
c© 2014 Jeffrey D. Arena

DESIGN CONSIDERATIONS FOR A RECONFIGURABLE DELTA ROBOT

BY

JEFFREY D. ARENA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Systems and Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Assistant Professor James T. Allison

ABSTRACT

One project, the design of a reconfigurable Delta robot, motivated three

different works which comprise this thesis. In Chapters 1-2, I discuss the

application of multiobjective design principles to decide appropriate ranges

of reconfigurability in a Delta robot. I show that the selection reconfigurable

ranges in a system designed for multiability through continuous reconfigura-

tion can be accomplished by generating points along an “expanded Pareto

set”– each of these points representing a fully reconfigurable design. In Chap-

ters 3-4 I discuss dynamically modeling compliance in a structure, and use

the derivation to formulate the co-design problem for a simple pick-and-place

manipulator made up of one compliant link. After displaying existing results,

I discuss the current state of this research and potential next steps. Finally,

in Chapter 5, I outline the practical considerations that comprised my con-

struction of a reconfigurable Delta robot.

ii

To Emily,

for her love and support.

And to Christian Burns Barden,

the newest addition to my family.

iii

Professor James T. Allison was the deciding factor in my decision to attend

the University of Illinois. Two years later, I know I made the right choice. As

an adviser, professor Allison always took the time to understand my interests,

and focus my enthusiasm into useful research contributions. Without his

support and insightful advice, I would not be the graduate researcher that I

am today.

While working under professor Allison in the Engineering System Design

Lab, I have been able to work with a great group of graduate students.

Allen Kaitharath, Anand Deshmukh, Ashish Khetan, Dan Herber, Jason

McDonald, Lakshmi Rao, and Tinghao Guo—thank you laughing at my jokes

(usually) and for making even the most stressful times in the lab enjoyable.

Outside of the ESDL, I was incredibly lucky to have met and worked with

Dan Block, an academic professional who gave me hands-on experience to

supplement research. Originally through Mechatronics class and later work-

ing for Dan as a lab developer for the College of Engineering Control Systems

Lab (COECSL), he has taught me so much as an engineer. Through count-

less projects, Dan has always projected a positive attitude while relentlessly

pushing deeper understanding of applied control design. The skills I have

developed under his guidance will continue to be invaluable in my future

engineering career.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

NOMENCLATURE . x

FOREWORD . 1

CHAPTER 1 MULTIOBJECTIVE OPTIMIZATION 2
1.1 Introduction . 2
1.2 Multiobjective Optimization Methods 5

CHAPTER 2 APPLIED MULTIOBJECTIVE OPTIMIZATION:
RECONFIGURABLE SYSTEM DESIGN 14
2.1 Introduction . 14
2.2 Motivation . 14
2.3 Literature Review and Background 16
2.4 Variable Selection Problem For Continuously Reconfigurable

Systems For Multiability . 22
2.5 Case Study: Reconfigurable Delta Robot Design 28
2.6 Case Study Implementation and Results 36
2.7 Conclusions and Future Work 40

CHAPTER 3 DYNAMIC SYSTEM DESIGN 42
3.1 Motivation . 42
3.2 Deriving Equations of Motion for a Compliant Link 43
3.3 Co-design of a Compliant Link with Direct Transcription . . . 48

CHAPTER 4 APPLIED DYNAMIC SYSTEM DESIGN: CO-DESIGN
OF A SIMPLE COMPLIANT MANIPULATOR 52
4.1 Introduction . 52
4.2 System Description . 53
4.3 Problem Formulation . 54
4.4 Preliminary Results . 57
4.5 Conclusions and Future Work 59

v

CHAPTER 5 DELTA ROBOT DESIGN AND FABRICATION . . . 61
5.1 The Delta Robot . 61
5.2 Inspiration . 62
5.3 Construction . 63
5.4 Software and Hardware . 66
5.5 Future Plans . 69

CHAPTER 6 CONCLUSION . 71

APPENDIX A ENERGY METHODS AND THE EULER-LAGRANGE
EQUATION . 74

APPENDIX B DELTA ROBOT FORWARD AND INVERSE KINE-
MATICS . 79

REFERENCES . 85

vi

LIST OF TABLES

2.1 Parameters and Design Variables Used In Reconfigurability
Case Study . 30

2.2 Genetic Algorithm Parameters Used 37
2.3 Baseline Fixed and Variable Costs in Delta Case Study 38

4.1 Parameters Used in the Co-design of a Single Compliant Link 54

5.1 Nonprinted Parts in Fabricated Delta Robot 65

vii

LIST OF FIGURES

1.1 Pareto Optimal Points of Formulation 1.3 4
1.2 Preimages of Pareto Optimal Points from Formulation 1.3 . . 5
1.3 Genetic Algorithm Flow Chart 12

2.1 Polybot Robot Developed at Xerox Palo Alto Research Center) 16
2.2 Heirarchy of Open Systems (Reproduced from [1]) 18
2.3 Motivations of Reconfigurable System Design (Reproduced

from [2]) . 18
2.4 Multiobjective Design Problem With 2 Objectives and 2

Design Variables . 25
2.5 Expanded Pareto Surface for Continuously Reconfigurable

System Designed for Reconfigurability 27
2.6 The ABB Flexpicker R© . 28
2.7 Delta Robot Design Architecture 29
2.8 Node and Element Numbering in Delta Stiffness Calculations . 32
2.9 Sigmoid Curves for Use in Delta Case Study 38
2.10 Case Study Results: Selected Extended Pareto Fronts 39

3.1 Model of a Compliant Link . 44
3.2 First Order Shape Function 45

4.1 Cyclic Constraint in Compliant Link 56
4.2 State Trajectory for θ . 58
4.3 State Trajectory for θ̇ . 58

5.1 Labeled Photo of Delta Robot 62
5.2 The Rostock Delta Robot 3D Printer 63
5.3 Base Plate Dimensions . 64
5.4 Labeled Delta Robot Photo 65
5.5 Delta Robot Universal Joints 66
5.6 Delta Robot Carriage Design 67
5.7 Delta Robot Bottom Corner Design 67
5.8 Delta Robot Top Corner Design 68
5.9 Delta Robot Tensioner . 68
5.10 TMS320F28335 eZdsp

TM
Development Kit 69

viii

B.1 Delta Robot Kinematics as Intersection of 3 Spheres 80
B.2 Forward/Inverse Kinematic Reference Frame 81

ix

NOMENCLATURE

x̄ (Design for Reconfigurability) Cost function, measures cost of recon-

figurability based on reconfigurability design vector x̄

Ξ (Direct Transcription) Discretized version of state trajectory. The ith

row of Ξ is the state vector at the ith timestep.

ξ(t) (Direct Transcription) The vector of system states as a function of

time

ζ(·) (Direct Transcription) Defect constraints. If ζ(U,Ξ) = 0 then the

discretized version of the system dynamic equations is satisfied.

ηpqij (Product Family Design) binary variable (i.e. ηpqij ∈ {0, 1}) indicating

if components i and j are shared between products p and q

X the set of all feasible design vectors.

Γ (Reconfig. Delta Case Study) Upper masking matrix in Lipkin and

Patterson’s alternative eigenproblem

(
Γ =

[
I3 03

03 03

])
Ω (Reconfig. Delta Case Study) Lower masking matrix in Lipkin and

Patterson’s alternative eigenproblem

(
Ω =

[
03 03

03 I3

])
x (Design for Reconfigurability) For m objectives, and n design vari-

ables, it is made up of mn elements, the first n are the design variables

for the first objective function f 1, the next n are the design variables

for the second objective function f 2, etc.

fd(·) (Direct Transcription) The state space time derivative function. The

derivative of the system states is given as ξ̇ = fd(ξ(t),u(t),xp, t)

x

F Vector-valued function with ith element f i

gp (Product Family Design) inequality constraints in product p

hp (Product Family Design) equality constraints in product p

p (Goal Programming) Vector of positive deviations from aspirations—

element i referred to as pi

r (Goal Programming) Vector of negative deviations from aspirations—

element i referred to as ri

U (Direct Transcription) Discretized version of control trajectory. The

ith row of U is the control applied at the ith timestep.

u(t) (Direct Transcription) The vector of controls applied to a system as a

function of time.

x Vector of design variables

x∗ An optimal (usually minimizing) design vector

xi (Design for Reconfigurability) Design vector for task i, containing its

n design variables

xp (Product Family Design) Design vector for product p

xp (Direct Transcription) The vector of plant design variables

P (Product Family Design) Set of indices, each referring to a product p

ν (Control of Compliant Link) Rayleigh dissipation coefficient (N·s/m)

A(p, r) (Goal Programming) Achievement function— assigns a scalar value

to a set of positive and negative deviations from aspirations

ai (Goal Programming) Aspiration for objective i

b (Control of Compliant Link) Link out-of-plane thickness (m)

ci Scalar upper bound for objective function i (f i) in ε-Constraint mul-

tiobjective optimization approach

D (Reconfig. Delta Case Study) Vertical bar separation distance (m)

xi

E (Reconfig. Delta Case Study) Material elastic modulus (m)

f i ith objective function, f i : Rn 7→ R

fntarget Target value, or “ideal value” of the nth objective function used to

calculate a distance in the objective space in compromise program-

ming.

fp (Product Family Design) Performance function for product p

h (Control of Compliant Link) Link in-plane thickness (m)

hi (Direct Transcription) The time duration of the ith timestep

L (Reconfig. Delta Case Study) Strut length (m)

L(·) (Direct Transcription) The running cost of a particular control and

state trajectory. The total cost of the trajectory is calculated by inte-

grating this quantity over time as in
∫ tF
0
L(ξ(t),u(t),xp)dt

Mend (Control of Compliant Link) Mass of payload (Kg)

Rmax (Reconfig. Delta Case Study) Maximum build area radius used for

design metric calculation (m)

S (Reconfig. Delta Case Study) Base triangle side length (m)

Spq (Product Family Design) Index pairs of elements that are candidates

for being shared between two products p and q

T (Reconfig. Delta Case Study) Strut diameter (m)

umax (Control of Compliant Link) Control saturation value (N·m)

xii

FOREWORD

The goal of my Master’s degree was to write two papers to reputable con-

ferences, and learn as much as possible in two years. My interests have not

changed since entering graduate school. They are design optimization, con-

trol, and robotics. It is in these areas that I sought to make contributions

to existing literature. I have tried to develop design methods that are both

practical and mathematically rigorous.

This work is composed of three main parts which are small subsets of the

three subjects I sought to learn during my Master’s degree. These are: mul-

tiobjective optimization (Chapters 1 and 2), dynamic system design (Chap-

ters 3 and 4), and robotic implementation and fabrication (Chapter 5). In

Chapter 1, I give a concise background for multiobjective optimization. In

Chapter 2, I dive deep into an application of multiobjective optimization:

reconfigurable system design. In Chapter 3, I give an introduction to some

theory behind designing dynamic systems, introducing methods that I used

for the research presented in Chapter 4. In Chapter 5, I describe the design

and fabrication of a working and reconfigurable delta robot. The material in

Chapter 5 is on a practical rather than theoretical level.

The material for the first two major parts of this work is drawn heavily

from my publications. The thesis format gives me much more freedom to

introduce the rich background which each research work is based on. Ad-

ditional content included in this document includes derivations and general

background information about the subject area.

All research and fabrication essentially took place in parallel. I would love

to say that I fully incorporated the results of all my papers into the design

of my delta robot, but unfortunately this was not possible. In the future, I

hope to take the lessons learned from each of these efforts to build a truly

optimal reconfigurable, dynamic system. For now, I detail the steps required

to arrive at the current phase of research and fabrication.

1

CHAPTER 1

MULTIOBJECTIVE OPTIMIZATION

1.1 Introduction

Almost always, real decisions require the consideration of more than one

objective. Should a city build its firestations nearer to its heavily populated

residential districts or its high value business districts [3]? How much should

a car company be willing to sacrifice fuel efficiency to provide more cargo

room to its customers? How much should a person be willing to pay to

reduce the chances of their death?

All of these decisions contain trade-offs between competing objectives. And

even when these objectives can be quantified, selecting an “optimal” answer

can be difficult—requiring a decision-maker to survey possible solutions and

make value judgments between alternatives. In the design of engineering sys-

tems, we call the decision-maker the designer. Their decisions are product

specifications, and their objectives may include cost, performance, robust-

ness, or even aesthetics. The field of multi-objective optimization (MOO)

attempts to aid the designer by breaking down complicated problems into a

mathematical formulation before finding a select group of the most desirable

designs for the given criteria.

The next several sections are a general description of MOO from the de-

signer’s perspective. First, I outline the generic problem structure in MOO

along with some typical terminology used. Next, I detail some common

techniques used in practice to find acceptable solutions to these problems.

After this introduction, an example of multiobjective objective optimization

is presented involving the design of a reconfigurable delta robot.

2

General Multiobjective Optimization Formulation

The general form of a multiobjective design problem may be given as:

min
x
{f 1(x), ..., fm(x)} (1.1)

such that x ∈ X ⊆ Rn

In formulation 1.1, x is the vector of design variables (also called the design

vector), f i : Rn 7→ R is the ith of (m total) objective functions, and X is the

set of all feasible design vectors.

Consider the vector-valued function F which is defined as follows:

F(x) =


f 1(x)

...

fm(x)

 (1.2)

Thus, the function F maps points in X into Rm, where the ith coordinate of

F(x) is given by f i(x).

If we let the design vector x vary over all X, F(x) will vary over all attain-

able points in Rm. Unsurprisingly, this set of attainable points in Rm is called

the “attainable set.” In this general formulation, we refer to the space Rn as

the design space (which contains the feasible set), and Rm as the objective

space (which contains the attainable set.)

1.1.1 The Pareto Set

Put simply, the Pareto is the set of all the “best” points in the objective

space.1 In the context of engineering design, a point in the objective space is

considered one of the “best” points if there does not exist another point with

a better (usually defined as lower) score in one objective, and at least equal

scores in all others. The logic here is clear; if a point A in the objective space

has a lower score in one objective than another point B, and equal (or lower)

1The name “Pareto set” originates from Vilfredo Pareto (1848-1923), an Italian
engineer-turned-economist who defined a concept of optimality in the context of resource
distribution in a society. Given a set of individuals in a society, and some level of resources
to distribute among them, a given distribution of resources was considered “Pareto opti-
mal” or “Pareto efficient” if no other distribution existed that improved the situation of
one individual without worsening the situation for any others.

3

scores than B in all other objectives, then point A is objectively better than

point B. Researchers say that the point A dominates point B. The set of

all non-dominated points in the objective space is the Pareto set.

1.1.2 Example Multiobjective Optimization

The following example multiobjective problem demonstrates all of these

ideas. Consider the following unconstrained minimization problem.

min
x=[x1,x2]T

{f 1(x), f 2(x)} (1.3)

where: f 1(x) =

(
x1 − 1

12

)2

+ (x2)
2

f 2(x) = (x1)
2 +

(
x2 + 0.5

22

)2

In this case, the design space, X, is R2, and the objective space is R2. In

this example we can easily graph points along the problem’s Pareto front.

Five Pareto optimal points are shown in Fig. 1.1. Their preimages are shown

in figure 1.2.

0 0.1 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1
2

3

4

5

f1

f2

Figure 1.1: Five points along the Pareto frontier of optimization
formulation 1.3

4

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

5
4

3

x1

2

1

x2

Figure 1.2: Preimage of points in figure 1.1. The solid lines (shown in two
distinct shades) are level curves for the two objective functions.

1.2 Multiobjective Optimization Methods

Before outlining some of the methods that have been employed to solve MOO

problems, I want to provide additional context to frame the approaches.

All MOO strategies can be classified somewhere between the two following

extremes: (1) generating approaches and (2) preference-based approaches

[3, 4]. The goal of a generating approach is to find the Pareto frontier, and

allow decision-makers to select points from this set afterward. There is no

“best” way to generate an even distribution of points along the Pareto set

however, and this generation can be expensive depending on the problem. So

while, theoretically, generating approaches offer the designer a choice from

the “best” solutions to a problem, the difficulty is in the generation of a

well-distributed set of points along this set.

Preference-based methods are at the other extreme. Rather than attempt-

ing to generate a set of points along the Pareto set, preference-based methods

try to capture designer preferences in a scalar function (often called a “util-

ity function”) before optimizing. The advantage of this method is that it

reduces a multiobjective problem to the minimization of a single scalar ob-

jective. The difficulty, however, is in creating a utility function that truly

captures the designer’s preferences.

The following MOO methods can operate anywhere in between these ex-

tremes. Practical application will often call for iterative application, resulting

in the generation of some optimal points along the Pareto set. However care

should be taken that each subsequent iteration better captures the true pref-

5

erences of the designer, so that solutions may be determined without the

need for an exhaustive search.

