	87	2.39
	CAC	12	0.35		UCG	4	0.09
Ile (I)	AUU	443	1.88	Thr (\mathbf{T})	ACU	89	2.23
	AUC	26	0.12		ACC	9	0.31
Lys (K)	AAA	93	1.77		ACA	58	1.12
	AAG	14	0.23		ACG	2	0.04
Leu1 (L)	CUU	27	0.31	Val (V)	GUU	86	2.22
	CUC	3	0.04		GUC	2	0.03
	CUA	23	0.68		GUA	59	1.71
	CUG	0	0.00		GUG	3	0.04
Leu2 (L)	UUA	481	4.86	Trp (W)	UGA	94	2.00
	UUG	11	0.12		UGG	0	0.00
Met (M)	AUA	267	1.83	Try (Y)	UAU	183	1.84
	AUG	23	0.17		UAC	13	0.16
Asn (N)	AAU	238	1.94				
	AAC	8	0.06				

Table 4.4. Percent nucleotide and amino acid similarity in the 13 protein-coding gene sequences of M. vitrata (New World) compared to orthologs in 6 other mitogenomes sequenced from species in the Lepidopteran family Crambidae.

Genes	Mv		Cs		Cm		Ds		Of		On	
	$\begin{aligned} & \text { DNA } \\ & (\%) \end{aligned}$	Protein (\%)	$\begin{aligned} & \hline \text { DNA } \\ & (\%) \\ & \hline \end{aligned}$	Protein (\%)	$\begin{aligned} & \hline \text { DNA } \\ & (\%) \end{aligned}$	Protein (\%)	$\begin{aligned} & \text { DNA } \\ & (\%) \end{aligned}$	Protein (\%)	$\begin{aligned} & \text { DNA } \\ & (\%) \end{aligned}$	Protein (\%)	$\begin{aligned} & \hline \text { DNA } \\ & (\%) \\ & \hline \end{aligned}$	Protein (\%)
nad2	97.9	99.3	84.6	98.5	86.5	97.6	78.7	93.9	83.9	97.3	83.9	97.3
nad1	95.4	99.3	86.6	98.3	88.3	99.7	83.9	95.4	87.4	98.7	87.2	98.3
cox 1	94.3	100	88.6	99.2	89.5	97.5	86.5	99	88.5	99.4	87.7	98.6
cox 2	94.9	99.6	88	98.7	90	98.2	85.9	98.2	88.1	99.6	87.8	98.7
cox 3	94.6	100	86.8	98.9	89	99.2	86.2	98.9	86.4	98.1	86.2	98.1
atp8	93.8	98.1	81.2	88.9	78.6	85.5	75.3	88.7	85.8	94.3	85.2	94.3
atp6	93.9	100	84	96	90.4	99.6	79.9	94.7	85.6	96.9	85.2	96.9
nad3	94.3	100	84.9	97.4	88.4	99.1	81.5	98.3	84.4	98.3	84.2	98.2
nad4	95.7	99.3	87.6	96.6	91.6	98.2	84.3	96	88.1	94.1	87.9	94.1
nad41	96.4	93.6	89.4	97.8	91.8	97.8	87.9	96.8	89.7	94.6	89	93.5
nad5	96.1	99.8	86	95.4	88.5	97.2	85.4	95.7	87.9	97.4	87.3	97.4
nad6	96.8	96.9	82.5	93.2	85.8	96	78.5	92.6	83.7	96	83.3	96
Cytb	97.5	99.5	86.5	97.9	89.3	98.2	85.9	97.6	87.2	98.2	87.5	98.4

CHAPTER 5

DEVELOPMENT OF REFERENCE TRANSCRIPTOMES FOR THE MAJOR FIELD INSECT PESTS OF COWPEA: A TOOLBOX FOR INSECT PEST MANAGEMENT APPROACHES IN WEST AFRICA ${ }^{4}$

Abstract

Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management (IPM) strategies. Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647, 10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. Functional annotation of the resulting

^[${ }^{4}$ This chapter has been published as Agunbiade et al. 2013. Development of reference transcriptomes for the major field insect pests of cowpea: A toolbox for insect pest management approaches in West Africa. PLoS ONE 8(11): e79929. It is an open access article and is available at www.plosone.org and DOI: 10.1371/journal.pone.0079929. I acknowledge the contribution of co-authors to the publication.]

transcripts identified genes putatively involved in insecticide resistance, pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchnera aphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa.

INTRODUCTION

Crops of cowpea (Vigna Unguiculata (L). Walp) provide a major nutritional source of protein for about 200 million people in sub-Saharan Africa (Cork et al. 2009). Cowpea production is highest in the West African countries of Nigeria, Niger and Burkina Faso, where insect feeding damage by over 100 pest species is a major constraint on field production and in grain storage (Cork et al. 2009). Yield is most dramatically affected by insect pests that occur during the flowering and seed pod stages. These include flower and pod feeding insects such as flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae); legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae); pod sucking insects, Clavigralla tomentosicollis Stål (Hemiptera: Coreidae) (Adati et al. 2007) and Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae); and phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae). Crop damage by these insect pests can be as high as 60 to 100% in the field (Singh and Allen 1980; Jackai and Daoust 1986; Dugje et al. 2009). Aphis craccivora can cause significant
damage even at low population densities due to its ability to transmit at least 14 viruses including the potyviruses, the cowpea aphid-borne mosaic virus (CABMV) (Thottappilly and Rossel 1985; Atiri et al. 1986) and the blackeye cowpea mosaic virus (BICMV) (Dijkstra et al. 1987). These viruses produce severe cowpea mottling, chlorosis, and seed shriveling (Brunt et al. 1990) which severely reduce yields (Bock and Conti 1974; Singh and van Emden 1979). In contrast to most plant viruses, which fail to cross into developing embryos from infected maternal tissues (Bennett 1969), CABMV and BICMV appear to propagate via vertical transmission from parent to progeny seed (Gillaspie et al. 1993; Bashir and Hampton 1996) and is exacerbated by horizontal transmissions by aphid vectors.

Much research has been directed towards developing strategies to control the feeding of the legume pod borer, M. vitrata on cowpea crops. Past use of chemical insecticides has resulted in increased frequencies of resistance in M. vitrata to three classes of insecticides in Nigeria (Ekesi 1999), and unfortunately fits within the paradigm where selection pressures imposed by widespread application of a chemical control agent can oftentimes lead to the evolution of insecticide resistance within targeted pest insect populations (Champ and Dyte 1976; Georghiou and Lagunes-Tejeda 1991). Additionally, chemical insecticides are often financially inaccessible to smallholder farmers in West Africa, and pose serious health and environmental risks when used indiscriminately by untrained applicators (Kamara et al. 2007; Oparaeke 2007). Therefore, recent shifts toward the use of affordable and sustainable biocontrol measures have been initiated within West Africa (Amevoin et al. 2007; Adati et al. 2007). Some of these potential M. vitrata control strategies have included the deployment of bio-pesticides (Oparaeke 2006;

Tamò et al. 2012) and the development of a transgenic cowpea that expresses Bacillus thuringiensis (Bt) toxins (Bean/Cowpea CRSP 2001). Additionally, traps baited with the female M. vitrata sex pheromone blends, in a 100:5:5 ratio of $(E, E)-10,12-$ hexadecadienal, (E, E)-10,12-hexadecadienol and (E)-10-hexadecenal, have been distributed to farmers in Benin and used as a successful early warning tool (Downham et al. 2003). These baited traps have the potential for monitoring seasonal northward M. vitrata migrations during the rainy season, but the fidelity of pheromone blend, and trap position and design can affect the accuracy of resulting estimates of population size and route of migration (Bartels et al. 1997; Bradshaw et al. 1983; Lewis and Macaulay 1976). The population genetic structure of M. vitrata has been described through the application of next generation sequencing (NGS) and high throughput single nucleotide polymorphism (SNP) genotyping technologies (Margam et al. 2011) as well as microsatellite loci (Agunbiade et al. 2012a). In these aforementioned studies, M. vitrata population structure and estimates of gene flow (migration) within West African cowpea production area were assessed. The results of these studies have the potential to enhance integrated pest management (IPM) programs to determine the logical locations of natural enemy releases. This prior research on M. vitrata serves as a model for the application of genome-based approaches to increase the effectiveness of strategies used to control pest insect populations.

Since transgenic cowpea that express Bacillus thuringiensis (Bt) Cry1 Ab toxin shows no toxicity towards non-Lepidopteran insects and a majority of biocontrol strategies for M. vitrata are species-specific, cowpea crops remain susceptible to continued feeding and plant disease transmission by thrips, aphids and pod sucking pests.

Thus, the only method widely available to date for the control of A. craccivora, A. curvipes, C. tomentosicollis and M. sjostedti by indigenous farmers in West Africa has been the application of chemical insecticides. Since insecticide resistance had evolved within M. vitrata populations (Ekesi 1999), the establishment of effective insect resistance management (IRM) plans for A. craccivora, A. curvipes, C. tomentosicollis and M. sjostedti may be critical for delaying the evolution of resistance. The absence of population genetic data for these species hinders the estimation of movement patterns of these insects within their endemic range such that the regional scales necessary for IRM programs to remain effective are difficult to devise. NGS technologies that include Roche 454 GS FLX, Solexa/Illumina Genome Analyzer, ABI/SOLiD Gene Sequencers and Helicos Genetic Analysis System platforms use massively parallel pyrosequencing technologies to collect millions of nucleotide sequences in very short time frames (Margulies et al. 2005; Moore et al. 2006; Wicker et al. 2006; Huse et al. 2007; Weber et al. 2007). Moreover, NGS technologies provide a rapid and cost-effective way to obtain large amounts of DNA sequence data from organisms where no prior information had existed (Margam et al. 2011). De novo transcriptome analysis has proven to be a valuable first step to obtaining sequence information and expression levels of genes involved in developmental and metabolic pathways, insecticide resistance, and to discover single nucleotide polymorphisms (SNPs) in all kinds of model and non-model organisms (Sloan et al. 2012; Xue et al. 2010; Mittapalli et al. 2010; Poelchau et al. 2011). SNPs are changes of a single nucleotide at a specific location within the genome of a species, and high-throughput assays have been developed for their detection and application as genetic markers (Tang et al. 1999; Vignal et al. 2002; Brumfield et al. 2003; Morin et al. 2004;

Schlötterer 2004). Estimation of allelic frequency variation at SNP loci are effective for describing population demographics (Coates et al. 2011) and are increasingly becoming the marker of choice in population genetic analysis.

In this study, we applied Roche 454 sequencing technology to generate and subsequently assemble contigs from DNA sequencing reads from independent normalized cDNA libraries for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti. Annotations of individual gene transcripts were used to identify candidate genes putatively involved in insecticide resistance, regulation of insect growth and response to disease transmission. This is the first report of genomic data for these insect pests and provides valuable tool for understanding molecular gene functions of several major field insect pests in cowpea cropping systems of West Africa. The application of this genomics data might ultimately lead to a better understanding of the pest populations, with the longterm potential to improve the effectiveness of IPM programs by better defining pestpathogen interactions, and pest population dynamics prior to deployment of biocontrol agents.

MATERIALS AND METHODS

Development of reference transcriptome sequence assemblies

Insect samples were collected during the summer through fall of 2011 at 7, 11 and 9 locations in Benin, Burkina Faso and Niger respectively for A. craccivora, A. curvipes, C. tomentosicollis and M. sjostedti (Figure 5.1). A total of 79, 1,920, 364 and 740 individual insect samples were collected respectively for A. craccivora, A. curvipes, C. tomentosicollis, and M. sjostedti from these locations. Both the larval and adult life stages
were sampled for all species and stored in RNAlater (Ambion, TX, USA) immediately after collection in the field. All samples from each species, from a single location, were pooled and total RNA was extracted from the insect samples at IITA Benin and INERA Burkina Faso using QIAGEN RNeasy RNA extraction kits (CA, USA) and following the manufacturer's instructions. The RNA was shipped to University of Illinois at UrbanaChampaign (UIUC), USA in 70% ethanol where it was resuspended in water and quantified by measuring the absorbance at 260 nm using a NanoDrop spectrophotometer (Thermo Scientific, DE, USA). The samples were then stored in an ultra-low temperature freezer $\left(-80^{\circ} \mathrm{C}\right)$.

Four normalized cDNA libraries were constructed and sequenced on a Roche 454 GS-FLX at the W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, UIUC. Briefly, messenger RNA (mRNA) was isolated from $10 \mu \mathrm{~g}$ of total RNA with the Oligotex kit (Qiagen, Valencia, CA). The mRNA-enriched fraction was converted to 454 barcoded cDNA libraries and normalized (Lambert et al. 2010). The barcoded libraries were pooled in equimolar concentration based on average fragment length and concentration. After library construction, the pooled libraries were quantified using a Qubit fluorometer (Invitrogen, CA, USA) and average fragment sizes were determined by analyzing $1 \mu \mathrm{l}$ of the samples on the Bioanalyzer (Agilent, CA, USA) using a DNA 7500 chip. The pooled library was diluted to 1×10^{6} molecules $/ \mu 1$. Emulsion-based clonal amplification and sequencing on a full plate on the 454 Genome Sequencer FLX+ system was performed according to the manufacturer's instructions (454 Life Sciences, CT, USA). Signal processing and base calling were performed using the bundled 454 Data Analysis Software v2.6.

The raw sequence read data from the four insect pests were analyzed using the CLC Genomics Workbench 6.0.1 (Cambridge, MA, USA). Pre-processing of the raw reads from each of the four insect samples involved trimming each 454 read using a Phred quality score of 20 and also removing nucleotides < 50 bp from the ends. The adapter sequences were also trimmed from the raw reads. The processed read data from each of the four insect samples were assembled into contiguous sequences using parameters: mismatch $\operatorname{cost}=2$, insertion and deletion cost $=3$, length fraction $=60 \%$ and similarity $=$ 90%. After assembly, the vector contamination were removed using the UniVec database and also after assembly, human, bacterial, fish (Danio rerio), mouse (Mus musculus), Salmonella enterica, archeal and viral contamination were removed using a web-based version of DeConSeq (Schmieder and Edwards 2011) using a coverage of 90% and a sequence identity threshold of 94%. The clean transcriptomes, with the contaminations removed, were then deposited at $\mathrm{DDBJ} / E M B L / G e n B a n k$ for each of the four insect species.

Functional gene annotation

Open reading frames (ORFs) were predicted from assembled contigs using the ORF-Predictor server (Min et al. 2005) using all 6 possible reading frames for prediction. The assembled transcripts were used as queries to search against NCBI's non-redundant (nr) database using the Blastx algorithm (Altschul et al. 1990), with a cut-off E-value of \leq 10^{-6} and a high scoring segment pairs (HSP) length cut-off of 33 . The Blast2GO software package 2.6.5 (Ashburner et al. 2000) was used for automating Blastx searches as well as to retrieve associated gene ontology (GO) terms that allowed the prediction of transcript
functions (Ashburner et al. 2000; Shaw et al. 1999). The contigs with significant GO terms were determined with an E-value hit filter of $\leq 1 \times 10^{-6}$ and an annotation cut off of 55. Gene ontologies were categorized with respect to molecular function, biological process, and cellular component.

Annotations for A. craccivora, A. curvipes, C. tomentosicollis, and M. sjostedti gene functions were manually searched for those putatively involved in the expression of insecticide resistance traits, and pathogen defense and immunity, using each gene function as keywords to search GO terms. Prediction of candidate gene function was also obtained using InterProScan (Hunter et al. 2009; Quevillon et al. 2005) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses (Kanehisa and Goto 2000) using Blast2GO 2.6.5 (Ashburner et al. 2000).

Prediction of putative SNPs

The associated SNP detection software on the CLC Workbench 6.0.1 was used for putative SNP discovery among Roche 454 reads for all species. Attempts to reduce the rate of false SNP discovery included applying a read coverage cut-off of ≥ 35-fold and reporting SNPs that were present in $\geq 35 \%$ of the aligned reads. These criteria might reduce the false SNP discovery rate by potentially eliminating sequencing errors from the prediction. However, such stringent criteria likely increases type II error, therefore we also performed a prediction of putative SNPs using a reduced coverage cut off of $\geq 10 \%$. All putative indels and nucleotide variants involving > 2 nucleotides were excluded. Lastly, only SNPs located in an ORF were extracted and reported in this study. We checked whether SNPs introduced an amino acid change to differentiate non-synonymous and
synonymous SNPs by using the open reading frames of each of the contigs with SNPs, identifying the codons containing the SNPs and then translating and comparing the amino acids for each allele on CLC Workbench 6.0.1. We also checked the type of substitution, whether transition or transversion, using the CLC Workbench 6.0.1.

Metagenomic identification of endosymbiont and pathogen transcripts

The bacterial endosymbiont, Buchnera aphidicola, was identified from a Blastn search against Buchnera (Taxid: 32199) in NCBI using the assembled A. craccivora contigs as queries. The A. craccivora contigs with relevant hits to Buchnera were extracted and further confirmatory analysis was performed using InterProScan on Blast2GO 2.6.5, and the associated KEGG pathways were investigated also using Blast2GO 2.6.5.

Data deposition

The raw Roche 454 sequence data were submitted to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) with accession numbers of SRR768514, SRR768515, SRR768524 and SRR768525 for A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti, respectively. The Transcriptome Shotgun Assembly project for the four insect species were submitted to DDBJ/EMBL/GenBank under the accession numbers of GAJV00000000, GAJW00000000, GAJX00000000, and GAJY00000000 for A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti, respectively. The version of the TSA accession numbers described in this paper is the first version for each of the four species.

RESULTS

Development of reference transcriptome sequence assemblies

Normalized species-specific libraries were successfully constructed from mRNA isolated from pooled samples of all tissues and pooled adult and larval life stages. A total of $319,126,176,262,320,722$ and 227,882 raw reads were respectively obtained from these A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti libraries. The bacterial and human contaminants discovered by DeConSeq were negligible across the four insect species. Seventeen, 2, 11 and 37 contigs were identified by DeConSeq as contaminants in A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti, respectively and were also subsequently removed from the transcripts. The remaining statistics for sequence and contig assemblies are reported in Table 5.1. After assembly and decontamination, the mean contig length ranged from 669.8 to 688.1 bp , from which ORFs with a mean length of between 498.5 and 524.5 bp was predicted (Table 5.1).

Functional gene annotation

ORFs were predicted from $\geq 98 \%$ of A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti transcripts, and respectively showed mean lengths of 498.46, 514.28, 524.54 and 508.78 bp (Table 5.1). Blast2GO output indicated that Blastx hits were obtained for $6,430(55.02 \%), 7,647$ (79.94\%), 6,839 (64.19\%) and 4,292 (58.41%) contigs in A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti, respectively. The contigs with significant Blastx matches were assigned GO terms into molecular function, biological process, and cellular components (Appendix F1 to F4). In the molecular function category, the most highly represented were assigned to binding
(13.66% for A. curvipes, 13.64% for A. craccivora, 13.37% for C. tomentosicollis, and 13.47% for M. sjostedti), and catalytic activity (14.37% for A. curvipes, 13.09% for A. craccivora, 14.93% for C. tomentosicollis, and 13.47% for M. sjostedti). In the biological process category, the most highly represented were assigned to cellular process (4.65\% for A. curvipes, 4.68% for A. craccivora, 4.72% for C. tomentosicollis, and 4.74% for M. sjostedti), and metabolic process (5.36% for A. curvipes, 5.40% for A. craccivora, 5.80% for C. tomentosicollis, and 5.63% for M. sjostedti) while in the cellular component category, the most highly represented were assigned to cell (9.27\% for A. curvipes, 9.14% for A. craccivora, 9.45% for C. tomentosicollis, and 9.02% for M. sjostedti), and cell part (8.20% for A. curvipes, 8.03% for A. craccivora, 8.31% for C. tomentosicollis, and 8.15% for M. sjostedti) (Appendix F1 to F4).

The majority of the top Blastx hits in the four insect species were from insects. In A. curvipes, the most common were from Hemiptera [Riptortus pedestris (23.61\%)], Coleoptera [Tribolium castaneum (7.05\%)], Phthiraptera [Pediculus humanus (6.72\%)], and another Hemiptera [Acryrthosiphon pisum (5.99\%)] (Appendix G1). The most frequent hits from A. craccivora were from Hemiptera [A. pisum (83.67\%)], two fungi species [Rhizopus delemar (1.52\%); Batrachochytrium dendrobatidis (0.65\%)], and Phthiraptera $[P$. humanus (0.54%)] (Appendix G2). The most frequent in C. tomentosicollis were from Hemiptera [R. pedestris (27.72\%)], Coleoptera [T. castaneum (7.72\%)], another Hemiptera [A. pisum (7.00\%)], and Phthiraptera [P. humanus (6.65\%)] (Appendix G3) while the most frequent in M. sjostedti transcripts were from Coleoptera [T. castaneum (9.74\%)], Phthiraptera [P. humanus (8.36\%)], Lepidoptera [Danaus plexippus (6.45\%)], and Hymenoptera [Nasonia vitripennis (5.62\%)] (Appendix G4).

Blastx hits also revealed matches to other fungi species, bacteria, and a plant among A. craccivora contigs (Appendix G2), but these were not analogously observed within libraries from the other three insects.

Within the libraries constructed from A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti cDNA, a combined total of 23 candidate genes for detoxification, immunity and pathogen defense, development and communication were identified including cytochrome P450, glutathione s-transferase, esterase, cathepsin, heat shock protein, chitinase, defensin, c-Jun NH (2)-terminal kinase (jnk) stimulatory phosphatase, down syndrome critical region protein, epidermal growth factor, lysozyme, nimrod, nitric acid synthase, prophenol oxidase, ubiquinol cytochrome c reductase, peptidoglycan recognition protein, toll protein, chemosensory protein, juvenile hormone inducible protein, juvenile hormone esterase and juvenile hormone epoxide hydrolase, chemosensory binding protein as well as odorant binding protein (Figures 5.3a to 5.3 d).

Metagenomic identification of endosymbiont- and pathogen-derived transcripts

Thirty six Blastn hits to the NCBI nr protein database were identical to the primary endosymbiont of aphids, B. aphidicola, when transcripts from A. craccivora were used as queries of which 23 unique transcripts retrieved InterProScan annotations (Appendix H) and nine were predicted to be involved in nine different bacterial biochemical pathways (Table 5.2). Transcripts from six different fungi species were also predicted among A. craccivora transcripts, including Rhizopus delemar, and Batrachochytrium dendrobatidis (Appendix G2).

Prediction of putative SNPs

All A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti contigs, that contained a putative ORF, were included in the SNP prediction pipeline (Appendix I1 to I4, Appendix J1 to J4). From these predictions, 258, 30, 225, and 63 contigs respectively from A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti had putative SNPs, which respectively contained a total of $742,97,607$, and 180 putative SNPs (Appendix I1 to I4, Appendix J1 to J4). The mean depth of reads aligned to the reference transcripts depth for all putative SNPs was >60 across all species (Table 5.3). The density of SNPs within transcripts was measured by estimates of mean number of putative SNPs per kilobase, and were $0.09,0.02,0.08$, and 0.04 respectively among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti contigs (Table 5.3). The alternate $\geq 10 \%$ coverage cut off we used comparatively predicted $2,703,340,2,087$, and 780 putative SNPs for A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti, respectively. As a consequence of 454-based sequence by synthesis methods used, resulting reads are prone to sequencing errors known as homopolymers, which comprise imprecise nucleotide numbers in long arrays of the same nucleotide. These errors can cause misalignment within contig assemblies such that incorrect SNP predictions can result in sequence regions flanking the homopolymer stretch. To compensate for these errors, the variants were also filtered for 454/Ion homopolymer INDELS in the SNP detection software in the CLC Genomics Workbench. To understand the effects of SNP mutations and associate them to the different transcripts obtained in our study, we differentiated synonymous SNPs from non-synonymous SNPs. Of the total number of SNPs obtained in
the four insect species, there were $425,72,419$, and 97 synonymous SNPs respectively in A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti and respectively 317, 25, 188, and 83 non-synonymous SNPs. In all four species, transitions were more frequent than transversions ($\mathrm{Ts} / \mathrm{Tv}>1$) (Table 5.3).

DISCUSSION

Development of reference transcriptome sequence assemblies

Next generation sequencing technologies offer a rapid entry point into genomic research (Coates et al. 2011) and can generate valuable molecular resources for non-model species (Sloan et al. 2012; Harismendy et al. 2009) that are a foundation from which a diversity of research questions can be addressed (Harismendy et al. 2009; Rothberg and Leamon 2008). In the absence of complete genome sequences, transcriptome sequencing remain a useful molecular resource that can be applied to the identification of candidate insecticide resistance genes and mutations that can be developed into genetic markers for population genetic studies (Margam et al. 2011), as well as the identification of potential targets for RNAi knockdown. The Roche 454 platform provides long sequence read lengths that may better allow the assembly of de novo transcriptomes (Harismendy et al. 2009), but remain susceptible to sequencing errors in homopolymer regions. The Roche 454 transcriptome data presented in this study from A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti had a high median length ($\geq 680 \mathrm{bp}$), and a majority of resulting contigs encoded a predicted ORF (= protein coding sequence, CDS). Despite this, a high number of contigs (> 35\%) had ORFs with no amino acid similarity to known proteins within the NCBI nr database and was especially the case for A. curvipes, C.
tomentosicollis, and M. sjostedti transcripts. However, only 20.06% of the A. craccivora contigs had no similarity to known proteins in the NCBI nr database. Annotation of previous transcriptome assemblies have similarly revealed a high number of contigs with genes of unknown function (Karatolos et al. 2011; Bai et al. 2011; Wang et al. 2010; Shen et al. 2011) which may represent novel uncharacterized genes and reflect the limitation of inferring transcript functions by comparison to model species that have long evolutionary distances to the non-model species in question (Coates et al. 2008). Even within whole genome sequence assemblies, species-specific genes can comprise a high percentage of predicted ORFs (Tribolium Genome Sequencing Consortium 2008). The presence of these genes of unknown function could similarly suggest these proteins may be species-specific and, that de novo transcriptome assemblies from non-model insect pest species are useful for phylogenetic novel gene discovery. Furthermore, the resulting assembly of sequence data allow for the identification of novel gene pathways that have potentials for RNAi targeting within a suite of species-specific control tactics.

Functional annotation

Functional annotations of assembled A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti transcripts allowed for the identification of candidate genes encoding proteins putatively involved in insecticide resistance, and pathogen defense and immunity. Transcriptomic approaches are powerful tools to identify new genes and gene functions and have been successfully applied to many organisms. In this study, we have identified genes putatively involved in the response to and the detoxification of xenobiotics in the four insect pests. Some of these xenobiotic response/detoxification genes will likely be
useful for the study of chemical insecticide resistance traits as well as their role in detoxification following exposure to plant allelochemicals. For example, strains of A. craccivora have elevated esterase activities that were linked to increased resistance to the nicotinic acetylcholine receptor agonist, dinotefuran, which belongs to the third generation of neonicotinoids (Mokbel and Mohamed 2009). Our results will provide a foundation that makes the future study of the involvement of these candidate genes in field-observed insecticide resistance traits in these insects more likely, and may also represent genetic markers that can be used to screen field populations (and compare resistant vs. susceptible individuals) to determine linkage (or not) of the locus to the resistant phenotype trait.

Our current understanding of insect immunity and stress responses comes from holometabolous insects and includes flies, butterflies, beetles, and bees (Gerardo et al. 2010). The four insect pests under study in this paper are all hemimetabolous insects with three of them (A. curvipes, A. craccivora, and C. tomentosicollis) falling into the same insect order of Hemiptera and the fourth insect M. sjostedti falling into the insect order, Thysanoptera. Because all studied species exhibit incomplete development, comparison with the genome of a hemimetabolous insect (i.e., pea aphid, A. pisum) may provide insights into immunity and defense mechanisms in these pest insects. It is also interesting to note that while the four insect species included in this study were not intentionally immunologically challenged, we still observed some transcripts putatively involved in insect defense and immunity based on studies conducted on other insects such as A. pisum. We did not observe as many immunity and defense transcripts in both A. craccivora and M. sjostedti as we observed in A. curvipes and C. tomentosicollis. The immune genes observed in this study include most genes involved in the IMD pathway in
insects and includes chitinase, defensin, down syndrome critical region protein, epidermal growth factor receptor, jnk stimulatory phosphatase, lysozyme, nimrod, nitric oxide synthase, odorant binding protein, peptidoglycan-recognition protein and pro-phenol oxidase. We also observed genes involved in toll signaling pathway. It is interesting to note that none of these genes are represented across all the four insect pests. Some insects have particular genes that others lack, and vice versa. For example, A. craccivora appears to be missing the defensin gene, however, a lack of such a gene would have to be verified in the future if a genomic project were to occur for this species. This is consistent with studies conducted on A. pisum, which shows the pea aphid is lacking many of the antimicrobial peptides, such as defensin, common to other insects (Zou et al. 2007). The reduced humoral immune system in A. pisum, including an apparently non-functional IMD signaling pathway and absence of PGRPs, has been suggested to be an adaptation for the symbiosis with the bacterium B. aphidicola (Douglas 1998). The presence of defensin in the human louse, P. humanus and in the ancient apterygote insect, the fire brat, Thermobia domestica (Altincicek and Vilcinskas 2007), suggests that defensins may have been lost during aphid evolution.

Prediction of putative SNPs

Single nucleotide polymorphisms are rapidly becoming the marker of choice for many applications in population ecology, evolution and conservation genetics, because of the potential for high genotyping efficiency, data quality, genome-wide coverage and analytical simplicity (e.g. in modeling mutational dynamics) (Morin et al. 2004). Transcriptome-derived SNPs have several advantages over those developed from genomic
sequences (Hayes et al. 2007; Akey et al. 2003; Picoult-Newberg et al. 1999), including acquisition of actual gene sequences that allow for direct mapping and comparative genome studies among organisms (Wang et al. 2008, and references therein). SNPs derived from transcriptomes are also a source of candidate polymorphisms underlying important traits that can lead to the identification of quantitative trait nucleotides (QTN) (Jalving et al. 2004) linked to ecologically relevant genes. The applicability of SNPs from sequence data for marker development has been previously reported (Novaes et al. 2008; Wiedmann et al. 2008; Williams et al. 2010) and has been applied for the genetic mapping of insect orders such as Lepidoptera [Bombyx mori; Yamamoto et al. 2006)] and for population genetics of the Glanville fritillary butterfly, Melitaea cinxia (Orsini et al. 2008). The current study provides a set of at least $742,97,607$, and 180 putative SNPs respectively for A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti (predicted using the criteria that SNPs be present in $\geq 35 \%$ of aligned reads), and the segregating mutations that can be developed into molecular genetic markers for the study of the population genetic structure of these insect pests. Although a greater number of putative SNPs were predicted using a more lenient coverage cut off value of 10%, these loci may be prone to type I error and secondary validation methods may likely be required to distinguish these from sequencing errors.

The frequency of SNPs in laboratory strains of Drosophila was reported at 5 SNP per kilobase (Berger et al. 2001) and at 1.3 SNPs per kilobase in the inbred Dazao strain of Bombyx mori (Cheng et al. 2004). Similarly, laboratory strains of the malaria mosquito, Anopheles funestus, were reported to have 7.2 SNPs per kilobase (Wondji et al. 2007), and 8.0 SNPs per kilobase in An. gambiae (Morlais et al. 2004). Compared to the
results obtained from the above studies, we did observe a lower amount of SNPs per kilobase in the present study. Although laboratory strains were used in those studies, we used field-collected insects in our study and usually a reduced SNP frequency is reported in laboratory strains because homozygosity may be increased by the effects of inbreeding or random genetic drift. Non-synonymous SNPs have commonly been reported to occur less frequently than synonymous SNPs, and is presumably due to the evolutionary constraints of negative selection that may eliminate deleterious substitutions from the population (Cargill et al. 1999). Non-synonymous SNPs are of particular interest because they are more likely to affect the function of the encoded protein and may influence phenotype. It has been estimated that $20-30 \%$ of non-synonymous SNPs affect protein function (Sunyaev et al. 2001; Chasman and Adams 2001). In our study, we did observe a higher number of synonymous SNPs than non-synonymous SNPs across transcripts from all the four insect species. In metazoan DNA sequences, an excess of transition vs. transversion mutations is often observed. This may be partly due to the relatively high rate of change of methylated cytosines to thymine, as well as post-mutation processes of selection on codon-usage bias within coding regions (Keller et al. 2007). The role of population genetic and biochemical effects on the rate and direction of nucleotide changes remains unknown, but are likely factors that affect the observed level of SNP allele frequencies within natural populations.

Metagenomic identification of endosymbiont- and pathogen-derived transcripts

Aphids are sap-feeding insects that infest a wide range of plant species. Although sap fluids from plant phloem contain high concentrations of carbohydrates, they are
deficient in nitrogenous nutrients such as specific amino acids (Sandström and Moran 1999; Houk and Griffiths 1980). To overcome these nutritional deficiencies, species within Aphidoidea have established mutualistic relationships with the obligate intracellular endosymbiont, B. aphidicola (Lai et al. 1994; Munson et al. 1991). Buchnera endosymbionts produce essential amino acids that cannot be synthesized by aphids or obtained in sufficient quantities from plant saps (Lai et al. 1994; Douglas 1998). In return, aphids provide Buchnera with other nutrients required to survive (Wilkinson and Douglas 1995). Relationships between these two groups have existed for approximately 150 to 200 million years (Moran et al. 1993) resulting in drastic Buchnera genome reductions due to the loss of many genes needed for independent life and has led to the inability to survive outside host cells (Shigenobu et al. 2000). Therefore, aphids and associated Buchnera symbionts may be inseparable mutualistic partners. We observed 36 B. aphidicola transcripts among Blastn hits to our A. craccivora transcripts. These 36 B. aphidicola transcripts were annotated from twelve different strains of B. aphidicola. We also observed ubiquinone in the Blastx search of A. craccivora. Symbiotic B. aphidicola are aerobic bacteria, which due to gene reduction in metabolic pathways, cannot carry out respiration without obtaining gene products from the host (Zientz et al. 2004). The electron transport chain consists of a primary dehydrogenase and a terminal reductase, which are linked by ubiquinone (Unden and Bongaerts 1997). Ubiquinone is an essential redox component of the aerobic respiration of bacteria and mitochondria (Søballe and Poole 2000), and participates in the transfer of electrons and hydrogen between flavoproteins and cytochrome b in the respiratory chain. Also, one of the 36 A. craccivora contigs with hits to B. aphidicola was annotated as the gene symbionin, which has been
reported to increase the transmission of plant viruses by binding to the read-through domain of the viral coat protein (Banerjee et al. 2004). Further study of these genes may likely lead to a better understanding of symbiosis and plant disease transmission by A. craccivora, and may lead to potential tactics to reduce or eliminate the disease vectoring capacity of A. craccivora.

Additionally, we observed Blastx hits to six fungi species among A. craccivora sequences. Rhizopus oryzae (R. oryzae has been reclassified to include R. oryzae and R. delemar (Abe et al. 2007). Rhizopus delemar was observed in the Blastx hits in this study and was previously reported to be an entomopathogenic fungal species (Sharma et al. 2012). Batrachochytrium dendrobatidis causes chytridiomycosis and is a major cause of amphibian population decline worldwide (Friesen and Kuhn 2012) and the sequences within our aphid transcripts may be derived from a related fungal species that is capable of infecting A. craccivora in West Africa. In contrast, Melampsora larici-populina is a cause of rust in poplar trees (Yu et al. 2009). These may have resulted from environmental contamination or were present within gut contents of whole aphids that were used for library preparations. These results suggest that application of NGS may be used for the metagenomic identification of putative pathogen species, which in turn may be useful for the biological control of pest insect species.

CONCLUSION

With the exception of prior studies that focused on M. vitrata, this study represents the first attempt to develop transcriptomic and molecular marker data for field insect pests of cowpea in West Africa. Although the sequence data, and biological functions of these
genes, may be of interest and importance to molecular biologists, the molecular markers are potentially of much greater near-term pragmatic importance for those interested in controlling these pests. Previous studies have already demonstrated that such molecular markers can give us important insights into pest movement patterns that ultimately will impact how pest control strategies for M. vitrata need to be developed in different agroecological zones in West Africa (Margam et al. 2011; Agunbiade et al. 2012a). For example, M. vitrata is an endemic pest in the southern part of the selected West African countries and migratory in the northern part; thus biocontrol agents need to be released in the south and spraying of pesticides or biopesticides (Tamò et al 2012) may be a better solution in areas where these insects are not endemic. This understanding has emerged from a combination of studies on the biology of this pest and through the use of molecular markers. We term this approach, combining traditional IPM strategies with knowledge that emerges from population genetics/genomics tools, IPM-omics (Agunbiade et al. 2012b). This study lays the foundation for research in other pest species, with the longterm goal to develop a comprehensive program that integrates genomics datasets into IPM and IRM programs in order to minimize the crop damage inflicted by pest insect species of cowpea in West Africa.

REFERENCES

Abe A, Oda Y, Asano K, Sone T (2007) Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia 99: 714-722.

Adati T, Tamò M, Yusuf SR, Downham MCA, Singh BB, Hammond W (2007) Integrated pest management for cowpea-cereal cropping systems in the West African savannah. International Journal of Tropical Insect Science 27: 123-137.

Agunbiade TA, Kim KS, Forgacs D, Margam VM, Murdock LL, Ba NM, Binso-Dabire CL, Baoua I, Ishiyaku MF, Tamò, Pittendrigh BR (2012a) The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa. Bulletin of Entomological Research 102(5): 589-599.

Agunbiade T, Steele L, Coates B, Gassmann A, Margam V, Ba M, Dabire-Binso C, Baoua I, Bello-Bravo J, Seufferheld F, Sun W, Tamò, Pittendrigh BR (2012b) IPMomics: From genomics to extension for integrated pest management of cowpea. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp. 231-248.

Akey JM, Zhang K, Xiong M, Jin L (2003) The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Molecular Biology and Evolution 20 (2): 232-242.

Altincicek B, Vilcinskas A (2007) Identification of immune-related genes from an apterygote insect, the firebrat Thermobia domestica. Insect Biochemistry and Molecular Biology 37: 726-731.

Altschul SF, Warren G, Webb M, Eugene WM, David JL (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Amevoin K, Sanon A, Apossaba M, Glitho IA (2007) Biological control of bruchids infesting cowpea by the introduction of Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae) adults into farmers' stores in West Africa. Journal of Stored Products Research 43(3): 240-247.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: Tool for the unification of biology. Nature Genetics 25: 25-29.

Atiri GI, Enobakhare DA, Thottappilly A (1986) The importance of colonizing and noncolonizing aphid vectors in the spread of cowpea aphid-borne mosaic virus in cowpea. Crop Protection 5: 406-410.

Bai X, Mamidala P, Rajarapu SP, Jones SC, Mittapalli O (2011) Transcriptomics of the Bed Bug (Cimex lectularius). PLoS ONE 6(1): e16336.

Banerjee S, Hess D, Majumder P, Roy D, Das S (2004) The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard Aphid. Journal of Biological Chemistry 279(22): 23782-23789.

Bartels DW, Hutchison WD, Udayagiri S (1997) Pheromone trap monitoring of Z-strain European corn borer (Lepidoptera: Pyralidae): Optimum pheromone blend, comparison with black light trap, and trap number requirements. Journal of Economic Entomology 90: 449-457.

Bashir M, Hampton RO (1996) Detection and identification of seed-borne viruses from cowpea [Vigna unguiculata (L.) Walp.] germplasm. Plant Pathology 4: 54-58.

Bean/Cowpea CRSP (2001) The Dakar symposium/workshop on the genetic improvement of cowpea. Jan. 8-12.

Bennett CW (1969) Seed transmission of plant viruses. Advances in Virus Research 14: 221-262.

Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ (2001) Genetic mapping with SNP markers in Drosophila. Nature Genetics 29(4): 475-481.

Bock KR, Conti M (1974) Cowpea aphid-borne mosaic virus, descriptions of plant viruses, No. 134. Commonwealth Mycological Institute and Association of Applied Biologists. Kew, Surrey, UK, 4pp.

Bradshaw JWS, Baker R, Longhurst C, Edwards JC, Lisk JC (1983) Optimization of a monitoring system for the pine beauty moth, Panolis flammea (Denis \& Schiffermüller), using sex attractants. Crop Protection 2: 63-73.

Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution 18 (5): 249-256.

Brunt A, Crabtree K, Gibbs A (1990) Viruses of tropical plants. C.A.B. International, Wallingford, UK, pp. 97-102.

Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics 22(3): 231238.

Champ BR, Dyte CE (1976) Report of the FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Production Project. Paper No. 5. FAO/UN, Rome.

Chasman D, Adams RM (2001) Predicting the functional consequences of nonsynonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation. Journal of Molecular Biology 307(2): 683-706.

Cheng TC, Xia QY, Qian JF, Liu C, Lin Y, Zha XF, Xiang ZH (2004) Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochemistry and Molecular Biology 34: 523-530.

Coates BS, Bayles DO, Wanner KW, Robertson HM, Hellmich RL, Sappington TW (2011) The application and performance of single nucleotide polymorphism markers for population genetic analyses of Lepidoptera. Frontiers in Research 2 (38): 1 -10.

Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2008) Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). Insect Molecular Biology 17: 607-620.

Cork A, Dobson H, Grzywacz D, Hodges R, Orr A, Stevenson P (2009) Review of preand post-harvest pest management for pulses with special reference to Eastern and Southern Africa. Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK. Prepared for and funded by McKnight Foundation. Collaborative Crops Research Program.

Dijkstra J, Bos L, Bouwmeester HJ, Hadiastono T, Lohuis H (1987) Identification of blackeye cowpea mosaic virus from germplasm of yard-long bean and from soybean, and the relationships between blackeye cowpea mosaic virus and cowpea aphid-borne mosaic virus. Netherlands Journal of Plant Pathology 93(3): 115-133.

Douglas AE (1998) Nutritional interactions in insect-microbe symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43: 17-37.

Downham MCA, Tamò M, Hall DR, Datinon B, Adetonah S, Farman DI (2003) Developing pheromone traps and lures for Maruca vitrata in Benin, West Africa. Entomologia Experimentalis et Applicata 110(2): 151-158.

Dugje IY, Omoigui LO, Ekeleme F, Kamara AY, Ajeigbe H (2009) Farmers' guide to cowpea production in West Africa. IITA Ibadan, Nigeria, 20pp.

Ekesi S (1999) Insecticide resistance in field populations of the legume pod-borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae), on cowpea, Vigna unguiculata (L.) Walp in Nigeria. International Journal of Pest Management 45: 57-59.

Friesen LR, Kuhn RE (2012) Fluorescent microscopy of viable Batrachochytrium dendrobatidis. Journal of Parasitology 98(3): 509-512.

Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods. FAO, Rome.

Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M, Duncan EJ, Evans JD, Gabaldón T, Ghanim M, Heddi A, Kaloshian I, Latorre A, Moya A, Nakabachi A, Parker BJ, Pérez-Brocal V, Pignatelli M, Rahbé Y, Ramsey JS, Spragg CJ, Tamames J, Tamarit D, Tamborindeguy C, Vincent-Monegat C, Vilcinskas A (2010) Immunity and other defenses in pea aphids, Acyrthosiphon
pisum. Genome Biology 11: R21.
Gillaspie AG Jr, Hopkins MS, Pinnow DL (1993) Relationship of cowpea seed-part infection and seed transmission of blackeye cowpea mosaic potyvirus in cowpea. Plant Disease 77(9): 875-877.

Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Topol EJ, Lecy S, Frazer KA (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology 10: R32.

Hayes J, Laerdahl JK, Lien S, Moen T, Berg P, Hindar K, Davidson WS, Koop BF, Adzhubei A, Høyheim $\mathrm{B}(2007)$ An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture 265 (1-4): 82-90.

Houk EJ, Griffiths GW (1980) Intracellular symbiotes of the Homoptera. Annual Review of Entomology 25: 161-187.

Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: The integrative protein signature database. Nucleic Acids Research 37: D211-D215.

Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively-parallel DNA pyrosequencing. Genome Biology 8: R143.

Jackai LEN, Daoust RA (1986) Insect pests of cowpeas. Annual Review of Entomology 31: 95-119.

Jalving R, van't Slot R, van Oost BA (2004) Chicken single nucleotide polymorphism identification and selection for genetic mapping. Poultry Science 83(12): 19251931.

Kamara AY, Chikoye D, Omoigui LO, Dugje IY (2007) Cultivar and insecticide spraying regimes effects on insect pests and grain yield of cowpea in the dry savannas of north-eastern Nigeria. African Crop Science Conference Proceedings 8: 179-184.

Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28: 27-30.

Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, Gorman K, Nelson DR, Bass C, ffrench-Constant RH, Williamson MS (2011) Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics 12: 56.

Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449: 468-472.

Lai CY, Baumann L, Baumann P (1994) Amplification of trpEG: Adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proceedings of the National Academy of Sciences USA 91(9): 3819-3823.

Lambert DJ, Yi Chan Xin, Spiecker B, Sweet HC (2010) Characterizing the embryonic transcriptome of the snail, Ilyanassa. Integrative and Comparative Biology 50(5): 768-777.

Lewis T, Macaulay EDM (1976) Design and elevation of sex attractant traps for pea moth, Cydia nigricana (Steph.) and the effect of plume shape on catches. Ecological Entomology 1: 175-187.

