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ABSTRACT 

Studying primate nutritional ecology is critical for addressing questions related to individual and 

group-based decision making, feeding ecology, life history, and reproductive success. However, 

understanding food selection is a complex task, and it requires integrating information on 

physiology, behavior, and the ecological and social environments in which the animals live. In 

this dissertation, I examined the nutritional ecology of Mexican black howler monkeys (Alouatta 

pigra), an endangered nonhuman primate species characterized by a high intraspecific variability 

in time spent feeding on leaves, fruits, flowers, and other items (such as bark and stems) across 

seasons and study sites. Howler monkeys are considered the most folivorous New World 

primates, with leaves accounting for up to 100% of feeding time during certain months. Given 

assumptions regarding the challenges faced by foragers exploiting difficult to digest or high fiber 

foods that also may contain plant secondary compounds, howlers are considered energy-limited. 

While howler monkeys do consume a leaf-heavy diet during certain seasons of the year, and 

possess certain anatomical and physiological traits such as a capacious colon where fermentation 

occurs, a relatively long food transit time for their body mass, and molars with high shearing 

crests that contribute to the efficient processing of leafy material, describing them as folivores is 

an oversimplification of their dietary ecology. In this 15-month field study, I combined 

ecological, behavioral, and phytochemical data to analyze patterns of patch and food choice, 

nutrient and energy intake, and nutrient balancing in two groups (n = 14) of black howler 

monkeys inhabiting a 1400-ha semi-deciduous forest (“El Tormento”) in Campeche, Mexico. By 

following a single individual and recording its complete diet over the course of a single day, the 

amount in grams of each resource consumed, and the phytochemical characteristic of the food 

ingested, I constructed complete daily dietary profiles for each focal animal, and analyzed 
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individual food choices using the Geometric Framework for nutrition. The GF is a 

multidimensional approach in which variables such as different food components and the amount 

of ingested nutrients are viewed in geometric space. The first chapter examines the role of 

resource mixing (i.e., switching between patches characterized by different types of resources 

and proportions of macronutrients) in individual feeding patch choice and patch leaving 

decisions. The second chapter analyzes the effects of plant phytochemical characteristics, 

including macronutrients and minerals, on individual food selection. The third chapter utilizes 

nutritional geometry to explore the synergistic effects of multiple nutrients and energy 

requirements on howler food choice across three different seasons (rainy, dry, and nortes). 

Finally, in the fourth chapter I outline the major conclusions and contributions of this research. 

 I found that resource mixing offered the strongest explanation for feeding patch choices 

of black howler monkeys. This is based on data indicating that individuals frequently switched 

among complementary food items (e.g., from mature fruits to young leaves, from young leaves 

to immature fruits), moving from a lower protein patch to a higher protein food patch and vice 

versa. Moreover, neither patch depletion, satiation, nor social factors (e.g., intra-group 

aggression) were found to play an important role in individuals’ decisions to leave a patch. 

During the dry and rainy seasons, indices of howler food selectivity did not correlate with the 

nutrient and energetic content of foods consumed. This is not expected in a nutrient 

maximization model, but is consistent with the expectations of nutrient balancing. Based on the 

amount of food ingested (grams dry weight), howler monkeys were characterized by a fruit 

dominated diet (58% fruits, 37% leaves, 5% flowers), but this pattern differed among seasons. 

Leaves (mainly mature) were the most consumed food items during the nortes (49.5%). 

However, despite temporal changes in food consumption and food availability, and despite the 
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fact that the food items consumed by howlers at El Tormento contained on average ~11% 

available protein, high levels of condensed tannins, and a low protein-to-fiber ratio (0.4 for 

young and mature leaves), across seasons the howlers consumed on average 102 kJ of available 

protein per metabolic body mass per day and 628 kJ/mbm of total energy. These values 

surpassed their daily requirements for protein and metabolizable energy, and were higher than 

those reported for primates considered ripe fruit specialists such as spider monkeys (Ateles spp.). 

Maintaining a balance in daily protein and non-protein energy intake was the most consistent 

strategy adopted by howler monkeys across all seasons of the year. These findings support the 

idea that howler monkey feeding strategies enable them to translate energy into rapid growth 

rates and high reproductive output compared to other atelines. Finally, this research supports the 

increasing recognition of nutrient balancing as a dietary strategy used by nonhuman primates to 

exploit nutritionally imbalanced and complementary foods in order to meet their dietary needs. 
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CHAPTER 1 

GENERAL INTRODUCTION 

A major question in biological anthropology is how do male, female, and juvenile primates 

obtain sufficient nutrients required for growth, maintenance, and reproduction (Milton, 1987; 

Lambert, 2007; Leonard et al., 2007; Lambert, 2011; Kuzawa and Bragg, 2012). During the 

course of human evolution, changes in energy requirements associated with increased brain size 

and social complexity, an extended juvenile period, and the production of altricial young resulted 

in altered patterns of habitat exploitation and the ability to colonize new habitats (Leonard and 

Robertson, 1994; Leonard et al., 2003). For example, it has been argued that early in their 

evolutionary history, human ancestors were successfully able to exploit more open savanna 

habitats by consuming resources such as underground tubers, rhizomes, terrestrial fibrous foods, 

and large hard seeds and nuts (Teaford and Ungar, 2000). Processing these types of resources 

was facilitated by cognitive changes in foraging strategies, changes in social cooperation, and 

technological innovations in food processing, such as the use of wooden tools as digging sticks, 

stone tools to cut and pound tough plant material, and the use of fire as an aid in the breakdown 

of difficult to process nutrients and in the denaturation of toxins (Ambrose, 2001; Wrangham, 

2007; Sponheimer and Dufour, 2009). According to Milton (2000: 480), “diet influenced, indeed 

drove, human evolution”. Thus, the study of food choice and nutritional ecology of wild 

prosimians, monkeys and apes offers critical insight into the factors that have shaped human and 

nonhuman primate diet, nutrition, social behavior, and cognition. 

 Nutritional ecology also is relevant for the study of primate ontogeny and life history 

(Leigh, 1994), since the intake of particular macro and micronutrients, and especially protein and 

energy balance, is known to affect infant and juvenile growth patterns and female reproductive 
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success and fitness (Lee, 1987; Altmann, 1991; Robbins, 1993a; Altmann, 1998; Altmann and 

Alberts, 2005; Altmann, 2006; Emery Thompson et al., 2007; Robbins et al., 2007; Terasawa et 

al., 2012; Vogel et al., 2012; Emery Thompson, 2013). For example, Altmann (2006) found that 

energy shortfalls (as a proportion of a calculated “optimum”) in female baboons (Papio 

cynocephalus) were directly correlated with a decrease in female reproductive success, as 

measured by the number of surviving juveniles. These findings were based on the assumptions 

that energy was the main factor affecting the baboons' fitness and that optimal diets were those 

that maximized energy intake (and at the same time complied with minimum nutrient 

requirements) (Altmann, 1991). This approach builds on models of Optimal Foraging Theory, 

focusing on the maximization of a single “currency”, such as energy or protein, as the main 

determinant of individual fitness (Pyke et al., 1977; Harrison, 1984; Stephens and Krebs, 1986a; 

Altmann, 2006; Ydenberg et al., 2007).  

In contrast to these single-currency models, more recent frameworks are based on a 

multi-dimensional and nutritionally explicit approach to test the hypothesis that foragers attempt 

to balance the intake of multiple nutrients by adjusting the amount and proportion of protein, 

lipids, and carbohydrates consumed (Behmer, 2009; Raubenheimer et al., 2009; Felton et al., 

2009b; Simpson and Raubenheimer, 2011; Simpson and Raubenheimer, 2012). In the past 

several years, nutritional geometry and the “Geometric Framework for nutrition” (Simpson and 

Raubenheimer, 1993; Raubenheimer and Simpson, 1993) have been incorporated into 

primatology to explore the synergistic effects of multiple nutrients, secondary metabolites, and 

energy requirements on the food choice of spider monkeys, baboons, and gorillas (Felton et al., 

2009a; Felton et al., 2009c; Rothman et al., 2011; Johnson et al., 2013). Using this framework, 

wild spider monkeys (Ateles chamek) were found to prioritize protein intake, which means that 

2 
 



they maintained a constant daily protein intake across seasons independently of the percentage of 

leaves in the diet and fluctuations in food availability (Felton et al., 2009a; Felton et al., 2009c). 

Johnson et al. (2013) found that a single wild female chacma baboon (Papio hamadryas ursinus), 

followed during 30 consecutive days, maintained a balanced intake of protein and non-protein 

energy (i.e., lipids and carbohydrates) despite high variation in the nutritional content and 

amount of foods consumed. A different pattern was found in wild mountain gorillas (Gorilla 

beringei), which maintained a relatively constant non-protein energy intake throughout the year, 

and they did so by over-ingesting protein during periods of high leaf consumption (Rothman et 

al., 2011).  

 Given the fact that individual primate species appear to solve problems of nutrient 

balancing in alternative ways, in this dissertation I used nutritional geometry to analyze patterns 

of food selection and nutrient balancing in two groups of Mexican black howler monkeys 

(Alouatta pigra) living in a 1400-ha semi-deciduous forest in Campeche, Mexico, during three 

seasons characterized by fluctuations in food availability. From August 2010 to October 2011, I 

collected ecological, behavioral, and phytochemical data to address a set of questions concerning 

black howler monkey nutritional ecology. These questions include: 1) Is resource mixing a 

strong explanation for feeding patch choice in black howler monkeys? 2) Do individuals leave an 

undepleted feeding patch before satiation in order to balance nutrients or to limit and dilute the 

effects of ingesting high levels of particular toxins? 3) Is howler food choice correlated with 

particular phytochemical characteristics of the selected food items during different seasons? 4) 

Do black howler monkeys show patterns of protein prioritization such as those presented by 

Ateles chamek, due to their phylogenetic relationship? 
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In this dissertation I build on previous research on howler monkey (Alouatta spp.) 

feeding ecology to provide a detailed analysis of the foraging tradeoffs and choices that howlers 

make in exploiting nutritionally heterogeneous food resources, including leaves which are high 

in fiber, lignin, and secondary compounds; fruits that are characterized by high amounts of non-

structural carbohydrates and lipids, but also secondary compounds; and flowers, which are high 

in available protein, but also potentially high in fiber. This research moves beyond traditional 

models of energy maximization and, by focusing on the importance of nutrient balancing in 

understanding primate responses to resource availability and distribution, contributes to advance 

the field of primate nutritional ecology. 

Howler monkeys have been described as behavioral folivores (Milton, 1978; Milton, 

1979) to differentiate the ecological challenges they face in consuming difficult to digest 

resources (such as fibrous leaves and bark) from those faced by primates such as colobines and 

indriids, which are referred to as anatomical folivores due to the specializations of their stomachs 

and ceca, respectively, where efficient fiber fermentation occurs. Howler monkeys are hindgut 

fermenters, and they appear to overcome difficulties in digesting the structural carbohydrates 

present in leaves using a strategy that includes a relatively long food transit time for a platyrrhine 

(20.4 hours for A. palliata, weighing 7 kg (Milton, 1984)), high shearing crests that contribute to 

the efficient processing of leafy material (Kay, 1975; Kay, 1990), and an activity pattern 

characterized by behaviors that conserve energy, such as long periods of rest, limited within-

group social interactions, and a small day range (Milton, 1980). Howlers have a capacious colon 

compared to other atelines (Milton 1981), and in fact colon and cecum volume in A. palliata is 

larger than what is predicted for a primate given their body size (Table 1.1). However, when 

comparing the ratios of intestine length to body length, howlers differ considerably from other 
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hindgut fermenters such as indriids (Propithecus has a ratio of intestine length to body length of 

15.5:1), and instead show greater similarity with spider monkeys, a highly frugivorous ateline 

relative (2.8:1 for A. palliata and 2.7:1 for Ateles geoffroyi) (Milton, 1981).  

Nevertheless, describing howler monkeys as folivores is an oversimplification of their 

dietary ecology. In fact, there is considerable evidence that howler monkeys are characterized by 

high intraspecific variability in time spent feeding on leaves, fruits, flowers, and other items such 

as bark and stems across seasons and study sites (Di Fiore et al., 2011; Chaves and Bicca-

Marques, 2013). For example, in the semi-deciduous tropical forest of the Calakmul Biosphere 

Reserve, Mexico, ripe and unripe fruits accounted for more than 85% of black howler monkey 

(A. pigra) feeding time in the wet season (Rizzo, 2004). In contrast, in the riverine gallery forest 

of Northern Belize, black howlers spent on average 86% of feeding time on young and mature 

leaves in the dry season (Pavelka and Knopff, 2004). However, several studies have repeatedly 

demonstrated that time spent feeding on different items is not a precise measure of the 

contribution of those items to the foragers’ diet (see Kurlan and Gaulin (1987) for a thorough 

assessment of this methodological problem). A recent review analyzing dietary patterns (or 

syndromes) in several howler monkey species (Garber et al., in press) showed that, based on 

grams consumed, Mesoamerican howler monkeys (A. palliata and A. pigra) and A. seniculus are 

characterized by a relatively balanced leaf and fruit diet, and were found to eat similar amounts 

of leaves and fruit across the year. In contrast, Amazonian howler monkeys (A. belzebul and A. 

macconnelli) are characterized by a fruit-enriched diet (55-57% of grams ingested were from 

fruit), whereas Atlantic Forest and southern howler monkeys (A. caraya and A. guariba) appear 

to have a leaf-enriched diet (>60% of grams ingested were from leaves) (Garber et al., in press). 

Yet it remains unclear the degree to which differences in dietary patterns reflect the type of forest 
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inhabited, seasonal differences in forest productivity, the relative availability of different food 

items, or the phytochemistry of the plant species present at each site. Thus, a more detailed 

knowledge of the spatial and temporal availability of foods and nutrients present in tropical 

forests, and of individual patterns of nutrient and energy intake is needed to understand dietary 

selectivity and the factors that affect food choice in howler monkeys.  

Alouatta pigra has a limited geographical distribution, and is found only in southeastern 

Mexico, northern Guatemala, and Belize (Marsh et al., 2008). It is listed as “endangered” in the 

IUCN Red List of Threatened Species, mainly due to the rapid fragmentation and transformation 

of natural habitats across its range (Marsh et al., 2008). Two species of howlers are present in 

Mexico, A. pigra and A. palliata. Based on genetic and biogeographic information, current 

evolutionary hypotheses on the colonization of Central America by Alouatta present a scenario 

in which the ancestors of A. pigra first crossed the Panamanian isthmus approximately 3 million 

years ago (Cortes-Ortiz et al., 2003; Ford, 2006). One million year later, the ancestors of A. 

palliata independently migrated into Central America (Ford, 2006). However, whereas black 

howler populations have become restricted to small forest refugia across a circumscribed range 

in northern Mesoamerica, mantled howlers (A. palliata) have expanded their range and now are 

found from Ecuador through the Mexican state of Veracruz (Cortes-Ortiz et al., 2003). At 

present these two howler species are sympatric, and sometimes interbreed, along a narrow region 

of southern Mexico (Cortes-Ortiz et al., 2007; Kelaita and Cortes-Ortiz, 2013). Ecological 

distinctions between A. palliata and A. pigra have been hypothesized to reflect greater ecological 

tolerance and superior dispersal and competitive abilities of mantled howlers (Ford, 2006, but 

see Baumgarten and Williamson, 2007). However, in the absence of detailed comparative data 

on diet, foraging strategies, and nutritional ecology of A. pigra across a range of habitat types 
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and geographical areas, our understanding of species differences in resource exploitation and 

dietary adaptability in disturbed areas, forest fragments, and continuous forests is limited. 

Each chapter of this dissertation, excluding this General Introduction and the 

Conclusions, is structured as an independent research article. In Chapter 2, I analyzed the set of 

factors affecting individual decisions regarding howler feeding patch choice. In particular, my 

goal was to explore the role of resource mixing in black howler decisions of when to leave a 

patch and which patch to visit next. The results showed that patch depletion, satiation, and 

within-group contest competition were not frequent motivations for leaving a patch. Resource 

mixing, and in particular switching from young leaf to immature fruit feeding patches, was found 

to offer the strongest explanation of patch choice in this species. I also found that protein intake 

rates differed across fruit, leaf, and flower patches, resulting in alternating the amount of protein 

ingested in different patch types. 

Chapter 3 describes the phytochemical composition of the foods consumed by black 

howler monkeys, and examines how plant nutritional chemistry (i.e., content of macronutrient 

and minerals) affected individual food selection. Based on indices of selectivity that reflected 

seasonal changes in the amount of different phenophases of the most consumed plant species and 

their availability in the environment, I found that howlers did not significantly select food items 

containing high levels of protein, sugar, or with a high protein-to-fiber ratio. In addition, howlers 

did not avoid foods characterized by a high fiber content. Only in one season of the year, the 

nortes, leaf ingestion was higher than fruit and flower consumption. During that season, howler 

selectivity indices correlated positively with the lipid, potassium, and phosphorus content of the 

ingested foods. The importance of lipids in howler monkey diets has largely been overlooked, 

and in this chapter I argue that, since energy intake was not higher during this season, a strategy 
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of selecting fruits high in lipids (17-41% dry matter) served to balance higher protein intake 

resulting from increased leaf consumption. Overall, the data did not support the prediction that 

food choice in howlers was based on a protein or protein-to-fiber maximization strategy. 

In Chapter 4, I applied a nutritional geometry framework to determine how howler 

monkeys adjusted nutrient and energy intake during different periods of the year characterized 

by fluctuations in food availability. Overall, I found evidence that, despite fluctuations in the 

daily intake of protein, carbohydrates, and lipids, black howler monkeys attempted to balance the 

intake of protein and non-protein (i.e., carbohydrates plus lipids) energy within the same day or 

over the course of four-five days. Regulating the ratio of nutrients ingested can be considered as 

a strategy for buffering the deficits and surpluses related to an imbalanced diet. Finally, both 

daily protein and non-protein intake were found to be relatively high when compared to primates 

characterized by a different dietary emphasis, such as highly frugivorous spider monkeys (Ateles 

chamek), or genera described as omnivorous such as baboons (Papio hamadryas ursinus). This 

finding has been highlighted in a recent study of black howler monkey nutritional ecology at a 

different site in Mexico (Amato and Garber, in press), and calls into question the characterization 

of howler monkey diets as energy-limited. Thus, we need to reevaluate the nutritional strategies 

of howler monkeys and other atelines in order to better understand the effects of phylogeny, 

habitat, diet, and digestive adaptation on primate life history and nutrient requirements of growth 

and reproduction. 
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Table 1.1. Residuals (listed in decreasing order) from the regressions of colon volume (cm3) (A) and 
cecum+colon volume (cm3) (B) on body mass (g) for 17 primate species. Positive values represent higher 
colon and cecum volumes than what would be predicted for a primate species given its body mass. Data 
obtained from Chivers and Hladik (1980) 
 
A)                               B) 

 

 

 

 

 

 

 

 

 

 

 

Species Residual log 
colon volume 

Alouatta palliata 0.318211 
Symphalangus syndactilus 0.251731 
Pan troglodytes 0.104217 
Alouatta seniculus 0.097366 
Pongo pygmaeus 0.077707 
Papio anubis 0.075855 
Lagothrix lagotricha 0.064387 
Gorilla gorilla 0.055484 
Semnopithecus entellus 0.038891 
Hylobates lar 0.020097 
Saimiri oerstedii -0.078791 
Avahi laniger -0.110392 
Colobus polykomos -0.168217 
Nasalis larvatus -0.197421 
Leontopithecus rosalia -0.573990 
Ateles paniscus -0.621109 
Cercopithecus aethiops -0.655427 

Species 
Residual 

log(cecum+colon) 
volume 

Alouatta palliata 0.348465 
Symphalangus syndactilus 0.194082 
Alouatta seniculus 0.143122 
Avahi laniger 0.121453 
Lagothrix lagotricha 0.108833 
Pan troglodytes 0.106576 
Gorilla gorilla 0.088465 
Pongo pygmaeus 0.059578 
Papio anubis 0.041269 
Semnopithecus entellus 0.017087 
Hylobates lar -0.074492 
Saimiri oerstedii -0.105527 
Nasalis larvatus -0.220788 
Colobus polykomos -0.241300 
Ateles paniscus -0.513441 
Leontopithecus rosalia -0.621664 
Cercopithecus aethiops -0.654831 
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CHAPTER 2 

FEEDING PATCH CHOICE AND RESOURCE MIXING IN BLACK HOWLER 

MONKEYS (ALOUATTA PIGRA) 

 

Introduction 

Food items ingested by primates usually occur in discrete food patches that can be monopolized 

by one or several group members (Isbell, 2012). However, the definition of a “food patch” can 

be challenging. Most field researchers have agreed to consider a patch as an aggregation of food 

items arranged in such a way that the forager can feed in it without interruption, and it can be 

represented by an isolated tree or a group of food trees of the same species with adjoining 

canopies (Leighton and Leighton, 1982; White and Wrangham, 1988; Chapman, 1988). Here I 

also defined a patch as a single feeding tree. The availability, distribution, and “quality” (e.g., 

size, density of food items) of feeding patches have been considered to have an important effect 

on primate social organization, group cohesion, and feeding competition (Wrangham, 1980; 

Isbell, 1991; van Hooff and van Schaik, 1992; Peres, 1996; Koenig, 2000). Due to this, studies of 

patch choice have traditionally analyzed individual foraging decisions in relation to patterns of 

social foraging, dominance, partner preferences, and feeding competition (Di Bitetti and Janson, 

2001; Kazahari and Agetsuma, 2008; King et al., 2009; Garber et al., 2009; Marshall et al., 2012; 

Kazahari et al., 2013). However, information on detailed ecological and nutritional 

characteristics of the patches also is needed to understand the basis of feeding patch preferences 

(Marshall et al., 2012; Leighton, 1993). 
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 Traditional ecological models based on Optimal Foraging Theory offer a set of 

predictions to explain patch choice based on a “currency” (usually energy) that is expected to 

contribute significantly to fitness (Harrison, 1984; Stephens and Krebs, 1986b; Altmann, 2006; 

Ydenberg et al., 2007). Optimal Foraging Theory was modified by Charnov (1976) to include the 

Marginal Value Theorem (MVT), which predicts that foragers will remain in a food patch until 

the energetic intake from that patch drops below the average value of other food patches in the 

environment. Once the current patch drops below this level, the forager is expected to search for 

another patch and feed there until resources in the new patch fall below the average patch value 

or the forager is satiated. In this model, a forager is expected to consider a patch to be 

functionally depleted prior to the time that all the food items are removed. In patches that 

minimally exceed the productivity of the average patch, changes in food density, resulting from 

the forager’s feeding activity or the feeding behavior of other foragers, are expected to lower the 

patch value relative to non-exploited patches (Chapman and Chapman, 2000a). 

However, recent models of primate nutritional ecology have stressed the importance of 

nutrient balancing as a primary factor in individual foraging decisions (Felton et al. 2009b). 

Nutrient balancing is defined as a process in which decisions concerning where to feed and when 

to leave a patch are based on balancing the intake of protein, lipids, carbohydrates, minerals, and 

secondary compounds rather than maximizing the intake of energy or protein (Felton et al., 

2009b). For example, a forager could leave a feeding patch before satiation or patch depletion 

and move to a different patch that contains complementary resources in order to ingest a set of 

nutrients that will contribute to a more nutritionally balanced diet. Such a pattern has been 

reported in a variety of organisms ranging from invertebrates to primates (Houston et al., 2011; 

Simpson and Raubenheimer, 2012); and feeding trials with captive animals showed that foragers 
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tend to choose “mixed diets” even when foods that are considered preferred are offered ad 

libitum (e.g., tortoises (Kinixys spekii): (Hailey et al., 1998); brown bears (Ursus arctos): 

(Erlenbach et al., 2014)). However, studies that have applied this framework to the analysis of 

feeding patch preferences of foragers in the wild are scarce (Felton et al., 2009a; Felton et al., 

2009b; Felton et al., 2009c). 

In this research, I investigated a set of factors affecting feeding patch choice in black 

howler monkeys (Alouatta pigra) during a 15-month field study in Campeche, Mexico. First, I 

identified the most commonly visited feeding patches and determined whether time spent feeding 

in each patch correlated with the amount of food consumed. Then, I examined how factors such 

as patch depletion, satiation, resource mixing (i.e., switch from one food type another), and 

social factors affected howler monkeys decisions concerning when to leave a patch. Finally, I 

examined whether protein intake in a patch could explain patch choice and patch leaving 

patterns. I used these data to test the following hypotheses: 1) Considering the relatively small 

group sizes of A. pigra (5-15 individuals), and the fact that howler monkeys are reported to 

frequently feed on large trees bearing fruits and leaves (Chapman et al., 1988; Rivera and Calme, 

2006), I expect an individual to leave a feeding patch prior to depletion (here I define patch 

depletion based on observations of any group member returning to feed in the same patch during 

the same day or over the course of the next two days); 2) Considering that leaves may contain 

higher amounts of potentially harmful secondary metabolites than fruits, and that fruits and 

flowers may be patchily distributed in space and time (Milton, 1980), I expect that a howler exits 

leaf patches before satiation, but exploits fruit and flower patches more intensively until satiated 

(i.e., not engaging in another feeding bout for at least 1 hr); 3) An unsatiated individual who has 

not been threatened or displaced by a conspecific will leave a patch before it is depleted in order 
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to locate a new food type that offers a complementary set of nutrients (e.g., switch from young 

leaves to mature fruits, or from flowers to mature leaves); 4) If frequent switching between 

feeding patches is a strategy to mix resources and balance nutrients (Milton, 1980), a howler 

monkey will move from a feeding patch characterized by high (above average patch value) 

protein intake (kJ/min) to a patch characterized by lower protein intake (below average patch 

value) and vice versa. 