1.2.1 Objective weighting

One of the most intuitive ways to determine an optimal solution to a mul-

tiobjective problem is using objective weighting. Each objective is assigned

some positive weight which corresponds to its importance in the multiobjec-

tive problem. The generic MOO formulation given in 1.1 can be reframed as

a weighted sum as:

min
x

α1f
1(x) + ...+ αmf

m(x) (1.4)

such that x ∈ X ⊆ Rn

Where α1,..., αm are scalar objective weights. In this way, the m different

objectives in the original problem formulation are scalarized into a single

value. Instinctively, it is clear that increasing the linear weight applied to a

given objective, increases the objectives relative importance in the multiob-

jective problem.2

While this strategy can be attractive due to its simplicity, it has short-

comings which should not be overlooked. A designer is counting on objective

weights to account for unit inconsistencies. When a designer chooses some

set of weights, they imply some linear tradeoff between these objectives that

might be overly simplistic. Is a home insurance buyer looking to minimize

risk (f1) and cost (f2) always willing to get α1 less units of risk for less than

α2 units of additional cost? If not, the method of objective weighting does

not truly capture the consumer’s preferences.

There is another, more theoretical shortcoming of objective weighting; it is

not capable of finding points on non-convex regions of the Pareto set [5]. This

deficiency is especially relevant if the objective weighting method is employed

as a generating method. For example, a designer might try to discover n

points along the Pareto front by solving n separate optimization problems,

each with a different set of weights. But because objective weighting cannot

2It is fairly common practice to require the sum of the weights α1, ..., αn be equal to
one. This reduces the number of user-specified weights by one. Forcing the sum of weights
to equal one also requires that objectives be scaled similarly.

6

find points on concave portions of the Pareto front, those portions of the

Pareto set will remain hidden to the designer. Further, even if the Pareto set

is convex, it is not clear how to choose n different sets of objective weights

that will yield relatively evenly-distributed points along the Pareto frontier.

Some researchers have attempted to address these shortcomings by modi-

fying the approach. The normal boundary intersection method [6,7], normal

constraint method [8], and adaptive-weighted sum method [9] are some ex-

amples of efforts to address these shortcomings.

1.2.2 ε-Constraint

The ε-constraint method is very simple, but is capable of finding points

along non-convex regions of the Pareto frontier. Originally developed by

Marglin [10], the method requires the designer to transform all objectives

into constraints except for one. The levels of these constraints are fixed at

some acceptable value while the remaining objective is optimized alone. We

can rewrite our general formulation from 1.1 in this form easily as:

min
x

f 1(x) (1.5)

such that f i(x) < ci ∀i ∈ {2, 3, ...,m} (1.6)

x ∈ X ⊆ Rn

Note that, without loss of generality, we have assumed f 1 is the function

being minimized while all other functions f i are held beneath some acceptable

value of ci. By varying the values of ci and solving the resulting set of

optimization problems, a designer can find points along the Pareto frontier.

1.2.3 Distance Function

The distance function method (also known as compromise programming)

works by selecting a point in the objective space with minimal distance to

some target point that is not attainable. It was first introduced by Zeleny

in [11]. The “distance” between attainable points in the objective space

and the target point is measured by using some norm. We can reformulate

7

our general multiobjective problem in terms of a distance function with the

following formulation:

min
x

((f 1(x)− f 1
target)

p + ...+ (fm(x)− fmtarget)p)
1
p (1.7)

such that x ∈ X ⊆ Rn

Selecting values of p from 1 to inf corresponds to a so-called efficiency-

equity tradeoff. Selecting p = 1 reduces this formulation to minimizing the

sum of the individual deviations from the target point, and implies that the

sum of all objective function deviations should be minimized. This solution

can be viewed as having the most overall efficiency. To the other extreme,

letting the value of p approach infinity corresponds to solving the “minimax

problem,” i.e. selecting the x which minimizes the value of the maximum

deviation from the target point.3 It is easy to see why the solution to the

minimax problem can be viewed as the most equitable.

1.2.4 Lexicographic

Lexicographic approaches establish a priority order between objectives, and

sequentially minimize according to this order of importance. Let f i be the

ith ranked objective function in our general formulation. Solving this for-

mulation lexicographically would mean we sequentially solve the following

formulations, where we define x∗i to be a solution to the ith formulation in

the sequence.

3The infinity-norm is also known as the Chebyshev radius.

8

min
x

f 1(x) (1.8)

such that x ∈ X ⊆ Rn

↓

min
x

f 2(x)

such that x ∈ X ⊆ Rn

f 1(x) ≤ f 1(x∗1)

...

min
x

fm(x)

such that x ∈ X ⊆ Rn

f i(x) ≤ f i(x∗i) ∀i ∈ {1, 2, ...,m− 1}

Lexicographic methods get their name from the idea of lexicographic order,

this is a generalization of an alphabetical ordering scheme. In the context

of an optimization problem, this type of method might be used when dif-

ferent objectives cannot easily be compared quantitatively, and/or there is

a clear order of objective importance [12]. Anytime designer preferences are

such that f 1(x1) < f 1(x2) implies x1 is preferable to x2 (independent of

f 2(x), ..., fn(x)), a lexicographic optimization approach is suited to capture

these preferences.

1.2.5 Goal Programming

The philosophy of goal programming is to find solutions which are “satis-

ficing” rather than necessarily optimal.4 Goal programming seeks to attain

user-defined levels of each objective as closely as possible rather than simply

pursuing designs that are necessarily optimal. Goal programming can be a

useful option if a designer is able to specify desired levels of each objective a

priori. In fact, the approach has been successfully used in many real-world

problems including the design of an antenna system for the Saturn launch

4The term “satisficing” is a combination of the words “satisfying” and “sufficient.” The
word was first used by Herbert A. Simon (1916-2001), a professor at Carnegie Mellon who
won the Nobel Prize in economics for his work in decision-making processes [13]

9

vehicle [4].

In goal programming, each objective in the MOO problem is assigned some

ideal value, termed an “aspiration.”5 A “goal” technically refers to an aspira-

tion/objective pair. The scalar function that is minimized in goal program-

ming is a function of all deviations from this goal. The general framework

of goal programming allows designers to treat positive and negative devia-

tions differently in their achievement function. We can formulate our general

MOO problem as a goal programming problem as follows:

min
x,p,r

A(p, r) (1.9)

such that x ∈ X ⊆ Rn, p, r ∈ Rn

f i(x)− ri + pi = ai ∀i ∈ {1, ...,m}

ripi = 0 ∀i ∈ {1, ...,m}

ri, pi ≥ 0 ∀i ∈ {1, ...,m}

where: p ,


p1
...

pn

 , r ,


r1
...

rn


In the above, the pi and ri are the positive and negative deviations of

objective i from aspiration i. The objective function in this framework,

A(p, r) is termed the achievement function [14]. The goal programming

framework allows users to treat positive and negative deviations in a given

objective differently. Suppose profit were one of a designer’s objectives for

example, let us say f2. If profit level were above the aspiration level, c2, there

would have to be a nonzero value for the positive deviation variable p2. But

because excess profit is not a negative outcome, a designer might decide not

to let p2 appear in the achievement function. This type of behavior is not

possible with a distance function.6

One useful application of goal programming relates to multidisciplinary

design optimization (MDO). In general, MDO approaches seek to break down

5The set aspirations over all objective functions is very similar to the “target” point in
the distance method already described.

6It is actually not strictly necessary to include the constraint ripi = 0 ∀i ∈ {1, ...,m}
(a form of constraint called a “complementarity constraint”). This is because the con-
straint will be satisfied by default at any optimum as long as the positive and/or negative
deviation variables appear in the achievement function.

10

large multidisciplinary engineering problems in to constituent subsystems.

Approaches seek to optimize each subsystem, while enforcing compatibility

constraints between them to ensure overall system feasibility [15]. MDO

frameworks attempt to solve this optimization and coordination problem.

Simpson et al used goal programming to allow multiobjective design within

a given subsystem in an MDO problem [16].

1.2.6 Genetic Algorithms in Multiobjective Problems

Genetic algorithms (GAs) are a class of gradient-free optimization methods

that are inspired by the process of biological evolution. Before they were

applied to solve multiobjective problems, GAs were used to solve problem

formulations with a single objective. There is a large body of research devoted

to genetic algorithms or so-called evolutionary algorithms, beginning with

seminal works of John Holland of the University of Michigan [17].7 Here I

provide a concise overview of some of the terminology and strategy of genetic

algorithms in general, and then discuss applications of genetic algorithms to

multiobjective problems. This is not meant to be an exhaustive overview

(which would be unrealistic), but rather to familiarize the reader with the

application of genetic algorithms to multiobjective problems. The research I

have performed in multiobjective optimization makes use of a multiobjective

genetic algorithm (MOGA), so of all the methods already described, this is

the most relevant to the research work presented.8

The overall flow of any genetic algorithm follows figure 1.39 The idea of

the genetic algorithm is to allow the fittest individuals in the population to

pass on their most desirable qualities to future generations. The process is

analogous to the evolution in biology. Initially, a population is randomly

generated where each member of this population corresponds to a single de-

sign vector. In a single objective problem, each member of the population

can be assigned a score based on the objective function value attained by

7Professor David E. Goldberg, a fellow Illini, is another well-known researcher in the
field of genetic algorithms. He was an advisee of Doctor Holland at the University of
Michigan, and contributed many highly cited works in the field including [18].

8The interested reader is referred to Kalyanmoy Deb’s book Multiobjective Optimization
using Evolutionary Algorithms for a more comprehensive review of genetic algorithms
applied to multiobjective design optimization [19].

9This flowchart is taken from [19], with some minor modifications.

11

Begin

Initialize Population

set gen = 0

Evaluation Assign
Fitness

Term
Cond? Stop

yes

no

Selection

Crossover

Mutation

gen = gen + 1

Elite Bypass

Figure 1.3: Genetic algorithm flow chart (adapted from [19])

that design. A population member’s objective score then maps to a “fitness”

value. Based on their fitness values, and a stochastic selection process, in-

dividuals from the current generation are chosen to be part of the mating

pool. This mating pool undergoes two operations, crossover and mutation.

During crossover, designs in the mating pool make “children” designs, which

result from forming a new population member from the design vectors of

two members of the mating pool. After crossover, mutation randomly varies

some or all of the elements in a population’s design vectors. The dotted line

in figure 1.3, is an optional measure used to preserve the most elite members

of a population. Some fraction of the current population can be passed un-

changed into the next generation, as well as being allowed to be part of the

mating pool. This “elite bypass” ensures that the fittest members in each

subsequent population cannot degrade through random changes of crossover

and mutation.

12

Even a cursory read of the above paragraph should leave many questions

in the reader’s mind. How are scores in an objective function mapped to

fitness values? Which stochastic process selects members of a mating pool?

How are parent’s paired? What is the magnitude of variation in a design

vector which results from mutation? What fraction of a population should

be chosen as elite, and thus guaranteed members of the next generation pop-

ulation? All these questions are the subjects of numerous research works that

have continued for decades since the first application of genetic algorithms

in the 1960s and 1970s by John Holland’s group at the University of Michigan.

Genetic algorithms have been generalized to deal with multiobjective prob-

lems by taking advantage of the concept of non-dominance [20].10 Ranking

of design i is accomplished by counting the number of designs that domi-

nate it. In this way, all non-dominated solutions are assigned the highest

rank, and thus emphasized in future generations. With this approach, the

same methods used in single objective genetic algorithms can be applied to

multiobjective problems.

Application of genetic algorithms to multiobjective problems has one con-

siderable advantage over more conventional approaches to multiobjective op-

timization; after a single successful application of a genetic algorithm, a

designer is presented with a final population of designs, rather than just

a single design. With an appropriate set of genetic algorithm parameters,

the non-dominated solutions on the final population give an indicator of the

problem’s Pareto set, allowing genetic algorithsm to be a useful generating

method for multobjective problems.

Focus now shifts to a case study. In the next chapter, I use a multiobjective

genetic algorithm to aid in the design of a reconfigurable Delta robot.

10To clarify, a point in the attainable set is considered non-dominated if there does not
exist any other point in the attainable set that dominate it, i.e. there does not exist any
other point in the attainable set that performs better in objective and no worse in all
others.

13

CHAPTER 2

APPLIED MULTIOBJECTIVE
OPTIMIZATION: RECONFIGURABLE

SYSTEM DESIGN

2.1 Introduction

Having given a broad overview of the subject of multiobjective optimization,

the discussion turns now to applied work in multiobjective optimization—

specifically, in the area of reconfigurable system design. First, motivation for

research in reconfigurable systems is presented, followed by a discussion of a

new design method for multi-ability reconfigurable systems and a presenta-

tion of selected research results.

2.2 Motivation

Reconfigurable systems have been defined in literature as “those systems that

can reversibly achieve distinct configurations (or states), through alteration

of system form or function, in order to achieve a desired outcome within ac-

ceptable reconfiguration time and cost [21].” (Systems that are able to change

their states or configurations have also been called “adaptable” [22], or “flexi-

ble” [1,23]. We will continue using the term “reconfigurable” for consistency,

but note in passing that the use of the adjective “flexible” to describe recon-

figurable systems could cause confusion, especially when designing systems

with elastic compliance, i.e. mechanical flexibility.)

Many practical applications benefit from the implementation of reconfig-

urability in design. A prime example is manufacturing. According to Koren,

high responsiveness is among the three principal goals of modern manufac-

turing systems [24]. In 1996, the state of Michigan, the National Science

Foundation, and several major manufacturing companies provided $47 mil-

lion in seed money to found the Engineering Research Center for Reconfig-

14

urable Manufacturing Systems at the University of Michigan. This funding

resulted in over 1700 papers published about reconfigurable manufacturing

systems by 2010. Reconfigurable manufacturing systems offer firms the abil-

ity to change manufacturing capacity and functionality quickly, allowing fast

response to unpredictable changes either externally (e.g. in market demand)

or internally (e.g. in necessary machine maintenance) [25].

Reconfigurability also finds application in aircraft design. Morphable air-

foils are a reconfigurable system with the potential to increase the efficiency

and maneuverability. Because a single aircraft may assume many distinct

operating states over a typical mission (loitering, climbing, cruising, etc.),

and because a fixed (non-reconfigurable) system is not capable of providing

optimal performance over multiple different operating states, the system is a

good candidate for reconfigurability. The performance benefits of changeable

wing shape have been explored at least since the beginning of manned flight

(the Wright Flyer in 1903), and have seen continued application in many

other commercial aircraft to date (e.g., the Grumman F-14 Tomcat, and the

Rockwell B-1 Lancer) [26].

Another application of reconfigurability is modular robotics. The goal of

the work in this domain is to develop a versatile, cheap, and controllable

robot made up of self-similar modules. PolyBot (figure 2.1) is one example

of research aimed at achieving this goal. Developed at the Xerox Palo Alto

Research Center (PARC), Polybot is a composed of many robotic units that

function as actuated hinges in the assembled design. By altering the con-

nections between units, the robot reconfigures itself into different structures,

each capable of a different gait. Attainable structures include a four-legged

walking robot, a snake-like chain capable of “slithering,” and a circular struc-

ture capable of moving like the tread on a tank [27].

These examples only scratch the surface of the applications of reconfig-

urability. Many more systems in industry and academia serve as excellent

examples of exploitation of reconfigurability. The interested reader is referred

to [21] for a more exhaustive list.

15

Figure 2.1: Polybot robot developed at Xerox Palo Alto Research
Center [27]

2.3 Literature Review and Background

This section is divided into two parts. First, we focus on a review of studies

that target design for reconfigurability, adaptability, or flexibility. Second, we

review the basic problem structure in product family design and the insight

it offers into the reconfigurability problem.

2.3.1 Classification of Reconfigurable Systems

In the design research community, reconfigurable system design has received

considerable attention in recent years. Common issues that are discussed

in the literature include: (1) generation/selection of reconfigurable design

concepts, (2) estimation of the cost of reconfigurability, (3) classifications of

reconfigurable systems, and (4) selection of reconfigurable variables.

Research in reconfigurable design concept generation and selection aims to

provide quantitative methods to discount inferior design concepts as early as

possible. Mattson and Messac distinguish clearly between the terms “concept

generation” and “alternative generation”—the prior referring to generation

of topologically different designs, and the latter referring to different embod-

iment within a particular system architecture. In the same work, Mattson et

al. introduced the idea of s-Pareto optimality, a set-level parallel of Pareto

optimality. The authors show that a design concept can be represented by an

attainable Pareto set in the objective space. When the Pareto sets of mul-

16

tiple concepts are combined in the performance space, the non-dominated

points on this combined surface form the s-Pareto frontier [28]. Literman,

Cormier, and Lewis developed an iterative framework specifically to generate

promising design concepts for reconfigurable systems [29].