Margam VM, Coates BS, Bayles DO, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Kroemer JA, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR (2011) Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(7): e21388.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 326-327.

Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: Predicting protein-coding regions in EST-derived sequences. Nucleic Acids Research 33: W677-W680.

Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, Herms DA (2010) Tissuespecific transcriptomics of the exotic invasive insect pest Emerald Ash Borer (Agrilus planipennis). PLoS ONE 5: e13708.

Mokbel ES, Mohamed AI (2009) Development of resistance in field strain of Aphis craccivora to the dinotefuran insecticides from the new class neonicotinoids and its effect on some enzymes. Egyptian Academic Journal of Biological Sciences 1(1): 65-69.

Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biology 6: 17.

Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in
endosymbiotic bacteria is calibrated using the insect hosts. Proceedings of the Royal Society London B 253: 167-171.

Morin PA, Luikart G, Wayne RK, SNP-Workshop_Grp (2004) SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution 19: 208-216.

Morlais I, Ponçon N, Simard F, Cohuet A, Fontenille D (2004) Intraspecific nucleotide variation in Anopheles gambiae: New insights into the biology of malaria vectors. American Journal of Tropical Medicine and Hygiene 71(6): 795-802.

Munson MA, Baumann P, Kinsey MG (1991) Buchnera gen. nov. and Buchnera aphidicola sp. Nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. International Journal of Systematic Bacteriology 41(4): 566-568.

Novaes ED, Drost R, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9: 312.

Oparaeke AM (2006) The potential for controlling Maruca vitrata Fab. and Clavigralla tomentosicollis Stal. using different concentrations and spraying schedules of Syzigium aromaticum (L.) Merr and Perr on cowpea plants. Journal of Plant Science 1: 132-137.

Oparaeke AM (2007) Toxicity and spraying schedules of a biopesticide prepared from Piper guineense against two cowpea pests. Plant Protection Science 43: 103-108.

Orsini L, Corander J, Alasentie A, Hanski I (2008) Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Molecular Ecology 17: 2629-2642.

Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Research 9: 167-174.

Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA (2011) A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics 12: 619.

Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiller R, Lopez R (2005) InterProScan: Protein domains identifier. Nucleic Acids Research 33: W116W120.

Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nature Biotechnology 26: 1117-1124.

Sandström J, Moran NA (1999) How nutritionally imbalanced is phloem sap for aphids? Entomologia Experimentalis et Applicata 91(1): 203-210.

Schlötterer C (2004) The evolution of molecular markers - just a matter of fashion?

Nature Reviews Genetics 5(1): 63-69.
Schmieder R, Edwards R (2011) Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6: e17288.

Sharma A, Chandla VK, Thakur DR (2012) Biodiversity and pathogenicity potential of mycoflora associated with Brahmina coriacea in potato fields of North-Western Indian Hills. Journal of Entomology 9: 319-331.

Shaw DR, Ashbumer M, Blake JA, Baldarelli RM, Botstein D, Davis AP, Cherry JM, Lewis S, Lutz CM, Richardson JE, Eppig JT (1999) Gene ontology: A controlled vocabulary to describe the function, biological process and cellular location of gene products in genome databases. American Journal of Human Genetics 65(4): A419-1419.

Shen GM, Dou W, Niu JZ, Jiang HB, Yang WJ, Jia FX, Hu F, Cong L, Wang J-J (2011) Transcriptome analysis of the Oriental fruit fly (Bactrocera dorsalis). PLoS ONE 6: e29127.

Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407(6800): 81-86.

Singh SR, Allen DJ (1980) Pests, diseases, resistance and protection in cowpeas. In Summerfield RJ, Bunting AH. Advances in Legume Science, Royal Botanical Gardens, Kew, pp. 419-443.

Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annual Review of Entomology 24: 255-278.

Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR (2012) De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Molecular Ecology Resources 12: 333-343.

Søballe B, Poole RK (2000) Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 146: 787-796.

Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Human Molecular Genetics 10(6): 591-597.

Tamò M, Srinivasan R, Dannon E, Agboton C, Datinon B, Dabire C, Baoua I, Ba M, Haruna B, Pittendrigh BR (2012) Biological control: A major component for the long-term cowpea pest management strategy. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp. 249-259.

Tang K, Fu D-J, Julien D, Braun A, Cantor CR, Köster H (1999) Chip-based genotyping by mass spectrometry. Proceedings of the National Academy of Sciences USA 96:10016-10020.

Thottappilly G, Rossel HW (1985) Virus diseases of important food crops in tropical Africa. Ibadan, Nigeria, International Institute of Tropical Agriculture pp 35.

Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452: 949-955.

Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta 1320: 217-234.

Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution 34: 275-305.

Wang S, Sha Z, Sonstegard TS, Liu H, Xu P, Somridhivej B, Peatman E, Kucuktas H, Liu Z (2008) Quality assessment parameters for EST-derived SNPs from catfish. BMC Genomics 9: 450.

Wang X-W, Luan J-B, Li J-M, Bao Y-Y, Zhang C-X, Liu S-S (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11: 400.

Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiology144: 32-42.

Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7: 275.

Wiedmann RT, Smith TPL, Nonneman DJ (2008) SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genetics 9: 81.

Wilkinson TL, Douglas AE (1995) Why pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria have elevated levels of the amino acid glutamine. Journal of Insect Physiology 41(11): 921-927.

Williams LM, Ma X, Boyko AR, Bustamante CD, Oleksiak MF (2010) SNP identification, verification, and utility for population genetics in a non-model genus. BMC Genetics 11: 32.

Wondji CS, Morgan J, Coetzee M, Hunt RH, Steen K, Black WC, Hemingway J, Ranson H (2007) Mapping a quantitative trait locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus. BMC Genomics 8: 34.

Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA, Zhang CX (2010) Transcriptome analysis of the brown planthopper, Nilaparvata lugens. PLoS ONE 5: e14233.

Yamamoto K, Zhang P, Banno Y, Fujii H (2006) Identification of a sigma-class glutathione-S-transferase from the silkworm, Bombyx mori. Journal of Applied

Entomology 130: 515-522.
Yu Z, Liang J, Cao Z, Guo Z, Dan J, Zhao G (2009) Nuclear behavior in the life cycle of Melampsora larici-populina Kleb. Journal of Food, Agriculture and Environment 7 (3 and 4): 791-794.

Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiology and Molecular Biology Reviews 68(4): 745-770.

Zou Z, Evans JD, Lu Z, Zhao P, Williams M, Sumathipala N, Hetru C, Hultmark D, Jiang H (2007) Comparative genomic analysis of the Tribolium immune system. Genome Biology 8: R177.

FIGURES AND TABLES

Figure 5.1. Map of Benin, Burkina Faso, and Niger showing the sites from which \boldsymbol{A}. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti were collected.

Figure 5.2a. Gene ontology classification into biological process, cellular component, and molecular function. Gene ontology terms were determined using an e-value of $\leq 1.0 \mathrm{e}^{-6}$ and sorted based on level 2 classifications in all the contigs of A. curvipes.

Figure 5.2b. Gene ontology classification into biological process, cellular component, and molecular function. Gene ontology terms were determined using an e-value of $\leq 1.0 \mathrm{e}^{-6}$ and sorted based on level 2 classifications in all the contigs of A. craccivora.

Figure 5.2c. Gene ontology classification into biological process, cellular component, and molecular function. Gene ontology terms were determined using an e-value of $\leq 1.0 \mathrm{e}^{-6}$ and sorted based on level 2 classifications in all the contigs of C. tomentosicollis.

Figure 5.2d. Gene ontology classification into biological process, cellular component, and molecular function. Gene ontology terms were determined using an e-value of $\leq 1.0 \mathrm{e}^{-6}$ and sorted based on level 2 classifications in all the contigs of M. sjostedti.
A. curvipes

Figure 5.3a. Transcripts putatively involved in responses to xenobiotic (e.g., insecticide resistance), and disease transmission in A. curvipes.

Figure 5.3b. Transcripts putatively involved in responses to xenobiotic (e.g., insecticide resistance), and disease transmission in A. craccivora.

Figure 5.3c. Transcripts putatively involved in responses to xenobiotic (e.g., insecticide resistance), and disease transmission in C. tomentosicollis.

Figure 5.3d. Transcripts putatively involved in responses to xenobiotic (e.g., insecticide resistance), and disease transmission in M. sjostedti.

Table 5.1. Statistics from Roche 454 sequencing of A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti cDNA libraries generated from pools of all tissues and the larval and adult life stages.

	A. curvipes	A. craccivora	C. tomentosicollis	M. sjostedti
Putative SNPs identified	742	97	607	180
Contigs with SNPs	256	30	225	63
Transition	505	65	423	116
Transversion	237	32	184	64
Transition/Transversion Ratio	2.1	2	2.3	1.8
SNPs per Kilobase	0.09	0.02	0.08	0.04
Synonymous SNPs	425	72	419	97
Non-synonymous SNPs	317	25	188	83
Mean read depth of SNPs	97.5	66.6	115.5	74.9

Table 5.2. The orthologs of A. craccivora contigs derived from the genome of the primary aphid endosymbiont, B. aphidicola (identified in GenBank accession BA000003.2.). Information regarding protein function can be retrieved from SwissProt database (http://enzyme.expasy.org/) by searches for EC number (not available for all B. aphidicola genes).

Contig ID	Orthologous B. aphidicola gene	B. aphidicola protein $($ EC $)$
Aphis 1561	D-fructose-6-phosphate amidotransferase (glmS)	BAB12753.1 (EC 2.6.1.16)
Aphis 5691	UDP-N-acetylglucosamine pyrophosphorylase (glmU)	BAB12754.1 (EC 2.7.7.23)
Aphis 5225	S-adenosylmethionine synthetase (metK)	BAB13109.1 (EC 2.5.1.6)
Aphis 7020	acetolactate synthase small subunit (ilvH)	BAB12941.1 (EC 2.2.1.6)
Aphis 6159	2-oxoglutarate dehydrogenase e1 component (sucA)	BAB13011.1 (EC 1.2.4.2)
Aphis 5021	ABC transporter ATP-binding protein (uup)	BAB13068.1
Aphis 376	Spermidine synthase (speE)	BAB12926.1 (EC 2.5.1.16)
Aphis 3768	6-phsphoglucanate dehydrogenase (gnd)	BAB12826.1 (EC 1.1.1.44)
Aphis 3870	Hypothetical GTP-binding protein (yfgK)	BAB13291.1

Table 5.3. Summary of the putative single nucleotide polymorphism (SNP) predictions from reads mapped to reference A. curvipes, A. craccivora, C. tomentosicollis, and M. sjostedti transcripts.

	A.curvipes	A. craccivora	C. tomentosicollis	M. sjostedti
Normalization	Normalized	Normalized	Normalized	Normalized
Total number of raw reads	319,126	176,262	320,722	227,882
Mean raw read lengths (bp)	382.7	402.1	389.6	391.5
Total number of processed reads after trimming	304,110	166,565	306,666	211,626
Mean trimmed read length (bp)	315.5	356.5	327.1	340.9
Final processed number of assembled contigs	11,687	7,647	10,652	7,348
Mean length of assembled contig (bp)	688.1	669.8	685.8	683.7
Total number of singletons	219	211	180	115
Mean ORF length (bp)	498.5	514.3	524.5	508.8
Total number of contigs with Blastx hits	6,430	6,113	6,839	4,292

APPENDIX A

Characteristics of the M. vitrata individuals in the three West African countries

Population	Locus	N	Na	Ho	He	\boldsymbol{F}	Probability
Niger	$\begin{array}{\|l\|} \hline 444 \\ 32008 \\ 3393 \\ \text { 7_02K06 } \\ \text { CO241 } \\ \text { CO325 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 72 \\ 72 \\ 58 \\ 66 \\ 72 \\ 72 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 2.0 \\ 8.0 \\ 1.0 \\ 4.0 \\ 7.0 \\ 3.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \\ & 0.0 \\ & 0.0 \\ & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \\ & 0.0 \\ & 0.2 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.0 \\ -0.0 \\ \text { \#N/A } \\ 0.9 \\ -0.2 \\ 0.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \mathrm{~ns} \\ 0.1 \mathrm{~ns} \\ \\ 0.0^{* * *} \\ 0.0 * * * \\ 0.1 \mathrm{~ns} \\ \hline \end{array}$
Nigeria	$\begin{array}{\|l\|} \hline 444 \\ 32008 \\ 3393 \\ \text { 7_02K06 } \\ \text { CO241 } \\ \text { CO325 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 52 \\ 51 \\ 41 \\ 52 \\ 53 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \\ & 3.0 \\ & 5.0 \\ & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.2 \\ & 0.5 \\ & 0.0 \\ & 0.1 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.3 \\ 0.5 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.3 \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ -0.0 \\ 1.0 \\ 0.6 \\ 0.0 \\ -0.0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.0 * * \\ 0.0^{* * *} \\ 0.0^{* * *} \\ 0.0^{* * *} \\ 0.0^{* *} \\ 0.1 \mathrm{~ns} \\ \hline \end{array}$
Fada	$\begin{array}{\|l\|} \hline 444 \\ 32008 \\ 3393 \\ \text { 7_02K06 } \\ \text { CO241 } \\ \text { CO325 } \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 39 \\ & 26 \\ & 39 \\ & 40 \end{aligned}$ 40	$\begin{aligned} & \hline 4.0 \\ & 4.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \\ & 0.0 \\ & 0.1 \\ & 0.3 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.6 \\ & 0.1 \\ & 0.4 \\ & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline-0.0 \\ & 0.1 \\ & 1.0 \\ & 0.8 \\ & -0.1 \\ & -0.6 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \mathrm{~ns} \\ 0.0^{* *} \\ 0.0^{* * *} \\ 0.0^{* * *} \\ 0.1 \mathrm{~ns} \\ 0.0^{* * *} \\ \hline \end{array}$
Farakoba	$\begin{array}{\|l\|} \hline 444 \\ 32008 \\ 3393 \\ \text { 7_02K06 } \\ \text { CO241 } \\ \text { CO325 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 86 \\ 70 \\ 64 \\ 86 \\ 86 \\ 86 \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 5.0 \\ & 2.0 \\ & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.4 \\ & 0.0 \\ & 0.2 \\ & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \\ & 0.0 \\ & 0.4 \\ & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline-0.0 \\ & 0.3 \\ & 1.0 \\ & 0.6 \\ & -0.1 \\ & -0.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \mathrm{~ns} \\ 0.0^{* * *} \\ 0.0^{* * *} \\ 0.0^{* * *} \\ 0.1 \mathrm{~ns} \\ 0.1 \mathrm{~ns} \\ \hline \end{array}$
Kamboinse	$\begin{array}{\|l\|} \hline 444 \\ 32008 \\ 3393 \\ \text { 7_02K06 } \\ \text { CO241 } \\ \text { CO325 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 49 \\ 41 \\ 31 \\ 49 \\ 44 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 2.0 \\ & 3.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.4 \\ & 0.0 \\ & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \\ & 0.0 \\ & 0.5 \\ & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline-0.0 \\ & 0.2 \\ & -0.0 \\ & 0.8 \\ & -0.1 \\ & 0.3 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \mathrm{~ns} \\ 0.0^{* *} \\ 0.1 \mathrm{~ns} \\ 0.0^{* *} * \\ 0.0^{* *} \\ 0.0^{* *} \\ \hline \end{array}$

Sample size (N), number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity $(\mathrm{He}), F_{\text {IS }}$ per sample and loci (after Bonferroni adjusted threshold with corresponding P-values from ≤ 0.005 to 0.05 and the probability ($P<0.001^{* * *}, P<0.01-* *$ and $P<0.05-^{*}$).

APPENDIX B
Characteristics of the M. vitrata individuals

Population	Locus	Na	Ne	Ho	He	$F_{\text {IS }}$	Probability	Significance
Oueme-Plateau (V. unguiculata)	$\mathrm{C} 0241$	5	1.16	0.10	0.14	0.25	0.02	*
	7_02K06	2	1.93	0.33	0.48	0.32	0.02	*
	01_B12	2	1.35	0.22	0.26	0.13	0.35	Ns
	32008	6	2.20	0.69	0.54	-0.27	0.31	Ns
	C 0444	2	1.08	0.08	0.08	-0.04	0.77	Ns
Zou-Collines (V. unguiculata)	C0241	5	1.29	0.16	0.22	0.27	0.20	Ns
	7_02K06	2	1.15	0.14	0.13	-0.08	0.59	Ns
	01_B12	2	1.52	0.44	0.34	-0.28	0.05	*
	32008	5	3.00	0.80	0.67	-0.19	0.43	Ns
	C0444	2	1.08	0.08	0.08	-0.04	0.77	Ns
Mono-Couffo (V. unguiculata)	C0241	3	1.09	0.08	0.08	-0.03	0.99	Ns
	7_02K06	2	1.51	0.10	0.34	0.70	0.00	***
	01_B12	2	1.56	0.43	0.36	-0.19	0.18	Ns
	32008	6	2.66	0.65	0.62	-0.05	0.00	***
	C 0444	2	1.14	0.13	0.12	-0.07	0.64	Ns
Oueme-Plateau (L. sericeus)	C0241	4	1.15	0.09	0.13	0.30	0.00	***
	7_02K06	2	1.02	0.02	0.02	$\text { - } 0.01$	0.94	Ns
	01_B12	2	1.97	0.37	0.49	0.25	0.14	Ns
	32008	3	2.37	0.75	0.58	-0.30	0.01	**
	C0444	2	1.02	0.02	0.02	-0.01	0.94	Ns

Number of alleles ($N \mathrm{a}$), number of effective alleles $(N e)$, observed heterozygosity $\left(H_{0}\right)$, expected heterozygosity $\left(H_{\mathrm{E}}\right)$, fixation index ($F_{\text {IS }}$), and probability per sample site.

APPENDIX B. (cont.)

Zou-Collines (L. sericeus)	$\mathrm{C} 0241$	1	Monomorphic					
	7_02K06	2	1.02	0.02	0.02	-0.01	0.94	Ns
	01_B12	2	2.00	0.40	0.50	0.21	0.17	Ns
	32008	4	2.25	0.89	0.56	-0.60	0.00	***
	C0444	2	1.09	0.09	0.08	-0.05	0.76	Ns
Oueme-Plateau (P.phaseoloides)	$\mathrm{C} 0241$	4	1.09	0.08	0.08	-0.03	1.00	Ns
	7_02K06	1	Monomorphic					
	01_B12	2	1.16	0.11	0.14	0.23	0.12	Ns
	32008	5	2.82	0.71	0.65	-0.11	0.00	***
	C0444	2	1.13	0.13	0.12	-0.07	0.64	Ns
Zou-Collines (P.phaseoloides)	C0241	2	1.08	0.08	0.08	-0.04	0.77	Ns
	7_02K06	2	1.11	0.02	0.10	0.79	0.00	***
	01_B12	2	1.30	0.18	0.23	0.23	0.12	Ns
	32008	4	2.45	0.75	0.59	-0.27	0.31	Ns
	C 0444	2	1.02	0.02	0.02	-0.01	0.94	Ns
Mono-Couffo (P.phaseoloides)	$\mathrm{C0241}$	3	1.04	0.04	0.04	-0.02	1.00	Ns
	7_02K06	2	1.34	0.13	0.25	0.50	0.00	***
	01_B12	2	1.26	0.19	0.21	0.07	0.61	Ns
	32008	4	2.17	0.77	0.54	-0.43	0.03	*
	C 0444	2	1.09	0.04	0.08	0.48	0.00	***
Mono-Couffo (T. candida)		2						Ns
	7_02K06	2	1.75	0.21	0.43	0.52	0.00	***
	01_B12	2	1.27	0.18	0.22	0.19	0.16	Ns
	32008	4	2.30	0.67	0.57	-0.18	0.00	***

APPENDIX B. (cont.)

	C0444	2	1.02	0.02	0.02	-0.01	0.95	Ns
Zou-Collines (T. candida)	C0241	4	1.19	0.10	0.16	0.41	0.00	$* * *$
	7_02K06	2	1.19	0.18	0.16	-0.10	0.49	Ns
	$\mathbf{0 1 _ B 1 2}$	2	1.49	0.29	0.33	0.12	0.42	Ns
	$\mathbf{3 2 0 0 8}$	5	2.84	0.79	0.65	-0.22	0.00	$* *$
	$\mathbf{C 0 4 4 4}$	2	1.14	0.13	0.13	-0.07	0.60	Ns
Oueme-Plateau (T. candida)	$\mathbf{C 0 2 4 1}$	2	1.04	0.04	0.04	-0.02	0.89	Ns
	7_02K06	2	1.10	0.02	0.09	0.79	0.00	$* * *$
	$\mathbf{0 1 _ B 1 2}$	2	1.60	0.29	0.38	0.22	0.12	Ns
	$\mathbf{3 2 0 0 8}$	4	2.73	0.82	0.63	-0.29	0.02	$* *$
	$\mathbf{C 0 4 4 4}$	2	1.02	0.02	0.02	-0.01	0.94	Ns

APPENDIX C

Information on the insect mitogenomes included in the phylogenetic analysis

Species	Family	Length (bp)	Accession Number	Reference
Antheraea pernyi	Saturniidae	15566	AY242996	Liu et al. 2008
Antheraea yamamai	Saturniidae	15338	EU726630	Kim et al. 2009
Eriogyna pyretorum	Saturniidae	15327	FJ685653	Jiang et al. 2009
Saturnia boisduvalii	Saturniidae	15360	EF622227	Hong et al. 2008
Bombyx mori strain Xiafang	Bombycidae	15664	AY048187	Lu et al. 2002
Bombyx mandarina	Bombycidae	15928	AB070263	Yukuhiro et al. 2002
Manduca sexta	Sphingidae	15516	EU286785	Cameron and Whiting 2008
Phthonandria atrilineata	Geometridae	15499	EU569764	Yang et al. 2009
Helicoverpa armigera	Noctuidae	15347	GU188273	Yin et al. 2010
Sesamia inferens	Noctuidae	15413	JN039362	Unpublished
Lymantria dispar	Erebidae	15569	FJ617240	Unpublished
Hyphantria cunea	Arctiidae	15481	GU592049	Liao et al. 2010
Acraea issoria	Nymphalidae	15245	GQ376195	Hu et al. 2010
Apatura metis	Nymphalidae	15236	JF801742	Zhang et al. 2012
Calinaga davidis	Nymphalidae	15267	HQ658143	Unpublished
Hipparchia autonoe	Nymphalidae	15489	GQ868707	Kim et al. 2006
Sasakia charonda	Nymphalidae	15244	AP011824	Unpublished
Sasakia charonda kuriyamaensis	Nymphalidae	15222	AP011825	Unpublished
Coreana raphaelis	Lycaenidae	15314	DQ102703	Kim et al. 2006
Papilio maraho	Papilionidae	16094	FJ810212	Unpublished
Teinopalpus aureus	Papilionidae	15242	HM563681	Unpublished

APPENDIX C. (cont.)

Troides aeacus	Papilionidae	15263	EU625344	Unpublished
Parnassius bremeri	Papilionidae	15389	FJ871125	Kim et al. 2009
Adoxophyes honmai	Tortricidae	15680	DQ073916	Lee et al. 2006
Grapholita molesta	Tortricidae	15717	HQ392511	Buckley et al. 2000
Spilonota lechriaspis	Tortricidae	15368	HM204705	Zhao et al. 2011
Chilo suppressalis	Crambidae	15395	JF339041	Chat et al. 2012
Cnaphalocrocis medinalis	Crambidae	15388	JN246082	Chai et al. 2012
Diatraea saccharalis	Crambidae	15490	FJ240227	Li et al. 2011
Maruca vitrata (Old World)	Crambidae	14054	HM751150	Margam et al. 2011
Ostrinia furnacalis	Crambidae	14536	AF467260	Coates et al. 2005
Ostrinia nubilalis	Crambidae	14535	AF442957	Coates et al. 2005
Maruca vitrata (New World)	Crambidae	15385	KJ466365	This study
Drosophila melanogaster	Drosophilidae	19517	DMU37541	Lewis et al. 1995

APPENDIX D

Tandem repeats predicted in the mitogenome of M. vitrata (New World)

Position	Length	Repeats	Sequence
22	2	9	TTTTTTTTTTTTTTTTTT
40	4	2	ATATATAT
62	3	2	ATTATT
81	4	2	TTTCTTTC
92	3	2	TTCTTC
141	3	2	TAATAA
152	4	2	TAAATAAA
161	4	2	AATTAATT
170	2	3	ATATAT
181	4	2	AATTAATT
219	4	4	AATTAATTAATTAATT
254	3	2	TAATAA
272	2	9	ATATATATATATATATAT
311	2	3	TTTTTT
319	4	2	ATAAATAA
328	2	3	AAAAAA

APPENDIX E

Multiple sequence alignment of mitogenome sequences from M. vitrata (Old World) (MvOW), and M. vitrata (New World) (MvNW)

MvNW		TTAAAAATAAGCTAAATTAAGCTTTTGGGTTCATACCTCAAATATAAAGG	50
MvOW	1		0
MvNW	51	AATAACCTTTTTTTTAAAAATAAAGTGCCTGATTAAAGGATTATTCTGAT	100
MvOW	1		0
MvNW	101	AGGATAAATTAAGTAGTTTTTCTACCTTTATTATATTTTATAGAATTAAA	150
MvOW	1		0
MvNW	151	CTATATCTAATAGTATCAAAAACTATTGTGCATCTTACACTAAAATATAA	200
MvOW	1		0
MvNW	201	TTATAAATTTTTATTTATAAAAAGAATTCTTTTATTTTAAATTTTTTTC	250
MvOW	1		0
MvNW		AATTTTAATTCTAATAAAATATTTTTCTTATTTATTATTTTTTTCAGAAC 	300
MvOW	1	---TTAAATTCTAATAAAATATTTTTCTTATTTATTATTTTTTTCAGAAC	47
MvNW	301	ATTAATCTCTATTTCTTCTAATTCTTGATTTGGTTGCTGAATTGGATTAG 	350
Mvow	48	ATTAATCTCTATTTCTTCTAATTCTTGATTTGGTTGCTGAATTGGATTAG	97
MvNW		AAATTAATTTATTAAGTTTTATCCCCCTAATTAATAATTCTAATAATATT 	400
MvOW	98	AAATTAATTTATTAAGTTTTATCCCCCTAATTAATAATTCTAATAATATT	147

MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW

MvOW
MvNW

MvOW

MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

401 TTATCTACAGAAGCCTCATTAAAATATTTTCTAGTACAATCAATTGCTTC

148 TTATCTACAGAAGCCTCATTAAAATATTTTCTAGTACAATCAATTGCTTC
451 TATTAATCTATTATTTTGTATTATTTTTAAAATAATCTTATTAAAAAATT

198 TATTAATCTATTATTTTGTATTATTTTTAAAATAATCTTATTAAAAAATT
501 TTGAAATAAATAATATTTTATCAATCTTAATTAATTCATCACTATTAATA

248 TTGAAATAAATAATATTTTATCAATCTTAATTAATTCATCACTATTAATA
551 AAAATGGGATCAACCCCTTTTCACTTTTGATTCCCTAATATTGTAGAAGG

298 AAAATGGGATCAACCCCTTTTCACTTTTGATTCCCTAATATTGTAGAAGG
601 ATtATCCTGATTTAATAATTTTATTTTAATAACTTGACAAAAAATTACCC

348 ATTATCCTGATTTAATAATTTTATTTTAATAACTTGACAAAAAATTACCC
651 CCATAATTTTATTATCATATTATTTTAATAAAAATTTTTTAATTATTATT

398 CCATAATTTTATTATCATATTATTTTAATAAAAATTTTTTAATTATTATT
701 ATTATTATAAATTCTATTATTGGTGCTATTGGAGGATTAAATCAAACTTC

448 ATTATTATAAATTCTATTATTGGTGCTATTGGAGGATTAAATCAAACTTC
751 TCTACGAAAATTAATGGCTTTTTCATCAATTAATAATTTAAGATGAATAA

498 TCTACGAAAATTAATGGCTTTTTCATCAATTAATAATTTAAGATGAATAA
801 TTTCTTCTTTAATAATCAGAGAAAATTTATGAATAATATATTTTTTTTTT

548 TTTCTTCTTTAATAATCAGAGAAAATTTATGAATAATATA----TTTTTT

MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

851 TATA-GTTTTTTAATTAGAATTATATGTTTATTATTTTACTTGACTAATA

594 TATATGTTTTTTAATTAGAATTATATGTTTATTATTTTACTTGACTAATA

900 TATATTTTATTAATCAATTATTTTTTTTTAATATAAATTACATAATTAAA
 644 TATATTTTATTAATCAATTATTTTTTTTTAATATAAATTACATAATTAAA

950 TTGTCTTTATTAATTAATTTTTTATCTTTAGGGGGTTTACCTCCATTTAT

694 TTGTCTTTATTAATTAATTTTTTATCTTTAGGGGGTTTACCTCCATTTAT
1000 TGGATTCTTTCCTAAATGAATCATTATTAATTTCTTACTAAAAAATAATT 1049

744 TGGATTTTTTCCTAAGTGAATTATTATTAATTTTCTATTAAAAAATAATT

794 TTTTTTTTTTAACTTTTATTTTAATTATAATAAGATTAGTTTTATTATTT
1100 TTTTATATTCGAATTTTATATTCATCATTCATATTTAATTACTTAAAATT 1149

844 TTTTATATTCGAATTTTATATTCATCATTTATATTTAATTATTTAAAATT
1150 AAAATGAATAAAAATTTTTATTAAAAATAAAATAATATATTTTATTAATT894 AAAATGAATAAAAATTTTCATCAAAAATAAAATAATATATTTTATTAATT
1200 TACTTTCACTTATTTCTTCTATAGGCTTAATTTTAAGTAATTTTTTTTAT944 TTCTTTCACTTATTTCTTCTATAGGTTTAATTTTAAGTAATTTTTTTTAT

1250 TTA------TAAGAAGGTTTTAAGTTAATTAAAACTAATAATCTTCAAAA

994 TTATAATTTTAAGAAGGTTTTAAGTTAATTTAAACTAATAATCTTCCAAA793843893943

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

1294 TTATTTATAAAGAAACATTCTTTAAGCCTTAATAATTTTTTATACCTTAA

1044 TTACGTACAATGAAATATTCTTTAAGCCTTAATAATTTTTTATACCTTAA

1344 AATTTGCAATTTTATATCATTAATTT-GAATATAAGACCTATAATAAAAA

1094 AATTTGCAATTTTATATCTTTAATTTCGAATATAAGACGTATAACAAAAA
1393 AGAATTTTTCTTGTTAATAAATTTACAATTTATCGCTTATAACCTCAGCC

1144 AGAATTTTTGGCGTCAATAAATTTACAATTTATCGCTTATAACGTCAGCC
1443 ATTTTATTATTATAGCGAAAATGAATTTACTCAACAAATCATAAAGATAT

1194 ATTTTATTA--ATAGCGAAAATGAATTTACTCAACAAATCATAAAGATAT

1493 TGGAACATTATATTTTATTTTTGGAATTTGAGCAGGAATAGTAGGAACAT

1242 TGGTACATTATATTTTATTTTTGGAATTTGAGCAGGAATAGTAGGAACAT
1543 CTTTAAGTTTATTAATTCGAGCAGAATTAGGTAATCCAGGATCTTTAATT

1292 CTTTAAGTTTATTAATTCGAGCAGAATTAGGTAATCCTGGATCTTTAATT

1593 GGAGATGATCAAATTTATAATACTATTGTAACAGCTCACGCATTTATTAT

1342 GGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCATTTATTAT
1643 AATTTTTTTTATGGTTATACCTATTATAATTGGAGGATTTGGAAATTGAT

1392 AATTTTTTTTATAGTAATACCTATTATAATTGGAGGATTTGGAAACTGAT
1693 TAGTTCCTTTAATATTAGGAGCCCCAGATATAGCTTTTCCACGAATAAAT

1442 TAGTTCCTTTAATATTAGGAGCTCCAGATATAGCTTTCCCACGAATAAAT1193

MvNW
MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

1743	AATATAAGATTCTGAATATTACCCCCATCATTAACTTTATTAATTTCGAG	1792
1492	AATATAAGATTTTGAATATTACCCCCATCATTAACTTTATTAATTTCGAG	1541
1793	AAGAATTGTAGAAAATGGAGCAGGTACTGGATGAACAGTATACCCCCCTC 	1842
1542	AAGAATTGTAGAAAATGGAGCAGGTACTGGATGAACAGTATACCCCCCTC	1591
1843	TTTCATCTAATATTGCTCATGGAGGAAGATCAGTTGATTTAGCTATTTTT	1892
1592	TCTCATCAAATATTGCCCACGGAGGTAGATCAGTTGATTTAGCTATTTTT	1641
1893	TCTTTACATTTAGCTGGAATTTCATCAATTTTAGGGGCAATCAATTTTAT	1942
1642	TCTTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAATTAATTTTAT	1691
1943	TACTACGATTATTAATATACGAGTAAATGGATTAACTTTTGATCAAATAC	1992
1692	TACCACAATTATTAATATACGAGTAAATGGACTATCCTTTGATCAAATAC	1741
1993	CTTTATTTGTTTGATCTGTTGGAATTACAGCTCTTTTATTATTACTTTCT	2042
1742	CTCTATTTGTTTGGTCTGTTGGAATTACAGCTCTTTTACTTTTACTTTCT	1791
2043	CTACCAGTTTTAGCAGGTGCTATTACTATACTTTTAACAGACCGAAATCT	2092
1792	TTACCAGTTTTAGCAGGTGCTATTACTATACTTTTAACAGATCGAAATTT	1841
2093	TAATACTTCTTTTTTTGATCCAGCTGGAGGAGGAGATCCAATTTTATATC	2142
1842	AAATACTTCTTTTTTTGACCCAGCTGGAGGAGGAGATCCAATTTTATATC	1891
2143	AACATTTATTTTGATTTTTTGGTCACCCTGAAGTTTATATTTTAATTCTT	2192
1892	AACATTTATTTTGATTTTTTGGACATCCAGAAGTTTACATTTTAATTTTA	194

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

2193 CCTGGATTTGGAATAATTTCCCATATTATTTCACAAGAAAGTGGAAAAAA
||||||||||.|||||||||||||||||.|||||||.||.|||||
1942 CCTGGATTTGGTATAATTTCCCATATTATTTCCCAAGAAAGAGGTAAAAA

2243 AGAAACATTTGGATCTTTAGGAATAATTTATGCTATAATAGCAATTGGAT

1992 GGAAACATTTGGATCTTTAGGGATAATTTATGCTATAATAGCAATTGGAT
2293 TATTAGGATTTGTAGTATGAGCTCATCATATATTTACAGTAGGTATAGAT

2042 TATTAGGATTTGTAGTATGAGCTCATCATATATTTACAGTAGGTATAGAT

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MyNW

MvOW

2643 TTATTTACTGGTCTTACTCTTAACCCTTTTATATTAAAGATTCAATTTTT

2392 TTATTTACAGGACTTACTCTTAATCCTTTCATACTAAAAATTCAATTCTT
2693 TACTATATTTATTGGAGTAAATTTAACATTTTTCCCACAACATTTCTTAG

2442 TACTATATTTATTGGAGTAAATTTAACATTCTTTCCTCAACACTTCTTAG
2743 GATTAGCAGGAATACCCCGACGATATTCTGATTATCCTGATGTTTATACT

2492 GATTAGCTGGAATACCTCGACGATATTCAGATTATCCTGATGTCTATACT
2793 TCATGAAATATTGCTTCTTCTTTAGGATCTTATATCTCTCTATTAGCAGT

2542 TCATGAAATATTGCTTCTTCATTAGGATCTTATATTTCTTTATTAGCTGT
2843 ATTATTATTTTTAATTATTATTTGAGAATCTATAATTAGTCAACGAATAA

2592 GATATTATTTCTAATTATTATTTGAGAATCAATAATTAGTCAACGAATAA
2893 TTTTATTTTCATTAAATTTATCATCTTCAATTGAATGATATCAAAATTTA |||||||||||||||||||||||||.||||||||||||||||||
2642 TTTTATTTTCATTAAATTTATCATCTTCTATTGAATGATATCAAAATTTA

2943 CCACCTGCAGAACATTCATATAATGAACTTCCAATTTTAAGAAATTTCTA

2692 CCACCTGCAGAACATTCATATAATGAACTTCCAATTTTAAGAAATTTCTA
2993 ATATGGCAGATTATATGTAATGGATTTAAACCCCATTTATAAAGGATTAT
 2742 ATATGGCAGATTATATGTAATGGATTTAAACCCCATTTATAAAGGATTAT

3043 CCTTTTTTTAGAAATGGCAACATGATCTAATTTTAACTTACAAAACGGAG

2792 CCTTTTTTTAGAAATGGCAACATGATCTAATTTTAACTTACAAAATGGAG

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MyNW

MvOW

3093 CATCTCCACTTATAGAACAAATTATTTTTTTCCATGATCATACTTTAATT

2842 CATCTCCACTTATAGAACAAATTATTTTTTTCCATGATCATACTTTAATT
3143 ATTTTAATTATAACTACTATTTTAGTAGGATATTTAATATTAAGTTTATT

2892 ATTTTAATTATAATTACTGTATTAGTAGGATATTTAATATTAAGATTATT
3193 TTTTAATAAATATATTAATCGATTTTTATTAGAAGGTCAAATAATTGAGT

2942 TTTTAATAAATATATTAATCGATTTTTATTAGAAGGTCAAATAATTGAAT
3243 TAATTTGAACAATTTTACCAGCTATTACTTTAATTTTTATTGCTTTACCT

2992 TAATTTGAACTATTTTACCAGCTATTACTTTAATTTTTATTGCTCTACCC
3293 TCATTACGTTTACTTTATTTATTAGATGAACTTAATAATCCATTAATTAC

3042 TCTTTACGTTTACTTTATTTATTAGATGAACTTAATAACCCATTAATTAC
3343 TTTAAAATCTATTGGCCATCAATGATATTGAAGATACGAATATTCAGATT

3092 CTTAAGATCTATTGGACATCAATGATATTGAAGATATGAGTATTCAGATT

3393 TTAATAATATTGAATTTGATTCATATATAACCCCTATGAATGAAATAAAT

3142 TTAACAATATTGAATTTGATTCATATATAACCCCTGTAAATGAAATGAAT
3443 AATAATAATTTTCGATTATTAGATGTTGATAATCGAATTGTTTTACCGAT

3192 AACAATAGTTTCCGATTATTAGATGTTGATAATCGAATTGTTTTACCAAT
3493 GGGGAATCAAATTCGAATTATAGTAACTGCTACAGATGTTATTCACTCAT

3242 GGGTAATCAAATTCGAATTATAGTAACTGCTACAGATGTTATCCATTCAT

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

3543 GAACTATCCCATCTTTAGGTGTAAAAGTAGATGCTAATCCAGGACGATTA

3292 GAACCATCCCATCCTTAGGAGTAAAAGTAGATGCTAATCCAGGACGATTA
3593 AATCAAACAAATTTCTTTATTAATCGTCCTGGAATTTTTTATGGACAATG

3342 AATCAAACAAATTTCTTTATTAATCGACCTGGAATTTTTTATGGACAATG
3643 TTCTGAAATTTGTGGAGCAAACCACAGTTTTATACCTATTGTTATTGAAA

3392 TTCTGAAATTTGTGGTGCAAATCATAGTTTTATACCTATTGTTATTGAAA
3693 GAATTTCAATTAAAAATTTTATTAATTGAATTAATAATTATTCATCATTA

3442 GAATCTCAATTAAAAATTTTATTAATTGAATTAATAATTATTCATCATTA

3743 GATGACTGAAAGCAAGTACTGGTCTCTTAAACCATTTTATAGTAAATTAG

3492 GATGACTGAAAGCAAGTACTGGTCTCTTAAACCATTTTATAGTAAATTAG
3793 CATTTACTTCTAATGATTAAAGAATTAGTTAAACCTATAACATAAATATG ||||||||||||||.||||||||||||||..|||||||||.|||
3542 CATTTACTTCTAATGAATAAAGAATTAGTTAAATTTATAACATAAGTATG

3843 TCAAATTTAAATTATTATTTCAT-ATAATATTCTTTTATCCCTCAAATAA

3592 TCAAACTTAAATTATTA--TAATAATAATATTCTTTTATTCCTCAAATAA
3892 TACCAATTAATTGAATTTTTCTTTCTTTTTTTTTGTTATTATTTTTATT
 3640 TACCAATTAATTGAATTTTTTCTTTCTTTTTTTTTGTTATTGTTTTTATT

3942 ATTTTTAATATCATAAATTATTTTATTTTTATTAATAAAAATAATAGAAA

3690 ATTTTTAATATTATAAATTATTATATTTTTATTAATAAAAATAATAAAAA

3592

MvNW

MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

3992 TAATATTTTTTTTCAAAAAAAAATAAAAACCTATTTTGAAAATGATAAC

3740 TAATATCTTTTTTTTAAAAAAAAATCAAAACTTATTTTGAAAATGATAAC
4042 TAATCTTTTTTCAATTTTTGACCCATCTACTAATTTATTATATTTACCTT

3790 TAATCTTTTTTCAATTTTTGACCCATCTACTAATTTATTATACTTACCTC
4092 TAAATTGAATTAGAACTTTATTAGGAATTATATTTATTCCTTATTCATTT

3840 TAAATTGAATTAGAACTTTATTAGGGATCATATTTATCCCTTATTCATTT
4142 TGATTAATCCCTAATCGATACTACTTATTTTGAAATTTTATTTTAAATAA

3890 TGATTAATTCCTAATCGATATTATTTATTTTGAAATTTCATTTTAAATAA
4192 ACTCCATAAAGAATTTAAAACTTTATTAGGAAATAATTCAAATGGATCGA
 3940 ACTTCATAAAGAATTTAAAACTTTATTAGGAAATAATTCAAATGGATCAA

4242 CTTTTATTTTTATTTCGATATTTACTTTTGTTCTATTTAATAATTTTTTA

3990 CTTTTATTTTTATTTCAATATTTACTTTTGTATTATTTAATAATTTTTTA
4292 GGATTATTCCCATATATTTTTACTAGAACAAGCCACTTAACCTTATCACT

4040 GGATTATTTCCTTATATTTTTACAAGAACAAGTCATTTAACTTTATCATT
4342 ATCAATTTCACTACCATTGTGATTAAGATTTATATTTTATGGATGAATTA
 4090 ATCAATTTCATTACCATTATGATTAAGATTTATATTTTATGGATGAATTA

4392 ATAATACTCAACATATATTTATTCACATAATTCCACAAGGTACTCCTGGT

4140 ATAATACTCAACATATATTTATTCATATAATTCCTCAAGGAACTCCAGGT

4041
3789
4091

MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW

MvOW

MvNW
Mvow

MvNW

MvOW

4442 ATtTTAATACCTTTTATAGTTTTAATTGAAACAATCAGAAATATTATTCG

4190 ATTTTAATACCTTTTATAGTTTTAATTGAAACAATTAGAAATATTATTCG
4492 ACCAGGAACATTAGCTGTTCGACTTACAGCCAATATAATTGCAGGACATT

4240 ACCAGGGACACTAGCTGTTCGACTTACAGCTAATATAATTGCAGGACATT
4542 TATTAATAACTTTATTAAGAGGGACAGGACCTAACTTACCTATTTATTTT

4290 TATTAATAACTTTACTAAGAGGAACAGGACCTAATTTACCTGTATATTTT
4592 ATTATTGTATTAATTATTATTCAAATTTTATTATTAGTTTTAGAATCAGC

4340 ATTGTAGTATTAGTTATTATTCAAATTTTACTACTAGTTTTAGAATCAGC
4642 AgTTGCGGTTATTCAATCTTATGTTATTGCTATTTTAAGACATTATATT

4390 AGTTGCGGTTATTCAATCTTATGTTATTGCTATTTTAAGAACATTATATT
4692 CTAGAGAAGTAAATTAATAT-CTAATGAAAAATAATTTTAATCACCCCTA

4440 CTAGAGAAGTAAATTAATCTACTAATGAAAAATAATTTTAATCACCCCTA
4741 TCATTTAGTTGATTATAGTCCATGACCCTTAACTGGTGCTGTTGGAGTTT

4490 TCACTTAGTTGATTATAGTCCATGACCTTTAACAGGAGCTATTGGAGTTT
4791 TAACCTTAGTAACTGGAATAGTAAAATGATTCCATAATTTTAATATAAAT
 4540 TAACTTTAGTAACTGGAATAGTAAAATGATTCCATAATTTTAATATAAAT

4841 TTATTAATTCTAGGATATTTTATTGTTATTTTAACTATATATCAATGATG

4590 TTATTAATTCTAGGATATTTTATTGTCATCTTAACTATATATCAATGATG

4491

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW

MvNW
MvOW

MvNW

MvOW

4891 ACGAGATATTTGCCGAGAAGGAACTCTTCAAGGAAAACATACAATTTTAG

4640 ACGAGATATTTGTCGAGAAGGAACTCTTCAAGGTAAACATACGATTTTAG

4941 TAACTAAAGGATTACGATGAGGAATAATTTTATTTATTATTTCAGAAATT

4690 TAACTAAAGGATTACGATGAGGAATAATTTTATTTATTATTTCAGAAGTT
4991 TTCTTTTTTGTATCTTTTTTTTGAGCTTTTTTTCATAGAAGTTTATCACC ||.|||||.||||||||||||||||||||||||||||||||||||||
4740 TTTTTTTTCGTATCTTTTTTTTGAGCTTTTTTTCATAGAAGTTTATCACC

