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Abstract

The Fe-based superconductors (Fe-SCs) have reinvigorated the community of high-Tc researchers worldwide.

Like copper-oxide superconductors (Cu-SCs), they are layered compounds in proximity to an antiferromag-

netic (AFM) state. The Fe-SC systems are amenable to controlled chemical doping/alloying, exhibiting

coexistence of AFM and SC, as well as structural transformations versus temperature and pressure that lead

to competing magnetic and structural defects. Because of this, exploration of the electronic structure of the

normal (non-SC) state, and its related properties, may reveal key physics underlying connections between

structure, magnetism and SC.

In this thesis we study the phase stability, electronic structure, and magnetism of alloyed (Ba-Am)(Fe-

Tm)2As2 superconductors involving transition metals (Tm=Co, Ni, Cu, Zn) and alkali metals (Am = K, Na)

in nonmagnetic, paramagnetic, and antiferromagnetic states for the competing tetragonal and orthorhombic

structures. These cover prominent electron (Tm) and hole (Am) doping scenarios studied experimentally. To

accomplish this in a unified way, we utilize a Green’s function approach based upon the all-electron, Korringa-

Kohn-Rostoker (KKR) multiple scattering theory in combination with the coherent-potential approximation

(CPA) to handle chemical (alloying) and magnetic (orientational) disorder, all implemented within a self-

consistent-field, density functional theory (DFT). For Tm doping, we detail the Fermi-surface evolution and

nesting that dictate instabilities to the observed spin-density wave (SDW) state. For Am doping we track

topological changes in the Fermi surface and connect these to transitions between SC phases. For K-doping,

dissolution of electron cylinders occurs near 90%K with a Lifshitz (topological) transition, as observed,

which reduces key inter-band interactions. This result reveals a transition that influences s± to d-like SC

and suggests the origin for the deviations for the empirically identified Bud’ko-Ni-Canfield scaling. Formation

energies indicate alloying at 35%K, as observed, but a tendency for segregation on the K-rich (≥ 60%K) side,

explaining the difficulty of controlling sample quality and conflicting results between characterized electronic

structures.

In addition, due to the observed proliferation of twins and magnetic twin boundaries in BaFe2As2 (and

possible other operative magnetic planar defects) with temperature and pressure, we study the stability and
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magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin

nuclei). These nanoscale defects have very low surface energy (22-210 mJm−2), with twins favorable to the

mesoscale. The nanotwins explain features in measured pair distribution functions obtained from neutron

diffraction. Notably, these low-energy defects are tied to the magneto-structural transition whose fluctuations

are widely expected to drive SC.
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Chapter 1

Fe-based Superconductors

Since the discovery of high-temperature superconductivity (SC) in copper-oxide compounds by Bednorz

and Müller in 1987 [1], much effort has been invested in finding SC in other transition-metal oxides. But,

with critical temperatures (Tc) often below 5 K, this program has had little success. Then, in 2008, while

investigating transparent oxide semiconductors, Kamihara et al. [2] discovered LaFeAsO1-xFx superconducts

at Tc = 26 K. As magnetic impurities are known to be highly deleterious to SC, it came as a surprise that

strongly magnetic Fe could serve as a building block for SC. The high-Tc and weak isotope effect clearly mark

these compounds as a new class of unconventional superconductor (USC). So, Fe-based superconductors (Fe-

SC) have reignited an interest in high-Tc superconductivity; and, with it, the hope of further unraveling

the microscopic mechanisms driving USC. If a predictive model of USC is reached, it could permit a rapid

computational search for a room-temperature superconductor —a holy grail. Shortly after Kamihara et

al.’s work, Rotter et al. [3] found superconductivity in Ba1−xKxFe2As2. This established the two most

studied classes of Fe-SCs. To date, there have been thousands of publications on the Fe-SCs. By chemical

and pressure tuning, Tc has been raised to 65 K. While the prospect of a still higher Tc is limited, the

Fe-SCs remain exciting as a pathway for making theoretical progress on the question of unconventional

pairing. They also have unique material properties, including a strong coupling of magnetism, structure,

and superconductivity. As an applied technology, the Fe-SCs can be used for their high critical fields (up

to 50 T) and high critical currents (106 A cm−2). Moreover, these critical quantities are more isotropic

than for the copper-oxide superconductors (Cu-SC) and may supplant SCs used in some of today’s high-field

magnets. Other applications could include power generation and, due to an interplay of itinerant and local

magnetism, spintronics.

Questions, therefore, arise for the Fe-SCs: What is the normal state quasiparticle spectrum? What

drives the magnetic and SC instabilities? What is the structure and symmetry of the SC gap parameters?

What viable pairing mechanisms are there? As magnetism and SC arise from instabilities in the electronic

structure, a characterization of the normal state is key to understanding unconventional pairing.

The goal of this dissertation is to understand the normal state electronic structure, phase stability, and
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magnetism of (Ba-Am)(Fe-Tm)2As2 alloys for transition metals Tm=Co, Ni, Cu, Zn and alkali metals

Am = K, Na from first-principles density functional theory (DFT). These correspond to electron (Tm)

and hole (Am) doped variants of BaFe2As2. In particular, the Fermi surface evolution is charted in these

compounds and marked changes are tied to magnetic and SC transitions. The observed proliferation of

magnetic planar defects that affect the magneto-structural transition are explained. Magneto-structural

fluctuations likely play a role in nematic order and Cooper pairing. Calculations were performed using

the all-electron, Korringa-Kohn-Rostoker (KKR) [4, 5] method in combination with the coherent potential

approximation (CPA) [6], a single-site mean field theory to address both chemical (alloying) and magnetic

(orientational) disorder. Extensive code development was done to provide a detailed analysis of alloyed

electronic structure, including electronic dispersion, density of states, and Fermi surfaces. Code was also

developed to improve the accuracy of the Fermi surface and to improve the robustness of calculations.

As SC is not the immediate focus, an overview of the phenomena and theory of superconductivity,

including the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity is provided in the appendix.

The terminology of the BCS theory and the notion of pairing symmetries sets a backdrop for many articles

on SC. For further background see [7, 8, 9, 10, 11]. Below a summary of unconventional superconductors

and details of Fe-SCs, in particular, is given. Good reviews on Fe-SCs are provided by references [12, 13, 14,

15, 16, 17, 18].

1.1 Unconventional Superconductors

Berndt Matthias, a prominent experimentalist in the 1970s who discovered a large number of SCs, formulated

six rules to discovery [19]: 1. High symmetry is good, cubic symmetry is best, 2. High density of electronic

states is good, 3. Stay away from oxygen, 4. Stay away from magnetism, 5. Stay away from insulators,

and 6. Stay away from theorists. Many of the USCs, most of which have been discovered since then, break

those rules in a dramatic fashion. An USC is one in which Cooper pairs are not an s-wave singlet or are not

mediated by an electron-phonon interaction. They include so-called organics, heavy fermions, Cu-SCs, and,

most recently, Fe-SCs. These often have higher Tc than allowed by a BCS weak electron-phonon coupling

and also show a limited isotope effect. To this day a rigorous theory of USCs is lacking.

Organic superconductors are any organic compound that features SC. That makes them a broad class

of SC that need not share underlying pairing mechanisms. They display especially rich phase diagrams and

come in one-, two-, and three-dimensional varieties (i.e., one or more direction may be strongly insulating).

A commonly studied example is (BEDT-TTF)2X, where X is an anion separating layers of the organic
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Figure 1.1: (a) Active structural layers for Cu-SCs and Ce-based heavy fermion SCs. Both show an AFM pat-
tern in the ground-state. (b) The complete crystal structure for representative examples. In fact, the active
layers and spacer layers can be combined in different arrangements, giving rise to a number of possibilities.
After [20].

BEDT-TTF (a large organic molecule). At ambient pressure they are Mott insulating and become SC only

under pressure. Pressure serves to increase hybridization effects and improve transport, especially along the

c-axis (defined as perpendicular to layers). These support a lattice of spin 1/2 molecular dimers that are in

a frustrated arrangement. The suggested pairing symmetry is d-wave; that, and the Mott insulating phase,

have drawn strong comparisons to Cu-SCs. One advantage of organic SCs is that constituent elements are

readily available. Their Tc does not exceed 12 K, however.

Heavy fermions are Ce or U based alloys take advantage of f electrons hybridizing with itinerant electrons

to form heavy quasiparticles. As a strongly magnetic ion in contact with conduction electrons, they exhibit

the Kondo effect –an unusual interaction of conduction electrons and magnetic impurities. Because they

arrange in a regular lattice, one also refers to the Kondo lattice. The Kondo lattice leads to an unusual

three orders of magnitude increase in the electronic specific heat. As heavy rare-earths are embedded in

active, superconducting layers, inclusion of strong spin-orbit coupling is crucial to a proper description of

pairing. UPt3 is one of the better understood examples. Altogether, three SC phases have been identified

for it, showing nearly degenerate SC states are realizable. The order parameter goes as ei2φ, suggesting

an exotic f -wave symmetry (or, in terms of lattice symmetries, more precisely “E2u”). Most of the heavy

fermions are near an AFM transition. An important counterexample, both for heavy fermions and for USCs

in general, is UGe2, which is both ferromagnetic and SC. The calculated and observed Fermi surfaces are
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nearly two-dimensional, emphasizing the effectiveness of layering and c-axis “blocking.”

The active layers in Cu-SCs consist of the flat sheets of Cu and O atoms. The electronic structure is

two-dimensional and there is only one active band at the Fermi level. It is well established by phase sensitive

experiments that the gap has d-wave symmetry. Only for the Cu-SCs has such a clear symmetry been shown

in the order parameters. It is well known they have the highest Tc, with maximum of 133 K (ambient

pressure) or 150 K (high pressure) for HgBa2Ca2Cu3O8. They have strongly correlated electrons, which

gives rise to local moments on the Cu site. Thus, they are best described by a single-band Hubbard model.

Like other USCS, the parent compounds are in a Mott insulating AFM phase.

What ties to together many of the USCs is a layered structure with active layers that can be tuned

by chemical and pressure effects. Parent compounds are insulating or semi-metallic, and valence states are

composed of d or f electrons. Magnetic phases, especially AFM, are abundant. SC arises when the magnetic

phase is diminished by tuning parameters and could be a result spin fluctuations or a quantum critical point.

Now we explore the details of Fe-based superconductors, of specific focus here.

1.2 Fe-based superconductors

The Fe-SCs are built from electronically active tri-layers of Pn-Fe-Pn (Pn = As, P, Se, Te, S) that can tuned

by chemical substitution or applied pressure. The highest Tc to date is 65 K in single-layer FeSe films [22],

making them second only to Cu-SCs in order of Tc. Both the high Tc and explicit electron-phonon coupling

calculations make clear Cooper pairs in these compounds cannot be mediated by traditional phonon pairing

mechanisms [23, 24]. The Fe-SCs present themselves in two major classes: ReFeAsO (rare earth Re = La, Ce,

Pr, Nd, Sm, Gd) and AeFe2As2 (alkali earth Ae = Ca, Ba, Sr) and their chemically tuned derivatives. There

are also two minor classes. These include AmFeAs (alkali metal Am=Li, Na) and FeCh (chalcogenide Ch =

Se, Te, S). With the exception of FeCh, the active tri-layers are separated by intervening “blocking” layers

that improve two-dimensionality, stabilize the structure, and donate charge carriers. The Fe-SCs from the

major classes are metallic antiferromagnets (AFM) at stoichiometry and prove to be robust under chemical

doping, even allowing in-plane disorder. The valence electronic structure arises from a hybridization of As 4p3

and Fe 3d5 electrons, which have combined in covalent bonds to form FeAs4 tetrahedra. The Fermi surface

arises from all Fe d orbitals, giving rise to multiple electron and hole Fermi sheets. Pairing is likely mediated

by interband interactions between hole and electron quasiparticles. And strong Fermi surface nesting may

be the source of the observed AFM. At modest doping and low pressures, the Fe-SCs are believed to exhibit

the same SC phase with universal characteristics. The gap parameter is proposed to have s-wave symmetry
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Figure 1.2: Phase diagrams of representative copper-oxide, heavy fermion, and organic superconductors.
Neighboring magnetic phases are often present. After [20, 21]

.
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Figure 1.3: (a) The four classes of Fe-SCs and their associated structures. (b) The common structural motif
of As-Fe-As trilayers and the striped antiferromagnetic pattern. After [14].

with a sign change between Fermi sheets. The key effects of doping and pressure are to reduce Néel TN ,

thereby increasing AFM spin fluctuations and bringing the system closer to a quantum critical point (QCP).

The Néel transition is also accompanied by an orthorhombic distortion likely driven be nematic electron

ordering.

Because they are weak metals that show at most modest correlations, the electronic-structure is rea-

sonably predicted by density functional theory (DFT) calculations, which often agree with angle-resolved

photoemission (ARPES). This makes these compounds more amenable to realistic computations than the

Cu-SCs. At higher doping there is evidence the SC phase changes. There are for instance deviations from

otherwise universal scaling laws and apparent changes in the gap symmetry. The malleability of Fe-SCs is

significant since this is a limiting factor for high-Tc SCs in applications.

1.3 Crystal Structure

There are two major and two minor classes of Fe-SCs. The most studied prototype from each major class is

LaFeAsO1-xFx (from the “1111”) and Ba(Fe1-xCox)2As2 (from “122”). And from each minor class is LiFeAs

(from “111”) and FeSe (from “11”). The Fe-SCs are synthesized using one of three techniques: (1) solid-state

reaction and (2) high-pressure synthesis to create polycrystalline samples; or, (3) the flux method to create
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large single crystals. All the structures are composed of layers and undergo a tetragonal to orthorhombic

symmetry breaking at low temperatures, after which one in-plane axis is compressed ∼1%. The layered

geometry gives rises to strong anisotropies.

The common structural motif of Fe-SCs is a square lattice of Fe atoms with pnictogen (As, P) [25] or

chalcogenide (Se, Te, S) [26] atoms staggered above and below the center of Fe squares. This arrangement

forms FePn4 tetrahedra. In the high-T tetragonal phase, a and b directions are at 45 ◦ to the Fe subnet.

In the low-T orthorhombic phase, a and b directions coincide with the Fe subnet. The Fe-Fe bonds are

metallic, the Fe-As highly covalent, and the intervening layers connected by ionic interactions [14]. A pure

FeAs compound, one without blocking layers, is not possible because FeAs6 octahedra rather than FeAs4

tetrahedra are formed [27]. The structural parameters, such as lattice constant a and Fe-As-Fe bond angle,

have a direct influence on Tc (see Fig. 1.10c) [28]. In some cases Tc follows this structural tuning. For

example, Ba1-xKxFe2As2 at low doping [29] or the changes in ReFeAsO with varying Re [18]. On the other

hand, CsFe2As2 has close to ideal tetrahedra but Tc only 2.6 K [30].

The only internal cell parameter is the height of As planes relative to Fe planes (zAs). This parameter

adjusts the Fe-As bonding, and thus has a strong effect on the observed Tc [28] and electronic structure [31].

The predicted zAs, according to DFT, is sensitive to the exchange-correlation (XC) functional and whether

magnetic ordering is considered [32]. From Table. 1.1 it is evident only the choice of generalized gradient

approximation (GGA) for XC functional and AFM for magnetic ordering produces the experimental zAs.

Note, however, that the GGA predicted magnetic moment of LaFeAsO is much larger (2 µB) [33] than the

observed one (0.3 µB) [34]. As the cell size can change electron density (i.e., the electrons per unit volume),

it can have substantial effects on electron degenerecy, Fermi level, and overall electronic structure. Thus, it

is best to take lattice parameters as extracted from X-ray diffraction when performing DFT calculations

The 1111 compounds consist of ReFeAs(O1-xFx); Ae1-xRxFeAsF; and Re1-xAexFeAsO. The 1111 are

formed in the ZrCuSiAs structure with space group P4/nmm at high temperatures and Cmma at low

temperatures. The Tc value decreases with the size of the rare-earths; and, concomitantly, the lattice

constant a. An alternative to F doping on O sites is to create O vacancies. Both lead to effective electron

Table 1.1: Predicted zAs by varying exchange-correlation and magnetism. After [35].
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doping. The 1111 were the first discovered class and usually exhibit the highest Tc for bulk structures,

reaching up to 55 K in SmFeAsO0.85 [36]. The lattice constants for representative LaFeAsO are a = 0.4035

nm, c = 0.8739 nm, and internal coordinate zAs = 0.1418 nm [37]. The 1111 compounds remain difficult to

study because available crystals are small and difficult to synthesize [38]. Furthermore, polar states at the

surface interfere with ARPES measurements, giving a poor representation of the bulk electronic structure

[39]. Also see [12]

The 122 compounds are Ae(Fe1-xTmx)2As2 or Ae1-xAmxFe2As2. They form in the ThCr2Si2 structure

and I4/mmm space group, which symmetry breaks to Fmmm at low temperatures. The highest Tc is

38 K in Ba0.6K0.4Fe2As2. For tetragonal BaFe2As2, the focus of this thesis, the lattice constants are a =

0.3917 nm, c = 1.3297 nm, and zAs =0.1380 nm [40]. The c-axis is larger than in the 1111; however, the

active FeAs layers have nearly the same a. It is the most easily synthesized Fe-SC and dopants are more

uniformly distributed [41]. One difficulty is that structural and magnetic twin domain boundaries proliferate

throughout the sample [42]. Samples either need to be de-twinned in experiment, or the presence of twins

considered in theoretical models. It has even been found twin boundaries act as nucleation sites for SC [43].

In this thesis we consider the formation energetics of twin and other planar defect boundaries in a later

chapter.

Both 111 and 11 compounds have a tetragonal P4/nmm structure which reduces to P21/m at low-

temperatures. They have lower Tc then their 1111 and 122 counterparts, but serve to further delimit

the boundaries of SC. Their relatively simple structure also makes synthesis and analysis easier. The 111

are composed of LiFeAs and NaFeAs. These are the best compounds to perform ARPES as they yield

large single crystals with a nonpolar surface [44]. They are, however, highly reactive to air, making handling

difficult. LiFeAs has a Tc of 18 K. It is unusual for featuring a non-magnetic ground state that superconducts

without pressure or doping [45]. And NaFeAs has Neél, nematic, and SC transitions at 52, 41, and 23 K,

respectively, in the parent state [46]. The 11 consist of FeS and FeTe1−xSex alloys. While Tc is 8 K only,

it can be increased dramatically on application of pressure. The limited Tc in these compounds may be a

result of reduced two-dimensionality due to a lack of blocking layers.

There is also a more exotic “245” phase, with high magnetic moments (3 µB) and a high Néel temperature

(500 K) [47]. The motif of the spacer layers can be complex, e.g., (Sr3S2O5)Fe2As2 or Sr4V2O6Fe2P2. A

Tc of 37 K is close to the maximum for 122 compounds. They are either observed to be insulating or

semimetallic down to 100 K. However, this has been distinguished as a result of phase separation of metallic

and AFM insulating regions [48]. Due to their complexity and similarity to 122 compounds, these are not

frequently studied.
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Figure 1.4: Phase diagrams of PrFeAsO1−xFx [51], (Ba1−xKx)Fe2As2 [52], and Ba(Fe1−xCox)2As2 [53].

1.4 Phase Diagram

The SC transition is identified by a drop in electrical resistance, an increase in diamagnetic response, and

a peak in magnetic susceptibility dχ/dT (see [18]). The Fe-SCs feature a variety of tuning parameters;

including chemical doping, hydrostatic and uniaxial pressure, and vacancy formation. Unlike the Cu-SCs,

all atomic sites can be doped, including within active As-Fe-As tri-layers. Substituting Fe for magnetic ions

Mn or Cr is disruptive to SC, while substitution by Co or Ni enhances it. Substitution of the alkali earth site

is common, especially as hole doped Ba1−xKxFe2As2. Less commonly, rare-earth substitution is possible;

for example, Gd1−xThxFeAsO for electron doping [49] and La1−xSrxFe2As2 for hole doping [50]. The sign

of the charge carriers can be checked by examining the Hall coefficient.

Both the 1111 and 122 are orthorhombic, AFM metals in their parent ground-state. Spins are aligned

along the shortened b axis and antialigned along a and c (see Fig. 1.3). The presence of insulating layers

reduces coupling in the c direction and spin fluctuations are easily excited in this direction [35]. As the

electrons are itinerant, the AFM state is also called a spin-density wave (SDW); in analogy with the magnetic

state of Cr alloys [54]. For LaFeAsO the structural transition (155 K) proceeds the Neél transition (137 K)

[55]. The same is true for other 1111 compounds. It is interesting to note the rare-earth ions exhibit their

own magnetic ordering at lower temperatures (see Fig. 1.4), for example at 6 K in SmFeAsO [56]. This

additional magnetic order persists in the SC phase and there is no indication these f electrons play a role

in SC. For BaFe2As2 the structural and Néel transition occur simultaneously (140 K), and the same is true

for other 122 compounds.

Fluorine doping of LaFeAsO results in a slight reduction in TN until the onset of SC, after which no Néel

phase persists. By contrast, in CeFeAsO1-xFx the TN drops continuously to zero before the onset of SC [58].

And in SmFeAsO1-xFx there is a concentration range in which both phases coexist [59], though perhaps
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Figure 1.5: Cartoon phase diagram of electron and hole doped 122 SCs. After [57].

not microscopically. All the 122 compounds show a gradual reduction of TN on doping and a max Tc near

the AFM quench point (see Fig. 1.4 and Fig. 1.5), with a coexistence region between both phases. Hole-

doped (Ba1−xKx)Fe2As2 samples show phase separation at the nanometer scale [60]. While electron-doped

Ba(Fe1−xCox)2As2 is known to be coexistent down to the subnanometer scale [61]. In Ba(Fe1−xTmx)2As2

(Tm=Co, Ni) the SDW also becomes incommensurate in this coexistence region, emphasizing the itinerancy

of electrons [62]. Electron doping is known to rapidly suppresses spin coupling along the c-axis [63]. Notably,

isovalent substitutions can also induce SC; for example, BaFe2(As1-xPx)2 reaches Tc = 30 K [64]. In this

case stearic effects play a role and a comparison can be made to pressure effects.

There is an approximate symmetry between phase diagrams on hole and electron doping of 122 com-

pounds, signaling loss of AFM and stearic effects are one of the key drivers. The proximity of the AFM

quench point to max Tc on both sides strongly suggests pairing is mediated by AFM spin fluctuations. In

Ba(Fe1−xCox)2As2 the structural and AFM transitions become split and second order, as is the case with

many of the 1111 compounds as well. However, in Ba1−xKxFe2As2 the two transitions remained tied and

first order, also true on applying hydrostatic pressure. At heavy hole doping, as in KFe2As2, the nature of

SC may be changed. For example the gap acquires additional nodes and the symmetry appears to change

from s± to d [65, 66]. This is not unlike how multiple SC phases were identified in UPt3. For heavy electron

doping the SC phase is lost altogether.