Classifying the types reconfigurable systems and the underlying motiva-

tions for reconfigurability helps to break down design problems into more

manageable parts. For example, the designer’s approach in a modularly re-

configurable system being designed for robustness should be very different

from the approach used in a continuously reconfigurable system being de-

signed for adaptability. To sharpen the meanings associated with terms like

“robustness”, “adaptability”, and “modular reconfigurability”, there was a

need for clear classifications. In this vein, Olewnik et al. introduced a hi-

erarchical classification of reconfigurable systems [1], which is illustrated in

figure 2.2. The most general class of systems was termed “open”, which is

a generalized term used originally by Simpson to describe “systems of in-

dustrial products, services, and/or processes that are readily adaptable to

changes in their environment...” [30]. The hierarchy of Olewnik et al. dif-

ferentiates between “flexible” and “modular” systems; system adaptability

versus system robustness; and “passive” versus “active” adaptability. Defi-

nitions from the paper are included here for completeness. They are taken

directly from [1].

Flexible systems: Systems designed to maintain a high level of perfor-

mance through real-time adaptations in their configuration and/or through

robust parameter settings when operation conditions or requirements change

in a predictable or unpredictable way. This definition implies that flexibility

can be obtained through two modes: adaptability and robustness.

Adaptability: Mode of achieving flexible systems where system param-

eters (design variables) that can be changed and their range of change are

identified to enchance performance of the system in predictable changes in

the operating environment; they can be changed when the system is not in

use (passive) or in real time (active)

Robustness: Mode of achieving flexible systems where system parame-

ters (design variables) are set constant to minimize the effect of unpredictable

changes in the operating environment on the performance of the system with-

out eliminating the cause of the changes themselves.

17

Open Systems

Flexible Modular

AdaptabilityRobustness

Passive Active

Figure 2.2: Heirarchy of open systems proposed by Olewnik et al. [1]

Need for
Reconfigurability

Multi-ability SurvivabilityEvolution
-Need to perform each of
some set of different tasks
non-concurrently

-Need to be able to grow
to respond to changing
demands over time

-Need for robustness and
graceful degradation

Figure 2.3: The underlying motivations for reconfigurable design [2]

Another important classification was made by Siddiqi, De Weck, and Iag-

nemma. They identified three system requirements that motivate incorpora-

tion of reconfigurability [2]: (1) multiability, (the ability of a single system

to perform different tasks non-concurrently) (2) evolvability, (the ability of a

system to adapt to known or unknown changes in its future operating envi-

ronment) and (3) survivability (the ability of a system to continue functioning

despite failure in one or more components). Figure 2.3 diagrams these ideas.

Total cost of reconfigurability is an essential part of the decision of whether

or not to incorporate it in a design. Further, the relative cost of reconfig-

urable system components often drives the reconfigurable design variable

selection problem. Patterson, Pate, and German detailed many of the bene-

fits associated with designing a modularly reconfigurable family of UAVs [31].

The chief motivating factors for this consideration were both fleet evolvability

(ability to adapt to known and unknown future field conditions) and cost (be-

cause a modular fleet might also be less expensive to maintain). Ferguson and

Lewis considered the performance cost associated with the potential added

mass required to incorporate reconfigurability [32]. Ferguson, Kasprzak, and

18

Lewis went on to use this performance cost to help decide which system vari-

ables should be made reconfigurable in the design of a family of formula race

cars [33]. Khire and Messac identified the similarity between the variable

selection problem in reconfigurable system design, and the platform selec-

tion problem in product family design, exploiting it in their solution to the

variable selection problem [22].

2.3.2 Relationship Between Reconfigurable Systems and
Product Families

At this point, the parallels between product family design and reconfigurable

system design may have already occurred to the reader. This connection has

been made by more than a few authors in literature [22,23,31,33], especially

those who contribute to both reconfigurable design and product family design

communities. We outline the premise of product family design below and

then describe the similarities it bears to the reconfigurable system design

problem. The interested reader is referred to [34] for a more in-depth review

of product family design.

At a high level, product family design research aims to find design ap-

proaches that maximize profit over all the market segments they serve. This

single objective drives firms to simultaneously maximize commonality over

their product portfolio (because it costs less to produce a product portfolio

with more commonality), while meeting necessary performance metrics in all

their target market segments. This dichotomy is commonly referred to in

literature as the “commonality vs. performance” tradeoff. Firms respond to

this dichotomy by designing core components and technologies that can be

shared between many of their products. Black & Decker R© power tools are a

well-known example of a product line leveraging common core technologies.

The set of elements that are shared among multiple products is called a prod-

uct platform. Collectively, the products that share a platform are known as

a product family.

Product family design approaches are classified broadly into two groups:

(1) module-based and (2) scale-based. In module-based product family de-

sign, product platforms are functional modules shared over the products of

a firm. For example, the chassis and suspension of a car company’s lux-

19

ury sedan might be identical to those of its lower-end models. In this case,

the chassis and suspension module would be part of the product platform.

In a scale-based product family design, elements of a product platform are

technologies or components which designers can “stretch” or “shrink” with

minimal redesign.

Product family design requires designers to consider questions that extend

beyond single product design in order to remain competitive in all market

segments. How many product families should a firm offer? What components

should make up each product platform? How can designers optimize the de-

sign of a single platform that is used in multiple end products? Justifying

design decisions requires information about customer preferences, manufac-

turing costs, and performance capabilities. Research work in this field has

sought to provide systematic approaches to simplify the many decisions nec-

essary in product family design.

The “commonality vs. performance” tradeoff in product family design is

analogous to the “reconfigurability vs. performance” tradeoff in reconfig-

urable system design. Increasing reconfigurable capability supports better

performance for each system function, but results in greater system cost.

Reducing reconfigurable capability results in a simpler, less-expensive sys-

tem, but sacrifices the ability to tailor system configuration to optimize

performance for each system function. Reducing reconfigurable capability

increases commonality between system configurations (modes of operation),

similar to increasing commonality in a product family at the cost of reduced

performance across market segments.

In this work, we develop the reconfigurable design variable selection prob-

lem for a particular class of reconfigurable systems: continuously reconfig-

urable systems designed for multiability through offline transformation. We

show that the reconfigurable system designed for multiability bears many

similarities to a formulation originating from product family design, and

adapt this formulation to our problem. Further, we show that for this spe-

cific class of reconfigurable systems, the designer does not need to compare

the attainable Pareto fronts of different reconfigurable candidates, and can in-

stead formulate a larger multiobjective problem whose Pareto optimal points

will each encode fully reconfigurable designs.

Consider the design of a continuously reconfigurable system for multiabil-

20

ity. We use the term “continuously reconfigurable” to mean that all recon-

figurable variables can vary continuously along a prescribed range. Suppose

that we seek to improve the performance of the system in m discrete tasks.

Suppose the system architecture has been specified a priori, and that our

goal is to determine optimal ranges for reconfigurable design variables. (It is

worth noting that an “optimal” reconfigurable range may be zero.) Solving

this variable selection problem means selecting not only which variables are

reconfigurable, but also to what extent. Let the number of design variables

necessary to specify a fixed (i.e. non-reconfigurable) design be n and the

number of tasks required of the reconfigurable system be m. Let f i(·) be the

negative of the utility function for task i and the scalar function c(·) rep-

resent the cost of a reconfigurable system. We can formulate the following

multiobjective optimization problem:

min
x
{f 1(x1), ..., fm(xm), c(x)}

subject to gi(x
i) ≤ 0 ∀i, 1 ≤ i ≤ m (2.1)

hi(x
i) = 0 ∀i, 1 ≤ i ≤ m

where:

x :=


x1

...

xm

 , xi :=


xi1
...

xin

 .
x is a vector of design variables composed of individual design vectors,

where xi is a design vector that describes the ith system task. Thus, the

design vector for the full reconfigurable system design problem has length

mn, and specifies the values of all n (possibly reconfigurable) design variables

in all m tasks. The inequality and equality design constraints (if present) are

represented by g(·) and h(·), respectively. If reconfigurability cost nothing,

the solution to this multiobjective problem would simply be a concatenation

of the solutions to each single-objective problem. When realistic cost function

c(·) is used, however, the tradeoff between reconfigurability and cost presents

itself, forcing the designer to choose between cost and performance.

Compare the above optimization formulation with the following product

family design formulation, adapted from Fellini’s product platform selection

21

problem [35].

max
η,X=[x1,...,xm]

{f 1(x1), ..., fm(xm),
∑
(i,j)pq

ηpqij }

∀p, q ∈ P , (i, j) ∈ Spq, p < q

subject to gp(xp) ≤ 0 (2.2)

hp(xp) = 0

ηpqij (xpi − x
q
j) = 0

ηpqij ∈ {0, 1}

where:

fp performance function for product p

xp design vector for product p

P set of indices, each referring to a product

m number of products and the cardinality of P
Spq index pairs of elements that are candidates for being

shared between two products p and q

hp equality constraints in product p

gp inequality constraints in product p

ηpqij binary variable indicating if components i and j are shared

between products p and q
Notice that in both the reconfigurable system optimization formulation and

the product platform design formulation, the commonality vs. cost dichotomy

arises. At an abstract level the two problems are nearly identical. The

implementation of the optimization formulation given in Eqn. 2.1 will be

explored further in the next section.

2.4 Variable Selection Problem For Continuously

Reconfigurable Systems For Multiability

Because so many systems fit under the umbrella term “reconfigurable sys-

tems,” it can be difficult to arrive at specific design strategy capable of treat-

ing all of them. The nature of the reconfigurable design problem depends on

22

the goal sought and the method of reconfigurability. For example, systems

that are modularly reconfigurable require a different approach than those

that are continuously reconfigurable. This work treats the design of a par-

ticular type of reconfigurable system: “offline continously reconfigurable,”

for a particular purpose: “multiability.” Further, we assume that the system

architecture has already been selected, and that we are looking to solve the

variable selection problem. That is, we are looking to decide which variables

to make reconfigurable and over what ranges. Having specified this class of

reconfigurable systems as the scope of our study, we can proceed with a more

in-depth analysis.

We can now discuss the design variables of the reconfigurable system and,

because we have targeted multiability as our goal, we can talk about set of

tasks that we are interested in having the system perform. Let m be the

number of tasks the reconfigurable system is to perform. The reconfigurable

system, therefore, will have at most m different configurations, i.e. at most

m distinct n-dimensional design vectors, each specifying a nonreconfigurable

(static) design.

Considering m different tasks for the system, we should be able to estab-

lish utility functions for each task, which depend on the values of the static

design variables in each configuration. (In the case of a manufacturing sys-

tem being designed for multiple machining operations, these utility functions

might correspond to the times required to complete reference tasks in each

configuration.) Call the set of m utility (objective) functions f 1(·), f 2(·), etc.

such that f i(·) corresponds to task i.

To better describe this variant of the reconfigurable system design prob-

lem, we introduce a simple multiobjective optimization example problem, and

then recast it as a simultaneous variable selection and optimization problem

for reconfigurable system design. Consider the following simple multiobjec-

tive optimization problem:1

1The reader might recognize this problem from Chapter 1.

23

min
x=[x1,x2]T

{f 1(x), f 2(x)} (2.3)

where: f 1(x) =

(
x1 − 1

12

)2

+ (x2)
2

f 2(x) = (x1)
2 +

(
x2 + 0.5

22

)2

Because this multiobjective optimization problem happens to have 2 design

variables and 2 objective functions, we can plot points in the design space,

along with their corresponding images in the function space. These plots are

shown in figure 2.4.

Selecting ranges of reconfigurability for design variables usually means at-

tempting to “value” subsets of the Pareto set in the performance space, and

choose optimum ranges for each reconfigurable variable such that this value is

maximized. Consider figures 2.4c and 2.4d. The points shown in these figures

lie in the Pareto set of the nonreconfigurable (static) design problem—each

point corresponding to a fixed design. In this example, the variable selection

problem amounts to choosing two ranges, (one each for x1 and x2) which

capture the “best” subset of the Pareto set in the static design problem. For

example, a designer might choose bounds for reconfigurable variables in the

design space that capture points 2, 3, and 4 in figure 2.4c. Valuing subsets of

this Pareto set can be difficult and requires prior determination of the Pareto

frontier before decisions of reconfigurability can be made. In the continuously

reconfigurable design problem for multiability, we are only interested in the

system’s individual performance in each of the m distinct tasks. Since each

task has its own objective function, the “value” of a subset of the nonrecon-

figurable Pareto front is captured only by the m points on the subset of the

Pareto front that individually minimize each of the objective functions f i(·)
individually. (i.e., the points that minimize the f i(·) value achievable by the

given reconfigurable system design ∀i = 1, 2, . . .m).

Provided that cost can be quantified as a function of the extent of recon-

figurability, the variable selection problem can be recast into the following

simple form, whose performance space is only one dimension higher than the

performance space of the fixed problem.

24

(a) f1 objective surface with minimum
value shown at starred point

(b) f2 objective surface with minimum
value shown at starred point

0 0.1 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1
2

3

4

5

f1

f2

(c) 5 points along the Pareto
frontier

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

5
4

3

x1

2

1

x2

(d) Preimage of the 5 points shown in figure
2.4c

Figure 2.4: Multiobjective Design Problem With 2 Objectives and 2 Design
Variables

Consider the following reformulation:

min
x1,x2

{f 1(x1), f 2(x2), c(x1,x2)} (2.4)

where: f 1(x) =

(
x1 − 1

12

)2

+ (x2)
2

f 2(x) = (x1)
2 +

(
x2 + 0.5

22

)2

In this formulation, the two vectors x1 and x2 specify a reconfigurable

design by specifying the system configurations for each task. Based on these

two (in general m) vectors, the ranges of reconfigurability of each design

25

variable can be determined. The optimal design vector for the reconfigurable

design problem contains more information than just the required ranges for

each design variable. It also specifies an optimal system configurations for

each task.

Note the changes from Eqn. (2.3) to Eqn. (2.4). In Eqn. (2.4) we add one

design vector to the original problem and a new function c(·) that quantifies

the cost of reconfigurability. The Pareto set generated by this formulation

expresses the tradeoff between reconfigurable system performance in individ-

ual tasks and the cost of increasing the level of reconfigurability. The goal

of the designer is to select a point along this Pareto set, thereby selecting a

design which is non-dominated in the context of the multiability problem.

The performance space of this multiability problem consists of three dimen-

sions (m+ 1 in general), one for cost and one for each of the m performance

functions. In the case of the multiability problem, it is very important to

note that the designer is only concerned with the extreme points on any can-

didate subset of the fixed system’s Pareto frontier. This simplification of the

design problem stems from the assumption that we are only concerned with

m separate tasks individually.

Consider a given point in the Pareto front of Eqn. (2.3) and how it com-

pares to a point on the Pareto front in Eqn. (2.4) in both the objective and

design space. Points in the Eqn. (2.3) Pareto set fall along a continuous

curve that goes from point 1 to point 5 in Figs. 2.4c and 2.4d. The points

in the design space (figure 2.4d) and objective space (figure 2.4c) each rep-

resent a given design with fixed design variable values. In contrast, points

in the Eqn. (2.4) Pareto set each correspond to a reconfigurable system on

a larger Pareto front. In the objective space, the Pareto set of this second

formulation must include the Pareto set of the original nonreconfigurable

formulation; because cost of all points on the first Pareto set is zero, none

can be dominated by a reconfigurable system design on the expanded Pareto

set. This expanded multiobjective Pareto set provides valuable information

during early stage design, making the price of reconfigurability and its trade-

off clear to the designer. This Pareto set surface in the objective space is

depicted in figure 2.5.

A few features are important to note. As was already mentioned, the

lowest cost cross-section of the surface corresponds to the Pareto set of the

multiobjective optimization of the fixed system. Secondly, the utopia point

26

Figure 2.5: Expanded Pareto surface for a continuously reconfigurable
system designed for multiability

of the lowest cost Pareto set (in fact the utopia point of Pareto sets at all

cost levels) is the only coordinate of the Pareto surface at the highest cost

level. This must be true, since allowing the system to reconfigure completely

should allow it to achieve the performance extremes of the fixed design.

Finally, consider that, as cost increases, the Pareto set cross-sections must

perform at least as well as cross sections at lower cost levels.

The important point here is that for continuously reconfigurable systems

designed for multiability, this surface can be a useful early stage design tool

that demonstrates the cost of reconfigurability from a fixed design to a fully

reconfigurable one. Rather than calculate the full Pareto sets of each re-

configurable system and compare them, (in the case of multiability) a de-

signer can focus on only m important points on each Pareto set (i.e. those

which minimize performance functions individually). When plotted against

the cost objective function (e.g., figure 2.5), the designer is presented with

a Pareto front where each point refers to a Pareto optimal reconfigurable

system. Aside from the additional cost axis, Note the change in axis labels

from f 1 and f 2 in the non-reconfigurable problem to f 1
min and f 2

min in the

reconfigurable one.