5041 AAATATTGAAATTGGTGCTTTATGACCCCCTATAAGTATCACCCCATTTA

4790 AAATATTGAAATTGGTGCTTTATGACCTCCAATAAGTATTACTCCATTTA

5091 ATCCTTTCCAAATTCCTCTCTTAAATACTATTATTTTAATTACTTCAGGA
|||||||.||||||||||.||||||||||||||||||||| ||.|||
4840 ATCCTTTTCAAATTCCTCTTTTAAATACTATTATTTTAATTACATCCGGA
5141 ATTACAGTTACATGAGCTCATCATGCAATTATAGAAAATAATCATTCACA

4890 ATTACAGTTACATGAGCACATCATGCCATTATAGAAAATAACCATTCACA

5191 AATAACCCAAGGACTTTTTTTTACTATTATTTTAGGAATTTATTTTACAA

4940 AATAACTCAAGGACTCTTTTTTACTATTGTTTTAGGAATTTATTTTACTA

5241 TTTTACAAGCATATGAATATATTGAAGCACCTTTTTCTATTGCTGATAGT ||||||||||.||||||||||||||||||||||.||||||.|||||. 4990 TTTTACAAGCTTATGAATATATTGAAGCACCTTTTACTATTGCAGATAGA

5291 ATTTACGGATCAACTTTTTTTATAGCTACTGGATTTCATGGATTACATGT

5040 ATTTATGGATCAACTTTTTTTATAGCTACTGGATTCCATGGATTACATGT

4940

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW

MvNW
MvOW

MvNW

MvOW

5341 AATAATCGGAACATTATTTTTATTAATTTGTTTAATTCGGCATATTTATA

5090 AATAATTGGAACTTTATTTTTATTAATTTGCTTAATTCGACATATTTATA

5391 ATCATTTTTCTAATAATCATCATTTTGGCTTTGAAGCTGCTGCTTGATAT |||||||||||||||.||||||||||.||||||||||||.|||||
5140 ATCATTTTTCTAATAACCATCATTTTGGATTTGAAGCTGCTGCCTGATAT
5441 TGACATTTCGTAGATGTAGTTTGATTATTCCTTTATATTTCTATTTATTG

5190 TGACATTTCGTAGACGTAGTTTGATTATTCCTTTATATTTCTATTTATTG

5491 ATGAGGAAATTAATTATTTATATAATATATTTAGTATATTTGACTTCCAA
$||\mid$
5240 ATGAGGAAATTAATTATTTATATAATATATTTAGTATATTTGACTTCCAA

5541 TCAAAAAGTTTAATTTTTTTTTAATATAAATAATTTTATTAATTTTATAT
|||||||||||| ||.||||||||||||||||||||||||||.|||
5290 TCAAAAAGTTTAA-TTATTTTTAATATAAATAATTTTATTAATTTTTTAT
5591 ATGACCTTAATTTTAATTTTAATTTCTAATATTATAATATTTTTATCAAT

5339 ATAACTTTAATTTTAATTTTAATTTCTAATATTATAATATTTTTATCAAT

5641 TTTACTATCAAAAAAATCTTTTTCTGATCGAGAAAAATGTTCACCTTTCG
 5389 TTTATTATCAAAAAAATCTTTTTCTGACCGTGAAAAATGTTCACCTTTTG

5691 AATGTGGATTTGACCCAAAATCTTCTGCTCGAATCCCCTTTTCAATACAT
 5439 AATGTGGATTTGACCCTAAATCTTCTGCTCGAATTCCTTTCTCTATACAT

5741 TTTTTTTTAATTACTGTAATTTTTTTGATTTTTGATGTTGAAATTGCATT
 5489 TTTTTTTTAATTACCGTAATTTTTTTAATTTTTGATGTAGAAATTGCATT

MvNW

MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

5791 AATCTTCCCAATTATTAATTTATTTAAAATTACTAATTTTATTATTTGAT

$$
5539 \text { AATTTTTCCAATTATTAATTTATTTAAAATTACTAATTTTATTATTTGAT }
$$

5841 CTAAAATTAGTTTTTTTTTTATTATTATTTTACTTTTAGGTTTATTTCAT
 5589 CTAAAATTAGTTTTTTTTTTATTATTATTTTACTTTTAGGATTATTTCAC

5891 GAATGAAATCAAAATATACTTAATTGAATTAATT---AGGATTATAGTTT

5639 GAATGAAATCAAAACATACTTAATTGAATTAATTAAAAGGATTATAGTTT
5938 AAAATAAAACATTTGATTTGCATTCAAAAAATATTGATTTATCAATTTAT

5689 -AAATAAAACTTTTGATTTGCATTCAAAAAATATTGATTTATCAATTTAT
5988 CTTAAGTAAGAAGCAATTATGCATTTAATTTCGACTTAAAAGACAGAGTA
 5738 CTTAAGTAAGAAGCAATTATGCATTTAATTTCGACTTAAAAGACAGAGTA

6038 CAAGACTCCTTACTTATTAATTGAAACCAAAAAGAGGTATATCACTGTTA

5788 TTTAACTCCTTACTTATTAATTGAAACCAAAAAGAGGTATATCACTGTTA
6088 ATGATAACATTGAATTTAAAATTCCAATTAAATTAGAAATATAAAGTTTA

5838 ATGATAACATTGAATTTAAAATTCCAATTAAATTAGAAATATAAAGTTTA
6138 AAATTAAGCTGCTAACTTAATTTTTAGTGGTTTAATTCCATTAATATTTC
 5888 AAATTAAGCTGCTAACTTAATTTTTAGTGGTTTAATTCCATTAATATTTC

6188 TTATTTATATAGTTTATTTAAAACATTACATTTTCATTGTAAAAATAAAA

5938 TTATTTATATAGTTTA-TTAAAACATTACATTTTCATTGTAAAAATAAAA

5840
5588
5890

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

6238 AAATT-TTTTTTATAAATATATTTAAAGATTAAAATAATCTCCCTAATAT

5987 AAATTATTTTTTATAAATATATTTAAAGATTAAAATAATCTCCCTAATAT

6287 CTTCAATATTATACTCTAAATTATAAGCTATTTAAATAAAATATAATTAT

6037 CTTCAATATTATACTCTAAATTATAAGCTATTTAAATAAAATATAATTAT
6337 TATTATAAAATAAATTATTATTCATAAAATAAAACTAAATAAATAAATTT
 6087 TATTATAAAATAAATTATTATTCATAAAATAAAACTAAATAAATAAATTT

6387 TATAATTAGTTAATTGAAATAAATTATATAAAACTGAATACTTTTTTAAA

6137 TATAATTAGTCAATTGAAATAAATTATATAAAACTGAATACTTTTTTAAA

6437 ATTATATAAATTCCATAACCGCTATAAACTTCTCTTCAACCTATATCAAT

6187 ATTATATAAATTCCATAACCGCTATAAACTTCTCTTCAACCTATATCAAT
6487 ATTTTTCAATAAATCATAACCAAAATTTAAAAAATGATAATTTAAACCAT

6237 ATTTTTCAATAAATCATAACCAAAATTTAAAAAATGATAATTTAAACCAT

6537 AAGTAGAAAGTCTAGGTATAAATCATATTATTCTTAAAAAATTTCTAACT
 6287 AAGTAGAAAGTCTAGGTATAAATCATATTATTCTTAAAAAACTTCTAATT

6587 TCATAACTAATAAGAAACTTATTAATTGAATAAATATTTATATTTCTAAC

6337 TCATAACTAATAATAAATTTATTTATTGAATAAATATTTATATTTCTAAT
6637 TAAATAACCTAATAGTAAACCTAAAATTCTAACATAAATTACTATTATTT

6387 TAAGTAACCTAATAATAAACCTAAAATACTAACATAAATTACTATTATCT

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

6687 TTAAATTAAAAGGCAAATAAATTATATAAGGATAAGGAAAAATTATTCAC $|\cdot| \cdot||||||\cdot||||||||||||||||||||||||||\mid \cdot$
6437 TCATATTAAAAGGTAAATAAATTATATAAGGATAAGGAAAAATTATTCAT

6737 ATTAATATACTTCCTCTAATAATTCTTATAAATAATAAAATAAATATACT |||||.||.||.||||||||||||||||||||||||||||||||| 6487 ATTAACATTCTACCTCTAATAATTCTTATAAATAATAAAATAAATATACT

6787 TTTTAATATAGTAAAATCTTCATCATATAAATTATAAATAGATAATAAAT || 6537 TTTTAATATAGTAAAATCTTCATCATATAAATTATAAATAGATAATAAAT

6837 TAAAATCATTTACTATTAAATATATTGTTAAACGAAATCTATAAAATATT
 6587 TAAAATCATTCACTATTAAATATATTGTTAAACGAAATCTATAAAATATA

6887 GTTAATCCTGTAGAAATATAATATAATAAAAAAATAAAAAAATTTAAATT || 6637 GTTAATCCTGTAGAAATATAATATAATAAAAAAATAAAAAAATTTAAATT

6937 TCTTATTCTAACTATTTCTAAAATTAAATCCTTAGAATAAAAACCAGCTA

6687 TCTTATTCTTACTATTTCTAAAATTAAATCCTTAGAATAAAATCCAGCTA

6987 AAAAAGGAATACCACATAAAGCTATATTAGAAATATTTATACATAAAGAA
 6737 AGAAAGGGATACCACATAAAGCTATATTAGAAATATTTATACATAAAGAA

7037 GTTAAAGGAATAAATCTACCAATTCCCCCTATAAAACGAATATCTTGAAT |||||||||||||||||||||||||.||||||||||||||||||||| 6787 GTTAAAGGAATAAATCTACCAATTCCACCTATAAAACGAATATCTTGAAT

7087 ATCTAATATTATATGAATAATAACCCCAGCACATATAAATAATAAAGCTT ||||.||||||||||||||||||| |||||||||||||||||||||| 6837 ATCTGATATTATATGAATAATAACTCCAGCACATATAAATAATAAAGCTT

6736

6486

6786

6536

6836

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

7137 TAAATATAGCATGAGTTAGTAAATGAAAAAAAGCTAAATCAGGTAATCCC

6887 TAAATATAGCATGAGTTAATAAATGAAAAAAAGCTAAATCGGGTAATCCC

7187 ATTCTTAAAATTCTTATTATTAAACCTAATTGTCTTAAAGTAGATAAAGC |||||||||||||||||||||||||||||.|||||||||||||||
6937 ATTCTTAAAATTCTTATTATTAAACCTAATTGACTTAAAGTAGATAAAGC
7237 AATAATTTTTTTTAAATCAAATTCATAATTAGCAGAAATTCCAGCTATAA |||||||||||||||||||||||||||||||||||||||.|||||| 6987 AATAATTTTTTTTAAATCAAATTCATAATTAGCAGAAATTCCTGCTATAA

7287 ATATAGTTAAACCAGATAATAATATTAAAAATTTTATAAACATTATATCA

7037 ATATAGTTAATCCAGATAATAATATTAAAAATTTTATAAATATTATATCA

7337 ACTAATAATAAATTAAAACGAATTAATAAATAAACTCCTGCTGTTACTAA ||||||||||||||||||||||||||||||||.|||||||||||||
7087 ACTAATAATAAATTAAAACGAATTAATAAATAAACACCTGCTGTTACTAA
7387 AGTAGAAGAATGCACTAAAGCAGAAACTGGAGTTGGTGCTGCTATTGCAG

7137 AGTAGAAGAATGAACTAAAGCAGATACTGGAGTTGGTGCTGCTATAGCAG

7437 CAGGTAATCAAGATCTAAAAGGAATTTGAGCACTTTTAGTTATAGCTGCT $||||||||||||||||||||||||||||||||\cdot|||||| \cdot|$. 7187 CAGGTAATCAAGATCTAAAAGGAATTTGAGCACTTTTTGTTATAGCAGCA

7487 ATAATAATTATTCTACCGACTATTATTATATAATAATCATTCTTTATAAA ||||||||||||||||.|||||||||||||||||||||.||.||||| 7237 ATAATAATTATTCTACCAACTATTATTATATAATAATCATTTTTCATAAA

7537 TTCTAAATAAAAAATATAATTTCATCTTCCATAATTTATTATTCAAGAAA

7287 TTCTAAATAAAAAATATAATTTCAACTCCCATAATTTATTATTCAAGAAA

7186

6936

7236

MvNW
MvOW

MvNW
MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MyNW

MvOW

7587 TAACTATTAAAATAAATACATCCCCAATTCGATTAGATAAAGCAGTTAAT

7337 TAACTATTAAAATAAATACATCACCAATTCGATTAGATAGGGCTGTTAAT
7637 ATCCCAGCATTATATGATTTAATATTTTGATAATAAATTACCAAACAATA

7387 ATTCCAGCATTATATGATTTAATATTTTGATAATAAATGACTAAACAATA
7687 AGATACTAAACCTAAACCATCTCAACCTAATAAAATTCTAATAATATTAG

7437 AGATACTAATCCTAATCCATCCCAACCTAATAAAATTCTAATAATATTAG

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

8037 AACAAATTGAATTTTTAAAAATAACTTAAAATGATATTTATCATATTTTC

7787 AACAAATTGAATTTTTAAAAATAACCTAAAATGATATTTATCATATATTC
7836

8087 GACACCACAAATCAATATTTTAATTTAAATTATTTAAGTTAAAATCAAAT ||
7837 GACACCACAAATCAATATTTTAATTTAAATTATTTAAGTTAAAATCAAAT

8137 TATTACATAATCAATCTTTATAACTAAAATATTTAAAGGTAATCAATGTA ||||||||||||||||||||||.|||||||||||||||||||||||
7887 TATTACATAATCAATCTTTATAATTAAAATATTTAAAGGTAATCAATGTA

8187 ATATTATTAATAAATATTCACGAGATAAGCCTGTATAAAATCTATAAATT

7937 ATATTATTAATAAATATTCACGAGATAAACCTATATAAAATCTATAAATT

8237 CCTGAATAATATTTACCATGTTGAATATAAGAATATAAATATAGTCTATA |||||||||||||||||||||||||||||||||||||||.||||||
7987 CCTGAATAATATTTACCATGTTGAATATAAGAATATAAATATAATCTATA

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW

MvOW

MvNW

MvOW

MvNW
MvOW

MvNW

MvOW

8487 TATGTAATCGTTCATAATTAATATTAGCTAAACAAAATATACCAGAAGAA

8237 TATGTAATCGTTCATAATTAATATTTGCTAAACAAAATATCCCAGAAGAA
8537 CATAATCCATGACCAATTATTAAAATATAAGAACCAATAAATCCTCAATA

8287 CATAATCCATGACCAATTATTAAAATATAAGAACCAATAAATCCTCAATA
8587 ATTTATTGTTATAATTCCACCAATAACTATTCTTATATGAGCAACCGAAG

8337 ATTTATAGTTATAATCCCCCCAATAACTATTCTTATATGAGCAACTGAAG
8637 AATAAGCAATTAATGATTTAATATCAACTTGACATAAACACTTTAATCTA

8387 AATAAGCAATTAAAGATTTAATATCAACTTGACAAAAACATTTTAATCTA

8687 ATATAAAATCCACCTACTAAACTAATAGTAATAAAAATGATATTATATTT

8437 ATATAAAAACCTCCAACTAAACTAATAGTAATAAAAATAATATTATATTT
8737 TAAATTTATATTTTGTAATATAATTATTAAACGAATTAAACCATAACCTC

8487 TAAATTTATATTTTGTAATATAATTATTAAACGAATTAGACCATACCCTC

8787 CTAATTTTAATATAATACCAGCTAAGATTATAGAACCTGAAACTGGTGCT

8537 CTAACTTTAATATAATTCCTGCTAAAATTATAGAACCTGAAACTGGAGCT

8837 TCAACATGAGCTTTAGGTAATCATAAATGAACAAAATATATTGGTATTTT ||||||||.||||||||||||||||||||||||||||||||||||| 8587 TCAACATGGGCTTTAGGTAATCATAAATGAACAAAATATATTGGTATTTT

8887 AACTAAAAAAGCTATAATTATAGAAAAATATAATAAATATAAATCAAAAT

8637 TACTAAAAAAGCTATAATTATAGAAAAATATAATAAATATAAATCAAAAT

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

8937 TAAAAATTTCATAAAATAAATTATAATATGATTTACTTCATTAAAAATA
$\|\|\|\|\|\|\cdot\|\|\|\|\|\|\|\|\|\|\|\cdot\|\|\|\|\|\|\|\|\|\|\| \mid$
8687 TAAAAAATTTTATAAAATAAATTATAATATAATTTACTTCATTAAAAATA

8987 TAAAAAATACCTAATAATAAAGGTAAAGAAACAATAAAGTATAAAATAA

8737 TAAAAAATACCTAATAACAAAGGTAAAGAAACAAATAAAGTATAAAATAA
9037 TAAATATATTCCAGCTTGAATTCGTTCAGGTTGATAACCTCAACCAATAA

8787 TAAATATATTCCAGCTTGAATCCGTTCAGGTTGATAACCTCAACCAATAA
9087 TTAATAATAATGTAGGAATTAATCTTCCTTCAAAAAATAAATAAAATATA

8837 TTAATATTAAAGTAGGAATTAATCTCCCCTCAAAAAATAAATAAAATATA

9137 AATATATTTATAACTCTAAAAGTTAAATATAATATTATTAATAGAAAAAT

8887 AATATGTTTATAACTCTAAAAGTTAAATATAATATTATTAATAAAAAAAT
9187 TAAATTAAATAAAAAAAAATTTAAATAATAATCTTCTTTATATAAATTTT

8937 TAAATTGAATAAAAAAAAATTTAAATAATAACCCTGCTTATATAAATTTT

9237 CACTAGCCATAATTATTAAAATACAAATTCAAACTCTTAATATAATTAAA
 8987 CTCTAGCTATAATTATTAAAATACAAATTCAAACTCTTAATAAAATCAAA

9287 CCATAAGATAAAATATCACATGAATATATATAACTAAAATTACTATAAGT
 9037 CCATAAGATAAAATATCACATGAATATATATATCTAAAATTACAATAAGT

9337 TTCAATACTTAATGTTAAATTTATTAATAAAAATATTATAAAAAATAAAA

9087 TTCAATTCTTAATGTTAAATTTATTAATAAAAATATTATAAAAAATAAAA

8986

8736

9036

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

9387 TTATTTGAACCATTCAATATATATTAAAATTAAAACATAAAGGAATTATA

9137 TTATTTGAACCATTCAATATATATTAAAATTAAAACATAAAGGAATTAAA
9437 AAAATTATTATAAATAAAAATTTTATCATTATAATAAATTAAAACTTTGA
 9187 AAAATTATTATAAATAAAAATTTTATCATTATAATAAATTAAAACTTTGA

9487 AAATAATCATTTCCATGAGTACGAATTATTGAAACTAAAATTGATAAACC

9237 AAATAATCATTACCATGAGTACGAATTATTGAAACTAAAATTGATAAACC
9537 TAAAGCTCCCTCACAAACTGAGAAAACTAAAAAAACTATTAATATATATA

9287 TAAAGCCCCTTCACATACGGAAAAAACTAAAAAAACTATTAATATATATA
9587 TATCATATTCAATATAATTAAATAATAAAATTATAAAAAAAAAAATTCTT

9337 TATCATATTCAATATAATTAAATAATAAAATTATAAAAAAAAAATTCTT
9637 AAAACAATAAATTCTAATCTTAATAAAACAATCAATAAATGCTTATGTTT ||||||||||.||||||||||||||||||.|||||||||||||||
9387 AAAACAATAAACTCTAATCTTAATAAAACAATTAATAAATGCTTATGTTT

9687 AGAAACAAAAATTATATTACCTAAAATAAATATAATAATAACTAAAATTC
 9437 AGAAACAAAAATTATATTTCCTAAAATAAACATAATAATAACTAAAATTC

9737 ATATATTTATAACTATCATTAGTTTTTATAGTTTAAAATAAAACATTGGT | | | | ||||||

9787 CTTGTAAATCAAAAATAAGATAAATTTTTTAAAAACATCAAAGAAAAAGA
 9497 CCTGTAAATCAAAAATAAGATAAATTTTTTAAAAACATCAAAGAAAAAGA

MvNW
MvOW

MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

9837 TTTTTCTTTATCAATAATCTCCAAAATTATTATTTTTATTAAACTATTCT

9547 TTTTTCTTTATCAATAATCTCCAAAATTATTATTTTTATTAAACTATTCT
9887 TTGAAATTATTAAAATATTCTTATCTCTATTAATTATTATATTTTCTTTT

9597 TTGAAATTATTAAAATATTCTTATCTCTATTAATTATTATATTTTCTTTT
9937 TTTATAATTTTTTTAAATCATCCTTTATCAATAGGATTAATAATTTTAAT

9647 CTAATAATTTTTCTAAATCATCCTTTATCAATAGGATTAATAATTTTAAT
9987 TCAAACTATATTAACTTGTTTAATTTCAAGAATTATAATATCAACATATT

9697 TCAAACTATATTAACTTGTTTAATTTCAAGAATTATAATATCAACATATT
10037 GATTCTCTTATATTTTATTTTTAACCTTTTTAGGAGGATTATTAGTATTA

9747 GATTCTCTTATATCTTATTTCTAACCTTTTTAGGAGGATTATTAGTATTA
10087 TTTATTTATGTATCTAGAATTGCATCAAATGAAATATTTACAATTTCATT

9797 TTTATTTATGTATCAAGAATTGCATCAAATGAAATATTTACAATTTCATT

10137 TACTATAAAAATCATAATAATAATTTGTTTTATTATTATTATTATTGTAA
 9847 TACTATAAAAATAATAATAATAATAAGAATTACTATCATTATTATTATAA

10187 GAATTATTAATATAAATAATTTAAAATGAATAAATTTTAATACAAATTTA
 9897 GAATTATTAAAATAAATAATTTAAAATGAATAAATTTTAATACAAATTTA

10237 GAAATAAATAATTTTTTTAATAAATTCATATTTTTTAATAATGAAAATAA

9947 GAAATAAATAAATTTTTTAATAAATTCATATTTTTTAATAATGAAAATAA

MvNW
MvOW

MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MyNW

MvOW

10287 AATTAATTTATCTAAATTATATAATAACCAAACATTTTTATTAATAATA

9997 AATTAATTTATCTAAATTATATAATAACCAAACATTTTTAATAATAATAA
10046

10337 TAATAATTATTTACTTATTTATTACATTAATTGCAGTAGTAAAAATCACA 10386
||
10047 TAATAATTATTTACTTATTTATTACATTAATTGCAGTAGTAAAAATCACA 10096
10387 AATATTTTTTATGGTCCTTTACGATCTTCATTTTAACAAATGATAAATAT 10436
|||||||||||||||||||||||||||||||||| ||||||||||||
10097 AATATTTTTTATGGTCCTTTACGATCTTCATTTTAA-AAATGATAAATAT 10145

10437 ATTTAAACCAATTCGAAAAACACACCCTATTTTAAAAATTATTAATGGAT 10486
$|||\mid$
10146 ATTTAAACCAATTCGAAAAACACACCCTATTTTAAAAATTATTAATGGAT
10195

10487 CTTTTGTAGATCTACCATCTCCATCAAATATTTCATCATTATGAAATTTT 10536
|||
10196 CTTTTGTAGATCTACCATCTCCATCAAATATTTCATCATTATGAAATTTT 10245
10537 GGATCACTTTTATTTATATGCTTAATAATTCAAATTATTACTGGATTATT 10586

10246 GGATCACTTTTATTTATATGCTTAATAATTCAAATTATTACTGGATTATT
10295

10587 TTTAACTATATATTATACAGCAAATATTGAATTAGCTTTTTATAGAGTAA 10636
||| 10296 TTTAACTATATATTATACAGCAAATATTGAATTAGCTTTTTATAGAGTAA

10345
10637 ATTATATTTGCCGAAATGTTAATTATGGATGATTAATTCGAACTTTACAT 10686
|||
10346 ATTATATTTGCCGAAATGTTAATTATGGATGATTAATTCGAACTTTACAT 10395

10687 GCAAATGGAGCATCTTTTTTTTTTATTTGTATTTATATTCATATTGGACG
|||||||||||||||||||||||.|||||||||||||||||||||||
10396 GCAAATGGAGCATCTTTTTTTTTTTTTTGTATTTATATTCATATTGGACG

MvNW

MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

10737 AGGAATTTATTATGAATCTTTTAATTACAAATACACATGAATAGTAGGTG

10446 AGGAATTTATTATGAATCTTTTAATTACAAATACACATGAATAGTAGGTG
10495
10787 TAATTATTTTATTTTTATTAATAGCAACAGCTTTTATAGGATATGTTCTC 10836

10496 TAATTATTTTATTTTTATTAATAGCAACAGCTTTTATAGGATATGTTCTC 10545
10837 CCTTGAGGACAAATATCATTTTGAGGTGCAACTGTTATTACTAATTTATT 10886

10546 CCTTGAGGACAAATATCATTTTGAGGAGCAACTGTTATTACTAATTTATT 10595
10887 ATCTGCCATCCCTTATTTAGGTACAACATTAGTAAATTGAATTTGAGGTG 10936

10596 ATCTGCCATCCCTTATTTAGGAACAACATTAGTAAATTGAATTTGAGGAG
10645
10937 GATTTGCTATTGATAATGCCACTTTAACTCGATTTTATACTTTTCATTTT 10986

10646 GATTTGCTATTGATAACACCACTTTAACGCGATTTTATACTTTTCATTTT 10695
10987 ATTTTACCTTTTATTATTTTAATAATAAGAATAATTCATTTATTATTCCT 11036

10696 ATTTTACCTTTTATTATATTAATAATAAGAATAATTCATTTACTATTCCT
10745
11037 TCATCAAACAGGATCTAATAATCCTTTAGGAATCAATAGAAATTTAGATA 11086

10746 TCATCAAACAGGATCTAATAATCCTTTAGGAATCAATAGAAATTTAGATA 10795
11087 AAATTCCTTTTCATCCATTTTTTATATTTAAGGATTTAATTGGATTTATT 11136

10796 AAATTCCTTTTCATCCATTTTTTATATTTAAGGATTTAATTGGATTTATT 10845
11137 TTAGTTATATTTATATTAATTTTATTAACACTTACAAACCCTTATTTATT

10846 TTAGTTATATTTATATTAATTTTATTAACACTTACAAACCCTTATTTATT

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

11187 AGGAGATCCAGATAATTTTATCCCTGCCAATCCATTAGTAACTCCAATTC
 10896 AGGAGACCCAGATAATTTCATCCCAGCCAACCCATTAGTAACTCCAATTC

11237 ATATTCAACCAGAATGATATTTTTTATTTGCTTATGCTATTTTACGATCA

10946 ATATTCAACCAGAATGATATTTTTTATTTGCCTATGCTATTTTACGATCA
11287 ATTCCTAATAAATTAGGGGGAGTTATTGCTTTAGTAATATCAATTCTTAT 11336

10996 ATTCCTAATAAATTAGGAGGAGTTATTGCTTTAGTAATATCAATTCTTAT
11337 TTTAATTATTTTACCAATAACTTTTATAAAAAAAATACAAGGAATTCAAT

11046 TTTAATTATTTTACCAATAACTTTTAAAAAAAAAAAACAAGGAATTCAAT
11387 TTTATCCATTAAATCAAATTATATTTTGAATAATAGTAACAACAATTATT

11096 TTTACCCATTAAATCAAATTATATTTTGAATAATAGTAACAACAATTATT
11437 TTATTAACATGAATTGGAGCACGACCTGTAGAAGATCCTTATATTATTGT
.||.||||||||||||||||||||||||||||.|||||.||||| ||
11146 CTACTAACATGAATTGGAGCACGACCTGTAGAAGACCCTTACATTATCGT

11487 GGGACAAATTTTAACAATTTTATATTTTTCATATTATATCTTTAATCCTT
 11196 AGGACAAATTTTAACAATTTTATACTTCTCATATTATATCTTTAATCCCT

11537 TAGTTAGTATATACTGAGATAAATTAATTTTTAATTAATTAATGAGCTTG
 11246 TAATTAGAATATACTGAGATAAATTAATTTTTAATTAATTAATGAGCTTG

11587 TAAAAGCATTTGTTTTGAAAACTTAAGAAAGAATATATTATTCTATTAAT

11296 TAAAAGCATTTGTTTTGAAAACTTAAGAAAGAATAAATTATTCTATTAAT

11145 11295
11236

10945

11286
10995

11386

11436

11486
11195

11536
11245
11586

11636
11345

MvNW
MvOW

MvNW

MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

MvNW

MvOW
MvNW
MvOW

MvNW

MvOW

11637 TTATACTAAAAATAATATAATAATTAAAAGAAAAAAATTTTTAATCCTAA 11686

11346 TTATACTAAAAATAATAT-----CTAAAAGAAAAAAATTTTTAATCCTAA
11390

11687 ATAAAATATCATAAAATTTAATGATAAAGGTAAATAAATTTTTCAAGCTA 11736

11391 ATAAAATATTATAAAATTTAATGATAAAGGTAAATAAATTTCTCAAGCTA 11440
11737 AATATATTAATTTATCATATCGATAACGAGGTAAAGTCCCTCGAACTCAA 11786

11441 AATATATTGACTTATCATATCGATAACGAGGTAAAGTCCCTCGAACTCAA 11490
11787 ATAAATAAAAAAGAAATTAATCTTAATTTTAAATAAAAAAAGAAATCTAA 11836

11491 ATAAATAAAAAAGAAATTAATCTCAACTTCAAATAAAAAAAAAAATCTAA

11837 TGAAAATCCACCTATATATAATAAAATAAATAATAATCTTATAAATAAAA

11541 TGAAAATCCTCCTATATATAATAAAACAAATAATAATCTTATAAATAAAA
11590
11887 TTCTAGAATATTCAGCTAAAAAAATTAATGCAAATCCACCTCTTCTATAT 11936

11591 TTCTAGAATATTCAGCTAAAAAAATTAATGCAAAACCCCCTCTTCTATAT
11640

11937 TCAATATTAAATCCTGAAACTAATTCTCTTTCCCCTTCAGCAAAATCAAA

11641 TCAATATTAAATCCTGAAACTAATTCTCTTTCCCCCTCAGCAAAATCAAA
11690
12036
11740
12086

11790

MvNW
MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

12087	CTAATTATATTAAAATCTATAACTATAATAATTCTAGATATTAAAATTAA	12136																	
11791	CTAATTATATTAAAATCTATAATTATAATAATTCTAGATATTAAAATTAA	11840																	
12137	AGCTAAACTA	12186																	
11841	AGCTAAACTAACTTCATAAGAAATAGTTTGAGCTACAGCTCGTAAACCTC	11890																	
12187	CTAATAAAGAATAATTAGAATTAGAAGATCAACCAGCAATTATAACTGTA	12236																	
11891	CTAATAAAGAATAATTAGAATTAGAAGATCAACCAGCAATTATAACTGTA	11940																	
12237	TATACACCCATTCTCGTACAACATAAAAAAAATAAAATACCTAAATTAAA	12286																	
11941	TAAACACCTATTCTTGTACAACATAAAAAAAATAAAATACCTAAATTAAA	11990																	
12287	TCTAATAAAATTAAAATAATAAGGAATTATTATTCAAATTATTAAAGACA	12336																	
11991	TCTAATAAAATTAAAATAATAAGGAATTATTATTCAAATTATTAAAGATA	12040																	
12337	ATAAATCTAATGACAGGAGAAAAATAATAAATTAAATAATTAGAAAAT	12386																	
12041	AAATAAATCTAATTACAGGAGAAAAATAATAAGTTAAATAATTAGAAAAT	12090																	
12387	TTAGGATAAGTTTGTTCTTTAGTAAATAACTTAATAGCATCTGAAAAAGG	12436																	
12091	TTAGGATAAGTTTGTTCTTTAGTAAATAATTTAATAGCATCTGAAAAAGG	12140																	
12437	TTGTAAAATTCCTATTAAACCAACCTTATTAGGCCCTTTACGAATTTGAA	12486																	
12141	TTGTAAAATTCCTATAAAACCAACTTTATTAGGCCCTTTACGAATTTGAA	121																	
12487	TATAACCTAAAACTTTTCGCTCTAATAAAGTTAAGAAAGCAACACCAATT	12536																	
	\|						
21	TATATCCTAAAACCTTACG	122																	

MvNW	12537	AAAACCCCTACAATTAAAATTAATAARCCTAAATTAGAAAATTTAGGATA	12586
Mvow	12214		12213
MvNW	12587	AGTtTGttctttagtanatancttantagcatctananaiggttgranai	12636
Mvow	12214		12213
MvNW	12637	tTCCTATTAAACCAACCTTATTAGGCCCtTTACGAATTTGAATATAACCT	12686
Mvow	12214		1221
MvNW	12687	AAAACTTTTCGCTCCAATAAAGTTAAGAAAGCAACACCAATTAAAACCCC 	12736
Mvow	12214	-------------AATAAAGTTAAAAAAGCAACACCAATTAATACTCC	12248
MvNW	12737	TACAATTAAAATTAATAAACCTAAAAAAATTAAAATTATATCTAATATTA 	12786
Mvow	12249	TAAAATTAAAATTAATAAACCTAAAAAAATTAAAATTATATCCAATATTA	12298
MvNW	12787	TCATTACTACCTATATAAATAAAATTATACATTTATGATTTCTAAAACCA 	12836
Mvow	12299	tCAttactacctatatanatanattatacatttatgatttctanancca	12348
MvNW	12837	TTACATTTTTCTGCCAAAATAGCTTAATAAATTATTATAATATTTATTTT 	12886
Mvow	12349	tTACATTTTTCTGCCAAAATAGCTTAATAAAACATATTAATTTTTAATTT	12398
MvNW	12887	ATAAATTCATTAATAAAATTCTT-TAATTAAATTTAATTTAAATATTTAT 	12935
Mvow	12399	ATATATtTGTtAATAAAATTCTTCAAACTAAATTTAATTTAAATATtTAT	12448
MvNW	12936	TCCTTTCGTACTAAAATATTTTTTTTTATTTAAAGATAGAAACCAACCTGG 	12985
Mvow	12449	TCCTTTCGTACTAAAATATCTTTITTTGCTTAAAGATAGAAACCAACCTGG	12498

MvNW
MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

12986 CTCACACCGGTTTGAACTCAGATCATGTAAGATTTTAATGATCGAACAGA
13035

12499 CTCACACCGGTTTGAACTCAGATCATGTAAGATTTTAATGATCGAACAGA12548
13036 TCAAAATTTTAGACTTTTGCA-TATAAATTTTATCTTAATCCAACATCGA 1308412549 TC-AAATTTTAAACTTTTGCATTATAAA--TTATCTTAATCCAACATCGA12595
13085 GGTCGCAAACTTTTTTTTTTATTTGAACTAAAAAAAAAAATTACGCTGTT 1313412596 GGTCGCAAACTTTTTTTTTTATTTGAACTAAAAAAAAAAATTACGCTGTT12645
13135 ATCCCTAAGGTAATTTTTTCTTTTAATCAAAATAATTTTGGATCATATAC12646 ATCCCTAAGGTAATTTTTTCTTCTAATCAAAATAATTTTGGATCAAATAT12695
13185 TCACTTATTAATGAATCTTATTAAAAAAAAGTTAATTATATTTTTCTATC 13234
12745
13235 ACCCCAACAAAATAAATATTATTATTTTAATTATTAACTATATAAATAAT 1328412795
13285 TTTAATAAAAAAATTTATCAAACTCTATAGGGTCTTCTCGTCTTTTAAGT12796 TTCAATAAAAACGTTTATTAAACTCTATAGGGTCTTCTCGTCTTTTAAAT1284513335 TTATTTTAACTTTTTAATTAAAAAATTAAATTTTTTTAATAAAATTGAGA 1338412846 TTATTTTAACTTTTTAATTAAAAAATTAAATTTTTCTAATAAAATTGAGA12895
13385 CAGTTTATATTTCATCCAATCTTTCATACAAGTCACCAATTAAGAGACTA 1343412896 CAGTTTATATTTCATCCAATCTTTCATACAAGTCACCAATTAAGAGACTA

| MvNW | 13435 | ATGATTATGCTACCTTTGTACAGTCAATATACTGCAGCCCTTTAATTAAA \\|।।।।।।।।।।।| | 13484 |
|---|
| MvOW | 12946 | ATGATTATGCTACCT | 12960 |
| MvNW | 13485 | AATCAGTGGGCAGATTAGACTTTAAATTATTATTCAAAAAGACATGTTTT | 13534 |
| MvOW | 12961 | | 12960 |
| MvNW | 13535 | TGATAAACAAGTG | 13547 |
| Mvow | 12961 | -TGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | 12999 |
| MvNW | 13548 | | 13547 |
| MvOW | 13000 | NN | 13049 |
| MvNW | 13548 | ------AATATAAAATTTTGCCGAATTACTTAATTTTATTTTTCA
 | 13586 |
| MvOW | 13050 | NNNNNNNNNNNAATATAAAATTTTGCCGAATTACTTAACTTTATTTTTCA | 13099 |
| MvNW | 13587 | ATAAATTATTAATACTATTTAATTATTAAATACTAATTTTATCATTATAA
 | 13636 |
| MvOW | 13100 | ATAA---ATTAATATTATTTATTTATTAAATACTAATTTTATCATTATAT | 13146 |
| MvNW | 13637 | TTAATTTTTAATTATTAAAAATTATTTTTTTATAAAAAATTAAA---CTT | 13683 |
| | | \|||||.||||.|||||||||.||||||||||||||||||| .|| | |
| MvOW | 13147 | TTAATCTTTATTTATTAAAAAATATTTTTTTATAAAAAATTAAATTTTTT | 13196 |
| MvNW | 13684 | TTTTAAATTTTAATTTAATTAAAATTAATTTATAATAAATTAAAAATTAT
 | 13733 |
| Mvow | 13197 | TTTTAAATTTTAATTAAATTAAAATTAATTTATAATAAATTAAAAATTAT | 13246 |
| MvNW | 13734 | AAACAATATAAATTTTAAAAATTTTAATT-AATACATTATTATTATTATA | 13782 |
| | | | |
| MvOW | 13247 | AAACAATATAATTTTAAAATTTTAATTAAAAAC--AATATTATTATA | 13293 |

MvNW

MvOW
MvNW
MvOW
MvNW
MvOW
MvNW

MvOW
MvNW
MvOW
MvNW
MvOW

MvNW

MvOW

MvNW
MvOW
MvNW
MvOW

13783 AATATTTAATTTAAAGCTTATCCCTTAAAATATAATTTTTTACTTATAAT		13832
13294	AATATTTAATTT-AAGCTTA-CCCTTAAAATATAATTTTTTCTTTATAAT	13341
13833		13882
13342	AAATTAATTAATTAATTTATTATAAAG-AAAAATAAAATTAAATTTTTTT	
13883	CTAAAAAAACTAGATATCTTAAAAAACGATTAACATTTCATTTCAAATTA	139
13391	CTAAAAAAACT-GATATCTTAAAAAACGATTAACA-TCCATTTCAAATTA	13438
13933	AT	13982
13439	ATTATTTAAAATATTTAGGC-ACAATAACTTTTATAATTAATTATCTCTT	13487
13983	TTTAATTCGAGAAATATTTTAACTAAAATTTTAATTAATAAACTCTGATA	14032
13488	TTTAATTCGAGAATTATTTTAACTAAAATTTTAATTAATAAACTC-GATA	13536
14033	CACAAGATACAATAAATAAAATTTACTTTTAAATAAATTCATTTTCAAAT	14082
13537	CAC-AGATACAATAAATAAAATTTACTTTTAAATAAATTCATTTTCAAAT	5
14083	TTATTTAAAATTTCTTATACAATACTAATTGACTATAAAATTTATAATTT	
13586	TTATTTAAAACTTCTTATACAATACTATTACACTATAAAACTTATAATTT	13635
14133	TTTTTTTATTAATACTAAAACCCCCATTTTAATATTAAAATTATTTTTAT	14182
13636	TTTTTTTATTAATACT-AAACCCCCATTTTAATATTAAAATTATTTTTAT	13684
14183	TATTTATAAATTATTAATTATTCATCTTCAAATTAATTGAATAACATCAA	14232
13685	TATTTATAAATTATTAATTATTAATTTTCAAATT-ATTGAATAATATCAA	13733

$\left.\begin{array}{llll}\text { MvNW } & 14233 \text { TATCATTTCAATGTAAATGAAATACTTAATCAAGCTCTAATTTGTTATTT } & 14282 \\ & & 11111111111111111111111.11111111111111 .11111\end{array}\right)$

Mvow	14055		14054
MvNW	14733	TTTATAAATAAAATTTATTAAATCATAAATAAAAATTTAATTTTAATTAA	14782
Mvow	14055		14054
MvNW	14783	ATTAAAATTTCACCTTATAATTTAATATTTAATTAAAAAAATATTAATTA	14832
Mvow	14055		14054
MvNW	14833	TTAATTACTAATAAATTTTAATTTAATTTTTGTTTAACCGCAACTGCTGG	14882
Mvow	14055	--	14054
MvNW	14883	CACAAAATTTGTTATTAATTTAAATATTACTAAATCTTAATTTCTTAAAT	14932
MvOW	14055		14054
MvNW	14933	TTTTAATATTAATTACTACTTGTATTTATTAAATATTATTAAAATAGTTA	14982
MvOW	14055		14054
MvNW	14983	ATAATTAACACTAAAATTTATATGCAAAATAAATTTATAATAAAATCTTT	15032
MvOW	14055		14054
MvNW	15033	AAACTATAAAAAATTATTTATTGTAGGATTTTAGACATAGTTTTTTTTT	15082
MvOW	14055		14054
MvNW	15083	TTTTTTTTTATATATATAAAATTTAATATAAATTATTAAATATTAAATAT	15132
MvOW	14055	--	14054
MvNW	15133	TTTCTTTCTTTTTCTTCTTTATAACATTAATATTAAAAATTAATACGTAG	15182
Mvow	14055	---	14054

MvNW	15183	Attcatcgattantantcatttanatanatanttanttantatatttran	15232
MvOW	14055		14054
MvNW	15233	AATTAATTAAATTGAAATTTAAAATATTAATTTTACTAAATTAATTAATT	15282
MvOW	14055		14054
MvNW	15283	AATtTAATtAATATTAAAAATATtAATAAATTAAATATtTAATATATATA	15332
Mvow	14055		14054
MvNW	15333	tatatatatanatatanaccatttttantattttttctatanatananan	15382
Mvow	14055		14054
MvNW	15383	AAA 15385	
MvOW	14055	--- 14054	

APPENDIX F

Counts of all the genes identified in gene ontology analysis of all contigs

APPENDIX F1. A. curvipes.

GO Level	Term (Name)	\#Sequence	Parents (Name)	Category
2	metabolic process	2166	biological_process	Biological Process
Null	single-organism process	1313	biological_process	Biological Process
Null	single-organism cellular process	1088	single-organism process, cellular process	Biological Process
3	primary metabolic process	1616	metabolic process	Biological Process
2	cellular process	1880	biological_process	Biological Process
3	regulation of biological process	870	biological regulation, biological_process	Biological Process
3	multicellular organismal development	684	single-multicellular organism process, developmental process	Biological Process
2	developmental process	748	biological_process	Biological Process
3	cellular component organization	755	cellular component organization or biogenesis	Biological Process
3	organic substance metabolic process	1588	metabolic process	Biological Process
4	protein metabolic process	962	primary metabolic process, macromolecule metabolic process	Biological Process
2	response to stimulus	684	biological_process	Biological Process
4	transport	638	establishment of localization	Biological Process
3	catabolic process	519	metabolic process	Biological Process
4	nucleobase-containing compound metabolic process	564	heterocycle metabolic process, primary metabolic process, organic cyclic compound metabolic process, cellular aromatic compound metabolic process, cellular nitrogen compound metabolic process	Biological Process
2	biological regulation	914	biological_process	Biological Process

APPENDIX F1. (cont.)

Null	single-multicellular organism process	685	multicellular organismal process, single-organism process	Biological Process
3	cellular metabolic process	1270	metabolic process, cellular process	Biological Process
3	biosynthetic process	713	metabolic process	Biological Process
4	cell differentiation	427	cellular developmental process	Biological Process
5	cellular protein metabolic process	693	protein metabolic process, cellular macromolecule metabolic process	Biological Process
2	cellular component organization or biogenesis	755	biological_process	Biological Process
5	organelle organization	473	single-organism cellular process, cellular component organization	Biological Process
3	macromolecule metabolic process	1050	organic substance metabolic process	Biological Process
6	translation	376	cellular macromolecule biosynthetic process, cellular protein metabolic process, gene expression	Biological Process
4	anatomical structure morphogenesis	359	anatomical structure development, developmental process	Biological Process
4	signal transduction	336	single organism signaling, cell communication, cellular response to stimulus, regulation of cellular process	Biological Process
3	response to stress	334	response to stimulus	Biological Process
6	cellular protein modification process	331	cellular protein metabolic process, protein modification process	Biological Process
3	establishment of localization	638	biological_process, localization	Biological Process
4	cellular macromolecule metabolic process	770	cellular metabolic process, macromolecule metabolic process	Biological Process
4	heterocycle metabolic process	564	cellular metabolic process	Biological Process
4	cellular nitrogen compound metabolic process	564	cellular metabolic process, nitrogen compound metabolic process	Biological Process

APPENDIX F1. (cont.)