 

Methods 

Study Site and Subjects 

This study was carried out in the state of Campeche, Mexico, at El Tormento (18º36′44″N; 

90º48′31″W), a 1400-ha forested area owned by Instituto Nacional de Investigaciones Forestales, 

Agrícolas y Pecuarias (INIFAP). The dominant vegetation types in this area of the Yucatan 

peninsula are semi-deciduous and evergreen seasonal forests (sensu Miranda & Hernández 

1963). The climate is hot and humid, and three seasons can be recognized: a dry and hot season 

from February to May (~100 mm rain during four months, 28°C mean daily temperature), a rainy 

season from June to September (~900 mm rain during four months), and a colder season 

("nortes") from October to January (~160 mm rain during four months, 22.8°C mean daily 

temperature). According to data recorded by the Comisión Nacional del Agua (CONAGUA, 

2013), between 1971 and 2000 total annual precipitation at El Tormento averaged 1291 mm, and 

mean annual temperature was 25.6°C. During the study period (September 2010-August 2011) 

total annual rainfall was 1246 mm, and average mean and maximum annual temperatures were 

26.3°C and 33.4°C, respectively. 
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 Two neighboring groups of black howler monkeys were followed during 15 months. 

Group M contained 10-12 individuals (including 4-5 adult males and 2 adult females) and group 

J contained 6-7 individuals (no more than 2-3 adult males at the same time and 2 adult females). 

The monkeys were individually recognized through their facial features, scars, and broken digits, 

however ten individuals were darted and marked with color anklets in August 2010, prior to the 

start of the behavioral data collection. Between September 2010 and November 2011, groups M 

and J ranged in areas of 14.5 and 4.5 ha respectively, with an overlap of 1.3 ha.  

 

Field Data Collection 

 Behavioral data 

From September 2010 to November 2011, I collected data on the howler monkey activity budget, 

diet, feeding patch occupancy, and within and between-group social interactions, conducting all-

day follows of one adult individual per day. I obtained 1300 hours of behavioral data on 14 focal 

animals (ten males: 674 hours; four females: 626 hours) using two-minute instantaneous samples 

on focal animals (Martin and Bateson, 2007). The activities recorded instantaneously included: 

feeding (i.e., ingestion of food items), resting, traveling, and social interactions (vocalizations, 

howling bouts, aggression, play, sexual interactions, affiliative behavior such as grooming). 

When the focal animal started feeding, I temporarily switched to a method of continuous data 

collection, recording the duration (to the nearest second) of each feeding event and the quantity 

(number of items, parts of the item, or bites per minute), phenophase (i.e. young/mature leaf, 

immature/mature fruit, flower/inflorescence, other), and species of the items ingested. Then, I 

resumed the two-minute instantaneous data collection. All feeding trees (n = 689) were tagged, 

measured (DBH) and identified. Data on displacements and agonistic interactions were recorded 
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both by instantaneous focal animal sampling (% of activity budget) and ad libitum (rates/hour), 

together with the identity of participants. 

 

Feeding patches 

I defined a feeding patch as a single feeding tree visited by the focal animal. A feeding bout was 

recorded when the focal animal was observed to handle and ingest a food item of a particular 

phenophase. A feeding bout ended when the focal animal stopped feeding for at least 30 minutes 

or left the food patch. In more than 50% of the cases, a feeding bout corresponded to the time the 

focal animal spent exploiting one food type in a feeding patch, but there were a few exceptions: 

1) cases in which the focal animal fed on two or more phenophases in a single patch (e.g., 

switched from young leaves to mature leaves on the same tree); 2) cases in which the focal 

animal stopped feeding on a phenophase, began resting or performing other activities, and then 

resumed feeding on the same phenophase in the original patch after >30 minutes. In both 

circumstances, I counted these as two separate feeding bouts in one feeding patch.  

I assumed that the focal animal might leave a feeding patch for the following reasons: 1) 

patch depletion, 2) satiation, 3) resource mixing, 4) social factors (e.g., aggression). Patch 

depletion was excluded if the focal animal or any group member was observed returning to feed 

in the same patch during the same day or over the course of the next two days. Moreover, I 

collected phenological scores (estimating the percentage of the crown containing food items on a 

scale of 0 − 4 [0; 1: 1−25%; 2: 26−50%; 3: 51−75%; 4: 76−100%]), and assigned a score to each 

patch immediately after the focal animal ended the feeding bout. I considered an individual to be 

satiated if it did not engage in a feeding bout for a period of at least 1 hour after terminating its 

previous feeding bout. Resource mixing was scored when the focal animal switched from one 
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phenophase to another (e.g. fruits to leaves, or leaves to flowers) during successive feeding bouts 

within a period of < 1 hour. Other factors that I could not account for, might be involved in the 

decisions concerning when to leave a patch, for example the accumulation of particular plant 

secondary metabolites. Social factors included intra-group aggression over food, intergroup 

encounters (and howling bouts), mating behavior such as copulations and mate guarding, and 

other affiliative behavior such as play. Overall, I analyzed a total of 1678 focal animal feeding 

bouts. 

 Plant sample collection 

Food items were collected from feeding trees either on the same day or within two days of the 

observed feeding bout. I attempted to gather at least 50 g of flowers/inflorescences and 100 g of 

leaves and fruits (wet weight) per tree. The plant items were transported to the field laboratory, 

where they were measured and weighed to the nearest 0.01 g. Leaves, flowers, and 

inflorescences were air dried at a constant weight in a dark area. After discarding the parts that 

were not eaten (e.g. seeds), fruits were cut into small slices and kept in a drying oven (<50ºC) 

until reaching a stable dry weight. All samples (n = 146) were then stored in paper bags labeled 

with date, tree number, and phenophase, and maintained in a dry place with a silica desiccant 

until phytochemical analyses were performed. 

 

Laboratory Analyses  

Plant samples were analyzed in the Nutritional Ecology Laboratory at Hunter College, City 

University of New York, from March to June 2012. All samples were analyzed in duplicate. The 

samples were ground using a Wiley® mill fitted with a 1-mm screen. Dry matter was calculated 
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by drying the field-dried samples in an oven (105ºC) immediately before each analysis to remove 

atmospheric moisture (Rothman et al., 2012).  

 Total nitrogen (N) was determined via combustion according to AOAC (1995) using a 

Leco TruSpec Nitrogen Analyzer (Leco Corporation, St. Joseph, MI, USA). Crude protein (CP) 

was calculated by multiplying N by 6.25 (Rothman et al., 2012). To take into account nitrogen 

bound to fiber and secondary metabolites, I estimated available protein (AP) in two ways: 1) to 

determine the amount of fiber-bound nitrogen, I subtracted acid detergent insoluble nitrogen 

(ADIN) from N, multiplied this value by 6.25, and then subtracted it from CP (Rothman et al., 

2008); 2) to estimate the effect of tannins on N digestibility, we measured the polyethylene 

glycol (PEG, a tannin-blocking agent) binding capacity in a subset of plant samples (n= 42, those 

that were positive for the qualitative acid-butanol assay for condensed tannins [Waterman and 

Mole 1994]), followed by in vitro digestion with pepsin and cellulase (DeGabriel et al., 2008). In 

all the subsequent analyses regarding patch choice I used values of available protein instead of 

crude protein. Available protein is reported in energy units, calculated using the standard 

conversion factors (or physiological fuel values) of 17 kJ/g (Conklin-Brittain et al., 2006).  

 

Data Analysis 

 Nutrient intake 

I constructed a complete dietary profile for each adult group member by quantifying feeding 

rates and estimating daily nutrient and energy intake during at least two full day focal follows per 

individual per month. In all analyses related to nutrient intake, I included 91 focal sample days of 

9 males (n = 44) and 4 females (n = 47), which correspond to 91 observation days in which the 

focal animal could be successfully followed for a period of 9 − 12 consecutive hours without 

23 
 



being out of sight for more than 10 minutes, and all feeding bouts engaged in by the focal animal 

were recorded in detail. To analyze the effect of protein intake on patch choice, I divided each of 

the 91 days of observation in two blocks of 5-6 hours each (morning and afternoon). In most 

cases, the end of the morning block coincided with the start of a long resting bout that lasted on 

average 3.7 (± 1.6) hours. This was done to determine whether protein intake earlier in the day 

influenced protein intake later in the day.  

To calculate the daily amount of food ingested (g dry weight) by each focal animal, I 

multiplied the feeding bout length on food item i (minutes) by the corresponding feeding rate (g 

dry weight/min), and then summed all daily events. To estimate daily nutrient intake, I 

multiplied the nutrient content of each food item i by the estimated amount of item i ingested (g 

dry weight) in each feeding bout. I obtained daily values (converted to kilojoule equivalents) of 

protein intake for each focal animal. To take into account the possible effects of different body 

weights on nutrient intake in male and female howler monkeys, I divided the amount of food 

consumed (grams dry weight) and nutrient intake by the metabolic body mass (mbm = M0.762) of 

the corresponding focal animal. Body mass for nine of the 14 focal animals was obtained in 

August 2010 during the darting and marking phase (adult males: 7.6 ± 0.9 kg, adult females: 6 ± 

0.3 kg). For those individuals whose weights were not available (n = 4), I used data on mean 

body weight of male and female A. pigra from Kelaita et al. (2011), since they were based on a 

larger sample size (37 males, 32 females). 

 

Statistical analyses 

To test differences among fruit, leaf, and flower patches in the amount of food consumed, time 

spent feeding, and rate of protein intake in each patch, I used Kruskal-Wallis tests, since these 
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variables did not conform to normality and homoscedasticity assumptions. Spearman’s rank 

order correlations were used to analyze the relationship between time spent feeding in a patch 

and amount of food ingested, and between morning and afternoon protein intake. I used chi-

square tests to determine if the frequencies of switching between different patch types differed 

from expected values based on a random distribution.  

I used Linear Mixed-Effect Models (LMM) (Crawley, 2007; Zuur et al., 2009) to analyze 

1) if the number of feeding patches visited in the afternoon (response variable) could be 

predicted by the number of feeding patches visited in the morning (fixed factor), and 2) if the 

afternoon protein intake (response variable) could be predicted by the morning protein intake. 

Other predictor variables included in the latter model were sex, season, and the number of 

patches visited in the morning. All models included the identity of individuals as a random 

factor. Data were square root transformed to conform to assumptions of normality. All the 

analyses were run in STATISTICA 12 (StatSoft, Inc. 2011) and R (version 3.0.1), fitting the linear 

models by REML (Restricted Maximum Likelihood criterion), and using the nlme package 

(Pinheiro et al., 2013). 

 

Results 

Visited feeding patches  

A total of 690 feeding patches were visited throughout the study period (1300 hours of 

observation from September 2010 to November 2011). Sixteen percent of the feeding patches 

were visited on two of 145 observation days, not necessarily consecutive; 7.2% were visited on 

three observation days; 3% on four observation days; and 4.7% on 5-13 observation days. The 

most visited patch (on 13 days) was a single Brosimum alicastrum (Moraceae) tree, in which the 
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focal animals fed on mature and young leaves, immature fruits, and inflorescences across the 

three seasons. Overall, young leaf patches were the most visited (31.6% of the total number of 

visited feeding trees), followed by immature fruit (21.6%), mature leaf (19.3%), mature fruit 

(18.7%) and flower/inflorescence (8.2%) patches.   

The time spent feeding per patch visit differed significantly according to the type of food 

consumed (Kruskal-Wallis, H = 143.1, df = 4, n = 1667, p<0.0001). Individuals spent on average 

more time feeding in flower (11.6 ± 12.8 min), mature (10 ± 11.7 min) and immature (8.9 ± 12.2 

min) fruit patches than in young (5.2 ± 6.3 min) and mature (3.9 ± 4.9 min) leaf patches (Figure 

2.1, Table 2.1). In addition, the amount of food (in grams) consumed per feeding bout by the 

focal animals differed significantly according to the food type (Kruskal-Wallis, H = 106.6, df = 

4, n = 1667, p<0.0001). On average, individuals consumed more food in mature (20.3 ± 33.1 g 

dry weight) and immature (20.6 ± 25.6 g) fruit patches than in mature leaf (11.9 ± 17.6 g), young 

leaf (10.9 ± 15.6 g), and flower/inflorescence (9.3 ± 10.5 g) patches (Figure 2.2, Table 2.2). 

Time spent in a feeding patch and the amount of food ingested correlated positively (Spearman 

correlation, r = 0.83, n = 1665, p<0.001). However, while howlers tended to feed on 

flowers/inflorescences for as much time as fruits (11.6 min vs. 9.5 min on average), the amount 

in grams of flowers ingested per feeding bout was significantly lower due to their low dry weight 

(9.3 g vs. 20.5 g).  

 

Leaving a feeding patch 

Despite the fact that the majority of the feeding trees were not re-visited by the focal animal 

within two days of the initial feeding bouts, the same feeding patch was visited more than once 

during the same day on 53% of the 145 observation days, and I only recorded four instances of 
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patch depletion. Each of these occurred in flower patches (i.e., there were no flowers left in the 

patch after the feeding bout). In more than 80% of the cases, the phenological score (0-4) 

recorded at the beginning and at the end of the feeding bout did not show a decrease (i.e., 

reduced by at least a factor of two). Moreover, time spent feeding in a patch (mean: 7.28 min) 

was not influenced by patch size (mean DBH: 41.6 cm) (Figure 2.3). Thus, overall, patch 

depletion was unlikely to explain the majority of cases in which the howlers left a feeding patch. 

I recorded evidence of satiation in 19.6% of the cases: of these, 20.4% of the time the 

forager appeared satiated after feeding in a fruit patch, 17.3% after feeding in a leaf patch, and 

10.9% after a feeding bout in a flower patch. These values are standardized according to the total 

number of fruit, leaf, and flower patches visited. Despite the fact that, as hypothesized, satiation 

was more frequently associated with fruit patches, these results did not differ from what expected 

based on an equal distribution of satiation among patch types (Chi-square test: χ2 = 2.85, df = 2, 

p = 0.23).  

In the majority of the cases (80.3%), the focal animal left the feeding patch prior to 

satiation. On those occasions, resource mixing, or moving from one food type to another food 

type, accounted for 49.4% of the patch leaving events. The most frequent observations included 

switching from a young leaf to an immature fruit patch (12.5%), switching from feeding on 

mature fruits to young leaves (12.2%) and from immature fruits to young leaves (12.2%) (Figure 

2.4). These values differed significantly from the frequencies expected if switching between 

patch types was based on no preference (χ2 = 6.40, df = 1, p <0.02; χ2 = 5.75, df = 1, p <0.05, 

respectively). In contrast, switching from mature fruits to flowers was observed significantly less 

than expected (χ2 = 4.10, df = 1, p <0.05). These data support the hypothesis that howler 

27 
 



monkeys frequently alternate between food patches to consume different plant parts, in particular 

frequently switching from fruits to young leaves.  

Finally, social factors (n = 100) accounted for only 8.1% of patch leaving events. In these 

cases, intergroup encounters (in the form of howling bouts or chases) were the most common 

social factor (53%, n = 53) that resulted in leaving a patch, followed by feeding related intra-

group aggression (24%), mating behavior (e.g., copulation, mate guarding) (19%), and other 

reasons (e.g., play) (4%). Overall, contest feeding competition occurred at a rate of 0.018 

events/hr (24 aggressive interactions across 1300 hours of observation), or 0.0019 events/min 

(considering total feeding time, i.e., 200 hr), and therefore appeared to play a minimal role in 

howler patch choice. Moreover, these intra-group direct aggression or overt displacement events 

were not associated with a specific type of food patch; nine occurred in young leaf patches, six 

during immature fruit consumption, four during mature leaf eating bouts, three in mature fruit 

patches, and two while feeding on inflorescences.  

 

Patch choice from a nutritional perspective 

To analyze the nutritional basis of individual patch choice, I examined data based on 91 

observation days during which the focal animals were observed continuously for 9–12 hours per 

day. The average number (±SD) of feeding bouts per day was 14.0 (± 5.01); 7.3 (± 3.5) in the 

morning and 6.7 (± 3.5) in the afternoon (Table 2.3). On average, the howlers fed on a similar 

number of trees in each time block (One-way ANOVA, F(1,180) = 1.3, p = 0.25), but the number 

of patches visited in the afternoon was not predicted by the number of patches visited in the 

morning (LMM, t = -0.05, df = 77, p = 0.95). Moreover, the number of patches visited in the 

morning did not have a significant effect on the amount of protein ingested in the morning (t = 
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0.78, df = 77, p = 0.49) or in the afternoon (t = -0.75, df = 76, p = 0.45). However, the number of 

feeding patches visited in the afternoon did affect positively afternoon protein intake (t = 3.45, df 

= 77, p <0.0001), indicating a change in howler behavior such that higher intakes were achieved 

by visiting a greater number of feeding patches.  

The rate of protein intake (kJoule/min) was similar in young and mature leaf patches 

(Kruskal-Wallis, H = 368.2, n = 1352, p = 0.9), and higher (p <0.0001) than protein intake in 

mature fruit, immature fruit, and flower patches (which, instead, had similar rates, p = 0.9) 

(Table 2.4). This pattern was consistent in the morning and in the afternoon, and it confirms the 

fact that switching from leaf to fruit patches was associated with different nutritional gains for 

howler monkeys. These data lend support to the hypothesis that individuals alternated amounts 

of protein ingested across patches to achieve a balanced nutrient target. 

The data also indicate that total protein intake during the afternoon feeding bouts was 

significantly predicted by the protein intake in the morning (LMM, t = 2.55, df = 77, p = 0.012). 

Figure 2.5 shows the positive correlation between protein ingested in the morning and protein 

ingested in the afternoon. Thus, a higher cumulative intake of protein in the morning was 

followed by a higher intake in the afternoon. Likewise, mornings characterized by a lower than 

average nutrient intake, were followed by a similar cumulative nutrient intake in the afternoon. 

This is also is shown by the fact that patterns of protein intake were extremely similar during the 

two temporal blocks (morning and afternoon) (Table 2.3). The sex of the focal animal (p >0.13) 

and season (p>0.26) did not have significant effects on these patterns. 
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Discussion 

Studies of patch choice offer critical insights into the mechanisms used by individuals to decide 

which patch to visit, when to leave a patch, and which patch to visit next. These decisions are 

affected by patterns of food distribution and availability, within-group and inter-group feeding 

competition, and nutrient needs (Pyke et al., 1977; Stephens et al., 2007). In this analysis of the 

feeding patch choices of black howler monkeys, I found that howlers rarely depleted a food 

patch prior to leaving. Similarly, howlers left a patch in response to satiation only 19.6% of the 

time. However, instances of satiation were more frequent during fruit feeding than in leaf 

patches, but the difference was not significant. Thus, it appears that, according to my definitions, 

neither satiation nor patch depletion explained the majority of patch choice decisions made by 

howlers. In addition, aggression over food occurred at very low rates (I recorded only 24 

aggressive interactions across 1300 hours of observation of 14 focal animals), indicating that 

within group contest competition was not a significant factor primarily affecting individual 

foraging decisions, as has been reported in other howler monkey populations (Wang and Milton, 

2003; Kowalewski, 2007). Instead, the data presented here support a resource mixing strategy, 

with howlers frequently leaving an undepleted patch of a particular food type to move to another 

patch containing a complementary food type. In particular, howlers frequently switched between 

young leaves and immature fruits, mature fruits and young leaves, and immature fruits and 

young leaves during successive feeding bouts. Data presented in Chapter 3 indicate that these 

resources differ in nutritional content, with young and mature leaves being higher in available 

protein (~13.4% dry weight) and neutral detergent fiber (48.8%) than mature fruits (7.5% and 

33.6%, respectively), and mature fruits having a higher lipid (11.1%) and sugar (23.6%) content 

than leaves (2.19% and 5.5%, respectively). Protein intake rate was significantly higher in leaf 
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patches than in fruit patches, and the most common pattern observed in howlers across 

successive feeding patches was to move from a lower protein patch to a higher protein patch, and 

from a higher protein patch to a lower protein patch. However, despite these fluctuations in 

protein intake from one patch to the other, the cumulative amount of protein obtained in the 

afternoon was positively affected by the cumulative amount ingested in the morning, indicating 

that howler monkeys maintained a specific daily intake strategy that allowed them to achieve a 

targeted proportion of nutrients. 

 

Do black howler monkeys leave a feeding patch due to patch depletion? 

Models of optimal foraging generally assume that foragers deplete (or functionally deplete) a 

patch prior to leaving it. In primates, this has been examined in the context of within-group 

feeding competition (Snaith and Chapman, 2005, 2008). In the case of scramble or indirect 

feeding competition, access to food resources is generally unaffected by rank or aggression. 

Rather, the first individual to arrive in a patch may obtain a finder’s advantage and consume all 

the foods in the patch, especially in food patches characterized by small, concentrated food items 

(Janson and van Schaik, 1988; Bicca-Marques and Garber, 2005; Garber et al., 2009). It also has 

been argued that, in small food patches, foraging efficiency of lower ranking individuals declines 

with increasing group size, as a limited number of high ranking individuals can deplete the patch. 

Under these conditions, aggression at feeding sites is expected to be high and foragers are 

expected to switch frequently between patches and travel greater distances to encounter a larger 

number of food patches (Janson and van Schaik, 1988). These assumptions, which are part of the 

ecological constraints model (Chapman and Chapman, 2000a; Chapman and Chapman, 2000b), 

also imply that most food patches encountered by wild primates are depletable. Despite the fact 
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that this model was initially presented to explain patterns of subgrouping and patch choice in 

frugivorous primates, it has been extended to explain the socioecology of leaf-eating primates 

(Snaith and Chapman, 2005; Snaith and Chapman, 2007; Snaith and Chapman, 2008). For 

example, whereas red colobus monkeys (Procolobus rufomitratus), living in groups of up to 18 

individuals, depleted patches of young leaves (Snaith and Chapman, 2005), groups of sympatric 

guerezas (Colobus guereza), ranging in size from 4 to 11 individuals, did not appear to deplete 

feeding patches, based on the fact that time spent feeding in a patch was not a function of either 

patch size or feeding party size (Tombak et al., 2012).  

 In the present study of black howler monkeys, within group contest competition at 

feeding sites was very low. Moreover, time spent feeding in a patch was not a function of patch 

size (i.e., tree DBH), and in over 80% of the cases, howlers left a feeding patch before depletion. 

Similar results were found for Alouatta caraya in Argentina, where several neighboring groups 

were observed feeding in the same trees during consecutive days; the same feeding tree was 

revisited on the same day during 36-65% of days; and within-group aggression at feeding sites 

was very low (0.002-0.004 agonistic interactions per individual per hour) (Kowalewski, 2007). 

Additionally, neither patch size, nor the number of individuals in the feeding party had an effect 

on time spent feeding in a patch (Kowalewski, 2007). These patterns differed from those 

reported in a study of A. palliata in Costa Rica (Chapman, 1988). When mantled howlers fed in 

fruit patches, patch size and the number of individuals in the subgroup were positive predictors 

of time spent feeding. These interspecific differences in foraging strategies and patch use might 

be analogous to those found in colobines, especially considering that group size in A. palliata is 

much larger than in A. pigra and A. caraya (for example, the group studied by Chapman [1988] 

consisted of 40 individuals). 
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Do black howler monkeys leave a feeding patch due satiation? 

According to Optimal Foraging Theory and the Marginal Value Theorem, food intake rates 

decline as time spent feeding in a patch increases (Charnov, 1976; Stephens and Krebs, 1986b). 

However, two different factors affect feeding rates. Declining feeding rates could indicate both 

patch depletion (or declining abundance of food resources) and/or forager satiation (Grether et 

al., 1992). Tombak et al. (2012) reported that, in the case of guerezas, individuals left feeding 

patches most likely due to satiation rather than to patch depletion because they maintained a 

constant feeding rate (bites/min) without an increase in patch movement, which was assumed to 

be a measure of feeding effort. A recent study modeling foraging preferences and analyzing the 

decision rules of three groups of A. pigra in Calakmul, Mexico (Plante et al., 2014) reported that 

decisions on when to leave a tree were strongly affected by the satiation state of the individuals, 

which was defined as the amount of time spent eating earlier in the day, weighted by total 

foraging time. In contrast, in my study of black howler monkeys, I considered that individuals 

were satiated if they spent at least one hour without feeding after their last feeding bout. Using 

this definition, more than 80% of the feeding bouts did not result in satiation. 

 

Do black howler monkeys leave a feeding patch due to resource mixing? 

I found that resource mixing was the most common reason for leaving a patch for unsatiated 

howlers. In general, howlers left productive food patches before they were depleted in order to 

locate a new food type that offered a different set of nutrients or secondary compounds. Other 

studies of patch choice and patch depletion in howler monkeys (A. caraya), colobines (Colobus 

guereza), and tamarins (Saguinus spp.) have suggested that resource mixing can be a major 

factor in primate foraging decisions (Kowalewski, 2007; Garber and Kowalewski, 2010; Tombak 
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et al., 2012). Moreover, feedback mechanisms and physiological factors, such as specific gut 

capacity and toxin thresholds, or the interacting effects of nutrients and secondary compounds 

(e.g., inhibition of glucose absorption by flavonoids [Karasov, 2011] or increases in glucose 

absorption associated with higher carbohydrate intake [Karasov and Diamond, 1988]) provide 

internal signals that drive resource mixing decisions. The fact that black howler monkeys 

alternated feeding bouts between fruit and leaf patches, as well as alternating bouts of higher and 

lower protein intake, suggest that this pattern could be dictated by the need to balance nutrients. 