In the next section, we attempt to find points along this surface in the case

of a parallel machine tool being designed for multiability. This case study

will serve to help demonstrate the usefulness of the expanded Pareto surface

introduced in this paper.

27

Figure 2.6: The ABB Flexpicker R©

2.5 Case Study: Reconfigurable Delta Robot Design

2.5.1 Overview

The Delta robot is a type of parallel robot which is customarily used for

high-speed pick-and-place operations. Kinematically, the Delta is specially

designed so that the orientation of its end effector is constant, i.e. all end ef-

fector motions are pure translations. Originally developed by Clavel and his

research team at EFPL (École Polytechnique Fédérale de Lausanne) in the

early 1980s [36], the robot is now used at an industrial level for high-speed

pick-and-place operations. Examples of commercial and industrial applica-

tion of the robot include the FlexPicker R© (figure 2.6) and the SurgiScope R©.

2.5.2 Framing The Design Problem

The current case study treats the design of a continuously reconfigurable

delta robot for two tasks. The first task is a high speed pick-and-place oper-

ation of payloads with negligible size. The second task is a milling operation,

requiring system rigidity rather than speed. We compare designs by evalu-

ating stiffness and speed characteristics of each point in the build area along

28

D

L

S

Rmax

T

carriage

end effector

column

strut

Figure 2.7: Design architecture used in case study. The two design
variables are marked with dashed lines.

a polar grid. Pointwise performance is then used to calculate performance

functions for stiffness and speed that apply to the whole design.

The goal of the case study is to determine reconfigurable designs which

make up the reconfigurable system Pareto set described in Section 2.4. The

study will illustrate one method for finding this Pareto frontier, as well as its

value as an early stage design tool.

The proposed design architecture is shown in figure 2.7. All joints in the

design are spherical. A summary of all design variables and parameters in

the figure is included in Table 2.1. Most variables listed in Table 2.1 are self-

explanatory. We would however like to clarify the meaning of the variables

S and Rmax.

The ‘S’ Parameter

Solving the forward kinematics problem in this Delta architecture, i.e., solv-

ing for the end effector location given the location of the carriages, amounts

to finding the intersection of three spheres as they move in the z direction.

29

Table 2.1: Parameters and design variables used In reconfigurability case
study

Variable Type Units Nominal Value or Range
D design var. m 0.05− 0.35
L design var. m (0.6 +Rmax)− 3.5
S parameter m 1
Rmax parameter m 0.7 S√

(3)

T parameter m 0.05
E parameter Pa 2× 109

These spheres are not centered exactly on the carriages as one might expect,

however. Instead, their center locations are offset toward the end effector

by D
2
√
3
. This is to account for the size of the end effector itself. The dis-

tance S, which is held constant in this case study, is the distance between

these kinematic spheres as measured in the xy plane. Holding this distance

constant allows the kinematics of the Delta to be treated independently of

the separation distance D. In this reconfigurable problem it is assumed that

reconfigurability in the D variable is accompanied by changes in column sep-

aration necessary to preserve the distance S.

The ‘Rmax’ Parameter

The Rmax parameter measures radius of the build area of interest. This value

is necessary to specify a priori so that Delta robot designs can be compared

using local stiffness and speed metrics at a standard set of points in the build

envelope. Calculating rigidity metrics over the reachable envelopes of each

design and comparing them would not be an apples-to-apples comparison.

Thus, there is a need for a standard build area over which we can compare

all designs fairly. For the purposes of this case study we happened to choose

the radius of our desired build envelope as Rmax = 0.7 S√
3
.

2.5.3 Performance Functions

In order to frame the reconfigurable variable selection problem as was done

in Section 2.4, we need to provide performance functions for each task. In the

30

current problem, we need two performance functions capable of quantifying

the speed and rigidity of a given delta robot geometry, respectively.

Rigidity Performance Function

Our approach in defining a stiffness performance function is an adaptation of

that used by Courteille, Deblaise, and Maurine [37]. In their work, Courteille

et al. design a similar parallel robot for rigidity. Courtielle et al. use the

alternative eigenvalue problem proposed by Lipkin and Patterson [38] to

calculate the principle angular stiffnesses, and principle linear compliance

directions in a Delta-like robot. We now provide a general overview of this

approach and discuss its implementation in our system. For more details on

the theory behind the method, the interested reader is referred to the original

articles [37, 38].

The performance function used in this design problem comes from a linear

finite element model of the Delta robot. For a set of n regularly-spaced

positions within the desired build envelope, we measure the stiffness of the

robot end effector as if the Delta were a static structure comprised of beams.

This gives us the ability to quantify the stiffness of the robot at any position

by using the direct stiffness method. The result is a 6 × 6 stiffness matrix

for each point where we perform the calculation. In this static model of our

Delta, we assume that compliance occurring in the columns of the robot are

negligible. A diagram of our node and element numbering scheme is included

in figure 2.8 for reference. (Note that the nodes have circular labels, and the

elements have triangular labels.)

Lipkin and Patterson proposed the “alternative eigenproblem” to decom-

pose the 6×6 stiffness matrix at each point into principle rotational stiffnesses

and linear compliances. The alternative eigenproblem is stated as follows:

cf,iΓF i = CF i (2.5)

kγ,iΩxi = Kxi (2.6)

31

3

4 5

6

12

7

8 9

1011

12

2 1

3

4 5

6

8 7

9

10

Figure 2.8: Node and element numbering used in Delta stiffness calculation
(Nodes are labeled with triangles while elements are labeled with circles)

where:

Γ =

[
I3 03

03 03

]
Ω =

[
03 03

03 I3

]

In the alternative eigenproblem F is a generalized force vector made up of

three translational forces and three torques, termed a wrench. Similarly, x

is a generalized displacement vector made up of three linear displacements

and three rotational displacements, termed a twist. Generalized force vectors

that satisfy Eqn. (2.5) produce pure translations in the end effector parallel

to the applied translational force and are termed eigenwrenches. Similarly,

generalized displacement vectors that satisfy Eqn. (2.6), result in purely ro-

tational reaction force parallel to the applied displacement and are termed

eigentwists.

By comparing the eigenvalues of the alternative eigenproblem, a designer is

capable of assessing the level of translational and rotational stiffness in three

principal directions. These eigenvalues can be used to form local stiffness

metrics which indicate the magnitude and uniformity of stiffness at a given

location in the build envelope.

While Lipkin and Patterson’s approach can be applied to each point in

32

the build envelope, Courteille et al. suggest global metrics, which combine

stiffness information from a collection of n points from throughout the build

envelope. They combine local stiffness/compliance matrices to form global

stiffness/compliance matrices, and then use a singular value decomposition

to determine global indices. The global stiffness and compliance matrices are

calculated as follows:

K̃G =


K̃1

K̃2

...

K̃n


(6n×6)

C̃G =


C̃1

C̃2

...

C̃n


(6n×6)

where for the ith point in the build area we define:

K̃i := KiΓ , C̃i := CiΩ

We take the singular value decompositions of both K̃G and C̃G to obtain:

K̃G = UG
f ΣG

f VGT

f , C̃G = UG
γ ΣG

γ VGT

γ

The first three values on the diagonal of the middle term, ΣG, provide three

scalars which quantify the overall linear stiffness or angular compliance of all

n points in the build area. Let the three scalars on the diagonal of ΣG
f be, in

descending order of magnitude, σ1,f , σ2,f , and σ3,f . Define σ1,γ, σ2,γ, and σ3,γ

simmilarly for ΣG
γ . We can then state the four stiffness metrics suggested by

Courtielle et al. and used as the basis of our stiffness performance function

in this work. They are:

Sk1 =
σ1,f
σ3,f

, Sk2 = σ3,f

Sc1 =
σ1,γ
σ3,γ

, Sc2 = σ3,γ

In this work, our task is to combine these stiffness metrics into a single

performance function that corresponds to the milling task in the reconfig-

33

urable design problem. We use a simple weighted sum of all four terms to

provide this performance function. In future work, this function might be

replaced by a higher-fidelity computer simulation of a milling job, or a utility

function validated using simulation. For the purposes of the current work,

the simple weighted sum is sufficient to demonstrate the design method. In

the sum, metrics Sk2 and Sc2 are normalized by nominal global values to

bring them on the same order as Sk1 and Sc1. Thus we can write our stiffness

performance function as:

f 1 = Sk1 + Sc1 −
Sk2

Sk2,nom
+

Sc2
Sc2,nom

Note that the best performance comes from minimizing this performance

function. By minimizing the first two terms, Sk1 and Sc1, we attempt to

obtain a more uniform stiffness in the build area. The second two terms,

are meant to maximize the overall level of linear stiffness and minimize the

overall level of angular compliance, respectively.

Speed Performance Function

The speed performance function of a given design is calculated using the

kinematic Jacobian at a set of points in the build area. This is a new metric

introduced here. The kinematic Jacobian can be written as:

J =


∂z1
∂xe

∂z1
∂ye

∂z1
∂ze

∂z2
∂xe

∂z2
∂ye

∂z2
∂ze

∂z3
∂xe

∂z3
∂ye

∂z3
∂ze

 , (2.7)

where xe, ye, and ze are the Cartesian coordinates of the end effector, and

z1, z2, and z3 are the coordinates of the three carriages. The analytical

expressions of each entry in the Jacobian expression can be easily obtained

by differentiating the following inverse kinematic equation:

zi =
√
L2 − (xi − xe)2 − (xi − xe)2 + ze, (2.8)

34

where xi, yi and zi are the coordinates of the carriage, and L is the strut

length for the design. This Jacobian relates input velocities at the carriages

into end effector velocity by the following relation:

J


∂xe
∂t

∂ye
∂t

∂ze
∂t

 =


∂z1
∂t

∂z2
∂t

∂z3
∂t

 (2.9)

Provided the Jacobian is invertible, we can multiply both sides by J−1 to

obtain: 
∂xe
∂t

∂ye
∂t

∂ze
∂t

 = J−1


∂z1
∂t

∂z2
∂t

∂z3
∂t

 (2.10)

Thus, at each point in the build envelope, the inverse Jacobian maps car-

riage velocity to end effector velocity. At a given point, if we let carriage

velocity vary along all possible directions, the resulting end effector velocity

vectors will fall along a 3-dimensionsional ellipse. The minimum principal

axis of this ellipse shows the limiting velocity direction and magnitude.

This limiting velocity forms the basis of our speed metric. Over a set

of points in the build area, we observe the minimum limiting velocity. For

point i in the build envelope let the limiting velocity magnitude be λi. The

performance function to be minimized is:

f 2 = −(min
i
λi)

Cost Performance Function

Incorporation of cost of reconfigurability is a critical part to this case study,

as it establishes the expanded Pareto set introduced in Section 2.4. Olenik et

al. described a few possible sources of cost in a reconfigurable system [1]. We

consider two sources of costs, fixed and variable. Fixed costs are associated

with making a variable in the design reconfigurable, while variable costs are

35

associated with the extent of changeability. Thus, the cost of reconfigurability

of design variable i can be written as:

ci =

{
0 ∆xi = 0

FC + V C(∆x) ∆xi 6= 0

where we define ∆xi as:

∆xi = max
k

(xki)−min
k

(xki)

This nonlinear function is a fair representation of the cost of reconfigurability,

but is discontinuous. This type of discontinuity also arises in product family

design research in the variable selection problem (e.g., see the product family

design problem formulation given in Section 1). In an effort to model this

discontinuity in an objective function, we will use a continuous mapping

function as an approximation. The details of this mapping implementation

are left for Section 2.6.2.

2.6 Case Study Implementation and Results

For this study, a polar grid with 10 equally spaced radial steps (from 0 to

Rmax radians) and 36 equally spaced angular steps (from 0 to 2π) was used

to determine global metrics. Symmetry of the build area was exploited to

reduce the number of points necessary in the grid by a factor of 6. Using this

set of points in the build area, we used a multiobjective genetic algorithm to

generate an extended Pareto front. This extended Pareto front was generated

for varying values of fixed and variable cost of reconfigurability. Details of the

multiobjective genetic algorithm and cost parameter sweep are given next.

2.6.1 Multiobjective Genetic Algorithm Parameters

In order to determine the Pareto set of the reconfigurable system design

problem, a multiobjective genetic algorithm was used. This implementation

provides reasonable means to determine the Pareto set. The values used

within the genetic algorithm are included for completeness, but we emphasize

36

that they are only a means to the objective of this work, and not central to

its contribution. The genetic algorithm was carried out in the Matlab R©

programming environment using the built-in genetic algorithm function with

the options specified in Table 2.2.

Table 2.2: Genetic Algorithm Parameters Used

Parameter Value
Population Size 300
Initial Population Dist. Uniform
Crossover Fraction 0.4
Pareto Fraction 0.35
Elite Count 30

2.6.2 Modeling Nonlinearity in Cost Objective

Modeling the non-linearity of the cost objective was accomplished using a

sigmoid function. This function provides a convenient method to approxi-

mate a discontinuous function with a continuous one. The sigmoid function

is an s-shaped curve that transitions continuously from 0 to 1. The location

of that transition and its steepness is controlled by a shifting parameter, α,

and scaling parameter, β, respectively.

σ(t, α, β) =
1

1 + eβ(x−α)

Figure 2.9 displays several sigmoid curves for α = 0 and varying values of β.

2.6.3 Numerical Experiments

The set of points used to determine the global performance metrics were taken

from a polar grid of points sampled for 10 evenly spaced radii at 10 degree

increments. (This polar grid of sample points was used for all subsequential

numerical experiments as well.) The first attempt to find the Pareto front of

this reconfigurable design problem was performed using the values of fixed

cost (FC), variable cost (V C), α, and β that are given in Table 2.3. The

37

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

t

σ(t)

β = 5

β=10
β=100

Figure 2.9: Sigmoid curves over varying values of β

fixed costs for each variable was taken to be 1 in this base case, and the

variable costs were set such that the cost of varying either variable along the

full range given in Table 2.1, would be 1.

Table 2.3: Baseline costs used in generation of extended Pareto front

D L
FC V C FC V C α β
1 0.501 1 3.33 0.05 100

After obtaining a Pareto front from this case study, a numerical experiment

was performed to measure the effect of fixed and variable cost values on the

determined Pareto front. In this parameter sweep the ratio of fixed to variable

cost was varied while the values of sigmoid parameters were held constant to

those in the base case. In the 10 runs of the genetic algorithm, variable costs

were held constant at the base level while variable costs were increased up

to 10 times its base value. In another 10 runs, the experiment was reversed.

Fixed cost levels were held constant as variable costs were increased to up to

10 times their level in the base case.

2.6.4 Results

The case study resulted in the determination of over 100 points distributed

along the expanded Pareto surface for each genetic algorithm run. Selected

38

0 2 4 6 8 10 12
−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

f 1

f 2

< 25% Cmax

25%− 50% Cmax

50%− 75% Cmax

75%− 100% Cmax

(a) Expanded Pareto surface:
V C = V Cbase, FC = 1

0 5 10 15
−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

f 1

f 2

< 25% Cmax

25%− 50% Cmax

50%− 75% Cmax

75%− 100% Cmax

(b) Expanded Pareto surface:
V C = V Cbase, FC = 9

0 2 4 6 8 10 12
−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

f 1

f 2

< 25% Cmax

25%− 50% Cmax

50%− 75% Cmax

75%− 100% Cmax

(c) Expanded Pareto surface:
V C = 10V Cbase, FC = 1

0 5 10 15 20 25 30
−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

f 1

f 2

< 25% Cmax

25%− 50% Cmax

50%− 75% Cmax

75%− 100% Cmax

(d) Expanded Pareto surface:
V C = 1V Cbase, FC = 8

Figure 2.10: Selection of extended Pareto fronts found in case study.
Different markers show attainable performance at different levels of cost.
Cmax is the highest cost of a system in the study.

expanded Pareto surfaces that were obtained are included in figure 2.10.

Notably, these four expanded Pareto sets bear strong resemblance to the

surface shown in Fig. 2.5. The lowest cost Pareto set shows the attainable

performance of designs with little or no reconfigurability. As solutions be-

come more costly, they approach the performance of the fixed system’s utopia

point. These figures show how the expanded Pareto surface of the same re-

configurable design problem changes as the relative magnitudes of fixed and

variable cost of reconfigurability are altered.

39

At an early stage in design, having access to points in this performance

space helps to demonstrate the tradeoff between performance and cost present

in the system. Being able to select from a set of near-Pareto optimal recon-

figurable designs circumvents the difficulty of comparing the full Pareto sets

associated with each reconfigurable design. This helps to streamline the re-

configurable design problem in the case of offline continuously reconfigurable

systems designed for multiability.

2.7 Conclusions and Future Work

We have shown that the variable selection problem in a particular subset

of reconfigurable system design can be framed as a variant of the product

family design variable selection problem. Further, this formulation allows the

Pareto set of the reconfigurable problem to be obtained with the addition of

only one dimension onto the performance space.