Null	organic cyclic compound metabolic process	564	organic substance metabolic process	Biological Process
4	cellular aromatic compound metabolic process	564	cellular metabolic process	Biological Process
3	anatomical structure development	401	developmental process	Biological Process
3	cell cycle	299	single-organism cellular process	Biological Process
3	cell communication	422	single-organism cellular process	Biological Process
2	multicellular organismal process	685	biological_process	Biological Process
Null	single organism signaling	409	single-organism process, signaling	Biological Process
3	cellular developmental process	427	developmental process, single-organism cellular process	Biological Process
6	cytoskeleton organization	256	organelle organization	Biological Process
2	reproduction	243	biological_process	Biological Process
4	gene expression	399	macromolecule metabolic process	Biological Process
5	cellular macromolecule biosynthetic process	376	cellular macromolecule metabolic process, cellular biosynthetic process, macromolecule biosynthetic process	Biological Process
4	regulation of cellular process	336	cellular process, regulation of biological process	Biological Process
3	cellular response to stimulus	336	response to stimulus, single-organism cellular process	Biological Process
5	protein modification process	331	macromolecule modification, protein metabolic process	Biological Process
2	localization	639	biological_process	Biological Process
3	nitrogen compound metabolic process	564	metabolic process	Biological Process
4	carbohydrate metabolic process	185	primary metabolic process, organic substance metabolic process	Biological Process

APPENDIX F1. (cont.)				
4	generation of precursor metabolites and energy	184	cellular metabolic process	Biological Process
6	protein transport	184	organic substance transport, establishment of protein localization	Biological Process
2	signaling	409	biological_process	Biological Process
5	ion transport	145	single-organism transport	Biological Process
4	embryo development	140	single-organism developmental process, multicellular organismal development, anatomical structure development	Biological Process
3	cell death	136	death, single-organism cellular process	Biological Process
4	cellular biosynthetic process	376	cellular metabolic process, biosynthetic process	Biological Process
4	macromolecule biosynthetic process	376	organic substance biosynthetic process, macromolecule metabolic process	Biological Process
4	macromolecule modification	331	macromolecule metabolic process	Biological Process
4	lipid metabolic process	115	primary metabolic process, organic substance metabolic process, single-organism metabolic process	Biological Process
5	organic substance transport	184	Transport	Biological Process
5	establishment of protein localization	184	establishment of localization, protein localization	Biological Process
6	DNA metabolic process	108	nucleic acid metabolic process, cellular macromolecule metabolic process	Biological Process
3	cell-cell signaling	105	single organism signaling, cell communication	Biological Process
3	behavior	105	response to stimulus	Biological Process
3	response to external stimulus	103	response to stimulus	Biological Process
3	cellular homeostasis	95	homeostatic process, single-organism cellular process	Biological Process
2	growth	97	biological_process	Biological Process
Null	single-organism metabolic process	148	metabolic process	Biological Process

APPENDIX F1. (cont.)

2	cell proliferation	89	single-organism process	Biological Process
Null	single-organism transport	145	single-organism process, transport	Biological Process
Null	single-organism developmental process	140	single-organism process, developmental process	Biological Process
2	death	136	single-organism process	Biological Process
Null	organic substance biosynthetic process	376	organic substance metabolic process, biosynthetic process	Biological Process
3	response to abiotic stimulus	79	response to stimulus	Biological Process
3	response to biotic stimulus	77	response to stimulus	Biological Process
4	protein localization	185	macromolecule localization	Biological Process
5	nucleic acid metabolic process	108	macromolecule metabolic process, nucleobase-containing compound metabolic process	Biological Process
4	homeostatic process	95	regulation of biological quality	Biological Process
6	mitochondrion organization	53	organelle organization	Biological Process
3	response to endogenous stimulus	43	response to stimulus	Biological Process
3	macromolecule localization	185	Localization	Biological Process
3	secondary metabolic process	38	single-organism metabolic process	Biological Process
3	regulation of biological quality	95	biological regulation	Biological Process
2	viral reproduction	29	multi-organism cellular process	Biological Process
3	cell recognition	25	single-multicellular organism process, single-organism cellular process	Biological Process
7	regulation of gene expression, epigenetic	25	regulation of gene expression	Biological Process
5	cytoplasm organization	22	single-organism cellular process, cellular component organization	Biological Process

APPENDIX F1. (cont.)

3	cell growth	19	growth, single-organism cellular process	Biological Process
Null	multi-organism cellular process	29	multi-organism process, cellular process	Biological Process
2	multi-organism process	32	biological_process	Biological Process
4	symbiosis, encompassing mutualism through parasitism	16	interspecies interaction between organisms	Biological Process
6	regulation of gene expression	25	gene expression, regulation of macromolecule metabolic process	Biological Process
3	interspecies interaction between organisms	16	multi-organism process	Biological Process
5	regulation of macromolecule metabolic process	25	macromolecule metabolic process, regulation of metabolic process	Biological Process
4	regulation of metabolic process	25	regulation of biological process, metabolic process	Biological Process
7	glycine receptor clustering	1	postsynaptic membrane organization, neurotransmitter-gated ion channel clustering	Biological Process
8	neurotransmitter-gated ion channel clustering	1	receptor clustering, synapse assembly	Biological Process
4	postsynaptic membrane organization	1	cellular membrane organization	Biological Process
6	synapse assembly	1	nervous system development, synapse organization, cellular component assembly	Biological Process
3	cellular membrane organization	1	single-organism cellular process, membrane organization	Biological Process
7	receptor clustering	1	protein localization to membrane	Biological Process
4	protein localization to membrane	1	cellular membrane organization, cellular protein localization	Biological Process
4	cellular component assembly	1	cellular component biogenesis, cellular component organization	Biological Process

APPENDIX F1. (cont.)				
4	membrane organization nervous system development	1	cellular component organization	
5	synapse organization	1	single-organism cellular process, cellular component organization multicellular organismal development, anatomical structure development cellular macromolecule localization, protein localization	Biological Process
4	system development	1	cellular component organization or biogenesis	Biological Process
4	cellular protein localization cellular component	1	1	Biological Process
biogenesis				
cellular macromolecule				

APPENDIX F1. (cont.)

7	nucleus	656	intracellular membrane-bounded organelle	Cellular
				Component
2	organelle	1692	cellular_component	Cellular
				Component
2	macromolecular complex	966	cellular_component	Cellular
				Component
3	membrane-bounded organelle	1287	Organelle	Cellular
				Component
6	intracellular non-membrane-bounded organelle	687	intracellular organelle, non-membrane-bounded organelle	Cellular
				Component
6	mitochondrion	424	cytoplasmic part, intracellular membrane-bounded organelle	Cellular
				Component
7	cytoskeleton	312	intracellular non-membrane-bounded organelle	Cellular
				Component
6	cytosol	273	cytoplasmic part	Cellular
				Component
3	non-membrane-bounded organelle	687	Organelle	Cellular
				Component
6	ribosome	245	ribonucleoprotein complex, cytoplasmic part, intracellular non-membrane-bounded organelle	Cellular
				Component
6	lipid particle	199	cytoplasmic part	Cellular
				Component
6	nuclear part	278	intracellular organelle part, nucleus	Cellular
				Component
4	plasma membrane	187	cell part, cell periphery, membrane	Cellular
				Component
7	nuclear lumen	236	nuclear part, intracellular organelle lumen	Cellular
				Component
6	nucleoplasm	147	nuclear part, nuclear lumen	Cellular
				Component

APPENDIX F1. (cont.)

5	ribonucleoprotein complex	245	macromolecular complex, intracellular part	Cellular Component
4	intracellular organelle part	321	organelle part, intracellular organelle, intracellular part	Cellular Component
6	endoplasmic reticulum	132	cytoplasmic part, intracellular membrane-bounded organelle	Cellular Component
2	extracellular region	186	cellular_component	Cellular Component Cellular
4	cell periphery	188	cell part	Component Cellular
2	membrane	187	cellular_component	Component
6	nucleolus	106	nuclear part, nuclear lumen, intracellular non-membrane- bounded organelle cytoplasmic part, intracellular membrane-bounded organelle	Component Cellular
6	Golgi apparatus	104	intracellular organelle part, organelle lumen Component	
6	intracellular organelle lumen chromosome	236	95	intracellular non-membrane-bounded organelle

APPENDIX F1. (cont.)

5	nuclear envelope	48	nuclear part, organelle envelope, endomembrane system	Cellular
				Component
4	membrane-bounded vesicle	67	Vesicle	Cellular
				Component
6	cytoplasmic vesicle	67	cytoplasmic part, vesicle, intracellular organelle	Cellular
				Component
2	membrane-enclosed lumen	236	cellular_component	Cellular
				Component
6	cytoskeletal part	57	intracellular organelle part, cytoskeleton	Cellular
				Component
8	microtubule cytoskeleton	57	Cytoskeleton	Cellular
				Component
6	nuclear chromosome	30	nuclear part, nuclear lumen, chromosome	Cellular
				Component
4	organelle envelope	48	intracellular organelle part, membrane-bounded organelle,	Cellular
			envelope	Component
4	endomembrane system	48	cell part	Cellular
				Component
6	vacuole	36	cytoplasmic part, intracellular membrane-bounded organelle	Cellular
				Component
3	vesicle	67	Organelle	Cellular
				Component
6	endosome	24	cytoplasmic part, intracellular membrane-bounded organelle	Cellular
				Component
7	peroxisome	21	Microbody	Cellular
				Component
4	envelope	49	cell part	Cellular
				Component
4	proteinaceous extracellular	15	extracellular region part, extracellular matrix	Cellular
	matrix			Component
8	lysosome	13	lytic vacuole	Cellular
				Component

APPENDIX F1. (cont.)

6	microbody	21	cytoplasmic part, intracellular membrane-bounded organelle	Cellular
				Component
2	extracellular matrix	15	cellular_component	Cellular
				Component
5	cilium	8	cell projection, intracellular membrane-bounded organelle	Cellular
				Component
7	lytic vacuole	13	Vacuole	Cellular
				Component
4	cell projection	8	cell part	Cellular
				Component
6	plastid	4	cytoplasmic part, intracellular membrane-bounded organelle	Cellular
				Component
4	external encapsulating	3	cell part, cell periphery	Cellular
	structure			Component
5	cell envelope	1	Envelope	Cellular
				Component
5	cell wall	1	external encapsulating structure	Cellular
				Component
5	thylakoid	1	intracellular part	Cellular
				Component
2	binding	2108	molecular_function	Molecular
				Function
2	catalytic activity	2218	molecular_function	Molecular
				Function
4	nucleotide binding	806	small molecule binding, nucleoside phosphate binding	Molecular
				Function
3	hydrolase activity	925	catalytic activity	Molecular
				Function
3	protein binding	668	Binding	Molecular
				Function
3	organic cyclic compound	1169	Binding	Molecular
	binding			Function

APPENDIX F1. (cont.)						
null	heterocyclic compound binding small molecule binding	1164	Binding	Binding		Molecular
:---						
Function						
null	\quad	nucleoside phosphate				
:---						
binding						
transferase activity						

APPENDIX F1. (cont.)

5	translation factor activity,	82	RNA binding	Molecular
6	calcium ion binding	72	metal ion binding	Molecular
				Function
2	electron carrier activity	63	molecular_function	Molecular
				Function
5	actin binding	62	cytoskeletal protein binding	Molecular
				Function
5	phosphotransferase activity,	101	transferase activity, transferring phosphorus-containing groups	Molecular
	alcohol group as acceptor			Function
3	lipid binding	53	Binding	Molecular
				Function
4	receptor binding	47	protein binding	Molecular
				Function
2	receptor activity	45	molecular_function	Molecular
				Function
4	hydrolase activity, acting	99	hydrolase activity	Molecular
	on ester bonds			Function
5	metal ion binding	72	cation binding	Molecular
				Function
5	nuclease activity	41	hydrolase activity, acting on ester bonds	Molecular
				Function
3	sequence-specific DNA	40	nucleic acid binding transcription factor activity	Molecular
	binding transcription factor activity			Function
7	phosphoprotein	40	phosphatase activity	Molecular
	phosphatase activity			Function
3	carbohydrate binding	39	Binding	Molecular
				Function
Null	transcription regulator	37	obsolete_molecular_function	Molecular
	activity			Function

APPENDIX F1. (cont.)

6	ion channel activity	28	substrate-specific channel activity, ion transmembrane	Molecular
			transporter activity	Function
3	signal transducer activity	27	molecular transducer activity	Molecular
4	cation binding	72	ion binding	Molecular
				Function
8	motor activity	25	nucleoside-triphosphatase activity	Molecular
				Function
6	phosphatase activity	41	phosphoric ester hydrolase activity	Molecular
				Function
2	nucleic acid binding transcription factor activity	40	molecular_function	Molecular
				Function
Null	obsolete_molecular_function	37		Molecular
				Function
2	nutrient reservoir activity	21	molecular_function	Molecular
				Function
3	chromatin binding	21	Binding	Molecular
				Function
5	carboxylic ester hydrolase activity	17	hydrolase activity, acting on ester bonds	Molecular
				Function
5	ion transmembrane	28	substrate-specific transmembrane transporter activity	Molecular
	transporter activity			Function
5	substrate-specific channel	28	substrate-specific transmembrane transporter activity, channel activity	Molecular
	activity			Function
2	molecular transducer activity	27	molecular_function	Molecular
				Function
3	ion binding	72	Binding	Molecular
				Function
7	nucleoside-triphosphatase activity	25	pyrophosphatase activity	Molecular
				Function
5	phosphoric ester hydrolase activity	41	hydrolase activity, acting on ester bonds	Molecular
				Function

APPENDIX F1. (cont.)

2	antioxidant activity	13	molecular_function	Molecular
				Function
4	substrate-specific	28	substrate-specific transporter activity, transmembrane	Molecular
	transmembrane transporter activity		transporter activity	Function
5	channel activity	28	passive transmembrane transporter activity	Molecular
				Function
6	pyrophosphatase activity	25	hydrolase activity, acting on acid anhydrides, in phosphorus-	Molecular
			containing anhydrides	Function
3	transmembrane transporter	28	transporter activity	Molecular
	activity			Function
3	substrate-specific	28	transporter activity	Molecular
	transporter activity			Function
4	passive transmembrane	28	transmembrane transporter activity	Molecular
	transporter activity			Function
2	translation regulator	6	molecular_function	Molecular
	activity			Function
5	hydrolase activity, acting	25	hydrolase activity, acting on acid anhydrides	Molecular
	on acid anhydrides, in			Function
	phosphorus-containing			
	anhydrides			
4	hydrolase activity, acting	25	hydrolase activity	Molecular
	on acid anhydrides			Function
8	inositol monophosphate	1	inositol phosphate phosphatase activity	Molecular
	phosphatase activity			Function
3	oxygen binding	1	Binding	Molecular
				Function
7	inositol phosphate	1	phosphatase activity	Molecular
	phosphatase activity			Function

APPENDIX F2. A. craccivora.

$\begin{aligned} & \hline \text { GO } \\ & \text { Level } \end{aligned}$	Term (Name)	\#Sequence	Parents (Name)	Category
3	regulation of biological process	946	biological regulation, biological_process	Biological Process
2	metabolic process	2170	biological_process	Biological Process
3	catabolic process multicellular organismal	565	metabolic process	Biological Process
3	development nucleobase-containing	566	process heterocycle metabolic process, primary metabolic process, organic cyclic compound metabolic process, cellular aromatic compound metabolic process, cellular nitrogen	Biological Process
4	compound metabolic process	614	compound metabolic process	Biological Process
3	biosynthetic process	806	metabolic process	Biological Process
4	transport	651	establishment of localization single organism signaling, cell communication, cellular	Biological Process
4	signal transduction	408	response to stimulus, regulation of cellular process	Biological Process
4	cell differentiation cellular component	401	cellular developmental process	Biological Process
3	organization cellular protein modification	654	cellular component organization or biogenesis cellular protein metabolic process, protein modification	Biological Process
6	process	358	process cellular macromolecule biosynthetic process, cellular	Biological Process
6	translation	328	protein metabolic process, gene expression primary metabolic process, macromolecule metabolic	Biological Process
4	protein metabolic process anatomical structure	906	process	Biological Process
4	morphogenesis	316	anatomical structure development, developmental process	Biological Process

APPENDIX F2. (cont.)

3	response to stress	287	response to stimulus single-organism cellular process, cellular component organization	Biological Process
5	organelle organization	413	245	single-organism cellular process biological_process primary metabolic process, organic substance metabolic process
3	cell cycle	reproduction	carbohydrate metabolic process	203

APPENDIX F2. (cont.)

3	secondary metabolic process response to endogenous	50	single-organism metabolic process	Biological Process
3	stimulus			

APPENDIX F2. (cont.)

2	response to stimulus organic substance metabolic	662	biological_process	Biological Process
3	process	1638	metabolic process	Biological Process
3	cellular developmental process	401	developmental process, single-organism cellular process	Biological Process
4	cellular biosynthetic process organic substance biosynthetic	328	cellular metabolic process, biosynthetic process	Biological Process
Null	process single-organism cellular	328	organic substance metabolic process, biosynthetic process	Biological Process
Null	process cellular protein metabolic	1023	single-organism process, cellular process protein metabolic process, cellular macromolecule	Biological Process
5	process single-organism metabolic	671	metabolic process	Biological Process
Null	process anatomical structure	210	metabolic process	Biological Process
3	development	352	developmental process	Biological Process
Null	multi-organism cellular process cellular macromolecule	41	multi-organism process, cellular process cellular macromolecule metabolic process, cellular	Biological Process
5	biosynthetic process cellular macromolecule	328	biosynthetic process, macromolecule biosynthetic process cellular metabolic process, macromolecule metabolic	Biological Process
4	metabolic process	760	process	Biological Process
4	regulation of metabolic process cellular component	24	regulation of biological process, metabolic process	Biological Process
2	organization or biogenesis	654	biological_process	Biological Process
2	multi-organism process	46	biological_process gene expression, regulation of macromolecule metabolic	Biological Process
6	regulation of gene expression	24	process	Biological Process
4	heterocycle metabolic process	614	cellular metabolic process	Biological Process
5	organic substance transport establishment of protein	185	Transport	Biological Process
5	localization	185	establishment of localization, protein localization	Biological Process

APPENDIX F2. (cont.)

2	death	112	single-organism process	Biological Process
Null	single organism signaling	480	single-organism process, signaling macromolecule metabolic process, nucleobase-containing	Biological Process
5	nucleic acid metabolic process regulation of macromolecule	117	compound metabolic process macromolecule metabolic process, regulation of metabolic	Biological Process
5	metabolic process	24	process	Biological Process
Null	single-organism process macromolecule metabolic	1256	biological_process	Biological Process
3	process	1002	organic substance metabolic process	Biological Process
4	homeostatic process cellular nitrogen compound	71	regulation of biological quality cellular metabolic process, nitrogen compound metabolic	Biological Process
4	metabolic process	614	process	Biological Process
2	signaling	480	biological_process	Biological Process
Null	single-organism transport single-organism developmental	185	single-organism process, transport	Biological Process
Null	process	136	single-organism process, developmental process	Biological Process
3	response to chemical stimulus organic cyclic compound	1	response to stimulus	Biological Process
Null	metabolic process multicellular organismal	614	organic substance metabolic process	Biological Process
2	process macromolecule biosynthetic	566	biological_process organic substance biosynthetic process, macromolecule	Biological Process
4	process	328	metabolic process	Biological Process
2	biological regulation	970	biological_process	Biological Process
3	macromolecule localization nitrogen compound metabolic	185	Localization	Biological Process
3	process	614	metabolic process	Biological Process
3	establishment of localization	651	biological_process, localization	Biological Process
4	regulation of cellular process	408	cellular process, regulation of biological process	Biological Process

APPENDIX F2. (cont.)

4	cellular aromatic compound metabolic process	614	cellular metabolic process	Biological Process
4	response to drug interspecies interaction	1	response to chemical stimulus	Biological Process
3	between organisms	21	multi-organism process	Biological Process
4	gene expression	351	macromolecule metabolic process	Biological Process
Null	all	0		Biological Process
4	macromolecule modification	358	macromolecule metabolic process	Biological Process
3	cellular metabolic process	1300	metabolic process, cellular process	Biological Process
3	cellular response to stimulus	409	response to stimulus, single-organism cellular process	Biological Process
4	protein localization	185	macromolecule localization	Biological Process
2	developmental process single-multicellular organism	636	biological_process	Biological Process
Null	process	566	multicellular organismal process, single-organism process	Biological Process
5	protein modification process	358	macromolecule modification, protein metabolic process	Biological Process
3	protein complex	790	macromolecular complex	Cellular Component
2	cell	2405	cellular_component	Cellular Component
5	cytoplasm	1340	intracellular part	Cellular Component
7	nucleus	690	intracellular membrane-bounded organelle	Cellular Component
4	intracellular	2046	cell part cytoplasmic part, intracellular membrane-bounded	Cellular Component
6	mitochondrion	314	organelle ribonucleoprotein complex, cytoplasmic part, intracellular	Cellular Component
6	ribosome	275	non-membrane-bounded organelle	Cellular Component
6	nucleoplasm	244	nuclear part, nuclear lumen	Cellular Component
7	cytoskeleton	244	intracellular non-membrane-bounded organelle	Cellular Component
4	plasma membrane	207	cell part, cell periphery, membrane	Cellular Component

APPENDIX F2. (cont.)

6	cytosol	190	cytoplasmic part	Cellular Component
6	nucleolus	129	nuclear part, nuclear lumen, intracellular non-membranebounded organelle	Cellular Component
7	chromosome	153	intracellular non-membrane-bounded organelle cytoplasmic part, intracellular membrane-bounded	Cellular Component
6	endoplasmic reticulum	122	organelle	Cellular Component
2	organelle	1602	cellular_component	Cellular Component
6	lipid particle	87	cytoplasmic part cytoplasmic part, intracellular membrane-bounded	Cellular Component
6	Golgi apparatus	86	organelle	Cellular Component
2	extracellular region cytoplasmic membrane-	112	cellular_component cytoplasmic vesicle, intracellular membrane-bounded	Cellular Component
7	bounded vesicle	53	organelle, membrane-bounded vesicle	Cellular Component
6	nuclear chromosome	50	nuclear part, nuclear lumen, chromosome	Cellular Component
5	nuclear envelope	48	nuclear part, organelle envelope, endomembrane system cytoplasmic part, intracellular membrane-bounded	Cellular Component
6	endosome	38	organelle	Cellular Component
7	microtubule organizing center	38	microtubule cytoskeleton, cytoskeletal part	Cellular Component
4	extracellular space	30	extracellular region part cytoplasmic part, intracellular membrane-bounded	Cellular Component
6	vacuole	48	organelle	Cellular Component
8	lysosome	21	lytic vacuole	Cellular Component
7	peroxisome proteinaceous extracellular	19	Microbody	Cellular Component
4	matrix	19	extracellular region part, extracellular matrix cytoplasmic part, intracellular membrane-bounded	Cellular Component
6	plastid	13	organelle	Cellular Component
5	cell wall	7	external encapsulating structure	Cellular Component

APPENDIX F2. (cont.)

5	cilium	6	cell projection, intracellular membrane-bounded organelle	Cellular Component
4	external encapsulating structure	11	cell part, cell periphery	Cellular Component
5	cell envelope	1	Envelope intracellular organelle part, membrane-bounded organelle,	Cellular Component
4	organelle envelope	48	envelope	Cellular Component
3	extracellular region part	47	cellular_component, extracellular region	Cellular Component
7	lytic vacuole	21	Vacuole	Cellular Component
4	endomembrane system	48	cell part	Cellular Component
3	membrane-bounded organelle	1184	Organelle	Cellular Component
3	vesicle	53	Organelle	Cellular Component
4	envelope	49	cell part	Cellular Component
6	intracellular organelle lumen	334	intracellular organelle part, organelle lumen	Cellular Component
Null	all	0		Cellular Component
2	extracellular matrix	19	cellular_component	Cellular Component
6	intracellular non-membrane-	713	intracellular organelle, non-membrane-bounded organelle	Cellular Component
4	bounded organelle	organelle lumen	334	organelle part, membrane-enclosed lumen
6	nuclear part	intracellular organelle part, nucleus	Cellular Component	
3	non-membrane-bounded	369	713	Organelle
organelle	intracellular membrane-			Cellular Component
6	bounded organelle	1184	intracellular organelle, membrane-bounded organelle	Cellular Component
4	membrane-bounded vesicle	53	Vesicle	Cellular Component
5	cytoplasmic part	910	intracellular part, cytoplasm	Cellular Component
3	cell part	cell, cellular_component	Cellular Component	
6	cytoskeletal part	intracellular organelle	3114	1531

APPENDIX F2. (cont.)

2	membrane-enclosed lumen	334	cellular_component	Cellular Component
5	ribonucleoprotein complex	275	macromolecular complex, intracellular part cellular_component cytoplasmic part, intracellular membrane-bounded organelle	Cellular Component
6	membrane	207	cellular Component	
6	microbody	19	53	cytoplasmic part, vesicle, intracellular organelle

APPENDIX F2. (cont.)

3	nucleic acid binding	592	heterocyclic compound binding, organic cyclic compound binding kinase activity, phosphotransferase activity, alcohol group as acceptor	Molecular Function
6	protein kinase activity	122	molecular_function	Molecular Function
2	enzyme regulator activity translation factor activity,	101	89	RNA binding
5	nucleic acid binding	calcium ion binding	87	metal ion binding transferase activity, transferring phosphorus-containing
6	kinase activity	208	groups	Molecular Function
5	lipid binding	65	Binding	Molecular Function
3	actin binding	receptor activity	cytoskeletal protein binding	Molecular Function
5	sequence-specific DNA	53	molecular_function	Molecular Function
2	binding transcription factor	53		Molecular Function
	activity	nucleic acid binding transcription factor activity	Molecular Function	
3	phosphoprotein phosphatase	51	phosphatase activity	Molecular Function
7	activity	carbohydrate binding	50	Binding
3	electron carrier activity	48	molecular_function	Molecular Function
2	receptor binding	42	protein binding	Molecular Function
4	cytoskeletal protein binding	95	protein binding	Molecular Function
4	nuclease activity	38	hydrolase activity, acting on ester bonds	Molecular Function
5	chromatin binding	37	Binding	Molecular Function
3	signal transducer activity	30	molecular transducer activity	Molecular Function
3	motor activity	29	nucleoside-triphosphatase activity	Molecular Function
8	transcription regulator activity	28	obsolete_molecular_function	Molecular Function
Null			Molecular Function	

APPENDIX F2. (cont.)

2	antioxidant activity	19	molecular_function substrate-specific channel activity, ion transmembrane	Molecular Function
6	ion channel activity organic cyclic compound	16	transporter activity	Molecular Function
3	binding carboxylic ester hydrolase	1213	Binding	Molecular Function
5	activity	9	hydrolase activity, acting on ester bonds	Molecular Function
2	translation regulator activity neurotransmitter transporter	2	molecular_function	Molecular Function
4	activity	2	transporter activity	Molecular Function
6	lead ion binding	1	metal ion binding	Molecular Function
3	small molecule binding	829	Binding	Molecular Function
3	oxygen binding substrate-specific	1	Binding	Molecular Function
4	transmembrane transporter activity hydrolase activity, acting on acid anhydrides, in phosphorus-containing	16	substrate-specific transporter activity, transmembrane transporter activity	Molecular Function
5	anhydrides	29	hydrolase activity, acting on acid anhydrides	Molecular Function
2	molecular transducer activity ion transmembrane transporter	30	molecular_function	Molecular Function
5	activity	16	substrate-specific transmembrane transporter activity	Molecular Function
5	metal ion binding	88	cation binding	Molecular Function
5	channel activity phosphoric ester hydrolase	16	passive transmembrane transporter activity	Molecular Function
5	activity	51	hydrolase activity, acting on ester bonds	Molecular Function
4	cation binding	88	ion binding	Molecular Function

APPENDIX F2. (cont.)

4	hydrolase activity, acting on acid anhydrides	29	hydrolase activity	Molecular Function
4	ester bonds transmembrane transporter	98	hydrolase activity	Molecular Function
3	activity	16	transporter activity	Molecular Function
6	phosphatase activity	51	phosphoric ester hydrolase activity	Molecular Function
5	phosphotransferase activity, alcohol group as acceptor nucleic acid binding	122	transferase activity, transferring phosphorus-containing groups	Molecular Function
2	transcription factor activity	53	molecular_function	Molecular Function
Null	all substrate-specific transporter	0		Molecular Function
3	activity	16	transporter activity	Molecular Function
3	ion binding passive transmembrane	88	Binding	Molecular Function
4	transporter activity	16	transmembrane transporter activity	Molecular Function
Null	obsolete_molecular_function	28		Molecular Function
Null	nucleoside phosphate binding	828	heterocyclic compound binding, organic cyclic compound binding hydrolase activity, acting on acid anhydrides, in	Molecular Function
6	pyrophosphatase activity	29	phosphorus-containing anhydrides	Molecular Function
Null	heterocyclic compound binding nucleoside-triphosphatase	1203	Binding	Molecular Function
7	activity substrate-specific channel	29	pyrophosphatase activity substrate-specific transmembrane transporter activity,	Molecular Function
5	activity	16	channel activity	Molecular Function

APPENDIX F2. (cont.)

transferase activity, transferring phosphorus-

APPENDIX F3. C. tomentosicollis.

$\begin{aligned} & \hline \text { GO } \\ & \text { Level } \end{aligned}$	Term (Name)	\#Sequence	Parents (Name)	Category
2	metabolic process	2379	biological_process	Biological Process
3	regulation of biological process multicellular organismal development	850 680	biological regulation, biological_process single-multicellular organism process, developmental process	Biological Process Biological Process
3	catabolic process nucleobase-containing	619	metabolic process heterocycle metabolic process, primary metabolic process, organic cyclic compound metabolic process, cellular aromatic compound metabolic process, cellular nitrogen compound metabolic	Biological Process
4	compound metabolic process cellular component organization	572 708	process cellular component organization or biogenesis	Biological Process Biological Process
4	cell differentiation	413	cellular developmental process	Biological Process
4	transport	620	establishment of localization	Biological Process
3	biosynthetic process	759	metabolic process primary metabolic process,	Biological Process
4	protein metabolic process	998	macromolecule metabolic process cellular macromolecule biosynthetic process, cellular protein metabolic	Biological Process
6	translation	371	process, gene expression single organism signaling, cell communication, cellular response to	Biological Process
4	signal transduction anatomical structure	360	stimulus, regulation of cellular process anatomical structure development,	Biological Process
4	morphogenesis	347	developmental process	Biological Process

APPENDIX F3. (cont.)

6	cellular protein modification process	344	cellular protein metabolic process, protein modification process	Biological Process
3	response to stress	316	response to stimulus	Biological Process
3	cell cycle generation of precursor	249	single-organism cellular process	Biological Process
4	metabolites and energy	235	cellular metabolic process single-organism cellular process, cellular	Biological Process
5	organelle organization	420	component organization	Biological Process
2	reproduction	217	biological_process primary metabolic process, organic	Biological Process
4	carbohydrate metabolic process	216	substance metabolic process	Biological Process
6	cytoskeleton organization	206	organelle organization organic substance transport, establishment	Biological Process
6	protein transport	199	of protein localization single-organism developmental process, multicellular organismal development,	Biological Process
4	embryo development	163	anatomical structure development	Biological Process
3	cell death	159	death, single-organism cellular process primary metabolic process, organic substance metabolic process, single-	Biological Process
4	lipid metabolic process	157	organism metabolic process	Biological Process
5	ion transport	133	single-organism transport	Biological Process
3	response to external stimulus	111	response to stimulus single organism signaling, cell	Biological Process
3	cell-cell signaling	110	communication	Biological Process
3	cellular homeostasis	110	homeostatic process, single-organism cellular process	Biological Process

APPENDIX F3. (cont.)

3	behavior	100	response to stimulus	Biological Process
2	growth	104	biological_process	Biological Process
2	cell proliferation	89	single-organism process	Biological Process
3	response to biotic stimulus	74	response to stimulus nucleic acid metabolic process, cellular	Biological Process
6	DNA metabolic process	72	macromolecule metabolic process	Biological Process
3	response to abiotic stimulus	68	response to stimulus	Biological Process
6	mitochondrion organization response to endogenous	55	organelle organization	Biological Process
3	stimulus	43	response to stimulus	Biological Process
3	secondary metabolic process	41	single-organism metabolic process	Biological Process
2	viral reproduction	39	multi-organism cellular process single-multicellular organism process,	Biological Process
3	cell recognition	30	single-organism cellular process	Biological Process
3	cell communication	450	single-organism cellular process	Biological Process
3	primary metabolic process symbiosis, encompassing	1712	metabolic process	Biological Process
4	mutualism through parasitism	22	interspecies interaction between organisms	Biological Process
3	cell growth regulation of gene expression,	20	growth, single-organism cellular process	Biological Process
7	epigenetic	19	regulation of gene expression single-organism cellular process, cellular	Biological Process
5	cytoplasm organization	18	component organization	Biological Process
5	intracellular signal transduction	3	signal transduction	Biological Process
2	death	159	single-organism process	Biological Process
2	cellular process	1936	biological_process	Biological Process

APPENDIX F3. (cont.)

3	regulation of biological quality	110	biological regulation	Biological Process
2	localization	620	biological_process	Biological Process
2	response to stimulus organic substance metabolic	648	biological_process	Biological Process
3	process	1697	metabolic process developmental process, single-organism	Biological Process
3	cellular developmental process	413	cellular process cellular metabolic process, biosynthetic	Biological Process
4	cellular biosynthetic process organic substance biosynthetic	371	process organic substance metabolic process,	Biological Process
Null	process single-organism cellular	371	biosynthetic process	Biological Process
Null	process cellular protein metabolic	1038	single-organism process, cellular process protein metabolic process, cellular	Biological Process
5	process single-organism metabolic	698	macromolecule metabolic process	Biological Process
Null	process anatomical structure	186	metabolic process	Biological Process
3	development	398	developmental process	Biological Process
Null	multi-organism cellular process cellular macromolecule	39	multi-organism process, cellular process cellular macromolecule metabolic process, cellular biosynthetic process,	Biological Process
5	biosynthetic process cellular macromolecule	371	macromolecule biosynthetic process cellular metabolic process, macromolecule	Biological Process
4	metabolic process	744	metabolic process regulation of biological process, metabolic	Biological Process
4	regulation of metabolic process	19	process	Biological Process

APPENDIX F3. (cont.)

2	cellular component organization or biogenesis	708	biological_process	Biological Process
2	multi-organism process	44	biological_process gene expression, regulation of	Biological Process
6	regulation of gene expression	19	macromolecule metabolic process	Biological Process
4	heterocycle metabolic process	572	cellular metabolic process	Biological Process
5	organic substance transport establishment of protein	199	Transport establishment of localization, protein	Biological Process
5	localization	199	localization	Biological Process
Null	single organism signaling	431	single-organism process, signaling macromolecule metabolic process, nucleobase-containing compound	Biological Process
5	nucleic acid metabolic process regulation of macromolecule	72	metabolic process macromolecule metabolic process,	Biological Process
5	metabolic process	19	regulation of metabolic process	Biological Process
Null	single-organism process macromolecule metabolic	1285	biological_process	Biological Process
3	process	1054	organic substance metabolic process	Biological Process
4	homeostatic process cellular nitrogen compound	110	regulation of biological quality cellular metabolic process, nitrogen	Biological Process
4	metabolic process	572	compound metabolic process	Biological Process
2	signaling	431	biological_process	Biological Process
Null	single-organism transport single-organism developmental	133	single-organism process, transport single-organism process, developmental	Biological Process
Null	process	163	process	Biological Process
Null	organic cyclic compound metabolic process	572	organic substance metabolic process	Biological Process

APPENDIX F3. (cont.)

2	multicellular organismal process	680	biological process	Biological Process
4	macromolecule biosynthetic process	371	organic substance biosynthetic process, macromolecule metabolic process	Biological Process
2	biological regulation	879	biological_process	Biological Process
3	macromolecule localization nitrogen compound metabolic	199	Localization	Biological Process
3	process	572	metabolic process	Biological Process
3	establishment of localization	620	biological_process, localization cellular process, regulation of biological	Biological Process
4	regulation of cellular process cellular aromatic compound	360	process	Biological Process
4	metabolic process interspecies interaction	572	cellular metabolic process	Biological Process
3	between organisms	22	multi-organism process	Biological Process
4	gene expression	390	macromolecule metabolic process	Biological Process
Null	all	0		Biological Process
4	macromolecule modification	344	macromolecule metabolic process	Biological Process
3	cellular metabolic process	1322	metabolic process, cellular process response to stimulus, single-organism	Biological Process
3	cellular response to stimulus	360	cellular process	Biological Process
4	protein localization	199	macromolecule localization	Biological Process
2	developmental process single-multicellular organism	741	biological_process multicellular organismal process, single-	Biological Process
Null	process	680	organism process macromolecule modification, protein	Biological Process
5	protein modification process	344	metabolic process	Biological Process

APPENDIX F3. (cont.)

3	protein complex	765	macromolecular complex	Cellular Component
2	cell	2588	cellular_component	Cellular Component
5	cytoplasm	1564	intracellular part	Cellular Component
6	mitochondrion	465	bounded organelle	Cellular Component
7	nucleus	642	intracellular membrane-bounded organelle	Cellular Component
4	intracellular	2204	cell part	Cellular Component
7	cytoskeleton	317	intracellular non-membrane-bounded organelle ribonucleoprotein complex, cytoplasmic part, intracellular non-membrane-bounded	Cellular Component
6	ribosome	242	organelle	Cellular Component
6	cytosol	232	cytoplasmic part	Cellular Component
4	plasma membrane	219	cell part, cell periphery, membrane	Cellular Component
6	nucleoplasm	159	nuclear part, nuclear lumen	Cellular Component
6	lipid particle	144	cytoplasmic part cytoplasmic part, intracellular membrane-	Cellular Component
6	endoplasmic reticulum	137	bounded organelle nuclear part, nuclear lumen, intracellular	Cellular Component
6	nucleolus	103	non-membrane-bounded organelle	Cellular Component
2	organelle	1728	cellular_component cytoplasmic part, intracellular membrane-	Cellular Component
6	Golgi apparatus	97	bounded organelle	Cellular Component
2	extracellular region	153	cellular_component	Cellular Component
7	chromosome	107	intracellular non-membrane-bounded organelle	Cellular Component

APPENDIX F3. (cont.)

APPENDIX F3. (cont.)

4	endomembrane system	34	cell part	Cellular Component
3	membrane-bounded organelle	1307	Organelle	Cellular Component
3	vesicle	66	Organelle	Cellular Component
4	envelope	34	cell part intracellular organelle part, organelle	Cellular Component
6	intracellular organelle lumen	241	lumen	Cellular Component
Null	all	0		Cellular Component
2	extracellular matrix intracellular non-membrane-	14	cellular_component intracellular organelle, non-membrane-	Cellular Component
6	bounded organelle	695	bounded organelle	Cellular Component
4	organelle lumen	241	organelle part, membrane-enclosed lumen	Cellular Component
6	nuclear part non-membrane-bounded	272	intracellular organelle part, nucleus	Cellular Component
3	organelle intracellular membrane-	695	Organelle intracellular organelle, membrane-	Cellular Component
6	bounded organelle	1307	bounded organelle	Cellular Component
4	membrane-bounded vesicle	66	Vesicle	Cellular Component
5	cytoplasmic part	1098	intracellular part, cytoplasm	Cellular Component
3	cell part	2276	cell, cellular_component	Cellular Component
6	cytoskeletal part	56	intracellular organelle part, cytoskeleton	Cellular Component
5	intracellular organelle	1663	organelle, intracellular part	Cellular Component
2	membrane-enclosed lumen	241	cellular_component macromolecular complex, intracellular	Cellular Component
5	ribonucleoprotein complex	242	part	Cellular Component

APPENDIX F3. (cont.)

2	membrane	219	cellular_component cytoplasmic part, intracellular membrane-- bounded organelle cytoplasmic part, vesicle, intracellular organelle cellular_component organelle part, intracellular organelle, intracellular part	Cellular Component 6		
6	microbody	23	Cellular Component			
2	cytoplasmic vesicle	macromolecular complex	1003	Cellular Component Component		
4	intracellular organelle part	312	241	nuclear part, intracellular organelle lumen		Cellular Component
:---						
7						
nuclear lumen						

APPENDIX F3. (cont.)

4	RNA binding	284	177	nucleic acid binding nucleic acid binding heterocyclic compound binding, organic cyclic compound binding kinase activity, phosphotransferase activity, alcohol group as acceptor mNA binding

APPENDIX F3. (cont.)

3	signal transducer activity	31	molecular transducer activity	Molecular Function
3	chromatin binding	30	Binding substrate-specific channel activity, ion	Molecular Function
6	ion channel activity	30	transmembrane transporter activity	Molecular Function
2	antioxidant activity	29	molecular_function	Molecular Function
5	nuclease activity	28	hydrolase activity, acting on ester bonds	Molecular Function
8	motor activity carboxylic ester hydrolase	26	nucleoside-triphosphatase activity	Molecular Function
5	activity organic cyclic compound	17	hydrolase activity, acting on ester bonds	Molecular Function
3	binding neurotransmitter transporter	1247	Binding	Molecular Function
4	activity	3	transporter activity	Molecular Function
2	translation regulator activity	1	molecular_function	Molecular Function
2	protein tag	1	molecular_function	Molecular Function
6	7SK snRNA binding inositol phosphate phosphatase	1	snRNA binding	Molecular Function
7	activity	1	phosphatase activity	Molecular Function
3	oxygen binding substrate-specific	1	Binding	Molecular Function
4	transmembrane transporter activity hydrolase activity, acting on acid anhydrides, in	30	substrate-specific transporter activity, transmembrane transporter activity	Molecular Function
5	phosphorus-containing anhydrides	26	hydrolase activity, acting on acid anhydrides	Molecular Function
2	molecular transducer activity	31	molecular_function	Molecular Function

APPENDIX F3. (cont.)

5	ion transmembrane transporter activity	30	substrate-specific transmembrane transporter activity	Molecular Function
5	metal ion binding	83	cation binding	Molecular Function
5	channel activity phosphoric ester hydrolase	30	passive transmembrane transporter activity	Molecular Function
5	activity	47	hydrolase activity, acting on ester bonds	Molecular Function
4	cation binding	83	ion binding	Molecular Function
4	acid anhydrides	26	hydrolase activity	Molecular Function
4	ester bonds transmembrane transporter	92	hydrolase activity	Molecular Function
3	activity	30	transporter activity	Molecular Function
5	snRNA binding	1	RNA binding	Molecular Function
6	phosphatase activity phosphotransferase activity,	47	phosphoric ester hydrolase activity transferase activity, transferring	Molecular Function
5	alcohol group as acceptor	124	phosphorus-containing groups	Molecular Function
3	small molecule binding nucleic acid binding	865	Binding	Molecular Function
2	transcription factor activity	53	molecular_function	Molecular Function
Null	all substrate-specific transporter	0		Molecular Function
3	activity	30	transporter activity	Molecular Function
3	ion binding passive transmembrane	83	Binding	Molecular Function
4	transporter activity	30	transmembrane transporter activity	Molecular Function
Null	obsolete_molecular_function	33		Molecular Function

APPENDIX F3. (cont.)

Null	nucleoside phosphate binding	865	heterocyclic compound binding, organic cyclic compound binding hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides	Molecular Function
6	pyrophosphatase activity heterocyclic compound binding	26	1243	Binding
Null	nucleoside-triphosphatase activity substrate-specific channel activity transferase activity, transferring phosphorus- containing groups	26	pyrophosphatase activity substrate-specific transmembrane transporter activity, channel activity	Molecular Function
5	212	Molecular Function		
4	transferase activity	Molecular Function		

APPENDIX F4. M. sjostedti.

GO Level	Term (Name)	\#Sequence	Parents (Name)	Category
2	metabolic process	1862	biological_process	Biological Process
Null	single-organism process single-organism cellular	1001	biological_process single-organism process,	Biological Process
Null	process	810	cellular process	Biological Process
3	primary metabolic process	1402	metabolic process	Biological Process
2	cellular process	1567	biological_process biological regulation,	Biological Process
3	regulation of biological process	644	biological_process	Biological Process
2	developmental process multicellular organismal	544	biological_process single-multicellular organism	Biological Process
3	development cellular component	495	process, developmental process cellular component	Biological Process
3	organization organic substance metabolic	557	organization or biogenesis	Biological Process
3	process	1384	metabolic process primary metabolic process, macromolecule metabolic	Biological Process
4	protein metabolic process nucleobase-containing	817	process heterocycle metabolic process, primary metabolic process, organic cyclic compound metabolic process, cellular aromatic compound metabolic process, cellular nitrogen	Biological Process
4	compound metabolic process	512	compound metabolic process	Biological Process
4	transport	506	establishment of localization	Biological Process

APPENDIX F4. (cont.)