 Few studies of other vertebrates have analyzed patch choice in the wild from a resource 

mixing perspective. In a field experiment set out to test the "complementarity hypothesis" (i.e., 

daily foraging patterns characterized by a switch among different currencies, such as total energy 

and protein), highly frugivorous habituated curassows (Mitu salvini and Crax alector) were 

found to combine and alternate feeding bouts on energy-rich fruits with feeding bouts on protein-

rich leaves and invertebrates, at the expenses of maximizing energy intake (Jimenez, 2004). This 

suggests that the observed foraging patterns were best explained by a need to meet daily macro 

and micronutrient requirements. In addition to achieving their protein requirements, curassows 

might have foraged for specific essential amino-acids present in leaves but not found in fruits, or 

to increase calcium intake, which is considered limiting for birds that feed on fruits and 

invertebrates (Levey and Martinez del Rio, 2001). A recent study of nutrient balancing in free-

ranging spider monkeys (Ateles chamek) in Bolivia analyzed individual cumulative trajectories 

of daily nutrient intakes (Felton et al., 2009c)(Felton et al., 2009c)(Felton et al., 2009c). Spider 

monkeys could reach their average balance of protein and non-protein energy using two 

strategies: consuming food items characterized by a constant balance of protein and non-protein 

energy, or alternating between foods characterized by high or low ratios of protein and non-
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protein energy ("zigzagging" nutritional trajectory). The latter was the strategy most frequently 

used by spider monkeys (83% of days). In the present study, black howler monkeys followed an 

analogous pattern by alternating feeding bouts in patches offering complementary nutrients.  

From a decision-making perspective, the fact that primates may be able to retain 

information on foraging success in particular food patches (Garber, 2000), can facilitate 

decisions of leaving a patch to travel to a distant patch that will offer different nutritional 

rewards. Thus, models of patch use should incorporate data on spatial memory on previous 

experiences and expectations of future rewards, with data on the sequential intake of nutrients in 

different types of food patches in testing alternative explanations of feeding patch choice in 

howler monkeys. 

In conclusion, the analysis of feeding patch choice revealed that moving between feeding 

patches characterized by resources differing in their nutritional composition was the most 

common strategies used by black howler monkeys during their feeding bouts. Howlers rarely 

depleted feeding patches, and it was evident that social factors and aggressive interactions were 

not significant factors affecting howler patch choice decisions. In addition to suggesting the 

importance of nutrient balancing, these results also offer insights into the role of within-group 

feeding competition and ecological constraints on primate food choice and decision-making. 
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Figure 2.1. Time spent feeding (minutes) in different types of feeding patches 
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Figure 2.2. Amount of food (grams dry weight) consumed in different types of feeding patches 
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Figure 2.3. Relationship between patch size (i.e. DBH of feeding trees) and feeding bout length 
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Figure 2.4. Resource mixing by black howler monkeys. Frequency of switching from one 
feeding patch type to a different patch type. Frequencies are calculated taking into account the 
total number of patch-switching events. The dashed line shows the expected frequency of 
switching between patch types based on the total number of events and no preference. Asterisks 
represent significant differences from the expected values (** p<0.02; * p<0.05). Feeding 
patches: ML, mature leaves; YL, young leaves; MF, mature fruits; IF, immature fruits; FL, 
flowers and inflorescences.   
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Figure 2.5. Positive correlation between protein intake during the morning bouts and protein 
intake during the afternoon bouts (protein values in kjoule per metabolic body mass are square 
root transformed) 
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Table 2.1. Amount of food consumed (g dry weight) by focal animals in different types of 
feeding patches 

 

 FL ML YL IF MF 
n 137 324 530 361 314 
Min 0.10 0.06 0.09 0.11 0.05 
Max 63.56 140.58 100.02 219.15 380.07 
Sum 1274.83 3870.94 5798.58 7462.28 6364.21 
Mean 9.31 11.95 10.94 20.67 20.27 
Std. error 0.90 0.98 0.64 1.35 1.87 
Variance 110.02 312.56 219.92 655.36 1096.84 
Stand. dev 10.49 17.68 14.83 25.60 33.12 
Median 6.58 5.58 5.45 13.07 11.94 
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Table 2.2. Time spent feeding (minutes) by focal animals in different types of feeding patches 

 

 FL ML YL IF MF 
n 137 324 529 363 314 
Min 0.17 0.03 0.07 0.07 0.03 
Max 83.97 41.73 50.33 93.42 92.00 
Sum 1586.33 1271.82 2731.23 3241.38 3156.38 
Mean 11.58 3.93 5.16 8.93 10.05 
Std. error 1.09 0.27 0.26 0.64 0.66 
Variance 163.38 23.94 34.59 148.05 137.16 
Stand. dev 12.78 4.89 5.88 12.17 11.71 
Median 7.20 2.42 3.00 4.18 6.53 
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Table 2.3. Daily protein intake by focal individuals and characteristics of feeding bouts during 
two temporal blocks (morning and afternoon) (n = 91 observation days) 

 

 

 

 

 

 

 

 

 

 

  

 Number of 
feeding patches 

visited 

Food amount 
consumed (g dry 

weight/mbm) 

Protein 
(kJ/mbm) 

Morning    

mean 7.32 27.57 53.95 

SD 3.52 15.43 33.91 

Afternoon    

mean 6.75 25.16 48.33 

SD 3.52 14.79 33.08 
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Table 2.4. Individual rates of protein intake (kJ/min) in different types of feeding patches during 
the morning and afternoon (n = 91 observation days) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Morning   Afternoon 
            
 n Mean Min Max SD  n Mean Min Max SD 

FL 76 2.17 0.19 10.56 1.88  46 3.44 0.14 10.83 3.11 
            

MF 118 2.77 0.30 11.72 2.15  121 2.71 0.59 11.72 1.78 
            

IF 172 2.25 0.13 10.09 1.80  143 2.70 0.50 11.72 2.24 
            

ML 96 6.71 1.42 23.02 4.90  124 5.89 0.61 18.62 4.53 
            

YL 249 4.99 0.86 17.25 2.84  207 5.06 0.44 23.03 3.01 
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CHAPTER 3 

THE EFFECTS OF NUTRITIONAL CHEMISTRY ON FOOD SELECTION IN 

MEXICAN BLACK HOWLER MONKEYS (ALOUATTA PIGRA) 

 

Introduction 

Compared to many groups of mammals, primates include an extremely broad range of food types 

in their diet such as leaves, fruits, flowers, seeds, gums, nectar, fungi, lichens, and animal prey 

(Garber, 1987; NRC, 2003; Robbins and Hohmann, 2006). These resources differ in terms of 

nutritional content, chemical and mechanical properties, renewal rate, and spatial and temporal 

availability, and therefore have a significant influence on primate foraging strategies (Freeland 

and Janzen, 1974; Glander, 1982; Kinzey and Norconk, 1993; Chapman et al., 2012). Food 

choice also is affected by factors such as the forager’s body mass and basal metabolic rate; its 

anatomical and digestive adaptations (including gut morphology, food transit time, and activity 

of gut microbes); its nutritional and energetic needs; and social factor such as rank, feeding 

competition, and partner alliances (Janson, 1988; McNab, 2002; Mackie, 2002; Robbins and 

Hohmann, 2006; Lambert, 2011; Chapman et al., 2012). In this research I examine one aspect of 

diet: the nutritional basis of food choice in black howler monkeys, Alouatta pigra. 

Despite the importance of nutritional and energetic requirements in determining food 

choice, studies of feeding ecology in non-human primates have focused primarily on time spent 

feeding as a measure or index of dietary preference, food intake, and the importance of particular 
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food items in the diet (Clutton-Brock, 1975; Rudran, 1978; Milton, 1980; Glander, 1981). While 

some authors suggest that a time-based approach is useful in facilitating intraspecific 

comparisons among primate populations exploiting habitats that differ in resource availability 

and distribution (Felton et al., 2008), the advantages of this measure are principally related to the 

repeatability and simplicity of data collection compared to studies designed to obtain data on 

food intake rates and weights of food items ingested, especially in forest habitats where 

conditions of visibility are limited (Chivers, 1998). In fact, time spent feeding is not a strong 

proxy of nutrient intake, since it does not reflect the amount of food consumed or differences in 

the nutrient content of specific animal and plant tissue ingested (Kurland and Gaulin, 1987; 

Felton et al., 2009). In several studies directly comparing time budgets with amount ingested, 

researchers have found that whereas time spent eating fruits underestimates grams of fruit 

consumed, time spent feeding on leaves, flowers, and animal matter markedly (up to 600% for 

animal matter) overestimates their intake (Gaulin and Gaulin, 1982; Chivers, 1998; Amato, 

2013; Garber et al., in press). Thus, a more complete understanding of primate diets requires 

quantification of feeding time, ingestion rates, weight of the items ingested, and the nutritional 

composition of plant parts and animal tissues consumed in order to calculate daily nutrient intake 

(Schuelke et al., 2006; Felton et al., 2009; Rothman et al., 2012).  

Moreover, general assumptions of the nutrient content of plant tissue (for example that 

mature leaves contain more fiber and less protein than young leaves, or that ripe fruits are low in 

protein compared to young leaves and insects (Coley, 1983; Milton, 2008)) must be viewed 

cautiously, since there is evidence of marked variation in the phytochemical content of a given 

food item depending on the plant species exploited, individual plant, location of food item in the 

tree crown, time of day, season, site, and habitat (Chapman et al., 2003; Worman and Chapman, 
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2005; Houle et al., 2007; Carlson et al., 2013). In this regard, Gaulin and Gaulin (1982) found 

that young leaves consumed by Alouatta seniculus were characterized by lower protein/minute 

intake than mature leaves and fruits. Schuelke et al. (2006) reported that mature fruits consumed 

by Semnopithecus entellus in Nepal contained significantly more crude protein (grams/dry mass) 

than young and mature leaves. Similarly, the sugar content of certain fruit species in the diet of 

red colobus (Piliocolobus tephrosceles) and redtail monkeys (Cercopithecus ascanius) in 

Uganda was lower than the average value of young leaves (Danish et al., 2006). Finally, there 

can be significant intrageneric differences in the nutrient content of fruits; for example the pulp 

of nine species of figs (Ficus spp.) in Uganda was highly variable in crude protein (4.3-20.7%), 

fiber (NDF) (23-65%), and water soluble carbohydrates (6.6-23.2%) (Conklin and Wrangham, 

1994). Thus, in the absence of nutritional analyses of plant parts collected from the particular 

feeding tree exploited by primate consumers, generalizations regarding the nutritional content of 

individual food items are likely to misrepresent the basis of food choice. 

Studies of the role of particular nutrients, secondary compounds, and minerals in primate 

food choice also have suggested that factors such as the protein-to-fiber ratio of leaves may 

significantly affect consumption (e.g., in mantled howlers, A. palliata (Milton, 1979; Milton, 

1998); colobine monkeys such as Presbytis rubicunda and P. melalophos (Davies et al., 1988), 

Procolobus badius (Chapman and Chapman, 2002), and Colobus guereza (Fashing et al., 2007); 

and several lemur species (Ganzhorn, 1992)). The consumption of leaves with higher protein-to-

fiber ratios over leaves with lower ratios (e.g., 0.73 vs. 0.45 of eaten and uneaten leaves by C. 

guereza in Kenya (Fashing et al., 2007)) appears to be related to the fact that fiber, and especially 

some of its components such as cellulose and hemicellulose, are difficult to degrade and digest 

(Barboza et al., 2009) and thus there is a limit to the amount of fibrous plant material that can be 
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processed by an individual. A large bulk of digesta in the gut may reduce the efficiency of 

microbial activity, and this also can affect protein uptake (Milton 1979, 1998), favoring a ratio of 

protein-to-fiber consumption that is generally above 0.5 (Mowry et al., 1996). However, there 

are several cases in which this ratio does not explain primate leaf choice (Wallis et al., 2012; 

Simmen et al., 2014), and leaves with a lower protein to fiber ratio (e.g., 0.48 in mature leaves 

eaten by A. pigra in Belize (Behie and Pavelka, 2012b)) also are consumed (Oates et al., 1990; 

Dasilva, 1994; Mowry et al., 1996; Behie and Pavelka, 2012b). Therefore, several factors 

(including better estimations of available protein in leaves) must be taken into account when 

analyzing the effect of this variable on primate food choice.  

Dietary selectivity also may be influenced by the mineral content of food items (Behie 

and Pavelka, 2012a). Macrominerals (such as Na, K, Ca, P) are required by vertebrates given 

their role as structural components of hard tissues (i.e., bone and teeth) and their involvement in 

osmotic balance; and trace minerals, such as Mn, Fe, Cu, Zn, participate in biochemical 

pathways and have catalytic functions in activating enzymes and hormones (Barboza et al., 

2009). Different wild plants are considered to be relatively high in certain minerals (Milton, 

2003), and it has been suggested that mixing food items from several different plant species or 

plant tissues should provide primates with a sufficient amount of minerals to satisfy their daily 

requirements (Nagy and Milton, 1979; Milton, 2003). However, there also is evidence that some 

tropical forests (e.g., in the Amazon and Southeast Asia) are characterized by nutrient- and 

mineral-poor acidic soils, low primary productivity and, as a consequence, low mineral 

availability in the environment, especially calcium, magnesium, and potassium (Janzen, 1974; 

Waterman and Mole, 1989). The high soil acidity, in fact, causes rapid weathering and high 

leaching of cations such as Ca and K resulting from the decomposition of organic matter (Janzen, 
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1974), which may cause primate foragers to consume aquatic plants, plant exudates, 

invertebrates, or decaying wood to achieve their mineral requirements (Garber, 1980; Rothman 

et al., 2006a; Chaves et al., 2011). 

Despite the limited information on the precise mineral requirements of wild primates 

(Felton et al., 2009; Chapman et al., 2012), it has been shown that mineral content can have a 

direct influence on primate dietary choices (Power et al., 1999; Laska et al., 2000; Rode et al., 

2003; Rothman et al., 2006a; Fashing et al., 2007; Behie and Pavelka, 2012a). For example, 

leaves consumed by Nasalis larvatus in Indonesia contained significantly higher concentrations 

of P (0.15%) and K (1.28%) than leaves not included in the diet, which instead were higher in Ca 

(0.62%) and Mn (175 mg/Kg) (Yeager et al., 1997). The selection of leaves high in phosphorus 

by N. larvatus appeared to be related to the fact that P was a limiting element in their 

environment. Inadequate supplies of this mineral can produce net loss of mineral from bone, loss 

of appetite, and decreased body growth (Robbins, 1993; Barboza et al., 2009). Analogously, in a 

population of A. pigra living in an environment affected by a hurricane that caused drastic long-

term changes in food supply, Behie and Pavelka (2012a) demonstrated that Zn and Ca 

concentration in leaves significantly predicted howler food selection independent of food 

availability and macronutrient content. In addition, sodium is often deficient in primate diets, 

since the majority of terrestrial plants contain low Na levels. Thus, several primate taxa such as 

mountain gorillas, chimpanzees, colobines, and spider monkeys are reported to engage in 

geophagy, consume decaying wood, visit salt licks, or consume plants with high Na 

concentration such as Eucalyptus sp. (Huffman and Wrangham, 1994; Rode et al., 2003; 

Rothman et al., 2006a; Chaves et al., 2011; Link et al., 2011). 
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Thus, given both the different and complementary nutritional profiles of particular plant 

tissues available to primate foragers, I examine the concept of nutrient balancing and its effect on 

seasonal food selection in black howler monkeys (A. pigra). Nutrient balancing represents a 

foraging strategy in which decisions concerning where to feed and what to eat are based on 

balancing the intake of macronutrients, micronutrients, and secondary compounds rather than on 

energy or protein maximization (Westoby, 1974; Felton et al., 2009; Simpson and 

Raubenheimer, 2012). Studies on invertebrates (Schistocerca gregaria (Waldbauer and 

Friedman, 1991; Raubenheimer and Simpson, 1993)) and vertebrates (tortoises, Kinixys spekii 

(Hailey et al., 1998); bee-eaters, Merops apiaster (Krebs and Avery, 1984); nectar-feeding 

sunbirds, Cinnyris talatala (Köhler et al., 2012); laboratory rats (Markison et al., 2000) and mice 

(Sørensen et al., 2008); and mink, Mustela vison (Mayntz et al., 2009)) have suggested that 

balanced diets are selected via macro and micronutrient regulation (Raubenheimer et al., 2009). 

Nutrient balancing can occur through a “continuous regulation of food intake that involves 

frequent shifts between foods” of different nutritional composition (Waldbauer and Friedman, 

1991: 43), through adjustments in the amounts consumed of one type of food, or through 

selective extraction of specific nutrients from a given food type (Mayntz et al., 2005). 

Here I analyze the diet and phytochemical composition (macronutrients, minerals, and 

condensed tannins) of foods consumed during a year-long study of two groups of Mexican black 

howler monkeys (A. pigra) inhabiting a semideciduous tropical forest in Southern Mexico. 

Previous studies of A. pigra indicate strong seasonal monthly shifts in dietary emphasis. For 

example, in the semideciduous tropical forest of the Calakmul Biosphere Reserve, Mexico, ripe 

and unripe fruits accounted for more than 85% of black howler monkey feeding time in the wet 

season (Rizzo, 2004). In contrast, in the riverine gallery forest of Northern Belize black howlers 

56 
 



spent on average 86% of feeding time on young and mature leaves in the dry season (Pavelka 

and Knopff, 2004). Thus, a more detailed understanding of dietary preferences, nutrient 

balancing, and seasonal changes in nutrient and energy intake is needed to examine the basis of 

dietary selectivity in black howler monkeys. 

The goals of this research are to: 1) compare and contrast howler feeding patterns 

determined through time-based versus amount-based assessments; 2) describe the phytochemical 

composition of the foods consumed by black howler monkeys; and 3) relate patterns of food 

choice (based on seasonal amounts of food ingested) with the phytochemical characteristics of 

plant parts consumed. Specifically, I test the hypothesis that black howler monkey food choice 

during three different seasons is strongly correlated with particular phytochemical characteristics 

of the selected food items, according to the following predictions:  

Prediction 1. As suggested by previous studies of the feeding ecology of mantled howler 

monkeys (Milton 1979) and other leaf-eating primates (Rogers et al., 1990; Mowry et al., 1996; 

Chapman and Chapman, 2002), black howler monkeys are expected to exhibit a preference for 

food items characterized by a high content of available protein and a high protein-to-fiber ratio. 

Therefore, if this is correct, selectivity indices (a measure of food preference based on the 

amount of different phenophases in the diet and their seasonal availability in the environment) 

for the most consumed items (>80% of the diet) by howlers in each of the three seasons studied, 

will show significant positive correlation with these two nutritional variables. 

Prediction 2. Studies analyzing how food nutrient content affected food selectivity 

(using selectivity indices based on time spent feeding on different plant phenophases and plant 

species abundance) in mantled howler monkeys (Williams-Guillén, 2003) and black and white 
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colobus monkeys (Fashing et al., 2007) found that fiber correlated negatively with selectivity. 

Moreover, taking into account a food availability index, simple sugars appeared to be positively 

influencing food selection in black howler monkeys (Behie and Pavelka, 2012b). Based on these 

findings, I expect that selectivity indices of the most consumed food items (>80% of the diet) by 

black howlers correlate negatively with fiber content (NDF, ADF, ADL), positively with 

carbohydrates (either WSC and/or TNC), and show no correlation with the amount of other 

nutrients such as protein and lipids in consumed in particular foods. 

Prediction 3. Sodium is not an essential element for terrestrial plants (Maathuis, 2014), 

but it is required by animals, mainly for its role in impulse transmission in nerves and muscles, 

being fundamental for growth and reproduction (Robbins, 1993; Chapin III et al., 2011). Thus, 

due to the general low Na levels found in plants (Rode et al., 2003; Rothman et al., 2006a; 

Chapin III et al., 2011), plant eating animals like black howler monkeys are expected to show a 

significant correlation between food item selectivity and Na content.  

 

Methods 

Study Site and Subjects 

The research was carried out in the state of Campeche, Mexico, at El Tormento (18º36′44″N; 

90º48′31″W), a 1400-ha forested area owned by Instituto Nacional de Investigaciones Forestales, 

Agrícolas y Pecuarias (INIFAP). The dominant vegetation types in this area of the Yucatan 

peninsula are semi-deciduous and evergreen seasonal forests (sensu Miranda and Hernández 

1963). The Yucatecan soils are characterized by a limestone bedrock and a shallow soil surface 

layer, and by the absence of surface water (Aguila-Alcantara, 2007). The climate is hot and 
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humid, and three seasons can be recognized: a dry and hot season from February to May (~100 

mm rain during four months, 28°C mean daily temperature), a rainy season from June to 

September (~900 mm rain during four months), and a colder season ("nortes") from October to 

January (~160 mm rain during four months, 22.8°C mean daily temperature). According to data 

recorded by the Comisión Nacional del Agua (CONAGUA, 2013), between 1971 and 2000 total 

annual precipitation at El Tormento averaged 1291 mm, and mean annual temperature was 

25.6°C. During the study period (September 2010-August 2011) total annual rainfall was 1246 

mm, and average mean and maximum annual temperatures were 26.3°C and 33.4°C, 

respectively.  

 Two neighboring groups of individually-recognized black howler monkeys were 

followed during 15 months. Group M contained 10-12 individuals (including 4-5 adult males and 

2 adult females) and group J contained 6-7 individuals (no more than 2-3 adult males at the same 

time and 2 adult females). Ten out of 16 adult individuals in the study groups were darted and 

marked with color anklets in August 2010, prior to the start of the behavioral data collection. The 

remaining adults were individually recognized based on facial features, scars, and broken digits. 

Between September 2010 and November 2011, the two groups ranged in areas of 14.5 (M) and 

4.5 ha (J), with an overlap of 1.3 ha.  

 

Field Data Collection 

 Behavioral Data 

From September 2010 to November 2011, I collected data on the howler monkey activity budget 

and diet, conducting all-day follows of one adult individual per day. I obtained 1300 hours of 

behavioral data of 14 focal animals (ten males: 674 hours; four females: 626 hours) using two-
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minute instantaneous samples on focal animals (Martin and Bateson, 2007). When the focal 

activity was feeding, I temporally switched to a method of continuous data collection, in which I 

recorded the duration (to the nearest second) of each feeding event and the quantity (number of 

items, parts of the item, or bites per minute), phenophase (i.e. young/mature leaf, 

immature/mature fruit, flower/inflorescence, other), and species of all items ingested. Then I 

resumed collecting two-minute instantaneous samples of the focal animal. All feeding trees (n = 

689) were tagged, measured (DBH, tree height, crown height, two perpendicular axes of the 

crown) and identified. Unless otherwise indicated, percentages of food items in the howler diet 

(e.g., % leaves, % fruit) are based on amounts of food ingested in grams, and not on the 

percentage of feeding observations. 

 Plant sample collection 

Food items were collected from feeding trees either on the same day or within two days of the 

observed feeding bout. I attempted to gather at least 50 g of flowers/inflorescences and 100 g of 

leaves and fruits (wet weight) per tree. The plant items were transported to the field laboratory, 

where they were measured and weighed to the nearest 0.01 g. Leaves, flowers, and 

inflorescences were air dried at a constant weight in a dark area. After discarding the parts that 

were not eaten (e.g., exocarp, seeds), fruits were cut into small slices and kept in a drying oven 

(<50ºC) until reaching a stable dry weight. All samples were then stored in paper bags labeled 

with date, tree number, and phenophase, and maintained in a dry place with a silica desiccant 

until phytochemical analyses were performed. 
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Food availability 

I carried out phenological censuses to monitor the presence and abundance of different plant 

food items during different seasons (i.e., young and mature leaves; ripe and unripe fruits; 

flowers, inflorescences, and flower buds). Two types of censuses were carried out: 1) 10 

Gentry’s belt transects (50×2 m each) (Gentry, 1988) in each group’s home range were walked 

bimonthly (n= 196 trees); 2) five trees/sp of each of the 10 most important tree species in the 

howler monthly diet were monitored. In both cases I estimated the percentage of the crown 

containing food items for each monitored tree on a scale of 0 − 4 (0; 1: 1−25%; 2: 26−50%; 3: 

51−75%; 4: 76−100%). To measure tree abundance and calculate basal area of the monitored 

species, I established six randomly placed 50×50 m quadrats and 33 additional Gentry's 

transects, tagging and identifying all trees with DBH ≥ 10 cm. The ecological sampling covered 

12 − 25% of the home ranges of the two study groups. For each food item of a given species, I 

calculated a food availability index (FAI) by multiplying the average bimonthly phenology score 

by its total estimated basal area. I then summed FAI across items and averaged those values 

across the two bimonthly surveys to obtain total monthly FAI for young and mature leaves; 

mature and immature fruits; and flowers (see Foerster et al., 2012 for a similar analysis). 