The nematic phase transition associated with the orthorhombic distortion and Néel transition has been of

particular interest [57]. The Ising-like nematic order refers to breaking of the 90 ◦ lattice rotational symmetry
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Figure 1.6: Phase diagrams of CaFe2As2. Regions I and III correspond to a orthorhombic and collapsed
tetragonal phase respectively. Region II is a coexistence of I and III. After [71].

while preserving time-reversal symmetry. As noted, in-plane disorder disrupts this transition, splitting the

structural and Néel pieces and making it second order. It is unlikely to be driven by soft phonon modes

because strong in-plane anisotropies of the electrical properties are detected above the transition. There

are two possible electronic mechanisms: orbital fluctuations and spin fluctuations. Clarifying which is the

primary order parameter would suggest which mechanism is more likely responsible for Cooper pairing.

Orbital fluctuations favor an s++ gap symmetry. In other words a gap that preserves sign throughout the

Brillouin zone. AFM spin fluctuations would favor an s± gap symmetry, or a change in sign by translation of

(π, π) in k-space. AFM fluctuations have been detected well above the nematic transition [67]. Calculations

and observations of the Drude weight [68, 69] and magnetic scattering rate [70] lend strong support for an

s± scenario. Below Tc there is a strong suppression of the orthorhombic distortion, suggesting the nematic

and SC electronic effects compete with each other. Nematic ordering also plays a role in Cu-SCs and and

heavy fermion compounds.

Application of either hydrostatic or uniaxial pressure can induce SC. Modest pressure reduces the a

lattice constant, with optimal doping tending to be near perfect FeAs4 tetrahedra. Decreasing a increases Fe

and As hybridization and inhibits magnetism [72]. Tc increases with pressure only if sample is underdoped,

suggesting a connection between doping and pressure [73]. Pressure experiments under different conditions

yield different results [74, 75, 76] due to the sensitivity of samples to anisotropic pressures. A maximum Tc

is achieved at 28 kbar in SrFe2As2 and 35 kbar in BaFe2As2 [74]. In CaFe2As2, above 0.35 GPa, there is a
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Figure 1.7: Density of states and band structure of BaFe2As2. After [31].

dramatic (∼5%) reduction in volume into a “collapsed” tetragonal phase [77] (see Fig. 1.6). The magnetic

ordering vanishes at the onset of this phase, which calculations support.

A general theme is that Tc improves with fewer interactions along the c-axis, or as the electronic character

becomes more two-dimensional. It also improves as magnetic effects are inhibited by shrinking the lattice

or shifting the Fermi level. Also, SC has been linked to a loss of a 3D Fermi hole pocket [78].

1.5 Electronic Structure

Superconductivity and magnetism can be traced to interactions of electrons near the Fermi surface (FS).

Thus the electronic structure is a key determinant in understanding the origins of magnetic and SC phases.

The valence states are formed from a hybridization of Fe 3d5 and As 4p3 electrons. The Fe d are at higher

energies than As p. Further, only Fe d orbitals contribute at the Fermi level (see Fig. 1.7). Theoretical models

require all Fe d orbitals [79] in order to get an electronic structure that qualitatively resembles that observed

from ARPES [39, 80, 81], or calculated in DFT [31, 82]. The 1111 and 122 compounds show a low carrier

concentration and high density of states (DOS) [82]. The DFT DOS at the Fermi level for BaFe2As2 is 1.53

eV/Fe [31] and for LaFeAsO is 1.31 eV/Fe [82]. Those values are sufficient to indicate a Stoner-like magnetic

instability, as is observed. A simple correlation between DOS and Tc does not work, as might be expected

from BCS theory. For example, in Ba1−xKxFe2As2 the Fermi level DOS is not peaked at optimal doping

[12].

The band structure and Fermi surface can be described according to simplified 2D or full 3D models.

The Brillouin zones (BZ) are different for each and both are depicted in Fig. 1.8. In 2D models one can

also choose whether the unit cell contains one or two Fe atoms. Due to the staggered position of As atoms,
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Figure 1.8: (a) 3D BZ of body-centered tetragonal lattice. After [83]. (b) 2D BZ for 2 Fe-atom unit cell
along with cartoon Fermi surfaces. Note the similarity to calculated 3D Fermi surfaces in Fig. 1.9. After
[84].

the proper unit cell contains two Fe atoms, though these atoms are connected by an inversion symmetry.

Theoretical considerations using low-energy model Hamiltonians often favor a simplified one Fe per site and

its corresponding (extended) Brillouin zone (BZ). Arsenic atoms may be removed by folding them into an

effective Fe-Fe next nearest neighbor interaction. A conversion between the extended and folded BZ (i.e.,

the 2 Fe BZ) is necessary in order to compare experimental, computational, and theoretical works. This is

accomplished by translating the extended BZ Fermi surface by the reciprocal lattice vectors of the folded

BZ.

The Brillouin zone has a strong influence on the Fermi surface and what symmetries may be present

(see Fig. 1.8a). The key high symmetry positions are Γ at the center, X at the center of square faces, and

Z at the center of top face (i.e. along kz). The Fermi surface of the NM parent compounds BaFe2As2 and

LaFeAsO are presented in an extended BZ scheme in Fig. 1.9. There are two electron cylinders at the X

point and two or more hole sheets at Γ point. The number and shape of the hole sheets are sensitive to

the internal cell parameter zAs. The hole sheets are often warped in the kz direction, emphasizing these

compounds are more three-dimensional than Cu-SCs. Around Γ one or more of the hole cylinders is pinched.

It is possible even that one of the holes becomes an ellipsoid about Z depending on pressure and doping.

The electron and hole cylinders are of dxz and dyz character and the fraction of each is angle dependent.

Any hole pocket at Z is of dz2 character. The small, compensated volumes of the Fermi surfaces result in low

carrier concentrations. In 122 compounds the hole and electron volumes, which are proportional to carrier

density, are equal [81]. This Fermiology can be modified with a rigid-band Fermi level shift, reproducing the

effects of low-doping for some carrier types (e.g., Ba(Fe1−xCox)2As2 [85]). The calculated FS gave the first

suggestion of the s-wave pairing symmetry [82]. Thus, the ES of Fe-SCs is complex, with multiple bands
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Figure 1.9: Fermi surfaces for LaFeAsO and BaFe2As2. After [31, 82].

and three dimensionality, in contrast to the Cu-SCs.

There is a strong Fermi surface nesting at the (π, π) wave vector connecting Γ and X points, which

corresponds to the observed AFM ground-state. The nesting causes a SDW instability because electrons can

lower their kinetic energy, a so-called “Peierls” transition [86]. The nesting also emphasizes the itinerant

character of the magnetism. Furthermore, when nesting is clearly visible, a SDW ground-state is usually

present [85]. And when nesting is absent, as in LiFeAs, magnetic ordering is absent [45]. Nesting also

properly describes an incommensurate splitting of the SDW in Ba(Fe1−xCox)2As2 [62]. It has even been

suggested the disruption of Fermi surface nesting, and thus a suppression of SDW state, might be more

important to onset of SC on carrier doping than Fermi level shifts [14]. On the other hand, FeTe, while

maintaining strong spin fluctuations at the (π, π) mode, shows a different ground-state magnetic ordering

[87]. A perfectly itinerant picture is, however, not entirely accurate either. Measurements of the magnetic

susceptibility show large dispersion in k-space for CaFe2As2 [88]. Local Heisenberg J1-J2 models, while

capable of correctly predicting the ground-state AFM ordering, cannot fully explain measured magnetic

excitations [89]. The correct picture is likely intermediate to these two.

On electron doping the electron cylinders about X grow and the hole cylinders about Γ and Z shrink.

The onset of SC with electron doping has been tied to the disappearance of a Fermi hole pocket at Z, as

visible in ARPES for Ba(Fe1−xCox)2As2) [78]. The presence of this hole is sensitive to the pnictogen height,

possibly explaining the connection of As-Fe-As bond angle to Tc. A topological change in the Fermi surface

is known as a “Lifshitz” transition. On hole doping Ba1−xKxFe2As2 the electron cylinders shrink and hole

cylinders grow. At some critical concentration the electron cylinders disappear and are replaced by four

lobes centered about the X point [90]. A major result of this thesis is characterizing this Lifshitz transition

and its connection to a change in the SC phase.

The calculated and experimentally resolved bands are not in perfect agreement. Fitting the calculated
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bands requires three times renormalization and shifts of about ∼40 meV [91, 45]. This suggests modest

electron correlations are present.

1.6 Magnetism and Correlations

The ground-state magnetic ordering corresponds to a (π, π) commensurate spin wave as confirmed by ARPES

and corroborated in DFT. The Néel transition occurs at relatively low temperatures (TN ∼ 150 K). The

(π, π) ordering is just what would be expected based on arguments of itinerant electrons driven by Fermi

surface nesting. It also well explains a transverse splitting in the SDW wave vector that is observed in

Ba(Fe1−xCox)2As2 [62] and suspected in Ba1−xKxFe2As2 [92].

However the presence of local moments at temperatures well above the Néel transition in the paramagnetic

phase suggests correlations may be larger than anticipated [93]. Unusually, DFT predicts much larger

moments than observed. Most DFT predictions for the moment are 2 µB , which is line with the paramagnetic

fluctuating moment. However, observed ordered moments can be much smaller, for example 0.35 µB in

LaFeAsO [94] or 0.87 µB in BaFe2As2 [95]. And the observed fluctuating moment in BaFe2As2 of 〈m2〉 =

3.2 [96] is larger than expected from an itinerant SDW model based on the random phase approximation

[97]. Quasiparticle mass enhancements due to Coulomb correlation follow the reduction in moments well [98].

The mass enhancement’s are explained as a kinetic frustration between direct Fe-Fe hopping and indirect

hopping via As atoms. There is especially a sensitivity of magnetic moments to hybridization of Fe and

As atoms [72]. Hartree-Fock approximations to the Hubbard model show there is an intermediate regime,

for Hubbard U and bandwidth W with U/W = 0.3 − 0.4, for which the materials are both metallic and

magnetic [99, 100]. Purely local models for J1-J2 show values, indeed even signs, that are inconsistent across

the spectrum of Fe-SCs [101, 102, 103].

There is much interest in spin excitations because the dominant feeling is that Cooper pairing is mediated

by spin fluctuations. Indeed, a correlation between the spectral weight of spin dynamics and SC is found. For

overdoped Ba(Fe1−xCox)2As2 [104] and LaFeAsO1−xFx [105] the disappearance of SC and spin fluctuations

occur together. Moreover, in the SC phase, a resonance peak appears [106, 107]. This is also taken as strong

evidence for a sign change in the order parameter on translation from hole to electron pockets.[108]

1.7 Gap Symmetry

Determining the gap symmetry has been a major concern of Fe-SC researchers. The symmetry restricts the

nature of the pairing interaction. For further details on what is meant by the gap symmetry, consult the
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Figure 1.10: Universal scaling of Tc and (a) neutron scattering resonance, (b) specific heat, and (c) pnictogen
height. After [14, 109, 110] respectively.

appendix. In Cu-SCs the phase sensitive Josephson junction experiments have conclusively established the

gap is “d”-wave. On the other hand, for Fe-SCs a lack of half-integer flux by superconducting quantum

interference (SQUID) rules out an all d-wave scenario [111]. Further, ARPES experiments find nearly

isotropic gaps about both the hole and electron cylinders. In Ba1−xKxFe2As2 these gaps are 10 meV, except

for the outer hole sheet, which is 4 meV [112]. It has been argued that if AFM spin fluctuations mediate

pairing then the gap symmetry must be “s±,” meaning a sign change on translation by (π, π) in k-space

[82].
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1.8 Universal Scaling Laws

There are three quantities that correlate strongly to Tc. The first is the As-Fe-As bond angle, with optimal

doping tending to be near ideal tetrahedra, which minimize the crystal field splitting of the Fe atom [28]. In

addition, there is a universal scaling law between specific heat and Tc: the so-called “Bud’ko-Ni-Canfield”

scaling, or specific heat jump ∆CS ∝ T3
c [109]. Finally the energy of the magnetic resonance in neutron

scattering data scales linearly with Tc [14]. These are shown together in Fig. 1.10.

1.9 Issues to Address

The DFT studies performed thus far have focused on the parent compounds. The few computational

studies on the effects of chemical doping have been approximated by (1) a rigid-band model, (2) fractional

nuclear charge on an atom, (3) the Virtual Crystal Approximation (VCA), or (4) a supercell that contains

a large dopant concentration (i.e., one or two dopant atoms) in a unit cell. These models vary in degree

of sophistication, but they all suffer the deficiency that they use a periodic crystal potential to simulate

disorder and ignore potentially relevant physics dictating dispersion. The resulting sharp Fermi surfaces are

equivalent to an ordered crystal. In reality, the k-space resolved density of states, or Bloch spectral function

A(k, E), should exhibit dispersed En(k), with a width related to the finite electron state lifetimes. Disorder

broadening of the dispersion can affect (and enhance) Fermi-surface nesting and, therefore, magnetic SDW

instabilities. Notably, the first three approximations are severe regarding disorder effects on the electronic-

structure.

DFT has proven well in reproducing the electronic structure and Fermi surfaces of Fe-SCs, especially

when compared to ARPES and quantum oscillation. It also correctly predicts the ground-state magnetic

ordering, including for end compounds that do not SC or have different magnetic orderings. Thus, there is an

evolution of the phase stability and only calculations of the intermediate alloy will demarcate where changes

take place. These changes in phase stability are not frequently discussed but plague sample preparation.

Elucidating their origin can aid experimentalists better understand the sources of their difficulty.

It is believed that magnetic and SC instabilities arise from the Fermi surface nesting and Lifshitz tran-

sitions. As the Fermi surface evolves with tuning parameters, such as chemical doping and pressure, these

instabilities are affected. A DFT study on the evolution of the Fermi surface with doping helps better tie

the key transition points in the phase diagram with the electronic structure. While ARPES experiments can

assist in this regard, they are comparatively slow to perform, can be affected by inhomogeneities near the

surface, and are difficult to interpret due to the relatively low quality of measurements in Fe-SCs.
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In this thesis we tackle the prominent electron doped Ba(Fe1−xCox)2As2 and hole doped Ba1−xKxFe2As2

using the CPA to simulate chemical and magnetic disorder. We examine the evolution of the Fermi surface,

including Lifshitz transitions, and how Fermi surface nesting is affected. We see where the rigid-band begins

to fail and a proper alloying theory is necessary. We also check the stability of phases against magnetism

and chemical segregation. Finally, we investigate the presence of low-energy spin excitations. These bear a

strong influence on the nematic transition and spin fluctuations necessary for pairing.
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Chapter 2

Computational Methods

In this chapter a description is given of the computational methods used in this thesis. This includes

density-functional theory, multiple-scattering theory, and the coherent potential approximation.

2.1 Density Functional Theory

2.1.1 Problem Statement

Solid state physics and quantum chemistry problems ultimately seek to solve the time-independent Schrödinger

equation describing the motion of nuclei and electrons. Explicitly this is written

HΨ(R1,R2, ...,RN; r1, r2, ..., rn) = EΨ(R1,R2, ...,RN; r1, r2, ..., rn) (2.1)

where R1, ...,RN and r1, ..., rn specify the coordinates of ions and electrons respectively. The Hamiltonian

H is given, for ZI the charge of the Ith ion, by

H = −
∑
I

∇2
I

2M
−
∑
i

∇2
i

2m
+
∑
i,j

e2

ri − rj
−
∑
i,I

eZI
ri −RI

+
∑
I,J

ZIZJ
RI −RJ

(2.2)

where I and i refer to ion and electron indices respectively. This equation is exactly solvable only for

the hydrogen atom. The first simplification is the Born-Oppenheimer approximation; i.e., to treat the ion

coordinates as fixed when solving for the electronic degrees of freedom. This is possible because the heavy

ions have a much slower response than electrons to perturbations. Later, if needed, the ground-state energy

from the electronic problem can be fed as an effective potential in a reduced Schrödinger equation for the

ionic degrees of freedom. The Born-Oppenheimer approximation is rarely considered the limiting factor in

solid-state physics problems, including superconductivity. Often the ionic degrees of freedom are spatially

localized and their positions ascertained by X-ray diffraction.

Solving for the electronic degrees of freedom under the Born-Oppenheimer approximation still presents a
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formidable challenge. One approach is to employ the variational principle with a complicated, parametrized

wave-function in an attempt to account for both exchange and correlation effects of electrons. This is used

in quantum Monte Carlo but is computationally demanding. Only at most a few electrons can be solved for

this way. Another approach is to use the variational principle under the assumption the electrons can be

described as a Slater determinant of single-particle orbitals. This leads to the popular Hartree-Fock scheme.

Here, however, we make use of an alternate reduction of the electronic problem by expressing it explicitly

in terms of the electron density.

2.1.2 Hohenberg-Kohn Theorems

Density functional theory (DFT) draws its foundations from two theorems formulated by Hohenberg and

Kohn. The first states that the external potential Vext(r), i.e., the Coulomb field of the ions, is a unique

functional of ρ(r), the ground-state electron density. The proof, again omitted, uses the variational principle.

Because it is clear Vext(r) fixes the entire problem statement, we can write any physical property, in particular

the ground-state wave function, as a functional of the ground-state density. For example we can write the

ground state energy is

E[ρ] =

∫
Vext(r)ρ(r)dr +

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + F [ρ], (2.3)

where F [ρ] is a unique functional that embodies all unaccounted effects, including exchange and correlation.

The second theorem states that, if Vext(r) is held fixed in Eq. (2.3), then only the true ground state

density will yield a minimum energy. The proof, which we omit, is again based on the variational principle.

The outcome, importantly, for a N electrons, is the variational result that δ[E[ρ]− µN ]/δρ = 0, where µ is

the electronic chemical potential. This variational principle permits a practical, self-consistent solution for

the ground-state density if F [ρ] were known. While it is unlikely an exact form for F [ρ] will be found, it

can be approximated. A leading guess starts by solving the free electron gas for a uniform density ρ0. This

gives the solution F [ρ0] = Q[ρ0], where Q[ρ0] is an ordinary function of ρ0. The approximation is then to

take F [ρ(r)] ∼=
∫
Q[ρ(r)]dr, a sum of correlations based on the local density. This leads to the so-called local

density approximation. Other, more sophisticated, approximations exist. A popular one is the generalized

gradient approximation, which attempts a correction for gradients in the electron density.
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2.2 Multiple Scattering Theory

2.2.1 Greens Functions

The single particle Greens function G(E, r, r′) of a molecule or solid gives a satisfying and complete solution

to the electronic structure problem. Important physical properties are obtained by simple operations on G.

For example, the position-resolved density of states is

n(E, r) = − 1

π
limη→0+ImG(E + iη, r, r).

Integrating over energy gives the charge density ρ(r) = −e
∫ µ
−∞ n(E, r)dE. And integrating over r gives

the density of states n(E) =
∫
n(E, r)dr. For an ordered crystal the Greens function takes the form

G(E,R + r,R′ + r′) where R,R′ are Bravais vectors and r, r′ are now limited to the central unit cell.

A lattice Fourier transform then yields G(E,k; r, r′)δkk′ for vectors k,k′ in the Brillouin zone. The poles

of G(E,k) reveal the electronic dispersion (or band structure for ordered case) E = En(k) of the solid.

G(E,k) is the basis for numerous properties, including the DC conductivity and susceptibilities (magnetic

and chemical short-range order). In addition to its close relation to observables, the Greens function also

plays an important role in advanced approximation schemes for substitutionally-disordered solids. Thus, an

electronic structure code built on Greens functions is an effective means to solving the electronic structure

problem.

2.2.2 Fundamental Equations

Multiple-scattering theory (MST) relates the Greens function of a solid (or molecule) to the electron scat-

tering occurring at each atom. To express this precisely the volume of the solid has to be partitioned into

space-filling, convex Voronoi polyhedra (VP); each one centered about one atomic nucleus. A natural VP

choice for a monatomic crystal is the geometrically-defined Wigner-Seitz cell. This partitioning defines a

decomposition of the effective, one-electron crystal potential V (r) into sub-potentials V n(r) ≡ V (r)Ωn(r),

where Ωn(r) is one inside the nth cell and zero otherwise. Each V n(r) is treated as an independent ”site”

for electron scattering. In real applications care must be taken that V n(r) is determined predominantly by

the charge of the nth atom it encloses, not those of its neighbors. A poor partition has the consequence

that basis-set expansions will require a large number of basis functions [a large cutoff, e.g., LMax = (`m)

for spherical harmonic Y`m(Ω)] to get accurate results. The scattering off the nth cell is described by the
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single-site scattering matrix

tn(E, r, r′) ≡ V n(r) +

∫
dr′′V n(r)g(E, r, r′′)tn(E, r′′, r′),

where g(E, r, r′) is the free-particle propagator. This matrix is closely related to the canonical on-shell

scattering matrix S(E,p,p′). Because V n(r) has strong contributions from the core of the nth atom, it is

expected to be almost spherical about the atomic site Rn. This permits the theory to draw on a large body

of knowledge from single-site scattering theory to determine tn.

Multiple scattering theory collects each tn in the scattering path operator (SPO)

τnmLL′(k, E) = [(t(E)−1 − g(k, E))−1]nmLL′ , (2.4)

where n,m are site indices; matrices are expressed in angular momentum basis L = (`m), L′; [t] ≡ δnmtnLL′

and g(k, E) is the Fourier transform of free-electron propagator

gnmLL′(E) = δnm

∫ ∫
drdr′JnL(E, r)

−ei
√
E|r−r′|

4π|r− r′|
JmL′(E, r

′) ,

for JnL(E, r) a spherical Bessel wave with angular momentum L emanating from the nth site. The physical

interpretation of the SPO is to transform an incoming electron wave on the mth site to an outgoing wave

at the nth site. The complete Greens function can be expressed in terms of it as

Gnm(E,k; r, r′) = −δnmΣLZ
n
L(E, r<)UnL(E, r>) + ΣLL′Z

n
L(E, r)τnmLL′(k, E)ZmL′(E, r

′) ,

where ZnL(E, r), UnL(E, r) are regular and irregular solutions of the Schrödinger equation with potential V n(r)

that satisfy L-dependent boundary conditions. Bloch waves solutions exist wherever G(E,k) has a pole, or

||t(E)−1 − g(k, E)|| = 0 . (2.5)

Korringa first derived this band structure equation from an “exact” band theory (infinite basis) and Kohn

and Rostoker via a variational approach, permitting Rayleigh-Ritz based calculations. Thus, MST [embodied

in Eqs. (2.4) and (2.5)] is often referred to as the constant-energy KKR method.

Note that, for a given energy E, the Green’s function solutions for all k are obtained. So, no infor-

mation regarding unoccupied or other occupied states are required for a full solution. This constant-E

KKR approach is distinguished from standard band-structure (spectral) methods, including KKR, that use
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constant-k searches for all eigenvalues. In such a case, all occupied states plus a large range of unoccupied

states are necessary for a complete basis set. Thus, for Fermi surface studies, we only need calculate the

KKR Green’s function at one energy – the chemical potential, i.e.. the Fermi energy at zero Kelvin.