3	catabolic process	428	metabolic process metabolic process, cellular	Biological Process
3	cellular metabolic process	1123	process	Biological Process
2	response to stimulus	477	biological_process	Biological Process
2 5	biological regulation cellular protein metabolic process	655 608	biological_process protein metabolic process, cellular macromolecule metabolic process	Biological Process Biological Process
3 5	biosynthetic process	641 396	metabolic process single-organism cellular process, cellular component	Biological Process
5 4	organelle organization cell differentiation	$\begin{aligned} & 396 \\ & 355 \end{aligned}$	organization cellular developmental process cellular macromolecule biosynthetic process, cellular protein metabolic process, gene	Biological Process Biological Process
6	translation macromolecule metabolic	352	expression organic substance metabolic	Biological Process
3	process ${ }^{\text {single-multicellular organism }}$ (889	process multicellular organismal process, single-organism	Biological Process
null	process cellular component	495	process	Biological Process
2	organization or biogenesis	557	biological_process	Biological Process
4	heterocycle metabolic process cellular nitrogen compound	512	cellular metabolic process cellular metabolic process, nitrogen compound metabolic	Biological Process
4	metabolic process organic cyclic compound	512	process organic substance metabolic	Biological Process
null	metabolic process	512	process	Biological Process

APPENDIX F4. (cont.)

4	cellular aromatic compound metabolic process	512	cellular metabolic process	Biological Process
4	cellular macromolecule metabolic process	677	cellular metabolic process, macromolecule metabolic process	Biological Process
6	cellular protein modification process	265	cellular protein metabolic process, protein modification process	ological Process
3	establishment of localization	506	biological_process, localization anatomical structure	Biological Process
4	anatomical structure morphogenesis	260	development, developmental process	Biological Process
			single-organism cellular	
3	cell cycle	257	process	Biological Process
3	response to stress	240	response to stimulus single organism signaling, cell communication, cellular response to stimulus, regulation	Biological Process
4	signal transduction anatomical structure	232	of cellular process	Biological Process
3	development	303	developmental process macromolecule metabolic	Biological Process
4	gene expression	367	process	Biological Process
6	cytoskeleton organization	216	organelle organization developmental process, single-	Biological Process
3	cellular developmental process	355	organism cellular process cellular macromolecule metabolic process, cellular	Biological Process
5	cellular macromolecule biosynthetic process	352	biosynthetic process, macromolecule biosynthetic process	Biological Process

APPENDIX F4. (cont.)

3			single-organism cellular process	Biological Process
	cell communication multicellular organismal	308		
2	process	495	biological_process single-organism process, signaling	Biological Process
null	single organism signaling	292		Biological Process
2	reproduction nitrogen compound metabolic	184	biological_process	Biological Process
3	process generation of precursor	512	metabolic process	Biological Process
4	metabolites and energy	164	cellular metabolic process macromolecule modification, protein metabolic process	Biological Process
5	protein modification process	265		Biological Process
2	localization	506	biological_process organic substance transport, establishment of protein	Biological Process
6	protein transport	153	localization cellular process, regulation of	Biological Process
4	regulation of cellular process	232	biological process response to stimulus, single-	Biological Process
3	cellular response to stimulus	232	organism cellular process primary metabolic process, organic substance metabolic	Biological Process
4	carbohydrate metabolic process	136	process	Biological Process
5	ion transport	128	single-organism transport cellular metabolic process,	Biological Process
4	cellular biosynthetic process macromolecule biosynthetic	352	biosynthetic process organic substance biosynthetic process, macromolecule	Biological Process
4	process	352	metabolic process	Biological Process

APPENDIX F4. (cont.)

4	embryo development	122	single-organism developmental process, multicellular organismal development, anatomical structure development	Biological Process
2	signaling	292	biological_process primary metabolic process, organic substance metabolic process, single-organism	Biological Process
4	lipid metabolic process	111	metabolic process death, single-organism cellular	Biological Process
3	cell death	109	process macromolecule metabolic	Biological Process
4	macromolecule modification	265	process nucleic acid metabolic process, cellular macromolecule	Biological Process
6	DNA metabolic process	95	metabolic process	Biological Process
2	cell proliferation	95	single-organism process	Biological Process
5	organic substance transport establishment of protein	153	transport establishment of localization,	Biological Process
5	localization	153	protein localization single organism signaling, cell	Biological Process
3	cell-cell signaling single-organism metabolic	85	communication	Biological Process
null	process	129	metabolic process single-organism process,	Biological Process
null	single-organism transport organic substance biosynthetic	128	transport organic substance metabolic	Biological Process
null	process	352	process, biosynthetic process	Biological Process

APPENDIX F4. (cont.)

3	behavior	74	response to stimulus	Biological Process
3	response to external stimulus	74	response to stimulus	Biological Process
null	process	122	developmental process homeostatic process, single-	Biological Process
3	cellular homeostasis	70	organism cellular process	Biological Process
2	death	110	single-organism process	Biological Process
2	growth	67	biological_process macromolecule metabolic process, nucleobase-containing compound	Biological Process
5	nucleic acid metabolic process	95	metabolic process	Biological Process
4	protein localization	153	macromolecule localization	Biological Process
3	response to abiotic stimulus	55	response to stimulus	Biological Process
4	homeostatic process	70	regulation of biological quality	Biological Process
2	viral reproduction	39	multi-organism cellular process	Biological Process
6	mitochondrion organization	38	organelle organization	Biological Process
3	response to biotic stimulus	36	response to stimulus	Biological Process
3	macromolecule localization	153	localization	Biological Process
3	response to endogenous stimulus	30	response to stimulus	Biological Process
3	secondary metabolic process	27	single-organism metabolic process	Biological Process
3	regulation of biological quality	70	biological regulation multi-organism process, cellular	Biological Process
null	multi-organism cellular process	39	process	Biological Process
2	multi-organism process symbiosis, encompassing	43	biological_process interspecies interaction between	Biological Process
4	mutualism through parasitism	21	organisms	Biological Process

APPENDIX F4. (cont.)

\(\left.$$
\begin{array}{lllll}\hline 3 & \begin{array}{l}\text { cell growth } \\
\text { regulation of gene expression, } \\
\text { epigenetic }\end{array} & 20 & \begin{array}{l}\text { growth, single-organism } \\
\text { cellular process }\end{array}
$$ \& Biological Process

7 \& cytoplasm organization \& 19 \& \begin{array}{l}regulation of gene expression

single-organism cellular

process, cellular component

organization

single-multicellular organism

process, single-organism

cellular process\end{array} \& Biological Process\end{array}\right]\)| Biological Process |
| :--- |

APPENDIX F4. (cont.)

5	intracellular organelle	1402	organelle, intracellular part intracellular membrane-	Cellular Component
7	nucleus	579	bounded organelle	Cellular Component
2	macromolecular complex	859	cellular_component	Cellular Component
2 6	organelle intracellular non-membranebounded organelle	1434 636	cellular_component intracellular organelle, non-membrane-bounded organelle	Cellular Component
3	membrane-bounded organelle	1057	organelle cytoplasmic part, intracellular	Cellular Component
6	mitochondrion	315	membrane-bounded organelle intracellular non-membrane-	Cellular Component
7	cytoskeleton non-membrane-bounded	276	bounded organelle	Cellular Component
3	organelle	636	organelle ribonucleoprotein complex, cytoplasmic part, intracellular non-membrane-bounded	Cellular Component
6	ribosome	219	organelle	Cellular Component
6	cytosol	204	cytoplasmic part intracellular organelle part,	Cellular Component
6	nuclear part	270	nucleus nuclear part, intracellular	Cellular Component
7	nuclear lumen	239	organelle lumen cell part, cell periphery,	Cellular Component
4	plasma membrane	161	membrane	Cellular Component
6	nucleoplasm	141	nuclear part, nuclear lumen macromolecular complex,	Cellular Component
5	ribonucleoprotein complex	219	intracellular part organelle part, intracellular	Cellular Component
4	intracellular organelle part	297	organelle, intracellular part	Cellular Component

APPENDIX F4. (cont.)

6	lipid particle	126	cytoplasmic part	Cellular Component
6	endoplasmic reticulum	110	cytoplasmic part, intracellular membrane-bounded organelle intracellular organelle part,	Cellular Component
6	intracellular organelle lumen	239	organelle lumen nuclear part, nuclear lumen, intracellular non-membrane-	Cellular Component
6	nucleolus	102	bounded organelle	Cellular Component
4	cell periphery	161	cell part	Cellular Component
2	membrane	161	cellular_component intracellular non-membrane-	Cellular Component
7	chromosome	101	bounded organelle cytoplasmic part, intracellular	Cellular Component
6	Golgi apparatus	82	membrane-bounded organelle	Cellular Component
3	organelle part	297	cellular_component, organelle	Cellular Component
2	extracellular region	86	cellular_component organelle part, membrane-enclosed	Cellular Component
4	organelle lumen cytoplasmic membrane-bounde	239	lumen cytoplasmic vesicle, intracellular membrane-bounded organelle,	Cellular Component
7	vesicle	61	membrane-bounded vesicle nuclear part, nuclear lumen,	Cellular Component
6	nuclear chromosome	43	chromosome nuclear part, organelle envelope,	Cellular Component
5	nuclear envelope	43	endomembrane system	Cellular Component
2	membrane-enclosed lumen	239	cellular_component	Cellular Component
4	membrane-bounded vesicle	61	vesicle	Cellular Component

APPENDIX F4. (cont.)

\(\left.\begin{array}{lllll}\hline 6 \& cytoplasmic vesicle \& 61 \& \begin{array}{l}cytoplasmic part, vesicle,

intracellular organelle

microtubule cytoskeleton,

cytoskeletal part

cytoplasmic part, intracellular

membrane-bounded organelle

cytoplasmic part, intracellular

membrane-bounded organelle\end{array} \& Cellular Component\end{array}\right]\) Cellular Component | intracellular organelle part, |
| :--- |

APPENDIX F4. (cont.)

5	cilium	4	cell projection, intracellular membrane-bounded organelle	Cellular Component
2	extracellular matrix	6	cellular_component	Cellular Component
4	cell projection	4	cell part	Cellular Component
5	cell wall	1	external encapsulating structure	Cellular Component
4	external encapsulating structure	1	cell part, cell periphery	Cellular Component
2	binding	1760	molecular_function	Molecular Function
2	catalytic activity	1766	molecular_function small molecule binding,	Molecular Function
4	nucleotide binding	683	nucleoside phosphate binding	Molecular Function
3	hydrolase activity	744	catalytic activity	Molecular Function
3	protein binding organic cyclic compound	567	binding	Molecular Function
3	binding	1016	binding	Molecular Function
Null	heterocyclic compound binding	1010	binding	Molecular Function
3 Null	small molecule binding	683 683	binding heterocyclic compound binding, organic cyclic	Molecular Function
Null	nucleoside phosphate binding	683	compound binding	Molecular Function
3	transferase activity	470	catalytic activity heterocyclic compound binding, organic cyclic	Molecular Function
3	nucleic acid binding	506		Molecular Function
2	structural molecule activity	280	molecular_function	Molecular Function
2	transporter activity	255	molecular_function	Molecular Function
4	RNA binding	256	nucleic acid binding	Molecular Function
4	peptidase activity	174	hydrolase activity	Molecular Function
4	DNA binding	159	nucleic acid binding	Molecular Function

APPENDIX F4. (cont.)

\(\left.\begin{array}{lllll}\hline \& \& \& \begin{array}{l}transferase activity,

transferring phosphorus-

containing groups\end{array} \& Molecular Function\end{array}\right]\)| Molecular Function |
| :--- |
| 5 |

APPENDIX F4. (cont.)

4	cation binding	78	ion binding	Molecular Function
4	hydrolase activity, acting on			
4		73	phosphoric ester hydrolase	Molecular Function
6	phosphatase activity	42	activity	Molecular Function
3	chromatin binding	25	binding	Molecular Function
5	nuclease activity	24	hydrolase activity, acting on ester bonds	Molecular Function
null	transcription regulator activity	22	obsolete_molecular_function	Molecular Function
3	carbohydrate binding	22	binding	Molecular Function
2	receptor activity nucleic acid binding	21	molecular_function	Molecular Function
2	transcription factor activity nucleoside-triphosphatase	35	molecular_function	Molecular Function
7	activity	30	pyrophosphatase activity substrate-specific channel activity, ion transmembrane	Molecular Function
6	ion channel activity	18	transporter activity	Molecular Function
3	ion binding	78	binding	Molecular Function
5	phosphoric ester hydrolase activity	42	hydrolase activity, acting on ester bonds	Molecular Function
null	obsolete_molecular_function	22		Molecular Function
2	antioxidant activity	12	molecular_function	Molecular Function
3	signal transducer activity	12	molecular transducer activity substrate-specific	Molecular Function
5	ion transmembrane transporter activity	18	transmembrane transporter activity	Molecular Function

APPENDIX F4. (cont.)

\(\left.\begin{array}{lllll}\hline \& \& \& \begin{array}{l}hydrolase activity, acting on

acid anhydrides, in

phosphorus-containing

anhydrides

substrate-specific

transmembrane transporter

activity, channel activity

molecular_function\end{array} \& Molecular Function\end{array}\right]\)| Molecular Function |
| :--- |
| 5 |

APPENDIX G
Species distribution of the top Blastx hits
APPENDIX G1. A. curvipes.

- Riptortus pedestris
- Tribolium castaneum
- Pediculus humanus
- Acyrthosiphon pisum
- Nasonia vitripennis
- Megachile rotundata
- Ceratitis capitata
- Camponotus floridanus
- Harpegnathos saltator
- Dendroctonus ponderosae
- Acromyrmex echinatior
- Bombus impatiens
- Apis mellifera
- Aedes aegypti
- Solenopsis invicta
- Bombus terrestris
- Danaus plexippus
- Daphnia pulex
- Apis florea
- Anopheles gambiae
- Culex quinquefasciatus
- Drosophila melanogaster
- Drosophila willistoni
- Ixodes scapularis
- Drosophila mojavensis
- Drosophila ananassae
- Anopheles darlingi
- Drosophila virilis
- Nilaparvata lugens
- Others

APPENDIX G2. A. craccivora.

- Acyrthosiphon pisum
- Rhizopus delemar
- Batrachochytrium dendrobatidi
- Pediculus humanus
- Hordeum vulgare
- Buchnera aphidicola
- Ubiquinone
- Toxoptera citricida
- Tribolium castaneum
- Aphis gossypii
- Aphis glycines
- Harpegnathos saltator

Dendroctonus ponderosae

- Megachile rotundata
- Nasonia vitripennis
- Acromyrmex echinatior
- Crassostrea gigas
-Culex quinquefasciatus
- Stereum hirsutum

Rhodosporidium toruloides

- Danaus plexippus
- Drosophila melanogaster
- Tuber melanosporum
- Melampsora larici-populina
- Apis florea

Others

APPENDIX G3. C. tomentosicollis.

APPENDIX G4. M. sjostedti.

- Tribolium castaneum
- Pediculus humanus
- Danaus plexippus
- Nasonia vitripennis
- Megachile rotundata
- Harpegnathos saltator
- Camponotus floridanus
- Aedes aegypti
- Acyrthosiphon pisum
- Bombyx mori
- Dendroctonus ponderosae

Solenopsis invicta

- Apis mellifera
- Papilio xuthus
- Daphnia pulex
- Acromyrmex echinatior
- Bombus impatiens
- Apis florea
- Riptortus pedestris
- Bombus terrestris
- Anopheles gambiae
- Culex quinquefasciatus
- Papilio polytes
- Coptotermes formosanus
- Ceratitis capitata
- Anopheles darlingi

Branchiostoma floridae

- Spodoptera frugiperda
- Frankliniella occidentalis
- Others

APPENDIX H

InterProScan results from A. craccivora contigs that showed Blastn hits to B. aphidicola

Contig ID	InterProScan			
Aphis 47	noIPR	Unintegrated	unintegrated	SignalP-NN(euk) (SIGNALP)
Aphis 47	noIPR	Unintegrated	unintegrated	tmhmm (TMHMM)
Aphis 47	noIPR	Unintegrated	unintegrated	
Aphis 65	IPR025472	Protein of unknown function DUF4323	Family	PF14211 (PFAM)
Aphis 65	IPR025472	Protein of unknown function DUF4323	Family	
Aphis 221	IPR000850	Adenylate kinase	Family	PR00094 (PRINTS)
Aphis 221	IPR000850	Adenylate kinase	Family	PTHR23359 (PANTHER)
Aphis 221	IPR000850	Adenylate kinase	Family	PF00406 (PFAM)
Aphis 221	IPR000850	Adenylate kinase	Family	GO:0005524
Aphis 221	IPR000850	Adenylate kinase	Family	GO:0006139
Aphis 221	IPR000850	Adenylate kinase	Family	$\begin{aligned} & \text { GO:0019205 } \\ & \text { SSF52540 } \end{aligned}$
Aphis 221	IPR027417	P-loop containing nucleoside triphosphate hydrolase	Domain	(SUPERFAMILY)
Aphis 221	IPR027417	$\mathrm{P}-\mathrm{loop}$ containing nucleoside triphosphate hydrolase	Domain	
Aphis 221	noIPR	Unintegrated	unintegrated	G3DSA:3.40.50.300 (GENE3D)
Aphis 221	noIPR	Unintegrated	unintegrated	
Aphis 367	noIPR	Unintegrated	unintegrated	SignalP-NN(euk) (SIGNALP)
Aphis 367	noIPR	Unintegrated	unintegrated	
Aphis 1561	IPR001347	Sugar isomerase (SIS)	Domain	PF01380 (PFAM)
Aphis 1561	IPR001347	Sugar isomerase (SIS)	Domain	PS51464 (PROFILE)
Aphis 1561	IPR001347	Sugar isomerase (SIS)	Domain	GO:0005975

APPENDIX H. (cont.)

Aphis 1561	IPR001347	Sugar isomerase (SIS)	Domain	GO:0030246
Aphis 1561	IPR005855	Glucosamine-fructose-6-phosphate aminotransferase, isomerising	Family	PTHR10937:SF0 (PANTHER)
Aphis 1561	IPR005855	Glucosamine-fructose-6-phosphate aminotransferase, isomerising	Family	GO:0004360
Aphis 1561	IPR005855	Glucosamine-fructose-6-phosphate aminotransferase, isomerising	Family	GO:0005737
Aphis 1561	IPR005855	Glucosamine-fructose-6-phosphate aminotransferase, isomerising	Family	$\begin{aligned} & \text { GO:0016051 } \\ & \text { G3DSA:3.40.50.10490 } \end{aligned}$
Aphis 1561	noIPR	unintegrated	unintegrated	(GENE3D)
Aphis 1561	noIPR	unintegrated	unintegrated	PTHR10937 (PANTHER) SSF53697
Aphis 1561	noIPR	unintegrated	unintegrated	(SUPERFAMILY)
Aphis 1561	noIPR	unintegrated	unintegrated	
Aphis 2076	IPR002508	Cell wall hydrolase/autolysin, catalytic	Domain	G3DSA:3.40.630.40 (GENE3D)
Aphis 2076	IPR002508	Cell wall hydrolase/autolysin, catalytic	Domain	PF01520 (PFAM)
Aphis 2076	IPR002508	Cell wall hydrolase/autolysin, catalytic	Domain	GO:0008745
Aphis 2076	IPR002508	Cell wall hydrolase/autolysin, catalytic	Domain	GO:0009253
Aphis 2076	noIPR	unintegrated	unintegrated	PTHR30404 (PANTHER) PTHR30404:SF0
Aphis 2076	noIPR	unintegrated	unintegrated	(PANTHER)
Aphis 2076	noIPR	unintegrated	unintegrated	
Aphis 2391	IPR001353	Proteasome, subunit alpha/beta	Family	PF00227 (PFAM)
Aphis 2391	IPR001353	Proteasome, subunit alpha/beta	Family	GO:0004298
Aphis 2391	IPR001353	Proteasome, subunit alpha/beta	Family	GO:0005839
Aphis 2391	IPR001353	Proteasome, subunit alpha/beta	Family	GO:0051603

APPENDIX H. (cont.)

Aphis 2391	noIPR	Unintegrated	unintegrated	G3DSA:3.60.20.10 (GENE3D)
Aphis 2391	noIPR	Unintegrated	unintegrated	PTHR32194 (PANTHER) PTHR32194:SF0
Aphis 2391	noIPR	Unintegrated	unintegrated	(PANTHER) SSF56235
Aphis 2391	noIPR	Unintegrated	unintegrated	(SUPERFAMILY)
Aphis 2391	noIPR	Unintegrated	unintegrated	
Aphis 2472	IPR004160	Translation elongation factor EFTu/EF1A, C-terminal	Domain	PF03143 (PFAM)
Aphis 2472	IPR004160	Translation elongation factor EFTu/EF1A, C-terminal	Domain	GO:0005525
Aphis 2472	IPR004161	Translation elongation factor EFTu/EF1A, domain 2	Domain	PF03144 (PFAM)
Aphis 2472	IPR004161	Translation elongation factor EFTu/EF1A, domain 2	Domain	$\begin{aligned} & \text { GO:0005525 } \\ & \text { PTHR23115:SF31 } \end{aligned}$
Aphis 2472	IPR004541	Translation elongation factor EFTu/EF1A, bacterial/organelle	Family	(PANTHER)
Aphis 2472	IPR004541	Translation elongation factor EFTu/EF1A, bacterial/organelle	Family	GO:0003746
Aphis 2472	IPR004541	Translation elongation factor EFTu/EF1A, bacterial/organelle	Family	GO:0005525
Aphis 2472	IPR004541	Translation elongation factor EFTu/EF1A, bacterial/organelle	Family	GO:0005622
Aphis 2472	IPR004541	Translation elongation factor EFTu/EF1A, bacterial/organelle	Family	$\begin{aligned} & \text { GO:0006414 } \\ & \text { SSF50447 } \end{aligned}$
Aphis 2472	IPR009000	Translation elongation/initiation factor/Ribosomal, beta-barrel	Domain	(SUPERFAMILY)
Aphis 2472	IPR009000	Translation elongation/initiation factor/Ribosomal, beta-barrel Translation elongation factor EF1A/initiation factor	Domain	SSF50465
Aphis 2472	IPR009001	IF2gamma, C-terminal Translation elongation factor EF1A/initiation factor	Domain	(SUPERFAMILY)
Aphis 2472	IPR009001	IF2gamma, C-terminal	Domain	
Aphis 2472	noIPR	Unintegrated	unintegrated	G3DSA:2.40.30.10 (GENE3D)
Aphis 2472	noIPR	Unintegrated	unintegrated	PTHR23115 (PANTHER)

APPENDIX H. (cont.)

Aphis 2472	noIPR	unintegrated	unintegrated	
Aphis 2530	IPR000529	Ribosomal protein S6	Family	PF01250 (PFAM)
Aphis 2530	IPR000529	Ribosomal protein S6	Family	TIGR00166 (TIGRFAMs)
Aphis 2530	IPR000529	Ribosomal protein S6	Family	SSF54995
Aphis 2530	IPR000529	Ribosomal protein S6	Family	GO:0003735
Aphis 2530	IPR000529	Ribosomal protein S6	Family	GO:0005840
Aphis 2530	IPR000529	Ribosomal protein S6	Family	GO:0006412
Aphis 2530	IPR000529	Ribosomal protein S6	Family	GO:0019843
			Domain	G3DSA:3.30.70.60
Aphis 2530	IPR014717	Translation elongation factor EF1B/ribosomal protein S6	(GENE3D)	
Aphis 2530	IPR014717	Translation elongation factor EF1B/ribosomal protein S6	Domain	
Aphis 2530	IPR020815	Ribosomal protein S6, conserved site	Conserved_site	PS01048 (PROSITE)
Aphis 2530	IPR020815	Ribosomal protein S6, conserved site	Conserved_site	GO:0003735
Aphis 2530	IPR020815	Ribosomal protein S6, conserved site	Conserved_site	GO:0005840
Aphis 2530	IPR020815	Ribosomal protein S6, conserved site	Conserved_site	GO:0006412
Aphis 2530	IPR020815	Ribosomal protein S6, conserved site	Conserved_site	GO:0019843
Aphis 2736	noIPR	unintegrated	unintegrated	SignalP-NN(euk)
(SIGNALP)				
Aphis 2736	noIPR	unintegrated	unintegrated	
Aphis 3831	IPR006847	Translation initiation factor IF-2, N-terminal	Domain	PF04760 (PFAM)
Aphis 3831	IPR006847	Translation initiation factor IF-2, N-terminal	Domain	GO:0003743
Aphis 3831	IPR006847	Translation initiation factor IF-2, N-terminal	Domain	GO:0006413
Aphis 3831	IPR009061	DNA binding domain, putative	Domain	SSF46955
(SUPERFAMILY)	Domain	GO:0000166		

APPENDIX H. (cont.)

Aphis 3831	IPR013575	Initiation factor 2 associated domain, bacterial	Domain	PF08364 (PFAM)
Aphis 3831	IPR013575	Initiation factor 2 associated domain, bacterial	Domain	
Aphis 3831	noIPR	Unintegrated	unintegrated	G3DSA:3.30.56.50 (GENE3D)
Aphis 3831	noIPR	Unintegrated	unintegrated	
Aphis 3870	IPR016484	GTP-binding protein EngA	Family	PTHR11649:SF5 (PANTHER)
Aphis 3870	IPR016484	GTP-binding protein EngA	Family	$\begin{aligned} & \text { GO:0005525 } \\ & \text { G3DSA:3.40.50.300 } \end{aligned}$
Aphis 3870	noIPR	Unintegrated	unintegrated	(GENE3D)
Aphis 3870	noIPR	Unintegrated	unintegrated	PTHR11649 (PANTHER)
Aphis 3870	noIPR	Unintegrated	unintegrated	
Aphis 4564	IPR000795	Elongation factor, GTP-binding domain	Domain	PF00009 (PFAM)
Aphis 4564	IPR000795	Elongation factor, GTP-binding domain	Domain	GO:0003924
Aphis 4564	IPR000795	Elongation factor, GTP-binding domain	Domain	GO:0005525
Aphis 4564	IPR005225	Small GTP-binding protein domain	Domain	TIGR00231 (TIGRFAMs)
Aphis 4564	IPR005225	Small GTP-binding protein domain	Domain	GO:0005525
Aphis 4564	IPR006847	Translation initiation factor IF-2, N-terminal	Domain	PF04760 (PFAM)
Aphis 4564	IPR006847	Translation initiation factor IF-2, N -terminal	Domain	GO:0003743
Aphis 4564	IPR006847	Translation initiation factor IF-2, N -terminal	Domain	$\begin{aligned} & \text { GO:0006413 } \\ & \text { PTHR23115:SF41 } \end{aligned}$
Aphis 4564	IPR015760	Translation initiation factor IF-2	Family	(PANTHER)
Aphis 4564	IPR015760	Translation initiation factor IF- 2	Family	
Aphis 4564	IPR027417	P-loop containing nucleoside triphosphate hydrolase	Domain	$\begin{aligned} & \text { SSF52540 } \\ & \text { (SUPERFAMILY) } \end{aligned}$
Aphis 4564	IPR027417	$\mathrm{P}-\mathrm{loop}$ containing nucleoside triphosphate hydrolase	Domain	

APPENDIX H. (cont.)

Aphis 4564	noIPR	unintegrated	unintegrated	G3DSA:3.40.50.300 (GENE3D)
Aphis 4564	noIPR	unintegrated	unintegrated	PTHR23115 (PANTHER)
Aphis 4564	noIPR	unintegrated	unintegrated	
Aphis 4568	IPR000819	Peptidase M17, leucyl aminopeptidase, C-terminal	Domain	PF00883 (PFAM)
Aphis 4568	IPR000819	Peptidase M17, leucyl aminopeptidase, C-terminal	Domain	GO:0004177
Aphis 4568	IPR000819	Peptidase M17, leucyl aminopeptidase, C-terminal	Domain	GO:0005622
Aphis 4568	IPR000819	Peptidase M17, leucyl aminopeptidase, C-terminal	Domain	$\begin{aligned} & \text { GO:0006508 } \\ & \text { G3DSA:3.40.630.10 } \end{aligned}$
Aphis 4568	noIPR	unintegrated	unintegrated	(GENE3D)
Aphis 4568	noIPR	unintegrated	unintegrated	PTHR11963 (PANTHER) PTHR11963:SF4
Aphis 4568	noIPR	unintegrated	unintegrated	(PANTHER) SSF53187
Aphis 4568	noIPR	unintegrated	unintegrated	(SUPERFAMILY)
Aphis 4568	noIPR	unintegrated	unintegrated	
Aphis 5021	IPR027417	P-loop containing nucleoside triphosphate hydrolase	Domain	$\begin{aligned} & \text { SSF52540 } \\ & \text { (SUPERFAMILY) } \end{aligned}$
Aphis 5021	IPR027417	P-loop containing nucleoside triphosphate hydrolase	Domain	
Aphis 5021	noIPR	unintegrated	unintegrated	G3DSA:3.40.50.300 (GENE3D)
Aphis 5021	noIPR	unintegrated	unintegrated	PTHR19211 (PANTHER) PTHR19211:SF7
Aphis 5021	noIPR	unintegrated	unintegrated	(PANTHER)
Aphis 5021	noIPR	unintegrated	unintegrated	
Aphis 5225	IPR002133	S-adenosylmethionine synthetase	Family	PTHR11964 (PANTHER)
Aphis 5225	IPR002133	S-adenosylmethionine synthetase	Family	GO:0004478
Aphis 5225	IPR002133	S-adenosylmethionine synthetase	Family	GO:0005524

APPENDIX H. (cont.)

Aphis 5225	IPR002133	S-adenosylmethionine synthetase	Family	GO:0006556
Aphis 5225	IPR022628	S-adenosylmethionine synthetase, N-terminal	Domain	PF00438 (PFAM)
Aphis 5225	IPR022628	S-adenosylmethionine synthetase, N-terminal	Domain	GO:0004478
Aphis 5225	IPR022628	S-adenosylmethionine synthetase, N-terminal	Domain	GO:0006556
Aphis 5225	IPR022636	S-adenosylmethionine synthetase superfamily	Domain	SSF55973
(SUPERFAMILY)				
Aphis 5225	IPR022636	S-adenosylmethionine synthetase superfamily	Domain	GO:0004478
Aphis 5225	IPR022636	S-adenosylmethionine synthetase superfamily	Domain	GO:0006556 G3DSA:3.30.300.10
Aphis 5225	noIPR	Unintegrated	unintegrated	(GENE3D)
Aphis 5225 noIPR Unintegrated unintegrated	PTHR11964:SF0			
(PANTHER)				

APPENDIX H. (cont.)

Aphis 5691	IPR005882	Bifunctional UDP-N-acetylglucosamine pyrophosphorylase/glucosamine-1-phosphate N acetyltransferase Bifunctional UDP-N-acetylglucosamine	Family	GO:0003977
Aphis 5691	IPR005882	pyrophosphorylase/glucosamine-1-phosphate Nacetyltransferase Bifunctional UDP-N-acetylglucosamine	Family	GO:0005737
Aphis 5691	IPR005882	pyrophosphorylase/glucosamine-1-phosphate N acetyltransferase	Family	GO:0009103
Aphis 5691	IPR005882	Bifunctional UDP-N-acetylglucosamine pyrophosphorylase/glucosamine-1-phosphate Nacetyltransferase	Family	GO:0009252
Aphis 5691	IPR005882	Bifunctional UDP-N-acetylglucosamine pyrophosphorylase/glucosamine-1-phosphate N acetyltransferase	Family	GO:0019134
Aphis 5691	IPR011004	Trimeric LpxA-like	Domain	SSF51161 (SUPERFAMILY)
Aphis 5691	IPR011004	Trimeric LpxA-like	Domain	$\begin{aligned} & \text { GO:0016740 } \\ & \text { G3DSA:2.160.10.10 } \end{aligned}$
Aphis 5691	noIPR	unintegrated	unintegrated	(GENE3D)
Aphis 5691	noIPR	unintegrated	unintegrated	PTHR22572 (PANTHER)
Aphis 5691	noIPR	unintegrated	unintegrated	
Aphis 5984	IPR001844	Chaperonin Cpn60	Family	PR00298 (PRINTS)
Aphis 5984	IPR001844	Chaperonin Cpn60	Family	GO:0005737
Aphis 5984	IPR001844	Chaperonin Cpn60	Family	GO:0042026
Aphis 5984	IPR002423	Chaperonin Cpn60/TCP-1	Family	PTHR11353 (PANTHER)
Aphis 5984	IPR002423	Chaperonin Cpn60/TCP-1	Family	PF00118 (PFAM)

APPENDIX H. (cont.)

Aphis 5984	IPR002423	Chaperonin Cpn60/TCP-1	Family	$\begin{aligned} & \text { SSF48592 } \\ & \text { (SUPERFAMILY) } \end{aligned}$
Aphis 5984	IPR002423	Chaperonin Cpn60/TCP-1	Family	GO:0005524
Aphis 5984	IPR002423	Chaperonin Cpn60/TCP-1	Family	GO:0044267
Aphis 5984	IPR018370	Chaperonin Cpn60, conserved site	Conserved_site	PS00296 (PROSITE)
Aphis 5984	IPR018370	Chaperonin Cpn60, conserved site	Conserved_site	GO:0005524
Aphis 5984	IPR018370	Chaperonin Cpn60, conserved site	Conserved_site	GO:0005737
Aphis 5984	IPR018370	Chaperonin Cpn60, conserved site	Conserved_site	$\begin{aligned} & \text { GO:0006457 } \\ & \text { G3DSA:3.50.7.10 } \end{aligned}$
Aphis 5984	IPR027409	GroEL-like apical domain	Domain	$\begin{aligned} & \text { (GENE3D) } \\ & \text { SSF52029 } \end{aligned}$
Aphis 5984	IPR027409	GroEL-like apical domain	Domain	(SUPERFAMILY)
Aphis 5984	IPR027409	GroEL-like apical domain	Domain	
Aphis 5984	IPR027413	GroEL-like equatorial domain	Domain	G3DSA:1.10.560.10 (GENE3D)
Aphis 5984	IPR027413	GroEL-like equatorial domain	Domain	
Aphis 5984	noIPR	unintegrated	unintegrated	PTHR11353:SF10 (PANTHER)
$\text { Aphis } 5984$	noIPR	unintegrated	unintegrated	
Aphis 6159	IPR011603	2-oxoglutarate dehydrogenase, E1 component	Family	PTHR23152 (PANTHER)
Aphis 6159	IPR011603	2-oxoglutarate dehydrogenase, E1 component	Family	GO:0004591
Aphis 6159	IPR011603	2-oxoglutarate dehydrogenase, E1 component	Family	GO:0006099
Aphis 6159	IPR011603	2-oxoglutarate dehydrogenase, E1 component	Family	GO:0030976
Aphis 6159	IPR011603	2-oxoglutarate dehydrogenase, E1 component	Family	$\begin{aligned} & \text { GO:0055114 } \\ & \text { PTHR23152:SF0 } \end{aligned}$
Aphis 6159	noIPR	unintegrated	unintegrated	(PANTHER)
Aphis 6159	noIPR	unintegrated	unintegrated	

APPENDIX H. (cont.)

Aphis 6899	noIPR	unintegrated	unintegrated	SignalP-NN(euk) (SIGNALP)
Aphis 6899	noIPR	unintegrated	unintegrated	
Aphis 7020	IPR002903	Ribosomal RNA small subunit methyltransferase H	Family	PF01795 (PFAM)
Aphis 7020	IPR002903	Ribosomal RNA small subunit methyltransferase H	Family	$\begin{aligned} & \text { GO:0008168 } \\ & \text { G3DSA:3.40.1280.10 } \end{aligned}$
Aphis 7209	noIPR	unintegrated	unintegrated	(GENE3D)
Aphis 7209	noIPR	unintegrated	unintegrated	
Aphis 7344	IPR000454	ATPase, F0 complex, subunit C	Family	PR00124 (PRINTS) G3DSA:1.20.20.10
Aphis 7344	IPR000454	ATPase, F0 complex, subunit C	Family	(GENE3D)
Aphis 7344	IPR000454	ATPase, F0 complex, subunit C	Family	GO:0015078
Aphis 7344	IPR000454	ATPase, F0 complex, subunit C	Family	GO:0015986
Aphis 7344	IPR002379	V-ATPase proteolipid subunit C-like domain	Domain	PF00137 (PFAM) SSF81333
Aphis 7344	IPR002379	V-ATPase proteolipid subunit C-like domain	Domain	(SUPERFAMILY)
Aphis 7344	IPR002379	V-ATPase proteolipid subunit C-like domain	Domain	GO:0015078
Aphis 7344	IPR002379	V-ATPase proteolipid subunit C-like domain	Domain	GO:0015991
Aphis 7344	IPR005953	ATPase, F0 complex, subunit C, bacterial/chloroplast	Family	TIGR01260 (TIGRFAMs)
Aphis 7344	IPR005953	ATPase, F0 complex, subunit C, bacterial/chloroplast	Family	GO:0015078
Aphis 7344	IPR005953	ATPase, F0 complex, subunit C, bacterial/chloroplast	Family	GO:0015986
Aphis 7344	IPR020537	ATPase, F0 complex, subunit C, DCCD-binding site	Binding_site	PS00605 (PROSITE)
Aphis 7344	IPR020537	ATPase, F0 complex, subunit C, DCCD-binding site	Binding_site	

APPENDIX H. (cont.)

Aphis 7344	noIPR	Unintegrated	unintegrated	SignalP-NN(euk) (SIGNALP) Aphis 7344
noIPR	Unintegrated	unintegrated	tmhmm (TMHMM)	
Aphis 7344	noIPR	Unintegrated	unintegrated	

APPENDIX I
Summary of all SNPs detected in contigs including sequence description, length, organism, minimum e-value, number of GOs, and number of SNPs associated with each contig.

APPENDIX I1. A. curvipes.

Contig ID	Sequence Description	Length (bp)	Organism	Minimum E-value	\#GOs	\#SNPs
Anop 7	elongation factor 1-alpha	2152	Riptortus pedestris	0	6	1
Anop 13	atp synthase subunit mitochondrial-like	2165	Toxoptera citricida	0	6	1
Anop 14	ankyrin repeat protein	1054	Candidatus Amoebophilus asiaticus	5.64E-58	6	4
Anop 15	ankyrin repeat protein	874	Candidatus Amoebophilus asiaticus	4.05E-47	6	10
Anop 17	cg7630 cg7630-pa	772	Triatoma brasiliensis	$3.58 \mathrm{E}-18$	0	2
Anop 23	rrna intron-encoded homing endonuclease	2738	Oxytricha trifallax	$1.17 \mathrm{E}-55$	1	1
Anop 25	cg41536 cg41536- partial	3200	Daphnia pulex	1.90E-57	0	7
Anop 26	trifunctional purine biosynthetic protein adenosine-3	1487	Tribolium castaneum	0	6	2
Anop 27	transferrin	305	Riptortus clavatus	$9.41 \mathrm{E}-08$	4	4
Anop 31	transferrin	1344	Riptortus clavatus	0	4	5
Anop 33	achain crystal structure of engineered northeast structural genomics consortium target	639	synthetic construct	$1.17 \mathrm{E}-31$	4	3

APPENDIX I1. (cont.)

Anop 34	orf16-lacz fusion protein	1781	Heliobacterium modesticaldum Icel	2.91E-53	3
Anop 35	N/A	851			0
Anop 50	atp-citrate synthase	3596	Acyrthosiphon pisum	0	6
Anop 51	atp synthase f0 subunit 6	321	Stictopleurus subviridis	$1.47 \mathrm{E}-38$	4
Anop 52	atp synthase f0 subunit 6	315	Stictopleurus subviridis	$5.60 \mathrm{E}-37$	4
Anop 53	atpase subunit 6	310	Riptortus pedestris	$2.66 \mathrm{E}-22$	4
Anop 54	atp synthase f0 subunit 6	393	Stictopleurus subviridis	$5.99 \mathrm{E}-47$	4
Anop 55	pleiotrophin-like protein	1400	Tribolium castaneum	4.47E-40	2
Anop 58	basic juvenile hormone sensitive hemolymph protein	714	Riptortus clavatus	2.30E-119	6
Anop 64	midline fasciclin	3028	Tribolium castaneum	$5.98 \mathrm{E}-81$	3
Anop 71	arylphorin receptor	4026	Calliphora vicina	0	3
Anop 72	N/A	355			0
Anop 84	apolipophorins	4036	Apis mellifera	$3.14 \mathrm{E}-102$	1
Anop 87	adp atp translocase	1573	Triatoma infestans	0	4
Anop 92	15-hydroxyprostaglandin dehydrogenase	1077	Acromyrmex echinatior	$3.00 \mathrm{E}-43$	4
Anop 97	ribosomal protein s18	571	Cicindela campestris	2.94E-86	4
Anop 99	hemi_pyrap ame: full=hemiptericin	603	Hemiptericin	$5.33 \mathrm{E}-23$	3
Anop 106	cytochrome b	463	Aeschyntelus notatus	$3.73 \mathrm{E}-61$	7

APPENDIX I1. (cont.)

Anop 107	cytochrome b	849	Hydaropsis longirostris	3.70E-129	7
Anop 112	enolase	3401	Dendroctonus ponderosae	0	4
Anop 113	atp synthase subunit mitochondrial	1231	Apis mellifera	0	6
Anop 120	glyceraldehyde-3-phosphate dehydrogenase	400	Maconellicoccus hirsutus	$4.12 \mathrm{E}-31$	7
Anop 121	glyceraldhyde-3-phosphate partial	389	Apolygus lucorum	$1.51 \mathrm{E}-64$	3
Anop 123	glyceraldehyde 3 phosphate dehydrogenase 1	535	Apolygus lucorum	$1.06 \mathrm{E}-97$	8
Anop 125	cytochrome c oxidase subunit partial	519	Aeschyntelus notatus	$1.65 \mathrm{E}-86$	8
Anop 133	apolipophorin-iii precursor	580	Riptortus clavatus	$1.13 \mathrm{E}-62$	3
Anop 152	tropomyosin 1	1814	Megachile rotundata	$2.51 \mathrm{E}-158$	3
Anop 153	myosin heavy muscle isoform 1	6145	Acyrthosiphon pisum	0	42
Anop 159	N/A	358			0
Anop 161	trifunctional enzyme beta subunit (tp-beta)	832	Tribolium castaneum	$3.07 \mathrm{E}-135$	7
Anop 162	vitellogenin	4518	Riptortus clavatus	0	2
Anop 163	cytochrome c oxidase subunit iii	1109	Stictopleurus subviridis	5.33E-55	4
Anop 164	cytochrome c oxidase subunit iii	367	Stictopleurus subviridis	$1.94 \mathrm{E}-62$	4
Anop 165	proactivator polypeptide	2113	Tribolium castaneum	1.32E-137	4

APPENDIX I1. (cont.)

Anop 169	lipoyltransferase mitochondrial-like	3307	Bombus terrestris	4.31E-122	2
Anop 175	fatty acid synthase	7421	Nasonia vitripennis	0	6
Anop 184	nadh dehydrogenase subunit 5	604	Stictopleurus subviridis	$6.57 \mathrm{E}-35$	4
Anop 187	hexamerin 1	784	Riptortus clavatus	8.69E-113	6
Anop 188	vitellogenin	2422	Riptortus clavatus	$7.45 \mathrm{E}-168$	4
Anop 198	ribosomal protein 19	709	Tribolium castaneum	$5.21 \mathrm{E}-119$	4
Anop 205	actin	1506	Drosophila melanogaster	0	13
Anop 213	ribosomal protein s25	413	Diaphorina citri	$1.57 \mathrm{E}-40$	3
Anop 214	probable bax inhibitor 1-like	1533	Triatoma infestans	$2.98 \mathrm{E}-111$	1
Anop 215	N/A	295			0
Anop 236	heat shock protein 70	776	Pyrrhocoris apterus	6.14E-154	2
Anop 238	N/A	382			0
Anop 241	mitochondrial porin	1644	Homalodisca vitripennis	4.96E-133	11
Anop 249	cathepsin l-like	438	Triatoma brasiliensis	$5.67 \mathrm{E}-63$	1
Anop 258	ribosomal protein s9	690	Meladema coriacea	$7.39 \mathrm{E}-119$	5
Anop 261	heat shock protein 70	571	Pyrrhocoris apterus	$9.12 \mathrm{E}-96$	4
Anop 266	heat shock protein 90	1073	Camponotus floridanus	0	4
Anop 274	serine threonine-protein phosphatase 6 regulatory ankyrin repeat subunit a-like	290	Strongylocentrotus purpuratus	$1.32 \mathrm{E}-15$	2
Anop 275	imaginal disc growth factor	901	Oncometopia nigricans	$3.47 \mathrm{E}-105$	2
Anop 277	imaginal disc growth factor	419	Pieris rapae	$3.05 \mathrm{E}-34$	4

APPENDIX I1. (cont.)