 

Laboratory Analyses  

Plant samples were analyzed in the Nutritional Ecology Laboratory at Hunter College, City 

University of New York, from March to June 2012. All samples were analyzed in duplicate. The 

samples were ground using a Wiley® mill fitted with a 1-mm screen. Dry matter was calculated 

by drying the field-dried samples in an oven (105ºC) immediately before each analysis to remove 

atmospheric moisture (Rothman et al., 2012).  
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 Total nitrogen (N) was determined via combustion according to AOAC (1995) using a 

Leco TruSpec Nitrogen Analyzer (Leco Corporation, St. Joseph, MI, USA). Crude protein (CP) 

was calculated by multiplying N by 6.25 (Rothman et al., 2012). Although this conversion factor 

likely overestimates the amount of protein present in tropical plant samples (Milton and Dintzis, 

1981), other proposed values (e.g., 4.3) might result in an underestimation (Conklin-Brittain et 

al., 1999). Moreover, since the majority of primate nutritional studies quantify crude protein in 

this way, we used the 6.25 factor for comparative purposes. However, to take into account 

nitrogen bound to fiber and secondary metabolites, I estimated available protein (AP) in two 

ways: 1) to determine the amount of fiber-bound nitrogen, I subtracted acid detergent insoluble 

nitrogen (ADIN) from N, multiplied this value by 6.25, and then subtracted it from CP (Rothman 

et al., 2008); 2) to estimate the effect of tannins on N digestibility, I measured the polyethylene 

glycol (PEG, a tannin-blocking agent) binding capacity in a subset of plant samples (n= 42, those 

that were positive for the qualitative acid-butanol assay for condensed tannins (Waterman and 

Mole, 1994)), followed by in vitro digestion with pepsin and cellulase (DeGabriel et al., 2008).  

 Lipids were determined by extraction with petroleum ether using an XT15 Fat Analyzer 

(ANKOM, Macedon, NY, USA) (AOCS 2009). I subtracted 1 from the percentage of ether 

extract to account for all the non-lipid non-nutritive components extracted by the procedure (e.g., 

waxy substances, cutin, essential oils) (Rothman et al., 2012).  

 Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin 

(ADL) were determined sequentially using filter bags in an ANKOM 200/220 fiber analyzer 

(Van Soest et al., 1991). Fruit samples containing >5% fat were pre-extracted in acetone before 

the NDF procedure, since lipids might interfere with the detergent (Rothman et al., 2012). Water 

soluble carbohydrates (WSC) were measured with the phenol-sulfuric acid assay (Dubois et al., 

62 
 



1956), using sucrose as a standard. Total nonstructural carbohydrates (TNC) were calculated by 

subtraction: %TNC = 100 – %NDF – %lipids – %AP – %ash (Rothman et al., 2012).  

Plant samples were extracted with 70% acetone to measure condensed tannins using the 

acid-butanol assay (Waterman and Mole, 1994). I did not use external standards (e.g., 

quebracho), since it has been demonstrated that they may overestimate condensed tannin content 

by up to 35% (Rothman et al., 2009). Absorbance values, measured in a spectrophotometer at 

550 nm, were reported according to a qualitative system:  <0.10 (0, i.e. tannins are not present); 

0.10 – 0.50 (+); 0.50 – 1.00 (++), and >1.00 (+++) (Rothman et al., 2006b). Twenty-one samples 

were sent to Dairy One Inc. for mineral analyses. Minerals (Na, Ca, P, Mg, K, Fe, Zn, Cu, Mn, 

Mo) were determined using a Thermo Jarrell Ash IRIS Advantage Inductively Coupled Plasma 

Radial Spectrometer (Thermo Optek Corp, Franklin, MA). 

  

Data analysis 

To calculate the daily amount of food ingested (g dry weight) by each focal animal, I multiplied 

the feeding bout length on food item i (minutes) by the corresponding feeding rate (g dry 

weight/min), and then summed all daily events. To estimate daily nutrient intake, I multiplied the 

nutrient content of each food item i by the estimated amount of item i ingested (g dry weight) in 

each feeding bout. The metabolizable energy content of plant samples was calculated using 

standard conversion factors (or physiological fuel values): 16 kJ/g for TNC, 17 kJ/g for AP, and 

37 kJ/g for lipids (Conklin-Brittain et al., 2006). Since howler monkeys obtain energy from fiber 

fermentation, I calculated a conversion factor based on mean fiber digestibility (47.7%) reported 

by Edwards and Ullrey (1999) for captive A. palliata, A. caraya, and A. seniculus consuming a 

diet of 42% NDF. Considering that gut microbes might retain at least 4 kJ/g during hemicellulose 
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and cellulose fermentation for their own growth (Conklin-Brittain et al., 2006), I multiplied the 

digestion coefficient (0.477) by 12 kJ/g. Thus I used a conversion factor of 5.7 kJ/g for NDF. I 

defined the energy derived from TNC, NDF, and lipids as non-protein energy. 

 I computed Jacobs selectivity index (D) (Jacobs, 1974) to identify preferences in the food 

choices of the study animals, using dietary items that accounted for more than 80% of the total 

diet in individual seasons. The index was calculated as D = (ris - ps) / (ris + ps - 2risps), where ris is 

the percentage of item i belonging to species s in the diet (based on grams consumed), and ps is 

calculated as the availability (FAI) of item i belonging to species s. This index varies from -1 to 

+1, with positive values indicating preference, negative values avoidance, and 0 indicating no 

selection.  

Differences in nutrient content among different plant parts were analyzed using one-way 

ANOVAs and unequal n HSD post-hoc tests, and Kruskal-Wallis tests with subsequent multiple 

comparisons when variables were not normally distributed even after transformation. Spearman 

rank order correlations were used to analyze the relationship between the phytochemical 

characteristics (i.e., nutrients, minerals, and metabolizable energy) of the food consumed and 1) 

the contribution (percent amount) of different items to the diet, and 2) the selectivity indices of 

different items. I used an alpha level of 0.05 for all statistical analyses. These tests were run in 

STATISTICA 12 (StatSoft, 2011). 

 

Results 

Diet and feeding patterns 

The annual feeding patterns of the two study groups differed consistently according to the 

methodology used to describe them. Based on feeding time, howlers appeared to consume more 
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leaves (50.6%) than mature and immature fruits (40.2%). However, data on grams consumed 

indicated that leaves accounted for 37% of the diet, and fruits for 58.2%. According to amount 

consumed, during the dry and rainy seasons the howler diet was predominantly fruit based 

(54.1% and 69.2%, respectively), whereas during the nortes, howler monkeys increased their 

consumption of leaves (49.5%) and flowers/inflorescences (9.7%). Table 3.1 highlights the 

differences in the howler diet when values are based on percentage of time spent feeding 

compared to the weight of food items ingested. Black howler monkeys devoted 10% more time 

to consuming leaves than fruits, however, the amount of fruit pulp consumed was 21% greater 

than the amount of leaf tissue consumed. Flower ingestion was slightly overestimated (3%) by 

using a time-based approach. These differences reflect the fact that average feeding rates for 

mature leaves (3.45 ± 1.9 g/min), mature fruits (2.56 ± 1.6 g/min) and immature fruits (2.52 ± 

2.2 g/min) were greater than rates for young leaves (2.10 ± 1.4 g/min) and flowers (1.00 ± 0.6 

g/min). However, feeding rates within each food type varied greatly among different plant 

species (e.g., from 0.6 g/min for Blepharidium mexicanum mature leaves to 7.8 g/min for mature 

leaves of an undetermined vine species ("Vine sp. 2")). Thus, I estimated the amount of food 

ingested using actual feeding rates for each individual plant species, and that resulted in the 

observed dietary patterns of 58.2% fruits, 37% leaves, and 4.7% flowers/inflorescences. 

Overall, black howler monkeys fed on 44 plant species (20 families). Fourteen of these 

accounted for 81% of the yearly diet (based on food amount ingested). In addition, the three 

highest ranking species, Brosimum alicastrum (Moraceae), Manilkara zapota (Sapotaceae), and 

Acacia usumacintensis (Fabaceae), comprised 52.5% of the annual diet. The most consumed 

items throughout the year were chicozapote (M. zapota) immature fruits (14%), followed by 

ramón (B. alicastrum) mature (12%) and immature (7%) fruits (Table 3.2). The consumption of 
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these fruits differed temporally, but during each season mature and/or immature fruits of either 

or both species were found among the three most consumed foods (Table 3.2).  

During the dry season, the howlers consumed food items from 36 plant species, 11 of 

which (14 different plant parts) accounted for 81% of the diet. The most consumed items were 

Manilkara zapota (29%) and Pseudolmedia oxyphyllaria (14%) immature fruits. During the 

nortes, black howlers fed on a total of 28 plant species; seven species (11 plant parts) accounted 

for 80% of the diet, and the most consumed items were the immature fruits of Acacia 

usumacintensis mature leaves (16%), Brosimum alicastrum (14%), and M. zapota immature fruit 

(12%). Finally, during the rainy season, individuals consumed items belonging to 32 species, six 

of which (nine plant parts) constituted 83% of the seasonal diet. The most consumed items were 

B. alicastrum (26%) and Pimenta dioica (13%) mature fruits. Overall these data indicate that 

black howlers exhibited a consistent dietary pattern across seasons, with 6-11 species accounting 

for 80% of food consumed. However, whereas during the dry and rainy seasons, fruits (mature 

and immature) of two or three plant species accounted for 47% of grams consumed, and leaves 

(young and mature) from two or three species accounted for ~16%, during the nortes fruits and 

leaves of three plant species accounted for 33% and 28%, respectively, of the total amount of 

food consumed. 

Given that food selection could be affected by plant species abundance and temporal 

availability of food resources, I calculated the selectivity index D taking into account the 

availability of different food phenophases throughout the study period. D ranges from -1 

(negative selection or avoidance) to +1 (positive selection), with 0 indicating no selection or 

neutrality. In the dry season, Pseudolmedia oxyphyllaria immature fruits (D = 0.98), Protium 

copal young leaves (D = 0.96), and Brosimum alicastrum young leaves (D = 0.95) were highly 
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selected. Pseudolmedia oxyphyllaria accounted for 14.6% of the dry season diet. Trees of this 

species were characterized by a relatively low abundance (basal area/ha: 0.54) in the study area, 

and their mature and immature fruits were consumed intensively during this season. During the 

nortes, the howlers showed a high preference for consuming Dendropanax arboreus mature 

fruits (D = 0.97) and Trophis racemosa inflorescences (D = 0.96). During the rainy season, B. 

alicastrum mature fruit (D = 0.86) and Acacia usumacintensis mature leaves (D = 0.82) had the 

highest selection indices (Table 3.3). These data indicate a black howler behavioral pattern 

characterized by feeding on foods that were relatively abundant and available in the environment 

(such as Manilkara zapota fruits, which were intensively consumed, and highly abundant), as 

well as actively seeking particular food items that were present in the environment at relatively 

low availability (e.g., P. oxyphyllaria immature fruits).  

 

Phytochemical data 

Phytochemical analyses of 127 plant samples collected from feeding trees belonging to 29 

species (Figure 3.1, Table 3.4) indicated that plant tissues consumed by A. pigra differed 

significantly in their nutrient, mineral and secondary compound content.  

Protein. Crude protein (CP) ranged from 3.3% in Manilkara zapota mature fruits to 

~33% in mature and young leaves of one vine species and some tree species of the Fabaceae 

family (e.g., Platymiscium yucatanum). CP content differed significantly among plant parts 

(Kruskal-Wallis: H = 40.46, df = 4, p< 0.0001), being higher in young (p< 0.005) and mature (p< 

0.008) leaves (average CP = 20.5% and 20%, respectively), and flowers/inflorescences (19.7%, 

p< 0.03) than in fruit, both mature (9%) and immature (11.7%). Available protein (AP), which is 

a more accurate measure than CP of protein accessible to the consumer since it does not include 
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non-digestible nitrogen (bound to secondary compounds and fiber), also differed with respect to 

plant part (H = 19.44, df = 4, p = 0.0006), with flowers (AP = 15.8%) exhibiting higher levels 

than mature (7.5%, p = 0.001) and immature (9.1%, p = 0.01) fruits. In the case of young and 

mature leaves (13.7% vs. 13.2%, respectively), AP did not differ significantly from each other 

and from flowers. AP ranged from 0.7% in M. zapota immature fruits, to 27.5% in P. yucatanum 

young leaves. Overall, these results indicate that flowers and inflorescences consumed by howler 

monkeys were as high in available protein as were mature and young leaves, which contained 

more available protein than fruits. However, the variability in protein content among the same 

food types across plant species was high (for example the average amount of available protein in 

mature fruits was 9.1%, and its standard deviation 9.3), thus suggesting that particular species 

may be targeted or substituted for their nutrient content. The difference between CP and AP was 

greater in mature and young leaves, in which almost 7% of nitrogen was bound to fiber and 

tannins, and thus resistant to digestion, than in mature fruits (1.6%), immature fruits (2.6%) and 

flowers (3.8%). Thus, protein present in fruits and flowers was more digestible than in young and 

mature leaves. 

Lipids. Lipids ranged from 0% in certain young and mature leaves to 30-35% in mature 

and immature fruits of Dendropanax arboreus. Lipid content differed among phenophases (H = 

15.35, df = 4, p =0.004). Lipids were significantly higher in mature fruit (average = 11.1%) than 

young leaves (1.9%, p = 0.003) and mature leaves (2.4%, p = 0.03). Average lipid content in 

inflorescences (2.2%) was lower than in mature fruits, but the difference was marginally 

significant (p = 0.05). Lipid content in immature fruits (5.4%) did not differ significantly from 

that of other plant parts. 
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Fiber. Fiber, which included neutral detergent fiber (NDF), acid detergent fiber (ADF), 

and acid detergent lignin (ADL), differed according to plant part (NDF, Kruskal-Wallis: H = 

20.40, df = 4, p = 0.0004; ADF, ANOVA: F(4,106) = 5.1, p = 0.0008; ADL, ANOVA: F(4,96) = 

2.55, p = 0.04). Specifically, NDF was higher in leaves (young leaves = 50%, p = 0.0007; mature 

leaves = 47%, p = 0.02) than in mature fruit (33.6%). NDF in young leaves (but not mature 

leaves) also was significantly higher than in flowers/inflorescences (39.5%, p = 0.02). Similarly, 

ADF was significantly higher in young leaves (ADF = 39.5%) than mature fruit (25.2%, p = 

0.001). ADL content also tended to be higher in young leaves (ADL = 24.7%) than in all other 

items (e.g., ADL mature leaves = 19.2%; immature fruit = 16.4%), but the differences between 

specific plant parts were not significant. Finally, the protein to fiber ratio (AP:ADF) did not 

differ between young and mature leaves (Mann-Whitney U-test: U = 260, n1= 22, n2 = 26, p = 

0.59) (young leaves = 0.41 ± 0.3; mature leaves = 0.45 ± 0.3). Overall, mature and young leaves 

consumed by howlers were similar in their nutrient composition, including the percentage of 

fiber, available protein, and protein to fiber ratio.  

Non-structural Carbohydrates. Water soluble carbohydrates (WSC), which include 

simple sugars and fructans, ranged from 1-2% in mature and young leaves of different plant 

species, to 41.7% in Simarouba glauca and Vitex gaumeri mature fruit. WSC were significantly 

higher in mature fruits (average = 23.6%) than mature leaves (6.2%, p = 0.0003), flowers (5.6%, 

p = 0.01), and young leaves (4.9%, p< 0.0001), and higher in immature fruit (13%) than young 

leaves (p = 0.01). In contrast, there were no significant differences in total non-structural 

carbohydrates (TNC) present in different plant parts, despite the fact that on average they 

appeared to be lower in young and mature leaves (~28 ± 10%) than in mature fruit (42 ± 22%), 

immature fruit (36 ± 18%), and inflorescences (36 ± 8%). 
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Condensed Tannins. Of the 78 samples analyzed for condensed tannins, 69% resulted in a 

positive reaction (Table 3.5). According to the qualitative system used to report absorbance of 

the plant samples (acid-butanol assay), the highest amounts of condensed tannins (+++) were 

found in nine samples of mature leaves belonging to six species, five samples of young leaves 

(five species), two inflorescence samples (two plant species), two samples of one species of 

immature fruit, and one sample of one species of mature fruit. The presence of high amounts of 

condensed tannins in young and mature leaves, inflorescences, mature fruits and immature fruits 

included in the howler diet is likely to reduce the availability of proteins and thus potentially act 

as an antifeedant. However, sixty-three percent of the samples with high amounts of tannins 

(+++) were included in the 10 species most consumed by howler monkeys during the study 

period (Bursera simaruba, Manilkara zapota, Metopium brownei, Pseudolmedia oxyphyllaria, 

and a vine of unknown species), indicating that howlers appear to be able to tolerate high tannin 

levels.  

Ash. Ash constitutes the inorganic portion of the plant sample that remains as residue 

after combustion, and represents the total mineral content of the sample. Ash content differed 

among items (ANOVA on transformed data: F(4,115) = 6.12, p= 0.0001), being higher in 

flowers (ash = 7%, p = 0.03) and mature leaves (7.6%, p = 0.0006) than mature fruit (4.2%), 

suggesting that these phenophases are richer in mineral content. 

Minerals. Content of macrominerals in howler foods are shown in Table 3.6. Mature 

leaves contained significantly higher levels of Ca than mature fruit (H = 11, df = 3, p =0.01), but 

were lower in K than young leaves (H = 9.1, df = 3, p = 0.02). Mature leaves also were higher in 

Mn than mature fruits (H = 9.3, df = 3, p = 0.02). The concentration of P, Mg, Na, Fe, Zn, and 

Cu did not differ significantly among plant parts. However, P content tended to be higher in 
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inflorescences (0.29%), and young leaves (0.23%), and Fe content higher in young (50.6 ppm) 

and mature leaves (49.5 ppm) and inflorescences (77 ppm in Trophis racemosa). Only mature 

leaves and inflorescences contained higher levels of Ca (>1.4%) than the estimated minimal 

dietary concentration recommended by the National Research Council for non human primates 

(0.55%) (NRC, 2003). Ca content was particularly high in Brosimum alicastrum (2.17%) and 

Metopium brownei (2.16%) mature leaves. Average concentrations of Mg (>0.18%) and K 

(>1.3%) in all plant parts surpassed the estimated Mg adequate dietary levels (0.08%) and 

minimum K requirements (>0.4%) for non human primates. In contrast, P, Na, Fe, Cu (except for 

young leaves), and Mn in the analyzed foods did not meet NRC recommendation. In general, 

leaves and flowers were higher in mineral content than fruits, and all of the plant samples 

analyzed tended to be low in sodium, phosphorus, iron, and calcium, with the exception of some 

mature leaves such as those of M. brownei and B. alicastrum, which were high in calcium. 

 

Feeding preferences: relationship between selectivity index and food phytochemistry 

The amount of particular food items (e.g., Manilkara zapota immature fruits) in the diet of black 

howler monkeys (expressed as %) during each of the three seasons did not correlate significantly 

with mineral, nutrient, and energy content. In contrast, the selectivity index based on diet 

consumption and food availability (D), which is a measure of howler food preferences, showed a 

positive correlation during the nortes with lipid (rs =0.648, n = 10, p = 0.04), P (rs =0.719, n = 8, 

p = 0.04), and K content (rs =0.747, n = 8, p = 0.03) (Table 3.7). During this season, the 

consumption of leaves (40.3% mature leaves) and flowers (8.4%) increased compared to other 

periods, and mature fruits of Dendropanax arboreus (7.35% of the diet), which were rich in 

lipids, were highly selected. No significant correlations were found during the rainy and the dry 
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season, suggesting that during these periods, individual plant parts and species were not 

preferentially selected based solely on their individual phytochemical characteristics. 

Figure 3.2 shows the percentage of nutrients (calculated by multiplying the nutrient 

content of different plant parts by their percentage contribution, based on grams ingested, to the 

seasonal diet) ingested by howler monkeys from each of the food items that constituted ~80% of 

the seasonal diet (listed in Table 3.3). General patterns of nutrient ingestion did not change 

significantly during the three seasons; for example the average protein-to-fiber ratio of the most 

consumed food items did not vary significantly across seasons (dry: 0.57 ± 0.4; rainy: 0.65 ± 0.3; 

nortes: 0.58 ± 0.3; Kruskal-Wallis, H = 0.87, n = 31, p = 0.6). Analogously, dietary mineral 

content (Figure 3.3) was similar across seasons, regardless of the fact that mineral content 

differed among certain plant parts (see results). These data suggest that howlers were successful 

in regulating their food intake and obtained a relatively consistent balance of nutrients 

throughout the year. 

There was, however, a trend of increasing the intake of sugars in the rainy season (1.8-

fold increase relative to the nortes); of Mn, available protein, and lipids in the nortes (2-fold, 1.4-

fold, and 1.8-fold increase, respectively, relative to the dry season); and lignin in the dry season 

(1.9-fold increase relative to the rainy season) (Figure 3.2). Despite these seasonal fluctuations in 

the intake of certain nutrients, the selectivity indices only showed significant correlations 

between the amount of foods consumed and their phytochemical characteristics during one 

season, the nortes, in which one plant species appeared to be targeted for its lipid content. This 

indicates that during most of the year, howlers did not obtain higher intake of nutrients by 

targeting specific food items rich in that particular nutrient, but instead exhibited a foraging 
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pattern in which the consumption of the fruits, leaves, and flowers of several common plant 

species resulted in a consistent intake of macronutrients and minerals. 

 

Discussion 

In this research I analyzed the nutritional basis of food selection in two groups of Mexican black 

howler monkeys. Integrating data on diet, plant phytochemical characteristics, and selectivity 

towards species-specific plant phenophases, I tested if black howler monkeys selected for or 

against specific nutrients and minerals, and if food choice could be explained in the context of a 

nutrient balancing framework. Nutrient balancing posits that a forager's goal is not to maximize 

the intake of any single nutrient over others, but to achieve a targeted proportion of macro and 

micronutrients (intake target, sensu Simpson and Raubenheimer, 2012). Here I tested three 

predictions regarding howler monkey nutrient intake. 

 The data indicate that black howler monkeys' selection of food items (based on indices of 

selectivity calculated considering seasonal changes in the amount of phenophases consumed and 

their availability in the howler home ranges) did not show a significant positive correlation with 

the protein content or protein-to-fiber ratio of the resources consumed, thus not supporting 

Prediction 1 (protein and protein-to-fiber maximization). As examined in Prediction 2, food 

choice was not negatively correlated with fiber content, or positively correlated with sugar 

concentration. Thus, Prediction 2 also was not supported. Given that I did not examine the fiber 

content of food items in the environment, it is possible that foods not eaten had a different 

nutritional profile from foods consumed. Finally, Prediction 3, which examined evidence for 

dietary selectivity based on Na content of food items, was not supported, despite the fact that this 

73 
 



mineral was found in low amounts in foods consumed (lower than the estimated NRC 

requirements).  

These results indicate that, based on abundance and availability, during one of the three 

season considered (nortes), lipid, K, and P content appeared to play an important role in howler 

monkeys' decisions to consume particular food items. In general, lipids have not been argued to 

be involved in howler monkey food selection (Norconk et al., 2009). There currently exist one 

report of the fatty acid profile of the howler diet (Chamberlain et al., 1993) and only three 

nutritional studies (Williams-Guillén, 2003; Behie and Pavelka, 2012b; Aristizabal, 2013) that 

reported lipid content of howler foods. In all cases, the items ingested contained low amounts of 

lipids (<9% dry matter). 

In contrast, howler patterns of food choice during the rainy and dry seasons failed to 

indicate that the maximization of any particular nutrient drove food choice. This indicates that, 

despite the changing food preferences (i.e., selectivity indices) shown by howlers across seasons 

for different plant species and plant parts, food items appeared to be selected in an attempt to 

balance the relative proportions of protein, lipids, and carbohydrates ingested, rather than to 

prioritize a particular nutrient. This is consistent with a behavioral pattern of nutrient balancing 

(Milton, 1998, Felton et al., 2009).  

 

Phytochemical composition of the diet 

Previous studies of the nutrient composition of foods consumed by howler monkeys suggest that 

their diet is mostly composed of leaves and flowers with high protein-to-fiber ratios and fruits 

rich in carbohydrates and sugars (Milton, 1979; Glander, 1981; Estrada, 1984); however, they 
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also seem to tolerate high fiber content (up to 60% ADF and 40% ADL) in the foliage ingested 

(Silver et al., 2000). 

Phytochemical analyses of plant parts collected from feeding trees visited by howler 

monkeys during this 15-month study showed that young leaves, mature leaves, and 

flowers/inflorescences were richer than mature and immature fruits in available protein, ash, and 

minerals (especially calcium), but they were not a good source of sugars. Leaves did not differ in 

fiber content from immature fruit, but were higher in NDF and ADF than mature fruits. In 

contrast, mature fruits were rich in lipids and water soluble carbohydrates and relatively lower in 

sodium than other plant parts (Figure 3.1, Table 3.4). Overall, these results were consistent with 

standard descriptions of neotropical primate food characteristics (Norconk et al., 2009). However 

these data also revealed that assumptions regarding the nutrient content of individual foods 

consumed by primates are sometimes incorrect. For example, although it is often assumed that 

immature vs. mature leaves ingested by primates differ in fiber, available protein, and secondary 

metabolites (Milton, 1979; Mowry et al., 1996; Chapman and Chapman, 2002; Tombak et al., 

2012), mature and young leaves consumed by black howler monkeys in the present study did not 

differ in their nutritional components. Based on a sample size of 26 (young leaves) and 32 

(mature leaves), I found similar amounts of crude and available protein, fiber, total non-structural 

carbohydrates, and ash (Figure 3.1, Table 3.4). Given that I only analyzed plant samples that 

were included in the howler diet, these data indicate that mature leaves chosen were similar to 

young leaves in nutrient content, possibly to avoid higher amounts of antifeedants, such as 

indigestible cell wall material and secondary compounds, which may have been present in 

uneaten mature leaves (Glander, 1981; Norconk et al., 2009). Nevertheless, during all seasons 
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howlers were able to locate and consume mature and young leaves of similar nutrient content 

without significant changes in day range and time spent traveling. 