2.2.3 Self-consistency

The fundamental equation of MST expects an effective, one-electron potential Vin(r) as input. Initially this

is taken as a guess and the potential Vout(r) reconstructed from the resulting charge density ρout(r) does

not match Vin(r). To achieve a potential that has this self-consistency the MST approach has to be iterated

over the output potentials.

According to DFT, Vout(r) can be reconstructed as a functional of ρout(r). In particular Vout[ρ] = VZe +

Vee[ρ] + Vxc[ρ] where the terms are nuclear-electron, electron-electron, and exchange-correlation functionals

respectively. As mentioned, ρ(r) = e
π Im

∫ µ
−∞G(E, r, r)dE. Substitution of the fundamental equation of

MST gives

ρ(r) =
e

π
Im

∫ µ

−∞
{−ΣLZ

n
L(E, r<)UnL(E, r>) + ΣLL′Z

n
L(E, r)τnnLL′(k, E)ZnL′(E, r)}dE

when r ∈ Ωn and where for solids τnnLL′(E) = 1
NΣkτ

nn
LL′(k, E) is computed as a BZ average. Thus, numerical

integration over k-space must be performed for every sample point E in the energy integration. Being a

Green function, G(E) is analytic in for complex E (it is Herglotz) and decays exponentially in the positive

imaginary half-plane of E. Distorting the energy contour (e.g., contour integration via semicircular numerical

grid starting from the bottom of valence band to Fermi level) takes advantage of this so fewer E samples

are needed.

2.2.4 Coherent-Potential Approximation

The proper way to handle disordered materials is to average the Greens function over all possible configura-

tions. For solid-state materials the number of configurations grows exponentially with sample size, making

such a brute-force strategy beyond the reach of quantum simulations. The usual mean-field approximations

involve representing the ensemble by an effective medium. An advantage of MST is that it can naturally

accommodate such a medium. Consider that for a substitutionally-disordered solid, like metallic alloys or

doped superconductors, the underlying crystal lattice positions {Rn} remain well-defined. As the free prop-

agator g(k, E) depends only on the {Rn}, it does not need modification. The focus lies on how to choose

a t(E) so that it adequately describes and effective medium. Consider the alloy CuAu in the face-centered
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cubic (FCC) structure, with probability of Cu (Au) on any site being cCu (cAu), although inhomogeneous

distributions in a complex unit cell can be handled too.

The coherent potential approximation (CPA) [113, 114] demands a self-consistency criterion for tC(E).

Consider three crystals: one with scattering tC(E) on every site, one with scattering tCu(E) on a central

site and tC(E) on all the others, and a third with a tAu(E) impurity instead. The CPA demands that

the average of the SPO associated for the impurity is the same for the SPO for effective medium, giving a

single-site self-consistency equation of

cCuτ
imp
Cu (E; tC , tCu)00

LL′ + cAuτ
imp
Au (E; tC , tAu)00

LL′ = τC(E; tC)00
LL′ , (2.6)

where 00 explicitly indicates that electron scattering begins and ends on the impurity site. Note that the

RHS depends only on the “unknown” tC(E), and the LHS depends both on known impurity scatterers and

the unknown tC(E). So, the equality in Eq. (2.6) must be established iteratively. The SPO for the impurity

can be written explicitly in terms of the effective medium SPO, i.e.

τ imp
α (E)00

LL′ = DατC(E)00
LL′ with Dα = [1 + τC(E)00(tα(E)−1 − tC(E)−1)]−1 ,

where α is either Cu or Au. Using the inverse Fourier transform for the 00 element

τ00
C (E) =

1

N
Σkτ

00
C (k, E) =

1

N
Σk(tC(E)−1 − g(k, E))−1 (2.7)

for N samples in k-space. For a perfect lattice of CPA (complex) scatters, Eq. (2.7) can be solved like a

band-structure problem, with initial guess tC(E) := tATA(E), and then Eq. (2.6) can be concurrently solved

using a Newton-Raphson root-finding method. The CPA equation has to be solved independently for each

energy E. Moreover each Newton-Raphson iteration requires a separate integration over the BZ to obtain

a new guess τ00
C (E). The end result is that software is many times slower when using the CPA. The real

potentials VCu(r) and VAu(r) can be obtained once τC(E) is known by using the real-space fundamental

equation of MST at the respective impurity site. That closes the loop for a self-consistent determination of

V (r).
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Figure 2.1: The CPA requires that the average scattering from the solutes embedded in the medium create
a coherent lattice.

2.2.5 Thermodynamics and Total Energies

In a single-particle description of a many-body system, the number of particles

N (µ) =

∫ ∞
−∞

dε n̄(ε)f(ε− µ), (2.8)

where f(ε − µ) is the Fermi-Dirac function and n̄(ε) is the ensemble-averaged density of states for the

electronic chemical potential µ. Notably, from a thermodynamic (Gibbs’) identity,

N (µ) = −∂Ω

∂µ V,T
, (2.9)

and, if we have a closed-form solution for N (µ) in a system, we obtain a variational closed-form expression

for the electronic Grand Potential Ω(µ, T, V ). Indeed, it is easily shown the electronic Grand Potential is

Ω(µ, T, V ) = −
∫ ∞
−∞

dε N̄(ε;µ)f(µ− ε) +

∫ µ

−∞
dµ′
∫ ∞
−∞

dε
∂N̄(ε;µ′)

∂µ′
f(µ′ − ε) (2.10)

where N̄(ε;µ) is the ensemble-averaged, integrated density of states (i.e., integration up to fixed µ without

the Fermi factor). One must add the average nuclear-nuclear interaction energy for all atoms for a total

Ω(µ, T, V ). At 0 K, f(ε − µ) → Θ(ε − µ), and Ω(µ, T, V ) → E(µ) − µN̄(µ), which is the electronic total

energy. The above results leads to a very simple, and general derivation of the finite-temperature Kohn-

Sham-Mermin theorem. Importantly, again, if we have an analytic expression for N̄(ε;µ), we can derive an

analytic expression for Ω(µ, T, V ).

In general, an expression for N̄(µ) is given by the so-called Lloyd’s formula, which is specified in the next

chapter for KKR (ordered) in Eq. (3.10) and the KKR-CPA (disordered) in Eq. (3.11). Notably, Lloyd’s
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formula is an analytic, closed-form solution for the integrated n̄(ε) within the KKR(CPA) formalism. In the

CPA, by substitution of the Lloyd expression, it may be derived (c.f. [6])

E(µ)− µN̄ =

∫ µ

−∞
dε (ε− µ)

∑
α

cαn̄α(ε)−
∫

Ω

d3r

∫ µ

−∞
dµ′

∑
α

cαρ̄α(r)
∂vα(r)

∂µ′
, (2.11)

where n̄α is the density of states, ρ̄α(r) the charge density, and v̄α(r) the potential for the α component on a

site. An important point about Eq. (2.11) is there is a variational principle underlying it: δ(Ē−µN)/δρ̄α = 0.

As a result of Eq. (2.11), we have a closed-form solution for the total energy (or grand potential at finite

temperature) for disordered, partially ordered, or fully ordered systems within the CPA, just as found in

band-structure methods. For further reading consult [6, 115].

This short section provides the mathematical basis for a proper self-consistent-field density functional

theory (DFT) within a first-principles CPA, which recovers at finite temperature Mermin’s theorem im-

mediately for ordered (as found in typically band-structure case) and for partially ordered or disordered

cases in the KKR-CPA. A similar derivation and grand potential is obtained for the DCA [115], which then

includes atomic short-range order within the electronic structure. Such a derivation is possible from a KKR

representation based on Lloyd’s formula [116, 117], which is an expression for the configurationally–averaged

integrated density of states N̄(E) as a function of energy E, known for ordered solids [118, 119, 116] and

CPA [120, 121]. Lloyd’s formula is a Friedel-like sum rule for the change in the number of states around an

impurity cluster in a solid, see section 3.2.

As a result, we have a scf-DFT KKR-CPA to address disordered, partially ordered, or fully ordered alloy

systems on an equal footing. We will utilize this to calculate the formation enthalpies as needed to explain

stability in doped Fe-based superconductors.
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Chapter 3

Computational Tools

3.1 Bloch Spectral Function: Disordered Electronic Structure

The Bloch spectral function A(k, E) is an important observable for disordered systems. It is also the

observable that is directly measured in ARPES experiments. Because of its central role, I have implemented

routines to evaluate it for general disordered alloys, like Cu3Au, Cu3Pd, and Ba(Fe,Cu)2As2. The first two

systems exhibit short-range ordering spots in their diffraction patterns that can be understood by nesting of

the A(k, E) near the Fermi level. The latter system exhibits an instability to an incommensurate SDW, also

due to nesting. This analysis can be carried over to other Fe-SCs and may suggest splitting in compounds

that have not been explored yet.

The Bloch spectral function is expressed in the Fourier representation as

A(k, E) = − 1

π
Im
∑
k

G(E,k + K,k + K) . (3.1)

It is the k-space resolved DOS folded back into the BZ. For an ordered crystal this corresponds to Dirac

delta function peaks at Bloch wave solutions.

For a given Bravais lattice with chemical disorder due to homogeneous distribution of dopant atoms repre-

sented within the CPA, the spectral peaks defining the band structure (electronic dispersion) are broadened

to reflect they are no longer stationary. The mean-field, effective Hamiltonian is not Hermitian, and thus

formerly eigenstates take on complex eigenvalues. If the disorder is not too pronounced, the effect on a

Greens function can be expressed as a Lorentzian broadening. Starting with Eq. (3.1),

A(k, E) = − 1

π
Im
∑
nk′

∫
d3rd3r′

∑
K

(e−i(k+K)·r)

(
ψnk′(r)ψ∗nk′(r

′)

znk′ − E

)
(ei(k+K)·r′) (3.2)

= − 1

π
Im
∑
n

1

znk − E
= − 1

π
Im
∑
n

1

Enk + ∆nk + iΓnk − E
(3.3)

=
∑
n

1

π

Γnk
(E − Enk −∆nk)2 + Γ2

nk

(3.4)
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where Enk is the band structure of the unperturbed, ordered crystal and ∆nk,Γnk represent a shift and

broadening respectively. Due to the the complex eigenvalue, states evolve in time as

Ψnk(r, t) = e−Γnk(t/h̄)ei(Enk+∆nk)(t/h̄)ψnk(r). (3.5)

Thus, the lifetime of the states is h̄/Γnk. For no disorder, the width is 0, and hence, the lifetime is infinite

(i.e., it is a stationary state); whereas, for a width 5% of the Brillouin zone dimension along a particular

k-vector, the lifetime until scattering into nearby state is 10−15 secs.1 Such broadening and shifting is seen

is for de Haas van Alphen experiments or in broadened widths in photoemission experiments.

Within MST-CPA formalism one can write

A(k, E) =
1

π
Im Tr[FCC(E)τC(k, E) + (FC(E)− FCC(E))τ00

C (E)] with (3.6)

[FC ]nmLL′ = δnm
∑
α

cα

∫
dr Ωn(r)ZnαL (E, r)

∑
L′′

ZnαL′′ (E, r)Dnα
L′′L′ and (3.7)

[FCC ]nmLL′ = δnm
∑
αβ

cαcβ

∫
dr Ωn(r)

∑
L′′L′′′

Dnα
L′′LZ

nα
L′′ (E, r)ZnβL′′′(E, r)Dnβ

L′′′L′ (3.8)

for the indices α, β running over all mixing atoms on the nth site in the unit cell, Dnα
LL′ gives the SPO for the

corresponding impurity crystal (as introduced in the section on the CPA), and 00 indicates the central unit

cell in the crystal. The first term is just a composition weighted DOS of the fundamental equations of MST

for the impurity crystals. The second term is a correction for scatterings that start and end on different

species of impurity atom; its presence is essential to prevent nonphysical, negative densities.

I implemented the Bloch spectral function into our KKR-CPA package. This required code that could

compute the mixed-component real-space integrals for FCC . The Bloch spectral function is critical to vi-

sualizing band structures and Fermi surfaces, a key component of my analysis. In order to output the

band-structure, a set of waypoints in k-space and an energy window is specified. This then generates a

spaghetti plot for the band structure similar to Fig. 4.8. For visualizing the Fermi surface, the waypoints

in k-space, along with the Γ point define a closed area. This area is traversed either by rays emanating out

from Γ or by parallel line segments. This results in plots similar to Fig. 4.6.

1To make this lifetime estimate, we note the following simple argument: For quasiparticles near certain high symmetry
points in the Brillouin zone, E = h̄2k2/2m∗, where m* is the effective mass. To order of magnitude, we can replace m∗ with
the electron mass, m. Then, the lifetime Γ ∼ h̄/dE = h̄m/(h̄2kdk) = m/(h̄kdk). We can also take the lattice constant a = 5Å.
Then, for 5% smearing, the lifetime is about 10−15 sec.
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Figure 3.1: (a) Cross-sections of the band structure of BaFe2As2 for kz = 0 near the Γ point for energies
near to the Fermi level (as determined by contour integration, not the Lloyds Formula). Electron and hole
pockets are denoted in red and blue respectively. The band structure changes rapidly with energy. (b)
About the X point. The Lloyds formula predicts a dramatic shift of Fermi level to -9 mRyd. This results in
better agreement with experiment.

3.2 Lloyd’s Formula: Accurate Fermi level

In MST, because of the finite, numerical basis, there can be sensitivity to some quantities, with the most

important being the Fermi energy. Many physical properties (e.g., Fermi surface, charge transport, etc.)

depend critically on the relative location of the Fermi level. The numerical integration of the finite-basis

GL(E) to get the integrated NL(E) is not the same as integration of an exact G and then truncating in

L for an evaluation of NL(E). The Lloyd’s formula is an analytic expression for the NL(E), providing the

thermodynamically correct Fermi level.

One of my required extensions of our KKR code has been to make a feasible and general numerical

implementation of this formula into software. With it we are able to evaluate correctly to the thermodynamic

(rather than truncated basis) Fermi level of BaFe2As2 so that resulting Fermi surfaces properly describe the

electron and holes pockets well (see Fig. 3.1).

The Lloyd’s formula is an extension of the Friedel (single-site) sum-rule for the integrated DOS:

N(E) = Nfree(E) +
2

π

∑
`

(2`+ 1)δ`(E) , (3.9)

where {δ`(E)} are the phase-shifts for scattering from the central potential V (r) and Nfree(E) is the inte-

grated DOS of free electrons. For complex E, Eq. (3.9) is incorrect, but it can be generalized by use of
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Figure 3.2: Equivalent branches of Lloyd’s formula for (Fe1−xCux)(Rh1−xCux) at concentrations of (a) 0.0
and (b) 0.10 showing a proliferation of branches at incommensurate concentrations. This poses a major
obstacle to the use of Lloyd’s formula at arbitrary concentrations.
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scattering matrices. In MST the Lloyd’s formula for an ordered system, where standard band-structure

methods and fixed-E KKR get the same results, becomes

N(E) = Nfree(E) +
1

π
Im log||α(E)|| − 1

Nk
Σk

1

π
Im log||1− t(E)g(k, E)|| (3.10)

for Nk samples in k-space, and where α(E) is defined by the behavior of the scattering solutions of V (r)

near the scattering centers. The Lloyd’s formula, Eq. (3.10), is an amazing result being the closed-form

expression for the integrated density of states! One does not have to integrate over energies numerically the

Green’s function to get the number of electrons – one has a direct thermodynamic expression.

The determinant is performed over both site and angular-momentum indices. The “Im log” operation

yields the phase of the determinant. Because the KKR determinant passes through zero at every Bloch

solution, it picks up a phase of π at these locations, which is how the formula (valid for complex E ) tracks

the number of electrons up to energy E. There is a practical limitation in that at a given E the above phase

is only known to within modulo 2π. Thus, it can only give the total integrated DOS to within a whole

number. If we already have an approximate guess for the Fermi energy, which we do, the Lloyd’s formula

gives an exact thermodynamic correction to that obtained from a self-consistent DFT with L-truncated

Green’s function.

Within the CPA approximation for disordered systems the Lloyd’s formula generalizes to

N(E) = Nfree +
1

π
Im

∑
α

cαlog||aα|| −
1

Nk

∑
k

1

π
Im log||1− tCg(k)|| − 1

π
Im

∑
α

cαlog||1− (tα − t)G00|| ,

(3.11)

where the index α runs over all mixing atoms, tα is the scattering off the impurity potential Vα(r),G00 =

1
Nk

∑
kG

00
LL′(k, E), and E has been suppressed for clarity. Approximations beyond the CPA, such as the

DCA (dynamical cluster approximation), have a similar analytic formula.

There is a concentration weighting of terms in the Lloyd’s formula for the CPA. This leads to a serious

complication as there is a proliferation of equivalent branches for which the Lloyd’s formula can be output

(c.f. Fig. 3.2). In these calculations, the only way around this was to compute the Fermi level for adjacent,

commensurate concentrations and then to use this information to surmise which is the correct branch. Once

the correct branch is known, the formula gives a precise location of the Fermi level.
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3.3 Brillouin Zone: Construction and Symmetry

In order to perform integration of the Brillouin zone (BZ), it was necessary to create a geometric represen-

tation of it. This was done in the same way a Wigner-Seitz cell is constructed. Large rectangular planar

faces were setup normal to, and at the midpoint of, the line segment connecting Γ to neighboring reciprocal

points. This was done for the first three shells of neighboring reciprocal points, all but ensuring that no faces

of the Brillouin zone would be missing. The interior half-planes of each of these faces define the Brillouin

zone interior. To complete the construction, each rectangular face is clipped against the interior of the

other planes. One of the difficulties of the clipping procedure is to retain full precision without generating

extraneous faces. This was done by accomplished by defining a threshold parameter to prevent the creation

of faces with zero area. The final result is a set of complex, polygonal faces which define the BZ faces.

The explicit description of the BZ in terms of vertices, normals, and faces simplifies geometric operations in

k-space. See Fig. 3.3 for different perspectives on the BZ of BaFe2As2.

The symmetry of the BZ then needs to be detected. In order to do this, the faces are triangulated

about their center. This ensures the maximum number of symmetries are detected. (Otherwise, some

rotations about the center of that face might be missed.) Vectors are then defined extending from Γ to the

center of the triangulated faces, these represent the wedges of the BZ they pass through. By applying the

crystal symmetry operations to these vectors, it must be that they map back on top of each other. Vectors,

and their respective wedges, that map onto each other are equivalent. That means integrating a scalar

quantity (e.g., spectral function) will be the same in both wedges. This, in turn, means only one wedge

needs to be integrated and a degeneracy factor applied. This saves up to 48 times the effort. For a tensor

quantity (e.g., the SPO), the appropriate transformation operators associated with that symmetry need to

be applied to relate one wedge integral to another. For example, if wedges “a” and “b” are equivalent, then

τa = D(σ)†τbD(σ), where D(σ) is the quantum mechanical matrix that transforms one basis {αn} to {σαn}

for crystal symmetry σ.

3.4 Brillouin Zone: Integration via “Ray” Method

The above observable require a BZ integral for τ(k, E) to be performed multiple times. This is nontrivial as

τ(k, E) blows up whenever (k, E) corresponds to a Bloch wave solution. To actually perform such integration

I have written an integration routine that is based on wedges which emanate from the Γ point to the faces

of the BZ. This method is applicable to complex crystals, is adaptive to angular variations in τ(k, E), and

returns error bounds.
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Figure 3.3: The Brillouin zone of BaFe2As2 from four perspectives. Also shown is different sets of points for
sampling the k-space, some better representing the space than others.

Figure 3.4: Tetrahedron defined by the zone center and a gridded circumscribing box that are clipped to the
face-centered cubic Brillouin zone boundary.
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Figure 3.5: The ray method does a better job of capturing the
√
E singularity in the density of states at the

on-set of a band than the ubiquitous Monkhorst-Pack special k-points scheme.

The BZ is split into pyramidal wedges whose base is the BZ faces and whose vertex is the Γ point. This

set is further split by triangulating the base planes about their center to define refined bases and new wedges.

Every symmetry operation is acted on these wedges to determine which sets of wedges Wn are equivalent

to each other. Multiplying the one-dimensional integration along Γ to the center of the base of Wn by the

volume of Wn provides an integration estimate. The advantage of using 1-D integrals is that the integrand

τ(k ˆkray, E)k2 can be fit to a cubic rational function, i.e.,

p3k
3 + p2k

2 + p1k + p0

q3k3 + q2k2 + q1k + q0
k2, (3.12)

which can be integrated exactly with respect to k within a small domain. This follows because Eq. (3.12)

can be expanded in partial fraction decomposition as

a2k
2 + a1k + a0 +

c1
k − z1

+
c2

k − z2
+

c3
k − z3

(3.13)

and the latter terms integrate to logarithms. Thus, the singularities in τ(k, E) are treated exactly.

To check the error in the integral, a refinement of Wn is made by subdividing it into the four wedges
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formed by the triangulation of the base of Wn on connecting the midpoints of its edges. These new wedges

give a more accurate estimate of the wedge integral. The difference between these two integrations of the

same wedge Wn gives an estimate of the error. If the error is too high, further recursive subdivisions can

be performed until the desired tolerance is reached. For many metals, where band energy contours are close

to spherical, the error is low and only 24 samples are required along a ray. In other cases it is possible to

improve on this method by choosing more than one center of integration, say at the three highest symmetry

points in k-space.

Later, a further refinement was made to the ray method that took better advantage of the symmetry

of system. Most crystals have either orthorhombic or hexagonal conventional cells. Thus, in an alternate

scheme for generating tetrahedra Wn, a circumscribing box (with orthorhombic or hexagonal symmetry)

is placed about the BZ. The faces of this box are then grided uniformly and grid cells, along with the Γ

point, define tetrahedral wedges Wn. This results in improved convergence of integrals with respect to mesh

resolution.

An example of the efficacy of the ray method is shown in Fig. 3.5 for face-centered-cubic aluminum.

At the onset of a band edge there is a van-Hove singularity which gives rise to a
√
E singularity in the

density of states. The standard Monkhorst-Pack scheme has difficulty capturing such singularities because

it chooses a discrete set of sampling points. On the other hand, the ray method captures such a singularity

well because it models the integrand as a rational function that is then analytically integrated. The presence

of van-Hove singularities near the Fermi level can have a strong effect on the electronic properties of a

material. Furthermore, it is only possible to perform a Lloyd formula integration using the ray method.

This is because the ray method can track phases along a ray (which undergo large jumps near the bands),

whereas the Monkhorst-Pack cannot because it consists of a disconnected set of sampling points.

3.5 Coarse Parallelization over Energy and k-space

For systems as complex as AFM Ba(Fe-Co)2As2, it takes much longer for the charge-density and potential

solutions to converge because the CPA self-consistency must be achieved before then next charge self-

consistency. In order to complete a large number of calculations in short order, it is necessary to parallelize

the calculation to run on high-performance clusters. I have implemented a coarse parallelization of the code

by subdividing the energy contour integration and BZ k space integration over compute nodes (see Fig. 3.6).