Anop 282	cytochrome oxidase subunit 1	610	Sethenira ferruginea	$1.40 \mathrm{E}-74$	10
Anop 285	N/A	434			0
Anop 290	N/A	424			0
Anop 291	nadh dehydrogenase subunit 2	455	Chauliops fallax	$3.37 \mathrm{E}-24$	5
Anop 293	nadh dehydrogenase subunit 2	553	Aeschyntelus notatus	$9.67 \mathrm{E}-33$	5
Anop 296	N/A	673			0
Anop 300	cytochrome oxidase subunit 1	356	Homoeocerus sp. ST-2009	$5.22 \mathrm{E}-28$	10
Anop 304	probable atp-dependent rna helicase ddx17-like	2214	Tribolium castaneum	0	6
Anop 316	ribosomal protein p 1	526	Triatoma infestans	$7.86 \mathrm{E}-33$	3
Anop 318	N/A	508			0
Anop 324	N/A	563			0
Anop 325	vitellogenin	2012	Lethocerus deyrollei	$1.28 \mathrm{E}-124$	2
Anop 332	cytochrome p450	901	Tribolium castaneum	$3.01 \mathrm{E}-34$	2
Anop 334	cytochrome oxidase subunit i	219	Cletus punctiger	$4.87 \mathrm{E}-35$	10
Anop 337	ribosomal protein 123a	1033	Tribolium castaneum	8.98E-79	7
Anop 344	nadh dehydrogenase subunit 2	360	Aeschyntelus notatus	$3.83 \mathrm{E}-13$	4
Anop 348	apolipophorin-iii precursor	477	Riptortus clavatus	$3.45 \mathrm{E}-59$	3
Anop 349	apolipophorin-iii precursor	472	Riptortus clavatus	$5.47 \mathrm{E}-63$	3
Anop 351	ankyrin repeat domain protein	951	Strongylocentrotus purpuratus	$8.78 \mathrm{E}-35$	3
Anop 354	hypothetical protein EAI_16042	681	Harpegnathos saltator	$9.95 \mathrm{E}-07$	0
Anop 358	nadh dehydrogenase subunit i	1020	Aeschyntelus notatus	$1.09 \mathrm{E}-108$	4
Anop 364	cytochrome b	848	Riptortus pedestris	8.85E-42	7

APPENDIX I1. (cont.)

Anop 365	disulfide isomerase	1998	Litopenaeus vannamei	0	12
Anop 376	abp2_ripcl ame: full=probable antibacterial peptide flags: precursor	945	Riptortus clavatus	$2.01 \mathrm{E}-44$	1
Anop 377	superoxide dismutase	778	Triatoma infestans	$2.65 \mathrm{E}-82$	4
Anop 380	ubiquitin	228	Cherax quadricarinatus	$1.16 \mathrm{E}-46$	61
Anop 389	N/A	518			4
Anop 392	atp synthase delta mitochondrial	566	Culex quinquefasciatus	$1.11 \mathrm{E}-53$	4
Anop 395	40s ribosomal protein s2	1113	Tribolium castaneum	4.75E-139	4
Anop 422	N/A	342			0
Anop 433	ribosomal protein 17a	943	Solenopsis invicta	2.72E-97	2
Anop 447	ornithine decarboxylase	1221	Pediculus humanus corporis	$1.12 \mathrm{E}-42$	2
Anop 467	mitochondrial phosphate carrier protein	1338	Aedes aegypti	7.12E-164	4
Anop 471	cytochrome oxidase subunit partial	361	Anoplocnemis phasianus	$1.43 \mathrm{E}-51$	10
Anop 473	cytochrome oxidase subunit 1	330	Leptocorisa vericornis	$7.21 \mathrm{E}-55$	10
Anop 480	ribonuclease uk114-like isoform 1	816	Drosophila virilis	$3.86 \mathrm{E}-58$	2
Anop 485	ankyrin repeat protein	524	synthetic construct	$9.81 \mathrm{E}-25$	1
Anop 494	N/A	662			0
Anop 503	AGAP010360-PA	817	Anopheles gambiae str. PEST	$4.83 \mathrm{E}-11$	3
Anop 517	N/A	244			0
Anop 520	ribosomal protein 124	544	Bombyx mori	$9.31 \mathrm{E}-61$	2
Anop 523	ribosomal protein 114	544	Lygus lineolaris	$1.26 \mathrm{E}-68$	3

APPENDIX I1. (cont.)

Anop 527	luciferin-regenerating enzyme	1169	Nasonia vitripennis	$4.87 \mathrm{E}-70$	3
Anop 534	N/A	602			0
Anop 541	isoform cra_b	403	Oncopeltus fasciatus	8.92E-20	7
Anop 552	acyl- -binding protein	702	Rhodnius prolixus	$3.61 \mathrm{E}-39$	2
Anop 561	i-type lysozyme	512	Nilaparvata lugens	$3.77 \mathrm{E}-41$	3
Anop 568	peroxiredoxin 1	1112	Coptotermes formosanus	$8.53 \mathrm{E}-79$	10
Anop 569	elongation factor 1 delta	753	Graphocephala atropunctata	$6.56 \mathrm{E}-65$	9
Anop 576	alpha-glucosidase	1276	Aedes aegypti	$3.27 \mathrm{E}-90$	4
Anop 582	cg31997 cg31997-pa	616	Megachile rotundata	$2.14 \mathrm{E}-43$	3
Anop 597	polyadenylate-binding protein 1-like isoform 1	2456	Bombus terrestris	0	4
Anop 602	luciferin-regenerating enzyme	843	Nasonia vitripennis	$2.46 \mathrm{E}-45$	3
Anop 609	cathepsin 1	523	Drosophila mojavensis	$1.20 \mathrm{E}-61$	5
Anop 615	cg12324 protein	466	Triatoma infestans	$8.81 \mathrm{E}-86$	5
Anop 622	pheromone-degrading enzyme	734	Pyrrhocoris apterus	$4.12 \mathrm{E}-50$	1
Anop 643	phosphatidylethanolamine-binding protein	325	Apis mellifera	$9.09 \mathrm{E}-11$	0
Anop 648	N/A	733			0
Anop 658	N/A	374			0
Anop 662	ferritin heavy chain	1009	Nasonia vitripennis	$2.92 \mathrm{E}-56$	6
Anop 664	salivary secreted cystatin 3 precursor	574	Oncopeltus fasciatus	$6.72 \mathrm{E}-16$	5
Anop 674	odorant-binding protein	732	Apolygus lucorum	$3.77 \mathrm{E}-17$	1
Anop 678	superoxide dismutase	1406	$\mathrm{Cu}-\mathrm{Zn}$	8.83E-50	18

APPENDIX I1. (cont.)

Anop 683	N/A	350			0
Anop 708	N/A	1002			0
Anop 714	N/A	686			0
Anop 729	ubiquinol-cytochrome c reductase complex 14 kda protein	709	Papilio xuthus	5.40E-43	6
Anop 744	mitochondrial cytochrome c oxidase subunit 5b isoform 1	562	Triatoma infestans	8.47E-51	4
Anop 758	N/A	451			0
Anop 759	cytochrome c	651	Graphocephala atropunctata	$1.71 \mathrm{E}-62$	9
Anop 771	N/A	830			0
Anop 772	fructose -bisphosphate aldolase	1414	Daphnia pulex	0	21
Anop 782	PREDICTED: hypothetical protein LOC100648520	386	Bombus terrestris	7.11E-07	0
Anop 799	cytochrome c oxidase polypeptide iv	673	Locusta migratoria	4.36E-71	7
Anop 800	ribosomal protein 110	771	Acyrthosiphon pisum	$1.12 \mathrm{E}-147$	3
Anop 805	N/A	402			0
Anop 807	40s ribosomal protein s8-like	709	Triatoma infestans	$1.59 \mathrm{E}-123$	3
Anop 809	ribosomal protein 131	696	Harpegnathos saltator	$1.71 \mathrm{E}-62$	3
Anop 818	glutamine synthetase 2	867	Nilaparvata lugens	$1.07 \mathrm{E}-173$	7
Anop 825	transferrin	1095	Riptortus clavatus	$4.20 \mathrm{E}-136$	4
Anop 828	60s ribosomal protein 15	972	Laodelphax striatella	$4.66 \mathrm{E}-168$	7
Anop 829	N/A	644			0

APPENDIX I1. (cont.)

Anop 843	fk506-binding protein	638	Daphnia pulex	$1.31 \mathrm{E}-63$	6
Anop 849	40 s ribosomal protein s11	667	Maconellicoccus hirsutus	$3.68 \mathrm{E}-74$	3
Anop 850	peripheral-type benzodiazepine receptor	1056	Drosophila grimshawi	$3.22 \mathrm{E}-40$	3
Anop 857	N/A	731			0
Anop 877	suppressor of g2 allele of skp1 homolog	1438	Gorilla gorilla gorilla	$8.00 \mathrm{E}-47$	6
Anop 878	inter-alpha-trypsin inhibitor heavy chain h4 precursor	2250	Acyrthosiphon pisum	9.23E-130	2
Anop 886	pancreatic triacylglycerol lipase	1779	Acyrthosiphon pisum	0	1
Anop 902	cathepsin b-like proteinase	1396	Daphnia pulex	$1.62 \mathrm{E}-157$	3
Anop 906	heat shock protein 70	2713	Lycorma delicatula	0	5
Anop 908	guanine nucleotide-binding protein subunit beta-like	1042	Blattella germanica	0	2
Anop 911	nadh dehydrogenase subunit 4	2548	Riptortus pedestris	$2.50 \mathrm{E}-119$	5
Anop 958	arginine kinase	1742	Anasa tristis	0	3
Anop 967	N/A	323			0
Anop 971	N/A	818			0
Anop 982	N/A	558			0
Anop 1000	thiamin pyrophosphokinase 1	1131	Tribolium castaneum	$1.82 \mathrm{E}-55$	1
Anop 1017	gelsolin precursor	2022	Culex quinquefasciatus	$1.14 \mathrm{E}-175$	2
Anop 1027	N/A	636			0
Anop 1050	phosphoenolpyruvate isoform a	2429	Tribolium castaneum	0	4
Anop 1084	pneumolysin	567	Streptococcus mitis SK597	$1.69 \mathrm{E}-19$	10
Anop 1085	serine rich protein	2575	Nematostella vectensis	$5.49 \mathrm{E}-54$	5

APPENDIX I1. (cont.)

Anop 1109	unknown	1096	Lygus lineolaris	$3.06 \mathrm{E}-10$	0
Anop 1125	eukaryotic translation initiation factor x -chromosomal-like	999	Triatoma infestans	$2.40 \mathrm{E}-78$	7
Anop 1126	arylphorin subunit a4	708	Calliphora vicina	$1.25 \mathrm{E}-140$	2
Anop 1136	N/A	558			0
Anop 1163	sugar phosphate exchanger 2-like isoform 2	2076	Megachile rotundata	$3.04 \mathrm{E}-179$	3
Anop 1166	N/A	407			0
Anop 1170	cathepsin d	1027	Callosobruchus maculatus	$8.02 \mathrm{E}-97$	1
Anop 1173	N/A	363			0
Anop 1189	vitellogenin	624	Riptortus clavatus	$5.41 \mathrm{E}-65$	2
Anop 1193	phosphoserine aminotransferase	1277	Pediculus humanus corporis	$8.67 \mathrm{E}-168$	4
Anop 1201	apolipoprotein d-like	919	Nasonia vitripennis	$1.28 \mathrm{E}-95$	1
Anop 1202	chemosensory protein 1	414	Apolygus lucorum	$2.14 \mathrm{E}-40$	0
Anop 1207	cathepsin b	1027	Branchiostoma floridae	$3.92 \mathrm{E}-107$	3
Anop 1217	ribosomal protein 113	787	Xenopsylla cheopis	$8.21 \mathrm{E}-86$	3
Anop 1229	cytosolic malate dehydrogenase	1484	Pediculus humanus corporis	$2.23 \mathrm{E}-164$	8
Anop 1233	citrate synthase	1848	Aedes aegypti	0	5
Anop 1236	ribosomal protein s15e	445	Diaphorina citri	$1.33 \mathrm{E}-66$	6
Anop 1237	N/A	650			0
Anop 1243	N/A	703			0
Anop 1268	translationally controlled tumor protein	866	Graphocephala atropunctata	$2.33 \mathrm{E}-103$	1

APPENDIX I1. (cont.)

Anop 1269	atp synthase-like protein	1078	Papilio xuthus	$2.13 \mathrm{E}-86$	8
Anop 1276	N/A	1450		0	
Anop 1277	N/A	1292		1	
Anop 1294	ribosomal protein 128	506	Triatoma brasiliensis	$2.64 \mathrm{E}-74$	3
Anop 1295	ankyrin repeat protein	954	Synechococcus sp. JA-3-3Ab	$7.39 \mathrm{E}-25$	0
Anop 1302	cg31997 cg31997-pa	540	Acyrthosiphon pisum	$7.78 \mathrm{E}-47$	1
Anop 1312	N/A	727			0
Anop 1349	maltase a3	1179	Nilaparvata lugens	$8.19 \mathrm{E}-96$	1
Anop 1357	N/A	843		0	
Anop 1361	N/A	938		0	
Anop 1375	N/A	1357		0	
Anop 1384	N/A	493		0	0
Anop 1411	vitellogenin	1922	Riptortus clavatus	2	
Anop 1426	nadh dehydrogenase subunit 5	295	Hydaropsis longirostris	$1.02 \mathrm{E}-49$	5
Anop 1518	nadh dehydrogenase subunit 5	962	Hydaropsis longirostris	$6.06 \mathrm{E}-76$	5
Anop 1524	elongation factor 1 beta	772	Triatoma infestans	$1.17 \mathrm{E}-108$	3
Anop 1526	N/A	450		0	
Anop 1550	N/A	441		0	
Anop 1553	N/A	939		0	0
Anop 1563	ribosomal protein l3	1276	Bombus terrestris	0	3
Anop 1627	small heat shock protein	823	Maconellicoccus hirsutus	$2.50 \mathrm{E}-46$	1
Anop 1666	chemosensory protein 1	558	Apolygus lucorum	$3.24 \mathrm{E}-51$	0

APPENDIX I1. (cont.)

Anop 1686	odorant binding protein 2	843	Apolygus lucorum	$6.23 \mathrm{E}-11$	0
Anop 1692	cellular retinaldehyde-binding protein	1260	Tribolium castaneum	$4.14 \mathrm{E}-120$	3
Anop 1703	N/A	467			0
Anop 1766	phosphoglycerate mutase	991	Acyrthosiphon pisum	1.66E-140	2
Anop 1776	cytochrome p 4504 g 15	1857	Acromyrmex echinatior	0	6
Anop 1794	atp synthase-coupling factor mitochondrial	809	Aedes albopictus	$2.43 \mathrm{E}-33$	4
Anop 1815	pyrimidine-specific ribonucleoside hydrolase riha-like	1189	Bombus impatiens	4.91E-65	1
Anop 1823	lyzozyme m1	844	Wolbachia endosymbiont of Drosophila simulans wNo	5.29E-74	2
Anop 1835	acyl-protein thioesterase	1828	Camponotus floridanus	2.65E-96	3
Anop 1842	40s ribosomal protein s3a	879	Triatoma infestans	$4.32 \mathrm{E}-164$	3
Anop 1844	serine proteinase stubble	809	Megachile rotundata	$1.69 \mathrm{E}-43$	2
Anop 1855	chkov1	468	Drosophila persimilis	$1.80 \mathrm{E}-12$	4
Anop 1856	N/A	849			0
Anop 1896	aminopeptidase -like	1463	Apis mellifera	2.74E-177	2
Anop 1909	N/A	430			0
Anop 1945	heat shock protein 60	2658	Apis mellifera	0	13
Anop 1989	catalase	1763	Schistocerca gregaria	0	0
Anop 2003	heat shock protein	963	Schistocerca gregaria	$1.63 \mathrm{E}-53$	2
Anop 2142	ribosomal protein 17	912	Papilio polytes	$1.52 \mathrm{E}-103$	2

APPENDIX I1. (cont.)

Anop 2149	heat shock protein 90	419	Apis mellifera	$1.70 \mathrm{E}-70$	4
Anop 2178	thiol-activated cytolysin	1072	Streptococcus mitis	$2.69 \mathrm{E}-12$	1
Anop 2212	glutathione s-transferase	417	Aphis gossypii	$5.51 \mathrm{E}-18$	1
Anop 2312	hemi_pyrap ame: full=hemiptericin	395	Pyrrhocoris apterus	$8.00 \mathrm{E}-24$	3
Anop 2378	brain protein 44-like	450	Ixodes scapularis	$1.30 \mathrm{E}-34$	3
Anop 2385	N/A	302			0
Anop 2440	ribosomal protein 111	679	Triatoma infestans	$6.41 \mathrm{E}-120$	7
Anop 2477	puromycin-sensitive aminopeptidase	2848	Acromyrmex echinatior	$1.90 \mathrm{E}-68$	0
Anop 2534	cytochrome p450	1594	Culex quinquefasciatus	$2.25 \mathrm{E}-45$	8
Anop 2559	cytochrome b-c1 complex subunit mitochondrial-like	1535	Tribolium castaneum	$5.04 \mathrm{E}-67$	6
Anop 2571	AGAP001981-PB	818	Anopheles gambiae str. PEST	1.85E-09	0
Anop 2593	N/A	513			0
Anop 2635	cathepsin 1	868	Litopenaeus vannamei	$3.20 \mathrm{E}-87$	1
Anop 2636	fatty acid binding protein	529	Lygus lineolaris	$1.02 \mathrm{E}-59$	3
Anop 2804	N/A	468			0
Anop 2828	N/A	673			0
Anop 2833	GJ21142	344	Drosophila virilis	$4.70 \mathrm{E}-23$	0
Anop 2861	dihydrolipoamide dehydrogenase e3 subunit	1732	Pediculus humanus corporis	0	5
Anop 2926	kda midgut protein	332	Lygus lineolaris	$6.26 \mathrm{E}-11$	0
Anop 3353	probable maltase 1-like	376	Nilaparvata lugens	$6.25 \mathrm{E}-18$	1

APPENDIX I1. (cont.)

Anop 3481	small heat shock protein	946	Lygus hesperus	$2.82 \mathrm{E}-65$	2
Anop 3688	N/A	321		3	
Anop 3823	3-hydroxyacyl-coa dehyrogenase	1100	Papilio xuthus	$6.73 \mathrm{E}-134$	4
Anop 4243	N/A	339		0	2
Anop 5253	N/A	411		0	3
Anop 6789	N/A	659		0	3
Anop 8555	N/A	534		0	1

APPENDIX I2. A. craccivora.

Contig ID	Sequence Description	Length (bp)	Organism	Minimum E-value	\#GOs	\#SNPs
Aphis 41	adp atp translocase	1789	Acyrthosiphon pisum	0	4	2
Aphis 45	enolase	1701	Acyrthosiphon pisum	0	5	1
Aphis 85	mitochondrial atp synthase f chain	877	Acyrthosiphon pisum	$1.73 \mathrm{E}-66$	5	2
Aphis 90	60s acidic ribosomal protein p 2	454	Acyrthosiphon pisum	$1.16 \mathrm{E}-33$	3	3
Aphis 102	60s ribosomal protein 111-like	682	Acyrthosiphon pisum	$1.86 \mathrm{E}-133$	7	6
Aphis 103	ribosomal protein s2	968	Acyrthosiphon pisum	8.25E-154	5	2
Aphis 111	myosin light chain 2	1283	Acyrthosiphon pisum	$1.41 \mathrm{E}-91$	2	1
Aphis 117	acypi000079	453	Toxoptera citricida	$2.55 \mathrm{E}-65$	8	2
Aphis 133	ribosomal protein 110	762	Acyrthosiphon pisum	6.87E-159	3	2
Aphis 200	PREDICTED: hypothetical protein LOC100169357 isoform 1	1943	Acyrthosiphon pisum	$4.44 \mathrm{E}-68$	0	3
Aphis 212	muscle actin	1670	Acyrthosiphon pisum	0	3	1
Aphis 215	elongation factor 1 alpha	2548	Acyrthosiphon pisum	0	6	2
Aphis 242	elongation factor 2	2425	Toxoptera citricida	0	5	1
Aphis 255	zinc finger protein 512b-like	917	Acyrthosiphon pisum	$2.55 \mathrm{E}-49$	0	11

APPENDIX I2. (cont.)

Aphis 273	40s ribosomal protein s8-like	972	Hordeum vulgare subsp. vulgare	$1.37 \mathrm{E}-131$	3	4
Aphis 309	ribosomal protein s16	743	Acyrthosiphon pisum	$2.57 \mathrm{E}-91$	3	1
Aphis 321	$\mathrm{h}+$ transporting atp synthase subunit g	745	Acyrthosiphon pisum	$1.46 \mathrm{E}-62$	4	9
Aphis 359	malate cytoplasmic-like	2642	Acyrthosiphon pisum	0	8	10
Aphis 365	cytochrome oxidase subunit i	2550	Aphis nerii	$6.23 \mathrm{E}-154$	10	7
Aphis 384	N/A	442			0	13
Aphis 433	ribosomal protein s13	811	Acyrthosiphon pisum	$2.32 \mathrm{E}-101$	4	2
Aphis 480	ribosomal protein 121	585	Acyrthosiphon pisum	$2.50 \mathrm{E}-93$	3	1
Aphis 525	60s ribosomal protein 14-like	1633	Hordeum vulgare subsp. vulgare	0	3	1
Aphis 645	cyclophilin 1	935	Acyrthosiphon pisum	$1.44 \mathrm{E}-135$	9	2
Aphis 668	ribosomal protein s 7	723	Acyrthosiphon pisum	3.81E-136	3	1
Aphis 704	ribosomal protein 118a	629	Acyrthosiphon pisum	$1.55 \mathrm{E}-117$	3	3
Aphis 906	PREDICTED: hypothetical protein LOC100570527	393	Acyrthosiphon pisum	$1.92 \mathrm{E}-36$	0	1
Aphis 1221	cg12324 protein	831	Acyrthosiphon pisum	$5.08 \mathrm{E}-87$	5	1
Aphis 1468	isoform a	495	Acyrthosiphon pisum	$2.32 \mathrm{E}-36$	0	1

APPENDIX I2. (cont.)

Aphis 1725 tpa: cuticle protein

746
Acyrthosiphon pisum
4.30E-59 1

APPENDIX I3. C. tomentosicollis.

Contig ID	Sequence Description	Length (bp)	Organism	Minimum E-value	\#GOs	\#SNPs
Clavig 2	hexamerin 1	1165	Riptortus clavatus	0	6	2
Clavig 6	N/A	407			0	4
Clavig 7	serine rich protein	389	Oncopeltus fasciatus	$2.35 \mathrm{E}-10$	0	6
Clavig 9	N/A	439			0	6
Clavig 17	tropomyosin 1	1786	Lethocerus indicus	$3.78 \mathrm{E}-158$	0	1
Clavig 18	fk506-binding protein	445	Daphnia pulex	$1.12 \mathrm{E}-65$	3	1
Clavig 19	fk506-binding protein	412	Daphnia pulex	$8.07 \mathrm{E}-48$	3	2
Clavig 20	rrna intron-encoded homing endonuclease	4211	Oxytricha trifallax	$2.21 \mathrm{E}-55$	1	2
Clavig 26	N/A	717			0	1
Clavig 37	cathepsin 11	319	Ornithorhynchus anatinus	7.19E-43	4	2
Clavig 39	serine rich protein	393	Oncopeltus fasciatus	$1.50 \mathrm{E}-07$	0	2
Clavig 45	cathepsin 1	310	Nematostella vectensis	$1.19 \mathrm{E}-48$	6	6
Clavig 46	ribosomal protein s6	808	Pediculus humanus corporis	$4.56 \mathrm{E}-136$	3	3
Clavig 50	apolipophorin-iii precursor	464	Riptortus clavatus	$4.79 \mathrm{E}-48$	3	2
Clavig 51	$\mathrm{h}+$ transporting atp synthase subunit d	809	Papilio polytes	4.82E-71	10	3
Clavig 53	N/A	437			0	1
Clavig 66	N/A	491			0	2
Clavig 67	heat shock protein 90	1349	Lygus hesperus	$4.57 \mathrm{E}-177$	4	3
Clavig 69	N/A	1089			0	8
Clavig 70	gluten hydrolyzing proteinase	668	Triatoma brasiliensis	4.11E-35	3	1
Clavig 75	elongation factor 1-alpha	1607	Riptortus pedestris	0	7	3
Clavig 76	elongation factor 1 alpha	1434	Riptortus pedestris	0	7	2

APPENDIX I3. (cont.)

Clavig 81	nadh dehydrogenase subunit 1	1531	Stictopleurus subviridis	$8.91 \mathrm{E}-24$	4	1
Clavig 85	ribosomal protein s4e	890	Lygus lineolaris	$1.66 \mathrm{E}-179$	4	5
Clavig 89	lipoyltransferase mitochondrial-like	2480	Bombus terrestris	$9.43 \mathrm{E}-91$	1	1
Clavig 91	odorant binding protein 24	619	Anopheles funestus	$1.26 \mathrm{E}-07$	3	1
Clavig 103	cathepsin 1	689	Aedes aegypti	$3.99 \mathrm{E}-96$	3	2
Clavig 106	cathepsin 1	497	Dermacentor variabilis	$5.99 \mathrm{E}-68$	3	9
Clavig 107	ankyrin repeat protein	1315	Candidatus Amoebophilus asiaticus 5a2	$2.14 \mathrm{E}-60$	3	5
Clavig 111	cathepsin 1-like	483	Apis florea	$2.55 \mathrm{E}-60$	3	1
Clavig 115	hexamerin 1	2153	Riptortus clavatus	0	6	2
Clavig 116	hexamerin 1	2098	Riptortus clavatus	0	6	2
Clavig 126	gluten hydrolyzing proteinase	1035	Lygus lineolaris	$1.61 \mathrm{E}-63$	1	1
Clavig 127	N/A	246			0	1
Clavig 129	cathepsin 1	948	Triatoma brasiliensis	3.59E-107	3	3
Clavig 131	transferrin	2166	Riptortus clavatus	0	4	1
Clavig 142	N/A	819			0	1
Clavig 149	N/A	351			0	1
Clavig 151	N/A	336			0	1
Clavig 158	N/A	382			0	3
Clavig 159	lysozyme	728	Anopheles gambiae	$1.01 \mathrm{E}-46$	2	1
Clavig 166	tubulin beta-1 chain	1550	Manduca sexta	0	13	3
Clavig 167	N/A	1319			0	5
Clavig 168	unknown	1008	Lygus lineolaris	$9.72 \mathrm{E}-13$	0	4
Clavig 172	atp synthase subunit mitochondrial-like	1949	Tribolium castaneum	0	9	3
Clavig 174	N/A	1534			0	2

APPENDIX 13. (cont.)

Clavig 176	heat shock protein 70	3830	Riftia pachyptila	0	37	1
Clavig 177	protein disulfide isomerase	1026	Anopheles gambiae str. PEST	$1.90 \mathrm{E}-138$	14	2
Clavig 178	peritrophic matrix protein 1-b precursor	430	Anopheles gambiae str. PEST	$8.15 \mathrm{E}-08$	3	5
Clavig 180	peritrophic matrix protein 1-b precursor	384	Anopheles gambiae str. PEST	$7.20 \mathrm{E}-08$	3	1
Clavig 187	cuticle protein 34	426	Dendroctonus ponderosae	$1.36 \mathrm{E}-24$	1	5
Clavig 191	60s ribosomal protein 14-like	1360	Bombus impatiens	0	3	2
Clavig 192	probable maltase 1-like	665	Nilaparvata lugens	$2.79 \mathrm{E}-26$	2	2
Clavig 196	ribosomal protein 131	466	Acromyrmex echinatior	$1.00 \mathrm{E}-53$	3	1
Clavig 201	apolipophorins	3607	Nilaparvata lugens	$3.75 \mathrm{E}-121$	14	2
Clavig 206	cg31997 cg31997-pa	618	Megachile rotundata	$8.50 \mathrm{E}-44$	3	1
Clavig 214	myosin heavy muscle isoform 1	6145	Acyrthosiphon pisum	0	25	8
Clavig 215	ribosomal protein 113	760	Xenopsylla cheopis	$1.68 \mathrm{E}-84$	3	1
Clavig 227	N/A	493			0	5
Clavig 238	N/A	613			0	1
Clavig 239	alpha-amylase	1615	Blattella germanica	$3.91 \mathrm{E}-178$	3	9
Clavig 242	maltase a3	775	Nilaparvata lugens	$2.63 \mathrm{E}-41$	3	1
Clavig 243	N/A	1804			0	2
Clavig 247	N/A	301			0	1
Clavig 251	serine rich protein	488	Oncopeltus fasciatus	4.72E-19	0	4
Clavig 256	atp-citrate synthase-like	3916	Acyrthosiphon pisum	0	10	5
Clavig 261	ribosomal protein 114	562	Lygus lineolaris	$5.10 \mathrm{E}-68$	3	1
Clavig 266	ribosomal protein 115	739	Pediculus humanus corporis	$6.99 \mathrm{E}-118$	3	1
Clavig 284	fatty acid synthase	3168	Nasonia vitripennis	0	5	1

APPENDIX I3. (cont.)

Clavig 293	serine rich protein	1438	Oncopeltus fasciatus	$8.70 \mathrm{E}-24$	0	2
Clavig 296	alpha amylase catalytic region	439	Fusarium oxysporum Fo5176	$2.59 \mathrm{E}-45$	3	12
Clavig 297	alpha partial	492	Acromyrmex echinatior	$1.73 \mathrm{E}-42$	3	1
Clavig 298	probable maltase h-like	577	Tribolium castaneum	$1.99 \mathrm{E}-71$	3	5
Clavig 300	maltase 1	2668	Nilaparvata lugens	6.02E-144	3	2
Clavig 301	N/A	335			0	8
Clavig 318	N/A	719			0	3
Clavig 320	ribosomal protein 123a	1016	Tribolium castaneum	$2.30 \mathrm{E}-82$	7	2
Clavig 322	ribosomal protein 17	894	Papilio polytes	$3.66 \mathrm{E}-127$	1	3
Clavig 332	N/A	511			0	7
Clavig 345	cytochrome c	647	Graphocephala atropunctata	$1.65 \mathrm{E}-62$	5	1
Clavig 349	atp synthase-coupling factor mitochondrial	482	Tribolium castaneum	$3.73 \mathrm{E}-36$	10	2
Clavig 356	60s acidic ribosomal protein p2-like protein	478	Bombyx mori	$3.88 \mathrm{E}-25$	4	1
Clavig 366	probable phosphoserine aminotransferase-like	1161	Harpegnathos saltator	3.28E-180	4	1
Clavig 372	conserved hypothetical protein	432	Culex quinquefasciatus	$4.59 \mathrm{E}-13$	3	1
Clavig 378	N/A	334			0	3
Clavig 384	cathepsin 1-like	656	Artemia salina	$1.29 \mathrm{E}-80$	3	1
Clavig 386	N/A	988			0	4
Clavig 398	N/A	849			0	2
Clavig 399	accessory gland protein	1512	Gryllus firmus	$5.08 \mathrm{E}-10$	0	2

APPENDIX 13. (cont.)

Clavig 406	abp2_ripcl ame: full=probable antibacterial peptide flags: precursor	444	Riptortus clavatus	$2.64 \mathrm{E}-34$	3	4
Clavig 408	N/A	1245			0	2
Clavig 410	cytochrome c oxidase subunit iii	2075	Hydaropsis longirostris	$1.12 \mathrm{E}-128$	5	2
Clavig 426	aminopeptidase n-like	3964	Strongylocentrotus purpuratus	$7.23 \mathrm{E}-39$	4	1
Clavig 433	50 kda midgut protein	737	Nasonia vitripennis	$1.24 \mathrm{E}-20$	0	1
Clavig 456	AGAP004851-PA	376	Anopheles gambiae str. PEST	$3.62 \mathrm{E}-10$	3	2
Clavig 466	heat shock protein 70	2783	Culex quinquefasciatus	0	6	9
Clavig 475	vitellogenin	435	Riptortus clavatus	$1.59 \mathrm{E}-44$	6	1
Clavig 484	N/A	365			0	2
Clavig 487	cathepsin 1-like	432	Camponotus floridanus	$9.24 \mathrm{E}-58$	3	1
Clavig 490	N/A	424			0	3
Clavig 497	N/A	596			0	2
Clavig 501	vitellogenin	3404	Riptortus clavatus	0	2	8
Clavig 509	odorant-binding protein partial	371	Rhodnius prolixus	$3.25 \mathrm{E}-36$	1	2
Clavig 513	cytochrome b	625	Hydaropsis longirostris	$2.71 \mathrm{E}-96$	6	1
Clavig 518	cytochrome b	626	Hydaropsis longirostris	$1.43 \mathrm{E}-92$	6	2
Clavig 524	odorant-binding protein partial	586	Adelphocoris lineolatus	$4.22 \mathrm{E}-14$	1	3
Clavig 533	actin	1748	Drosophila melanogaster	0	15	5
Clavig 544	odorant binding protein 19d	698	Apolygus lucorum	$1.17 \mathrm{E}-15$	1	4
Clavig 564	N/A	377			1	1
Clavig 576	peripheral-type benzodiazepine receptor	1114	Drosophila pseudoobscura pseudoobscura	3.85E-36	4	1

APPENDIX I3. (cont.)

Clavig 587	isoform a	597	Drosophila willistoni	$7.77 \mathrm{E}-18$	2	1
Clavig 590	N/A	406			0	5
Clavig 591	hypothetical protein DAPPUDRAFT_70492	597	Daphnia pulex	$2.39 \mathrm{E}-15$	1	1
Clavig 605	N/A	761			0	1
Clavig 606	af373879_1peritrophin-like protein 1	1921	Anopheles gambiae str. PEST	$1.53 \mathrm{E}-12$	3	1
Clavig 607	serine rich protein	417	Oncopeltus fasciatus	$4.33 \mathrm{E}-20$	0	23
Clavig 614	ornithine decarboxylase	1037	Pediculus humanus corporis	$8.89 \mathrm{E}-44$	2	2
Clavig 615	hypothetical protein AaeL_AAEL015254	1063	Aedes aegypti	$6.46 \mathrm{E}-12$	3	2
Clavig 625	nadh dehydrogenase subunit i	827	Aeschyntelus notatus	$2.17 \mathrm{E}-78$	4	3
Clavig 626	fructose -bisphosphate aldolase	1457	Daphnia pulex	$1.97 \mathrm{E}-157$	19	11
Clavig 640	gamma-interferon-inducible lysosomal thiol reductase-like	1580	Maconellicoccus hirsutus	$3.11 \mathrm{E}-23$	0	1
Clavig 643	acetyl- mitochondrial	1139	Acyrthosiphon pisum	0	14	4
Clavig 670	gluten hydrolyzing proteinase	617	Triatoma brasiliensis	$2.16 \mathrm{E}-37$	3	2
Clavig 686	ankyrin repeat protein	1050	Oncopeltus fasciatus	$2.88 \mathrm{E}-49$	0	5
Clavig 692	beta-tubulin	1737	Manduca sexta	0	13	5
Clavig 711	nucleoside diphosphate kinase	787	Aedes aegypti	$1.19 \mathrm{E}-80$	15	1
Clavig 716	elongation factor 1-gamma	1340	Maconellicoccus hirsutus	$2.52 \mathrm{E}-137$	13	1
Clavig 726	N/A	523			0	3
Clavig 745	N/A	304			0	1
Clavig 757	N/A	521			0	1
Clavig 765	ankyrin repeat protein	1330	Trichomonas vaginalis G3	$1.41 \mathrm{E}-39$	1	1

APPENDIX I3. (cont.)

Clavig 768	counting factor associated protein dlike	1722	Periplaneta americana	0	6	4
Clavig 775	apolipoprotein d	1114	Pediculus humanus corporis	4.88E-85	1	2
Clavig 784	N/A	645			0	1
Clavig 799	N/A	654			0	2
Clavig 817	serine rich protein	1196	Oncopeltus fasciatus	$4.24 \mathrm{E}-19$	0	1
Clavig 858	ribosomal protein 117	596	Pediculus humanus corporis	$3.37 \mathrm{E}-97$	3	1
Clavig 861	ankyrin repeat protein	913	Diplorickettsia massiliensis 20B	$1.06 \mathrm{E}-17$	1	2
Clavig 869	endocuticle structural glycoprotein bd1	2627	Anopheles gambiae str. PEST	$8.82 \mathrm{E}-25$	1	1
Clavig 891	phosphoenolpyruvate carboxykinase	2001	Tribolium castaneum	0	5	1
Clavig 936	spike protein	4244	Hana virus	$5.94 \mathrm{E}-15$	0	8
Clavig 939	N/A	1018			0	1
Clavig 945	heat shock 70 kda protein cognate 3	2376	Nasonia vitripennis	0	6	1
Clavig 953	N/A	746			0	3
Clavig 954	N/A	448			0	2
Clavig 959	ribosomal protein 110	298	Acyrthosiphon pisum	$8.66 \mathrm{E}-48$	3	1
Clavig 960	ribosomal protein 110	396	Acyrthosiphon pisum	$1.03 \mathrm{E}-89$	3	2
Clavig 964	N/A	972			0	3
Clavig 965	mitochondrial atp synthase gammasubunit	808	Graphocephala atropunctata	8.95E-142	8	1
Clavig 984	mitochondrial-processing peptidase subunit beta-like	1569	Anopheles gambiae str. PEST	0	12	1

APPENDIX 13. (cont.)

Clavig 992	polyadenylate-binding protein 1-like isoform 1	3350	Bombus terrestris	0	0	1
Clavig 993	N/A	1126			0	10
Clavig 996	thiamin pyrophosphokinase 1	1356	Tribolium castaneum	$1.65 \mathrm{E}-56$	4	3
Clavig 1003	ribosomal protein 122	748	Danaus plexippus	$1.54 \mathrm{E}-30$	3	1
Clavig 1007	mdl1	592	Acromyrmex echinatior	$3.38 \mathrm{E}-33$	0	1
Clavig 1029	malic enzyme	480	Pediculus humanus corporis	$3.40 \mathrm{E}-29$	4	2
Clavig 1038	phosphate carrier mitochondrial-like	1349	Aedes aegypti	1.98E-158	2	1
Clavig 1049	fatty acid desaturase	1866	Acheta domesticus	3.52E-164	15	2
Clavig 1052	N/A	1094			0	4
Clavig 1054	ribosomal protein 126e	456	Triatoma infestans	$1.10 \mathrm{E}-80$	3	1
Clavig 1055	isoform c	1333	Drosophila ananassae	$4.28 \mathrm{E}-25$	3	8
Clavig 1058	hexamerin 1	576	Riptortus clavatus	$1.36 \mathrm{E}-99$	6	1
Clavig 1075	mitochondrial cytochrome c oxidase subunit 5 b isoform 1	565	Tribolium castaneum	$2.35 \mathrm{E}-53$	6	3
Clavig 1079	serine protease	613	Triatoma infestans	5.38E-32	3	8
Clavig 1087	ribosomal protein s9	665	Graphocephala atropunctata	$6.36 \mathrm{E}-123$	4	1
Clavig 1088	ribosomal protein s9	641	Graphocephala atropunctata	$4.65 \mathrm{E}-123$	4	2
Clavig 1125	chitin binding peritrophin-a domaincontaining partial	1714	Drosophila ananassae	$5.52 \mathrm{E}-45$	3	2
Clavig 1126	mitochondrial cytochrome c oxidase subunit 5 b isoform 1	533	Triatoma infestans	7.91E-51	6	1
Clavig 1167	nucleoplasmin-like protein	1088	Maconellicoccus hirsutus	$1.64 \mathrm{E}-55$	1	1

APPENDIX I3. (cont.)

Clavig 1182	N/A	217			0	1
Clavig 1187	N/A	369			0	1
Clavig 1213	N/A	568			0	8
Clavig 1243	60s ribosomal protein 17a	840	Solenopsis invicta	1.82E-136	2	1
Clavig 1251	aminopeptidase -like	957	Solenopsis invicta	1.91E-105	5	1
Clavig 1261	N/A	850			0	2
Clavig 1280	N/A	976			0	1
Clavig 1286	40s ribosomal protein s16	591	Apis florea	$3.29 \mathrm{E}-91$	3	1
Clavig 1292	cathepsin 1 precursor	365	Triatoma brasiliensis	$1.08 \mathrm{E}-18$	1	1
Clavig 1319	ribosomal protein s12	422	Manduca sexta	$5.41 \mathrm{E}-61$	3	1
Clavig 1321	ribosomal protein 127e	514	Hister sp. APV-2005	$1.61 \mathrm{E}-54$	3	1
Clavig 1347	ribosomal protein 113a	650	Bombus terrestris	$2.78 \mathrm{E}-113$	3	1
Clavig 1350	imaginal disc growth factor	1070	Oncometopia nigricans	$1.76 \mathrm{E}-133$	3	2
Clavig 1364	15-hydroxyprostaglandin dehydrogenase	1045	Acromyrmex echinatior	$1.04 \mathrm{E}-53$	2	5
Clavig 1401	atp synthase subunit mitochondrial	2063	Megachile rotundata	0	9	4
Clavig 1418	cg12324 protein	468	Triatoma infestans	$2.56 \mathrm{E}-84$	7	1
Clavig 1429	N/A	899			0	6
Clavig 1431	kininogen-1 isoform 2 precursor	635	Oncopeltus fasciatus	$2.74 \mathrm{E}-19$	4	6
Clavig 1501	odorant-binding protein	972	Apolygus lucorum	$5.66 \mathrm{E}-16$	1	1
Clavig 1509	nadh dehydrogenase subunit 5	1560	Hydaropsis longirostris	$3.27 \mathrm{E}-160$	4	1
Clavig 1522	atp-dependent rna helicase-like protein	797	Trypanosoma brucei gambiense DAL972	$1.78 \mathrm{E}-22$	4	3
Clavig 1573	guanine nucleotide-binding protein subunit beta-like	1073	Blattella germanica	0	2	1

APPENDIX 13. (cont.)

Clavig 1605	N/A	358			0	2
Clavig 1606	N/A	565			0	1
Clavig 1626	N/A	581			0	1
Clavig 1697	nadh dehydrogenase subunit 4	455	Riptortus pedestris	3.18E-34	4	1
Clavig 1708	p8 nuclear protein	860	Amblyomma variegatum	$1.83 \mathrm{E}-26$	2	1
Clavig 1724	N/A	396			0	2
Clavig 1772	calmodulin	1707	Drosophila melanogaster	3.64E-96	35	1
Clavig 1782	hypothetical protein	558	Triatoma brasiliensis	$2.02 \mathrm{E}-12$	0	1
Clavig 1785	midline fasciclin	1385	Tribolium castaneum	$3.08 \mathrm{E}-58$	1	3
Clavig 1842	af414430_1trypsin precursor	601	Lygus lineolaris	$4.91 \mathrm{E}-48$	3	1
Clavig 1849	cathepsin 1	1503	Triatoma brasiliensis	$9.22 \mathrm{E}-133$	3	5
Clavig 1913	lyzozyme m1	832	Wolbachia endosymbiont of Drosophila ananassae	$2.41 \mathrm{E}-76$	2	5
Clavig 1979	translocon-associated protein subunit beta	1392	Maconellicoccus hirsutus	5.91E-68	9	1
Clavig 1983	endocuticle structural glycoprotein bd-	637	Acyrthosiphon pisum	$8.20 \mathrm{E}-22$	1	1
Clavig 2008	cathepsin 1	2153	Harpegnathos saltator	$1.27 \mathrm{E}-109$	3	1
Clavig 2035	serine protease	674	Ranatra unicolor	$7.66 \mathrm{E}-45$	3	2
Clavig 2045	ribosomal protein 130	426	Daphnia pulex	$1.52 \mathrm{E}-63$	3	1
Clavig 2054	15-hydroxyprostaglandin dehydrogenase	1011	Acromyrmex echinatior	$1.69 \mathrm{E}-43$	2	13
Clavig 2077	cathepsin d	1339	Triatoma infestans	$8.43 \mathrm{E}-100$	3	1
Clavig 2094	60s ribosomal protein 118	627	Camponotus floridanus	$2.24 \mathrm{E}-103$	3	2
Clavig 2104	sorbitol dehydrogenase	1123	Pyrrhocoris apterus	0	4	1

APPENDIX 13. (cont.)

Clavig 2132	N/A	262			0	11
Clavig 2209	N/A	338			0	1
Clavig 2326	elongation factor 1 delta	825	Graphocephala atropunctata	$9.39 \mathrm{E}-61$	8	4
Clavig 2422	salivary secreted peptide	491	Lygus lineolaris	$2.08 \mathrm{E}-15$	0	3
Clavig 2438	serine 3-dehydrogenase	861	Triatoma infestans	$2.43 \mathrm{E}-47$	2	3
Clavig 2677	cytochrome c oxidase polypeptide iv	624	Locusta migratoria	$2.37 \mathrm{E}-71$	8	1
Clavig 2823	10 kda heat shock mitochondrial-like	819	Lygus hesperus	7.81E-55	4	3
Clavig 2828	ubiquinol-cytochrome c reductase complex core protein	1515	Tribolium castaneum	$6.13 \mathrm{E}-98$	6	1
Clavig 2851	N/A	583			0	2
Clavig 2856	protein 5nuc-like	2073	Camponotus floridanus	5.06E-121	3	1
Clavig 2888	PREDICTED: uncharacterized protein LOC100863228	1252	Apis florea	$1.48 \mathrm{E}-37$	0	7
Clavig 3671	voltage-dependent anion-selective channel protein 2	557	Homalodisca vitripennis	1.70E-78	7	1
Clavig 4404	v -type proton atpase subunit g-like	475	Acyrthosiphon pisum	2.19E-27	5	2

APPENDIX I4. M. sjostedti.