Similarly, average protein-to-fiber (AP/ADF) ratio did not differ between mature and 

immature leaves, and was low (~0.4) compared to the values provided in the literature for leaves 

eaten by howler monkeys (Silver et al., 2000; Williams-Guillén, 2003; Behie and Pavelka, 

2012b) (Table 3.8) and colobines such as Procolobus rufomitratus (ratio = 0.8) (Gogarten et al., 

2012) and C. guereza (ratio = 0.7) (Fashing et al., 2007). In general, young leaves are reported to 

have higher protein-to-fiber ratios than mature leaves (e.g., 0.81 vs. 0.48 for leaves in the diet of 

black howler monkeys in Belize [Behie and Pavelka, 2012b]), and to be preferentially selected 

for this reason (Milton, 1998). However, the majority of the studies calculated the ratio using 

crude protein rather than available protein, which leads to higher values, since CP also includes 

the amount of nitrogen bound to fiber and tannins, and therefore unavailable to the consumer 

(Wallis et al., 2010). Silver et al. (2000) calculated the ratio as AP/ADF in leaves consumed by 

black howler monkeys in Belize, and also did not find significant differences between the 

protein-to-fiber ratio of young and mature leaves. This highlights the importance of measuring 

the amount of nutrients that can be digested and metabolized by the forager rather than the 

absolute amount of nutrients in foods (DeGabriel et al., 2008; Wallis et al., 2010; Wallis et al., 

2012; DeGabriel et al., 2013). Measuring AP/ADF in foods consumed by black howler monkeys, 

we found that individuals included leaves characterized by a low protein-to-fiber ratio among 

their most consumed or preferred items (e.g., ratio = 0.2 in Protium copal young leaves, which 

were highly selected in the dry season [D = 0.96]). These low values may be similar to those 

found in other primate species, when available protein rather than crude protein is included in the 

calculation of the protein-to-fiber ratio. For example, in the present study, AP and CP differed by 
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44% (± 30%) and 47% (± 26%) in young and mature leaves, respectively. Assuming a similar 

relationship, other studies of howler monkeys are likely to find an AP/ADF ratio similar to that 

reported here. 

 The nutritional composition of leaves in the howler diet at El Tormento showed a trend of 

a lower percentage of available protein and minerals and higher fiber compared to values 

reported for other food items consumed by howler and spider monkeys at other sites (Gaulin and 

Gaulin, 1982; Silver et al., 2000; Williams-Guillén, 2003; Felton, 2008; Righini et al., 2013; 

Aristizabal, 2013) (Table 3.8). For example, young leaves collected at El Tormento contained 

generally higher amounts of ADF and ADL than those found in other studies (e.g., ADF: 39.5% 

vs 25.3% [Behie and Pavelka, 2012b]; ADL: 24.7% vs 20.3% [Williams-Guillén, 2003] and 

14.6% [Fernández, in prep.]). Increased fiber might be linked to the geochemical characteristics 

of the soils, since nutrient-poor soils are usually characterized by vegetation with low quality 

foliage (e.g. presence of secondary compounds, low protein to fiber ratio) (McKey, 1978; 

Waterman et al., 1988). Protein and phenolics share the same precursor, phenylalanine (Jones 

and Hartley, 1999). Nitrogen limitation in the soil reduces the production of proteins, therefore 

phenylalanine can be incorporated into phenolic synthesis, resulting in an increased amount of 

lignin and condensed tannins in the leaves (Wright et al., 2010). The Yucatan peninsula in 

Mexico (location of this study) was formed from limestone on a karstic landscape and is 

characterized by a shallow soil surface layer and a low content of organic matter, favoring the 

rapid leaching of nutrients (Perry et al., 2003; Aguila-Alcantara, 2007). Limestone soils are 

identified by the presence of the mineral calcium carbonate, high concentrations of bicarbonate 

ions, and high pH (Kishchuk et al., 1999; Misra and Tyler, 1999), which may result in reduced 

phosphate and micronutrient (e.g., zinc, iron) availability (Leytem and Mikkelsen, 2005). These 
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characteristic of the soils are likely responsible for the presence of condensed tannins (found in 

~80% of the leaves sampled), the low protein-to-fiber ratio (< 0.45), low iron content (< 51 

ppm), and moderate P concentration (< 0.2%) of the foliage collected at El Tormento.  

 

Feeding preferences and selectivity indices 

Based on the amount of food ingested throughout the year, three plant species accounted for over 

50% of the study groups’ diet: Brosimum alicastrum (Moraceae), which is considered an 

important food source for atelines such as A. palliata (Milton, 1980; Chapman, 1988; Estrada et 

al., 1999), A. pigra (Silver et al., 1998; Rizzo, 2004; Rivera and Calmé 2006) and Ateles spp. 

(Ramos-Fernández and Ayala-Orozco, 2003; Russo et al., 2005; Di Fiore et al., 2008); 

Manilkara zapota (Sapotaceae), also commonly included in the diet of howler and spider 

monkeys (Silver et al., 1998; Di Fiore et al., 2008; Dias et al., 2011; Scherbaum and Estrada, 

2013; Plante et al., 2014); and Acacia usumacintensis (Fabaceae). The latter species is only 

found in Southern Mexico, Belize and Guatemala (Seigler et al., 2006), and a related species, A. 

dolichostachya has been reported as a food source for A. pigra (Dias et al., 2011) and Ateles 

geoffroyi (Scherbaum and Estrada, 2013). Howlers fed on young leaves, mature leaves, mature 

fruits and immature fruit of B. alicastrum and M. zapota, and on young and mature leaves of A. 

usumacintensis. Brosimum alicastrum and M. zapota were common trees in the study groups 

home ranges (basal area/ha = 8.88 m2 and 14.02 m2, respectively), whereas A. usumacintensis 

basal area was lower (1.39 m2). 

Despite fluctuations in fruit and young leaf availability across different seasons, different 

phenophases belonging to at least one of these species were always found among the three most 
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commonly consumed items in each season. Similar patterns of substantial reliance on few plant 

species (mostly in the Moraceae family), and low use of the majority of the other species, are 

reported in several other howler monkey species (Milton, 1980; Kowalewski, 2007; Chaves and 

Bicca-Marques, 2013) and other atelines such as Ateles spp. (Chapman, 1988; Wallace, 2005; 

Felton et al., 2008; González-Zamora et al., 2009) and Lagothrix lagotricha poeppigii (Di Fiore, 

2004). For example, Milton (1980) reported that four species, including Ficus yoponensis, B. 

alicastrum, Poulsenia armata, and F. insipida accounted for ~40% of the overall feeding time of 

one group of A. palliata on Barro Colorado, Panama, followed during 9 months. However, while 

in my study only 25 species (out of 44) accounted for <1% of the total amount of foods 

consumed, in Milton's study, 54 species (out of 73) accounted for <1% of feeding time, 

indicating that most species were only consumed on one day during the total study period 

(Milton, 1980). This suggests that the dietary breadth of A. pigra at El Tormento was lower than 

what is reported for some populations of mantled (A. palliata) and brown (A. guariba clamitans) 

howler monkeys living in continuous forests or large fragments (>500 ha) (Chaves and Bicca-

Marques, 2013). Feeding on a wide variety of plant species to limit food intake from any single 

plant species has been suggested as a strategy that howlers use to dilute the effects of potentially 

harmful secondary compounds when feeding on leaves (Milton, 1980; Glander, 1981). However, 

food species diversification strategies are best identified on a daily scale, rather than considering 

the number of species included in the total diet (Glander, 1981). This is due to the fact that 

strategies of resource mixing to avoid ingesting high daily amounts of any single toxin include 

increasing the number of leaf or fruit species eaten per day or across several consecutive days, 

but this pattern may be repeated across weeks resulting in the exploitation of a limited number of 

plant species (Glander, 1981). Milton (1980) reported that mantled howlers on Barro Colorado 
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Island fed on average on 7.6 plant species daily. In A. pigra, I found that individuals fed on 6.8 ± 

2.3 plant species per day, showing that there were not marked differences between A. pigra and 

A. palliata in the number of plant species visited per day, despite the fact that overall the number 

of plant species included in the yearly diet was smaller in A. pigra. I also found that howlers 

visited on average 14.0 ± 5.0 different feeding trees daily, a higher number than what was 

reported for five groups of A. seniculus in the Colombian Andes, which visited 5.7 ± 1.6 feeding 

trees/day in a secondary forest and 9.1 ± 4.4 in a mature forest (Gomez-Posada et al., 2007). The 

increased number of individual trees visited by A. pigra may be a local response to the fact that 

~70% of the howler foods that I analyzed contained condensed tannins, and intraspecific 

variability in tannin content was high (in 43% of the cases, tannin content differed among 

samples of the same phenophase collected from different trees of the same species during the 

same season) (Table 3.5), indicating that feeding on several different trees of the same species on 

the same day is one solution to the problem of ingesting high levels of secondary compounds. In 

fact, on 95% of the days, howlers fed on more than one tree of the same species each day, the 

mode being two, 3.1 ± 1.3 the average, and seven the maximum (for Pseudolmedia 

oxyphyllaria). 

Despite consuming up to 42% of fruits and leaves (combined) of Brosimum alicastrum, 

Manilkara zapota and Acacia usumacintensis in a given season, the selectivity index D, which 

takes into account not only the relative abundance of a species, but also the availability of its 

phenophases, showed that these species were not always the most preferred by the howlers 

(Table 3.3). I defined preference according to the selectivity index D, with D = 1 indicating high 

selectivity or preference (see Methods). This index also showed that there were some food items 

(e.g., Vitex gaumeri young leaves) that were consumed according to their availability, others that 
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were exploited at a lower rate than their availability (e.g., M. zapota young leaves during the dry 

season, D = -0.3), others that were moderately preferred (e.g., V. gaumeri mature fruits during 

the rainy season, D = 0.4), and several plant parts that were strongly preferred (e.g., Trophis 

racemosa inflorescences and Dendropanax arboreus mature fruits during the nortes, and 

Pseudolmedia oxyphyllaria immature fruits during the dry season, D >0.9). The same 

phenophase of a given species, due to its changing availability across seasons, could go from 

being highly preferred during one season (e.g., B. alicastrum young leaves, D = 0.95 in the dry 

season), to moderately preferred in others (e.g., B. alicastrum young leaves, D = 0.44 in the 

nortes and 0.36 in the rainy season), reiterating the importance of considering current availability 

of resources when analyzing primate food choice (Leighton, 1993; Takemoto, 2003; Boesch et 

al., 2006), rather than tree species abundance, species density/ha, or total basal area/ha, which are 

consistent across the year despite marked fluctuations in resource availability (Rogers et al., 

1990; Williams-Guillén, 2003; Fashing et al., 2007; Felton et al., 2008; Bowler and Bodmer, 

2011; Suarez, 2013). These results indicate that, although during all seasons A. pigra individuals 

showed significantly stronger (or weaker) preferences for certain plant species and parts 

(consumed at a greater frequency than expected based on availability in the environment), in 

general these preferences were not based on the targeting of a particular nutrient. This means 

that, with the exception of lipids, K, and P, which drove howler food selection during the nortes, 

preferences toward specific food items in the howler diet were not driven by the macro or micro 

nutrient content of these resources.  
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Plant phytochemistry and food choice 

Previous studies of howler monkey (Alouatta spp.) feeding ecology and phytochemistry have 

shown that several different factors affect food choice (Milton, 1979; Behie and Pavelka, 2012a). 

In the case of A. palliata, it has been argued that protein and the protein to fiber ratio of leaves 

are strong predictors of dietary preferences (Milton, 1979). This was based on observations 

indicating a feeding preference for young leaves, which were higher in crude protein and lower 

in fiber than mature leaves (Milton, 1980) (but see Table 3.8). Positive selectivity towards leaves 

with a high (relative to average values of leaves in the environment) protein-to-fiber ratio is 

consistent with patterns found in other folivorous primates such as Trachypithecus johni (Oates 

et al., 1980), Colobus satanas (McKey et al., 1981), and Presbytis rubicunda (Davies et al., 

1988), and these findings might have led researchers to suggest that in general, leaf eating 

primates should select food items that maximize protein while minimizing fiber intake (McKey 

et al., 1981; Waterman et al., 1988). Sugars also have been considered important in primate diets 

(Rogers et al., 1990; Espinosa-Gomez et al., 2013), and it has been noted that prosimians such as 

Microcebus murinus, spider monkeys, gorillas, and chimpanzees commonly tolerate higher 

tannin concentrations if they are found in high sugar solutions (Reynolds et al., 1998; Simmen et 

al., 1999; Laska et al., 2000; Remis, 2006). In this regard, a study of A. pigra by Behie and 

Pavelka (2012b) reported that simple sugars and protein were positively associated with food 

choice. When analyzing only the leaves consumed, however, food choice was positively 

associated with simple sugars, negatively associated with fiber, and unrelated to protein content 

(Behie and Pavelka, 2012b). In this study, as in the present research, the protein-to-fiber ratio of 

leaves was not a significant factor in howler food choice. 

82 
 



Nutritional factors driving food choice in howler monkeys may be affected by the 

characteristics of the howlers' habitat, including forest primary productivity and soil 

geochemistry, whose characteristics have a major influence on leaf chemistry (Janzen, 1974). 

The need to target a specific nutrient and maximize its intake might arise under conditions in 

which that nutrient is limiting in the environment, as has been reported for several colobine 

populations (Davies et al., 1988; Yeager et al., 1997). For example, some authors argue that if in 

a given environment all plant phenophases are generally high in protein, primate food choice will 

not likely be based on protein prioritization, but rather on the targeted intake of nutrients such as 

sugars, fiber, or minerals (Kool, 1992, Yeager et al., 1997; Behie and Pavelka, 2012a), since the 

physiological requirements for protein should be easily met. The fact that overall young and 

mature leaves consumed by A. pigra at El Tormento were not particularly rich in available 

protein (averaging ~13% dry matter) and did not have a high protein-to-fiber ratio (~0.4) 

compared to other sites inhabited by howler monkeys (Table 3.8), might have resulted in protein 

prioritization by howler monkeys. This was not the case, since I did not find that protein content 

significantly affected food choice. Nevertheless, the howlers were able to meet and surpass their 

protein requirements (4.9-5.2 g/mbm according to Nagy and Milton, 1979), consuming on 

average 6 g/mbm of available protein per day (see Chapter 4). Thus, I argue that howlers met 

their protein requirement not by targeting only protein-rich plant species/phenophases, but by 

ingesting plant parts from a core set of common tree species, and mixing these with a limited 

number of seasonally preferred items. For example, young leaves of Protium copal were 

characterized by a high selectivity index (D = 0.96) during the dry season, despite the fact that 

they had a low protein-to-fiber ratio (0.26) and below average content of available protein 

(10.8% dry matter). Given the howler small day range (<500 m), a highly selected species like P. 
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copal may have been consumed because of its proximity to a group of staple species, rather that 

based on nutrient content only. 

The significant correlation between selectivity and food lipid content found during the 

nortes was driven principally by the consumption (7.35% of the seasonal diet) of Dendropanax 

arboreus mature fruits, which contained >35% lipids and were highly selected (D = 0.97). The 

average lipid content of neotropical fruits is reported to be around 18.5% (Jordano, 2000), but the 

majority of the fruits do not usually contain more than 10% (Worman and Chapman, 2005), thus 

indicating that the fruits of D. arboreus were particularly rich in lipids. This food resource alone 

accounted for 58% of total lipid intake during the nortes. Other lipid sources during the nortes 

were Manilkara zapota immature fruits, which accounted for 14% of lipid intake, and Brosimum 

alicastrum immature fruit, which contributed 7.5%. The importance of lipids in the diet of 

howler monkeys has largely been overlooked because it was assumed that the lipid content of the 

diet of leaf-eating primates was very low (Rogers et al. 1990, Norconk et al. 2009). This could 

have been related to the fact that it has generally been assumed that fatty fruits are mostly 

consumed by fruit-eating vertebrates, while leaf-eating species prefer sugar-rich fruits (Janzen, 

1975; Rogers et al., 1990). In general, increased consumption of lipid-rich foods is associated 

with increased energy requirements, since fats provide twice the energy of sugars and protein 

(NRC, 2003). Some primate species (Pan troglodytes, Lophocebus albigena, Cercopithecus 

ascanius) consume a higher amount of lipids during peaks of ripe fruit availability (Conklin-

Brittain et al., 1998), which may coincide with reproduction (e.g., in Sanje mangabeys, 

Cercocebus sanjei (McCabe et al., 2013)) (Lee, 1987; Schneider, 2004). However, in A. pigra, 

average daily individual intake of energy derived from lipids plus carbohydrates was lower 

during the nortes (414 kJ/mbm) than during the other two seasons of the year (541 and 579 
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kJ/mbm), and daily individual lipid intake was lower in the nortes (75 ± 45 kJ/mbm) than in the 

rainy season (84 ± 64 kJ/mbm) (see Chapter 4). Moreover, the nortes was not the season with 

higher mature fruit availability (average FAI = 8.8 during the nortes vs. 53.9 during the rainy 

season). On the contrary, mature leaves were highly abundant (average FAI = 461) and they 

were the most consumed items (37.8%) during this season. Thus, in absence of higher energetic 

needs during the nortes, selecting fruits high in lipids could have served to balance the higher 

protein consumption characterizing the nortes (105 ± 49 kJ/mbm), in order to maintain a 

relatively stable ratio of protein and non-protein energy. The yearly average protein to lipid 

intake ratio was 1.8:1, and this value was consistent during the three seasons (1.8:1 during the 

rainy and nortes, and 1.9:1 during the dry season). 

 In conclusion, during this 15-month field study of the nutritional ecology of black howler 

monkeys in Mexico, I found that: 

• based on grams consumed, the diet of A. pigra at El Tormento was mainly fruit-based, 

and only during one season (nortes) the consumption of leaves (49.5%) and flowers 

(9.7%) increased with respect to fruits (40.8%). 

• young and mature leaves did not differ in their content of crude and available protein, 

fiber, lipids, non-structural carbohydrates, ash, and protein-to-fiber ratio. 

• among the seasonally preferred plant parts in the howler diet, there were two fruit species 

that were particularly high in lipids (Dendropanax arboreus: 35 ± 6% dry weight; and 

Metopium brownei: 18 ± 5% dry weight). 

• sixty-nine percent of the plant samples analyzed (n =78) contained condensed tannins. 

• based on phytochemical analysis of plant parts included in the howler diet, it appeared 

that leaves at El Tormento had lower protein-to-fiber ratios compared to leaves consumed 
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by howler and spider monkeys at other sites. This is possibly linked to the geochemical 

characteristics of limestone soils in the Yucatan peninsula. 

• only during one season, food selectivity of black howler monkeys correlated positively 

with certain food phytochemical characteristics (i.e., lipids, K, P), whereas during the rest 

of the year, the selectivity indices for the food items accounting for >80% of the seasonal 

diet did not correlate with content of available protein, fiber, sugars, lipids, energy, 

minerals, and protein-to-fiber ratio.  

According to a nutrient balancing strategy, over the course of one or several consecutive 

days, individuals are expected to consistently ingest foods that enable them to achieve (or 

approach to) a targeted proportion of nutrients (e.g., protein/non protein energy), rather than 

maximizing the ingestion of any single nutrient or energy. This proportion or balance is defined 

as the intake target (Behmer, 2009; Simpson and Raubenheimer, 2012). In order to achieve this 

target, foragers can: 1) consume individual food items that are characterized by a balance of 

nutrients similar to the target. This pattern has been reported for Ateles chamek in Bolivia, where 

it was found that during parts of the year, six types of foods, including mature figs, were 

nutritionally balanced and showed a protein/non protein energy content that coincided with the 

spider monkeys’ target, or average yearly intake of protein/non protein energy (Felton et al. 

2009); 2) show preference for individual nutrients, whose intake can be targeted by feeding on 

one or few phenophases or species containing high amounts of that nutrient(s), or by 

preferentially feeding on several different phenophases or species whose cumulative 

consumption provides the targeted amount of that nutrient. In this case it is expected that 

individuals will prioritize the consumption of the targeted nutrient(s) until their daily nutritional 

requirements are met [Raubenheimer and Simpson, 1993]); 3) not exhibit a preference for any 
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single nutrient, and instead mix resources, feeding on a variety of different phenophases and 

plant species in order to achieve a balanced diet from individually nutritionally imbalanced 

foods. This is analogous to the strategy employed by several herbivorous insects such as Locusta 

migratoria, in which the intake target was achieved by frequently switching between foods 

containing different combinations of protein and carbohydrates (Chambers et al., 1995; 

Raubenheimer and Simpson, 1997).  

I did not find strong evidence for the first possibility, since the most consumed items in 

the three season were not characterized by ratios of protein and non-protein energy coinciding 

with the seasonal average. For example during the nortes, the most consumed items, Acacia 

usumacintensis mature leaves, Brosimum alicastrum immature fruits, and Manilkara zapota 

immature fruits had protein/non protein ratios of 0.45:1, 0.44:1, and 0.009:1, respectively, which 

differed from the seasonal intake ratio of 0.25:1. The data indicate, however, that black howler 

monkeys followed the second pattern during the nortes (showing selectivity towards food lipid 

content as a way of maintaining a balanced protein/non protein energy seasonal intake), and the 

third pattern during the rest of the year, when no single nutrients was prioritized to approach the 

intake target. Overall, these data lend support to the hypothesis that a nutrient balancing foraging 

strategy offers the strongest explanation for the decisions taken by black howler monkeys in 

selecting or avoiding particular feeding trees and food items. 
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Figure 3.1. Nutritional composition of different categories (young and mature leaves, mature and 

immature fruits, flowers and inflorescences) of food items collected from black howler monkey 

feeding trees. AP: available protein, TNC: total nonstructural carbohydrates, NDF: neutral 

detergent fiber 
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Figure 3.2. Percentage of nutrients (±SD) ingested by black howler monkeys across different 

seasons from all the food items that constituted ~80% of the diet (see Table 3.3). These values 

were obtained multiplying the nutrient content of different plant parts by the percentage 

contribution (based on grams ingested) of each plant part to the seasonal diet. NDF: neutral 

detergent fiber, ADF: acid detergent fiber, ADL: acid detergent lignin, CP: crude protein, AP: 

available protein, TNC: total nonstructural carbohydrates, WSC: water soluble carbohydrates 

 

 

 

 

 
  

0%

10%

20%

30%

40%

 NDF  ADF ADL CP AP Lipids TNC WSC

Dry Nortes Rainy

105 
 



 

Figure 3.3. Concentrations of macrominerals and trace elements (±SD) ingested seasonally by 

black howler monkeys from all the food items that constituted ~80% of the diet (see Table 3.3) 
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Table 3.1. Composition of the diet of the two howler monkey study groups. ML: mature leaves, 

YL: young leaves, MF: mature fruits, IF: immature fruits, Flowers and inflorescences 

 

 

  

 % based on feeding time  % based on amount consumed (grams) 
  Dry Nortes Rainy Total   Dry Nortes Rainy Total 
          

YL 45.6% 10.6% 31.3% 31.6%  32.9% 11.7% 18.0% 22.2% 
ML 9.9% 43.0% 15.5% 19.0%  5.6% 37.8% 12.2% 14.8% 
Tot Leaves 55.5% 53.6% 46.8% 50.6%  38.4% 49.5% 30.2% 37.0% 
          
MF 6.6% 12.3% 36.9% 19.5%  7.7% 12.2% 54.0% 29.0% 
IF 25.4% 28.1% 13.7% 20.6%  46.4% 28.6% 15.2% 29.2% 
Tot Fruit 32.0% 40.4% 50.6% 40.2%  54.1% 40.8% 69.2% 58.2% 
          
Flowers/Inflo 11.7% 6.0% 2.4% 7.6%   7.1% 9.7% 0.6% 4.7% 
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Table 3.2. Composition of the annual diet (% based on grams ingested) of black howler monkeys 

(ML: mature leaves, YL: young leaves, MF: mature fruits, IF: immature fruits, INFLO: 

inflorescences) 

 
 