For simple systems this results in an optimal time reduction by a factor of N for N nodes. This was done

using the Message Passing Interface (or MPI).
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Figure 3.6: (Color online) In this example, compute nodes (N1-N8) are distributed two each for every energy
sample point on the contour integral. The nodes at a given sample point subdivide the k-space evaluations
that in a k-space integral..

3.6 Fine parallelization and Preconditioning for sparse M = τ−1

Parallelization can take place at many levels in KKR theory. The integration samples over k-space and energy

E can all be calculated independently. For cells with a modest number of atoms there can be thousands of

such sample points, and parallelization over this set is sufficient to exhaust all the cores likely to be available.

For larger cells k-space is reduced in size and only a few k space samples are needed, redirecting a bulk of

the effort to the matrix inversions for τ(k, E). Therefore parallelization may be needed at this finer level.

This can be achieved by solving the sparse linear system τ(k, E)−1x = ei to get each column of τ(k, E)

independently. Without a preconditioner P = M−1 that can also be found in parallel, the common iterative

procedures that solve for x will converge slowly.

I have written my own implementation of a complex version of the sparse approximate inverse algorithm

(SPAI) to find P for a sparse matrix M. Unlike most preconditioners, this algorithm will work for any

non-Hermitian matrix M and can be computed in parallel for each column. This is essential as the Greens

function G(E) is non-Hermitian for complex E. SPAI allows the column Pi to be non-zero over a restricted

subset of indices J . These might be a few entries near the diagonal (e.g. i− 2→ i+ 2 for diagonal site at

i). This defines a set I = {i|M(i,J ) 6= 0}. The best choice for the nonzero entries Pi(J ) is to minimize

||M(I,J )Pi − ei(J )||. A direct solution for Pi(J ) can be obtained in this restricted subspace by a QR

decomposition of M(I,J ). An LU factorization or other method could work equally well as this stage,

but a QR decomposition can be updated simply in subsequent iterations. This only solves the sub-problem

over (I,J ) and there remains a residual r = M(all,J )Pi(J ) − ei. The trick in SPAI is to estimate which

additional entries in Pi will be most profitable in further reducing r. It can be shown the reduction in ||r|| by
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addition of just the kth entry into Pi isρk = r†Mek

||Mek||2 . By calculating ρk for all k /∈ J , it is evident which few

entries to add to Pi (or equivalently the set J ). Having enlarged J , I is redefined and ||M(I,J )Pi−ei(J )||

again minimized. This time the QR-decomposition for M(I,J ) is just an update from the last iteration.

This procedure is continually repeated until the residual r is sufficiently small (about 0.5), or the maximum

fill-in allowed on Pi is reached. Using SPAI can reduce the number of iterations required to converge

x = [τ(k, E)]i by an order of magnitude.

3.7 Voronoi Polyhedra and Gaussian Integration

A parametric integration routine was also developed for real-space integrations of the Voronoi polyhedra

(VP) defining atomic cells. These were needed for charge density integrations. As the integrand here is

well-behaved, unlike that for τ(k, E), an alternate integration scheme was developed. In this case one that

takes advantage of the smooth integrand ρ(r). To perform this integration the VP is subdivided into wedges,

much as in the BZ construction. A bi-unit box, and its associated Gauss points, are mapped to the VP

wedge to perform the integral. Details are specified below and can also be read in [122].

Dual Coordinate Transformation and Gauss Quadrature Sums

Having divided the system into VP about each atom, there are two ways to proceed depending on the nature

of the integrand f(r). For simple integrands, separate each VP integration over a numerous simple polyhedra

associated with each VP face and perform Gauss quadrature sum, and the method works straightforwardly.

If f(r) has singularities near the origin, or if it is accessible only on a sparse grid, then two major VP

subdomains need to be handled separately, i.e. inside and outside of the inscribed sphere. If f(r) is

spherical, the integral is one-dimensional and easy to perform accurately, whereas the second, interstitial

domain is more challenging.

The interstitial has too unusual a boundary for the direct determination of suitable sampling points and

their weights. To find the sampling points, we transform a bi-unit cube −1 ≤ x, y, z ≤ 1 into each pieces of

the interstitial formed by each VP face and the site center but cropped by the inscribed sphere. If any face

has more than four vertices, points are added within the face (uniformly distributed) so that each face can be

subdivided into polygons always having at most four vertices (a quadrilateral base); as a result, no interstitial

subdomain has more than eight corners, like the cube. The same map used on the Gauss-Legendre points

tells us the sampling positions in each interstitial subdomain. Note that one could use a triangular base,

but we find that, while both subdivisions give the same results, the quadrilateral requires less operations,
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(a)                                                     (b)

Figure 3.7: (a) VP of a FCC structure with twelve quadrilateral faces and an inscribed (touching) sphere.
(b) A section of the VP shown as single truncated pyramid.

hence, it is more efficient.

For clarity, consider a one-atom FCC crystal, as in Fig. 3.7(a), where the VP consists of 12 quadrilateral

faces, which are divided into 12 cropped pyramids. Pick one, as in Fig. 3.7(b), and introduce spherical

coordinates (r, θ, φ) so that the z-axis is perpendicular to the VP face. Within each piece, the radius r runs

from the inscribed radius R to the pyramid base (or VP face). To consider the case where the inscribed

sphere integral is not done separately, take R→ 0 in what follows, and each pyramidal piece will no longer

be cropped.

Before we map the cube to this element, we must find a transformation that flattens the curved interior

surface. Choose any three of the four corner vertices formed by the intersection of the pyramid and the

inscribed sphere. These three points are taken to define an interior plane. Now consider a cross-section

of the element at fixed angle φ or θ, which resembles Fig. 3.8(a). Note ln is the distance from center of

the inscribed sphere to point of intersection of radius vector with interior plane; and lf is the distance to

intersection with base plane (or face). Then the map

r =
1

lf − ln

[
lf (R− ln) + r′(lf −R)

]
(3.14)

will radially expand the interstitial piece (unprimed coordinates) so that the surface cut of the inscribed

sphere will map to the interior plane (primed coordinates). Note that the map as given takes the plane to
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the sphere, because, ultimately, we want a map from the cube to the interstitial piece. Despite the simplicity

of the map (Eq. 3.14), the Jacobian J1 is non-polynomial due to the angular dependence of lf (θ, φ) and

ln(θ, φ). The standard determinant form of J1 can be simplified by considering the volume change of an

infinitesimal cell embedded in a spherical coordinate mesh. The cell will be stretched radially by a factor of

dr/dr′ = (lf −R)/(lf − ln). And, because the cell will be translated radially from r′ to r, the base area will

change from r′
2
dΩ to r2dΩ. Thus, the total volume change (ratio) of the cell will be

(lf−R)
(lf−ln)

r2

r′2
.

Having flattened the interior, curved surface, we then perform a second mapping from this hexahedra to

a bi-unit 2 × 2 × 2 cube, as depicted in Fig. 3.9. Let (x′, y′, z′) and (x′′, y′′, z′′) be the coordinates before

and after the transformation, respectively. Mathematically, we can connect them using the expression

[
x′ y′ z′

]
=

1

8

[
1 x′′ y′′ z′′ x′′y′′ y′′z′′ x′′z′′ x′′y′′z′′

]
× (3.15)

1 1 1 1 1 1 1 1

1 −1 −1 1 1 −1 −1 1

−1 −1 1 1 −1 −1 1 1

1 1 1 1 −1 −1 −1 −1

−1 1 −1 1 −1 1 −1 1

−1 −1 1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 1 −1 1 −1



.



x′1 y′1 z′1

x′2 y′2 z′2

x′3 y′3 z′3

x′4 y′4 z′4

x′5 y′5 z′5

x′6 y′6 z′6

x′7 y′7 z′7

x′8 y′8 z′8



. (3.16)

where the index in the subscript (1 to 8) indicates the vertex number in Fig. 3.9. In this map, we have

reverted to describe the hexahedral element in cartesian coordinates (x′, y′, z′) rather than the spherical

(r′, θ′, φ′).

The Jacobian of the transformation J2 that turns the hexahedra into a bi-unit cube is

J2 =

∣∣∣∣∣∣∣∣∣∣
∂x′

∂x′′
∂x′

∂y′′
∂x′

∂z′′

∂y′

∂x′′
∂y′

∂y′′
∂y′

∂z′′

∂z′

∂x′′
∂z′

∂y′′
∂z′

∂z′′

∣∣∣∣∣∣∣∣∣∣
. (3.17)

Thus, the volume integral over the interstitial region transforms to a volume integral over a cube. This
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Figure 3.8: Cross-section of the cropped pyramid (a) before radial scaling and (b) after radial scaling.

can be expressed, using Gaussian-Legendre integration, as

∫
ΩIS

f(r)d3r =

∫ 1

−1

∫ 1

−1

∫ 1

−1

d3r′′f(r′′) J1 J2

=

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

f(x′′l , y
′′
m, z

′′
n)J(x′′l , y

′′
m, z

′′
n)

× wl(x
′′
l ) wm(y′′m) wn(z′′n) (3.18)

where J = J1J2, and Nl, Nm and Nn are the number of quadrature points along x′′-,y′′- and z′′-axes,

respectively. The Gauss points xi and weights wi are known analytically from the zeroes of the Legendre

polynomial, so Eq. (3.18) is straightforward to evaluate. Calculation time is primarily spent in numeri-

cally evaluating the analytically-derived Jacobians J1 and J2 for the two successive transformations and

the f(x′′, y′′, z′′), hence, quite fast. This isoparametric approach achieves machine-precision error for VP

integrals involving volume, charge-densities and potentials. The function f(x′′, y′′, z′′) should be evaluated

at the specified xi points; if, however, f is only defined on a discrete grid, the function must be interpo-

lated to each xi, in which case interpolation error is the major error that should be ameliorated to achieve

high-accuracy integration. Generally, if f(x′′, y′′, z′′) is a polynomial of order p1, p2 and p3 along the three

directions, respectively, then the number of sampling points N required to integrate the quantity exactly for

a simple polyhedra domain is (p12 + 1)× (p22 + 1)× (p32 + 1). For the case where we separate the integral over
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Figure 3.9: Two-step coordinate transformation: (1) Bottom curved surface (a) to the interior plane (b) via
the Jacobian J1, and (2) hexahedra in (b) to the isoparametric (2× 2× 2) bi-unit cube (c) via the Jacobian
J2.

the inscribed sphere and integrate the interstitial over a domain that is curved, the transformation makes

the integrand effectively non-polynomial; therefore, more Gauss points will be required.

We transform the Gauss-Legendre sampling points inside a bi-unit cube into the truncated pyramid by

(1) cubic polynomial mapping of the corner points of the cube to the corner points of the truncated pyramid

(given by J2), and then (2) performing a linear mapping (in radius) of the interior plane (or side closest to

origin) onto the relevant cut of the inscribed sphere (given by J1). Our Jacobian J ≡ J1J2 is always smooth

and well-behaved, even for highly skewed pyramid. Baerends et al. [123, 124] have noted that their choice of

coordinates can cause their intermediate functions to behave poorly (i.e., the J diverges) when the pyramid

has wide opening angles, or a strongly skewed face. For our J to diverge, the interior plane would need to

(nearly) touch the pyramid base plane; but, with the interior plane defined as the one passing through three

of the intersection points of the inscribed sphere and the edges of the pyramid, this could only happen if the

sphere touched one of the corners of the VP, which can never happen. In addition, the present procedure

requires minimally fewer function evaluations.

An Exactly Solvable Model

To illustrate the numerical convergence and accuracy, we use Van-Morgan’s exactly solvable charge-density

model [125]. Many standard electronic-structure kernels can be exactly evaluated for the van Morgan density

and potential, so the error in the numerical integrals can be precisely determined. We verify that accurate

results are found with a modest number of Gauss points that depend on structure, and machine-precision

can be achieved by increased number of points, slightly increasing computational time.

We showcase the convergence of volume and charge conservation, the [ρ(r)V (r)] integral evaluated for ki-
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netic and/or Coulomb energy, and more highly varying functions in l and r. Apart from the cubic structures,

we have also tested the convergence of the interstitial volume integral for more complex crystal structures.

In the timings below, we have not utilized the associated symmetry of the crystal and the VP, so that the

results reflect the most inequivalent case.

The van Morgan [125] test charge density is defined as

ρ(r) = B

K∑
n=1

ei Tn.r, (3.19)

where Tn are the nearest-neighbor reciprocal lattice vectors, and B is a scale factor. We will take B = 1 for

simplicity. (From the Bauer expansion, a plane wave requires, in principle, an infinite number of spherical

harmonics to be fully represented.) Because volumes ΩV P and ΩMT are known exactly for any crystal

structure, it is often convenient, especially for site-centered methods, to divide the VP into two volumetric

regions: the volume of inscribed sphere ΩMT and the volume within the interstitial region ΩIS , so that

ΩV P = ΩIS ∪ ΩMT .

First, we can precisely assess the numerical error associated with volume conservation via

∫
IS

d3r = ΩIS = ΩV P − ΩMT , (3.20)

where ΩMT = 4πR3/3, and, for example, R is 1/2,
√

2/4, and
√

3/4 for SC, FCC, and BCC (in units of

lattice constant), respectively. The left-hand-side numerical integral is compared with the analytic result

available for the right-hand side. For example, the VP volumes are 1, 1/4, and 1/2 (in units of lattice

constant cubed) for SC, FCC, and BCC, respectively.

Second, we can assess the integrations associated with charge conservation, including the determination

of electronic chemical potential or Fermi energy. With ρ(r) having no zero-mode component in its Fourier

expansion, the integral of charge over a VP cell must be identically zero; hence, charge neutrality requires

that

Qtotal =

∫
V P

ρ(r)d3r = 0. (3.21)

Subdivision of VP yields

QIS =

∫
ΩIS

ρ(r)d3r = −
∫

ΩMT

ρ(r)d3r. (3.22)

Next, we can assess numerical errors for the ρ(r)V (r) integral, which can be expressed as

[ρV ]IS =

∫
ΩIS

ρ(r)V (r)d3r =
4πKΩIS

|Tn|2
−
∫

ΩMT

ρ(r)V (r)d3r. (3.23)
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Table 3.1: Convergence for the interstitial volume, charge and [ρV ] integrals for various crystal structures.
{Nl = Nm, Nn} are the optimal number of points for each structure to reach an accuracy of at least 13-
decimal places. V C, QC and [ρV ] stands for the volume, charge and [ρV ]-integral convergence.

Structure {Nl, Nn}V C {Nl, Nn}QC {Nl, Nn}ρV
SC {18, 2} {20, 6} {18, 8}
BCC {15, 2} {26, 8} {26, 10}
FCC {13, 5} {12, 6} {12, 6}
HCP {12, 5}
B2 {15, 2}
BCT {12, 5}

Besides band-energy (an eigenvalue summation requiring a Fermi energy) and exchange-correlation, the

above three integrals reflect the main integrations contributing to DFT total energies, for example.

Accuracy

To illustrate the convergence of isoparametric integration, Figure 3.10 shows the logarithmic error in inter-

stitial volume for six structures (i.e., 1-atom cubics, 2-atom hcp, and 2-atom B2 and BCT). Each point on

the graph represents the result for a combination of quadrature points (Nl, Nm, Nn). From Fig. 3.9(a), it is

clear that the cropped pyramid has a thinner dimension along the z-axis compared to the other two axes.

Therefore, we use less quadrature points along ẑ′′ than the x̂′′ and ŷ′′, i.e., Nn < (Nl, Nm); in particular,

we used Nl = Nm. Accuracy of around 10−3 is already reached with only Nl = Nm = 4 points along the x̂′′

and ŷ′′. The darker line in each panel shows the minimum number of quadrature points along ẑ′′ to achieve

a convergence to 13 decimal places. For example, the minimum number of Gauss points along ẑ′′ for a BCC

structure to attain an error less than 10−13 is two. The minimum number of points (Nl, Nm, Nn) required

is listed below each subpanel.

The convergence of the charge density integral (Q) is given in Fig. 3.11. The left panel shows the

logarithmic error in the interstitial charge QIS for the cubic structures. The right panel shows the absolute

error εV P = QV Pcalc − QV Pexact in the total charge integral. The charge convergence requires more points to

yield a similar level of accuracy. For example, to achieve an accuracy of up to the third-decimal place,

the BCC structure requires 8-points along the x̂′′ and ŷ′′ compared to the 4-points needed for the SC and

FCC structures. Higher accuracy requires more points for BCC case due to its wider and more asymmetric

interstitial region.

In Table 3.1, we have listed the minimum number of points required to get the interstitial volume, charge

and [ρV ]-integral convergence to more than 13th decimal for each structure. The number of points required

are given as {Nl = Nm, Nn}.
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Figure 3.11: (Color online) For the van-Morgan problem for SC, BCC, and FCC, (left) the logarithmic
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The accuracy of all our integrals is limited by the accuracy of the VP boundary (vertices, faces and

edges) information generated from the Bernal’s software [126]. We have modified Bernal’s original (binary-

math/single-precision) code to improve its efficiency and extend its accuracy, and we were able to achieve

just below 10−13. We have verified that our main limitation in accuracy is due to lack of a double-precision

real code. By rewriting the software from scratch, which is a considerable effort beyond the scope of present

work, we could certainly achieve machine precision. Therefore, all integration results will be limited to just

below 10−13; with improved accuracy of VP information, machine-precision is achievable with similar Gauss

points described.

Efficiency

To contrast the VP construction timings, we compare to the time required to expand the shape function

(or 3-D step function) into spherical harmonics [127]. The shape-function approach is often used in the

community when needing site-dependent quantities. The EMTO, KKR, LSMS, APW, etc., methods, for

example, typically reports site-quantities, and KKR Green’s function methods require site-dependent VP

scattering matrices.

The shape-truncated function for a VP is defined as

σ(r) =

 1 r ∈ Ω

0 r 6∈ Ω
(3.24)

where Ω is the VP region. The expansion of σ(r) in spherical harmonics yields the angular momentum

decomposition

σL(|r|) =

∫
r̂

dr̂ Y ∗L (r̂) σ(r) ≡ σL(r), (3.25)

where the integration is over the angles r̂ ≡ (θ, φ) and L ≡ (l,m). The shape function is used to simplify

the numerical integration of any function f(r) over the polyhedron volume Ω as

F =

∫
Ω

f(r)σ(r)d3r =

Lmax∑
L=0

∫
dr r2σL(r)

∫
Ω

dΩ YL(r̂)f(r), (3.26)

especially if it is well-represented by spherical harmonics.

The expansion coefficients σL(r) must be truncated at a very high Ltrunc >> Lmax to achieve an accurate

representation of the VP shape and to obtain a reliable integral value. For example, for FCC structure, ρ(r) is

well represented using L ≤ 8 (i.e., Lmax = 8), but the shape-function should have Ltrunc >> 4Lmax to have

converged σL≤8(r) that will yield an accurate integral. As we shall see, this Ltrunc will limit the accuracy
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Figure 3.12: (Color online) Timings to achieve a specific level of interstitial-charge accuracy for cubic struc-
tures using shape-function (left) versus isoparametric (right) integration. Shown in panels are logarithmic
error in the interstitial charge (top), and times to construct VP boundary information (bottom) and to
integrate (middle). Isoparametric integration is > 105 faster and achieves machine precision.

of the integrals in the codes that use this approach, making the shape-function approach unacceptable for

general (non-high-symmetry) structures, where Ltrunc should be significantly larger than in the cubic cases

to achieve the same level of accuracy as FCC.

Figure 3.12 shows accuracy and computer time for isoparametric (right panel) and shape-function (left

panel) methods for SC, FCC, and BCC, for a direct comparison. The rate of convergence is given with respect

to the number of Gauss points along each dimension for the present method, and with respect to the lmax

for a fixed radial grid using shape-functions. The present method attains error in the van-Morgan interstitial

charge below 10−13 with less computational time. The shape-function technique cannot achieve an accuracy

better than 10−7 with lmax = 16, an extremely expensive calculation due to the high-L expansion. Hence,

our method provides some significant advantages over existing approaches.
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The bottom panel shows the time required to generate the boundary information necessary to achieve a

certain level of accuracy. For both methods, most of the time is spent in determining the VP boundaries.

The present method generates this information in terms of neighbors, vertices, faces and edges for each VP.

The shape-function method gets the VP shape in terms of an L-expansion on a specific radial grid. Clearly,

the shape-function method requires > 104 more time than the present method. The middle panel shows the

time (in msec) required to sum the final expression for the integration for both VP or shape function. The

present method is faster by > 7 times. Overall, using no symmetry (degeneracy) information to reduce the

computational time, we achieve ' 105 faster integration with 106 less error.

Summary

We have presented a fast, accurate, and easy to implement method for the numerical integration over

general VP for polyatomic systems. The algorithm combines a weighted Voronoi partitioning of space with

isoparametric integration using the Gauss-Legendre quadrature formulas of product type, and does not suffer

from any ill behavior with shape of VP. In contrast to other methods, accuracy and convergence was tested

rigorously via an analytic charge-density model, with machine-precision accuracy for reasonable number of

Gauss points. We showed also that our algorithm is 105 faster and 107 more accurate than that based

on shape-functions used in several electronic-structure codes. Our method could be used for other types

of condensed matter problems requiring integration over arbitrary convex VP. Here, we implemented the

general method in an site-centered, electronic-structure code and calculated formation enthalpies for FePd,

yielding good agreement with experiment. The radii to set the Voronoi/Delauney tessellation weights is

obtained from a physics-based definition, i.e., the saddle-points in the total electron density.
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Chapter 4

Chemical and Magnetic Effects on
Electronic Structure

4.1 Ba(Fe-M)2As2: Fermi-Surface Nesting and Magnetic

Stability

Electron doping of BaFe2As2 (BFA) can be achieved by substituting a transition metal for Fe to give a

metal-substituted solid solution M-BFA [128, 129], with an increasing electron-per-Fe (e/Fe) count. No-

tably, different behaviors for chemical and magnetic ordering instabilities are found for Co,Ni versus Cu,Zn

solid-solutions, for example, with (in)commensurate AFM order depending on the dopant, with possible

coexistence of SC and AFM order. Interestingly, Cr-based binary, metallic alloys [130, 131] show the same

coexistence behavior but with Tc an order of magnitude smaller than Fe-SCs. Although numerous experi-

mental studies on electron-doped BFA have been carried out over the last few years, a systematic theoretical

investigation is still lacking. Here, we address Ba(Fe1-xMx)2As2 via a proper alloy theory to provide a direct

comparison of trends and explain their origin.

For M-BFA in high-T I4/mmm and low-T Fmmm structures [40] with increasing e/Fe in the NM, PM,

and AFM states, the KKR-CPA is used to examine relative phase stability (∆Ef ), Fermi-surface topologies

and nesting (electron-hole) features through the Bloch spectral functions [132], and changes of the density

of states (DOS) due to alloying and disorder, as well as to contrast these results to expectations from a

rigid-band model.