Contig ID	Sequence Description	Length (bp)	Organism	Minimum E-value	\#GOs	\#SNPs
Megal 1	elongation factor 2	1780	Schistocerca gregaria	0	6	1
Megal 11	N/A	1006			2	9
Megal 13	vitellogenin	4590	Trigonotylus caelestialium	0	2	31
Megal 25	storage protein 1	2148	Chilo suppressalis	0	3	5
Megal 34	vitellogenin	2855	Trigonotylus caelestialium	0	2	2
Megal 47	arylphorin-type storage protein	462	Omphisa fuscidentalis	$2.77 \mathrm{E}-71$	3	1
Megal 49	mitochondrial aldehyde dehydrogenase	624	Danaus plexippus	8.33E-107	4	3
Megal 68	ribosomal protein 127ae	517	Camponotus floridanus	$5.94 \mathrm{E}-64$	3	3
Megal 72	ribosomal protein 14	1323	Biphyllus lunatus	0	3	2
Megal 76	60s ribosomal protein 15-like	1257	Helianthus annuus	$6.70 \mathrm{E}-165$	5	1
Megal 85	arylphorin precursor	1485	Omphisa fuscidentalis	0	1	2
Megal 92	ribosomal protein s12	543	Apis florea	$2.42 \mathrm{E}-74$	3	2
Megal 107	vitellogenin	379	Lethocerus deyrollei	$7.45 \mathrm{E}-33$	4	2
Megal 143	N/A	423			0	3
Megal 157	N/A	987			0	1
Megal 183	actin	1612	Ornithodoros moubata	0	13	1
Megal 191	heat shock protein 90	2413	Megachile rotundata	0	4	4
Megal 193	40s ribosomal protein s15	545	Diaphorina citri	$1.09 \mathrm{E}-81$	6	1
Megal 199	mitochondrial atp synthase coupling factor 6	537	Tribolium castaneum	$4.06 \mathrm{E}-25$	5	2

APPENDIX I4. (cont.)

Megal 202	N/A	1411			0	4
Megal 215	60s ribosomal protein 112	865	Drosophila ananassae	$2.02 \mathrm{E}-98$	5	1
Megal 236	hexamerin 2 beta	2534	Helicoverpa armigera	0	3	10
Megal 238	vitellogenin	974	Lethocerus deyrollei	$4.17 \mathrm{E}-80$	4	7
Megal 312	ribosomal protein s7	650	Carabus granulatus	$2.00 \mathrm{E}-113$	3	2
Megal 346	cuticle protein 1	349	Lonomia obliqua	$1.10 \mathrm{E}-35$	1	3
Megal 360	40s ribosomal protein s14	569	Dascillus cervinus	$8.78 \mathrm{E}-73$	4	2
Megal 362	cytochrome c oxidase subunit iii	398	Frankliniella intonsa	$1.84 \mathrm{E}-41$	4	1
Megal 370	heat shock protein 70	1555	Frankliniella occidentalis	0	3	2
Megal 376	troponin i	871	Loxostege sticticalis	$1.48 \mathrm{E}-85$	1	1
Megal 378	ribosomal protein s8	713	Megachile rotundata	$1.45 \mathrm{E}-124$	3	1
Megal 408	N/A	216			0	1
Megal 419	ribosomal protein 135	512	Chrysomela tremula	$1.03 \mathrm{E}-50$	3	1
Megal 471	atp synthase-like protein	1067	Culex quinquefasciatus	$9.70 \mathrm{E}-64$	2	1
Megal 475	actin	688	Diaphorina citri	$1.76 \mathrm{E}-159$	3	1
Megal 491	ribosomal protein s3	781	Scarabaeus laticollis	$4.38 \mathrm{E}-156$	16	2
Megal 533	N/A	662			1	2
Megal 537	partial	721	Trigonotylus caelestialium	$3.39 \mathrm{E}-103$	2	3
Megal 551	ribosomal protein s28	408	Biphyllus lunatus	$1.09 \mathrm{E}-27$	4	1
Megal 569	N/A	806			1	2
Megal 572	N/A	475			0	2
Megal 591	tubulin alpha-1 chain	1518	Pediculus humanus corporis	0	12	1
Megal 603	ribosomal protein s18	523	Cicindela campestris	$2.71 \mathrm{E}-74$	4	1
Megal 608	N/A	533			0	4

APPENDIX I4. (cont.)

Megal 624	60s ribosomal protein 123a-like	716	Tribolium castaneum	$3.42 \mathrm{E}-73$	7	2
Megal 656	endocuticle structural glycoprotein bd-8-like	784	Papilio xuthus	$1.42 \mathrm{E}-28$	1	1
Megal 675	ribosomal protein 134	437	Spodoptera frugiperda	$1.04 \mathrm{E}-74$	3	3
Megal 716	cytochrome oxidase subunit viic	447	Ixodes pacificus	$4.41 \mathrm{E}-09$	1	1
Megal 749	apolipoprotein d-like	672	Aedes aegypti	$9.06 \mathrm{E}-39$	6	1
Megal 829	tpa: cuticle protein	374	Papilio xuthus	$1.95 \mathrm{E}-17$	1	2
Megal 836	female neotenic-specific protein 3	1303	Trigonotylus caelestialium	$1.58 \mathrm{E}-11$	2	1
Megal 861	glutathione s-transferase	633	Choristoneura fumiferana	$2.54 \mathrm{E}-100$	2	6
Megal 909	alo2_acrlo ame: full=antimicrobial peptide alo-2	338	Acrocinus longimanus	$1.42 \mathrm{E}-14$	3	9
Megal 952	ribosomal protein 121	534	Euphydryas aurinia	$9.58 \mathrm{E}-81$	3	1
Megal 1068	N/A	2803			0	1
Megal 1087	histone h2a	809	Crassostrea gigas	$1.18 \mathrm{E}-75$	5	1
Megal 1114	N/A	723			4	2
Megal 1118	pyruvate dehydrogenase	1656	Acromyrmex echinatior	0	4	2
Megal 1263	trypsin-like serine protease	676	Ostrinia nubilalis	$1.55 \mathrm{E}-101$	3	4
Megal 1348	elongation factor-1alpha partial	366	Blasticotoma filiceti	$3.34 \mathrm{E}-79$	5	1
Megal 1482	ribosomal protein s11	492	Bombyx mori	$1.03 \mathrm{E}-92$	3	2
Megal 1626	60s acidic ribosomal protein p0	650	Blaptica dubia	$3.76 \mathrm{E}-135$	5	1
Megal 1634	odorant-binding protein	638	Danaus plexippus	$6.46 \mathrm{E}-44$	1	6
Megal 1739	translocon-associated protein subunit delta	718	Acromyrmex echinatior	$2.53 \mathrm{E}-52$	2	1

APPENDIX J

List of all SNPs including consensus positions on contigs, alleles, coverage, and frequency
APPENDIX J1. A. curvipes.

Serial Number	Contig	Consensus Position	Consensus	Allele	Coverage	Frequency
1	Anop 7	904	C	T	365	35.3
2	Anop 13	186	C	T	70	35.7
3	Anop 14	616	C	T	36	44.4
4	Anop 14	649	T	A	73	37.0
5	Anop 14	708	C	G	85	35.3
6	Anop 14	745	T	A	58	37.9
7	Anop 15	166	T	C	135	36.3
8	Anop 15	197	A	G	138	37.0
9	Anop 15	285	G	A	193	45.6
10	Anop 15	297	A	T	174	48.3
11	Anop 15	310	A	G	207	44.0
12	Anop 15	396	A	G	229	49.3
13	Anop 15	428	C	T	239	47.3
14	Anop 15	433	T	G	244	47.5
15	Anop 15	458	T	C	231	47.6
16	Anop 15	469	A	G	212	46.7
17	Anop 17	431	C	T	118	40.7
18	Anop 17	557	A	G	105	46.7
19	Anop 23	1301	C	T	684	36.6
20	Anop 25	2181	G	A	63	39.7
21	Anop 25	2216	A	G	53	37.7
22	Anop 25	2230	A	G	64	35.9
23	Anop 25	2232	A	G	64	35.9
24	Anop 25	2244	T	C	65	36.9
25	Anop 25	2247	T	C	65	36.9
26	Anop 25	2282	G	A	70	40.0
27	Anop 26	219	G	A	41	36.6
28	Anop 26	354	C	T	45	48.9
29	Anop 27	173	C	A	96	36.5
30	Anop 27	216	A	G	87	40.2
31	Anop 27	283	G	A	88	45.5
32	Anop 27	286	G	A	87	44.8
33	Anop 31	83	A	G	114	43.9

APPENDIX J1. (cont.)

34	Anop 31	431	A	G	247	38.5
35	Anop 31	863	G	A	71	45.1
36	Anop 31	911	C	T	85	48.2
37	Anop 31	976	A	T	78	47.4
38	Anop 33	375	A	G	1013	39.1
39	Anop 33	568	T	C	73	46.6
40	Anop 33	599	G	A	61	47.5
41	Anop 34	387	T	C	956	45.7
42	Anop 34	1178	A	G	498	48.2
43	Anop 35	92	T	C	162	35.2
44	Anop 35	110	T	A	165	38.8
45	Anop 35	284	T	A	274	41.2
46	Anop 35	709	A	G	135	45.9
47	Anop 50	354	C	T	36	36.1
48	Anop 50	960	A	G	51	45.1
49	Anop 50	1048	C	A	46	41.3
50	Anop 50	1119	G	A	47	42.6
51	Anop 50	1575	G	C	63	36.5
52	Anop 50	1848	G	A	96	37.5
53	Anop 50	1893	C	G	97	47.4
54	Anop 50	1911	G	A	110	41.8
55	Anop 50	1992	C	T	91	53.8
56	Anop 50	2169	T	C	138	37.7
57	Anop 50	2607	T	C	133	42.1
58	Anop 50	2703	A	G	126	37.3
59	Anop 51	77	G	A	151	45.0
60	Anop 51	166	A	G	137	35.8
61	Anop 52	116	G	A	142	38.0
62	Anop 53	72	C	T	227	42.3
63	Anop 53	171	C	T	270	44.1
64	Anop 53	174	G	A	258	39.5
65	Anop 53	278	C	T	241	44.4
66	Anop 54	20	T	C	116	44.0
67	Anop 54	71	A	G	153	37.9
68	Anop 55	1071	C	T	49	49.0
69	Anop 58	386	C	G	77	50.6
70	Anop 64	31	C	T	46	43.5
71	Anop 64	549	A	G	101	49.5
72	Anop 64	588	A	G	69	47.8
73	Anop 64	1419	A	G	58	39.7
74	Anop 64	1491	C	T	51	37.3

APPENDIX J1. (cont.)

75	Anop 64	1507	C	T	58	41.4
76	Anop 71	345	T	A	37	37.8
77	Anop 71	383	C	T	45	40.0
78	Anop 71	390	C	G	52	44.2
79	Anop 71	414	A	G	52	48.1
80	Anop 71	555	G	A	76	47.4
81	Anop 71	696	C	T	88	44.3
82	Anop 71	765	G	A	84	47.6
83	Anop 71	795	A	G	77	46.8
84	Anop 71	1520	A	G	38	39.5
85	Anop 71	1532	G	A	37	43.2
86	Anop 71	1595	T	C	50	48.0
87	Anop 72	102	A	G	414	47.3
88	Anop 72	217	G	A	439	46.9
89	Anop 72	327	T	C	282	46.1
90	Anop 84	369	G	A	260	47.7
91	Anop 84	391	T	A	256	49.2
92	Anop 84	1613	G	A	37	40.5
93	Anop 87	97	A	G	117	37.6
94	Anop 92	446	G	A	41	39.0
95	Anop 92	620	T	C	36	47.2
96	Anop 97	109	G	T	72	40.3
97	Anop 99	176	C	T	41	36.6
98	Anop 106	152	T	C	320	35.6
99	Anop 106	386	A	G	290	35.5
100	Anop 106	419	T	C	257	38.1
101	Anop 106	445	C	T	231	44.2
102	Anop 107	299	A	G	422	35.8
103	Anop 107	452	G	A	685	49.3
104	Anop 107	488	A	G	825	37.2
105	Anop 107	507	T	C	850	35.8
106	Anop 107	596	T	C	770	35.7
107	Anop 112	29	G	C	83	38.6
108	Anop 112	101	C	T	93	50.5
109	Anop 112	428	A	C	112	40.2
110	Anop 112	458	A	G	135	48.9
111	Anop 112	563	T	C	114	49.1
112	Anop 112	794	C	T	107	37.4
113	Anop 112	965	T	C	223	44.4
114	Anop 112	1251	A	G	51	43.1
115	Anop 113	248	G	A	71	35.2

APPENDIX J1. (cont.)

116	Anop 113	581	T	G	47	36.2
117	Anop 120	339	G	A	369	42.0
118	Anop 121	200	T	A	176	44.3
119	Anop 123	344	G	A	327	41.0
120	Anop 123	416	C	T	251	49.0
121	Anop 123	506	A	G	158	46.8
122	Anop 125	237	T	C	1011	39.9
123	Anop 125	443	G	A	1378	37.7
124	Anop 133	565	T	C	76	40.8
125	Anop 152	431	A	G	43	41.9
126	Anop 152	1532	G	T	61	44.3
127	Anop 153	5795	A	T	114	48.2
128	Anop 159	339	G	C	61	41.0
129	Anop 161	291	T	C	36	38.9
130	Anop 162	378	G	C	664	47.1
131	Anop 162	1004	A	T	70	48.6
132	Anop 162	1070	A	C	61	52.5
133	Anop 162	1093	G	C	55	45.5
134	Anop 162	1172	G	T	59	45.8
135	Anop 162	1412	A	G	46	45.7
136	Anop 163	866	C	T	549	40.1
137	Anop 164	348	C	T	240	46.3
138	Anop 165	1961	T	C	35	45.7
139	Anop 169	1319	A	C	39	38.5
140	Anop 169	1535	A	G	48	50.0
141	Anop 169	1588	C	T	42	47.6
142	Anop 169	1666	C	T	51	35.3
143	Anop 169	1757	A	C	51	43.1
144	Anop 169	1971	A	T	68	41.2
145	Anop 169	2096	C	T	51	41.2
146	Anop 175	5260	C	A	49	46.9
147	Anop 175	5377	C	G	48	35.4
148	Anop 175	6334	C	T	160	42.5
149	Anop 175	6742	C	T	98	37.8
150	Anop 184	456	C	T	173	48.6
151	Anop 184	515	C	T	121	40.5
152	Anop 187	234	A	T	84	38.1
153	Anop 187	249	C	G	65	40.0
154	Anop 187	306	T	G	109	43.1
155	Anop 187	325	T	C	116	44.0
156	Anop 187	327	G	A	116	45.7

APPENDIX J1. (cont.)

157	Anop 187	368	A	G	120	43.3
158	Anop 187	477	A	T	116	37.9
159	Anop 187	479	T	A	116	37.9
160	Anop 187	498	T	C	105	39.0
161	Anop 187	513	A	G	107	39.3
162	Anop 188	317	A	G	67	52.2
163	Anop 188	347	A	G	68	35.3
164	Anop 188	665	T	C	35	48.6
165	Anop 198	468	G	T	138	44.2
166	Anop 205	843	T	C	136	47.8
167	Anop 213	69	C	T	95	40.0
168	Anop 214	1160	C	A	39	35.9
169	Anop 215	199	T	A	120	40.8
170	Anop 215	207	C	A	122	41.0
171	Anop 215	225	C	T	117	42.7
172	Anop 215	227	C	T	117	42.7
173	Anop 215	228	A	G	117	42.7
174	Anop 215	234	G	A	124	42.7
175	Anop 215	276	G	C	104	41.3
176	Anop 236	297	C	A	170	42.4
177	Anop 236	431	A	C	140	44.3
178	Anop 238	226	T	C	36	41.7
179	Anop 238	315	T	C	36	38.9
180	Anop 241	631	A	G	60	38.3
181	Anop 249	193	A	G	56	39.3
182	Anop 258	165	G	A	111	42.3
183	Anop 258	309	G	A	165	38.2
184	Anop 261	186	T	G	45	40.0
185	Anop 261	187	T	C	45	40.0
186	Anop 261	386	C	T	52	42.3
187	Anop 266	699	G	A	49	38.8
188	Anop 266	768	G	T	45	42.2
189	Anop 266	876	G	A	44	43.2
190	Anop 274	123	G	C	52	40.4
191	Anop 275	44	G	A	62	50.0
192	Anop 275	47	A	C	64	48.4
193	Anop 275	56	C	T	77	45.5
194	Anop 275	155	C	T	94	52.1
195	Anop 275	182	C	T	113	46.0

APPENDIX J1. (cont.)

196	Anop 275	190	A	G	114	37.7
197	Anop 275	786	C	T	81	46.9
198	Anop 277	362	T	C	156	38.5
199	Anop 282	245	T	C	236	46.6
200	Anop 282	357	C	T	234	36.8
201	Anop 282	591	T	C	66	45.5
202	Anop 285	88	C	G	116	37.1
203	Anop 285	195	G	C	104	37.5
204	Anop 290	85	G	C	241	43.6
205	Anop 290	148	A	G	337	48.1
206	Anop 290	325	T	C	247	42.5
207	Anop 291	62	C	T	150	44.7
208	Anop 291	191	C	T	91	41.8
209	Anop 291	316	T	C	63	42.9
210	Anop 291	333	G	A	61	36.1
211	Anop 291	379	T	C	43	41.9
212	Anop 293	245	A	G	60	43.3
213	Anop 293	418	C	T	80	51.3
214	Anop 296	415	G	A	40	35.0
215	Anop 300	85	T	C	85	43.5
216	Anop 304	1717	T	A	57	43.9
217	Anop 304	1971	T	C	40	47.5
218	Anop 316	247	C	T	396	37.1
219	Anop 318	177	G	A	76	47.4
220	Anop 318	297	C	G	78	43.6
221	Anop 324	288	C	A	83	41.0
222	Anop 324	327	T	G	86	44.2
223	Anop 325	1563	A	G	42	45.2
224	Anop 325	1575	C	T	39	38.5
225	Anop 325	1645	C	A	41	48.8
226	Anop 332	395	T	G	41	41.5
227	Anop 332	606	T	G	39	35.9
228	Anop 334	105	C	T	253	49.0
229	Anop 334	142	T	C	244	48.0
230	Anop 334	213	C	T	52	36.5
231	Anop 337	544	T	C	39	56.4
232	Anop 344	32	G	T	52	40.4

APPENDIX J1. (cont.)

233	Anop 344	339	C	T	78	47.4
234	Anop 348	30	A	G	97	41.2
235	Anop 349	423	G	A	73	38.4
236	Anop 351	568	C	T	42	42.9
237	Anop 351	706	C	T	70	51.4
238	Anop 351	712	G	T	70	51.4
239	Anop 351	715	T	C	71	50.7
240	Anop 351	720	G	A	53	39.6
241	Anop 351	741	T	C	64	46.9
242	Anop 351	742	C	G	64	46.9
243	Anop 351	743	T	A	64	46.9
244	Anop 351	758	A	G	75	46.7
245	Anop 351	759	A	C	75	45.3
246	Anop 351	818	C	A	69	37.7
247	Anop 351	843	A	G	66	39.4
248	Anop 351	847	C	A	67	35.8
249	Anop 351	888	G	A	62	38.7
250	Anop 351	901	T	C	62	40.3
251	Anop 351	930	A	G	45	35.6
252	Anop 354	298	A	G	39	43.6
253	Anop 354	340	T	C	41	43.9
254	Anop 358	146	G	A	104	35.6
255	Anop 358	403	C	T	161	35.4
256	Anop 358	430	G	A	119	36.1
257	Anop 358	578	T	C	45	48.9
258	Anop 358	606	A	G	151	35.1
259	Anop 358	678	A	G	144	36.1
260	Anop 364	214	G	A	192	39.1
261	Anop 364	215	T	C	195	40.5
262	Anop 364	292	T	C	210	36.7
263	Anop 364	406	T	C	199	41.2
264	Anop 364	460	C	T	192	41.7
265	Anop 364	654	G	A	86	40.7
266	Anop 365	1350	C	T	52	46.2
267	Anop 376	77	G	A	43	37.2
268	Anop 376	139	A	C	54	46.3
269	Anop 376	314	G	A	53	47.2
270	Anop 376	444	A	G	46	50.0

APPENDIX J1. (cont.)

271	Anop 376	736	G	T	45	37.8
272	Anop 376	832	A	T	44	43.2
273	Anop 377	286	T	C	61	42.6
274	Anop 377	310	C	T	63	39.7
275	Anop 380	90	C	A	39	35.9
276	Anop 380	96	C	T	37	37.8
277	Anop 380	99	C	T	38	42.1
278	Anop 380	105	G	A	43	37.2
279	Anop 380	108	G	A	43	37.2
280	Anop 389	261	A	G	613	41.9
281	Anop 389	426	C	T	737	50.1
282	Anop 392	165	T	A	129	49.6
283	Anop 392	309	A	G	145	45.5
284	Anop 392	345	T	G	110	40.9
285	Anop 395	266	C	T	148	45.3
286	Anop 395	620	G	T	215	49.8
287	Anop 395	743	T	C	218	49.1
288	Anop 422	9	G	A	62	40.3
289	Anop 422	33	G	A	93	39.8
290	Anop 422	124	G	C	122	43.4
291	Anop 422	136	C	T	116	42.2
292	Anop 422	264	G	A	91	45.1
293	Anop 422	301	C	T	87	46.0
294	Anop 422	323	C	A	54	38.9
295	Anop 433	152	A	G	67	46.3
296	Anop 433	164	T	C	74	36.5
297	Anop 447	407	T	C	63	38.1
298	Anop 467	145	A	C	75	45.3
299	Anop 467	250	T	C	89	42.7
300	Anop 467	469	C	T	55	43.6
301	Anop 467	532	G	A	70	47.1
302	Anop 471	281	G	A	55	40.0
303	Anop 473	255	A	G	51	43.1
304	Anop 480	465	T	C	44	43.2
305	Anop 485	56	T	C	112	39.3
306	Anop 485	67	C	T	101	36.6
307	Anop 485	76	C	T	104	35.6
308	Anop 494	159	T	A	59	35.6
309	Anop 494	274	A	C	44	40.9
310	Anop 494	276	C	T	44	50.0

APPENDIX J1. (cont.)

311	Anop 494	281	T	C	42	50.0
312	Anop 494	339	A	G	49	42.9
313	Anop 494	423	T	C	43	37.2
314	Anop 503	75	T	C	76	39.5
315	Anop 503	99	A	G	82	40.2
316	Anop 503	307	C	T	91	36.3
317	Anop 503	399	G	C	82	47.6
318	Anop 503	482	A	T	82	52.4
319	Anop 517	67	T	C	36	38.9
320	Anop 520	301	T	C	127	44.9
321	Anop 523	451	G	T	96	50.0
322	Anop 527	446	G	T	45	35.6
323	Anop 534	350	G	A	113	38.1
324	Anop 534	392	G	C	118	35.6
325	Anop 534	545	T	G	93	44.1
326	Anop 541	381	C	G	420	36.2
327	Anop 552	309	C	T	127	44.9
328	Anop 552	354	C	T	136	42.6
329	Anop 561	405	G	A	47	38.3
330	Anop 568	290	C	G	37	45.9
331	Anop 568	435	T	C	75	41.3
332	Anop 569	368	A	G	46	50.0
333	Anop 576	27	T	A	37	43.2
334	Anop 576	70	C	T	41	43.9
335	Anop 576	215	A	T	44	36.4
336	Anop 576	251	G	A	44	36.4
337	Anop 576	257	C	T	49	42.9
338	Anop 576	266	G	A	47	46.8
339	Anop 576	599	T	C	57	47.4
340	Anop 576	611	C	T	51	43.1
341	Anop 576	632	G	A	48	45.8
342	Anop 576	635	T	C	45	37.8
343	Anop 576	860	T	A	62	41.9
344	Anop 576	1061	C	T	100	41.0
345	Anop 576	1226	T	A	37	43.2
346	Anop 582	430	G	A	92	37.0
347	Anop 597	1191	A	G	39	48.7
348	Anop 597	1737	T	A	45	37.8

APPENDIX J1. (cont.)

349	Anop 602	335	C	G	80	36.3
350	Anop 602	423	T	A	62	43.5
351	Anop 602	431	A	C	66	43.9
352	Anop 602	432	G	A	66	43.9
353	Anop 602	465	C	T	70	37.1
354	Anop 602	486	A	G	62	46.8
355	Anop 602	569	T	C	56	46.4
356	Anop 602	587	A	G	60	46.7
357	Anop 602	588	T	C	60	46.7
358	Anop 602	632	C	T	79	41.8
359	Anop 602	648	T	A	71	47.9
360	Anop 602	731	T	C	54	55.6
361	Anop 609	108	T	C	37	43.2
362	Anop 609	260	C	T	47	46.8
363	Anop 615	72	A	T	197	42.6
364	Anop 622	333	T	C	54	42.6
365	Anop 622	339	G	C	53	47.2
366	Anop 622	369	G	A	45	40.0
367	Anop 622	414	A	G	49	38.8
368	Anop 622	435	C	T	48	47.9
369	Anop 622	444	A	G	52	48.1
370	Anop 622	498	T	C	61	47.5
371	Anop 622	530	G	A	63	46.0
372	Anop 643	22	G	A	75	48.0
373	Anop 643	113	T	C	90	42.2
374	Anop 643	116	T	C	89	41.6
375	Anop 643	130	T	C	87	47.1
376	Anop 643	291	A	C	48	35.4
377	Anop 648	553	A	G	35	40.0
378	Anop 648	566	C	G	36	36.1
379	Anop 648	582	A	G	35	45.7
380	Anop 658	20	A	G	58	36.2
381	Anop 658	21	G	T	58	36.2
382	Anop 658	44	A	C	59	40.7
383	Anop 658	137	A	G	86	41.9
384	Anop 658	355	G	A	49	40.8
385	Anop 662	404	C	T	133	35.3
386	Anop 664	97	G	A	60	43.3
387	Anop 664	250	G	C	71	38.0
388	Anop 664	324	C	T	77	37.7

APPENDIX J1. (cont.)

389	Anop 674	241	A	G	49	44.9
390	Anop 678	1051	A	G	38	44.7
391	Anop 683	51	G	C	139	44.6
392	Anop 683	90	G	C	141	47.5
393	Anop 683	93	A	G	139	48.2
394	Anop 683	103	C	T	123	48.8
395	Anop 683	112	T	C	104	43.3
396	Anop 683	225	A	C	126	46.8
397	Anop 683	277	G	C	106	43.4
398	Anop 683	328	C	G	88	40.9
399	Anop 708	600	T	C	43	44.2
400	Anop 708	687	T	C	45	48.9
401	Anop 708	690	G	C	41	46.3
402	Anop 708	699	T	C	38	55.3
403	Anop 708	705	T	G	40	52.5
404	Anop 708	720	A	G	42	50.0
405	Anop 714	459	C	T	51	45.1
406	Anop 714	478	T	C	46	37.0
407	Anop 729	138	C	A	39	46.2
408	Anop 729	158	G	T	41	46.3
409	Anop 729	273	C	T	61	45.9
410	Anop 744	205	T	C	215	46.0
411	Anop 744	393	G	A	217	47.0
412	Anop 758	32	A	T	38	36.8
413	Anop 758	198	A	T	47	40.4
414	Anop 758	384	T	C	49	36.7
415	Anop 759	146	T	C	222	40.1
416	Anop 759	251	C	T	346	39.9
417	Anop 759	359	G	A	332	35.2
418	Anop 771	581	A	G	124	37.1
419	Anop 771	591	A	T	117	40.2
420	Anop 771	634	T	C	53	43.4
421	Anop 771	695	T	A	47	40.4
422	Anop 771	696	G	A	47	40.4
423	Anop 771	739	A	G	37	45.9
424	Anop 772	315	T	G	87	44.8
425	Anop 772	338	A	T	89	36.0
426	Anop 772	395	G	A	73	54.8

APPENDIX J1. (cont.)

427	Anop 772	1103	C	T	156	36.5
428	Anop 782	101	C	A	45	44.4
429	Anop 782	138	T	G	55	41.8
430	Anop 782	175	G	C	56	37.5
431	Anop 782	211	A	G	42	35.7
432	Anop 782	213	C	T	50	38.0
433	Anop 782	297	T	A	37	40.5
434	Anop 799	402	T	C	115	36.5
435	Anop 800	266	A	G	172	47.1
436	Anop 805	67	A	G	65	47.7
437	Anop 805	130	G	C	82	40.2
438	Anop 805	204	A	C	86	43.0
439	Anop 805	266	A	G	73	45.2
440	Anop 805	278	T	C	53	45.3
441	Anop 805	383	C	T	48	43.8
442	Anop 807	378	C	T	223	55.6
443	Anop 809	278	C	T	139	38.1
444	Anop 809	545	T	C	99	36.4
445	Anop 818	205	G	C	36	36.1
446	Anop 818	244	C	T	36	36.1
447	Anop 818	265	C	G	39	38.5
448	Anop 818	342	G	A	38	42.1
449	Anop 818	661	C	T	45	40.0
450	Anop 825	133	C	T	49	36.7
451	Anop 825	661	T	A	44	45.5
452	Anop 828	157	C	T	88	45.5
453	Anop 829	516	A	G	36	38.9
454	Anop 843	239	T	A	96	39.6
455	Anop 843	284	C	G	97	41.2
456	Anop 849	108	T	A	84	42.9
457	Anop 850	346	C	T	39	46.2
458	Anop 857	264	A	G	71	42.3
459	Anop 877	378	A	G	35	51.4
460	Anop 877	379	C	T	35	37.1
461	Anop 878	783	C	G	35	37.1
462	Anop 878	851	T	A	40	35.0
463	Anop 878	1657	C	T	56	39.3
464	Anop 878	1666	G	T	51	39.2
465	Anop 878	1674	A	T	40	37.5

APPENDIX J1. (cont.)

466	Anop 878	1678	A	C	46	52.2
467	Anop 878	1702	C	G	63	39.7
468	Anop 886	148	A	G	58	46.6
469	Anop 886	238	T	C	59	44.1
470	Anop 886	289	C	G	54	44.4
471	Anop 886	391	A	G	52	48.1
472	Anop 902	489	T	C	46	43.5
473	Anop 906	183	T	G	144	42.4
474	Anop 906	252	C	A	147	42.9
475	Anop 906	336	G	A	141	43.3
476	Anop 906	707	A	G	102	43.1
477	Anop 906	1199	A	G	55	38.2
478	Anop 906	1262	A	G	39	38.5
479	Anop 906	1700	G	A	78	41.0
480	Anop 906	2552	G	A	50	48.0
481	Anop 908	233	C	T	39	41.0
482	Anop 908	302	T	C	50	48.0
483	Anop 908	677	A	G	81	43.2
484	Anop 911	343	T	C	38	39.5
485	Anop 911	370	G	A	41	36.6
486	Anop 911	1170	G	A	161	45.3
487	Anop 911	1230	G	A	179	49.7
488	Anop 911	1461	G	A	165	38.8
489	Anop 911	1503	A	G	177	41.8
490	Anop 911	1606	G	A	48	39.6
491	Anop 911	1630	C	T	69	47.8
492	Anop 911	1954	C	T	56	42.9
493	Anop 958	1107	T	C	36	50.0
494	Anop 958	1191	T	A	44	38.6
495	Anop 967	29	A	G	67	37.3
496	Anop 967	50	G	C	68	47.1
497	Anop 967	97	C	A	115	40.9
498	Anop 967	140	A	C	120	44.2
499	Anop 971	335	T	A	40	35.0
500	Anop 971	358	C	T	42	38.1
501	Anop 971	393	A	C	36	47.2
502	Anop 982	55	C	T	52	36.5
503	Anop 982	150	C	G	62	35.5

APPENDIX J1. (cont.)

504	Anop 982	162	C	G	76	38.2
505	Anop 982	277	A	G	75	46.7
506	Anop 982	393	G	C	74	43.2
507	Anop 1000	1076	G	A	76	42.1
508	Anop 1017	502	G	A	42	54.8
509	Anop 1017	598	A	G	53	47.2
510	Anop 1017	784	T	C	36	38.9
511	Anop 1017	937	G	A	47	36.2
512	Anop 1017	943	C	T	47	44.7
513	Anop 1027	93	C	G	36	41.7
514	Anop 1027	95	A	G	36	41.7
515	Anop 1027	110	C	T	39	43.6
516	Anop 1027	111	G	T	39	41.0
517	Anop 1027	131	C	G	39	41.0
518	Anop 1027	150	C	T	36	47.2
519	Anop 1027	154	A	T	36	44.4
520	Anop 1027	359	A	T	37	48.6
521	Anop 1050	195	G	A	51	47.1
522	Anop 1050	240	T	C	51	41.2
523	Anop 1050	252	C	T	50	42.0
524	Anop 1050	383	A	G	56	41.1
525	Anop 1050	384	G	A	56	41.1
526	Anop 1050	609	T	C	41	43.9
527	Anop 1050	621	C	G	38	47.4
528	Anop 1050	645	C	G	37	37.8
529	Anop 1084	343	G	A	377	47.2
530	Anop 1085	2116	A	G	35	42.9
531	Anop 1085	2344	C	T	36	36.1
532	Anop 1109	333	C	T	232	36.6
533	Anop 1125	641	A	G	46	47.8
534	Anop 1126	20	A	G	63	49.2
535	Anop 1126	176	A	G	84	39.3
536	Anop 1126	188	A	G	82	39.0
537	Anop 1126	197	G	A	87	37.9
538	Anop 1136	279	A	G	60	48.3
539	Anop 1163	1920	C	A	59	39.0
540	Anop 1166	165	A	C	43	39.5
541	Anop 1166	214	C	G	43	44.2

APPENDIX J1. (cont.)

542	Anop 1170	213	C	T	64	45.3
543	Anop 1170	598	C	T	36	38.9
544	Anop 1173	20	T	C	43	51.2
545	Anop 1173	26	T	C	45	48.9
546	Anop 1173	32	C	T	51	45.1
547	Anop 1173	344	G	A	67	47.8
548	Anop 1189	376	T	C	453	47.7
549	Anop 1189	529	C	A	271	45.0
550	Anop 1193	465	C	T	72	48.6
551	Anop 1193	466	C	T	72	48.6
552	Anop 1201	322	C	T	46	41.3
553	Anop 1201	433	A	G	55	43.6
554	Anop 1201	466	C	T	54	40.7
555	Anop 1201	499	A	G	50	48.0
556	Anop 1202	317	A	G	130	49.2
557	Anop 1202	343	T	C	112	41.1
558	Anop 1207	457	A	T	40	42.5
559	Anop 1207	554	A	G	56	50.0
560	Anop 1207	621	G	C	52	40.4
561	Anop 1217	339	T	C	97	45.4
562	Anop 1217	698	C	T	56	35.7
563	Anop 1229	788	G	A	75	44.0
564	Anop 1229	1358	A	C	36	36.1
565	Anop 1233	430	C	T	77	48.1
566	Anop 1233	955	A	G	75	48.0
567	Anop 1236	294	A	T	166	36.1
568	Anop 1237	286	G	C	54	38.9
569	Anop 1237	430	C	T	53	41.5
570	Anop 1237	454	G	A	55	47.3
571	Anop 1243	336	G	A	93	38.7
572	Anop 1243	429	T	C	90	35.6
573	Anop 1243	573	G	A	72	36.1
574	Anop 1268	144	T	C	104	49.0
575	Anop 1269	437	A	G	95	46.3
576	Anop 1276	951	T	C	63	36.5
577	Anop 1276	1012	G	T	45	42.2
578	Anop 1276	1013	T	C	45	42.2
579	Anop 1276	1032	A	T	51	45.1
580	Anop 1277	574	G	A	39	35.9

APPENDIX J1. (cont.)

581	Anop 1294	160	G	A	185	35.1
582	Anop 1294	175	A	C	202	44.1
583	Anop 1295	302	G	A	37	45.9
584	Anop 1295	311	T	A	36	41.7
585	Anop 1295	534	A	T	93	38.7
586	Anop 1295	536	T	G	93	38.7
587	Anop 1295	707	A	T	57	47.4
588	Anop 1295	846	C	T	67	41.8
589	Anop 1295	859	G	A	66	42.4
590	Anop 1302	272	G	A	78	42.3
591	Anop 1302	288	C	T	77	35.1
592	Anop 1312	488	C	A	41	46.3
593	Anop 1312	498	G	C	37	40.5
594	Anop 1312	531	G	A	36	36.1
595	Anop 1312	569	G	T	42	47.6
596	Anop 1349	30	A	G	35	37.1
597	Anop 1349	51	G	A	35	37.1
598	Anop 1357	98	G	A	63	39.7
599	Anop 1361	603	C	A	64	42.2
600	Anop 1361	604	C	G	64	35.9
601	Anop 1361	775	C	A	36	47.2
602	Anop 1375	455	T	G	39	48.7
603	Anop 1384	203	T	A	35	42.9
604	Anop 1384	287	C	G	35	42.9
605	Anop 1411	317	A	G	79	39.2
606	Anop 1426	150	T	C	35	40.0
607	Anop 1518	573	T	C	56	48.2
608	Anop 1524	115	C	T	44	43.2
609	Anop 1526	114	G	C	37	43.2
610	Anop 1526	126	C	T	37	43.2
611	Anop 1526	255	T	C	38	36.8
612	Anop 1526	258	G	A	38	36.8
613	Anop 1526	304	T	C	35	37.1
614	Anop 1550	136	T	G	58	43.1
615	Anop 1553	338	A	T	44	38.6
616	Anop 1553	426	A	T	46	45.7
617	Anop 1563	245	C	A	39	41.0
618	Anop 1627	419	G	C	42	47.6
619	Anop 1627	437	G	A	64	37.5

APPENDIX J1. (cont.)

620	Anop 1627	440	G	T	62	51.6
621	Anop 1627	506	G	A	46	41.3
622	Anop 1627	616	G	A	49	40.8
623	Anop 1627	625	G	T	41	36.6
624	Anop 1666	201	C	T	86	37.2
625	Anop 1686	109	A	T	56	42.9
626	Anop 1686	265	G	A	64	40.6
627	Anop 1686	381	A	G	89	51.7
628	Anop 1686	514	G	A	74	45.9
629	Anop 1692	506	A	C	60	41.7
630	Anop 1692	640	C	A	64	37.5
631	Anop 1692	1018	A	G	54	46.3
632	Anop 1703	20	A	G	52	38.5
633	Anop 1703	414	T	G	78	43.6
634	Anop 1703	460	T	C	70	40.0
635	Anop 1766	311	T	C	69	46.4
636	Anop 1776	1451	A	G	47	38.3
637	Anop 1794	472	A	G	102	45.1
638	Anop 1815	468	T	C	43	39.5
639	Anop 1815	518	C	A	36	38.9
640	Anop 1823	458	A	G	51	41.2
641	Anop 1823	472	T	C	49	46.9
642	Anop 1835	199	C	T	42	42.9
643	Anop 1835	205	A	C	43	37.2
644	Anop 1842	372	A	G	168	38.1
645	Anop 1844	131	C	T	39	48.7
646	Anop 1844	158	G	A	41	41.5
647	Anop 1844	218	T	C	47	40.4
648	Anop 1844	272	C	T	40	45.0
649	Anop 1844	296	A	T	47	42.6
650	Anop 1855	233	A	G	35	45.7
651	Anop 1856	475	G	C	50	42.0
652	Anop 1856	491	C	T	44	43.2
653	Anop 1856	493	G	C	44	43.2
654	Anop 1856	498	G	C	54	35.2
655	Anop 1856	578	A	T	39	56.4
656	Anop 1856	608	T	C	45	40.0
657	Anop 1856	743	T	G	35	37.1

APPENDIX J1. (cont.)

658	Anop 1896	783	T	C	38	39.5
659	Anop 1896	1023	T	C	48	56.3
660	Anop 1896	1026	C	T	59	35.6
661	Anop 1909	220	A	T	94	43.6
662	Anop 1909	221	A	C	94	43.6
663	Anop 1945	2065	A	T	43	46.5
664	Anop 1989	1383	A	G	39	46.2
665	Anop 2003	415	C	T	80	42.5
666	Anop 2142	615	T	G	87	40.2
667	Anop 2149	396	T	A	37	40.5
668	Anop 2178	361	C	T	45	46.7
669	Anop 2178	596	T	C	52	40.4
670	Anop 2178	732	G	C	44	43.2
671	Anop 2212	206	G	A	38	39.5
672	Anop 2312	20	C	G	59	47.5
673	Anop 2312	29	T	A	61	49.2
674	Anop 2378	263	G	A	39	35.9
675	Anop 2385	100	A	G	38	47.4
676	Anop 2385	166	C	T	40	50.0
677	Anop 2385	255	C	G	38	36.8
678	Anop 2385	274	G	A	39	46.2
679	Anop 2385	283	A	G	38	42.1
680	Anop 2440	516	C	T	99	37.4
681	Anop 2440	600	A	G	59	35.6
682	Anop 2477	199	G	T	36	50.0
683	Anop 2534	1254	C	T	35	45.7
684	Anop 2559	1182	T	C	67	40.3
685	Anop 2571	67	C	T	39	46.2
686	Anop 2571	106	T	C	45	46.7
687	Anop 2571	301	A	C	56	44.6
688	Anop 2593	350	G	C	42	42.9
689	Anop 2635	643	C	T	37	45.9
690	Anop 2635	739	C	T	40	47.5
691	Anop 2636	263	C	T	59	45.8
692	Anop 2636	281	A	G	62	38.7
693	Anop 2636	449	G	T	55	43.6
694	Anop 2804	321	C	T	87	40.2
695	Anop 2828	152	G	A	42	38.1

APPENDIX J1. (cont.)

696	Anop 2828	323	G	A	58	48.3
697	Anop 2833	171	A	C	36	36.1
698	Anop 2833	173	G	A	36	36.1
699	Anop 2833	181	C	A	36	36.1
700	Anop 2833	198	A	C	37	37.8
701	Anop 2833	201	C	T	37	37.8
702	Anop 2833	222	T	A	38	39.5
703	Anop 2833	263	T	C	40	35.0
704	Anop 2833	264	A	T	39	38.5
705	Anop 2833	283	A	G	39	35.9
706	Anop 2861	1141	T	C	40	47.5
707	Anop 2926	86	G	A	72	40.3
708	Anop 2926	117	C	T	72	36.1
709	Anop 3353	39	G	C	43	37.2
710	Anop 3353	74	C	A	51	35.3
711	Anop 3353	75	T	A	51	35.3
712	Anop 3353	99	C	T	55	36.4
713	Anop 3353	105	A	G	55	36.4
714	Anop 3353	148	G	A	55	36.4
715	Anop 3353	158	C	T	57	40.4
716	Anop 3353	170	C	G	54	37.0
717	Anop 3353	172	T	A	53	35.8
718	Anop 3353	174	G	A	54	35.2
719	Anop 3353	184	C	G	59	39.0
720	Anop 3353	186	T	A	59	39.0
721	Anop 3353	188	C	A	59	39.0
722	Anop 3353	233	T	G	61	37.7
723	Anop 3353	246	T	A	58	36.2
724	Anop 3481	591	G	C	74	43.2
725	Anop 3481	597	C	A	77	46.8
726	Anop 3481	744	T	A	61	45.9
727	Anop 3688	185	G	A	49	40.8
728	Anop 3688	190	A	C	44	47.7
729	Anop 3688	196	C	T	40	40.0
730	Anop 3688	202	T	A	49	46.9
731	Anop 3688	272	A	G	47	40.4
732	Anop 3688	303	T	C	44	40.9
733	Anop 3823	637	G	C	38	47.4

APPENDIX J1. (cont.)

734	Anop 3823	643	A	G	39	41.0
735	Anop 4243	124	C	A	53	39.6
736	Anop 5253	227	C	G	43	41.9
737	Anop 5253	312	A	G	37	37.8
738	Anop 5253	328	A	G	36	38.9
739	Anop 6789	324	C	T	38	42.1
740	Anop 6789	327	A	G	38	42.1
741	Anop 6789	339	G	T	39	48.7
742	Anop 8555	451	C	T	311	35.0

APPENDIX J2. A. craccivora.

Serial Number	Contig	Consensus Position	Consensus	Allele	Coverage	Frequency
1	Aphis 41	98	A	T	39	35.9
2	Aphis 41	918	C	T	88	38.6
3	Aphis 45	1329	T	C	45	48.9
4	Aphis 85	138	C	T	62	48.4
5	Aphis 85	289	T	C	70	42.9
6	Aphis 90	144	G	A	67	49.3
7	Aphis 90	164	C	T	67	47.8
8	Aphis 90	221	C	T	68	50.0
9	Aphis 102	282	A	G	59	49.2
10	Aphis 102	333	T	C	79	36.7
11	Aphis 102	429	T	A	74	36.5
12	Aphis 102	468	C	T	72	36.1
13	Aphis 102	480	C	T	64	39.1
14	Aphis 102	489	A	G	71	39.4
15	Aphis 103	215	G	A	51	45.1
16	Aphis 103	437	T	A	112	43.8
17	Aphis 111	462	T	C	167	49.1
18	Aphis 117	101	T	C	54	44.4
19	Aphis 117	445	C	T	56	44.6
20	Aphis 133	565	G	A	53	47.2
21	Aphis 133	595	A	G	40	52.5
22	Aphis 200	245	A	C	43	41.9
23	Aphis 200	317	C	G	56	41.1
24	Aphis 200	488	G	A	40	47.5
25	Aphis 212	1286	C	G	84	48.8
26	Aphis 215	1480	T	A	165	49.1
27	Aphis 215	1534	T	C	152	40.8
28	Aphis 242	1886	G	A	57	36.8
29	Aphis 255	72	G	A	37	37.8
30	Aphis 255	81	C	T	41	41.5
31	Aphis 255	93	C	T	41	43.9
32	Aphis 255	120	A	G	44	40.9
33	Aphis 255	123	G	A	44	40.9
34	Aphis 255	126	C	T	45	40.0
35	Aphis 255	132	A	T	46	39.1
36	Aphis 255	136	A	G	44	36.4
37	Aphis 255	231	A	G	46	52.2

APPENDIX J2. A. craccivora.