Family Species Plant part Diet 
Sapotaceae Manilkara zapota IF 14.03% 
Moraceae Brosimum alicastrum MF 12.01% 
Moraceae Brosimum alicastrum IF 7.14% 
Mimosaceae Acacia usumacintensis ML 6.46% 
Moraceae Brosimum alicastrum YL 6.23% 
Myrtaceae Pimenta dioica MF 6.07% 
Moraceae Pseudolmedia oxyphyllaria IF 5.33% 
Anacardiaceae Metopium brownei MF 3.38% 
Lamiaceae Vitex gaumeri MF 2.40% 
Mimosaceae Acacia usumacintensis YL 2.34% 
Lamiaceae Vitex gaumeri YL 2.24% 
- Vine sp. 1 YL 1.84% 
Moraceae Ficus sp. IF 1.73% 
Burseraceae Bursera simaruba ML 1.50% 
Araliaceae Dendropanax arboreus MF 1.43% 
Moraceae Trophis racemosa INFLO 1.43% 
Burseraceae Protium copal YL 1.37% 
Simaroubaceae Simarouba glauca MF 1.28% 
Mimosaceae Lysiloma latisiliquum YL 1.22% 
Sapotaceae Manilkara zapota MF 1.21% 
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Table 3.3. Seasonal composition of the diet (% based on grams ingested) of black howler 
monkeys and Jacobs selectivity index based on species-specific phenophase availability (D) for 
food items belonging to different species 
 Season Species Plant part Diet  D 
Dry Manilkara zapota IF 29.29% 0.907 
 Pseudolmedia oxyphyllaria IF 14.64% 0.987 
 Vitex gaumeri YL 6.14% 0.041 
 Brosimum alicastrum YL 5.27% 0.957 
 Vine sp. 1 YL 3.62% -1 
 Simarouba glauca MF 3.51% 0.926 
 Lysiloma bahamensis YL 3.30% -0.270 
 Protium copal YL 3.09% 0.961 
 Manilkara zapota YL 2.70% -0.360 
 Lysiloma bahamensis FL/inflo 2.56% -0.114 
 Swartzia cubensis INFLO 1.96% 0.865 
 Brosimum alicastrum IF 1.81% 0.676 
 Platymiscium yucatanum YL 1.44% -2 
 Vine sp. 2 L 1.42% -1 
     
Nortes Acacia usumacintensis ML 16.13% 0.876 
 Brosimum alicastrum IF 14.45% 0.887 
 Manilkara zapota IF 11.69% 0.527 
 Dendropanax arboreus MF 7.35% 0.975 
 Trophis racemosa INFLO 7.31% 0.968 
 Brosimum alicastrum YL 6.08% 0.447 
 Bursera simaruba ML 5.78% 0.413 
 Acacia usumacintensis YL 3.37% 0.834 
 Brosimum alicastrum MF 3.33% 0.846 
 Blepharidium mexicanum ML 2.53% 0.921 
 Brosimum alicastrum FL 2.14% 0.766 
     
Rainy Brosimum alicastrum MF 25.76% 0.867 
 Pimenta dioica MF 13.42% -2 
 Brosimum alicastrum IF 8.39% 0.608 
 Metopium brownei MF 7.65% 0.789 
 Acacia usumacintensis ML 7.41% 0.826 
 Brosimum alicastrum YL 7.09% 0.362 
 Vitex gaumeri MF 5.45% 0.420 

 Ficus sp. IF 3.81% 0.200 
 Acacia usumacintensis YL 3.64% 0.597 

1Basal area could not be determined for vines and climbers 
2Food availability could not be determined for these species since the few visited trees were at the margins/outside 
the forested area and did not fall in any of the transects and quadrats. 
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Table 3.4. Nutritional composition of food items included in the diet of black howler monkeys at El Tormento, Mexico 
 

Sp. Family Item % 
DM 

% 
Ash 

% 
NDF 

% 
ADF 

% 
ADL 

% 
CP 

% 
AP 

% 
Lipids 

% 
TNC Sucrose AP:ADF n 

Acacia sp.  Fabaceae ML 93.51 5.94 47.73 31.46 19.31 26.21 17.41 5.37 23.55 3.32 0.57 2 
Acacia gaumeri Fabaceae ML 93.35 7.22 36.04 24.16 9.96 21.73 15.70 1.83 39.21 3.73 0.65 1 
Acacia usumacintensis Mimosaceae ML 91.50 10.33 39.07 25.16 15.51 24.99 20.08 1.80 28.73 1.24 0.87 4 

  YL/LB  - 0.43 43.50 29.65 20.79 28.50 25.05 2.67 28.35  - 0.84 1 
Adelia barbinervis Euphorbiaceae IF 92.28 2.98 56.72 41.44 20.95 9.70 7.75 3.04 29.52 3.70 0.14 1 
Blepharidium 
mexicanum Rubiaceae ML 91.80 6.52 44.21 28.15 14.83 19.44 10.65 2.90 35.09 6.08 0.34 6 
Brosimum alicastrum Moraceae ML 90.83 14.42 39.04 23.47 5.53 17.07 14.78 1.38 30.38 4.61 0.65 2 

  MF 91.63 5.14 24.32 15.70 3.76 11.92 10.84 2.08 57.62 30.59 0.73 2 
  INFL 90.27 13.19 37.16 19.90 8.31 22.81 19.98 2.67 27.00 1.37 1.09 3 
  IF 90.42 7.88 42.54 26.38 8.49 22.24 20.23 2.34 22.30 5.74 0.89 5 

Bursera simaruba Burseraceae ML 90.36 6.61 42.37 33.12 17.30 13.82 7.69 0.96 42.36 16.71 0.19 3 
  YL 90.07 5.66 49.68 42.50 27.26 13.11 9.98 2.86 31.81 4.00 0.06 1 

Cydista aequinoctialis  Bignoniaceae FL 92.71 2.00 26.62 14.46  - 15.11 13.24 2.47 55.68  - 0.92 1 
Dendropanax arboreus Araliaceae MF 94.86 7.10 27.38 20.12 7.88 12.63 10.89 35.19 19.44 8.31 0.55 3 

  IF 94.64 7.38 32.33 23.17 9.84 13.35 11.17 30.41 18.71 7.10 0.48 2 
Ficus sp. Moraceae ML 90.12 3.56 47.49 38.57 21.14 10.29  - 1.42 37.24  -  - 1 

  YL/LB 88.53 8.14 38.83 31.89 21.91 19.22 13.26 1.39 38.38 1.88 0.28 1 
Guettarda combsii Rubiaceae IF 92.01 4.58 74.38 59.04 26.58 6.36 4.04 0.04 16.96 19.40 0.07 1 
Lysiloma latisiliquum Mimosaceae INFL 92.62 5.56 38.24 27.22 15.12 20.33 15.93 0.83 39.44 6.50 0.62 3 
Mangifera indica Anacardiaceae MF 89.80 2.57 12.57 10.28 1.71 4.50 3.97 1.98 79.62 34.58 0.38 2 
Manilkara zapota Sapotaceae ML 91.77 10.91 48.27 35.52 14.65 10.25 5.54 3.22 32.06 3.13 0.16 2 

  YL/LB 91.31 5.45 49.00 41.29 21.64 12.40 9.75 3.21 32.33 1.86 0.21 3 
  MF 91.32 2.20 34.55 30.53 23.92 3.31 1.36 4.27 57.62 35.24 0.05 3 
  IF 92.20 2.39 46.35 39.67 29.10 3.73 0.69 5.23 47.26 19.64 0.02 7 

Metopium brownei Anacardiaceae ML 90.93 7.36 44.99 39.80 23.67 12.00 9.41 4.35 33.89 12.13 0.16 2 
  MF 94.19 3.25 45.03 32.42 28.50 11.89 9.63 18.20 23.94 6.56 0.28 6 

Petrea volubilis Verbenaceae FL 91.87 8.23  -  -  - 21.34 19.75  -  - 9.76  - 1 
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Table 3.4 (cont.) 
 
Pimenta dioica Myrtaceae MF 91.04 5.85 40.28 29.01 14.23 6.46  - 6.35 41.06 10.86  - 1 
Pithecellobium 
platylobum  Fabaceae ML 91.83 7.49 56.64 40.38 25.98 25.44 11.18 0.00 24.69 2.13 0.42 1 
Platymiscium yucatanum Fabaceae YL 91.77 7.42 24.61 17.09 8.92 30.55 27.53 0.96 39.48 4.73 1.61 3 
Pouteria campechiana Sapotaceae ML 90.38 6.05 71.70 62.20 44.60 22.19 9.62 3.80 8.82 1.18 0.22 1 

  YL/LB 88.92 6.61 74.55 66.61 48.23 20.85 7.24 6.04 5.56 1.42 0.17 1 
Protium copal Burseraceae ML 91.84 4.22 68.63 53.30 28.37 17.80 9.76 0.55 16.84  - 0.18 6 

  YL/LB 91.64 5.40 61.22 48.69 29.36 20.17 10.86 1.12 21.40 4.20 0.26 3 
Pseudolmedia 
oxyphyllaria  Moraceae YL 91.66 8.90 46.80 31.67 18.31 20.76 15.59 1.55 27.17  - 0.50 1 

  MF 90.07 6.14 50.57 35.45 19.98 15.49 10.04 1.37 31.87 8.82 0.28 2 
  IF 91.28 6.83 44.16 32.81 18.33 19.55 18.33 1.35 29.78 6.80 0.51 3 

Simarouba glauca Simaroubaceae MF 91.01 4.99 20.20  -  - 7.23 6.13 2.13 64.82 41.71  - 1 
Swartzia cubensis Caesalpiniaceae YL/LB 90.43 3.97 46.54 34.45 23.03 26.74 21.47 0.66 27.36 2.87 0.64 1 

  IF 91.64 4.90 40.61 21.36 12.18 26.37 24.81 0.55 29.13 8.34 1.16 2 
  FL 90.92 3.92 43.50 30.86 18.45 26.08 21.02 0.42 31.14  - 0.77 3 

Trophis racemosa Moraceae INFL 92.09 11.80 25.74 20.00  - 22.95 21.29 2.72 38.59 6.64 1.02 5 
Vitex gaumeri Lamiaceae YL/LB 91.68 7.66 47.26 38.95 26.71 21.19 11.18 2.24 31.76 3.80 0.31 2 

  MF 93.83 2.68 21.49 16.35 8.78 4.34 2.23 1.18 72.30 39.25 0.14 3 
  IF 93.24 4.25 23.32 19.43 10.38 5.02 2.54 1.57 68.51 41.70 0.13 2 

Vine sp. 1   ML 91.49 5.70 55.05 37.08 17.36 32.49 26.80 0.27 12.18 2.31 0.72 1 
  YL/LB 91.85 5.23 45.97 34.29 21.77 32.37 26.31 1.24 21.25  - 0.77 1 

Vine sp. 2    ML 90.36 7.79 33.88 34.17 17.55 12.36 8.66 0.94 48.74  - 0.25 1 
ML: mature leaves; YL: young leaves; LB: leaf buds; MF: mature fruits; IF: immature fruits; INFL: inflorescences
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Table 3.5. Plant species and plant parts (young and mature leaves, mature and immature fruits, 
flowers and inflorescences) in the howler monkey diet containing condensed tannins. 
A qualitative system was used to report the absorbance values following the acid-butanol assay: 
<0.10 (0, i.e. tannins are not present); 0.10 – 0.50 (+); 0.50 – 1.00 (++), and >1.00 (+++) 
(Rothman et al. 2006). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Species Plant  part Absorbance 
level 

n 
 

Acacia gaumeri ML ++ 1 
Acacia usumacintensis ML 0 3 
 ML + 2 
 YL 0 1 
Adelia barbinervis IF ++ 1 
Blepharidium mexicanum ML ++ 2 
 ML +++ 1 
 YL ++ 1 
Brosimum alicastrum IF + 1 
 MF 0 2 
 ML 0 1 
 ML + 1 
Bursera simaruba ML +++ 2 
 YL +++ 1 
Coccoloba barbadensis IF + 1 
Dendropanax arboreus MF 0 2 
Ficus sp. YL +++ 1 
Guettarda combsii IF ++ 1 
Lysiloma bahamensis INFLO ++ 2 
Mangifera indica MF 0 1 
Manilkara zapota FL ++ 1 
 IF ++ 2 
 IF + 2 
 MF + 2 
 ML +++ 2 
 YL +++ 1 
 YL ++ 1 
Metopium brownei ML ++ 1 
 ML +++ 1 
 MF 0 2 
Mimosa sp. ML ++ 1 
 ML + 1 
Pimenta dioica MF ++ 1 
Platymiscium yucatanum YL 0 1 
Pouteria campechiana ML + 2 
 YL 0 1 
Protium copal INFLO +++ 1 
 YL ++ 4 
 YL + 1 
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Table 3.5 (cont.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Pseudolmedia oxyphyllaria IF +++ 2 
 INFLO +++ 1 
 MF +++ 1 
 ML 0 1 
Simarouba glauca MF 0 2 
Sp. 1 YL +++ 1 
Swartzia cubensis IF 0 1 
 INFLO 0 2 
 YL + 1 
Trophis racemosa INFLO 0 2 
Vine (unkn. sp. 1) ML ++ 1 
 ML +++ 1 
Vine (unkn. sp. 2) ML +++ 2 
Vitex gaumeri IF 0 1 
 MF 0 1 
 YL 0 1 
 YL + 1 
 YL +++ 1 
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Table 3.6. Content of macrominerals (% dry weight) and trace elements (parts per million, or 
mg/kg) in plant parts (ML: mature leaves, YL: young leaves, MF: mature fruits, IF: immature 
fruits, INFLO: inflorescences) consumed by black howler monkeys at El Tormento, Mexico 

 

 

  

Item Species Ca % P % Mg % K % Na %
Fe 

(ppm)
Zn 

(ppm)
Cu 

(ppm)
Mn 

(ppm)
Mo 

(ppm)

ML Acacia  sp. 1.92 0.09 0.26 0.80 0.06 84 26 2 54 <0.1
ML Acacia usumacintensis 0.91 0.09 0.35 1.55 0.07 45 15 7 23 <0.1
ML Brosimum alicastrum 2.17 0.06 0.50 1.21 0.04 33 11 5 56 0.30
ML Bursera simaruba 1.29 0.08 0.35 0.74 0.06 45 8 3 23 0.30
ML Bursera simaruba 0.93 0.12 0.37 1.67 0.01 55 22 9 36 <0.1
ML Metopium brownei 2.16 0.05 0.32 0.67 0.13 40 5 1 13 0.10
ML Pouteria campechiana 0.43 0.22 0.16 2.27 0.02 45 23 13 18 <0.1

Avg ML 1.40 0.10 0.33 1.27 0.05 49.57 15.71 5.71 31.86 
St. Dev. 0.69 0.06 0.10 0.59 0.04 16.55 8.12 4.27 17.30 

YL Manilkara zapota 0.45 0.15 0.18 2.03 0.06 45 10 6 24 <0.1
YL Protium copal 0.29 0.26 0.23 2.51 0.07 64 21 18 11 <0.1
YL Vitex gaumeri 0.49 0.29 0.41 3.41 0.01 43 44 21 16 <0.1

Avg YL 0.41 0.23 0.27 2.65 0.05 50.67 25.00 15.00 17.00 
St. Dev. 0.11 0.07 0.12 0.70 0.03 11.59 17.35 7.94 6.56 

MF Brosimum alicastrum 0.26 0.16 0.21 2.47 0.04 25 13 8 8 <0.1
MF Dendropanax arboreum 0.16 0.18 0.26 2.49 0.04 63 20 20 15 0.30
MF Metopium brownei 0.23 0.14 0.15 1.37 0.03 49 11 14 8 <0.1
MF Pimenta dioica 0.62 0.09 0.14 2.04 0.04 27 6 8 5 <0.1
MF Simarouba glauca 0.10 0.07 0.16 1.67 0.02 32 4 5 6 <0.1

Avg MF 0.27 0.13 0.18 2.01 0.03 39.20 10.80 11.00 8.40 
St. Dev. 0.20 0.05 0.05 0.49 0.01 16.32 6.30 6.00 3.91 

IF Brosimum alicastrum 0.58 0.20 0.39 2.02 0.05 40 19 11 17 2.10
IF Dendropanax arboreum 0.42 0.21 0.23 2.55 0.09 94 26 23 24 <0.1
IF Manilkara zapota 0.21 0.02 0.39 2.02 0.05 40 19 11 17 2.10
IF Pseudolmedia oxyphyllaria 0.70 0.20 0.21 1.70 0.02 29 29 8 19 0.50
IF Vitex gaumeri 0.05 0.05 0.07 2.16 0.01 12 10 7 2 <0.1

Avg IF 0.39 0.14 0.26 2.09 0.04 43.00 20.60 12.00 15.80 
St. Dev. 0.27 0.09 0.14 0.31 0.03 30.72 7.37 6.40 8.23 

INFLO Trophis racemosa 1.58 0.29 0.46 2.65 0.03 77 30 7 105 0.90

Estimated requirements 
(NRC 2003)

0.55
0.3 - 
0.4

0.04 - 
0.08

0.24 0.20 100 13 - 20 15 44 
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Table 3.7. Spearman correlation coefficients (rs) showing the relationship between the 

phytochemical characteristics of the food consumed during the nortes by black howler monkeys 

and the selectivity indices (D) of different items based on species-specific phenophase 

availability in the habitat. Sample sizes (n) and p-values (p) also are shown. NDF: neutral 

detergent fiber, ADF: acid detergent fiber, ADL: acid detergent lignin, CP: crude protein, AP: 

available protein, TNC: total nonstructural carbohydrates, WSC: water soluble carbohydrates, 

ME: metabolizable energy 

 

 

 Macronutrients and energy        

 Ash NDF ADF ADL CP AP Lipids TNC WSC AP/ADF ME 

rs 0.212 -0.273 -0.515 -0.317 0.212 0.333 0.648 -0.442 -0.150 0.430 0.527 
n 10 10 10 9 10 10 10 10 9 10 10 
p 0.556 0.446 0.128 0.406 0.556 0.347 0.043 0.200 0.700 0.214 0.117 

            
 Minerals           

 Ca P Mg K Na Fe Zn Cu Mn   
rs -0.168 0.719 -0.024 0.747 -0.217 0.386 0.614 0.491 -0.169   
n 8 8 8 8 8 8 8 8 8   
p 0.691 0.045 0.955 0.033 0.606 0.346 0.106 0.217 0.690   
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Table 3.8. Nutrient content and protein to fiber ratio of food items consumed by howlers 

*Calculated as AP/ADF 

Plant 
part 

% 
NDF 

% 
ADF 

% 
ADL 

% 
Lipids 

%  
CP 

%  
AP 

%  
TNC 

Prot:Fiber Reference 

          
YL 52.70 40.80 21.70 3.30 19.70 17.00 32.10 0.5* Aristizábal 2013 

 41.04 25.35  2.62 20.49   0.81 Behie & Pavelka 2012 
     16.70    Estrada 1984 
 41.04 31.01 14.59 1.74 24.59 20.20 29.22 0.81* Fernández in prep 
     21.7    Gaulin & Gaulin 1982 
  33.71   12.03    Glander 1981 
 54.40 36.40 21.10  21.20   0.58 Oftedal 1991 
 50.22 39.50 24.70 1.99 20.50 13.74 27.90 0.41* Present study 
 50.69 35.85   22.34 16.88  0.56* Silver et al. 2000 
 44.20 37.20 20.30  22.30   0.72 Williams-Guillén 2003 
          

ML 56.20 43.10 21.80 2.90 17.60 14.90 30.90 0.4* Aristizábal 2013 
 53.12 33.91  2.60 16.43   0.48 Behie & Pavelka 2012 
     12.60    Estrada 1984 
 40.13 24.54 10.79 2.58 16.92 14.23 32.50 0.66 Fernández in prep 
  37.54   12.39    Glander 1981 
 57.20 40.50 20.40  16.60   0.41 Oftedal 1991 
 47.35 34.70 19.30 2.39 20.05 13.18 28.20 0.45* Present study 
 56.63 37.09   17.07 12.51  0.37* Silver et al. 2000 
 48.40 36.60 17.60  19.50   0.60 Williams-Guillén 2003 
          

MF 43.50 34.40 17.70 8.60 11.90 10.50 41.00 0.4* Aristizábal 2013 
 45.01 32.50  2.44 9.74    Behie & Pavelka 2012 
 26.09 19.30 9.12 1.97 11.33 9.16 56.53  Fernández in prep 
 33.60 26.38 17.06 11.13 8.95 7.50 41.80 0.34* Present study 
     7.77 5.04   Silver et al. 2000 
 36.38 37.24  4.41 17.26    Urquiza-Haas et al. 2008 
 49.90 40.20 20.00  8.80   0.29 Williams-Guillén 2003 
          

IF 42.60 29.70 10.60 2.90 6.40 5.80 48.40 0.2* Aristizábal 2013 
 22.31 16.20 5.06 8.34 17.54 16.51 42.56  Fernández in prep 
 43.19 31.42 16.43 5.48 11.73 9.10 36.30 0.43* Present study 
          

FL 45.80 28.60 19.13 5.48 16.13    Behie & Pavelka 2012 
 29.99 19.84 8.33 1.63 21.36 18.42 46.23  Fernández in prep 
 50.60 35.80 17.10  14.40    Oftedal 1991 
 39.50 28.80 18.79 2.21 19.67 15.86 36.20 0.61* Present study 
  35.56   17.10 11.64  0.35* Silver et al. 2000 
 41.20 33.30 18.50  21.10   0.71 Williams-Guillén 2003 
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CHAPTER 4 

RETHINKING HOWLER MONKEY FEEDING ECOLOGY: NUTRIENT BALANCING 

IN FREE-RANGING ALOUATTA PIGRA 

Introduction 

Understanding how animals select foods and balance nutrients is critical for addressing questions 

related to feeding ecology and social behavior and their effects on reproductive success and life 

history strategies (Milton, 2006; Karasov and Martinez del Rio, 2007; Lambert, 2011; Simpson 

and Raubenheimer, 2012). Nutrient imbalances, deficiencies, and/or overconsumption can 

seriously compromise activity, health, growth, and reproduction (Oftedal, 1991; Barboza et al., 

2009). However “quantifying the underpinnings of diet selection is challenging, especially in 

studies of wild animals, because it requires precise feeding observations of individuals over 

continuous periods, relevant analysis of all foods consumed, and a framework to analyze the 

complex, multivariate nature of the data” (Felton et al., 2009c: p.676). 

 Foods represent complex mixtures of different organic and inorganic compounds that are 

consumed by animals to satisfy their requirements for growth, reproduction, and health 

(Lambert, 2011; Simpson and Raubenheimer, 2012). Certain foods can be difficult to masticate 

or digest, and foods can contain potentially harmful substances that consumers must avoid or 

denature (Norconk et al., 2009; Lambert, 2011). The precise behavioral, physiological, and 

hormonal mechanisms used by foragers to obtain a nutritionally balanced diet remain unclear; 

however, laboratory studies with invertebrates and vertebrates have demonstrated that 

individuals can alter food choice based on their nutrient needs and the phytochemical 

composition of available foods (Robbins et al., 2007; Marsh et al., 2007; Simpson and 
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Raubenheimer, 2012). Previous nutritional experience, current nutritional imbalances, or changes 

in physiological state may change the dietary response of animals, resulting in a preference to 

consume particular nutrients over others (Simpson and Raubenheimer, 2000). For example, 

locusts (Locusta migratoria) and caterpillars (Spodoptera littoralis) tend to select protein-rich 

foods after having consumed diets lacking in protein (Simmonds et al., 1992; Chambers and 

Simpson, 1995). Similarly, vertebrates such as salmonid fish (Coregonus lavaretus) 

overconsume lipids and carbohydrates to obtain protein, when offered a low protein diet 

(Ruohonen et al., 2007). 

 

Nutritional Geometry 

Several theories and nutritional models, including energy or protein:fiber maximization, nutrient 

mixing, and toxin avoidance, have been proposed to explain the food choice and nutritional 

ecology of primates (Glander, 1978; Milton, 1980; Felton et al., 2009b). Among these, nutrient 

balancing models (Felton et al., 2009a; Felton et al., 2009b; Felton et al., 2009c; Rothman et al., 

2011; Behie and Pavelka, 2012) argue that individual food choices are based on the regulation of 

multiple nutrients in response to the consumers’ changing nutrient needs (Simpson et al., 2004). 

When no single food provides the optimal “nutrient target” that maximizes fitness, animals may 

be required to regulate the intake of multiple nutrients. Nutrient balancing requires the presence 

of internal feedback mechanisms and neural pathways often referred to as appetites that serve to 

regulate daily nutrient intake across seasons and periods of growth and reproduction 

(Raubenheimer, 2011; Simpson and Raubenheimer, 2012). Recent research on a variety of 

taxonomically distinct organisms (from locusts to gorillas) has shown that the Geometric 

Framework (GF), which examines patterns of macro and micronutrient intake in 

118 
 



multidimensional space, offers an instructive model to understand the interactive effects of 

nutrients on animal food choices (Simpson and Raubenheimer, 1993; Raubenheimer et al., 2009; 

Simpson and Raubenheimer, 2012; Raubenheimer et al., 2012). 

 For example, a recent 8-month study of wild spider monkeys (Ateles chamek) in Bolivia 

using the GF (Felton et al., 2009a; Felton et al., 2009c) revealed that individuals regulated their 

daily intake of available protein, while total energy intake fluctuated according to the nutritional 

content of available food items. This pattern has been described as the “protein leverage effect”, 

since it causes excess energy intake when the percentage of protein in the diet is low (Simpson et 

al., 2003; Simpson and Raubenheimer, 2005). Spider monkeys maintained a relatively stable 

protein intake across seasons, independent of fluctuations in food availability and abundance, by 

mixing nutritionally complementary foods such as leaves, fruits, and flowers, or by eating 

nutritionally balanced items such as Ficus boliviana fruits. In contrast, Rothman et al. (2011) 

found that, in Ugandan mountain gorillas (Gorilla beringei), the intake of non-protein energy 

(i.e., energy contribution from lipids, total non structural carbohydrates, and neutral detergent 

fiber) was relatively constant throughout the year, while protein intake varied according to the 

availability of leaves and fruits in the environment. During periods of fruit scarcity, gorillas 

consumed high amounts of proteinaceous leaves, thus over-ingesting protein, to reach their target 

intake of carbohydrates and lipids (which are present in leaves, but in lower proportions). For 

this gorilla population, prioritizing non-protein energy was a higher priority than prioritizing 

protein intake. Despite exhibiting two different patterns of nutrient regulation, both studies 

provide strong evidence that primates regulate nutrient intake in order to balance the 

consumption of protein, lipids, and carbohydrates, and appear to do so over the course of a single 

day.  