4.1.1 Previous ARPES and DFT studies

Generally, DFT results on BFA match the striped AFM ordering [133] and measured electronic structure

quite well. The FS exhibits two or three hole cylinders at the zone center (Γ) and two electron cylinders at

the zone corner (X), as observed in DFT [31] and angle-resolved photoemission [134, 135, 136] (ARPES). The

prominent (π,π) FS nesting between these cylinders helps stabilize the AFM state [12], and spin fluctuations

in this mode may drive Cooper pairing [137, 138]. Hence, the need to study FS nesting and disorder
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broadening effects.

The M-BFA phase diagrams show suppressed AFM ordering in favor of a neighboring SC state. The SC

domes have M-fraction x=0.03-0.12, 0.02-0.08, and ∼0.04 with Tmaxc of 23, 20, and 2 K for Co-, Ni-, and

Cu-BFA, respectively [139, 129]. Zn-doped samples do not superconduct. Notably, Tmaxc occurs near the

extrapolated AFM quench concentration [139, 129]. For Co- and Ni-BFA, the magnetic order becomes an

incommensurate spin-density wave before entering the SC state, which emphasizes itinerancy and import of

FS nesting [140]. Cu-BFA remains commensurate [140]. And, no changes in the magnetism or FS are found

in Zn-BFA [141]. In addition, there are stearic effects due to changing a and c lattice constants in I4/mmm

structure. a is almost unchanged for Co-BFA and increases for Ni-, Cu-, and Zn-BFA. For Co-, Ni-, Cu-BFA

c shrinks [142, 143, 144] and for Zn-BFA it increases [145].

Lastly, there is debate on whether M-BFA follows a rigid-band picture; and, if not, whether an effective

Fermi level shift is still applicable. In a rigid-band model, the electronic structure is fixed to that of BaFe2As2,

and the Fermi energy is raised by the amount of additional e/Fe for each dopant, as determined by their

atomic number Zi: Co (1e), Ni (2e), Cu (3e), and Zn (4e); the atomic species of the dopant becomes

irrelevant (even though Zi increases and changes the scattering properties relative to Fe), and all dopants

should generate the same electronic effects for a given e/Fe. As such, a proper alloy theory can make

clear assessments. While ARPES shows similar trends with nominal e/Fe for Co- and Ni-BFA, there are

deviations from rigid-band for Cu- and Zn-BFA [85, 141]. By Luttinger’s theorem [146], an effective e/Fe can

be defined from changes in the experimentally measured FS. The phase diagrams of Co-, Ni-, and Cu-BFA

have been found to approximately coincide in this manner [85]. Zn-BFA shows no measurable changes in FS

and no superconductivity [141]. Comparing supercell calculations for Co- and Zn-BFA show that Co-BFA

obeys rigid-band while Zn-BFA does not [147]. The rigid-band model is applicable as long as site-potential

differences between Fe and dopant are much less than bandwidths. As we show, these differences are visible

in a dopant’s site-projected DOS, where significant overlap between Fe d-states and those of Co or Ni exists,

less so for Cu, and almost none for Zn [148]. We find that the FS evolves similar to that expected from

rigid-band for Co-, Ni-, and Cu-BFA but not for Zn-BFA; yet, deviations from rigid-band behavior are

readily apparent in ∆Ef for PM Cu-BFA.

4.1.2 Computational Details

DFT calculations at 0 K were performed using an all-electron, KKR-CPA Green’s function method [4, 5, 6].

To improve the usual site-centered basis set, empty spheres (E1, E2, and E3) were inserted at interstitial

voids in the structure (Table 4.1). A local density approximation to DFT is used and the coherent potential
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Table 4.1: Atomic coordinates and sphere sizes for atoms and empty spheres (E1-3). I4/mmm (Fmmm)
has body-centered tetragonal (face-centered orthorhomic) unit vectors.

Site Coordinates Wyckoff Radius (pm)
I4/mmm

Ba (0.0000a, 0.0000a, 0.0000c) 2a 225.1
Fe(M) (0.5000a, 0.0000a, 0.0000c) 4d 136.5

As (0.0000a, 0.0000a, 0.3545c) 4e 136.5
E1 (0.5000a, 0.5000a, 0.0000c) 2b 76.3
E2 (0.0000a, 0.0000a, 0.2072c) 4e 78.9
E3 (0.2007a, 0.2007a, 0.1715c) 16m 55.8

Fmmm
Ba (0.0000a, 0.0000b, 0.0000c) 4a 224.4

Fe(M) (0.2500a, 0.2500b, 0.2500c) 8f 136.1
As (0.0000a, 0.0000b, 0.3545c) 8i 136.1
E1 (0.5000a, 0.0000b, 0.0000c) 4b 76.1
E2 (0.0000a, 0.0000b, 0.2072c) 8i 78.6
E3 (0.2007a, 0.0000b, 0.1715c) 16n 55.7

approximation (CPA) is used to address chemical and magnetic disorder [149]. For PM states, uncorrelated,

randomly-oriented local moments (site magnetizations mi 6= 0) are described by a disordered local moment

(DLM) state [150], where such site magnetic disorder can produce large energy broadening of the electronic

states, which is reduced with magnetic short-range order included (beyond the CPA [151]), but changes

FS nesting contributions to the magnetic susceptibility [152]. The DLM state is often a more appropriate

representation of the PM state than the NM state (mi = 0) typically assumed in theory for comparison to

experiment [153, 98], such as for magnetic transition temperatures in magnetic metals [154, 149].

All results were obtained with a 8×8×8 Monkhorst-Pack k-point mesh for Brillouin zone (BZ) integrals

[155], and using complex energy (E) contour integration with 25 E-points on a Gauss-Legendre semi-circular

contour [156]. Fermi energies were determined from an analytic, integrated DOS (Lloyd’s) formula [116] to

yield an accurate electron count. The valence configurations were taken as Ba 5p66s2, Fe 4s23d6, Co 4s23d7,

Ni 4s23d8, Cu 4s23d9, Zn 4s23d10, and As 4s24p3. To match the e-per-volume of the BaFe2As2 samples

probed in experiment, lattice constants (in pm) were fixed to experiment: [40] (I4/mmm) a = b = 396.25

and c = 1301.68, and (Fmmm) a = 561.46, b = 557.42, and c = 1294.53. As the alloy concentrations are

sufficiently low, we fixed the lattice to minimize DFT (relative) error and isolate electronic and stearic effects.

Fermi surfaces were determined at EF via the Bloch spectral function A(k, E) = − 1
π ImG(k, E), where

G is the single-particle Green’s function. A(k, E) is the E- and k-space resolved DOS and dispersion. In

the limit of an ordered compound it reduces to Dirac δ-functions that define the band structure E(k). In

the presence of magnetic or chemical disorder there is k-dependent spectral broadening and shifting due to
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Figure 4.1: Formation energy (see Eq. (4.1) of NM, DLM, and AFM Ba(Fe1-xM x)2As2 relative to mixed
phase NM endpoints BaFe2As2 and BaM2As2 in (a) I4/mmm and (b) Fmmm structural phases. Nominal
e/Fe counting is used.
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impurity scattering handled via the CPA. The spectral full-width at half-maximum with respect to energy

is inversely proportional to the lifetime of electronic states [157, 158], which also dictate transport and SC

properties. Spectral broadening also can support coexistence of AFM and SC, as found, for example, in

binary Cr alloys, such as Cr-Ru [130].

4.1.3 Phase Stability with Alloying

For an alloy, the formation energies is defined relative to the concentration-weighted sum of the energy of the

(Ba,Fe,M,As) constituents in their respective equilibrium structures. However, in a fixed host, ∆Ef trends

for Ba(Fe1−xMx)2As2 versus x (or e/Fe) are more simply revealed referencing BaFe2As2 and BaM2As2, i.e.,

∆Ef = EBa(Fe1−xMx)2As2 − [(1− x)EBaFe2As2 + xEBaM2As2 ]. (4.1)

Figure 4.1 shows ∆Ef of the NM, DLM, and AFM states versus nominal e/Fe for each M, plotted relative

to the mixed phase with NM BaFe2As2 and MFe2As2.

For no doping, the NM and DLM energies are nearly degenerate. At finite temperatures the DLM state

will have a lower free-energy due to spin-disorder entropy. The AFM state is 16 (I4/mmm) or 21 meV/atom

(Fmmm) below the NM state. In experiments on BFA, the magnetic and structural phase transition occur

simultaneously in BFA at 140 K (or 12 meV) [139]. Previous DFT studies find 37 meV/atom (I4/mmm)

using full-potential augmented plane waves (FLAPW) [31] or 70 meV/atom (Fmmm) using plane-wave

pseudopotentials (PWP) [133], which is the available data.

For magnetism, we find Fe site moments (I4/mmm) are 1.4 µB (AFM) and 1.0 µB (DLM). For Fmmm,

there is only a slight drop to 1.3 µB (AFM) and 0.95 µB (DLM). We do not find symmetry breaking to

lead to a significant change of site moments. As a contrast, we note local, Heisenberg models, often fit

to spin-wave spectra, find very different J1a and J1b nearest neighbor exchange parameters with broken

symmetry [101, 89]. We see, however, that magnetic disorder leads to a large reduction in site moments,

due to transverse components of the magnetization. The time-averaged ordered moment is 0.9 µB from

neutron diffraction [95], which have some transverse components. Using core-electron spectroscopy to probe

short-time scales (10−15 sec), the measured moment is 2.1 µB in the closely related SrFe2As2 [153]. This

difference has been attributed to modest electron correlations [98] and magnetic excitations.[35] We see here

that the disordered component of the site moment is substantial. Overall, the KKR results agree reasonably

with previously computed AFM site moments of 1.8 µB (I4/mmm) from FLAPW; the moments from PWP

are 2.6 µB (Fmmm).
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Figure 4.2: Bloch spectral function A(k, E) of BaFe2As2 in both NM and DLM states. Hole cylinders are
depicted as dash-dot lines (NM) or false-color scaled red (DLM). Electron cylinders are dashed (NM) or
blue (DLM). Solid lines indicate the BZ boundary. Cross-sections are normal to (a) [001] about Γ, (b) [001]
about X, (c) [001] about Z, and (d) [1̄10] about X. False coloring is mapped (in 103 states Ryd-1cell-1 r.u.-3)
as {0 ↔ RGB 0xFFFFFF (white), 100 ↔ RGB 0x770000 (light red), and 1000 ↔ RGB 0xFF0000 (red)}
for hole pockets. And similarly for electron pockets. This choice was made to make as many features as
possible visible across plots.

In this low-doping regime (e/Fe ≤ 0.18), the ∆Ef vary linearly with x or e/Fe for all magnetic states

and structures. Furthermore, the resulting trends are robust whether considering the I4/mmm or Fmmm

structures. In the NM state, there is a clear splitting in the behavior of Co- and Ni-BFA versus Cu- and

Zn-BFA. Both Co- and Ni-BFA show the same, favorable formation energies for given e/Fe. Cu- and Zn-BFA

also agree for given e/Fe but are unfavorable to mixing at zero temperature. Chemical mixing entropy does

reduce formation enthalpies relative to endpoints BaFe2As2 and BaM2As2, increasing the favorability of the

higher e/Fe compounds. In an ideal mixing model [159] this will reduce the free energy by 21, 13, 10, and

8 meV/atom for Co-, Ni, Cu-, and Zn-BFA at e/Fe = 0.18 and 1000 ◦C, a typical annealing temperature

[139, 129]. This effect is not accounted for in the 0 K results in Fig. 4.1 so as to separate electronic (e/Fe)

effects from entropic (dopant x) effects.

In the DLM state, a similar splitting persists, but energies are less pronounced. There is also less

agreement in the energies of Cu- and Zn-BFA at a given e/Fe. We find no magnetic moments at the dopant

atom and only marginally reducing moments on the Fe sites with increasing e/Fe. Neutron diffraction shows

a rapid drop in Fe moment with doping [140]. This may be a result of the sensitivity of the moment to an

increasing a lattice constant [72]. Experiments that demonstrate the incommensurability of the spin-density

wave [140] on Co and Ni doping are done in the PM state. Cu-BFA does not become incommensurate.

Our results show Cu mixing is, at best, weakly favorable. Thus, the lack of incommensurate splitting in Cu

might arise not as a result of a FS effects, but rather due Cu clustering. In the AFM state, dopants decrease

favorability relative to the PM state. This is in qualitative agreement with the known phase diagrams,

where dopants suppress the AFM state and eventually lead to SC. The dopant species splitting here is even
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less pronounced and all compounds follow nearly the same trend with e/Fe. This suggests an important

difference in doping effects on the PM and AFM state. Note that prior DFT calculations for the doped

compounds have been performed on the NM state [148, 147].

4.1.4 Fermi-Surfaces of PM States

Figure 4.2 shows the FS of NM and DLM BaFe2As2. NM surfaces are shown for electrons (dashed lines) or

holes (dash-dot lines) – there is no FS broadening with no chemical disorder – and these surfaces agree with

previous results. The Brillouin zone (solid lines) and labels correspond to the body-centered tetragonal lattice

and can be found in the literature [83]. DLM surfaces for electrons (blue) or holes (red) show significant

broadening due to local orientational disorder – in contrast to chemical disorder, which we see, below, is

less significant. The approximate k-space broadening is 0.14 r.u. (reciprocal units defined as 2π/a units in

k-space).

Note that DLM Bloch spectral peaks do not coincide exactly with the NM surface. The DLM hole

(electron) pockets are reduced (enlarged) in size relative to the NM. This corresponds to an effective e-

doping, as reflected in the DOS with a positive shift of EF . The interior pocket near the Z point is pinched

off near the Γ point. This can vary with choice of exchange-corrleation and lattice parameters. A strong

pinching is also visible in prior DFT calculations [31] and ARPES [136, 85]. The outer cylinder is fairly

uniform and gives rise to strong nesting with electron cylinders. The electron cylinders obey a 41 screw

symmetry along the kz-axis while the hole cylinders obey 90 ◦ rotational symmetry. The DLM broadening

and EF shift changes the strength of nesting between hole and electron cylinders. The large broadening can

explain the reduced resolution of ARPES data, especially when compared to measurements made on CuO

SCs.

To make a connection to nesting, we note that it is, in principle, possible to calculate the chemical, mag-

netic and magneto-chemical susceptibilities within the KKR-CPA using a thermodynamic linear-response

theory [160], similar to phonon linear-response that uses infinitesimal displacements. For such susceptibilities

in the high-symmetry (disordered) state, the correct functional form is χ−1(q;T ) ∼ [1−β(1−m2
i )S

(2)(q, T )],

where β = (kBT )−1 and S(2)(q, T ) is an exact second-variation of the electronic grand-potential with respect

to fluctuations, e.g., site magnetizations. For an Ising-like system, S(2)(q, T ) plays the role of a thermody-

namically averaged pairwise J(q). Such calculations have been done for solid-solutions [160, 161, 162, 163]

and elemental FM [164] and AFM [165], but not yet for multi-sublattice cases.

55



Figure 4.3: For NM Co-, Ni-, Cu-, and Zn-BFA at e/Fe = 0.10, the Bloch-spectral function A(k, E) along
(a) X=[ 1

2
1
20] to Γ=[000] (electron), (b) X to Z=[010] (electron), and (c) Z to X (hole). These correspond

to traversing the principal axes about the electron and hole cylinders. Black vertical lines correspond to
rigid-band expectation at the same e/Fe: first (second) line is the inner (outer) cylinder. First (second) gray
line is for the inner (outer) cylinder of parent BFA. Clearly, Zn is behaving differently than Co, Ni, Cu, or
the rigid-band. In (c), hole states deviate notably from rigid-band behavior.

Nonetheless, S(2)(q, T ), with matrix elements M(ε) and Fermi factor f(ε), is a generalized susceptibility:

S(2)(q;T ) ∼
∫
dε M(ε)

∫
dε′
[
f(ε;T )− f(ε′;T )

ε− ε′

]
× 1

ΩBZ

∫
dk A(k; ε)A(k + q; ε′) (4.2)

→
∫

dk A(k;EF )A(k + q;EF ). (4.3)

In principle, all states in the valence contribute to (4.2). If only hole and electron states near EF dominate,

the bracketed factor [...] yields (4.3), which is a convolution of the Fermi surface states and the origin

for “nesting” [152, 162]. Due to alloying, even in a metallic system, hybridized states well below EF can

drive ordering (NiPt [161]) or only features at EF (CuPt [163]). For Cr, the NM state yields nesting with

a incommensurate wavevector, as observed [54], while, for Cr-Ru the chemical disorder broadens the FS

enough that the SDW now is commensurate, as observed, and coexists with SC.

This discussion was to motivate that the DLM state (with similar FS topology to the NM state) can

create similar nesting due to larger volumes of the Brillouin zone contributing to the susceptibility integral,

even though the peak overlap is reduced.

4.1.5 Fermi-Surface Nesting in NM State

We analyze the NM Fermi surface (electrons and holes) typically used for SDW stability analysis for a given

e/Fe. A cross-section of A(k, EF) for transition-metal alloys at fixed e/Fe = 0.10 are shown in Fig. 4.3 (in
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r.u.), which traverses from the center of electron (hole) cylinders along principal axes k1 = [110] and k2 =

[1̄10]. Only a range near the spectral peaks is shown in each case. The k-space broadening is ∆k ∼ 0.03 r.u.,

much less than the DLM case. The NM rigid-band expectation corresponds to the vertical black lines, while

the spectral peaks for the undoped-NM case are marked by vertical gray lines. For Co-, Ni-, Cu-BFA the

peaks lie close to that of rigid-band for electron and hole pockets. Only Zn deviates, see Fig. 4.3. This

suggests that Zn-BFA has a reduced electron-doping effect and less interaction with Fe and As bands. The

reduction of effective e/Fe comes from the change in DOS due to the separation of Zn and Fe-host d states

well below EF , see DOS discussion below.

These effects are alternatively visible in Fig. 4.4, which shows the electron and hole FS at fixed e/Fe =

0.10 for Co, Ni, Cu, and Zn doping and compares to that expected from a rigid-band shift from the parent

BFA. To show the potential convolution overlap for nesting, the electron surfaces have been shifted to align

with hole cylinders for each doped compound. The shift used is the wave-vector connecting X to Γ, i.e.,

〈 12
1
20〉. These plots show that the broadening at the Fermi energy is about the same across dopant species

for a given e/Fe, as expected from Fig. 4.3. On doping the holes shrink and electrons grow. This improved

“nesting” (or overlap) leads to a transverse splitting of the nesting vector along [11̄0], as observed for Co-

and Ni-BFA [140]. The Zn FS is sharper, indicating longer electron lifetimes. It is visibly shifted from

rigid-band expectations, as in Fig. 4.3.

Electron states in Fig. 4.3(b) [4.3(a)] correspond to the vertical 〈1̄10〉 [horizontal 〈110〉] direction in

Fig. 4.4 when traversing from the center. The convolution arises from the entire FS and depends on the

broadening and similar widths of spectral features, which increase phase-space overlap volume; but, from

the two electron peaks in Fig. 4.3(b) and second hole peak in (c) we can make an eye-ball estimate of the

incommensurability expected from nesting at EF from Eq. (4.2). Note that in (c) no hole states reflect

rigid-band behavior. For Co-doping, the estimate is 0.01 [0.03] in 2π/a units, spanning that observed value

[140]. For Ni, it is 0.01 [0.03], again spanning that observed. For Cu, it is near 0 [0.02]. For Zn, it is −0.02

[+0.01], but the two Zn spectral features are not well separated, smearing the convolution.

Notably, ARPES finds a disagreement between rigid-band lines and the FS of Cu-BFA [85], and no FS

changes for Zn-BFA [141]. However, a DFT study using supercells found a significant shift in the FS of

Zn-BFA [147], but the FS shows considerably more broadening than visible here. Thus, there is an apparent

discrepancy in electron itinerancy and effective doping between DFT theory and ARPES. Our calculations

too show that Zn FS does not coincide with that of the parent compound, Fig. 4.3, and the volume spanned

by the electron surface are reduced compared to that expected from rigid-band, see Fig. 4.4. In fact, for

the e/Fe of 0.10, the effective e/Fe is closer to 0.05 (a 50% reduction) from direct calculations; an eye-ball

57



Figure 4.4: Overlapped electron (blue) and hole (red) pockets of NM doped compounds at e/Fe = 0.10.
FS for rigid-band shifted NM at the same e/Fe are shown as dashed lines (gold) for electron and dash-dot
(black) for hole cylinders.
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estimate from Fig. 4.3 shows that the Zn spectral peaks are center between the vertical solid lines or the

vertical dashed lines, which is expected for a rigid-band with e/Fe of 0.05, as calculated.

A warning to the reader, quantitative agreement with the experimental ARPES spectra from DFT

electronic structure can be more reliably obtained by performing realistic photocurrent calculations that

include a proper treatment of the surface electronic structure, energy-dependent matrix elements and lifetime

effects, as has been done in KKR [166, 167]. For s-polarized light, for example, the surface can play only

a minor role in photoemission and the measured spectra may follow the DFT quasiparticle dispersion.

Otherwise the energy-dependent matrix elements, e.g., from Fermi’s “Golden Rule” involving photocurrent

and the single-site wave-functions, affect the calculated spectra from DFT dispersion. In short, the DFT

electronic structure does not necessarily have one-to-one correspondence to that from ARPES, but sometimes

it does. So, our above results may all be correct, but, in the future, a more careful comparison is needed

with ARPES.

4.1.6 Density of States and Band Filling

For BaFe2As2 the valence DOS for NM, DLM, and AFM states are shown in Fig. 4.5, relative to their

respective Fermi energies, EF . The AFM DOS per primitive (i.e., NM) cell are used to ease comparison.

From −6 to −3 eV there is strong similarity of the states, but with a shift of EF due to a pseudo-gap

forming below EF for AFM state and, more weakly, for the DLM state. This shift is +42 meV (DLM) and

+126 meV (AFM) relative to the NM. From −2 to 1 eV the DLM states are significantly broadened to due

local spin disorder. Note the average slope for NM and DLM states near the Fermi level is negative. This

can explain the apparent Fermi level shift of the DLM visible in Fig. 4.2. The negative slope and disorder

broadening together result in a net reduction in filled states as disorder is turned on. This is compensated

by an increased Fermi level. The AFM state shows the opening of a pseudo-gap below the Fermi level,

which also explains a large positive shift. The density of states at EF (i.e., n(EF )) are 5.0, 5.2, and 4.8

states-cell−1-eV−1 for NM, DLM, and AFM, respectively.

For the doped cases of Ba(Fe1-xMx)2As2, we focus on the valence DOS for NM states versus M in

Fig. 4.5b. The Fe site-projected DOS do not change for all species M (they clearly lie on top of each other).

There is significant overlap of Co and Ni site-projected DOS with Fe-site DOS (common-band behavior),

there is clearly a split between states (split-band behavior) on Cu,Zn and Fe (Zn d-states are well below

−6 eV and are not shown). These site projections agree with core-electron spectroscopy.