At early stages of design, having access to the expanded Pareto surface

would be a great asset to any designer. For the addition of a single dimension

to the performance space, this surface contains significantly more information

than the static system’s Pareto front. For the continuously reconfigurable

systems designed for multiability, a designer can distill the pertinent infor-

mation from all attainable m-dimensional Pareto sets into a single expanded

Pareto surface of dimension m+1, where each point in the surface represents

a Pareto optimal design along the spectrum of the commonality-performance

tradeoff.

While this design formulation is useful for this class of reconfigurable sys-

tem, the method used to determine the Pareto set in this paper was prepack-

aged and not specifically tuned for its purpose. One potential area for future

development of this work is the selection of a more targeted Pareto discovery

method.

The case study used in this work is also an important area of future devel-

opment. It is a stepping stone toward designing a fully reconfigurable Delta

robot capable of functioning as a versatile manufacturing tool. This initial

stage of research provides a useful method to obtain non-dominated designs

in reconfigurable design problem, but the cost and utility models used will

be improved in future work.

40

Future plans to improve utility models involve the use of simulation to

better capture the design requirements of the selected manufacturing oper-

ations. These simulations could serve as performance functions directly, or

might form the basis of lower fidelity, higher-speed surrogate performance

functions. Also, the equations used in this study for the cost of reconfig-

urability were not based on any industrial cost model. These cost functions

were used only to demonstrate the expanded Pareto front concept. Future

development of realistic cost models would give the case study results greater

weight in the actual fabrication of a reconfigurable Delta robot.

41

CHAPTER 3

DYNAMIC SYSTEM DESIGN

3.1 Motivation

The case study in Chapter 2 demonstrated the usefulness of the extended

Pareto front in the design of a reconfigurable Delta robot for multiability.

However, there were approximations used in this case study that could be

made more accurate in future work. These approximations included the

assumption that the design metrics for speed and rigidity accurately reflected

the performance of the Delta robot at the two tasks in question. The speed

metric was based strictly on the kinematics of the design, while the rigidity

metric was based on a linear finite element model of rigidity of the end effector

about a fixed set of points in the build envelope. Neither of these metrics

took into account the dynamics of the Delta robot.

This particular gap, i.e., the fact that the Delta robot performance metrics

did not take into account system dynamics, motivated a research effort to

model the dynamics of compliant members, and attempt to control them.

Derivation of a full-scale model for the compliance in the Delta robot was

unrealistic for the scope of this thesis, however a smaller effort to model

and control the compliance in a single member was undertaken. This effort

is a building block toward the longer term goal of creating higher-fidelity

performance functions for the different tasks accomplished by the Delta-

robot-based multimanufacturing tool.

The following section details the derivation of dynamic equations for a

single compliant member that is pinned at one end and free at the other. This

derivation follows that given in [39], with some differences.1 After deriving

the equations for a compliant link, we introduce the optimal control design

1It is worth noting that upon further examination of [39], it was discovered that the
dynamic equation for a compliant link (given in the authors’ equation (4)) is actually
missing a term. We have corrected the error in this work.

42

method called direct transcription. In the next chapter we use the dynamic

model developed here with direct transcription to perform simultaneous plant

and control design.

3.2 Deriving Equations of Motion for a Compliant Link

Energy methods are now applied to derive the equations of motion of an

actively-controlled compliant link. One side of the flexible link is attached

to a rotary input at which torques can be applied, the other end is free. The

link is assumed to be inextensible, and all motions occur in a 2-dimensional

plane of rotations under the influence of gravity. With some differences in

application, we use the same approach as in [39] to discretize the compliant

member and model its dynamics. This method is often referred to as the

method of assumed modes. For a derivation of the energy methods used in

this chapter, i.e. the Euler-Lagrange equation, see Appendix A.

The deflection of the member at time t can be described by the angle of

the tangent vector along the length of the deformed member, θ(s, t) (where

s is taken as the length along the member from the hinge joint). An image

of the compliant link is shown in Fig. 3.1. Note that the tangent vector and

normal vector are denoted β and γ, respectively, and can be easily written

out in terms of tangent angle θ as shown in equations 3.1 and 3.2.

β(s, t) ,

[
cos(θ(s, t))

sin(θ(s, t))

]
(3.1)

γ(s, t) ,

[
−sin(θ(s, t))

cos(θ(s, t))

]
(3.2)

We begin by writing an expression for the kinetic energy and potential

energy of the member. Afterward, the method of assumed modes is used

to rewrite kinetic and potential energy expressions as a function of a finite

number of kinematically independent coordinates (i.e. the generalized coor-

dinates). The expressions for kinetic and potential energy are substituted

into the Euler-Lagrange equation to derive dynamic equations that describe

43

Figure 3.1: A compliant link. The tangent vector β and normal vector γ
are measured with respect to the positive x direction, and vary with both
time and the convected coordinate s. The link is actuated by a torque
input at its hinged base.

the evolution of system coordinates with time.

We can write the kinetic energy in the deformed member at time t as:

KE(t) =
1

2

∫ `

0

ρL

([
ẋ(s, t) ẏ(s, t)

])
·
([
ẋ(s, t) ẏ(s, t)

])
ds (3.3)

where ρL is the linear mass density along the member.

If we assume that all the strain energy in the member originates from

bending, we can write the strain energy in the member at time t as:

SE(t) =
E

2

∫ `

0

I(s)

(
∂β(s, t)

∂s(s, t)

)
·
(
∂β(s, t)

∂s(s, t)

)
ds (3.4)

where E is the elastic modulus of the beam material (assumed constant), and

I is the moment of inertia of the cross section with respect to the bending

axis.

Finally, we can also write the gravitational potential energy of mass along

44

the length of the beam as:

GPE(t) =

∫ `

0

ρL g

∫ s

0

(β(ŝ, t) · ĵ)dŝ ds+ gMend

∫ `

0

β(s, t) · ĵds (3.5)

where ĵ is a unit vector in the y direction of the inertial frame.

The next step is spatial discretization. We divide the beams of our system

into elements, and write the continuous unit tangent vector β(s, t) in terms

of first order shape functions (pn), and the value of β at node n:

β(s, t) =

#nodes∑
n=1

βn(t)pn(s) (3.6)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
First Order Shape Function, pn

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
First Order Shape Function Integral, qn

Convected Coordinate

Figure 3.2: An example first order shape function pn(s) and its integral
qn(s) for a node centered at coordinate 1. Note that nodes have unit
spacing.

This discretization allows us to rewrite the system kinetic energy, strain

energy, and potential energy as summations of discrete terms. By substitut-

ing Eq. 3.6 into Eqs. 3.3, 3.4, and 3.5, we arrive at expressions for kinetic

energy, strain energy, and potential energy that depend only on the tangent

angles at each node along the length of the beam. These are written in

equations 3.7b through 3.9b.

45

KE(t) = (3.7a)

1
2

∑#nodes
n=1

∑ #nodes
m=1 θ̇m(t)θ̇n(t)γm(t) · γn(t)

(∫ `
0
ρL qm(s)qn(s)ds+Mend qn(`)qm(`)

)
(3.7b)

=
1

2

#nodes∑
n=1

#nodes∑
m=1

θ̇m(t)θ̇n(t)γm(t) · γn(t)Mm,n (3.7c)

SE(t) =

#nodes∑
n=1

#nodes∑
m=1

βn(t) · βm(t)

∫ l

0

EI(s)

2
p′n(s) p′m(s)ds (3.8a)

=

#nodes∑
n=1

#nodes∑
m=1

βn(t) · βm(t)Km,n (3.8b)

GPE(t) = g

#nodes∑
n=1

sin(θn)

∫ l

0

ρL(s)pn(s)ds+Mend

#nodes∑
n=1

sin(θn)qn(L)

(3.9a)

= g

#nodes∑
n=1

sin(θn)

(∫ l

0

qn(s)ρ(s)ds+Mend qn(l)

)
(3.9b)

Note that we have made the following substitutions:

Mm,n ,
∫ `

0

ρLqm(s)qn(s)ds+Mend qn(`)qm(`) (3.10a)

Km,n ,
∫ l

0

EI(s)

2
p′n(s) p′m(s)ds (3.10b)

qm(s) ,
∫ s

0

pm(ŝ)dŝ (3.10c)

The quantities Mm,n and Km,n above can be intuitively interpreted as

entries in a system mass matrix M and system stiffness matrix K. It is very

important to note that the system mass matrix, stiffness matrix, and shape

functions do not vary in time. Thus, these quantities need to be calculated

only once before the differential equation can be solved. This is a great

advantage of using the method of assumed modes.

46

Having expressions for the kinetic energy, strain energy, and gravitational

potential energy as functions of a finite set of state variables, we can use the

Euler-Lagrange equation to determine a set of dynamic equations governing

the evolution of each state, i.e., all θns, along the length of the link.

The Euler-Lagrange equation for generalized coordinate qj is given by:

d

dt

(
∂(T − V)

∂q̇j

)
− ∂(T − V)

∂qj
−Qj,nc = 0 (3.11)

Substituting the right hand side of equation 3.7c for T , the sum of the

right hand sides of equations 3.8b and 3.9b for V , and replacing generalized

coordinate qj with θj we obtain a differential equation for each θj. Let L ,

T − V , we can write it as:2

L =
1

2

#nodes∑
m=0

#nodes∑
n=0

θ̇mθ̇nγm · γnMm,n

−1

2

#nodes∑
m=0

#nodes∑
n=0

βmβnKm,n−g
#nodes∑
n=1

sin(θn)

(∫ `

0

qn(s)ρ(s)ds+Mend qn(`)

)
(3.12)

Taking the derivative of L with respect to generalized coordinate θn we

obtain:

∂L

∂θn
= −

#nodes∑
m=0

θ̇mθ̇nγm · βnMm,n −
#nodes∑
m=0

βm · γnKm,n

− g cos(θn)

(∫ `

0

qn(s)ρ(s)ds+Mend qn(`)

)
(3.13)

Taking the derivative of L with respect to θ̇n we obtain:

2Those familiar with calculus of variations, optimal control, or Hamilton’s principle
may recognize the use of the symbol L to refer to the difference T − V in a mechanical
system. In this context, the variable L is used to refer to the Lagrangian. In more general
contexts, the Euler-Lagrange equation (less the Qj,nc term) can be shown to be a necessary
condition to minimize the cost of some trajectory y(x) from 0 to T , where the cost J of

the trajectory is given as
∫ T

0
L(x, y, y′)dx. A good reference for this material is [40].

47

∂L

∂θ̇n
=

#nodes∑
m=0

θ̇mγm · γnMm,n (3.14)

Subsequently taking the time derivative of equation 3.14 yields:

d

dt

(
∂L

∂θ̇n

)
=

#nodes∑
m=0

θ̈mγm · γnMm,n +

#nodes∑
m=0

θ̇mMm,n

(
−βmθ̇m · γn − βnθ̇n · γm

)
(3.15)

The Euler-Lagrange equation for the nth generalized coordinate in this

system is thus:

#nodes∑
m=0

[
θ̈mγm · γnMm,n + θ̇mMm,n

(
−βmθ̇m · γn − βnθ̇n · γm

)
+ βm · γnKm,n

]
+ g cos(θn)

(∫ l

0

qn(s)ρ(s)ds+Mend qn(l)

)
= Qn,nc (3.16)

Note that in this problem, the generalized non-conservative force Qn,nc is

simply the torque applied to node n.

Equation 3.16 gives one equation for each state of the system. Each equa-

tion is not yet in explicit form, because θ̈n is not equated to some function of

lower order derivatives. However, because all θ̈m terms appear linearly, the n

system equations can be solved at every timestep explicitly for each θ̈n using

simple linear algebra.

3.3 Co-design of a Compliant Link with Direct

Transcription

Having a dynamic model of a compliant link, the next step toward simulating

a system with compliant members was to perform control design. In the

larger picture, lessons learned in the simpler single-member problem might

then be translated into the more complicated situation of the Delta-robot-

based multimanufacturing tool in order to develop higher fidelity performance

metrics.

48

Commercial programs do exist that can perform dynamic simulation of the

Delta robot given a particular control law or control trajectory. And while

incorporating co-design is possible by iteratively simulating these dynamic

models with different plant and control variables, solving the problem using

this nested optimization is more vulnerable to numerical instabilities [41,42].

Besides being less sensitive numerically, the optimization problem, co-design

through direct transcription can take advantage of parallel computing.

In the remainder of this section, we discuss one method used to perform

co-design, direct transcription (DT). Essentially, the plant and control design

problem is transcribed into a large nonlinear program (NLP) with a sparse

structure. Sparse nonlinear optimization algorithms (in our case SNOPT) are

then used to try and find a solution to the nonlinear program. By solving the

nonlinear program, a designer can solve the original optimal control problem.

Direct transcription can be used in concert with co-design, because once

the continuous optimization problem has been transcribed to discrete form,

additional design variables can be added to the problem. Solving the NLP

then amounts to simultaneously solving the control and structural design (i.e.

the co-design) problem. In the case of the Delta, solving the co-design prob-

lem would allow us to prescribe a control trajectory for a given task, along

with an optimal strut length. In addition, direct transcription supports the

inclusion of inequality design constraints, which are critical for the realistic

treatment of physical design considerations in a co-design problem [42].

The following subsection is meant to familiarize the reader with the concept

of direct transcription. It demonstrates the concept before we talk about the

results of utilizing the method in relation to the co-design of a compliant

member.

3.3.1 Direct Transcription Formulation

Direct transcription (DT) is an all-at-once (AAO) discretize-then-optimize

method of optimal control that transforms a continuous control design prob-

lem into a finite-dimensional nonlinear optimization problem (NLP). We now

provide a brief description of the method to familiarize the reader with its

use.3

3The interested reader is referred to [41] and [43] for more general background on direct
transcription.

49

Consider the following generalized optimal control problem:

min
ξ(t),u(t),xp

∫ tF

0

L(ξ(t),u(t),xp)dt

where ξ̇ = fd(ξ(t),u(t),xp, t)

ξ(0) = ξ0

(3.17)

In this formulation, ξ(t) is the system state trajectory, u(t) is the control

trajectory, xp is the vector of physical system design variables, and fd is

the state-space time derivative function that models system dynamics. The

function L(·) refers to the running cost (or cost incurred per unit time)

associated with a given control and state trajectory.4 Direct transcription

transcribes all continuous aspects of the original formulation into algebraic

constraints. The system state and control trajectories are discretized in time,

and the state equations are converted from continuous differential equations

to a system of algebraic constraints using a collocation method [41].

The optimization formulation given in formulation 3.17 can be transcribed

into the following finite-dimensional NLP, which may be easier for a designer

to solve:

min
U,Ξ,xp

nt−1∑
i=1

L(ξi,ui,xp)hi

subject to: (3.18)

ζi(U,Ξ,xp) = −hi
2

(fdi + fdi+1) + ξi+1 − ξi = 0, i = 1, 2, . . . , nt − 1

The variables U and Ξ are matrices that are discretized representations of

the control and state trajectories. The the ith row of these matrices corre-

spond to the control and state trajectory values at the ith timestep, respec-

tively. The function ζi(·) is found by applying a collocation method to the

state equations of the original continuous formulation. ζi(·) approximately

enforces the dynamic equations of the continuous system through algebraic

constraints. The summation term approximates the cost of a control and

state trajectory by using the value of the Lagrangian function only at the

finite number of timesteps. The variable hi in this summation is the time

4The reader may recognize the use of the Lagrangian from the derivation of energy
methods from Section 3.2. The Lagrangian used here is related but distinct from the
Lagrangian used in energy methods.

50

duration of the ith time step. In this example, the trapezoidal method is

used as a simple implicit collocation method, but many other higher order

methods are possible.

Because the control and structural optimization problem has been con-

verted to a nonlinear program, additional constraints that are present in the

original continuous problem can be added to the transcribed problem. Con-

straints on states being applied to elements of Ξ, and constraints on control

being applied to elements of U [43]. Solving the co-design problem entails

solving this single NLP. It is a large-scale problem due to the large number

of optimization variables and constraints, but its sparse problem structure

can be exploited for efficient solution, and it supports fine-grained parallel

computing.

Focus now shifts to application of the approaches developed in the previous

chapter. We begin applying direct transcription and a model of the simple

compliant manipulator to a simultaneous control and structural design prob-

lem.

51

CHAPTER 4

APPLIED DYNAMIC SYSTEM DESIGN:
CO-DESIGN OF A SIMPLE COMPLIANT

MANIPULATOR

4.1 Introduction

Having discussed the mathematical model of the compliant link and the use

of direct transcription to perform co-design, focus now is directed toward

application—the co-design of simple robotic manipulator comprised of a sin-

gle compliant link. A depiction of the single compliant link is given in figure

3.1.