119 
 



Howler Monkey Diet 

Howler monkeys (Alouatta spp.) represent the most geographically widespread genus of New 

World monkeys and range from Mexico to Argentina (IUCN, 2013). Their diet and feeding 

ecology have been extensively studied for more than 30 years (Milton, 1979; Milton et al., 1979; 

Nagy and Milton, 1979a; Nagy and Milton, 1979b; Milton, 1980; Glander, 1981; Milton, 1981; 

Glander, 1982; Milton and McBee, 1983; Estrada, 1984; Julliot, 1996; Stoner, 1996; Milton, 

1998; Silver et al., 1998; Estrada et al., 1999; Silver et al., 2000; Dunn et al., 2010; Palma et al., 

2011; Behie and Pavelka, 2012; Amato et al., 2013; Chaves and Bicca-Marques, 2013; Garber et 

al., in press). Despite their relatively enlarged hindgut, relatively long food transit times (for 

platyrrhines), robust mandibles, and molars with high shearing crests, howler monkeys have 

been described as behavioral folivores (Milton, 1978; Milton, 1979). Milton offered this term to 

differentiate the ecological challenges howler monkeys face in consuming difficult to digest 

resources such as fibrous leaves from those faced by colobines and indriids, which she referred 

to as anatomical folivores due to their specialized stomachs and ceca that enable them to more 

efficiently ferment foliage and seeds with the aid of symbiotic bacterial and protozoan microflora 

(Kay and Davies, 1994). Clearly, both behavior and anatomy/physiology play an important role 

in howler monkey nutritional ecology.  

In order to effectively consume large amounts of leaves, potentially high in fiber and 

secondary compounds, howlers are reported to reduce or limit energy costs, for example by 

resting during 60-80% of their daily activity budget, traveling less than 500 m/day (based on 20 

studies; (Di Fiore et al., 2011)), and selectively avoiding foods high in fiber and toxins (Glander, 

1981). Glander (1981) hypothesized that nutritional, phytochemical, and structural differences in 

the available foods play an important role in howler dietary selectivity. In contrast, Milton (1979; 
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1998) proposed that the most important factor influencing leaf choice in howler monkeys was the 

protein:fiber ratio of plant material. However, the precise nutritional factors affecting food 

choices in howlers remain poorly understood. This is due mainly to the fact that previous studies 

have tended to lack: 1) precision in assessing the weight and nutrient characteristics of the foods 

ingested, 2) data on total daily nutrient intake of an individual, and 3) an integrative and 

nutritionally explicit framework to identify how sequential patterns of food choice contribute to 

nutrient balancing (Schuelke et al., 2006; Felton et al., 2009c). 

 In the present study, I apply a nutritional geometry model to the study of black howler 

monkey (A. pigra) foraging strategies and food choice. My goal is to identify short and long term 

dietary strategies used by adult howler monkeys to regulate energy and macronutrient intake. I 

test the following hypotheses: 1) due to the close phylogenetic relationship with spider monkeys 

and relatively similar diets including seasonally varying amounts of fruits, leaves, and flowers, 

black howler monkeys will show patterns of protein prioritization similar to A. chamek in 

Bolivia; 2) due to the fact that both howler monkeys and gorillas can subsist during periods of 

the year on a diet mainly consisting of leaves and fibrous vegetation, black howler monkeys will 

show patterns of carbohydrate and lipid prioritization similar to G. beringei in Uganda; 3) since 

individual patterns of nutrient regulation respond to changes in food and nutrient availability in 

the environment, howler monkeys will regulate and prioritize protein intake when the daily diet 

is dominated by items rich in carbohydrates and lipids (for example during periods when fruits 

account for >50% of the diet), but will prioritize nonstructural carbohydrate and lipid intake 

when the daily diet is mostly leaf-based (e.g. during seasons when fruits are less abundant). 
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Methods 

Study Site and Subjects 

The research was carried out in the state of Campeche, Mexico, at El Tormento (18º36′44″N; 

90º48′31″W), a 1400-ha forested area owned by Instituto Nacional de Investigaciones Forestales, 

Agrícolas y Pecuarias (INIFAP). The dominant vegetation types in this area of the Yucatan 

peninsula are semi-deciduous and evergreen seasonal forests (sensu Miranda & Hernández 

1963). The climate is hot and humid, and three seasons can be recognized: a dry and hot season 

from February to May (~100 mm rain during four months, 28°C mean daily temperature), a rainy 

season from June to September (~900 mm rain during four months), and a colder season 

("nortes") from October to January (~160 mm rain during four months, 22.8°C mean daily 

temperature) (Figure 4.1). According to data recorded by the Comisión Nacional del Agua 

(CONAGUA, 2013), between 1971 and 2000 total annual precipitation at El Tormento averaged 

1291 mm, and mean annual temperature was 25.6°C. During the study period (September 2010-

August 2011) total annual rainfall was 1246 mm, and average mean and maximum annual 

temperatures were 26.3°C and 33.4°C, respectively. 

 Two neighboring groups of black howler monkeys were followed during 15 months. 

Three complementary data sets were recorded: ecological, behavioral, and phytochemical. Group 

M contained 10-12 individuals (including 4-5 adult males and 2 adult females) and group J 

contained 6-7 individuals (no more than 2-3 adult males at the same time and 2 adult females). 

All of the monkeys were individually recognized, with ten individuals darted and marked with 

color anklets in August 2010, prior to the start of the behavioral data collection (Table 4.1). 

Between September 2010 and November 2011, groups M and J ranged in areas of 14.5 and 4.5 

ha respectively, with an overlap of 1.3 ha. Although focusing on two groups limited the number 
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of individuals sampled, the behavioral and ecological hypotheses tested required detailed 

sampling of the same individuals throughout an entire day and across consecutive days, and 

during all months of the year. This necessitated a focus on all adult individuals (n = 14) of the 

two study groups to determine accurate dietary and nutritional profiles and patterns of sequential 

food choice. 

 

Field Data Collection 

Phenological data 

I conducted phenological censuses to monitor the presence and abundance of different 

phenophases (i.e. young and mature leaves; ripe and unripe fruits; flowers, inflorescences, and 

flower buds). Two types of censuses were carried out: 1) 10 Gentry’s belt transects (50×2 m 

each) (Gentry, 1988) in each group’s home range were walked bimonthly (n= 196 trees); 2) five 

trees/sp for each of the 10 most important tree species in the howler monthly diet were 

monitored. In both cases I estimated the percentage of the crown containing food items for each 

monitored tree on a scale of 0 − 4 (0; 1: 1−25%; 2: 26−50%; 3: 51−75%; 4: 76−100%). To 

measure tree abundance and calculate basal area of the monitored species, I established six 

randomly placed 50×50 m quadrats and a 33 additional Gentry's transects, tagging and 

identifying all trees with DBH ≥ 10 cm. My ecological sampling covered 12 − 25% of the home 

ranges of the two study groups. For each phenophase of a given species I obtained a food 

availability index (FAI) by multiplying the average bimonthly phenology score by its total 

estimated basal area. I then summed FAI across items and averaged those values across the two 

bimonthly surveys to obtain total monthly FAI for young and mature leaves; ripe and unripe 

fruits; and flowers (see Forester et al. (2012) for a similar analysis). 
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 Behavioral Data 

From September 2010 to November 2011, I collected data on the howler monkey activity budget, 

diet, feeding patch occupancy, and within and between-group social interactions, conducting all-

day follows of one adult individual per day. I obtained 1300 hours of behavioral data on 14 focal 

animals (ten males: 674 hours; four females: 626 hours). I used two-minute instantaneous 

sampling (individual activity records) of focal animals. When the focal animal started feeding, I 

temporarily switched to a method of continuous data collection, recording the duration (to the 

nearest second) of each feeding event. I also calculated feeding rates using a stopwatch and 

recorded the quantity (number of items, parts of the item, or bites per minute), phenophase (i.e. 

young/mature leaf, immature/mature fruit, flower/inflorescence, other), and species of the items 

ingested. Once the feeding ended, I resumed instantaneous focal animal sampling at two minute 

intervals. All feeding trees (n = 689) were tagged, measured (DBH, tree height, crown height, 

two perpendicular axes of the crown) and identified. Unless otherwise indicated, percentages of 

food items in the howler diet (i.e., % leaves, % fruit) are based on amounts of food ingested in 

grams, and not on the percentage of feeding observations. 

 Plant sample collection 

Food items were collected from feeding trees either on the same day or within two days of the 

observed feeding bout. I attempted to gather at least 50 g of flowers/inflorescences and 100 g of 

leaves and fruits (wet weight) per tree. The plant items were transported to the field laboratory, 

where they were measured and weighed to the nearest 0.01 g. Leaves, flowers, and 

inflorescences were air dried at a constant weight in a dark area. After discarding the parts that 

were not eaten (e.g. seeds), fruits were cut into small slices and kept in a drying oven (<50ºC) 

until reaching a stable dry weight. All samples (n = 146) were then stored in paper bags labeled 
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with date, tree number, and phenophase, and maintained in a dry place with a silica desiccant 

until phytochemical analyses were performed. 

 

Laboratory Analyses  

Plant samples were analyzed in the Nutritional Ecology Laboratory at Hunter College, City 

University of New York, from March to June 2012. All samples were analyzed in duplicate. The 

samples were ground using a Wiley® mill fitted with a 1-mm screen. Dry matter was calculated 

by drying the field-dried samples in an oven (105ºC) immediately before each analysis to remove 

atmospheric moisture (Rothman et al., 2012).  

 Total nitrogen (N) was determined via combustion according to AOAC (1995) using a 

Leco TruSpec Nitrogen Analyzer (Leco Corporation, St. Joseph, MI, USA). Crude protein (CP) 

was calculated by multiplying N by 6.25 (Rothman et al., 2012). Although this conversion factor 

likely overestimates the amount of protein present in tropical plant samples (Milton and Dintzis, 

1981), other proposed values (e.g., 4.3) might result in an underestimation (Conklin-Brittain et 

al., 1999). Moreover, since the majority of primate nutritional studies quantify crude protein in 

this way, I used the 6.25 factor for comparative purposes. However, to take into account nitrogen 

bound to fiber and secondary metabolites, I estimated available protein (AP) in two ways: 1) to 

determine the amount of fiber-bound nitrogen, I subtracted acid detergent insoluble nitrogen 

(ADIN) from N, multiplied this value by 6.25, and then subtracted it from CP (Rothman et al., 

2008); 2) to estimate the effect of tannins on N digestibility, I measured the polyethylene glycol 

(PEG, a tannin-blocking agent) binding capacity in a subset of plant samples (n= 42, those that 

were positive for the qualitative acid-butanol assay for condensed tannins (Waterman and Mole, 

1994)), followed by in vitro digestion with pepsin and cellulase (DeGabriel et al., 2008).  
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 Lipids were determined by extraction with petroleum ether using an XT15 Fat Analyzer 

(ANKOM, Macedon, NY, USA) (AOCS, 2009). I subtracted 1 from the percentage of ether 

extract to account for all the non-lipid non-nutritive components extracted by the procedure (e.g. 

waxy substances, cutin, essential oils) (Rothman et al., 2012).  

 Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin 

(ADL) were determined sequentially using filter bags in an ANKOM 200/220 fiber analyzer 

(Van Soest et al., 1991). Fruit samples containing >5% fat were pre-extracted in acetone before 

the NDF procedure, since lipids might interfere with the detergent (Rothman et al., 2012). Water 

soluble carbohydrates (WSC) were measured with the phenol-sulfuric acid assay (Dubois et al., 

1956), using sucrose as a standard. Total nonstructural carbohydrates (TNC) were calculated by 

subtraction: %TNC = 100 – %NDF – %lipids – %AP – %ash (Rothman et al., 2012). To 

calculate individual daily nutrient end energy intake I used TNC instead of WCS, since TNC 

account for additional non-structural carbohydrate fractions such as starch and soluble fiber, 

which I did not measure separately. 

 The metabolizable energy content of plant samples was calculated using standard 

conversion factors (or physiological fuel values): 16 kJ/g for TNC, 17 kJ/g for AP, and 37 kJ/g 

for lipids (Conklin-Brittain et al., 2006). Since howler monkeys obtain energy from fiber 

fermentation, I calculated a conversion factor based on mean fiber digestibility (47.7%) reported 

by Edwards and Ullrey (1999) for captive A. palliata, A. caraya, and A. seniculus consuming a 

diet of 42% NDF. Considering that gut microbes might retain at least 4 kJ/g during hemicellulose 

and cellulose fermentation for their own growth (Conklin-Brittain et al., 2006), we multiplied the 

digestion coefficient (0.477) by 12 kJ/g. Thus we used a conversion factor of 5.7 kJ/g for NDF. 
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Data analysis 

I constructed a complete dietary profile for each group member by quantifying feeding rates and 

estimating daily nutrient and energy intake of individual adult males and females (at least two 

full day focal follows per individual per month). In the following analysis I include only 91 focal 

samples of 9 males (n = 44) and 4 females (n = 47), i.e., those corresponding to 91 days in which 

the focal animal could be successfully followed for 9 − 12 consecutive hours without being out 

of sight for more than 10 minutes, and all feeding bouts were recorded in detail.  

To calculate the daily amount of food ingested (g dry weight) by each focal animal, I 

multiplied the feeding bout length on food item i (minutes) by the corresponding feeding rate (g 

dry weight/min), and then summed all daily events. To estimate daily nutrient intake, I 

multiplied the nutrient content of each food item i by the estimated amount of item i ingested (g 

dry weight) in each feeding bout. I then obtained daily values of AP energy (total AP intake, 

converted to kilojoule equivalents), non-protein energy (sum of the intake of TNC, lipids, and 

NDF, converted to kilojoule equivalents), and total energy (sum of AP and non-protein energy) 

for each focal animal. To take into account the possible effects of different body weights on 

nutrient and energy intake in male and female howler monkeys, I divided each value of daily 

energy intake by the estimated metabolic body mass (mbm = M0.762) of the corresponding focal 

animal. Body mass for nine of the 14 focal animals was obtained in August 2010 during the 

darting and marking phase of this project (adult males: 7.6 ± 0.9 kg, adult females: 6 ± 0.3 kg). 

For those individuals whose weights were not available (n = 4), I used data on mean body weight 

of male and female A. pigra from Kelaita et al. (2011), which were based on a larger sample size 

(37 males, 32 females). 
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I analyzed daily nutrient intake data using a Geometric Framework (GF) for nutrition. I 

constructed two- and three-dimensional models, showing in geometric space the individual daily 

intake of available protein, TNC, and lipids. In the two-dimensional models I represented 

available protein energy on the x-axis, and non-protein energy (TNC+NDF+lipids) on the y-axis. 

The metabolism of protein differs from that of lipids and carbohydrates in that amino acids 

cannot be synthesized from other macronutrients and cannot be stored, which contrasts with the 

capacity of lipids and carbohydrates to be stored as triacylglycerol and glycogen, respectively 

(Brosnan et al., 2011). Moreover, carbohydrates and lipids are generally used for energy in 

vertebrates (Raubenheimer and Simpson, 1999), thus, considering protein and non-protein 

energy separately reflects their different metabolic characteristics. 

 In a geometric framework, each point in nutritional space represents the nutrient 

composition of the daily diet of one focal animal, and the nutritional "rails" (vectors passing 

through the origin) represent the balance of those nutrients for the food ingested. To assess the 

effect of sex on several response variables such as daily nutrient intake, I ran repeated-measures 

ANOVAs using STATISTICA 10 (StatSoft, 2011), with season as a within-subjects factor, and 

sex as a between-subjects factor. To analyze temporal patterns of nutrient prioritization, I plotted 

the cumulative daily intake of AP and NPE intake during periods (ranging from four to 40 days) 

for which I had intake data for consecutive days.  

 I also used right-angled mixture triangles (RMT) to compare the relative (% of total 

energy) daily intake of protein, lipids, and carbohydrates of focal individuals with the nutrient 

composition of foods that comprised at least 1% of the annual diet. Slope differences were tested 

using one-sample tests based on correlations between residual and fitted values (“smatr” package 

in R) (Warton et al., 2006). 
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 I used Linear Mixed-Effect Models (LMM) (to avoid problems of non-independence of 

errors due to temporal pseudoreplication, i.e. repeated measurements from the same individual 

(Crawley, 2007)) to analyze the effects of different variables on individual protein and non-

protein energy intake and their ratio. All models included an individual's identity as a random 

factor, and predictor variables as fixed factors. Included among the hypothesized predictor 

variables were: season; percentage of fruit in the daily diet (based on amounts ingested); 

percentage of leaves in the daily diet (based on amounts ingested); daily total feeding time 

(minutes spent feeding in a day per unit of metabolic body mass); and the food availability 

indices. Data were log or arcsine square root transformed to conform to assumptions of 

normality. I initially included all the predictor variables in the model, and then dropped one by 

one those that were not significant based on hypothesis testing procedures (backward selection). 

I refitted the model after each removal, and used the Akaike (AIC) selection criterion to identify 

the best model (Zuur et al., 2009). I conducted the analyses in R (version 2.15.1), fitting the 

linear models by REML (Restricted Maximum Likelihood criterion), and using nlme (Pinheiro et 

al., 2013) and MuMIn (Barton, 2013) packages (R Core Team, 2012).  

 

Results 

Behavioral data 

Based on the complete behavioral data set (1300 hours of observation of 10 adult males and 4 

adult females), the yearly diet of A. pigra at El Tormento consisted of 37% leaves, 58.2% fruit, 

and 4.7% flowers and inflorescences (based on grams ingested). The same dietary profile was 

present in males (37.5% leaves, 57.8% fruits, and 4.4% flowers) and females (36.3% leaves, 

58.5% fruits, and 5% flowers). Howler monkeys' diets broadly coincided with seasonal changes 
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in food availability (Figure 4.2). For example, at the onset of the dry season (February) several 

species of deciduous trees that were important in the howler diet (e.g., Bursera simaruba (L.) 

Sarg., Manilkara zapota (L.) P. Royen, Metopium brownei Roxb.) began to shed some or all of 

the leaves. Consequently, during the next three months the availability of mature leaves in the 

forest diminished considerably (>50%). During the mid-dry season there was an increase in leaf 

bud and young leaf availability that peaked in mid-April (FAI = 243.4). This corresponded to a 

relative decrease in the consumption of mature leaves, and a relative increase in the intake of 

young leaves during the dry season. Immature and mature fruits were more abundant during the 

rainy season, from June to September (average monthly FAI for mature fruit: 66.9 ± 16.4, and 

immature fruit: 34.9 ± 8.2), however September and October 2010 were characterized by a 

scarcity of mature (FAI = 1.6 ± 0.6) and immature (FAI = 12.1 ± 2.7) fruit compared to the 

following year (September - October 2011) (FAI mature fruit: 57.4 ± 33.9; FAI immature fruit: 

43 ± 21.7) (Figure 4.2). For example, the production of Brosimum alicastrum Sw. fruits, which 

accounted for 33% of the howler fruit portion of the total diet, was eight times more abundant 

(based on FAI scores) in 2011 than in 2010. Thus, as a general pattern, during the dry and rainy 

seasons howler monkey diet was fruit-based (54-69%), whereas during the nortes, leaf 

consumption was greatest (49.5%) (Table 4.2).  

 Individuals fed on leaves, fruits, and flowers belonging to 44 species (36 species during 

the dry season, 32 during the rainy season, and 28 during the nortes) representing 20 families. 

Fourteen plant species comprised at least 1% (each) of the annual diet, with three species (B. 

alicastrum [Moraceae], M. zapota [Sapotaceae], and Acacia usumacintensis Lundell [Fabaceae]) 

accounting for 52% of the total diet, based on the amount of food ingested. 
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Nutritional data 

Based on 91 complete days of dietary information, individuals consumed an average (±SD) of 

218.5 ± 95.3 g of dry matter per day, spending 103.3 ± 40.9 minutes feeding (range: 30 - 241 

min). Daily total feeding time varied across seasons, being lowest (94.3 ± 46.2 min) during the 

dry season (repeated measures ANOVA: F(2,10) = 4.99, p = 0.03), which also was the time of 

the year characterized by the longest periods of resting (408.9 ± 67.5 min). This may be in 

response to the daily maximum temperatures, which averaged 36.1°C. Patterns of daily food 

consumption (grams), and energy and macronutrient ingestion per unit metabolic body mass did 

not differ by sex (repeated-measures ANOVAs: p>0.05) (Figure 4.3), and therefore I combined 

male and female data in all subsequent analyses. 

Available protein constituted on average 16.6 ± 5% of total daily energy intake, 

carbohydrates (TNC) 52 ± 9%, and lipids 12 ± 7%. The daily intake of available protein energy 

(AP), non-protein energy (NPE), and total energy did not vary significantly across seasons 

(LMM: p>0.05); however, based on their coefficients of variation (CV) (50%, 47%, and 45% 

respectively) howler monkeys were found to vary nutrient intake across days. This may reflect 

the fact that I sampled 13 different individuals per month. In contrast, the ratio of protein and 

non-protein energy (AP:NPE) was found to differ significantly across seasons, being higher 

during the nortes than the dry season (LMM: p = 0.0006). Across days, however, the ratio 

fluctuated less (CV = 36%) than AP, NPE, and total energy (Figure 4.4). Fluctuation in the daily 

intake of AP and NPE revealed a trend, with four-to-five days of lower-than-average energy 

intake generally followed by four-five days of correspondingly higher-than-average energy 

intake. This was particularly evident for NPE (Figure 4.5). The cumulative intake plots show that 

the daily AP:NPE intake was constant over consecutive days (R2 = 0.99) and over periods of 
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consecutive four-five days (R2 = 0.98) (Figure 4.6). These data suggest that howler monkeys 

regulate energy intake over the course of a single day as well as over a period of several days, so 

that several consecutive days of low energy intake were balanced by several days of high energy 

intake.  

  

 Nutrient balancing strategies (Hypotheses 1-3):  

Available Protein Intake - Overall, the howler monkey daily intake of available protein averaged 

102 kJ/mbm (or 6 ± 3 g/mbm) and ranged from 16 to 271 kJ/mbm (Table 4.3). The best model 

indicated that daily total feeding time was a strong predictor of available protein intake (Table 

4.4), which tended to be higher on days when individuals spent more time feeding (i.e. during the 

rainy and nortes seasons). Given that the daily intake of available protein was not correlated with 

food availability, or with the percentage of leaves (rs =0.77, n = 91, p = 0.4), leaves and flowers 

(rs = 0.91, n = 91, p = 0.3), or fruit (rs = -0.09, n = 91, p = 0.3) in the diet, I tested whether AP 

intake was regulated more tightly than NPE consumption, as predicted by the protein leverage 

hypothesis. My data did not support a pattern of protein regulation when analyzing the entire 

data set and when each of the three seasons was analyzed separately. In fact, NPE intake was not 

significantly higher on days in which AP constituted a small proportion of the daily diet (<10% 

of total energy) (Figure 4.7). However, I did find evidence supporting a protein regulation effect 

when I analyzed daily patterns of food intake. On days (n =12) in which the diet was relatively 

balanced and contained between 40-60% fruit and 60-40% leaves, protein intake was more stable 

than on days characterized by a predominantly (>70%) leaf-based or fruit-based diet (Figure 

4.8). This means that when the daily fruit-leaf consumption was relatively equal in terms of 

amount consumed, AP intake fluctuated less (CV = 30%) than NPE intake (CV= 43%). This 
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indicates that the focal animals maintained a relatively constant daily AP intake (106 ± 32 

kJ/mbm, 18 ± 3% of total energy) by consuming a diet characterized by relatively equal amounts 

of fruits and leaves. Thus, while Hypothesis 1 (constant protein prioritization) and Hypothesis 3 

(seasonal protein prioritization, during periods of high fruit intake) were not supported, these 

findings suggest that howler monkeys are able to regulate protein intake, possibly by mixing 

specific plant items and species, and by adjusting their feeding rates. 

 

Non-Protein Energy Intake - Daily intake of non-protein energy averaged 526 kJ/mbm and 

ranged from 140 to 1282 kJ/mbm. Patterns of NPE intake were best explained by daily total 

feeding time (higher intake on days when individuals spent more time feeding), and % fruit 

consumed (higher intake when fruit ingestion was higher) (Table 4.5). These data show that 

black howler monkeys neither prioritized nor maintained a constant intake of carbohydrates and 

lipids during the whole year or during different seasons. Thus, these results fail to support 

Hypothesis 2 (non-protein energy prioritization) and Hypothesis 3 (non-protein energy 

prioritization during periods of a leaf-based diet). 