The shift for each dopant’s d-states relative to Fe arises from the increasing ∆Z, where by ∆ZCu = +3

the d-states are no longer in common energy range as Fe. With ∆ZZn = +4 change in nuclear charge from
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Figure 4.5: DOS relative to EF for (a) BaFe2As2 NM, DLM, and AFM states, and (b) Ba(Fe1-xMx)2As2

M- or Fe- site-projected DOS for fixed e/Fe=0.06 (i.e., 6% Co, 3% Ni, and 2% Cu). Fe-DOS unaffected by
choice of dopant. Zn states are below −6 eV with no overlap to Fe-As valence.
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Fe, the Zn d-bands shifts lower in energy creating a split-band (relative to Fe), as will be evident in the

DOS, leading to stronger difference in d potentials between Fe and Zn (less so for Cu). The common band

behavior of Fe and Co,Ni leads to weak impurity scattering and a limited effect on electronic lifetimes and

band structure. Conversely, the split band character of Fe and Cu,Zn leads to strong scattering. These

electronic effects are reflected in ∆Ef trends for PM states in Fig. 4.1, where both Cu and Zn have positive

∆Ef (unfavorable to mixing with Fe) but Zn less so due to the separation of Zn and Fe-host d states well

below EF . This changes the overall energetics and outlines the origin for deviations of Cu,Zn formation

energies from Co,Ni in the PM state.

In summary, using the all-electron KKR-CPA within DFT, we examined the phase stability, electronic

structure, and Fermi-surface evolution of Ba(Fe1−xMx)2As2 (BFA) with M=Co, Ni, Cu, Zn for nonmagnetic,

paramagnetic, and antiferromagnetic states in high-T tetragonal and low-T orthorhombic structures. Hence,

both chemical (alloying) and magnetic (orientational) disorder was addressed. Properties were assessed in

terms of additional electrons-per-Fe (e/Fe), expected from Hume-Rothery or rigid-band-like behavior. The

paramagnetic phase was approximated by a single-site, disordered local moment state that has a finite,

randomly oriented moment on each site, which is in contract to the NM state with zero moments. Magnetic

effects are pronounced, leading to significant broadening of the Fermi surface and, so, a reduction in coherent

carriers; yet, DLM is expected to support the same Fermi-surface nesting effects as from the NM. For the

NM state, typically assessed for Fermi-surface nesting instabilities, we find differences versus nominal e/Fe

in the formation energies, electronic structure, and Fermi-surface properties for Co- and Ni-BFA versus Cu-

and Zn-BFA, due to well-known “split-band” behavior. Notably, while Cu-BFA deviates from rigid-band

in its formation energetics, it continues to follow the rigid-band expectation in the Fermi-surface evolution;

but, Zn-BFA does not follow rigid-band in either formation energetics or Fermi surface behavior; we showed

that Zn has an effective e/Fe that is 50% of that expected from rigid-band theory due to alloying effects.

This systematic assessment of the electronic properties for all competing states and structures in BFA should

help resolve conflicting interpretations based different experiments and theories. Yet, for better comparison

to experiment photoemission current calculation using the DFT dispersion would be the best.

4.2 (Ba-K)Fe2As2: Lifshitz transition and chemical instabilities

Superconductivity in Fe-based superconductors (Fe-SCs) is achieved by chemical substitution or applied

pressure to tune geometry and charge.[16, 12, 168, 14, 17, 169] Lifshitz transitions can mark the onset of

SC [170, 171, 137]. Among Fe-SCs, Ba1-xKxFe2As2 (BKFA) stands out for featuring a number of anomalies
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in the heavily over-doped (HOD) regime, including an apparent Fermi-surface transition, and violation of

“universal” trends found in most Fe-SCs. Making homogeneous samples of HOD-BKFA has proven difficult,

which has not been explained. Reliable comparison of electronic properties between various experiments has

also been an issue.

For non-magnetic, tetragonal (I4/mmm) BKFA, we use DFT to detail the Fermi-surface topology and

character, and locate dissolution of electron pockets and onset of hole blades. The Fermi- surface is mapped

from over-doped x ≥ 0.6, and exhibits a Lifshitz transition near x = 0.9. In Fe-SCs, the s± gap symmetry

is considered closely tied to intra-band transitions among hole and electron surfaces [172, 173]. The loss of

these transitions in HOD-BKFA could result in a weakening of spin-fluctuation-mediated pairing and signal

competition with orbital fluctuations. Formation energies are calculated for all x, which show chemical in-

stabilities at both under-doping and heavy over-doping. The instabilities highlight the difficulty in preparing

uniform samples, explaining the discrepancies between various observed electronic structure. We verify that

paramagnetism given by “disordered local moment” (DLM) state exhibits similar behavior, with no change

in conclusions.

Common FeSCs features/trends have been identified. The electronic structure is a hybridization of Fe

3d and As 4p orbitals, which is sensitive to lattice parameters and internal (Fe-As) coordinates. At the

experimental lattice parameters, the DFT Fermi-surface of the paramagnetic state often exhibits two or

three hole cylinders at the zone center (Γ point) and two electron cylinders at the zone corner (X point),

which agree well with angle-resolved photo-emission (ARPES), e.g., for LiFeAs (LFA), BaFe2As2 (BFA),

and LaFeAsO (LFAO) [91, 31, 45, 39]. This electronic structure plays a key role in defining the magnetic

and SC groundstates. In BFA and LFAO there is prominent (π,π) nesting between hole and electron

cylinders, in correspondence with the observed antiferromagnetic (AFM) ordering [40, 174]. Moreover, when

nesting becomes imperfect, as in Ba(Fe1-xCox)2As2 (BFCA), the magnetic ordering becomes incommensurate

spin-density wave [140]; in LFA, where nesting is absent, the ground state is non-magnetic.[45] Also, spin

fluctuations (SF) in this mode have been correlated to SC [104, 137]. Taking this SF as the dominant pairing

mechanism requires an s± gap symmetry, i.e., cylindrical nodes [172], as also evidenced from a resonance in

spin susceptibility.[175, 176, 177] Further universality includes a common trend between the As-Fe-As bond

angle and the critical temperature Tc [28], and the linear BNC scaling [109], i.e., specific heat jump ∆cS ∝

T3
c .

In KFe2As2 (KFA) there are well-defined vertical line-nodes on one of the hole cylinders and a total

dissolution of electron pockets [178], and hole-blades appear about X [179]. Application of pressure shows

critical behavior in the Tc response [180]. Universal heat-conduction is suggestive of a d-wave symmetry
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Figure 4.6: Ba1-xKxFe2As2 Fermi-surface evolution of electron cylinders versus K content. Intensity is in
units of 103 states Ryd-1cell-1, with scale bar in Fig. 4.7. Top [bottom]: Bloch spectral function along (010)
[(001)] planes in k-space. Solid lines indicate BZ boundaries. Thick dashed lines indicate corresponding cuts
between top and bottom panels.

and possibly a neighboring quantum critical point [65, 181, 66, 182]. The K concentration (x) at which this

transition occurs and what characterizes the transition is still under debate. In one study BKFA fails to

follow the BNC scaling at x = 0.7-0.8 [183] An ARPES study sees an abrupt change in the gap magnitude

occurring near x = 0.6, simultaneously with a Lifshitz transition [184]. Still other studies continue to see

electron pockets without hole blades at x = 0.7 and estimate a transition at x = 0.8-0.9 [185]. Andreev

reflection finds no transition up to x = 0.77 [186]. And, some studies see hole blades as early as optimal

doping (x=0.4) [187], and others do not [188]. Complicating measurements is the instability of homogeneous

samples at HOD and low Tc [60].

The BKFA phase-diagram (0 ≤ x ≤ 1) is known [29, 189]. BFA is a compensated metal in a low-

temperature Fmmm structure with striped AFM [40]. KFA is a non-magnetic SC in I4/mmm structure

exhibiting only hole carriers [179]. Optimal doping is achieved at x = 0.4 with Tc = 38 K. A co-existence

between AFM and SC exists for 0.1 < x < 0.25, though evidence suggests this is due to inhomogeneity in

the sample [29]. Optimal doping has the hallmarks of an FeSC, including nested hole and electron cylinders

and s± gap symmetry [190, 188]. Nested surfaces have the same energy gap, suggesting active transitions

between these states [173]. Stearic effects, e.g., As-Fe-As bond angle, can account for optimal doping at

x = 0.4, where FeAs4 form ideal tetrahedra, and also for diminishing Tc with x > 0.4 [29]. However, it does

not explain the transition to nodal SC and other HOD anomalies.
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Table 4.2: For each sphere, Wyckoff (I4/mmm) positions and coordinates in face-centered cell with Ba at
the corners.

E1 2b (0.5000a, 0.0000a, 0.0000c)
E2 4e (0.0000a, 0.0000a, 0.2072c)
E3 16m (0.2007a, 0.0000a, 0.1715c)

4.2.1 Computational Details

DFT calculations were performed using an all-electron, KKR-CPA Green’s function method [4, 5, 6]. The

methods applied here have explained the spin-density wave behavior and scattering data in Ba(Fe1-xMx)2As2

versus solute (M=Co, Ni, Cu) [140], and the quantum criticality in NbFe2 from an alloying-mediated Lifshitz

transition at an unconventional band critical point [191]. To improve the basis set, empty spheres (E1, E2,

and E3) were inserted in the structure (Table 4.2). Sphere sizes were maximized in the order Ba, Fe (=As),

E1, E2, and E3. The same sphere positions were used for the orthorhombic (Fmmm) structures. All results

were obtained with a 16×16×16 Monkhort-Pack k-point mesh for Brillouin zone (BZ) integrals [155], and

using complex energy (E) contour integration with 25 E-points on a Gauss-Legendre semi-circular contour

[156]. The valence configurations were taken as Ba 5p66s2, K 3p64s1, Fe 4s23d6, and As 4s24p3. Fermi

energies were determined via the analytic Lloyd’s formula for an accurate electron count.[192] To avoid DFT

sensitivity to structure, we used measured structural parameters versus x for both Fmmm and I4/mmm

structures [189]. However, for I4/mmm, the experimental data is limited versus x, but shows that Vegard’s

law [193] is invalid. But, two linear regimes match experiment well: (1) from x = 0 − 0.3, and (2) from

x = 0.3− 1.0.

Fermi-surfaces are determined via the Bloch spectral function A(k, E) = − 1
π ImG(k,k, E), where G is

the single-particle Green’s function. A(k, E) is the E- and k-space resolved density of states and dispersion.

In the limit of an ordered compound it reduces to Dirac δ-functions that define the band structure E(k).

For x 6= 0 or 1 there is k-dependent spectral broadening and shifting due to chemical disorder (impurity

scattering) handled via the CPA. The spectral full-width at half-maximum with respect to energy is inversely

proportional to the lifetime of electronic states.

4.2.2 Lifshitz Transition

For Ba1-xKxFe2As2 (x ≥0.6), we find a Lifshitz transition in the Fermi-surface evolution (Fig. 4.6), as is

clearly evident at the X-point near x = 0.9. Spectral intensity is scaled according to a false color map given

in Fig. 4.7a. The BZ with high-symmetry labels is provided in Fig. 4.7a. Cross-sections in Fig. 4.6 are

along kx-kz (top) and kx-ky (bottom) plane. A corresponding cut in both planes is shown as a dashed line
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Figure 4.7: (a) Fermi-surfaces near X-points (3D perspective) for non-magnetic, tetragonal
Ba0.15K0.85Fe2As2 in units of 103 states Ryd-1cell-1. Cylinder-like electron sheets are evident. Inset shows
BZ with symmetry labels (the BZ height shrinks as x increases). (b) Electron cylinders are decomposed into
Fe-site orbital projections. x- and y- directions in real-space coincide with neighboring Fe-Fe bonds in the
Fe square net. Spectral intensities projected by character do not follow the symmetry of the crystal.
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at x = 0.85. A 41-screw symmetry along kz is obeyed at the X point.

As BKFA approaches KFA (i.e., x →1), holes centered at Γ grow and electrons at X shrink. Near the

critical concentration xc = 0.9 the electrons disappear and hole blades appear. We find from x = 0.6 to 0.85

the electron pockets have shrunk without topological change. Just before the transition the bands flatten.

Each electron pocket maintains its own character (c.f. Fig. 4.7) and undergoes transitions separately. The

electron cylinder with major axis along kx splits first between 0.85 < x < 0.90. Three dimensionality at

x = 0.9 is apparent in the top frame. Hole pockets then appear lateral to X. The second electron cylinder

with major axis along ky undergoes a split between 0.90 < x < 0.925. Subsequently, two additional hole

cylinders are established just before x = 1, and at the endpoint all Fermi-surfaces are hole-like. The density

of states n(E) is not peaked at the Lifshitz point, suggesting a more involved relation to SC.

For further perspective, at x = 0.85, just before the Lifshitz transition, we plot the orbital decomposition

(Fig. 4.7b) and the dispersion (Fig. 4.8). The evolution of the transition can be more reliably ascertained

at this concentration (rather than the end compounds) by shifting the Fermi energy (EF ) in Fig. 4.8 up

across the Lifshitz transition (e− doping) or down (h+ doping). The “band” broadening is ∼50 meV in

energy, comparable to the band shifts needed to match DFT and ARPES [12]. The k-space broadening is

∼0.03 reciprocal lattice units. The electron and hole pockets are osculating; the dissolution of electrons and

appearance of holes is nearly simultaneous. Traveling from Γ to X across EF , the first three band crossings

correspond to hole cylinders about Γ. The next two crossings represent either the outer and inner e− pockets

about X (above EF ), or a single hole cylinder (below EF ). Similar crossings occur traveling from Z to X. The

“bands” that cross EF arise from Fe 3d orbitals. The character of electron pockets (Fig. 4.7b) is majority

dxz and dyz character, with some dx2-y2 hybridization. There is a modest dz2 hybridization on the middle

band of the hole pocket about Γ (not shown), which compares favorably to line nodes on this hole cylinder

found in ARPES.[178] However the experiment places the dz2 band closer to EF , and crossing at KFA. The

dx2-y2 correspond to direct Fe-Fe σ-bond.

4.2.3 Chemical Instabilities

Finally, formation energies (∆Ef ) for Ba1-xKxFe2As2 solid solutions at 0 K are shown in Fig. 4.9. A negative

∆Ef indicates that the sample is more favorable than segregating to the endpoint compounds; however, only

those alloys below Maxwell tie lines are globally stable at 0 K, e.g., x = 0.35, which is close to optimal doping

and where FeAs4 form ideal tetrahedra. This stability is likely enhanced by spectral peak overlap of the

two electron cylinders about X near x = 0.4 (Fig. 4.11). At small x, we find, as observed, the orthorhombic

phase is more stable than the tetragonal phase. Tetragonal solid solutions whose ∆Ef lies above the Maxwell
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Figure 4.8: Electronic dispersion (Bloch spectral functions) of Ba0.15K0.85Fe2As2 near Fermi energy (0 eV)
from Γ=[000] to X=[100] to Z=[110]. Spectral broadening is evident.

tie line are unstable at 0 K to a mixed compound formed from concentrations at the endpoints of the line

segment on the tie line. The Maxwell tie line consists of two segments: one from x = 0 to 0.35 and another

from x = 0.35 to 1.0. This unusual curve reflects in part the variation of the lattice constants versus x, whose

slopes change near x = 0.3, see Fig. 4.12. For under-doping (0.15–0.3) the high-T, tetragonal phase form

is slightly unstable to segregation, in agreement with experiment [183]. At non-zero temperatures entropy

will favor the disordered states. To account for this, the free energy [159] at the experimental annealing

temperature of 1000 K is also shown in Fig. 4.9, which exhibit similar behavior to ∆Ef (0 K). While the

most stable (global) configuration for x≥ 0.35 should be an admixture of Ba0.65K0.35Fe2As2 plus KFe2As2,

the free energy difference to drive this diffusion-limited state is weak, which explains the large range of

concentrations in samples and conflicting reports on properties. For x > 0.6, there is a stronger segregation

instability, with a maximum near x = 0.8 (Fig. 4.9 inset). Experiments indicate a possible miscibility gap

from x = 0.64 to 0.82 at a growth temperature of 1000 ◦C [194].

For completeness, in Fig. 4.9 we include calculations of ∆Ef (0 K) versus x for the paramagnetic DLM

state in which Fe moments of 1.0 µB are randomly oriented, from a self-consistent electronic structure

with spin disorder. These results show very similar energetics to the non-magnetic ones, indicating both

paramagnetic states lead to similar results. Either way, our formation energy results certainly clarify some

of the difficulty of controlling sample composition and quality, which is reflected in the associated conflicting
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Figure 4.9: ∆Ef (0 K) versus x (red symbols/lines) for Ba1-xKxFe2As2, relative to endpoint alloys. The
Maxwell tie (dashed) lines are indicated. At 1000 K, the free energy (grey line), using ideal mixing entropy
[159], follows the 0 K behavior. At the Ba-rich side, orthorhombic Ba1-xKxFe2As2 (blue symbols/lines) is
favored, as observed. The DLM states (triangles) show similar behavior to the non-magnetic cases. Inset
shows ∆Ef relative to tie line between x = 0.55 and 1, exhibiting local instability to segregation with
maximum at x∼0.8 for 0− 1000 K.

results on experimentally characterizing the electronic structure of BKFA.

More ARPES studies in this regime, and indirect bulk measurements of the Lifshitz transition, such

as the Hall coefficient, would connect directly to our results. A reversion from nodal SC to standard s±

may occur under the application of pressure to KFA [180]. This may also be due to a Lifshitz transition,

as electron doping has been found to correlate with pressure for FeSCs [195]. Studying the Fermi-surface

response to pressure to see if a Lifshitz response can be ruled out may resolve this. However, the response of

Tc with e− doping is continuous, while response under pressure is discontinuous, suggesting these changes

have different origins.
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Figure 4.10: Fermi-surface evolution of Ba1−xKxFe2As2 electron cylinders in the (010) plane versus K content
x= 0, 0.2, and 0.4. Intensity units, BZ boundaries, and false-color map are given in Fig. 4.7.

Figure 4.11: Ba1−xKxFe2As2 Fermi-surface evolution of electron cylinders in (001) plane versus K content
for x= 0, 0.2, and 0.4.

4.2.4 Low Concentrations and Structural Cell Parameters

For completeness, we provide the non-magnetic, tetragonal BKFA Bloch spectral function A(k,EFermi) at

x= 0, 0.2, and 0.4 in both the (010) and (001) k-space planes (c.f. Figs. 4.10 and 4.11). We include the

total density of states for three K concentrations (c.f. Fig. 4.13). We show also the deviation from Vegards

law for the tetragonal system, permitting good agreement with experiment for two linear fits versus x for

the tetragonal structural parameters (c.f. 4.12). As is clear the Fermi-surface topology remains that for

BaFe2As2, with only a modest reduction of the electron cylinders is visible from x=0 to 0.4. Comparing the

Fermi-surface evolution here with Fig. 1 for the Fermi-surface with x = 0.6 to 1.0 shows that there is a clear

Lifshitz transition near the critical K concentration of 0.9.

The density of states (Fig. 4.13) exhibits a peaked structure at -3 eV in BFA that is substantially

diminished in KFA. The Ba0.5K0.5Fe2As2 density of states is approximately a weighted average of the

endpoint compounds with broadening and spectral shifts due to chemical disorder on the Ba sublattice.

69



Figure 4.12: Structural parameters a, c, and z (in Å) versus K content for Ba1−xKxFe2As2. Error bars
indicate experimental error due to composition and diffraction measurements.

Finally, the measured structural parameters for tetragonal alloys versus x are provided (c.f. Fig. 4.12).

Notably, Vegards law (linear variation for x = 0 to 1) is invalid; yet two linear fits for x = 0 to 0.3 and x =

0.3 to 1 provide reasonable agreement to experiment, which brings the error below the sensitivity of DFT.

In experiment, there is a direct error from the diffraction measurement and an error due to uncertainty

in the composition, see Fig. 4.12. The existence of two regimes is likely tied with the onset of the low-T

orthorhombic structure. Note that the inflection point in the formation energy is at x = 0.35, not x = 0.3;

therefore, while there may be a connection between the concentration variation of the lattice parameters

and inflection point, it is not a direct one.

4.2.5 Concluding Remarks

In summary, among FeSCs, BKFA is of particular interest because it undergoes a transition at heavy over-

doping that has yet to be fully understood, and deviates from known FeSC trends. Making homogeneous

samples in this concentration range has proved difficult, as explained via our results on stability. Using

KKR-CPA methods, we have gone beyond the rigid-band approximation to explore the full concentration

range. We find a Lifshitz transition near x = 0.9 that occurs in parts; both electron cylinders disappear at

slightly different x. The Lifshitz transition marks a reduction of inter-band transitions and likely a weakening

of SF-mediated pairs. Orbital character of the dispersion near the transition is strongly pronounced, unlike

that observed on the under-doped side.[91] This may suggest increased competition of spin and orbital

fluctuations; there has been SFs observed in KFA at the (π,π) mode [196]. We also find the electronic

disorder broadening is comparable to band shifts required for DFT to ARPES to match. The Lifshitz
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Figure 4.13: Total density of states for Ba1−xKxFe2As2 at x = 0, 0.5, and 1.
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transition behavior detailed here also suggests an explanation for the observed deviation from the linear

BNC scaling [109].

More ARPES studies in this regime, and indirect bulk measurements of the Lifshitz transition, such

as the Hall coefficient, would connect directly to our results. A reversion from nodal SC to standard s±

may occur under the application of pressure to KFA [180]. This may also be due to a Lifshitz transition,

as electron doping has been found to correlate with pressure for FeSCs [195]. Studying the Fermi-surface

response to pressure to see if a Lifshitz response can be ruled out may resolve this. However, the response of

Tc with e− doping is continuous, while response under pressure is discontinuous, suggesting these changes

have different origins.
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Chapter 5

Stability of Magnetic Defects

Fe-based superconductors (FeSCs) provide another avenue to understand unconventional superconductivity.[16,

17, 169, 14, 12] Due to its ease of synthesis, BaFe2As2 is a prototype for these systems, where its low-

temperature (T < 140 K) ground state is a striped, antiferromagnetic (AFM) orthorhombic (Fmmm)

structure,[40] often called a spin-density wave (SDW), and which is reproduced in Density Functional The-

ory (DFT) calculations.[31] At Neél TN (140 K), both a magnetic and structural transition occurs to a

tetragonal (I4/mmm) paramagnet.[40] By doping with a transition-metal on the Fe-site or others on Ba-

and As-sites, superconductivity (SC) can be achieved, and similarly with pressure.[128, 129, 74, 197]

There are strong connections between the magnetism and SC. Dopants weaken the magnetic state and

Cooper pairing is, perhaps, driven by increased magnetic fluctuations out of the ground state.[198, 199]

DFT has proven successful in modeling the geometry, magnetic ordering, and electronic structure of FeSCs.