38	Aphis 255	255	G	A	52	40.4
39	Aphis 255	701	A	G	54	48.1
40	Aphis 273	67	T	C	72	43.1
41	Aphis 273	171	C	T	87	47.1
42	Aphis 273	468	A	T	94	46.8
43	Aphis 273	489	G	A	98	42.9
44	Aphis 309	319	A	G	50	36.0
45	Aphis 321	372	A	G	41	46.3
46	Aphis 321	462	G	A	44	50.0
47	Aphis 321	471	G	A	43	48.8
48	Aphis 321	498	A	G	44	47.7
49	Aphis 321	507	T	A	44	47.7
50	Aphis 321	570	C	T	43	48.8
51	Aphis 321	579	A	G	43	48.8
52	Aphis 321	632	T	C	41	48.8
53	Aphis 321	636	G	T	42	50.0
54	Aphis 359	553	A	G	73	49.3
55	Aphis 359	556	T	C	79	46.8
56	Aphis 359	562	G	A	77	35.1
57	Aphis 359	649	A	C	85	55.3
58	Aphis 359	706	T	A	113	38.9
59	Aphis 359	712	A	G	94	43.6
60	Aphis 359	714	C	T	94	43.6
61	Aphis 359	715	A	T	94	43.6
62	Aphis 359	725	T	C	121	35.5
63	Aphis 359	730	T	C	123	44.7
64	Aphis 365	1829	T	G	97	41.2
65	Aphis 365	1837	G	A	95	42.1
66	Aphis 365	1850	A	T	75	41.3
67	Aphis 365	1852	G	A	75	41.3
68	Aphis 365	1856	C	T	80	43.8
69	Aphis 365	1865	G	A	69	44.9
70	Aphis 365	1874	G	A	68	47.1
71	Aphis 384	16	A	G	37	35.1
72	Aphis 384	41	A	T	45	37.8
73	Aphis 384	104	G	A	51	37.3
74	Aphis 384	110	C	G	51	37.3
75	Aphis 384	133	G	C	42	47.6

APPENDIX J2. (cont.)

76	Aphis 384	137	G	A	50	38.0
77	Aphis 384	147	A	T	50	38.0
78	Aphis 384	152	T	G	35	54.3
79	Aphis 384	153	T	A	35	54.3
80	Aphis 384	176	C	A	53	37.7
81	Aphis 384	179	G	A	53	35.8
82	Aphis 384	220	G	T	53	35.8
83	Aphis 384	257	C	A	53	35.8
84	Aphis 433	293	T	G	173	47.4
85	Aphis 433	440	A	T	176	48.3
86	Aphis 480	157	A	G	44	45.5
87	Aphis 525	993	T	A	62	43.5
88	Aphis 645	570	C	T	48	43.8
89	Aphis 645	645	G	A	48	41.7
90	Aphis 668	637	A	T	64	48.4
91	Aphis 704	419	C	T	59	39.0
92	Aphis 704	431	C	T	53	37.7
93	Aphis 704	447	C	A	45	44.4
94	Aphis 906	122	T	A	44	36.4
95	Aphis 1221	723	G	A	111	45.9
96	Aphis 1468	302	T	C	37	45.9
97	Aphis 1725	250	C	A	38	47.4

APPENDIX J3. C. tomentosicollis.

Serial Number	Contig	Consensus Position	Consensus	Allele	Coverage	Frequency
1	Clavig 2	393	A	G	37	45.9
2	Clavig 2	482	A	C	35	45.7
3	Clavig 6	42	T	A	182	38.5
4	Clavig 6	47	C	T	184	38.0
5	Clavig 6	104	G	C	229	35.8
6	Clavig 6	299	T	A	176	35.2
7	Clavig 7	276	T	C	154	42.9
8	Clavig 7	279	C	T	157	35.0
9	Clavig 7	315	T	C	166	41.6
10	Clavig 7	326	C	G	162	43.2
11	Clavig 7	333	C	T	161	43.5
12	Clavig 7	340	T	C	157	44.6
13	Clavig 9	24	A	G	219	53.4
14	Clavig 9	36	T	C	259	46.7
15	Clavig 9	47	C	G	262	48.1
16	Clavig 9	54	C	T	258	49.2
17	Clavig 9	61	T	C	259	51.0
18	Clavig 9	420	C	T	35	45.7
19	Clavig 17	726	C	T	56	42.9
20	Clavig 18	89	T	C	57	36.8
21	Clavig 19	268	T	C	55	45.5
22	Clavig 19	349	G	A	53	39.6
23	Clavig 20	1709	C	T	1244	43.2
24	Clavig 20	2517	T	C	100	36.0
25	Clavig 26	213	T	A	156	42.3
26	Clavig 37	144	G	A	193	42.0
27	Clavig 37	248	G	A	211	45.5
28	Clavig 39	211	T	C	78	43.6
29	Clavig 39	374	T	C	62	38.7
30	Clavig 45	67	T	G	302	43.0
31	Clavig 45	68	T	C	302	43.0
32	Clavig 45	125	T	C	321	39.9
33	Clavig 45	191	T	C	319	46.1
34	Clavig 45	266	A	C	329	45.6
35	Clavig 45	278	T	C	277	39.4

APPENDIX J3. (Cont.)

36	Clavig 46	224	A	G	116	35.3
37	Clavig 46	314	A	G	114	36.8
38	Clavig 46	389	T	A	141	47.5
39	Clavig 50	258	G	A	495	36.4
40	Clavig 50	276	A	T	465	43.0
41	Clavig 51	372	A	G	90	35.6
42	Clavig 51	396	T	C	96	46.9
43	Clavig 51	678	C	T	68	48.5
44	Clavig 53	325	G	A	278	39.9
45	Clavig 66	91	A	G	244	43.9
46	Clavig 66	202	A	T	302	48.7
47	Clavig 67	349	G	A	44	45.5
48	Clavig 67	403	C	T	53	41.5
49	Clavig 67	574	A	G	54	40.7
50	Clavig 69	142	C	T	56	35.7
51	Clavig 69	301	A	C	108	46.3
52	Clavig 69	302	C	A	108	46.3
53	Clavig 69	519	G	A	102	42.2
54	Clavig 69	575	G	A	121	43.0
55	Clavig 69	855	C	T	75	46.7
56	Clavig 69	874	A	G	68	38.2
57	Clavig 69	875	T	G	68	38.2
58	Clavig 70	261	A	G	36	50.0
59	Clavig 75	795	G	A	345	42.3
60	Clavig 75	1005	G	A	228	38.6
61	Clavig 75	1413	G	T	158	35.4
62	Clavig 76	580	C	T	47	44.7
63	Clavig 76	601	C	T	52	42.3
64	Clavig 81	366	A	G	240	35.4
65	Clavig 85	259	C	T	60	35.0
66	Clavig 85	571	C	G	68	47.1
67	Clavig 85	604	A	T	64	39.1
68	Clavig 85	610	A	G	52	40.4
69	Clavig 85	679	T	C	36	36.1
70	Clavig 89	2195	A	T	39	38.5
71	Clavig 91	164	C	T	62	37.1
72	Clavig 103	256	T	A	67	49.3
73	Clavig 103	365	A	T	66	37.9

APPENDIX J3. (Cont.)

74	Clavig 106	72	C	T	410	50.7
75	Clavig 106	109	C	T	392	37.8
76	Clavig 106	147	T	A	594	38.4
77	Clavig 106	151	G	T	594	38.2
78	Clavig 106	162	C	T	614	44.6
79	Clavig 106	222	G	A	721	44.1
80	Clavig 106	299	T	G	577	39.5
81	Clavig 106	300	T	C	577	39.5
82	Clavig 106	423	T	C	290	54.5
83	Clavig 107	259	A	G	48	47.9
84	Clavig 107	303	A	G	50	44.0
85	Clavig 107	321	C	T	45	53.3
86	Clavig 107	609	T	C	55	43.6
87	Clavig 107	693	T	A	35	48.6
88	Clavig 111	106	A	G	180	35.6
89	Clavig 115	137	T	A	362	45.0
90	Clavig 115	538	T	C	338	41.7
91	Clavig 116	354	T	G	115	41.7
92	Clavig 116	1733	T	A	40	45.0
93	Clavig 126	192	A	G	42	45.2
94	Clavig 127	31	G	A	65	36.9
95	Clavig 129	152	G	A	168	44.0
96	Clavig 129	241	C	T	236	36.4
97	Clavig 129	439	A	T	406	45.3
98	Clavig 131	492	A	G	36	50.0
99	Clavig 142	147	A	G	58	43.1
100	Clavig 149	20	C	T	38	42.1
101	Clavig 151	268	G	A	262	47.7
102	Clavig 158	16	G	C	528	40.3
103	Clavig 158	60	G	A	569	37.1
104	Clavig 158	90	G	A	493	47.9
105	Clavig 159	379	C	T	246	47.6
106	Clavig 166	462	T	C	66	36.4
107	Clavig 166	966	G	A	45	40.0
108	Clavig 166	1158	A	T	85	38.8
109	Clavig 167	378	T	C	36	47.2
110	Clavig 167	577	T	C	58	37.9
111	Clavig 167	603	G	A	60	36.7
112	Clavig 167	662	G	C	63	47.6

APPENDIX J3. (Cont.)

113	Clavig 167	967	C	G	46	37.0
114	Clavig 168	454	A	G	908	39.3
115	Clavig 168	574	A	T	1015	40.2
116	Clavig 168	799	A	G	610	47.2
117	Clavig 168	966	G	C	315	46.7
118	Clavig 172	136	T	C	36	44.4
119	Clavig 172	980	G	A	73	35.6
120	Clavig 172	1350	C	A	121	38.8
121	Clavig 174	353	C	A	40	47.5
122	Clavig 174	1132	G	A	39	41.0
123	Clavig 176	3000	T	G	35	37.1
124	Clavig 177	789	A	T	56	48.2
125	Clavig 177	909	A	G	45	48.9
126	Clavig 178	68	T	A	468	37.4
127	Clavig 178	71	T	C	464	45.0
128	Clavig 178	103	T	C	442	47.1
129	Clavig 178	290	A	T	448	41.5
130	Clavig 178	296	C	T	395	39.7
131	Clavig 180	169	T	A	89	42.7
132	Clavig 187	103	C	T	62	50.0
133	Clavig 187	104	C	A	62	50.0
134	Clavig 187	124	T	C	72	45.8
135	Clavig 187	142	A	G	69	39.1
136	Clavig 187	250	G	A	79	39.2
137	Clavig 191	374	C	T	144	43.8
138	Clavig 191	908	G	A	125	42.4
139	Clavig 192	61	A	G	37	48.6
140	Clavig 192	296	C	T	163	46.6
141	Clavig 196	202	C	T	50	48.0
142	Clavig 201	21	G	A	51	39.2
143	Clavig 201	418	G	C	87	47.1
144	Clavig 206	351	C	T	165	35.8
145	Clavig 214	3416	T	C	66	42.4
146	Clavig 214	3724	T	C	50	54.0
147	Clavig 214	3872	G	T	73	35.6
148	Clavig 214	3881	A	G	73	35.6
149	Clavig 214	3944	A	G	76	35.5
150	Clavig 214	4088	T	C	61	44.3

APPENDIX J3. (Cont.)

151	Clavig 214	4115	T	C	59	47.5
152	Clavig 214	6027	T	C	71	45.1
153	Clavig 215	470	G	C	119	37.0
154	Clavig 227	82	G	T	192	37.5
155	Clavig 227	99	C	A	189	37.0
156	Clavig 227	100	A	C	189	37.0
157	Clavig 227	214	G	A	205	47.3
158	Clavig 227	368	C	T	248	35.1
159	Clavig 238	365	T	G	141	36.2
160	Clavig 239	208	C	T	95	44.2
161	Clavig 239	352	T	C	78	43.6
162	Clavig 239	536	C	A	75	37.3
163	Clavig 239	670	A	G	84	47.6
164	Clavig 239	745	A	G	74	40.5
165	Clavig 239	757	G	A	80	35.0
166	Clavig 239	802	T	A	80	42.5
167	Clavig 239	1276	T	C	89	49.4
168	Clavig 239	1312	T	C	73	41.1
169	Clavig 242	260	G	T	41	41.5
170	Clavig 243	533	T	A	191	49.7
171	Clavig 243	566	T	A	173	37.0
172	Clavig 247	177	C	T	66	45.5
173	Clavig 251	114	T	C	67	37.3
174	Clavig 251	118	T	C	58	43.1
175	Clavig 251	244	C	G	169	47.9
176	Clavig 251	268	T	A	167	36.5
177	Clavig 256	2843	C	T	36	44.4
178	Clavig 256	2879	T	G	39	48.7
179	Clavig 256	2882	T	C	39	38.5
180	Clavig 256	3044	A	G	39	46.2
181	Clavig 256	3080	C	T	38	47.4
182	Clavig 261	323	T	A	101	43.6
183	Clavig 266	72	G	C	86	45.3
184	Clavig 284	625	G	A	55	47.3
185	Clavig 293	996	G	A	66	45.5
186	Clavig 293	1049	A	T	66	50.0
187	Clavig 296	65	T	A	103	36.9
	Clavig 296	74	G	T	94	47.9
189	Clavig 296	145	C	G	109	37.6

APPENDIX J3. (Cont.)

190	Clavig 296	146	A	C	109	37.6
191	Clavig 296	152	G	C	98	42.9
192	Clavig 296	166	A	G	83	43.4
193	Clavig 296	167	G	A	83	43.4
194	Clavig 296	196	A	G	84	42.9
195	Clavig 296	197	A	T	84	42.9
196	Clavig 296	200	T	C	92	38.0
197	Clavig 296	215	A	T	94	35.1
198	Clavig 296	218	A	T	96	38.5
199	Clavig 297	170	G	A	69	46.4
200	Clavig 298	289	C	A	68	35.3
201	Clavig 298	345	C	T	46	41.3
202	Clavig 298	360	A	G	39	43.6
203	Clavig 298	363	C	T	39	43.6
204	Clavig 298	372	C	G	35	42.9
205	Clavig 300	690	A	T	41	39.0
206	Clavig 300	948	T	G	40	40.0
207	Clavig 301	12	T	C	55	40.0
208	Clavig 301	279	T	A	50	46.0
209	Clavig 301	285	T	C	71	35.2
210	Clavig 301	288	A	T	64	35.9
211	Clavig 301	297	T	A	63	38.1
212	Clavig 301	304	G	T	57	38.6
213	Clavig 301	312	A	C	55	38.2
214	Clavig 301	327	A	T	44	36.4
215	Clavig 318	577	A	G	81	40.7
216	Clavig 318	580	T	C	87	36.8
217	Clavig 318	700	T	A	84	40.5
218	Clavig 320	446	G	A	87	42.5
219	Clavig 320	656	T	C	64	42.2
220	Clavig 322	113	G	A	43	37.2
221	Clavig 322	159	T	C	45	40.0
222	Clavig 322	161	G	A	45	40.0
223	Clavig 332	24	G	A	309	44.0
224	Clavig 332	30	A	G	318	44.3
225	Clavig 332	60	C	T	345	44.3
226	Clavig 332	87	T	C	349	41.0

APPENDIX J3. (Cont.)

227	Clavig 332	291	T	C	285	38.2
228	Clavig 332	303	T	G	267	35.6
229	Clavig 332	402	T	C	148	37.8
230	Clavig 345	385	A	G	56	42.9
231	Clavig 349	256	A	T	84	46.4
232	Clavig 349	283	T	C	77	42.9
233	Clavig 356	58	T	C	149	45.0
234	Clavig 366	979	G	A	55	41.8
235	Clavig 372	128	G	A	252	48.4
236	Clavig 378	71	T	A	70	44.3
237	Clavig 378	72	A	G	70	44.3
238	Clavig 378	101	A	T	77	41.6
239	Clavig 384	352	A	C	118	35.6
240	Clavig 386	152	T	C	94	43.6
241	Clavig 386	359	A	G	83	37.3
242	Clavig 386	425	G	A	132	45.5
243	Clavig 386	456	G	A	151	50.3
244	Clavig 398	320	C	T	72	37.5
245	Clavig 398	509	A	G	41	36.6
246	Clavig 399	1011	T	A	41	36.6
247	Clavig 399	1044	A	G	41	36.6
248	Clavig 406	201	G	T	47	44.7
249	Clavig 406	211	C	T	46	47.8
250	Clavig 406	283	C	T	42	42.9
251	Clavig 406	312	C	G	36	44.4
252	Clavig 408	739	T	C	35	40.0
253	Clavig 408	936	G	C	40	35.0
254	Clavig 410	849	C	T	228	37.7
255	Clavig 410	1817	T	C	399	46.6
256	Clavig 426	1283	G	A	41	39.0
257	Clavig 433	186	G	A	275	37.1
258	Clavig 456	165	A	G	43	37.2
259	Clavig 456	285	A	T	50	36.0
260	Clavig 466	1806	C	T	86	37.2
261	Clavig 466	1845	G	A	86	40.7
262	Clavig 466	2325	C	T	175	45.1
263	Clavig 466	2373	A	G	161	46.6
264	Clavig 466	2411	G	A	139	46.0

APPENDIX J3. (Cont.)

265	Clavig 466	2447	C	T	177	44.6
266	Clavig 466	2480	T	A	189	49.7
267	Clavig 466	2679	T	C	73	35.6
268	Clavig 466	2685	A	C	74	37.8
269	Clavig 475	35	G	T	78	35.9
270	Clavig 484	297	T	C	69	39.1
271	Clavig 484	333	G	A	78	38.5
272	Clavig 487	92	A	G	50	36.0
273	Clavig 490	237	A	G	57	35.1
274	Clavig 490	351	C	T	58	36.2
275	Clavig 490	355	G	A	57	36.8
276	Clavig 497	218	C	T	392	37.8
277	Clavig 497	495	C	T	132	37.1
278	Clavig 501	1806	G	A	49	40.8
279	Clavig 501	2163	C	T	58	39.7
280	Clavig 501	2331	T	C	58	36.2
281	Clavig 501	2391	G	A	62	37.1
282	Clavig 501	2577	G	A	51	39.2
283	Clavig 501	2718	C	T	77	36.4
284	Clavig 501	2832	G	A	97	35.1
285	Clavig 501	3162	A	G	125	50.4
286	Clavig 509	148	T	C	54	40.7
287	Clavig 509	313	A	G	50	50.0
288	Clavig 513	261	G	A	279	35.1
289	Clavig 518	393	T	C	164	37.8
290	Clavig 518	515	A	G	177	42.4
291	Clavig 524	254	A	G	188	45.7
292	Clavig 524	293	A	T	202	45.1
293	Clavig 524	431	A	G	119	48.7
294	Clavig 533	71	C	T	106	36.8
295	Clavig 533	77	T	C	112	35.7
296	Clavig 533	92	C	T	111	41.4
297	Clavig 533	314	C	T	161	49.1
298	Clavig 533	1055	G	T	156	44.2
299	Clavig 544	42	C	G	67	46.3
300	Clavig 544	287	C	T	181	42.0
301	Clavig 544	481	A	C	51	39.2
302	Clavig 544	499	C	T	59	42.4

APPENDIX J3. (Cont.)

303	Clavig 564	317	A	G	173	42.2
304	Clavig 576	369	A	T	36	47.2
305	Clavig 587	155	T	C	57	35.1
306	Clavig 590	20	T	C	43	46.5
307	Clavig 590	91	G	A	52	38.5
308	Clavig 590	98	A	G	52	38.5
309	Clavig 590	137	G	A	59	49.2
310	Clavig 590	321	G	T	47	42.6
311	Clavig 591	124	C	T	59	44.1
312	Clavig 605	399	T	C	71	38.0
313	Clavig 606	725	G	A	267	38.2
314	Clavig 607	7	T	A	101	41.6
315	Clavig 607	9	T	C	101	41.6
316	Clavig 607	39	A	G	127	40.9
317	Clavig 607	48	A	T	137	40.1
318	Clavig 607	63	C	T	155	42.6
319	Clavig 607	84	C	T	172	40.7
320	Clavig 607	90	A	T	182	41.8
321	Clavig 607	102	C	T	173	44.5
322	Clavig 607	108	T	C	173	45.1
323	Clavig 607	113	C	G	178	43.8
324	Clavig 607	117	A	G	169	42.6
325	Clavig 607	132	T	G	198	37.9
326	Clavig 607	144	C	T	208	37.5
327	Clavig 607	152	A	C	204	36.8
328	Clavig 607	153	T	C	204	36.8
329	Clavig 607	163	G	T	199	43.2
330	Clavig 607	165	C	T	199	43.2
331	Clavig 607	172	A	T	197	40.6
332	Clavig 607	174	C	T	197	40.6
333	Clavig 607	183	T	C	223	46.6
334	Clavig 607	186	C	T	216	47.7
335	Clavig 607	250	A	T	225	36.4
336	Clavig 607	255	T	C	217	42.9
337	Clavig 614	496	T	A	46	39.1
338	Clavig 614	691	G	A	97	47.4
339	Clavig 615	291	T	G	106	47.2
340	Clavig 615	615	T	A	219	42.0

APPENDIX J3. (Cont.)

341	Clavig 625	298	T	C	117	43.6
342	Clavig 625	310	A	G	126	44.4
343	Clavig 625	602	T	C	47	42.6
344	Clavig 626	676	T	C	71	36.6
345	Clavig 626	796	T	C	65	40.0
346	Clavig 626	898	G	A	42	59.5
347	Clavig 626	1009	T	A	54	46.3
348	Clavig 626	1027	G	A	53	49.1
349	Clavig 626	1033	A	G	55	45.5
350	Clavig 626	1039	T	C	52	44.2
351	Clavig 626	1051	G	A	43	46.5
352	Clavig 626	1063	G	T	50	40.0
353	Clavig 626	1084	T	C	45	35.6
354	Clavig 626	1225	G	A	47	36.2
355	Clavig 640	1247	G	T	45	42.2
356	Clavig 643	629	C	T	43	39.5
357	Clavig 643	737	G	A	44	45.5
358	Clavig 643	794	C	T	57	47.4
359	Clavig 643	851	C	T	59	45.8
360	Clavig 670	410	T	C	88	40.9
361	Clavig 670	590	C	T	72	44.4
362	Clavig 686	414	C	A	70	50.0
363	Clavig 686	418	C	G	69	47.8
364	Clavig 686	450	A	G	71	46.5
365	Clavig 686	456	G	A	70	44.3
366	Clavig 686	719	G	A	58	36.2
367	Clavig 692	654	T	C	38	39.5
368	Clavig 692	735	A	G	53	35.8
369	Clavig 692	834	T	C	74	48.6
370	Clavig 692	1206	C	T	62	46.8
371	Clavig 692	1224	A	G	54	46.3
372	Clavig 711	436	A	G	203	40.9
373	Clavig 716	1083	A	G	40	45.0
374	Clavig 726	69	C	A	108	44.4
375	Clavig 726	74	T	C	102	42.2
376	Clavig 726	291	T	G	129	38.0
377	Clavig 745	72	T	C	71	40.8
378	Clavig 757	328	C	G	63	41.3
379	Clavig 765	446	G	A	165	43.0

APPENDIX J3. (Cont.)

380	Clavig 768	744	C	T	54	35.2
381	Clavig 768	873	A	C	67	43.3
382	Clavig 768	1245	C	T	148	50.0
383	Clavig 768	1629	T	C	60	45.0
384	Clavig 775	411	C	T	78	47.4
385	Clavig 775	421	A	G	82	37.8
386	Clavig 784	372	A	G	36	41.7
387	Clavig 799	426	A	T	193	37.3
388	Clavig 799	566	A	G	158	40.5
389	Clavig 817	348	G	A	48	43.8
390	Clavig 858	251	A	G	179	35.8
391	Clavig 861	127	C	T	41	41.5
392	Clavig 861	422	G	A	131	39.7
393	Clavig 869	2293	C	G	69	39.1
394	Clavig 891	1655	A	G	37	35.1
395	Clavig 936	413	A	T	40	42.5
396	Clavig 936	440	A	G	41	39.0
397	Clavig 936	551	T	C	38	39.5
398	Clavig 936	590	G	A	46	47.8
399	Clavig 936	593	G	A	44	50.0
400	Clavig 936	638	A	G	42	38.1
401	Clavig 936	680	G	A	40	37.5
402	Clavig 936	686	A	G	38	42.1
403	Clavig 939	101	A	G	38	47.4
404	Clavig 945	1355	T	C	43	44.2
405	Clavig 953	253	A	G	59	42.4
406	Clavig 953	475	A	T	71	47.9
407	Clavig 953	604	A	G	76	42.1
408	Clavig 954	143	A	T	61	47.5
409	Clavig 954	239	G	A	63	39.7
410	Clavig 959	59	A	G	54	48.1
411	Clavig 960	89	C	T	55	45.5
412	Clavig 960	173	G	A	51	43.1
413	Clavig 964	151	G	A	512	42.4
414	Clavig 964	322	G	A	1016	40.8
415	Clavig 964	649	C	T	334	38.9
416	Clavig 965	269	G	A	43	39.5
417	Clavig 984	1274	C	T	35	51.4

APPENDIX J3. (Cont.)

418	Clavig 989	2004	A	G	41	41.5
419	Clavig 993	435	T	C	147	46.3
420	Clavig 993	471	C	A	149	37.6
421	Clavig 993	519	T	A	152	50.0
422	Clavig 993	565	C	G	181	45.9
423	Clavig 993	566	A	T	181	45.9
424	Clavig 993	585	A	C	182	46.2
425	Clavig 993	694	T	A	197	46.2
426	Clavig 993	708	C	T	191	47.1
427	Clavig 993	810	C	T	91	38.5
428	Clavig 993	846	G	A	83	44.6
429	Clavig 996	60	A	T	48	45.8
430	Clavig 996	457	A	C	67	37.3
431	Clavig 996	692	A	T	53	50.9
432	Clavig 1003	381	T	A	43	48.8
433	Clavig 1007	391	G	C	106	41.5
434	Clavig 1029	235	G	A	36	41.7
435	Clavig 1029	385	A	G	36	47.2
436	Clavig 1038	420	T	G	81	43.2
437	Clavig 1049	981	G	A	48	45.8
438	Clavig 1049	1593	G	A	39	46.2
439	Clavig 1052	754	A	G	38	50.0
440	Clavig 1052	791	T	A	42	47.6
441	Clavig 1052	834	G	A	43	37.2
442	Clavig 1052	929	A	G	43	39.5
443	Clavig 1054	245	T	C	75	46.7
444	Clavig 1055	246	T	C	44	47.7
445	Clavig 1055	393	C	T	73	43.8
446	Clavig 1055	554	G	A	69	44.9
447	Clavig 1055	791	G	C	81	38.3
448	Clavig 1055	800	G	A	81	48.1
449	Clavig 1055	842	A	G	75	49.3
450	Clavig 1055	977	C	T	40	35.0
451	Clavig 1055	982	T	C	44	40.9
452	Clavig 1058	338	C	T	37	48.6
453	Clavig 1075	45	T	C	53	35.8
454	Clavig 1075	138	A	G	144	43.8
455	Clavig 1075	144	C	T	151	43.7
456	Clavig 1079	330	G	C	39	35.9

APPENDIX J3. (Cont.)

457	Clavig 1079	332	T	A	39	35.9
458	Clavig 1079	341	C	T	40	40.0
459	Clavig 1079	342	G	A	40	35.0
460	Clavig 1079	344	C	A	40	35.0
461	Clavig 1079	412	G	A	43	37.2
462	Clavig 1079	413	A	G	43	37.2
463	Clavig 1079	437	A	T	42	38.1
464	Clavig 1087	356	G	A	135	39.3
465	Clavig 1088	317	A	T	39	43.6
466	Clavig 1088	338	C	T	36	41.7
467	Clavig 1125	1505	C	G	35	48.6
468	Clavig 1125	1535	T	C	37	40.5
469	Clavig 1126	153	C	T	37	43.2
470	Clavig 1167	685	A	G	98	51.0
471	Clavig 1182	104	A	G	41	46.3
472	Clavig 1187	121	G	A	42	42.9
473	Clavig 1213	25	C	T	47	38.3
474	Clavig 1213	40	C	T	58	44.8
475	Clavig 1213	41	T	C	58	44.8
476	Clavig 1213	141	T	A	80	38.8
477	Clavig 1213	336	A	C	81	46.9
478	Clavig 1213	339	A	T	80	47.5
479	Clavig 1213	340	C	G	80	47.5
480	Clavig 1213	351	T	C	78	48.7
481	Clavig 1243	389	A	G	114	44.7
482	Clavig 1251	518	A	T	44	36.4
483	Clavig 1261	497	G	A	39	38.5
484	Clavig 1261	504	A	C	41	39.0
485	Clavig 1280	541	A	T	41	51.2
486	Clavig 1286	280	G	A	135	44.4
487	Clavig 1292	287	G	A	52	48.1
488	Clavig 1319	306	T	A	94	43.6
489	Clavig 1321	175	T	A	79	36.7
490	Clavig 1347	591	C	G	44	45.5
491	Clavig 1350	185	C	T	38	39.5
492	Clavig 1350	890	C	T	43	41.9
493	Clavig 1364	400	C	T	51	49.0
494	Clavig 1364	417	T	C	52	48.1

APPENDIX J3. (Cont.)

495	Clavig 1364	493	T	C	81	46.9
496	Clavig 1364	703	G	T	54	61.1
497	Clavig 1364	803	T	C	48	45.8
498	Clavig 1401	169	G	A	70	44.3
499	Clavig 1401	187	C	T	63	42.9
500	Clavig 1401	787	C	T	106	39.6
501	Clavig 1401	1120	C	T	109	45.0
502	Clavig 1418	416	A	T	77	45.5
503	Clavig 1429	404	C	G	58	36.2
504	Clavig 1429	513	T	C	75	44.0
505	Clavig 1429	552	T	C	68	51.5
506	Clavig 1429	576	A	G	70	52.9
507	Clavig 1429	582	G	C	73	49.3
508	Clavig 1429	675	C	T	45	37.8
509	Clavig 1431	152	G	A	37	48.6
510	Clavig 1431	155	C	G	37	48.6
511	Clavig 1431	170	C	T	35	48.6
512	Clavig 1431	180	A	T	37	43.2
513	Clavig 1431	186	A	G	37	40.5
514	Clavig 1431	280	C	T	37	43.2
515	Clavig 1501	344	C	T	40	50.0
516	Clavig 1509	854	A	G	57	43.9
517	Clavig 1522	201	T	A	44	43.2
518	Clavig 1522	268	G	C	82	48.8
519	Clavig 1522	557	T	C	59	49.2
520	Clavig 1573	243	A	G	63	38.1
521	Clavig 1605	324	C	T	68	44.1
522	Clavig 1605	333	A	G	65	46.2
523	Clavig 1606	177	T	C	35	37.1
524	Clavig 1626	178	T	C	49	46.9
525	Clavig 1697	363	T	C	35	45.7
526	Clavig 1708	334	C	T	44	36.4
527	Clavig 1724	95	T	C	36	36.1
528	Clavig 1724	212	A	C	36	44.4
529	Clavig 1772	759	C	T	36	47.2
530	Clavig 1782	325	A	G	56	46.4
531	Clavig 1785	786	G	A	36	36.1
532	Clavig 1785	945	T	A	44	43.2

APPENDIX J3. (Cont.)

533	Clavig 1785	1084	A	G	42	38.1
534	Clavig 1842	384	A	G	35	40.0
535	Clavig 1849	925	T	C	55	40.0
536	Clavig 1849	961	A	C	57	42.1
537	Clavig 1849	962	T	C	57	42.1
538	Clavig 1849	1006	C	T	63	41.3
539	Clavig 1849	1129	A	G	42	45.2
540	Clavig 1913	117	C	A	42	40.5
541	Clavig 1913	151	G	A	49	44.9
542	Clavig 1913	223	C	T	55	36.4
543	Clavig 1913	388	T	G	96	44.8
544	Clavig 1913	484	T	G	77	36.4
545	Clavig 1979	521	C	T	41	39.0
546	Clavig 1983	500	G	A	142	47.2
547	Clavig 2008	1727	G	A	68	41.2
548	Clavig 2035	196	C	T	38	36.8
549	Clavig 2035	304	A	G	39	38.5
550	Clavig 2045	164	C	T	62	45.2
551	Clavig 2054	112	T	C	65	36.9
552	Clavig 2054	181	T	C	79	38.0
553	Clavig 2054	283	T	C	71	43.7
554	Clavig 2054	301	T	C	75	41.3
555	Clavig 2054	331	T	C	51	39.2
556	Clavig 2054	367	G	A	70	40.0
557	Clavig 2054	406	A	G	68	47.1
558	Clavig 2054	412	T	C	81	38.3
559	Clavig 2054	601	T	A	123	46.3
560	Clavig 2054	862	T	A	88	48.9
561	Clavig 2054	925	G	T	81	49.4
562	Clavig 2054	979	C	G	46	41.3
563	Clavig 2054	980	G	C	46	41.3
564	Clavig 2077	839	A	G	42	47.6
565	Clavig 2094	251	T	C	153	40.5
566	Clavig 2094	398	T	G	163	36.2
567	Clavig 2104	413	G	A	93	43.0
568	Clavig 2132	42	T	C	102	42.2
569	Clavig 2132	53	T	C	105	52.4
570	Clavig 2132	70	C	A	107	38.3

APPENDIX J3. (Cont.)

571	Clavig 2132	79	A	G	109	41.3
572	Clavig 2132	81	T	A	109	41.3
573	Clavig 2132	91	C	G	107	35.5
574	Clavig 2132	120	G	A	106	35.8
575	Clavig 2132	129	A	T	111	42.3
576	Clavig 2132	135	T	C	111	40.5
577	Clavig 2132	138	T	A	110	40.9
578	Clavig 2132	231	T	C	88	36.4
579	Clavig 2209	139	T	C	37	35.1
580	Clavig 2326	179	G	A	54	46.3
581	Clavig 2326	245	C	T	50	42.0
582	Clavig 2326	290	A	C	48	35.4
583	Clavig 2326	572	T	C	39	38.5
584	Clavig 2422	46	T	A	77	40.3
585	Clavig 2422	65	C	T	83	39.8
586	Clavig 2422	178	A	G	71	38.0
587	Clavig 2438	194	T	C	41	46.3
588	Clavig 2438	287	T	C	50	38.0
589	Clavig 2438	335	A	G	44	38.6
590	Clavig 2677	400	T	C	40	37.5
591	Clavig 2823	384	T	C	54	46.3
592	Clavig 2823	390	G	A	55	38.2
593	Clavig 2823	399	C	T	58	48.3
594	Clavig 2828	693	C	T	39	46.2
595	Clavig 2851	256	T	C	39	46.2
596	Clavig 2851	310	A	G	45	44.4
597	Clavig 2856	1279	C	T	41	46.3
598	Clavig 2888	523	T	C	41	46.3
599	Clavig 2888	573	A	G	40	45.0
600	Clavig 2888	591	T	C	43	41.9
601	Clavig 2888	594	A	G	42	38.1
602	Clavig 2888	603	C	T	38	36.8
603	Clavig 2888	627	C	T	42	40.5
604	Clavig 2888	630	C	A	44	40.9

APPENDIX J3. (Cont.)

605	Clavig 3671	348	G	T	40	35.0
606	Clavig 4404	116	A	G	38	52.6
607	Clavig 4404	160	T	C	47	46.8

APPENDIX J4. M. sjostedti.

Serial Number	Contig	Consensus Position	Consensus	Allele	Coverage	Frequency
1	Megal 1	1197	G	A	63	36.5
2	Megal 11	244	C	T	53	47.2
3	Megal 11	331	C	T	79	45.6
4	Megal 11	342	C	T	82	46.3
5	Megal 11	353	T	G	79	43.0
6	Megal 11	382	C	T	81	50.6
7	Megal 11	442	T	C	95	38.9
8	Megal 11	496	C	T	93	46.2
9	Megal 11	547	C	T	83	38.6
10	Megal 11	548	G	A	83	38.6
11	Megal 13	2980	T	C	43	46.5
12	Megal 13	3020	C	G	50	38.0
13	Megal 13	3161	A	C	90	42.2
14	Megal 13	3173	A	T	82	37.8
15	Megal 13	3174	G	C	82	37.8
16	Megal 13	3175	C	T	82	37.8
17	Megal 13	3202	C	G	69	56.5
18	Megal 13	3208	C	G	63	38.1
19	Megal 13	3209	A	T	63	38.1
20	Megal 13	3210	A	C	63	38.1
21	Megal 13	3217	G	C	84	36.9
22	Megal 13	3275	A	C	80	37.5
23	Megal 13	3303	A	C	83	36.1
24	Megal 13	4102	C	T	47	42.6
25	Megal 13	4153	T	C	49	38.8
26	Megal 13	4233	A	G	96	41.7
27	Megal 13	4262	C	A	115	35.7
28	Megal 13	4368	G	A	153	35.9
29	Megal 13	4371	C	A	125	43.2
30	Megal 13	4433	C	A	141	36.2
31	Megal 13	4448	C	A	118	38.1
32	Megal 13	4484	G	C	105	35.2
33	Megal 13	4526	A	G	77	48.1
34	Megal 13	4528	G	C	77	48.1

APPENDIX J4. (cont.)

35	Megal 13	4539	C	T	101	35.6
36	Megal 13	4540	G	A	101	35.6
37	Megal 13	4545	C	T	101	36.6
38	Megal 13	4557	G	T	100	35.0
39	Megal 13	4559	T	A	100	37.0
40	Megal 13	4561	G	A	100	35.0
41	Megal 13	4572	C	T	91	36.3
42	Megal 25	804	G	A	67	49.3
43	Megal 25	888	C	T	60	38.3
44	Megal 25	1074	A	G	65	47.7
45	Megal 25	1383	G	A	40	35.0
46	Megal 25	1419	G	A	45	42.2
47	Megal 34	2117	G	A	37	43.2
48	Megal 34	2200	T	C	40	40.0
49	Megal 47	254	A	G	168	36.3
50	Megal 49	416	C	T	42	47.6
51	Megal 49	419	A	G	42	47.6
52	Megal 49	438	T	A	39	48.7
53	Megal 68	141	C	T	229	48.9
54	Megal 68	276	T	G	241	45.6
55	Megal 68	285	G	A	233	37.3
56	Megal 72	832	T	A	163	48.5
57	Megal 72	1228	A	G	47	61.7
58	Megal 76	572	G	A	46	37.0
59	Megal 85	72	C	T	52	38.5
60	Megal 85	450	G	A	64	39.1
61	Megal 92	88	T	C	92	37.0
62	Megal 92	121	T	A	113	41.6
63	Megal 107	285	A	G	44	45.5
64	Megal 107	331	C	T	38	39.5
65	Megal 143	61	G	A	52	42.3
66	Megal 143	122	T	C	72	41.7
67	Megal 143	241	A	T	73	38.4
68	Megal 157	763	G	T	40	40.0
69	Megal 183	175	T	C	64	42.2
70	Megal 191	432	G	A	48	41.7
71	Megal 191	652	T	C	56	50.0
72	Megal 191	894	C	T	60	43.3

APPENDIX J4. (cont.)

73	Megal 191	954	T	C	67	46.3
74	Megal 193	178	G	A	256	41.4
75	Megal 199	145	A	G	45	37.8
76	Megal 199	205	G	A	75	36.0
77	Megal 202	708	A	T	50	40.0
78	Megal 202	865	G	A	66	43.9
79	Megal 202	999	T	C	45	44.4
80	Megal 202	1030	G	T	37	37.8
81	Megal 215	725	A	G	50	48.0
82	Megal 236	440	C	A	66	48.5
83	Megal 236	752	A	G	51	41.2
84	Megal 236	803	A	G	47	44.7
85	Megal 236	830	A	G	50	48.0
86	Megal 236	854	G	A	45	46.7
87	Megal 236	866	A	T	47	38.3
88	Megal 236	1043	G	T	42	50.0
89	Megal 236	1133	A	G	38	50.0
90	Megal 236	1181	A	C	40	35.0
91	Megal 236	1225	T	A	36	44.4
92	Megal 238	560	G	A	36	52.8
93	Megal 238	592	C	G	41	46.3
94	Megal 238	646	G	A	50	40.0
95	Megal 238	661	A	T	39	51.3
96	Megal 238	670	C	G	48	47.9
97	Megal 238	792	A	T	37	45.9
98	Megal 238	838	G	A	35	45.7
99	Megal 312	169	T	C	390	37.7
100	Megal 312	391	T	A	421	46.6
101	Megal 346	91	A	G	40	40.0
102	Megal 346	126	C	T	36	38.9
103	Megal 346	198	C	T	37	37.8
104	Megal 360	298	T	C	257	42.4
105	Megal 360	334	C	T	254	44.1
106	Megal 362	198	A	T	39	38.5
107	Megal 370	1151	C	G	67	44.8
108	Megal 370	1166	G	C	79	46.8
109	Megal 376	294	T	C	41	41.5

APPENDIX J4. (cont.)

110	Megal 378	257	A	G	138	39.9
111	Megal 408	33	A	T	110	41.8
112	Megal 419	288	T	A	71	36.6
113	Megal 471	219	A	G	53	43.4
114	Megal 475	306	G	A	36	47.2
115	Megal 491	113	T	A	59	35.6
116	Megal 491	386	A	G	129	42.6
117	Megal 533	374	A	G	67	44.8
118	Megal 533	537	G	T	47	36.2
119	Megal 537	100	T	C	53	35.8
120	Megal 537	249	C	G	55	38.2
121	Megal 537	360	T	C	60	35.0
122	Megal 551	319	C	T	40	47.5
123	Megal 569	351	G	A	152	43.4
124	Megal 569	421	A	C	162	38.9
125	Megal 572	72	C	T	52	44.2
126	Megal 572	139	T	A	56	42.9
127	Megal 591	676	A	G	39	48.7
128	Megal 603	159	T	C	91	40.7
129	Megal 608	259	T	C	85	43.5
130	Megal 608	289	C	T	85	44.7
131	Megal 608	433	T	A	61	39.3
132	Megal 608	441	C	T	74	47.3
133	Megal 624	201	C	T	93	36.6
134	Megal 624	222	T	C	54	40.7
135	Megal 656	198	C	T	37	43.2
136	Megal 675	270	T	C	38	42.1
137	Megal 675	294	C	T	38	42.1
138	Megal 675	342	C	T	38	36.8
139	Megal 716	340	G	A	70	47.1
140	Megal 749	508	A	C	38	36.8
141	Megal 829	133	C	T	50	40.0
142	Megal 829	148	G	A	54	38.9
143	Megal 836	491	C	T	39	38.5
144	Megal 861	17	C	T	40	35.0
145	Megal 861	121	A	C	113	46.0
146	Megal 861	285	A	G	127	35.4
147	Megal 861	432	G	A	114	44.7
148	Megal 861	465	T	C	63	39.7

APPENDIX J4. (cont.)

149	Megal 861	474	T	A	82	35.4
150	Megal 909	20	C	G	40	47.5
151	Megal 909	23	G	T	40	47.5
152	Megal 909	71	T	G	46	43.5
153	Megal 909	107	T	C	48	37.5
154	Megal 909	205	C	T	49	44.9
155	Megal 909	267	G	A	44	43.2
156	Megal 909	301	T	G	41	48.8
157	Megal 909	313	T	C	43	44.2
158	Megal 909	330	C	T	38	39.5
159	Megal 952	114	T	C	97	36.1
160	Megal 1068	346	A	T	35	40.0
161	Megal 1087	477	C	T	57	38.6
162	Megal 1114	107	T	A	44	47.7
163	Megal 1114	135	G	C	47	40.4
164	Megal 1118	625	A	T	49	44.9
165	Megal 1118	793	A	G	49	46.9
166	Megal 1263	122	C	T	49	42.9
167	Megal 1263	419	T	C	66	39.4
168	Megal 1263	587	T	A	60	35.0
169	Megal 1263	610	G	A	48	37.5
170	Megal 1348	182	G	A	43	41.9
171	Megal 1482	178	G	A	45	37.8
172	Megal 1482	256	G	T	46	39.1
173	Megal 1626	136	T	C	87	43.7
174	Megal 1634	238	G	A	55	41.8
175	Megal 1634	256	G	C	56	46.4
176	Megal 1634	354	C	T	38	42.1
177	Megal 1634	360	A	G	39	41.0
178	Megal 1634	375	C	T	40	42.5
179	Megal 1634	465	C	G	40	45.0
180	Megal 1739	401	G	A	46	43.5

[^0]: ${ }^{1}$ This chapter has been published as Agunbiade et al. 2012. IPM-omics: From genomics to extension for integrated pest management of cowpea. In Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M (Eds.), Improving livelihoods in the cowpea value chain through advancements in science. Proceedings of the 5th World Cowpea Research Conference, pp. 231 - 248. It is reprinted with the permission of the copyright owner. I acknowledge the contribution of coauthors to the publication.

[^2]: ${ }^{3}$ This chapter has been published as Agunbiade et al. 2014. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: Implications for insect resistance management and biological control strategies. PLoS ONE 9(3): e92072. It is an open access article and is available at www.plosone.org and DOI:10.1371/journal.pone.0092072. I acknowledge the contribution of co-authors to the publication.

[^3]: * partial mitogenome sequences which lacked portions of the AT-rich control region sequence.