Dynamic analysis of the mechanical members of robotic manipulators al-

most always involves one of the following two assumptions, either (1) that

link deformation is small enough to permit linear approximation of the sys-

tem, [44] or (2) that links remain perfectly rigid. [45–47] Under these approxi-

mations, naturally occurring vibrations in the system are deemed “parasitic”

motions that degrade the accuracy of kinematic equations used to model the

robot. In practice, the effect of vibrations resulting from the elastic passive

dynamics of the system are either avoided by using stiff enough members,

and/or suppressed via damping [44].

An interesting prospect in the design of robotic manipulators is utilizing,

rather than avoiding, the system natural dynamics during dynamic design. If

compliance in robotic members can be accounted for, can certain tasks actu-

ally benefit from exploiting natural dynamics? Typical control design regards

the system design as immutable, and attempts to optimize performance only

by altering control. Where possible, simultaneous control and system design

offers the potential to design lighter, faster, and more energy-efficient robotic

systems.

In this research effort we use direct transcription to simultaneously design

the control system and passive dynamics of a simple robotic manipulator for

a predefined pick-and-place task. In previous studies, direct transcription

52

has been shown to be a promising method of simultaneous control and plant

design [42,48,49]. As the current work evolves, we begin to explore its efficacy

in co-design problems involving the use of compliant members. Other than

an interesting application of co-design, this work is also an initial step toward

using higher fidelity performance metrics that take into account dynamics of

the Delta robot.

In the current application, direct transcription is performed using the

GPOPS-II1 package for solving optimal control problems. This software

implements direct transcription through pseudospectral methods (PSMs).

PSMS are a specific implementation of DT where single higher-order polyno-

mials are used to represent state trajectories, as opposed to many lower-order

polynomials that approximate state trajectories over small time steps. The

GPOPS software also automates the generation of collocation points in a

MATLAB programming environment. The points are generated and refined

by the program using a Legendre-Gauss-Radau quadrature orthogonal collo-

cation method [50].

4.2 System Description

The state vector used in this control design has twice the number of elements

as nodes in the system. We can write it as:

ξ =



θ1
...

θN

θ̇1
...

θ̇N


(4.1)

Note that θi is the tangent angle of the compliant beam at the ith node in

the system, and we use N to indicate the total number of nodes.

As has been mentioned during the derivation of the model, the only con-

1GPOPS stands for Gauss Pseudospectiral OPtimization Software. It is developed
and maintained by Michael A. Patterson and Anil V. Rao of the University of Florida,
Gainesville.

53

trol input used in this study is a torque at the pinned end of the simple

manipulator. For the purposes of this co-design study, the derived model of

the compliant link has been modified to incorporate viscous damping2 and

to discount gravity. The values of the design parameters used in this study

are given in the following table:

Table 4.1: Parameters Used in the Co-design of a Single Compliant Link

Variable Symbol Value

Member in-plane thickness (m) b 0.012

Member out-of-plane thickness (m) h 0.02

Payload mass (Kg) Mend 0.1

Control saturation (N·m) umax 10

Raleigh damping coeff (N·s/m) ν 0.03

Material elastic modulus (Pa) E 2× 109

Material density (Kg/m3) ρ 1000

Target point ptarget

[
cos(π/4)

−sin(π/4)

]

Note that the total length of the member is not mentioned in this table. It

is the sole element of the plant design vector xp. The length of the member

is thus changed by the optimization algorithm during the control design.

4.3 Problem Formulation

The first formulations tested through for the co-design approach were the

following:

OPTIMIZATION FORMULATION 1: Minimum Time of Travel

2Viscous damping is incorporated using a Rayleigh’s dissipation function in the energy
formulation. This method is detailed on pages 23 and 24 of [51]. If the damping coefficient
is ν1, then the energy dissipated from a node with angular rotation rate θ̇ in time dt is
ν1(θ̇)2dt.

54

in Cyclic Motion

min
`,u(t),ξ(0)

tf

s.t. ξ̇(t)− fd(ξ,u(t),xp, t) = 0

θi(0) + θi(tf) + π = 0 ∀i ∈ 1, ..., N

θ̇i(0) + θ̇i(tf) = 0 ∀i ∈ 1, ..., N

‖pend(0)− ptarget‖2 < 0.05

|u(t)| ≤ umax

(4.2)

OPTIMIZATION FORMULATION 2: Minimum Energy Use in

Cyclic Motion3

min
`,u(t),ξ(0)

∫ tf

0

uTu dt

s.t. ξ̇(t)− fd(ξ,u(t),xp, t) = 0

θi(0) + θi(tf) + π = 0 ∀i ∈ 1, ..., N

θ̇i(0) + θ̇i(tf) = 0 ∀i ∈ 1, ..., N

‖pend(0)− ptarget‖2 < 0.05

|u(t)| ≤ umax

tf ≤ 3

(4.3)

3The reader may take issue with the second formulation being called “minimum en-
ergy.” In reality the energy expended by a system could be calculated with the integral∫ tf
0
uT θ̇1(t). This formulation suffers from the same numerical difficulties as the minimum

time formulation. Optimal control using this objective introduces additional numerical
difficulties. It is thus reasonably common to use a better behaved surrogate for energy
consumption as in [52,53].

55

Figure 4.1: The combination of cyclic constraints and a target point
constraint forces the end of the compliant member to pass closely (within 5
cm) to the target point and its mirror image in a cyclic motion. This figure
displays the compliant member being approximated by four nodes at the
beginning of the cyclic motion, along with its mirror image at the end of
the motion.

The first constraint given in both formulations (ξ̇(t)−fd(ξ,u(t),xp, t) = 0)

ensures that system dynamics are obeyed by the state and control trajectory.

The next two constraints, which involve all nodes in the member, are cyclic

constraints. They enforce the requirement that whatever motion the com-

pliant member undergoes, it is cyclic. The fourth constraint given in each

formulation requires that the position of the end effector pend is within 5

cm of a target position at the start (and finish) of the cyclic trajectory. In

both models we constrain the allowable control effort to be less than umax.

Finally, the constraint given in the minimum energy model requires that the

total time of the trajectory is less than or equal to 3 seconds.

The first formulation given that minimizes the total time of the trajectory

is singular. This can be shown based on the fact that control effort appears

linearly in the dynamic equations of the system [41]. While singular optimal

control problems can be solved, they can be a source of numerical difficulties.

Problems that are singular in this way often display optimal control trajec-

tories that exhibit switching. More information on singular control can be

found in [41,43,49]. Reference [41] contains an excellent example of singular

optimal control with switching on page 213 (the Goddard Rocket Problem).

In the next section, we discuss preliminary results for each optimization

56

formulation. The negative consequences associated with singular control of

the single compliant member are also discussed.

4.4 Preliminary Results

Both optimization formulations were implemented in the GPOPS-II pro-

gramming environment. The following results were obtained using a 3-node

model of the compliant member.

4.4.1 Formulation 1

Using direct transcription to solve the co-design problem with minimum time

as an objective lead to significant modeling difficulty. The fact that the for-

mulation was singular led to highly oscillatory “bang-bang” type control; this,

coupled with the cyclic constraints imposed on the formulation caused fea-

sibility of link trajectories to be difficult to maintain. Once high frequency

oscillations were imparted to the system, satisfying cyclic boundary con-

straints was difficult. The adaptive meshing algorithm used in the GPOPS

program terminated prematurely with an infeasible result as a consequence

of these numerical difficulties.

One method for simplifying singular optimal control problems is to add a

penalty term to the running cost which depends quadratically on the con-

trol effort. This approach is termed “quadratic” regularization. Scaling the

penalty term appropriately can help find optimal trajectories which are close

to the desired optimal control without being part of a singular optimal control

problem [41,49].

4.4.2 Formulation 2

The minimum energy formulation was successfully solved for the nominal

parameters listed in Table 4.1. The state and control trajectories are shown

in figures 4.2 and 4.3. From these two plots, the state directory can be seen

to be almost the same as a perfectly rigid member. The θ and θ̇ values

for each node are the nearly identical over all nodes. This behavior satisfies

the problem formulation, but does not demonstrate a synergistic relationship

57

between system passive dynamics and control. Any advantages that the more

compliant manipulator possessed in terms of energy consumption are only

due to its smaller mass, and not its dynamics.

0 0.5 1 1.5 2 2.5 3
−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

time (s)

θ
i
(t
)

Figure 4.2: The trajectory of system θ values. Note that the three system θ
values are almost perfectly superimposed. This behavior is similar to that
of a rigid beam.

0 0.5 1 1.5 2 2.5 3
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

θ
i
(t
)

Figure 4.3: The trajectory of system θ̇ values. Note that the three θ̇ values
are almost perfectly superimposed in the plot. This behavior is similar to
that of a rigid beam.

After obtaining these results, a parametric study was carried out to see

if by reducing the compliant member’s thickness, solutions to the co-design

problem might be found that exhibit deflection without excessive undesired

58

oscillatory behavior. Such an example would show that, for the right plant

design, active and passive dynamics could have a more interesting relation-

ship in this problem. Initial efforts to reduce the in-plane thickness of the

beam significantly increased the time required to arrive at a terminating

condition in the GPOPS algorithm. Even when these analyses were given

more time, all exited prematurely returning error messages about numerical

difficulties from the nonlinear optimization solver (SNOPT). Even reducing

the in-plane thickness h by only one millimeter led to early termination of

the GPOPS solver as a result of numerical difficulties. Understanding the

sensitivity of the GPOPS solver to differences in compliant system dynamics

would be a great subject for future work.

4.5 Conclusions and Future Work

This developing work in co-design of compliant mechanisms provides inter-

esting challenges. How can designers use the benefits of compliance in a me-

chanical system, i.e., less weight and advantageous natural dynamics, while

mitigating the drawbacks that stem from more involved analysis? One dif-

ficulty of designing the control of a simple compliant member with direct

methods stems clearly from its oscillations and the resulting numerical issues

caused by the solver. In a relatively simple 3-node model, we saw that a small

increase in member flexibility could easily lead to a large increase in compu-

tation time, and nonconvergence of the GPOPS optimal control algorithm.

The sensitivity of the problem to design parameters could be mitigated by

altering the problem formulation, or shifting the solution approach.

An interesting future case study could look at the effect of increasing the

damping coefficient on the convergence time of the co-design result. In-

creasing the damping coefficient used in the problem would certainly lessen

oscillations in the system. This increase in damping, however, will also cause

more energy to be wasted by the compliant system, degrading its advantage

in terms of energy efficiency.

Attempting to solve the minimum energy formulation presented here using

a single-shooting method would provide an informative comparison between

co-design methods used in the design of compliant mechanisms. While a

single-shooting method would require a complete dynamic simulation be-

59

tween iterations of the optimizer, it would implicitly enforce feasibility dur-

ing all iterations of the optimization algorithm. Incorporating the cyclic

constraint into a single-shooting method would be an interesting challenge.

This study indicates a very fine line between a compliant robotic manip-

ulator capable of being controlled without any noticeable deflections and a

compliant system which was so oscillatory that analysis methods struggled

to converge to a valid solution. Future work should look at trying to find

the intermediate point between these two extremes, or perhaps change the

system being modeled so as to widen the line.

60

CHAPTER 5

DELTA ROBOT DESIGN AND
FABRICATION

The actual fabrication of a working reconfigurable Delta robot was an impor-

tant goal for my Master’s degree. The project provided an excellent opportu-

nity to supplement my academic research with hands-on design experience.

The Industrial and Systems Engineering Department offered unrestricted ac-

cess to a Stratasys Dimension Elite 1200
TM

3D printer. I constructed the

Delta robot from a mix of 3D printed and off-the-shelf components, using

community documentation of best practices as a guide during the design and

construction.

The following sections outline the steps taken to go from design to working

prototype. Before completion of my Master’s thesis, robot operation has not

exceeded plotting, but future plans are to build off of the preliminary work

done here to build a fully functional multimanufacturing tool.

In the following sections, we (1) define what it means to be a Delta robot,

(2) discuss inspirations for the current implementation, (3) outline robot

mechanical design/construction, (4) detail software used in the robot’s oper-

ation, and (5) layout future plans for the machine.

5.1 The Delta Robot

We have already mentioned some of the history of the Delta robot in Section

2.5.1. Here we focus on the functional definition of a Delta robot, and its

defining kinematic characteristics. The coming discussion is made clearer by

Fig. 5.1, which labels some of aspects of a Delta robot to which we will be

referring in further discussion.

A Delta robot necessarily has 3 kinematic inputs, which map to 3 kinematic

outputs.1 While the type of kinematic inputs can vary within the Delta

1In figure 5.1 the three kinematic inputs are the linear (vertical) motions of the car-

61

carriage

end effector

column

strut

spherical
joint

Figure 5.1: A general diagram labeling the parts of a Delta robot

architecture, the kinematic outputs of the Delta are always pure translations

by design. This is a defining characteristic of the Delta architecture, and

results from a simple geometric condition: two adjacent struts are always

parallel.

As discussed in Chapter 4, the advantage of a Delta robot is speed. The

actuated mass does not need to include the weight of the actuator, allowing

it to be an efficient tool in high-speed pick-and-place operations like placing

components on a circuit board or sorting small objects.

5.2 Inspiration

The construction of the Delta robot was largely inspired by the Rostock, a 3D

printer designed by Johann in Seattle, Washington in 2012 [54]. This design

is shown in figure 5.2. The Rostock seemed to start a trend in 3D printers

based on the Delta robot which included multiple Kickstarter Projects (e.g.

riages. In contrast, the kinematic inputs on the ABB Flexpicker (shown in figure 2.6) are
angular. Note that in both cases, end effector motion is pure translation.

62

Figure 5.2: The Rostock, a 3D printer based on a Delta robot architecture
from [54]

DeltaMaker, Boot Industries’ 3D printer, and the Deltaprintr) that each

successfully persuaded donors to finance their product.

The decision to build a reconfigurable Delta-robot-based multimanufac-

turing tool was inspired by this trend, and a desire to connect research work

with practical application. The long-term goal was (and still is) to create a

Delta robot which could function as not only a 3D printer, but also a light

milling machine, a plotter, a pick-and-place robot. The research question

beneath these practical applications was how can one systematically design

such a product? This question was the driving factor behind the research

problem presented in Chapter 2 of this work.

5.3 Construction

The type of input actuation used in our Delta robot was the same as that

used in the Rostock—vertical motion of three carriages along linear guides.

Additional requirements on our design were (1) struts needed to be resizeable

and (2) actuation should be accomplished through DC motors. The first

requirement was to make the Delta reconfigurable, the second was was to

63

609.60 mm

Figure 5.3: Dimensions of steel plate that forms the base and top of our
Delta robot. Note that the dimension is measured from the corners of the
containing equilateral triangle.

allow for smooth continuous control.

Before outlining the parts used in the Delta robot’s construction, it is

important to note the overall scale of the robot. The full length of exposed

stainless steel columns is 92 cm, and one side of the equilateral triangle at

the base of the Delta robot is 609.6 mm (see figure 5.3). The reconfigurable

struts are capable of altering the reachable build area, measured in terms

of radius from the center of the build envelope, from 50 cm to 175 cm in

increments of 25 cm. Note that the maximum circular build area that fits on

the robot’s build platform has a radius of just over 175 mm (∼ 175.98 mm)

5.3.1 Parts

The final design was constructed out of a combination of off-the-shelf com-

ponents and 3D printed parts. The 3D printed parts included the carriages,

tensioner, end effector, base corners, top corners, joints, and opto-interrupter

mounts (see the labels in figure 5.4). Discounting the nuts and bolts used in

the design (which were one of three standard metric sizes), all other parts

used in the mechanical assembly are listed in Table 5.1.

64

“Top Corner”

“Bottom Corner”

Carriage

“Ankle” Joint

“Knee” Joint Tensioner

Opto. Mount

Figure 5.4: Labeled Photo of the fabricated Delta robot

Table 5.1: Nonprinted parts in fabricated delta robot

Part Specifications Quantity

Brushed DC Gearmotor 50 oz-in, 0.25”�, 5.9 gear rat., 500 CPR encoder 3

Timing Pulley 0.375” belt width, 0.2” pitch, 0.891” pitch � 3

Timing Belt 0.375” width, 0.2” pitch, neoprene, 2.1m length 3

Stainless Precision Shaft 1m length, 16mm � 6

Linear Bearing 16 mm ID, 26mm OD 6

Radial Bearing (idler) Double-sealed, 30mm OD, 10mm ID 3

Triangular Steel Plates 0.25” thick, water jet cut 2

5.3.2 Assemblies

All 3D printed parts were integrated with off-the-shelf components through

either press fitting or metric bolts. The joints were produced using a similar

design to the Rostock (as shown in figures 5.5a and 5.5b). This design used

three separate 3D printed parts and three M5 bolts in each joint. Figures

5.6 through 5.9 show closeup photos of other design decisions implemented

65

on the robot.