The magnetic ground states of LaFeAsO, BaFe2As2, NaFeAs, and FeTe are all correctly predicted.[32, 31,

200, 201] Fermi-surface (FS) nesting is apparent from DFT calculations and agrees with angle-resolved

photoemission (ARPES), suggesting an itinerant nature[82, 85, 135] and which is supported from the spin-

wave dispersion.[101, 202] Furthermore, DFT explains quantitatively effects of doping on FS nesting, and

why Cu doping behaves differently than Co and Ni.[140] KxFe2Se2 (isostructural to BaFe2As2) does not

have the hole pockets needed for FS nesting,[47] as DFT finds.[203]

DFT results for BaFe2As2 show a strong coupling between the structure and magnetism.[82, 133] Planar

defects, thus, have been proposed to explain key features in magnetic and transport properties of FeSCs

near/below the structural transition. Mazin and Johannes[35] suggested a model in which low-energy mag-

netic anti-phase (APBs) and 90o domain (DBs) boundaries proliferate (Fig. 5.1), which have yet to be tested.

So, are structural and magnetic planar defects energetically favorable and what are their properties? To

answer, we use DFT to model potentially operative magnetic (structural-induced) defects, both isolated and

extended, and explore their stability and properties by varying the structural parameters.
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5.1 Controversy on Magnetism

Defects can be very important in realistic materials, like BaFe2As2. Above TN , the paramagnetic state

may be realized by mobile APBs and DBs; below TN , with interlayer coherence, APBs become pinned and

DBs thermodynamically inaccessible, possibly explaining sensitivity to interlayer elements, large magneto-

resistance, features in the differential resistivity (dρ/dT ), and invariance of resistivity anisotropy. With

orthorhombic distortions (a > b), both structural and concomitant magnetic twins (Fig. 5.2) are observed in

BaFe2As2 along 〈110〉 with 100-400 nm[204] up to 10-50 µm[42] between boundaries. With stress, samples

detwin, but twins return upon its removal;[205] as in YBa2Cu3O7−δ,[206] (11̄0) twins terminate on (110)

twins. Twins cause anisotropic scattering near AFM wavevectors, giving 2-dimensional spin fluctuations.

Twins also create stripes of increased diamagnetic response,[207] and nucleate SC at their boundaries.[43]

Recently, Niedziela et al.[208] found by Rietveld analysis a bigger orthorhombic ratio (O =(a− b)/(a+ b)) for

local structural fits (O = 1.38%) than global fits (O = 0.78%); they proposed a high density of nano-twins

(Fig. 5.2) account for this discrepancy by its better match to measured pair distribution functions (PDF). We

show that displacements at the nano-twin boundary affect spin alignment, reducing the average “ordered”

moment.

For completeness, we note that, while DFT supports the observed SDW for the parent compound, the Fe

moment (1.6−1.9 µB)[209, 31] is twice that assessed for the average ordered moment from neutron diffraction

(0.8 − 1.04 µB).[95, 210, 93] In fact, various experiments assess very different Fe moments. Core-electron

spectroscopy[153] finds 2.1 µB , like DFT, while 57Fe Mössbauer[40] and nuclear magnetic resonance[211]

find 0.81 µB , as in diffraction assessments. For Fe-based magnets such a large discrepancy between ordered

moments from theory and experiment is unusual. Spin-orbit and hybridization (controlled by Fe/As pla-

nar spacing) in a DFT+U model explained the small in-plane moments in Fe-pnictides.[72] Yet, our DFT

moments are reduced ∼10% from spin-orbit, but 50-100% by slightly reduced Fe-As spacing. DFT predicts

correct moments at short times (∼10−15 s) necessary to yield lattice constants that agree with experiment.[35]

Dynamical mean field theory (DMFT) explains the discrepancy from DFT as a result of dynamical fluctua-

tions at the Fe sites that reduce the observed moment over longer time scales (∼10−9 s),[79] and reproduces

the trends in reduced Fe moments and renormalized mass across various FeSCs.[98] DMFT finds FeSCs are

correlated due to intra-atomic exchange from Hund’s coupling J (0.3 - 0.6 eV)[212, 213, 214, 215] (which

reduces the coherence temperature for Fermi liquid behavior[214]), not from especially large U (2.8 - 5.2 eV,

as derived from a five band constrained Random Phase Approximation)[213, 215, 216, 217] or proximity

to a Mott insulating state. Below the coherence temperature, high electron mobility results in moment

screening (over 10−9s). Notably, this scenario does not consider spatial fluctuations, defects, nor their effect
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Figure 5.1: (Color online) APB in the (a) bc-, (b) ac- planes, and (c) 90o DB with no strain (a=b). Red
(blue) circles are “up” (“down”) in-plane moments, as indicated in (a). HS, MS and LS indicate Fe-sites
with high-, medium- and low-spin states.

on magnetism near/below the phase transition, as explored in the present work.

5.2 Methods: Defects and DFT

We use DFT to simulate various magnetic planar defects, i.e., two types of APBs, a 90o DB, twin boundaries,

and our modified nano-twin, which are all low-energy excitations of the SDW. Figure 5.1a and 5.1b shows two

APB boundaries in the Fe-plane – parallel to the bc- or ac-planes – and Fig. 5.1c shows a locally unstrained

90o DB. Figure 5.2a shows a typical example of an ideal twin. A modified nanotwin with 2-dimensional

structural distortion (consistent with that suggested by Niedziela et al.[208]) is shown in Fig. 5.2b with a

series of static displacements along a- and b-axis in the supercell. The undisplaced nanotwin with 1-layer of

Fe separating defect planes is really a magnetic stacking fault (SF); a nanotwin supercell has very different

boundary conditions than a twin, with different far neighbors and distances between defect pairs; indeed,

“ideal twin” supercells formed with 1-layer separation between defect planes (a high density of SFs) has

local environments like the nanotwin, except that twin has symmetric relaxations governed by the supercell

periodicity, whereas the nanotwin has asymmetric, localized distortions to match the PDF. While we show

the defect energies are similar, a nanotwin, due to its boundary condition and supercell, may be considered
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Figure 5.2: (Color online) (a) Twin boundary, without strain, separated by three Fe layers. (b) Nanotwin
with boundary ⊥ to (110), where atom positions in a distorted cell are barycentric weights of the cell corners.
HS, MS and LS are indicated.

a fluctuating twin nuclei, which can have low-spin Fe-sites unavailable in the ideal twin supercell.

For nondefected (parent) and defected cells we calculate energy per atom and the associated magnetic

moments (bulk is 1.6 µB). From this we derive the planar defect energy, γ, defined as γ = (Edef − E0)d/V ,

where Edef and E0 are the total energy per atom of the defected and nondefected cell, respectively. d is the

distance between defect planes and V is the volume per atom. While the energy per atom is helpful, γ is the

appropriate comparison for cost of creating the defect interface and its dependence on defect density and

defect volume. Note that 2 defect boundaries are created for twins, hence, 2γ is appropriate defect energy.

To do this, we use VASP[218] with plane-wave pseudopotential projected augmented wave (PAW)

basis,[219] with an energy cut-off of 380–420 eV. A Monkhorst-pack Brillouin zone integration with a 163

k-mesh is used for the SDW (Fmmm) structure. Smaller k-meshes are used for supercells depending on the

length coverage along each axis.

For APBs, we constructed doubled (2×1×1), quadrupled, and octupled supercells to examine excitations,

denoted by 2-APB, 4-APB and 8-APB, respectively (Fig. 5.3). For APBs (Figs. 5.1a,b), we use measured

lattice parameters[40] (a=5.6146, b=5.5742 and c=12.9453 Å). For a 90o DB, we set ā = b̄ = (a + b)/2

= 5.5944 Å to reduce local strain effects, and construct supercells similar to the APBs, denoted as 2-DB,

4-DB, and 8-DB. Twin (4[1 + n]×2×1) supercells (n=0, 1, ...) are denoted by (3 + 4n)-N Fe-layers between

defect planes, and have 4(1 + n) unit cells along a and 8(1 + n)×10 atoms/cell. Nanotwin supercells are

denoted 3-N, 5-N, 9-N, and 13-N for Fe-layers between isolated nanotwin pairs; the supercells with the

static displacements suggested by Niedziela et al. are more complex because the local distortions must be
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Figure 5.3: (Color online) Energies relative to NM state (top) and Fe moments (bottom) for APBs (labels
defined in text) in the (a) bc-plane (b) ac-plane, and (c) 90o DB. SDW indicates the AFM ground state.
Insets depict the local Fe environment.

compensated within the cell (Fig. 5.2b).

5.3 Energetics and Moments

The energies and moments for APB and DB defects relative to the non-magnetic (NM) state are shown in

Fig. 5.3 (top), and compared to the AFM ground state (SDW). In all cases, Fe moments have two behaviors:

a high-spin state (HS in Fig. 5.1) at sites away from boundaries and a low-spin state (LS in Fig. 5.1) at/near

boundaries. For APB(bc), the LS moment falls substantially to 0.8 µB from 1.6 µB , similar to that found

by Yin et al.[220] While for APB(ac), the LS moment decreases only to 1.54 µB . The two spin states

depend on local magnetic environments (inset Fig. 5.3). Moments do not vary much with the size of the

supercells, but these two structures energetically compete with the ground state SDW (≤ 9 meV/atom).

For 90o DB (Fig. 5.1c), the HS state has a higher moment of 1.7 µB due to global strain from changed

lattice parameters. The LS moment decreases slightly to 1.57 µB near the boundary. This defect requires

within 2 meV/atom excess energy to form compared to the SDW. It is energetically competing with the

APB(ac). Both defects are then expected to be present at the same temperature. The local environment

does not play a significant role, suggesting simple models such as counting the number of aligned neighbors
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is not sufficient to characterize the moments.

The energy and moments for twins are shown in Fig. 5.4a. Interestingly, an Fe-atom in a twin has three

spin states depending on the local environment. Fe-atoms at the boundary remain in a medium-spin state

(MS in Fig. 5.2a). A LS state occurs on Fe-sites adjacent to the boundary (Fig. 5.2a). These Fe-sites have

the same nearest-neighbor environment as the bulk HS states but differ in the farther neighbors. These

defects can form at a few meV/atom, albeit γ is more critical, see below.

The nanotwin energies and moments versus distortion along a− and b−axis (in Å) are shown in Fig.

5.4(b,c). Similar to twins, there are three Fe spin states: a HS bulk (1.6 µB), a MS (1.42 µB) at the boundary,

and a LS (0.8− 1.0 µB) in the vicinity of the distorted side of the boundary. The structural perturbations

show a stronger effect on the LS moments near defect boundaries, decreasing to as low as 0.8 µB . Isolated

(fluctuating) nanotwins are equally competitive to form as dense twins but with much reduced moments.

Energies are affected mostly by the changed magnetic configurations and very little by spatial distortions.

So, magnetic defects drive the short-range structural distortion (not the other way around) and can help

quench magnetization.

Planar defect energies (γ or 2γtwins) are compared in Table 5.3; they give the relative order in which mag-

netic defects can form and remain after processing. Structural defects can act as pinning sites for magnetic
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Table 5.1: γ (2γ for twins) for various planar defects (in mJ/m2). Energies (meV/atom) are relative to
SDW. γtwin is dominated by d increasing faster than the decrease in (Edef − E0), unlike for APBs or DBs.

defect type supercell energy (2)γ

2-APB 26.5 118
APB (bc-plane) 4-APB 15.0 133

8-APB 9.0 160

2-APB 5.0 22
APB (ac-plane) 4-APB 2.5 22

8-APB 2.0 35

2-DB 5.0 22
90o DB 4-DB 2.7 24

8-DB 1.3 22

“twin” (ideal) 0-N 18.3 57
“twin” (relaxed) 1-N 9.9 62
“twin” (ideal) 1-N 11.9 74

3-N 8.2 102
7-N 6.6 165

twin (ideal) 11-N 6.1 228
15-N 5.0 (max) 252
19-N 3.7 231
23-N 3.0 222
27-N 2.4 210

3-N 9.2 86
nanotwin 5-N 6.4 80
(undistorted) 9-N 4.1 77

13-N 2.5 63

NM bulk 10 atom 28.0 n/a
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domain walls. Energetically, APB(ac), 90o DB and nanotwins (low-energy spin excitations) are the most

favorable and most likely to persist after annealing. Interestingly, densely-pack twins of a single tetragonal

variant are also remarkable very low energy. These nanoscale defects compete with widely separated twins

(spin kinks), which are observed. Such small fluctuating defects will affect the observed average moments,

whereas separated twins will affect the magnetic correlation length, see below. Separated twins do form and

are stabilized by lattice strain arising from disclinations formed when twins oriented 90o apart (from the

two tetragonal variants) intersect.[206] It is the twin-twin interactions that stabilize the mesoscale twins.

Typically in metals, the calculated 2γtwin is monotonically decreasing versus d (the separation of the

twin boundaries) until it plateaus at the measured twin boundary energy; essentially, the defects interact

(costing energy) until separated enough that they are screened from one another. Strikingly in BaFe2As2,

separated twins are higher in energy than dense twins, until a d of 16 unit cells (15 Fe-layers), where 2γtwin

reaches a maximum (Table 5.3 and Fig. 5.5), after which there is a slow convergence of 2γtwin versus d

(Fig. 5.5). At 28 unit cells (∼11 nm), 2γtwin has not yet converged, emphasizing the long-range interactions

among twins. Observed structural twins[42, 204] are extended well beyond the ones computationally feasible.

Thus, higher-density twins should become prominent near the phase transition, where they compete with

the ground state.
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5.4 Twin separation

Twin separation d is also affected by stress. Equilibrium is typically reached when the applied stress is

∼ 2γtwind, which is, however, exceedingly small for isolated twins in BaFe2As2. In real samples twins appear

in 90o oriented pairs, where (11̄0) twins terminate on (110) twins; this configuration is stabilized by lattice

strain arising from disclinations,[206] where the strain is reduced at the cost of increased d. With stress

(estimated roughly from a set of disclinations,[206] and orders of magnitude larger than 2γtwind), samples

detwin, but twins would (and do) return upon its removal.[205]

Twins cause anisotropic scattering near AFM wavevectors, giving 2-dimensional spin fluctuations, and

create stripes of increased diamagnetic response.[207] While twin separation depends on local defects and

stress, it is expected to get a peak in the magnetic susceptibility χ(q) at q = 2π/d̂, where d̂ is the average

twin-twin separation where 2γ saturates. The direction of q is perpendicular to twin boundaries (i.e., 45o

to reciprocal-space kx- and ky-axes, where x (y) is along a- (b-) axis). While the twins dictate the magnetic

correlation length, we suggest that small, low-energy excitation can further depress average moments by

spatial and temporal averaging, beyond those due to dynamic fluctuations.

Nanotwins (Fig. 5.2b) with no local distortion are like an isolated, ideal defect pair, not a dense set

of twins. To understand the effect of short-ranged structural distortion, we have studied a 1-N ideal twin

with(out) relaxation in ab-plane for only those atoms near the boundary, more localized than in the nanotwin

supercell. The planar defect energy with(out) relaxation is 62 (74) mJ/m2. Relaxations along a- and b-axis

lie within 0.9% of ideal, close to the best fit to measured PDF,[208] so the twin and nanotwin are very

similar in energy and local structure. Unlike for ideal twins, the nanotwin surface energy decreases to its

limiting value as the nanotwin-nanotwin distance grows (Table 5.3), and it is much lower in energy than

extended twins. Thus, a nanotwin may be considered a fluctuating twin nuclei, which has many more LS

sites (Fig. 5.4) not available in a twin supercell, with moments as low as 0.8 µB near the defect, similarly to

the assessed values in BaFe2As2. Our calculations support Niedziela et al.’s suggestion[208] that nanotwins

constitute an important fluctuating excitation in BaFe2As2.

Because the local magnetic configurations play the key role in determining the spin states of Fe, we

calculated the site- and l-projected density of states (DOS) to understand the electronic-structure origin.

Figure 5.6 shows the Fe d-projected DOS for HS and LS states. For the bulk (HS) states, the major

contribution at Fermi energy EF arises from Fe dxz and d3z2-r2 , also evidenced from ARPES.[221] All the

other orbital components exhibit a pseudo-gap near EF. For LS-Fe compared to HS-Fe, all the projected

DOS are shifted towards EF. The most pronounced effect occurs for dxz and d3z2-r2 character, where majority

states for LS fall into a pseudogap for dxz but are peaked for d3z2-r2 . Although the change of these orbital
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states is dominated by in-plane Fe-spin configurations, small contributions also arise from the hybridization

with As px and py orbitals (out of the Fe-plane), eventually altering the FS. The large difference in the

near EF (majority) DOS between the HS and LS state points to the orbital dependent electronic origin for

quenched moments.

In summary, we studied competing low-energy, magnetic planar defects in BaFe2As2. The favorable

defects are APB(ac), 90oDB, and nanotwins, but twins (which are observed) are favorable through the

mesoscale. The most pronounced reductions in Fe-moment are near the boundaries of APBs(bc) and

nanotwins. We find that isolated closely-spaced twins (twin nuclei) are energetically favorable and cor-

respond to a recently proposed nanotwin suggested to match the pair distribution function from scattering

experiment.[208] Nanotwins are energetically insensitive to microscopic displacements near the boundary,

in contrast to sensitivity to the As z coordinate. APBs along bc-planes and ac-planes are not equally fa-

vorable, an anisotropy not anticipated in the Mazin and Johannes model.[35] These defects can reduce the

Fe moment from spatial averaging, an environmental dependence which is not included in DMFT.[79, 98]

Assessing these defects and their dynamics can affect magnetism, which can be evaluated via Monte Carlo

simulations, and which are planned.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we addressed issues regarding the Fe-based superconductors, in particular the effects of chem-

ical and magnetic disorder, as well as spin excitations and magnetic planar defects that proliferate at low

temperature. We detailed alloying for electron- and hole-doped variants of BaFe2As2.

On the electron-doped side we found the limitations of the rigid-band model, which is frequently and

incorrectly applied in the literature. Furthermore, even when the Fermi-surface nesting does evolve according

to rigid-band concepts, there is significant broadening of states due to magnetic and/or chemical disorder,

reducing the magnetic susceptibility and thus instability to AFM ordering. This instability is critical; as it

becomes less pronounced, spin fluctuations increase and superconductivity is turned on. We found the origin

for these differences in the electronic structure (generalized dispersion) and in the site-projected density of

states of different transition-metal dopants. Those metals whose valence states have strong overlap in energy

with Fe (e.g., Co,Ni) follow a rigid-band model closely, while those that due not (e.g., Cu,Zn) show deviating

trends in their formation energetics. Physically, the large energy difference of Fe and Cu,Zn valence states

(due to increasing atomic number and shift of valence levels) leads to large impurity scattering and reduced

favorability to mixing. These results agree with measurements of the spin-density wave incommensurability

and ARPES on carrier densities with doping [85, 140].

On the hole-doped side, a topological transition occurs near the Brillouin zone X point for high con-

centrations. Here, the two electron cylinders “dissolve” and become four hole-like, lobe-shaped cylinders,

symmetrically positioned about X. This transition has been tied to a change in the SC gap symmetry; and,

therefore, the stable SC phase. The s− and d− wave SC symmetries are competitive in this regime, sug-

gesting the presence of a quantum critical point. There has been experimental controversy in characterizing

where this transition occurs. Experiments have been limited by the number and quality of samples, and

by the limitations of ARPES as a surface probe. Here we find the transition occurs at 90% K content.

We also see that, despite the involved nature of the transition, the orbital character remains unchanged
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throughout the transition. The change in SC state associated with the disappearance of electron cylinders

strongly suggests the importance of interband transitions in creating s± Cooper pairs from spin fluctuations.

We were also able to address issues associated with sample quality on the K-rich side, where the transition

occurs. By outlining the complete free energy of the Ba1−xKxFe2As2 compounds we explained why there is

an observed tendency to optimal doping at x near 0.4 and chemical instabilities near 0.7.

We then looked at spin excitations and planar magnetic defects in BaFe2As2. In BaFe2As2, twins are

observed to proliferate below the Néel transition. Furthermore, spin fluctuations are observed well above

the nematic phase boundary. Superconductivity was even found enhanced near the the twin boundaries.

Rapid spin fluctuations, along with electronic correlations, are considered responsible for a reduction of

magnetic moments. We found many of these excitations are indeed low energy, corroborating their presence

at temperatures above the Néel transition. We also find a peak in the energetics for twins separated by fifteen

or more Fe layers, in approximate correspondence with the observed magnetic correlation length. Lastly, we

detailed the properties of twin fluctuating nuclei, i.e. nanotwins, which are very low-energy excitations that

explain the details of the pair distribution function measured in neutron diffraction [208].

6.2 Future Directions

To improve our understanding of the Fermi-surface driven nesting, it would be a priority to develop code

that performs susceptibility calculations within a linear response approximation. Direct calculation of sus-

ceptibility for all wave-vectors, indicating where peaks exist for unstable ordering modes and determination

of how and why commensurate to incommensurate transitions occur. Further code development, such as

relaxations on atomic locations, would enabled improved, automated calculations for the magneto-structural

coupling in these compounds. As we found, Cu,Zn-doped samples are unfavorable to mixing. Thus inclu-

sion of short-range ordering effects via the dynamical cluster approximation [151] would be an even better

description of these compounds than the CPA. Modest correlations in these compounds could be captured

by a quantum Monte Carlo and DFT hybrid approach. This would share some similarities with dynamical

mean-field theory codes, but also differences that would allow for a different perspective and opportunity

for further comparison.

An obvious continuation of these calculations is to explore electron- and hole-doping in the 1111 com-

pounds, which are the other major class of Fe-SC. It would be interesting to see which of our results continue

to hold true in that case; and, if not, what are the differences. For example, I expect rigid-band approxi-

mations and stearic effects to hold better for rare-earth substituted 1111 samples because substitutions are
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not in the active layers. However, for hole doping, we should also expect to see a transition in the electron

pockets and similar change in SC phase. One of the differences in these compounds is that they are more

correlated than the 122, with further depressed moments. That makes them more difficult to study by direct

DFT calculations, but also makes spin-wave and defect calculations even more relevant.

Going forward there has been recent interest at Ames laboratory by M. Tanatar and R. Prozorov in

calculating the resistive anisotropy on the K-rich side of Ba1−xKxFe2As2. Experiments observe peaks in

thermodynamic quantities (e.g., thermal expansion coefficient) as a function of temperature in pure KFe2As2.

While there are no such peaks in the in-plane resistivity, which is most commonly measured, recently there

have been found to be peaks in the resistivity as measured along the c-axis. It has been suggested this is tied

to the warping on the hole bands at the K-rich end. Therefore, it is of interest to perform calculations of the

out-of-plane resistivity for K-rich compounds using the calculated band structure and Fermi velocities. To

do this, transport expressions with chemical disorder can be derived in KKR-CPA, e.g. Kubo-Greenwood

formalism, will need to be implemented in the code. In addition, there needs to be a means to adjust our

bands (e.g., LDA+U) to quantitatively match quantum oscillation and ARPES experiments. These together

will then allow a means for a realistic calculation of the transport properties, to confirm the source of resistive

anomalies, and thus to show what electron ordering is driving these transitions.
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Appendix A

Superconductivity

A.1 Phenomena of Superconductivity

Superconductivity was discovered in 1911 by Kamerlingh Onnes on cooling solid Hg. He was investigating

the electrical properties of metals at low temperatures. While it was expected the resistance would diminish,

it was thought it would happen gradually, and then only for pure specimens. Instead, at 4.2 K, there was

a sudden drop in resistance to zero. This is characteristic of a phase transition. Superconductivity is a

thermodynamically distinct state featuring two major properties. The first is perfect conductance. It has

been shown whatever resistance exists must be at least 10−18 times smaller than for ordinary copper at room

temperature. An important consequance of this is that the total flux threading a closed superconducting

circuit cannot change. The second, identified 22 years later, is the “Ochsenfeld-Meissner” (or simply Meiss-

ner) effect. This is perfect diamagnetism, or the complete expulsion of magnetic fields from the interior. In

ordinary metals an applied magnetic field will totally permeate the sample after some transitory period. A

consequance of the Meissner effect is that all SC currents must flow near the surface of the sample. This

is in analogy to charge scattering to the surface in an ordinary metal. Superconductivity is not a rare

phenonmenon. Many elemental metals will SC at sufficiently low temperatures (Tc ∼ 0-10 K).

The SC state can be destroyed by application of a large magnetic field (Hc1) or current density (Jc),

both of which are temperature dependent. In fact the latter implies the former since the Meissner effect is

sustained by surface currents. The behavior of SCs in the presence of magnetic fields subdivides them into

two categories, labeled Type I and Type II. Both types exhibit a sudden expulsion of interior fields below

Hc1. However, in Type II SCs, an inhomogenous state can occur for fields satisfying Hc1 < H < Hc2. In

this regime a regular lattice of microscopic vortices of “normal” regions enclosing quantized flux penetrates.

The Tc, Hc, and Jc values, and their anisotropies, give a macroscopic characterization of a SC. Improving

these traits is one key to technological applications. There are also microscopic characterizations of a SC.

One is the penetration depth of a magnetic field near the surface of a SC, which falls off exponentially.

The penetration depth is temperature dependent and typically one refers to the zero temperature quantity.
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Another length scale is coherence length of a SC, in other words the response distance of a SC in the

presence of an external perturbation, such as an impurity. Whether a SC has Type II behaviour depends

on the relative size of the penetration depth and coherence length. All high-Tc SCs are Type II.

Superconductors find use in MRI, NMR, magnetometers (SQUID), particle accelerators, maglev trains,

and sensitive electronics. Given the serendipitous discovery of most SCs to date, it is almost certain there

are undiscovered SCs with improved properties that will further benefit existing applications and find new

domains of use.

A.2 Electrodynamics

The phenomenology of SCs can be used to understand electrodynamics in the presence of a SC, especially

making connections to the penetration depth and coherence length. Brothers F. London and H. London

(1935) were the first to do this. They ascribed SC to a fluid of “superelectrons” (later identified as Cooper

pairs) that experience no drag. By Newton’s law, the rate of change of superfluid current is J̇s = (nsq
2/m∗)E.

This is in contrast to Drude-Lorentz equation for a metal, which contains a mean-free time τ to scattering.

Insertion into Maxwells equations followed by straightforward manipulations gives

∇× (∇× ∂

∂t
H) + (

1

λ2
L

+
ε

c2
∂2

∂t2
)
∂

∂t
H = 0, (A.1)

where λL = (4πnq2/m∗c2) is the London penetration depth. To incorporate the Meissner effect, the London

brothers integrated (A.1) and set the integration factor to zero. For time-invariant fields the London equation

is then

∇× (∇×H) +
1

λ2
L

H = 0. (A.2)

A consequance of their equation is that magnetic fields fall off as H(z) = x̂Hx(0)e−z/λL near the surface

of a SC. When stated in the London gauge (i.e. H = ∇ × A,∇ · A = 0)) it becomes Js = −(nq2/m∗c)A.

Later, Pippard generalized this relation to a non-local one

Js = − nq
2

m∗c

3

4πξ0

∫
A(r)r

r4
e−r/ξ0dr (A.3)

by introducing an empirical coherence length ξ0. Pippard’s description becomes relevant when λL � ξ0.

An alternative phenomenological approach was developed by V. Ginzburg and L. Landau (1950). They

reasoned that SC was a macroscopic quantum state. This meant one could ascribe a relative phase difference

between macroscopic points in a superconducting body. Further, an amplitude could be assigned at each
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point proportional to the number of superelectrons. Thus they introduced a complex order parameter ψ(r)

to describe an inhomogenous SC state. This order parameter was used in an expansion for the free energy

according to the Landau theory of phase transitions. In other words

fs(T, ψ) = fN (T ) + α(T )|ψ|2 +
1

2
β(T )|ψ|4 +

1

2m∗
|(p− q

c
A)ψ(r)|2, (A.4)

where α(T ), β(T ) are phenomological coefficients and fN (T ) is the free energy density of the normal state.

In analogy with the quantum mechanics of a charged particle, the third term is a minimal coupling to the

electromagnetic field. When the free-energy is minimized with respect to variations of the order parameter

ψ(r) and vector potential A(r), it yields constraints on ψ(r) and Js(r):

1

2m∗
(p− q

c
A)2ψ(r) + β|ψ(r)|2ψ(r) = −α(T )ψ(r) (A.5)

Js(r) = |ψ(r)|2
[
qh̄

m∗
∇θ(r)− q2

m∗c
A(r)

]
, (A.6)

where θ(r) is the phase of ψ(r). The Ginzburg-Landau theory can be used to derive its own penetration

depth and coherence length,

λ2
eff =

m∗c2β

4πq2|α(T )|
and ξ2

GL(T ) =
h̄2

2m∗|α(T )|
. (A.7)

Both λeff and ξGL diverge (Tc − T )−1/2 for T < Tc. The theory has been successful in describing the effects

of inhomogeneities on a SC, flux quantization, and the Josephson effect.

A.3 Thermodynamics

Superconductivity is a thermodynamic state completely characterized by the temperature T and applied

field H. As mentioned, sufficiently high fields and temperatures can destroy SC. The critical temperatures

and field are often related by the empirical relation Hc(T ) = Hc(0)(1− T 2/T 2
c ). At zero field the transition

is second-order, with a jump in specific heat but no latent heat. At finite fields the transition is first order.

The Meissner effect implies M = −H, making it simple to derive the Gibbs free energy density

gs(T,H)− gs(T, 0) =

∫
(
∂g

∂H
)

∣∣∣∣
T,p

dH = −
∫
µ0MdH =

∫
µ0HdH =

1

2
µ0H

2. (A.8)
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At transition, the free energy of the normal state, which is independent of H, and of the superconducting

state must equal. Therefore

gn(T )− gs(T,H) = gs(T,Hc)− gs(T,H) =
1

2
µ0(H2

c −H2). (A.9)

From these considerations, connections follow to the entropy difference ∆s = −µ0Hc dHc/dT , specific heat

jump ∆C|Tc = v Tc µ0(dHc/dT )2|Tc , and latent heat L = −v T µ0Hc(dHc/dT ) of the normal to supercon-

ducting transition, where v is the specific volume. Due to the reduced interaction of superelectrons and the

lattice, the thermal conductivity is orders of magnitude smaller in the SC state.

An important feature of SCs is the opening of an energy gap near the electronic Fermi level. There

is in fact no observed photoabsorption for frequencies below ∆ ∼ 10−3 eV. In ordinary metals, the low-

temperature electronic specific heat goes as Cn = γT , where γ = π2

3 D(EF )k2
BT and D(EF ) is the density

of states at the Fermi level EF . In a SC Cs ∼ ae−b/T , which is further evidence of an energy gap. Both are

in analogy with the infrared absorption and specific heat of semiconductors. Unlike for semiconductors, this

gap does not arise from band structure arguments. Instead, most SCs are metals with a well-defined Fermi

surface. As discussed below, the gap plays a central role in the theory of SC.

A.4 Cooper Pairing

Leon Cooper (1957) showed a free electron gas is unstable in the presence of an effective, attractive interaction

to the formation of bound electron pairs (Cooper pairs). This reasoning is applicable even when the Fermi sea

is strongly modified by the presence of a lattice. The band structure might then, for instance, display multiple

electron and hole pockets. In this case the starting point is the quasiparticles predicted by band theory. The

instability becomes manifest on solving the Schrödinger equation for two quasiparticles in the backdrop of

the filled Fermi sea. An unspecified interaction Uk,k′ between quasiparticles ψk and ψk′ is posited. Uk,k′

may be repulsive at some k points, but must otherwise be attractive. Whatever the interaction, it will obey

the translational and rotational symmetries of the underyling lattice. For conventional SCs, Uk,k′ is almost

spherically symmetric. For the Cu-SCs and Fe-SCs, the lattice obeys a tetragonal symmetry, therefore Uk,k′

will be invariant to symmetry operations under point group C4v. Translational symmetry demands the

interaction preserve the total Bloch momentum k1 + k2 of the pair. Because Uk,k′ does not depend on spin,

the orbital and spin degrees of freedom may be separated. The pairs may then be combined as a singlet or

triplet. In superfluid 3He the pairs are known to combine as triplets. However, in conventional SCs, and also

evidence shows for the Cu-SCs and Fe-SCs, the pairing occurs as a singlet. By combining the bound state so
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that the total Bloch momentum is zero the energy of the pair is minimized. If the interaction is nonzero only

within a narrow energy range of the Fermi level, as is the case for conventional SCs, then zero momentum

pairing also maximizes the number of available scattering states. The singlet pairing is why magnetism can

be strongly disruptive to SC. The most general pair singlet can be rewritten as a linear combination g(k) of

zero momentum states, that is, with V the volume of the sample

Φ(r1σ1, r2σ2) =
1

V

∑
k

g(k)eik·(r1−r2)χsinglet(σ1, σ2) (A.10)

with the requirements that g(k) = g(−k) is even and g(k) = 0 for Ek < EF in order to satisfy antisym-

metrization constraints. In this basis the two-particle Schrödinger equation becomes

(2Ek − E)g(k) +
∑
k′

Uk,k′g(k′) = 0. (A.11)

If there are non-trivial negative energy solutions to this equation, then the ground-state is unstable to the

formation of bound pairs. Many Cooper pairs will form until a new equilibrium, superconducting state is

achieved. The simulatenous filling of many pairs into the same state is possible because the Cooper pair is

spin zero and, therefore, a boson. The final ground-state resembles a Bose-Einstein condensate.

The nature of the attractive interaction Uk,k′ has been left unspecified. Frölich (1950) first suggested

the electron-electron interaction was mediated by polarizations in the ionic lattice. Such a mechanism is

possible because the response time of the ionic lattice is much slower than the electrons, allowing for a

long-ranged interaction in which the Columb repulsion has been effectively screened. This has proved to be

correct for conventional SCs. In USCs it is likely that another mechanism is at work. Berk and Schrieffer

(1966) suggested magnetic polarizations might mediate pairing. Kohn and Luttinger suggested so-called

Friedel oscillations could lead to an attractive force. Friedel oscillations refer to a screening in which there

are shells of both positive and negative charge. This leads to potential wells that another quasiparticle

can be attracted to. Other options include excitions and solitons. In 3He many factors compose the pair

interaction, so that no one mechanism plays a starring role. This may also be the case in USCs.

A.5 Pairing Symmetries

In the average potential approximation, Uk,k′ = −U0/N is taken as a small, perturbative constant for

simplicity and then nonzero only within a narrow shell h̄ωD of the Fermi sea. In that case it can be shown

the Cooper pair equation admits a non-trivial solution with binding energy ∆b = 2h̄ωDe
−2/(U0D(EF )). Here
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D(EF ) is the density of states (DOS) at the Fermi level. Its presence marks the importance of the Fermi level

DOS on SC. The spherical symmetry of Uk,k′ = −U0/N implies g(k) has definite orbital angular momentum

`. Singlet pairing requires that ` = 0, 2, 4, ... be even. In conventional SCs this is always s-wave as it is

expected to produce the lowest-energy binding.

Understanding the pairing symmetry is one of the prime pursuits of those studying USCs. For USCs, the

interaction Uk,k′ has the lower symmetry of the point group G of the crystal. In this case, the solutions g(k)

will be proportional to basis functions of one of the irreducible representations of G. In the case of tetragonal

Cu-SCs and Fe-SCs, G = C4v and there are five irreducible representations: A1g, A2g, B1g, B2g, and E. Each

space has an infinite set of eigenfunctions. As A1g is the trivial representation, its basis functions respect

all symmetries of C4v. Such solutions are called “s-wave” in analogy with terminology for conventional SCs.

Solutions belonging to B1g are “d-wave”. It has been shown conclusively that Cooper pairs in Cu-SCs have

d-wave pairing. In Fe-SCs there is a strong expectation that the pairing state belongs to A1g, and thus is

s-wave, but one which is not the simplest eigenfunction. In other words, there are evidences of sign changes.

A.6 BCS Theory

In 1957 a microscopic theory of superconductivity by Bardeen, Cooper, and Schreiffer (BCS) [222] could

explain the properties of many of the known SCs at that time. Indeed, this theory, in its generalized form,

is also expected to be applicable to USCs. Building on the success of Cooper, they defined a many-body

Hamiltonian taking into account an attractive interaction Ukk′ . In second-quantized form it reads

H =
∑
k

εk(c†k↑ck↑ + c†−k↓c−k↓) +
∑
k,k′

Ukk′c
†
k↑c
†
−k↓c−k′↓ck′↑. (A.12)

Here εk = Ek − µ is the quasiparticle energy measured relative to the Fermi level and standard notation

has been used. It is not possible to solve this Hamiltonian exactly, therefore a mean-field approach must be

used. In the original method a variational form

|ΨS〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉. (A.13)

is assumed for the ground-state. The variational parameters uk and vk satisfy u2
k +v2

k = 1 and represent the

filling of state |k,−k〉 in a singlet. An alternative approach, formulated by Bogoliubov and Valatin [223, 224],

is to perform a canonical transformation of the Hamiltonian followed by a mean-field approximation. In either

case the resulting solutions are the same.
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On minimizing the BCS variational form, the ground-state is given by

u2
k =

1

2

[
1 +

εk√
ε2k + ∆2

k

]
and v2

k =
1

2

[
1− εk√

ε2k + ∆2
k

]
(A.14)

where the “gap parameters” ∆k are specified by the self-consistency condition

∆k = −1

2

∑
k′

Ukk′
∆k′√

ε2k′ + ∆2
k′

. (A.15)

The gap parameters ∆k are central to the theory of SC. The opening of an energy gap is tied with the

magnitude of ∆k. Note, however, that ∆k is a complex quantity. As in the Cooper pairing problem,

the symmetry of Ukk′ dictates ∆k be a basis function of an irreducible representation of the point group

G of the underlying lattice. The gap parameters can be taken as the order parameter associated with

the SC transition, however it is more common to choose ψk = 〈ΨS |c−k↓ck↑|ΨS〉. At finite temperatures

the self-consistency condition includes a factor of tanh( 1
2T

√
ε2k′ + ∆2

k′) on the right-hand side of (A.15).

Experimental characterization of the gap reveals facets of the space-time structure of the Ukk′ interaction.

A.7 Conventional Superconductors

Before the advent of high-Tc SCs, most SCs shared a phenomenon known as the isotope effect. Substituting

atoms for an isotopic variant had a direct and inverse relation on Tc and Hc. This inspired the suggestion

that the ionic lattice had a strong role to play in the attractive coupling Ukk′ . Formally, the phonon mediated

electron-electron interaction can be written in perturbation theory as

Ukk′ =
1

2

∑
q

|Mq|2
[

1

Ek − Ek−q − h̄ωq
+

1

Ek′+q − Ek′ − h̄ωq

]
, (A.16)

where Mq is the strength of coupling to phonon mode q. As the phonon energies are smaller than energies

near the Fermi level, the largest contribution will be near Ek = Ek−q, for which Ukk′ < 0. Also note k and

k′ appear in separate terms. If the Fermi sea is spherically symmetric, as for a free electron gas or simple

metal, then we can justify the average potential approximation Ukk′ = −U0/N within h̄ωD of the Fermi

level.

Working out the consequances of this choice describe the behavior of conventional SCs. Cooper pairs are
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connected as a s-wave singlets. The connection between the gap and critical values are

∆(T ) = 3.06kBTc

(
1− T

Tc

)1/2

and H2
c = 4πD(EF )∆(0)2 1

V
(A.17)

and the jump in specific heat is

∆C(Tc) = 4.68D(EF )k2
BTc. (A.18)

These predictions are in good agreement for conventional SCs and marked a major success of the BCS theory.

Deviations from these formula serve as an important point of comparison for USCs.

94



References

[1] J. Bednorz and K. Mller, “High-Tc superconductivity in perovskite-type oxides,” Physica B+C,
vol. 148, no. 13, pp. 166 –, 1987.

[2] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered Superconductor
La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K,” Journal of the American Chemical Society, vol. 130,
no. 11, pp. 3296–3297, 2008.

[3] M. Rotter, M. Tegel, and D. Johrendt, “Superconductivity at 38 K in the Iron Arsenide
(Ba1−xKx)Fe2As2,” Phys. Rev. Lett., vol. 101, p. 107006, Sep 2008.

[4] J. Korringa, “On the calculation of the energy of a Bloch wave in a metal,” Physica, vol. 13, no. 6–7,
pp. 392 – 400, 1947.

[5] W. Kohn and N. Rostoker, “Solution of the Schrödinger Equation in Periodic Lattices with an Appli-
cation to Metallic Lithium,” Phys. Rev., vol. 94, pp. 1111–1120, Jun 1954.

[6] D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, “Density-Functional
Theory for Random Alloys: Total Energy within the Coherent-Potential Approximation,” Phys. Rev.
Lett., vol. 56, pp. 2088–2091, May 1986.

[7] G. Grosso and G. P. Parravicini, Solid State Physics. Academic Press, 2000.

[8] J. B. Ketterson and S. N. Song, Superconductivity. Cambridge University Press, 1999.

[9] A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity. Pergamon Press, 1969.

[10] M. Tinkham, Introduction to Superconductivity. McGraw-Hill, Inc., 1996.

[11] J. F. Annett, Superconductivity, Superfluids, and Condensates. Oxford University Press, 2004.

[12] A. A. Kordyuk, “Iron-based superconductors: Magnetism, superconductivity, and electronic struc-
ture,” Low Temperature Physics, vol. 38, no. 9, pp. 888–899, 2012.

[13] M. D. Lumsden and A. D. Christianson, “Magnetism in Fe-based superconductors,” Journal of Physics:
Condensed Matter, vol. 22, no. 20, p. 203203, 2010.

[14] J. Paglione and R. L. Greene, “High-temperature superconductivity in iron-based materials,” Nat
Phys, vol. 6, pp. 645–658, Sep 2010.

[15] A. Chubukov, “Pairing Mechanism in Fe-Based Superconductors,” Annual Review of Condensed Matter
Physics, vol. 3, no. 1, pp. 57–92, 2012.

[16] G. R. Stewart, “Superconductivity in iron compounds,” Rev. Mod. Phys., vol. 83, pp. 1589–1652, Dec
2011.

[17] H.-H. Wen and S. Li, “Materials and Novel Superconductivity in Iron Pnictide Superconductors,”
Annual Review of Condensed Matter Physics, vol. 2, no. 1, pp. 121–140, 2011.

95



[18] Y. Izyumov and E. Kurmaev, High-Tc Superconductors Based on FeAs Compounds. Springer, 2010.

[19] I. I. Mazin, “Superconductivity gets an iron boost,” Nature, vol. 464, pp. 183–186, Mar 2010.

[20] D. J. Scalapino, “A common thread: The pairing interaction for unconventional superconductors,”
Rev. Mod. Phys., vol. 84, pp. 1383–1417, Oct 2012.

[21] M. R. Norman, “The Challenge of Unconventional Superconductivity,” Science, vol. 332, no. 6026,
pp. 196–200, 2011.

[22] S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang,
Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue,
and X. J. Zhou, “Phase diagram and electronic indication of high-temperature superconductivity at
65 K in single-layer FeSe films,” Nat Mater, vol. 12, pp. 605–610, Jul 2013. Letter.

[23] L. Boeri, O. V. Dolgov, and A. A. Golubov, “Is LaFeAsO1−xFx an Electron-Phonon Superconductor?,”
Phys. Rev. Lett., vol. 101, p. 026403, Jul 2008.

[24] K. Haule, J. H. Shim, and G. Kotliar, “Correlated Electronic Structure of LaO1−xFxFeAs,” Phys. Rev.
Lett., vol. 100, p. 226402, Jun 2008.

[25] H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, and J. ichi Shimoyama,
“Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): a new superconducting layered pnictide oxide with
a thick perovskite oxide layer,” Superconductor Science and Technology, vol. 22, no. 7, p. 075008, 2009.

[26] Y. Mizuguchi and Y. Takano, “Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor,”
Journal of the Physical Society of Japan, vol. 79, no. 10, p. 102001, 2010.

[27] K. Segawa and Y. Ando, “Magnetic and Transport Properties of FeAs Single Crystals,” Journal of the
Physical Society of Japan, vol. 78, no. 10, p. 104720, 2009.

[28] C.-H. Lee, A. Iyo, H. Eisaki, H. Kito, M. T. Fernandez-Diaz, T. Ito, K. Kihou, H. Matsuhata,
M. Braden, and K. Yamada, “Effect of Structural Parameters on Superconductivity in Fluorine-Free
LnFeAsO1−y (Ln = La, Nd),” Journal of the Physical Society of Japan, vol. 77, no. 8, p. 083704, 2008.

[29] M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt, “Superconductivity and Crystal Structures of
(Ba1−xKx)Fe2As2 (x=0-1),” Angewandte Chemie International Edition, vol. 47, no. 41, pp. 7949–
7952, 2008.

[30] M. Gooch, B. Lv, K. Sasmal, J. Tapp, Z. Tang, A. Guloy, B. Lorenz, and C. Chu, “Superconductivity
in ternary iron pnictides: AFe2As2 (A = alkali metal) and LiFeAs,” Physica C: Superconductivity,
vol. 470, Supplement 1, no. 0, pp. S276 – S279, 2010. Proceedings of the 9th International Conference
on Materials and Mechanisms of Superconductivity.

[31] D. J. Singh, “Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calcula-
tions,” Phys. Rev. B, vol. 78, p. 094511, Sep 2008.

[32] I. I. Mazin, M. D. Johannes, L. Boeri, K. Koepernik, and D. J. Singh, “Problems with reconciling den-
sity functional theory calculations with experiment in ferropnictides,” Phys. Rev. B, vol. 78, p. 085104,
Aug 2008.
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