(a) U-joints used in “knee” joints (b) U-joints used in “ankle” joints

Figure 5.5: 3D printed universal joints used in the “ankle” and “knee
joints” of the Delta robot

5.4 Software and Hardware

The TMS320F28335 eZdsp
TM

Development Kit from Texas Instruments [55]

was used to handle all control decisions in the Delta. The board uses the

TMS320F28335 (Delfino) microcontroller with 150 MHz cpu frequency. It

comes with an on-board JTAG emulator, providing line-by-line debugging

in Code Composer StudioTM(CCS) development environment. This board

was chosen for several reasons including: (1) large existing code base already

developed, (2) great potential for future expansion, and (3) a convenient

C-based coding environment.

The already existing code base originated with in-lab exercises for multi-

ple courses taught in the College of Engineering Control Systems Lab (CO-

66

Fin

Figure 5.6: Closeup of one carriage. Two observations should be made: (1)
the timing belt is exactly between the two linear guides and (2) the short
fin on the left side of the carriage which is detected by the optointerrupter
at the limits of the carriage trajectory.

Figure 5.7: Closeup of the “bottom corner.” Note the fixture on the left
linear guide holding the optointerrupter. This fixture is a separate part,
which can also easily be installed on at the upper limit of the carriage
trajectory. (Currently we only are using the lower optointerrupter to zero
carriage positions.)

67

Figure 5.8: Closeup of the “top corner.” A radial bearing is used as an idler
bearing for the timing belt. By tightening the M8 bolt, the 3D printed part
clamps on the idler’s inner race.

Figure 5.9: Closeup of the tensioner (used to manually tighten the timing
belt before operation). There is a nut (not visible) keeping the M5 bolt
from being pushed out by tension in the belt.

68

Figure 5.10: The TMS320F28335
TM

Development Kit [56]

ECSL). Also, the use of TI microprocessors (including the Delfino) in these

lab-based courses gave me first hand experience developing on TI micropro-

cessors using CCS. This experience included the use of the DSP operating

system DSP BIOS, which gives the developer great control over on-device

timing through a priority system used to manage hardware and software

interrupts.

The large future potential of using this development kit comes from the

breadth of input/output options available on the microcontroller. Among

other features, the TMS320F28335 comes with 88 general purpose input/output

pins, up to 18 pulse width modulated outputs, up to 16 ADC channels, and

2 built-in quadrature encoder interfaces.

The hardware interfaced with the microcontroller for the purposes of the

current prototype includes: 3 DC gearmotors with encoders, 3 optical in-

terrupters, 3 motor controllers, and a single external quadrature encoder

interface to enable measurement of the rotations of the third DC gearmotor.

5.5 Future Plans

Immediate future plans include incorporation of continuously reconfigurable

struts on the Delta Robot, and development of another manufacturing oper-

ation on the same Delta-based platform.

In research, this fabricated Delta robot provides a testbed for the reconfig-

urable design problem. As more capability is added to the existing system,

69

the design approaches for reconfigurable systems can be tested and further

developed. Approaches that work on paper can refined through experiments

with a real system. For example, the case study performed in Chapter 2

could be strengthened using experimental testing to determine higher fidelity

performance objectives grounded in data from the real systems.

In the larger picture, all of the progress made in the fabrication of a re-

configurable Delta robot has laid the groundwork for numerous future op-

portunities in both research and hands-on application— with future research

in reconfigurable systems motivating further development of the fabricated

design, and challenges in design fabrication motivating refinement of design

approaches developed in research.

70

CHAPTER 6

CONCLUSION

The work in reconfigurable system design detailed a new method to design

continuously reconfigurable systems for multiability. This method draws in-

spiration from the established product family design formulation given in

Ref. [35]. It targets the simultaneous variable selection and optimization

problem, in which the goal of a designer is to simultaneously choose which

variables to make reconfigurable and the extent of their reconfigurability. My

coauthor and I showed that this variable selection and ranging problem in

the context of reconfigurability amounts to assigning value to subsets of the

nonreconfigurable system’s Pareto front in the performance space. In the

case of systems designed for multiability through offline transformations, we

exploit the fact that designers seek to optimize the reconfigurable product for

m discrete tasks individually. We are thus able to focus on only the relevant

points on each subset of the nonreconfigurable system’s Pareto frontier— the

designs which individually optimize each design objective. In doing so, we

can distill each subset of the nonreconfigurable system’s Pareto set into only

m points. Provided a designer can specify the cost associated with differ-

ent ranges of reconfigurability, we are able to construct an “extended Pareto

front,” which applies to the reconfigurable design problem. Each point on

the extended Pareto front represents a fully reconfigurable design that is

non-dominated in terms of individual task performance objectives and cost.

Thus, for only one additional dimension in the performance space, design-

ers can focus only on the non-dominated subsets of the nonreconfigurable

system’s Pareto front.

After detailing this method in reconfigurable system design, we applied it

to a case study in the design of a reconfigurable Delta robot. In the case

study, the Delta robot is meant to perform two tasks: a milling task, where

end-effector rigidity is the performance objective, and a pick-and-place task,

71

where the speed of the end effector is the performance objective. Using design

metrics established in [37] to measure overall design rigidity, and original

metrics to measure overal design speed, we framed the design problem using

formulation 2.1. Next, we used a multiobjective genetic algorithm (MOGA)

as a generating method to find points on or near the extended Pareto frontier

of the reconfigurable design problem. This generation was performed for

varying levels of reconfigurability cost.

After detailing a method in designing systems for reconfigurability, discus-

sion shifted to the area of dynamic design, specifically, the integrated control

and physical system design (co-design) of a simple compliant manipulator.

After discussion of the necessary prerequisites (system model and co-design

through direct transcription), I moved on to describe developing work in

the co-design of a compliant member. GPOPS-II, a popular Matlab-based

software for pseudospectral methods (a special type of direct transcription)

was used to perform numerical optimization for two separate formulations,

one that sought to minimize time to perform a pick and place task, and an-

other that sought to minimize energy consumption while performing a set

task in a fixed amount of time. The minimum time formulation, which is

a singular optimal control problem, proved to numerically difficult to solve

due to vibrations imparted in the compliant member, believed to be a result

of “bang-bang” style control. The second formulation that aimed to im-

prove energy-efficiency met much more success. For parameter values given

in Table 4.1, the codesign problem was solved successfully. After obtaining

this solution, a parameter sweep of the member’s in-plane thickness was per-

formed, and the computation time required to solve the co-design problem

was found to be highly dependent on the member’s compliance.

After discussion of the research in codesign of a compliant member, I moved

on to describe the detailed design and physical implementation of a reconfig-

urable Delta robot that was comprised of a mix of 3D printed and off-the shelf

parts. I described the components used in the design, mechanical, hardware,

and software, before discussing the future research applications of a Delta-

robot-based multimanufacturing tool. This work in implementation brought

together my research interests and desire to fabricate a real system, revealed

important insights about the design problem, and laid the groundwork for

future work in reconfigurable system design that straddles the gap between

72

engineering design optimization in theory and application.

In this thesis, I have fulfilled the goals that I set forth at the onset of my

Master’s degree, submitting two (accepted) papers to reputable conferences,

fabricating a reconfigurable Delta robot, and learning as much as possible

in two short years. The projects presented in this document have pushed

me to develop myself into a stronger researcher, writer, and designer. It

is with these sharpened skills that I hope to further develop the research

work detailed here into scientific inquiries that push the boundaries in the

engineering design community.

73

APPENDIX A

ENERGY METHODS AND THE
EULER-LAGRANGE EQUATION

Energy methods are an incredibly useful tool for deriving the equations of

motion of mechanical systems. Unlike a Newtonian approach, which requires

a force balance for each body in the system, energy methods do not require

solving for reaction forces and allow dynamic equations to be derived using

any valid set of coordinates. The dynamic equation determined using energy

methods fits a particular form, the Euler-Lagrange equation.

We now derive the Euler-Lagrange equation for a mechanical system from

the principle of virtual work. This derivation is fairly accessible method for

a general audience, only requiring knowledge of physics and multivariable

calculus.

The following proof is adapted from [51]. We derive the Euler-Lagrange

equation for mechanical systems of n rigid bodies.

Consider a system of n rigid bodies that is at rest. For a static system in

equilibrium, the net external force and external torque on each member of

the system is zero. Mathematically, we can write:

n∑
i=1

Fi = 0 (A.1)

Where Fi the net force on the ith component.

Next, consider applying an infinitesimal displacement to this system that is

consistent with all kinematic constraints. Typically this small displacement

is given the name virtual displacement, and the symbol δx. We can state the

infinitesimal amount of work done, δW by undergoing virtual displacement

δx as:

δW =
n∑
i=1

Fi · δxi =

(
n∑
i=1

Fi

)
· δxi (A.2)

74

Note that virtual displacements are treated just like differentials, and the

above expression is just a generalization of the scalar relation dW = F · dx.

From Equation A.1 we know that each term in this sum must be zero for any

valid set of virtual displacements. Thus, for all admissible virtual displace-

ments, the associated virtual work on the system must be zero. This is the

principle of virtual work, and is written mathematically in equation A.3.

δW =
n∑
i=1

Fi · δxi = 0 (A.3)

We can separate the forces that originate with constraints and rewrite Equa-

tion A.3 as:

n∑
i=1

F
(a)
i · δxi +

n∑
i=1

f
(c)
i · δxi = 0, (A.4)

where F
(a)
i and f

(c)
i are the total applied force and reaction forces on compo-

nent i, respectively. In conservative systems, we can make the assumption

that constraint forces act perpendicularly to valid virtual displacements. This

means that the second term in Equation A.4 can be set equal to zero. Equa-

tion A.4 becomes:

n∑
i=1

F
(a)
i · δxi = 0 (A.5)

D’Alembert’s principle allows us to restate equation A.5 just as correctly for

dynamic systems provided we add a term for inertial forces. We can thus

state the “dynamic version” of equation A.5 as:

n∑
i=1

(
F

(a)
i −miẍi

)
· δxi = 0 (A.6)

At this point, δx is not totally arbitrary. To make virtual displacements truly

arbitrary, displacements need to be transformed into a coordinate system

that implicitly satisfies kinematic constraints. If we can write equation A.6

in terms of virtual displacements in these generalized coordinates, dynamic

equations for the system can be determined. Suppose we can express dis-

placements xi as functions of a generalized coordinate vector (q) and time,

75

i.e., if we have xi = xi(q1, ..., qm, t), then we can rewrite the first term in

Equation A.6 in terms of generalized virtual displacements δq as:

n∑
i=1

F
(a)
i · δxi = 0 =

n∑
i=1

F
(a)
i ·

(
m∑
j=1

(
∂xi
∂qj

)
δqj

)
(A.7)

=
n∑
i=1

m∑
j=1

F
(a)
i ·

(
∂xi
∂qj

)
δqj = 0 (A.8)

=
m∑
j=1

n∑
i=1

F
(a)
i ·

(
∂xi
∂qj

)
δqj = 0 (A.9)

=
m∑
j=1

Qjδqj = 0 (A.10)

Where Qj ,
∑n

i=1 F
(a)
i ·

(
∂xi

∂qj

)
, and is termed the jth “generalized force” on

the system.

We can also rewrite the second term in Equation A.6 in terms of generalized

virtual displacements as:

n∑
i=1

miẍi · δxi =
n∑
i=1

miẍi ·

(
m∑
j=1

(
∂xi
∂qj

)
δqj

)
(A.11)

=
n∑
i=1

m∑
j=1

miẍi ·
(
∂xi
∂qj

)
δqj = 0 (A.12)

=
m∑
j=1

n∑
i=1

miẍi ·
(
∂xi
∂qj

)
δqj = 0 (A.13)

The term
∑n

i=1miẍi ·
(
∂xi

∂qj

)
in equation A.13 can be rewritten with the

relation:

n∑
i=1

miẍi ·
(
∂xi
∂qj

)
=

n∑
i=1

{
d

dt

(
miẋi ·

∂xi
∂qj

)
−miẋi ·

d

dt

(
∂xi
∂qj

)}
(A.14)

We make two substitutions into equation A.14, replacing the first and second

terms in braces. To make these substitutions, we need to identify a few

valid equalities that result from calculus-based relations. First, consider the

relation which follows from the defined equality xi = xi(q1, ..., qm, t), and the

76

rules of partial differentiation:

ẋi =
m∑
k=1

∂xi
∂qk

q̇k +
∂xi
∂t

(A.15)

Next, rewrite the last term in equation A.14 using the rules of partial differ-

entiation.

d

dt

(
∂xi
∂qj

)
=

m∑
k=1

∂2xi
∂qj∂qk

q̇k +
∂2xi
∂qj∂t

(A.16)

We can make the observation that:

d

dt

(
∂xi
∂qj

)
=
∂ẋi
∂qj

, (A.17)

where the last equality follows from the realization that the right hand side

of Eqn. (A.16) is simply the partial derivative of the right hand side of

Eqn. (A.15) with respect to qj. Also from Eqn. (A.15), we get the following

relation:

∂ẋi
∂q̇j

=
∂xi
∂qj

(A.18)

If we substitute Equations A.16 and A.17 into Equation A.14, we obtain:

n∑
i=1

miẍ ·
∂xi
∂qj

=
n∑
i=1

{
d

dt

(
mẋi ·

∂ẋ

∂q̇j

)
−miẋi ·

∂ẋi
∂qj

}
(A.19)

We can substitute this relation into equation A.14 to obtain:

m∑
j=1

{
d

dt

(
∂

∂q̇j

(
n∑
i=1

1

2
miẋ

2
i

))
− ∂

∂qj

(
n∑
i=1

miẋ
2
i

)}
∂qj (A.20)

Combining Equations A.20 and A.10 we can write an equation in terms of

the systems kinetic energy of the system, T .

m∑
j=1

[{
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

}
−Qj

]
δqj = 0 (A.21)

The portion of the generalized force Qj which originates from conservative

77

forces, can be written as the negative spacial gradient of potential energy,

i.e. we can write Qj,cons = − ∂V
∂qj

. We can restate equation A.21 in terms of

potential energy V , and generalized non-conservative forces, Qj,nc as:

m∑
j=1

[{
d

dt

(
∂T

∂q̇j

)
− ∂(T − V)

∂qj

}
−Qj,nc

]
δqj = 0 (A.22)

If potential energy V of the system does not depend directly on the derivative

of the generalized coordinates, we can add the V term to the first derivative

taken. This leaves:

m∑
j=1

[{
d

dt

(
∂(T − V)

∂q̇j

)
− ∂(T − V)

∂qj

}
−Qj,nc

]
δqj = 0 (A.23)

Recall that because the generalized displacements are independent, Equation

A.23 must remain true for arbitrary virtual displacements. Thus, each term

in square brackets must evaluate to zero for all qj. This equality is the

Euler-Lagrange equation:

d

dt

(
∂(T − V)

∂q̇j

)
− ∂(T − V)

∂qj
−Qj,nc = 0 ∀qj (A.24)

Using the Euler-Lagrange equation to derive the dynamic equations of a

system can be done reasonably simply. The procedure is:

1. Write coordinates of each body in terms of generalized system which

implicitly satisfies constraints.

2. Write potential energy in terms of a truly independent coordinates.

Any potential energy which satisfies − ∂V
∂qj

= Qj,cons is valid.

3. For each generalized coordinate, write the Euler-Lagrange equation.

This dynamic equation needs to be satisfied for any valid trajectory as

a necessary condition.

78

APPENDIX B

DELTA ROBOT FORWARD AND INVERSE
KINEMATICS

Overview

We now derive the forward and inverse kinematics for the Delta robot. One

important point to understanding the below proofs is the fact that the kine-

matics of the Delta robot are found with the same equations as would be used

to determine the intersection of three spheres where the center of sphere i is

taken as the xyz coordinate of the ith carriage, offset by D
2
√
3

in the xy plane

toward the center of the build envelope. Note that we define the distance

l as the length of each strut, and the distance D is the side length of the

triangular end effector. (see figure B.1).

From this point on, we consider the position of the end effector as the inter-

section of three spheres: S1, centered at (x1, y1, z1); S2 centered at (x2, y2, z2),

and S3 centered at (x3, y3, z3). We refer to the the equilateral triangle in the

xy plane that results from connecting the xy coordinates of the three spheres

as the “build envelope”. We call the side length of this equilateral triangle

L.

79

Figure B.1: Left: Top view of the Delta robot build area. Right: Equivalent
kinematic representation.

Inverse Kinematics

Let (p, q, r) be any position of end effector within the build envelope. Let the

origin of our xyz coordinate frame fall at (p, q, r) = (0, 0, 0). Let (xi, yi, zi)

be the position of ith carriage. Equations shown in B.1 follow easily the

geometry of figure B.2.

80

(x2, y2, z2)

(x1, y1, z1) (x3, y3, z3)

(0, 0, 0)

(p, q, r)

L

L L

Figure B.2: Top view of the build envelope with struts attached to the end
effector.

(x1, y1, z1) = (
−L
2
,
−L
2
√

3
, z0)

(x2, y2, z2) = (0,
L√
3
, z0)

(x3, y3, z3) = (
L

2
,
−L
2
√

3
, z0)

(B.1)

Equations for each of the three spheres (S1,S2 and S3) can be written as

following:

S1 :

(
x+

L

2

)2

+

(
y +

L

2
√

3

)2

+ (z − z1)2 = l2

S2 : x2 +

(
y − L√

3

)2

+ (z − z2)2 = l2

S3 :

(
x− L

2

)2

+

(
y +

L

2
√

3

)2

+ (z − z3)2 = l2

(B.2)

As the carriages move along z - axes only, xi and yi are constant for each

of the carriages for any end effector location. Hence the inverse kinematic

problem then reduces to finding the sphere positions (z1, z2, z3) for the given

81

end effector position (p, q, r). This can be achieved by substituing (x, y, z) =

(p, q, r) in Equation B.2 and rearraging the terms.

z1 = r +

√
l2 −

(
p+

L

2

)2

−
(
q +

L

2
√

3

)2

z2 = r +

√
l2 − p2 −

(
q − L√

3

)2

z3 = r +

√
l2 −

(
p− L

2

)2

−
(
q +

L

2
√

3

)2

(B.3)

Forward Kinematics

The forward kinematic problem is to find the position of end effector

(p, q, r) for the given positions of carriages (z1, z2, z3). We can do this by

‘solving for’ p, q and r, simultaneously in following equations.(
p+

L

2

)2

+

(
q +

L

2
√

3

)2

+ (r − z1)2 = l2

p2 +

(
q − L√

3

)2

+ (r − z2)2 = l2(
p− L

2

)2

+

(
q +

L

2
√

3

)2

+ (r − z3)2 = l2

(B.4)

We can rewrite the set of equations B.4 more generally as:

(p− x1)2 + (q − y1)2 + (r − z1)2 = l2 (B.5)

(p− x2)2 + (q − y2)2 + (r − z2)2 = l2 (B.6)

(p− x3)2 + (q − y3)2 + (r − z3)2 = l2 (B.7)

Expanding, we obtain:

p2 + q2 + r2 + x21 + y21 + z21 − 2px1 − 2qy1 − 2rz1 = l2

p2 + q2 + r2 + x22 + y22 + z22 − 2px2 − 2qy2 − 2rz2 = l2 (B.8)

p2 + q2 + r2 + x23 + y23 + z23 − 2px3 − 2qy3 − 2rz3 = l2

82

Let, wi , x2i + y2i + z2i

p2 + q2 + r2 + w1 − 2px1 − 2qy1 − 2rz1 = l2 (B.9)

p2 + q2 + r2 + w2 − 2px2 − 2qy2 − 2rz2 = l2 (B.10)

p2 + q2 + r2 + w3 − 2px3 − 2qy3 − 2rz3 = l2 (B.11)

Subtract B.10 from B.9 and subtract B.11 from B.9. The result is two

linear equations:

w1 − w2 − 2p(x1 − x2)− 2q(y1 − y2)− 2r(z1 − z2) = 0 (B.12)

w1 − w3 − 2p(x1 − x3)− 2q(y1 − y3)− 2r(z1 − z3) = 0 (B.13)

Solving B.12 for p and B.13 for q we obtain:

p =
w1 − w2 − 2q(y1 − y2)− 2r(z1 − z2)

2(x1 − x2)
(B.14)

q =
w1 − w3 − 2p(x1 − x3)− 2r(z1 − z3)

2(y1 − x3)
(B.15)

Substituting for p in equation B.13 using B.14, and substituting for equa-

tion q in equation B.12using B.15 leads to:

w1 − w3 =
(w1− w2− 2q(y1 − y2)− 2r(z1 − z2))(x1 − x3)

x1 − x2
+ 2q(y1 − y3) + 2r(z1 − z3) (B.16)

w1 − w2 =
(w1− w3− 2p(x1 − x3)− 2r(z1 − z3))(y1 − y2)

y1 − y3
+ 2p(x1 − x2) + 2r(z1 − z2) (B.17)

Solving equation B.16 for q gives q entirely as a function of r. Similarly,

solving equation B.17 for p gives p entirely as a function of r.

83

Solving equation B.16 for q and equation B.17 for r gives:

q =
w1 − w3)(x1 − x2)− (w1 − w2)(x1 − x3)
2(y1 − y3)(x1 − x2)− 2(y1 − y2)(x1 − x3)

+
(z1 − z2)(x1 − x3)− (z1 − z3)(x1 − x2)
(y1 − y3)(x1 − x2)− (y1 − y2)(x1 − x3)

r (B.18)

p =
w1 − w2)(y1 − y3)− (w1 − w3)(y1 − y2)

2(x1 − x2)(y1 − y3)− 2(x1 − x3)(y1 − y2)

+
(z1 − z3)(y1 − y2)− (z1 − z2)(y1 − y3)
(x1 − x2)(y1 − y3)− (x1 − x3)(y1 − y2)

r (B.19)

Equations B.19 and B.18 linear in z. From now on we represent them more

compactly as:

p = a+ br (B.20)

q = c+ dr (B.21)

Where constants a, b, c, and d can be viewed in equations B.18 and B.19.

We can substitute for p and q in equation B.5. This leaves a quadratic

equation purely in terms of r.

r2(1 + d2 + b2) + r(2b(a− x1) + 2d(c− y1) + 2z1)+

(a− x1)2 + (c− y1)2 + (z1)
2 − l2 = 0 (B.22)

The roots of the above equation can be found using the quadratic formula.

The roots of this equation will be either both real or both imaginary. If

they are both imaginary, the three spheres do not intersect in 3d space. If

the roots are real-valued, the lower root will give the z position of the end

effector, and equations B.20 and B.21 can be used to solve for the x and y

end effector positions, respectively.

84

REFERENCES

[1] A. Olewnik, T. Brauen, S. Ferguson, and K. Lewis, “A framework for
flexible systems and its implementation in multiattribute decision mak-
ing,” Journal of Mechanical Design, Transactions of the ASME, vol.
126, no. 3, pp. 412–419, 2004.

[2] A. Siddiqi, O. de Weck, and K. Iagnemma, “Reconfigurability in plan-
etary surface vehicles: Modelling approaches and case study,” JBIS -
Journal of the British Interplanetary Society, vol. 59, no. 12, pp. 450–
460, 2006.

[3] J. L. Cohon, Multiobjective Programming and Planning. Dover Publi-
cations Incorporated, 2003.

[4] J. P. Ignizio, “Generalized goal programming: An overview,” Computers
and Operations Research, vol. 10, no. 4, pp. 277–289, 1983.

[5] J. Koski, “Defectiveness of weighting method in multicriterion optimiza-
tion of structures,” Communications in Applied Numerical Methods,
vol. 1, pp. 333–337, 1985.

[6] J. D. Indraneel Das, “Normal-boundary intersection: An alternative
method for generating pareto optimal points in multicriteria optimiza-
tion problems,” NASA Langley Research Center, Tech. Rep., 1996.

[7] J. D. I. Das, “Normal-boundary intersection: A new method for generat-
ing the pareto surface in nonlinear multicriteria optimizaiton problems,”
SIAM Journal of Optimization, vol. 8, pp. 631–657, 1998.

[8] A. Messac, A. Ismail-Yahaya, and C. Mattson, “The normalized normal
constraint method for generating the pareto frontier,” Structural and
Multidisciplinary Optimization, vol. 25, pp. 86–98, 2003.

[9] O. d. W. O. I.Y. Kim, “Adapt weighted sum method for multiobjec-
tive optimization,” in 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Albany, New York, September 2004.

[10] S. Marglin, Public Investment Criteria. Studies in the Economic Devel-
opment of India, London, and Cambridge. Cambridge, MA: Allen and
Unwin and MIT Press, 1967.

85

[11] M. Zeleny, “Compromise programming,” in Multiple Criteria Decision
Making, J. Cochrane and M. Zeleny, Eds. Columbia: University of
South Carolina Press, 1973, pp. 262–301.

[12] M. J. Rentmeesters, W. K. Tsai, and K.-J. Lin, “Polybot: A modular re-
configurable robot,” in Proceedings from the Second IEEE International
Conference on Engineering of Complex Computer Systems, 1996.

[13] H. Simon, Models of Man: Social and Rational. John Wiley and Sons,
Inc., 1957.

[14] D. Jones and M. Tamiz, Practical Goal Programming, F. S. Hillier, Ed.
Springer, 2010.

[15] E. J. Cramer, J. E. Dennis, P. D. Frank, R. M. Lewis, and G. R. Shu-
bin, “Problem formulation for multidisciplinary optimization,” in AIAA
Symposium on Multidisciplinary Design Optimization, 1993.

[16] C. McAllister, T. Simpson, and M. Yukish, “Goal program-
ming aapplication in multidisciplinary design optimization,” in 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, 2000.

[17] J. Holland, Adaptation in Natural and Artificial Systems. MIT Press,
1975.

[18] D. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley Publishing Company, 1989.

[19] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms,
S. Ross and R. Weber, Eds. John Wiley and Sons, 2001.

[20] C. Fonseca and P. Fleming, “Genetic algorithms for multiobjective op-
timization: Formulation, discussion and generalization,” in Proceedings
of the Fifth International Conference on Genetic Algorithms, 1993, pp.
416–423.

[21] A. Siddiqi and O. de Weck, “Modeling methods and conceptual design
principles for reconfigurable systems,” Journal of Mechanical Design,
Transactions of the ASME, vol. 130, no. 10, pp. 1 011 021–10 110 215,
2008.

[22] R. Khire and A. Messac, “Selection-integrated optimization (sio)
methodology for optimal design of adaptive systems,” Journal of Me-
chanical Design, Transactions of the ASME, vol. 130, no. 10, pp.
1 014 011–10 140 113, 2008.

86

[23] S. Ferguson, K. Lewis, A. Siddiqi, and O. de Weck, “Flexible and re-
configurable systems: Nomenclature and review,” in Proceedings of the
ASME 2007 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, vol. 6, 2007, pp.
249–263.

[24] Y. Koren, “The rapid responsiveness of rms,” International Journal of
Production Research, vol. 51, no. 23-24, pp. 6817–6827, 2013.

[25] M. Mehrabi, A. Ulsoy, and Y. Koren, “Reconfigurable manufacturing
systems: Key to future manufacturing,” Journal of Intelligent Manu-
facturing, vol. 11, pp. 403–419, 2000.

[26] S. Barbarino, O. Bilgen, R. Ajaj, M. Friswell, and D. Inman, “A re-
view of morphing aircraft,” Journal of Intelligent Material Systems and
Structures, vol. 22, no. 9, pp. 823–877, 2011.

[27] M. Yim, D. G. Duff, and K. Roufas, “Polybot: A modular reconfigurable
robot,” in Proceedings of the IEEE International Conference on Robotics
and Automation, 2000.

[28] C. A. Mattson and A. Messac, “Concept selection using s-pareto fron-
tiers,” AIAA Journal, vol. 41, pp. 1190–1198, 2003.

[29] B. Literman, P. Cormier, and K. Lewis, “Concept analysis for reconfig-
urable products,” in Proceedings of the ASME 2012 International Design
Engineering Technical Conferences & Computer Information in Engi-
neering Conference, vol. 3, no. PARTS A AND B, 2012, pp. 209–222.

[30] T. Simpson, J. Maier, and F. Mistree, The Information Revolution:
Present and Future. Greenwich, Connecticut: Ablex Publications, 1998,
ch. Mass Customization in the Age of Information: The Case for Open
Engineering Systems.

[31] M. D. Patterson, D. J. Pate, and B. J. German, “Performance flexibil-
ity of a reconfigurable family of uavs,” in AIAA Aviation, Technology,
Integration and Operations (ATIO) Conference, 2011.

[32] S. Ferguson and K. Lewis, “Investigating the interaction between recon-
figurability and system mass using multidisciplinary design optimiza-
tion,” in AIAA/ASME/ASCE/AHS/ACE Structures, Structural Dy-
namics, and Materials Conference, 2008.

[33] S. Ferguson, E. Kasprzak, and K. Lewis, “Designing a family of reconfig-
urable vehicles using multilevel multidisciplinary design optimization,”
Structural and Multidisciplinary Optimization, vol. 39, no. 2, pp. 171–
186, 2009.

87

[34] T. W. Simpson, “Product platform design and customization: Status
and promise,” Artivicial Intelligence for ENgineering Design, Analysis
and Manufacturing, vol. 18, pp. 3–20, 2004.

[35] R. Fellini, M. Kokkolaras, P. Papalambros, and A. Perez-Duarte, “Plat-
form selection under performance bounds in optimal design of product
families,” Journal of Mechanical Design, vol. 127, pp. 524–535, 2005.

[36] L. Rey and R. Clavel, The Delta Parallel Robot. Springer, 1999, ch. 29,
pp. 401–417.

[37] E. Courteille, D. Deblaise, and P. Maurine, “Design optimization of
a delta-like parallel robot through global stiffness performance evalua-
tion,” in International Conference on Intelligent Robots and Systems,
2009, pp. 5159–5166.

[38] H. Lipkin and T. Patterson, “Geometrical properties of modelled robot
elasticity: Part i - decomposition,” in 22nd Biennial Mechanisms Con-
ference, vol. 45, 1992, pp. 179–185.

[39] G. R. Eisler, R. Robinett, D. Segalman, , and J. Feddema, “Approximate
optimal trajectories for flexible-link manipulator slewing using recursive
quadratic programming,” Journal of Dynamic Systems, Measurement
and Control, Transactions of the ASME, vol. 115, no. 3, pp. 405–410,
1993.

[40] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2012.

[41] J. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. Society for Industrial and Applied Mathemat-
ics, 2010, ch. 4, pp. 124–218.

[42] J. T. Allison, T. Guo, and Z. Han, “Co-design of an active suspension
using simultaneous dynamic optimization,” To Appear in Journal of
Mechanical Design, DOI: 10.1115/1.4027335.

[43] L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and Ap-
plications to Chemical Processes. Society for Industrial and Applied
Mathematics and the Mathematical Optimization Society, 2010, ch. 10,
pp. 287–324.

[44] K. Kozak, I. Ebert-Uphoff, and W. Singhose, “A fast robot with paral-
lel geometrylocally linearized dynamic analysis of parallel manipulators
and application of input shaping to reduce vibrations,” Journal of Me-
chanical Design, vol. 126, pp. 156–168, 2004.

88

[45] F. Pierrot, A. Fournier, and P. Dauchez, “Towards a fully-parallel 6
dof robotbot for high-speed applications,” in Proceedings - IEEE In-
ternational Conference on Robotics and Automation, vol. 2, 1991, pp.
1288–1293.

[46] K. M. Lee and D. K. Shah, “Dynamic analysis of a three-degrees-of-
freedom in-parallel actuated manipulator,” IEEE Journal of Robotics
and Automation, vol. 2, pp. 1288–1293, 1991.

[47] Y. Li, J. Wang, L.Wang, and X. Liu, “Inverse dynamics and simulation
of a 3-dof spacial parallel manipulator,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2003.

[48] J. Allison and D. R. Herber, “Multidisciplinary design optimization for
dynamic engineering systems,” AIAA Journal, Special Issue on Multi-
disciplinary Design Optimization, vol. 52, pp. 691–710, 2014.

[49] D. R. Herber, “Dynamic system design optimization of wave energy
converters utilizing direct transcription,” M.S. thesis, The University of
Illinois at Urbana-Champaign, 2014.

[50] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software
for solving multiple-phase optimal control problems using hp-adaptive
gaussian quatrature collocation methods and sparse nonlinear program-
ming,” University of Florida, Gainesville, Tech. Rep., 2013.

[51] H. Goldstein, Classical Mechanics. Addison-Wesley Publishing Com-
pany, 1953.

[52] S. F. P. Saramago and V. Steffen, “Optimization of the trajectory plan-
ning of robot manipulators taking into account the dynamics of the
system,” Mechanical Machine Theory, vol. 33, pp. 883–894, 1998.

[53] R. R. dos Santos, V. Steffen, and S. de Fatima Pereira Saramago, “Op-
timal task placement of a serial manipulator for manipulability and
mechanical power optimization,” Intelligent Information Management,
vol. 2, pp. 512–525, 2010.

[54] [Online]. Available: http://reprap.org/wiki/Rostock

[55] [Online]. Available: http://www.ti.com/product/tms320f28335

[56] [Online]. Available: http://www.element14.com/community/docs/DOC-
39394/l/spectrum-digital-ti-tms320f28-based-ezdsp-f28335-starter-kit

89