 

AP:NPE Ratio - Within the Geometric Framework, the AP:NPE ratio (which ranged from 0.04 to 

0.44 in this study) is represented by the slope of nutritional rails (Figure 4.9). Since I found 

evidence of a consistent balance of AP and NPE over consecutive days (Figure 4.6), I tested the 

hypothesis that howler monkeys adopted a strategy of AP:NPE regulation. The best model 

identified by AIC to explain patterns of AP:NPE revealed three significant effects: 1) season 

(higher ratios during the nortes than the dry season) (Figure 4.10); 2) daily total feeding time 

(higher ratios with increased feeding time) (Figure 4.11); and 3) % of fruit ingested (lower ratios 
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when fruit consumption was higher) (Table 4.6). Based on the 91 sample days, howler monkeys 

consumed higher amounts of protein-rich items, such as leaves (47.4%) and flowers (11.2%), 

than fruit (41.4%) during the nortes (Figure 4.12), with mean energy intake for all individuals 

represented by a nutritional rail with a slope of 0.25. In contrast, during the rainy and dry 

seasons, when fruit consumption was greater, the nutritional rails exhibited slopes of 0.19 and 

0.17, respectively (Figure 4.9), indicating a lower intake of available protein relative to non-

protein energy. Finally, the AP:NPE ratio was not significantly correlated with the amount of 

food ingested daily (grams) (Spearman correlation, r = -0.13, n = 91, p = 0.2). 

 As was the case for protein intake, when I analyzed the data according to season or daily 

diet, I found that during the rainy season, and on days in which individuals ingested >70% leaves 

(n = 11) , howlers followed a strategy of AP:NPE prioritization, attempting to maintain a 

relatively constant balance of protein and non-protein energy intake (Figure 4.13). Moreover, 

during the rainy season, energy derived from AP constituted 16.2 ± 3.7% of total energy intake, 

and fluctuated less (CV = 22.8%) than the AP energy content in the foods ingested (AP 

energy/total energy = 8.1 ± 4.3%, CV = 53%). This suggests that howlers ingest different plant 

items to reach their nutritional goals rather than consume nutrients according to their availability 

in foods present in the environment. This also is evident when plotting a right-angle mixture 

triangle (Figure 4.14), which shows that the nutritional composition of the consumed foods 

differed from the composition of the daily diet (slope test, F = 6.6, r = 0.26, p = 0.01). These 

results indicate that black howler monkeys exhibit a foraging and dietary strategy that prioritizes 

proportions of AP and NPE rather than prioritize their intake (Figure 4.15).  
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Discussion 

The main goal of this study was to examine the nutritional ecology of adult black howler 

monkeys using a Geometric Framework in order to test hypotheses of nutrient regulation and 

food choice based on alternative nutrient mixing strategies. Traditional foraging models such as 

Optimal Foraging Theory have had limited success in explaining what nutrient or combination of 

nutrients guide primate feeding decisions (Post, 1984; Barton et al., 1992; Grether et al., 1992; 

Felton et al., 2009b). This is due to the fact that optimization models are typically based on the 

maximization of a “currency” (usually energy or protein) that is expected to contribute 

disproportionately to fitness (Stephens and Krebs, 1986; Ydenberg et al., 2007), whereas a 

nutrient-explicit and multidimensional approach is predicated on the benefits of balancing 

nutrient intake in response to fluctuating resources, nutrient heterogeneity, and changes in the 

nutritional requirements of the consumers.  

I tested several hypotheses concerning the nutritional ecology of black howler monkeys 

living in a semi-deciduous forest characterized by seasonal changes in food availability. I 

hypothesized that black howler monkeys show nutrient regulation strategies that prioritize 1) 

daily protein intake, 2) daily non-protein energy intake, or 3) limiting nutrients according to 

changes in food availability (e.g. leaf scarcity), switching prioritization patterns seasonally. I 

found instead a fourth pattern of nutrient regulation, characterized by a balance in the daily 

intake of available protein and non-protein energy, which was achieved despite fluctuations in 

the intake of protein, carbohydrates, and lipids. 

 

Available Protein Intake - Based on the fact that daily protein intake was not consistent during 

the study period, my hypothesis that howler monkeys show a daily regulation of available 
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protein intake was not supported. Moreover, I did not find evidence of protein prioritization 

during periods of leaf scarcity (dry season). One possible reason for this lack of protein 

prioritization is that, during all seasons of the year, individuals in the howler monkey study 

groups surpassed protein requirements for adult non-human primates (4−7.5% of metabolizable 

energy (Oftedal, 1991; NRC, 2003), consuming a diet in which AP constituted on average 16.6 ± 

5% of total energy. This was achieved despite the fact that foliage at El Tormento is not 

particularly rich in available protein (young leaves: 13.7% ± 6.3; mature leaves: 13.2% ± 6.7 

[percentage of dry matter]) (see chapter 2) compared to leaves consumed by primates at other 

field sites (Conklin-Brittain et al., 1999; Silver et al., 2000; Aristizabal, 2013). This suggests that 

howler nutrient intake did not match the nutrient composition of available foods, but that 

individuals selected and mixed different food items to obtain a relatively high daily intake of 

available protein. However, this also indicates that overall, protein availability in the 

environment was sufficient to allow black howler monkeys to consume a diet that was not 

deficient in protein during any season of the year. In general, the fact that selected foods are high 

in available protein is not sufficient to guarantee that individual daily protein intake also is high, 

as illustrated by the following example. Available protein in young and mature leaves consumed 

by two groups of black howler monkeys at a nearby site in Tabasco, Mexico, was reported to be 

17 ± 4% and 14.9 ± 4%, respectively (higher than at my field site); however, daily available 

protein intake was only 3.9 g/mbm, or 65.6 ± 30 kJ/mbm (Aristizabal, 2013). This may have 

resulted from limited amount of food ingested daily (116 ± 78 g dry weight) or possibly to the 

ecological characteristics of the small (< 3.9 ha) and anthropogenically disturbed fragments 

inhabited by these howler monkeys (Aristizabal, 2013). 
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The need for prioritization of protein intake, as reported in humans and a number of 

vertebrate and invertebrate species (e.g., locusts, mice, mink, spider monkeys) (Simpson and 

Raubenheimer, 2000; Simpson and Raubenheimer, 2005; Sørensen et al., 2008; Mayntz et al., 

2009; Felton et al., 2009a; Felton et al., 2009c; Martinez-Cordero et al., 2012) appears to be 

related to the negative effects of protein deficiency (e.g., slower growth, muscle atrophy, higher 

risk of infections), since amino-acids are necessary for maintenance and repair of body tissues 

and for growth. In addition, there may be deleterious health consequences in the 

overconsumption of protein. Studies of several fruit fly species (Lee et al., 2008; Fanson et al., 

2009; Fanson and Taylor, 2012), ants (Dussutour and Simpson, 2009), and crickets (Maklakov et 

al., 2008) have shown that there are fitness costs (e.g. reduced lifespan) associated with 

excessive protein intake. For example, in Drosophila melanogaster, the maximum individual 

lifespan was obtained on a diet characterized by a 1:16 protein to carbohydrate ratio, and it 

progressively decreased as the ratio rose, up to 1.9:1 (Lee et al., 2008). The negative effects of 

high protein intake might be due to an increase in mitochondrial production of reactive oxygen 

species (ROS), which cause high incidence of oxidative damage to cells (Ayala et al., 2007). In 

humans, excessive sustained daily protein intake (>30% of total energy intake) can result in 

increased uric acid levels (leading to gout), urinary calcium loss (leading to osteoporosis) (St. 

Jeor et al., 2001), hyperaminoacidemia, hyperammonemia, hyperinsulinemia, and even death 

(Bilsborough and Mann, 2006). 

During periods in which protein intake of black howler monkeys might have exceeded 

their requirements, protein-precipitation capacity of tannins found in the foods ingested might 

have aided the excretion of excess nitrogen (Rothman et al., 2011). The diet of the focal animals 

included items containing tannins; 60% of the samples containing high amounts of condensed 
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tannins belonged to five species (Bursera simaruba, Manilkara zapota, Metopium brownei, 

Pseudolmedia oxyphyllaria Donn. Sm., and an undetermined vine) and included mature and 

immature leaves, mature and immature fruits, and inflorescences. These were among the 10 most 

commonly consumed plant species which accounted for 75% of the howler diet during the study 

period (see Chapter 3).  

 

Non-Protein Energy Intake 

The daily intake of non-protein energy by black howler monkeys fluctuated throughout the year, 

and was not prioritized during periods of fruit scarcity (nortes and dry season) as has been 

reported for mountain gorillas (Rothman et al., 2011). In the case of howler monkeys, NPE 

intake was positively correlated with the daily amount of fruit ingested, and thus the lowest NPE 

intake was recorded during the nortes, when fruits accounted for 40% and leaves for 49.5% of 

the howler diet. As was the case for protein intake, the daily amounts of carbohydrates and lipids 

ingested by adult black howlers were high (526 ± 248 kJ/mbm) compared to values reported for 

other species (Table 4.3). For example, daily intake of carbohydrates plus lipids was 512 kJ/mbm 

in Gorilla beringei. In contrast, NPE in Ateles chamek varied between 143 and 1271 kJ/mbm 

(Felton et al. 2009a), which coincides with the values of non-protein energy intake that I found in 

A. pigra (140-1282 kJ/mbm). These data show that whether they consume a fruit-based diet or a 

balanced fruit-and-leaf based diet, Atelines show similar intakes of non-protein energy, 

highlighting the importance of fruit eating in primates of this subfamily (Di Fiore et al., 2011). 

 

 

 

138 
 



AP:NPE regulation 

Balancing the intake of AP:NPE was the most consistent strategy adopted by black howler 

monkeys in the study population.  Over the course of 15 months, the daily ratio of protein and 

non-protein energy ingested fluctuated less (0.04 - 0.44; CV = 36%) than AP (50%) and NPE 

(47%) intake. In contrast, the daily ratio of AP to NPE fluctuated to a much greater extent in 

Ugandan mountain gorillas than in black howler monkeys, ranging from 0.06 to 2.9 (Rothman et 

al. 2011). This was due to the fact that, over the course of a year, the gorillas went from a fruit-

based diet (>40% on a wet weight basis) to a primarily leaf-based diet (<5% fruit), resulting in a 

change in daily available protein intake from 16% of total energy during fruit periods to 31% of 

total energy when leaf-eating predominated.  

Although the diet of black howler monkeys at El Tormento also varied seasonally from 

mostly fruit-based during the dry and rainy seasons (54-69% fruit in the diet) to leaf-based 

during the nortes (49.5% leaves), daily AP intake varied on average only from 15.2% of total 

energy in the dry season to 20% during the nortes. Moreover, in black howlers, the contribution 

of non-protein energy to total energy varied little across the year (CV = 6%), being 80-85% 

during the dry, rainy, and nortes seasons. Thus, even during periods of lower fruit availability, 

howler monkeys maintained high intakes of carbohydrates and lipids by being highly selective in 

the fruit species consumed. Lipids in particular fluctuated more than carbohydrates, contributing 

on average 12% to the total energy intake (CV = 59%). Ripe and unripe fruits of Metopium 

brownei and Dendropanax arboreus (L.) contained relatively high concentrations of lipids (17-

41% dry matter) compared to other fruits or plant parts. These fruits were mainly consumed 

during the nortes and the rainy season, thus their ingestion contributed significantly to seasonal 

variation in lipid intake, even during periods when leaves dominated the howler diet. 
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 A similar patterns of AP:NPE regulation has recently been reported by Johnson et al. 

(2013) in a study of daily diet composition and nutrient intake of a single female chacma baboon 

(Papio hamadryas ursinus). During a period of 30 consecutive days, this female baboon was able 

to maintain an AP:NPE balance (CV of the ratio = 31%) ingesting a relatively stable intake of 

available protein each day, whereas the contribution of lipids and carbohydrates to total energy 

fluctuated to a greater extent. Although my data on howler monkeys indicate that the AP:NPE 

balance was maintained across the study period, unlike the baboon study I found that both daily 

protein and non-protein energy intake fluctuated. 

The benefits of balancing nutrients are well documented in several organisms. In insects 

it has been demonstrated that, when restricted to imbalanced diets, individuals are able to mix 

nutritionally complementary foods to reach a specific balance of nutrients required to facilitate 

weigh gain, enhanced survival and higher fecundity (Waldbauer and Friedman, 1991; Simpson et 

al., 2004; Behmer, 2009; Simpson and Raubenheimer, 2012). For example, the consistent choice 

of a specific ratio of casein and sucrose (4:1) in caterpillars (Heliothis zea) was associated to 

significant increases in growth rate and survival (Waldbauer et al., 1984). In contrast, nutrient 

imbalance has been shown to cause fitness costs in insects, since it leads to increasing the 

consumption of the deficient nutrient by ingesting an excess of other nutrients (Raubenheimer, 

1992; Raubenheimer and Simpson, 2003). Thus, regulating the ratio of nutrients ingested can be 

considered as a strategy for buffering the deficits and surpluses related to an imbalanced diet 

(Raubenheimer and Simpson, 1993). 

My data provide evidence that black howler monkeys attempted to balance nutrients on a 

daily basis. My experimental design did not allow us to collect data from the same individual 

over consecutive days (see Johnson et al. 2013), however, given black howler small group size, 
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highly cohesive feeding patterns, and low levels of agonistic behavior at feeding sites (e.g., 

feeding competition), I assume similar patterns of nutrient intake across individuals. I found 

indications that howler monkeys also attempted to balance energy and nutrient intake over 

periods of several days, as documented in humans (de Castro, 2000). This could be one of the 

reasons why I did not find a clear pattern of daily protein or non-protein energy regulation. 

Another explanation is that overall, my data show that the average daily energy intake of black 

howler monkeys was high compared to previous reports (628 ± 286 kJ/mbm), and was in fact 

higher than what had been previously reported for A. palliata based on rates of CO2 production 

of temporarily caged wild monkeys (~ 355 kJ/kg/day, equivalent to ~ 553 kJ/mbm) (Nagy and 

Milton, 1979a) and in one study based on food nutritional analysis and behavioral observations 

of wild individuals (441 kcal/day, equivalent to ~ 548 kJ/mbm) (Williams-Guillén, 2003) (Table 

4.3). Average daily energy intake did not differ significantly between males and females (see 

chapter 2), and was stable across seasons, showing that it was not affected by the availability of 

food items in the environment or by the amount of different plant parts in the diet. This is 

consistent with a dietary pattern of selective feeding characterized by an attempt to balance 

nutrient intake throughout the year.  

Similarly, both daily protein and non-protein intake appear to be relatively high when 

compared to primates characterized by a different dietary emphasis (Table 4.3), such as highly 

frugivorous spider monkeys (55-92% feeding time on fruit) (Di Fiore et al., 2011), or genera 

described as omnivorous such as baboons (3-90% of feeding time on fruit; 1-65% underground 

plant parts; 13-40% nuts, seeds, and pods; 1-33% leaves; 3-29.5% flowers; 1-15% sap and gum; 

1-2% bark and pith; 0.6-4% animal food) (Swedell, 2011). For example, spider monkeys, despite 

being commonly described as having an energy maximizing dietary and ranging patterns, may be 
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more energy-limited than howler monkeys. The population of A. chamek studied by Felton et al. 

(2009a,c) was characterized by a daily total energy intake of approximately 412 kJ/mbm, 34% 

lower than the average for my howler monkey population. These results demonstrate that the 

howler diet was not energetically constrained, and suggest that this howler population was not 

experiencing nutritional stress even during periods of relatively low fruit availability. The latter 

also is confirmed by preliminary results from a study on physiological indicators of stress in the 

howler population of El Tormento; daily AP intake and fecal glucocorticoids (fGC) in adult 

individuals were negatively correlated, but neither total energy, nor protein and non-protein 

intake significantly predicted fGC concentration, possibly resulting from the fact that energy 

intake was high throughout the year (Righini et al., 2013). Thus, I argue that characterizations of 

howler monkeys as energy minimizers need to be reassessed. 

Conclusions 

This population of black howler monkeys was able to maintain a high energy diet by balancing 

the intake of non-protein energy to available protein despite seasonal changes in food availability 

and dietary emphasis. Individuals did not show significant evidence of protein prioritization 

patterns as reported in spider monkeys (Felton et al., 2009a; Felton et al., 2009c), or NPE 

prioritization as reported in mountain gorillas (Rothman et al., 2011). Instead, howlers exhibited 

a different pattern, regulating and maintaining the balance of protein and non-protein energy 

(AP:NPE) rather than prioritizing the ingestion of one nutrient over others. These findings 

highlight the fact that the grouping of primates using broad dietary classifications (e.g., folivory, 

frugivory, omnivory) fails to adequately represent their nutritional strategies, and that different 

species of fruit-leaf eating primates, independent of their phylogenetic relationship, might differ 

in their nutrient regulation priorities. Thus, for example, classifying gorillas and howler monkeys 
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as “folivores” or spider monkeys and howler monkeys as "frugivores" fails to account for 

different nutrient prioritizing strategies.  

 The finding that my howler population was characterized by a highly energetic diet offers 

some indications of how howler monkeys can translate energy into the high reproductive rates 

and relatively fast pace of development that characterize them compared to other atelines (Ross, 

1991; Di Fiore et al., 2011). Female howler monkeys reach reproductive maturity earlier, have 

shorter interbirth intervals, shorter gestation length, and shorter periods of infant dependence 

than Ateles, Brachyteles, and Lagothrix (Kappeler and Pereira, 2003). Energy expenditure and 

daily energy balance must clearly be taken into account too, since here I am only examining 

patterns of energy intake. However, howler activity budgets, characterized by long daily resting 

periods, short traveling bouts, and low levels of social interactions (Di Fiore et al., 2011), may 

allow howlers to invest energy in growth and reproduction rather than in other activities such as 

wide ranging behavior, territorial defense and patrolling (Wallace, 2008), and male-to-female 

aggression in the form of prolonged chases (Slater et al., 2008; Link et al., 2009), which are 

commonly reported in spider monkeys. Low energy expenditure and low basal metabolic rates 

are in general associated with diets that are limited in energy and nutrient content, have a low 

digestibility or high amounts of plant secondary metabolites (McNab, 1986). Howler monkeys, 

though, apparently avoid the problems associated with these types of foods using a series of 

behavioral (e.g., being selective in food choice, modifying food intake, mixing food resources 

daily, and regulating nutrient ingestion) and digestive (e.g. adjustments of food retention times 

and digestibility) mechanisms (Batzli et al., 1994; Cruz-Neto and Bozinovic, 2004). Thus, the 

capacity of howler monkeys to maintain high energy intake even during periods of leaf 

consumption might offer them an advantage over other atelines. For example, muriquis 
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(Brachyteles spp.), which also spend 41-93% of their monthly feeding time on leaves (Di Fiore 

et al., 2011), are instead characterized by a relatively short food transit time (~ 8 hrs), habits of 

defecating 10-14 times during the day, and less selective foraging patterns than howler monkeys 

(Milton (1984b) reported that B. arachnoides generally feeds from several trees and vines while 

traveling, instead of targeting selected feeding trees). This suggests that muriquis cannot obtain 

much energy from the more difficult to degrade plant material in their foods, which is expelled 

and not completely fermented (Milton, 1984a; Milton, 1984b). Howler monkeys are considered 

colonizing species, with a high ecological adaptability, and able to survive and reproduce in 

seasonal environments and fragmented landscapes (Rosenberger et al., 2009; Rosenberger et al., 

2011); these characteristics might have arisen as a consequence of their ability to meet and 

surpass their energetic requirements, which in turn have allowed them to differentiate from an 

ancestral ateline life history strategy.  

Finally, the use of geometric analysis in studies of free-living animals contributes 

importantly to understanding different patterns of nutrient regulation and provides additional 

evidence that primates actively regulate macronutrient intake. The behavioral and physiological 

mechanisms that control ingestive behaviors and specific appetites in human and non-human 

primates, however, require additional study. 
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Figure 4.1. Average rainfall and temperatures at El Tormento during the study period. The rainy 

season spans from June to September, the nortes from October to January, and the dry season 

from February to May.  
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Figure 4.2. Food availability index for leaves (ML, YL), fruits (MF, IF), and 

flowers/inflorescences (FL) during the study period.  
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Figure 4.3. Daily total energy intake (a) and available protein intake (b) for each individual 

(kJ/mbm) (n= 91 focal follows). Females (n = 4) have lowercase names, males have uppercase 

names (n = 9). Box and whisker plots show median, percentiles (25% and 75%) and minimum 

and maximum values. Circles represent outliers.  
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Figure 4.4. Daily intake of available protein (AP) and non-protein energy (NPE) (kJ) of adult 

male and female black howler monkeys. Each point represents the daily intake of one focal 

individual (n= 91). The vertical dashed line shows mean protein intake. The horizontal dotted 

line shows mean non-protein energy intake. Energy values are divided by the individual 

estimated metabolic body mass (M0.762). 
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Figure 4.5. Daily fluctuations of protein (AP) and non-protein energy (NPE) intake during the 

dry season. Each point represents daily energy intake of a different individual on consecutive 

days. 
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Figure 4.6. a) Cumulative protein and non-protein energy during 4-5 days-periods in the dry 

season. b) Cumulative daily intake of protein and non-protein energy during a month in the dry 

season.  
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Figure 4.7. (a) The protein leverage effect, taken from Simpson and Raubenheimer 2005. When 

protein (P) intake is strictly regulated, energy balance is affected through the leverage over 
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carbohydrate and fat (C+F) intake. For example, a small decrease in %P in the diet results in an 

excess of C+F intake (diagonal hatched area), while a small increase in %P causes under-

consumption of C+F (vertical hatched area). (b) Plot of the daily nutrient intake data obtained 

from 91 howler monkey focal follows to test if protein intake is regulated according to the 

protein leverage hypothesis. Expected non-protein energy intake (hyperbolic trend line) was 

calculated as: (Pt/AP) − Pt; where Pt is the target intake of protein (assumed to approximate the 

observed mean protein intake) and AP is the proportion of available protein in the diet. 

According to the protein leverage hypothesis, as the % of protein in the diet increases, non-

protein energy intake decreases, but available protein intake should remain constant. Despite that 

available protein intake did not fluctuate greatly, our data do not show the typical protein 

leverage pattern (non-protein energy intake is not higher on daily diets containing low % of 

protein, i.e. observed non-protein energy intake does not follow the expected hyperbolic trend). 
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Figure 4.8. Plot of the daily nutrient intake data obtained from 12 focal samples on days in which 

the diet was balanced (40-60% fruit and 40-60% leaves, based on amounts consumed). Daily AP 

intake remains relatively constant and NPE decreases as the % of protein in the diet increases.  
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Figure 4.9. Geometrical plot of mean intake of available protein (AP) and non-protein energy 

(NPE) (kJ) of black howler monkeys (n= 91 daily focal follows). The continuous nutritional rail 

indicates the average balance of AP:NPE during the entire study period. The triangle represents 

mean AP:NPE during the dry season, the square represents mean AP:NPE during the nortes 

season, and the circle represents mean AP:NPE during the rainy season. Dotted nutritional rails 

indicating average AP:NPE for Ateles chamek (Felton et al. 2009) and Gorilla beringei 

(Rothman et al. 2011) are shown for comparative purposes. All energy values are divided by the 

individual estimated metabolic body mass (M0.762). 
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Figure 4.10. Variation of daily energy intake (kJ/mbm) (a), and available protein:non-protein 

energy ratio (b) during three different seasons. Box and whisker plots show median, percentiles 

(25% and 75%) and minimum and maximum values. Circles represent outliers. 
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Figure 4.11. Bivariate plot of feeding time vs. ratio of available protein and non-protein energy. 

The trend line is shown for descriptive purposes only. 
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Figure 4.12. Leaf, fruit, and flower consumption during three different seasons. Percentages were 

calculated as grams of different items out of the total amount ingested. 
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Figure 4.13. Daily intake of available protein (AP) and non-protein energy (NPE) (kJ/mbm) of 

adult male and female black howler monkeys in the rainy season (a), and on days in which leaves 

constituted >70% of the food ingested (b). Both patterns show a strategy of AP:NPE 

prioritization. The red square represents the average AP:NPE (assumed to approximate the intake 

target). 
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Figure 4.14. Right-angle mixture triangle showing the relative contribution of lipids, 

carbohydrates, and available protein (implicit axis) to daily metabolizable energy intake of black 

howler monkeys. Circles represent the nutritional composition of the daily diet and triangles the 

nutritional composition of foods representing >1% of the howler diet. The dotted line represents 

the linear regression of diet composition.  
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Figure 4.15.  Three-dimensional scatterplot showing daily intake of energy (kJ/mbm) from AP, 

carbohydrates, and lipids. A regression plane also is shown. 
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Table 4.1. Composition of the two study groups (J and M), including data on body weight and body mass index of nine darted and 
marked adult individuals. 
 

Group ID Age Sex Body  
weight (kg) 

BMIa 
(kg/m2) 

Born  
(Mother) 

Entered 
group 

Left group 

J MA Adult Male 6.9 28.16   Mar 2011 
J MR* Adult Male 8.7 26.78   Mar 2011 
J CI Adult Male    Mar 2011 May 2011 
J TO Adult Male 7.5 23.08  Apr 2011  
J AM Adult Male    Apr 2011  
J CO Adult Female      
J GO Adult Female      
J MI Juvenile Male     Sept 2011 
J JJ Infant Male   Aug 2010 (GO)   
M AZU Adult Male 8.4 36.46    
M AMA Adult Male 7.9 30.37   Mar 2011 
M RBL Adult Male 7.7 25.45    
M NAR Adult Male 5.7 25.80    
M RAM Adult Male 7.9 27.60    
M PAN Adult Female 5.8 29.96    
M ROJ Adult Female 6.3 24.70    
M AUG Juvenile Male      
M JOR Infant Female   Nov 2009?   
M IMC Infant Male   Feb 2010? (PAN)   
M NAT Infant Female   Dic 2010 (ROJ)   
M VAL Infant Male   Feb 2011 (PAN)   

a Body mass index (BMI) was calculated as body weight (kg) divided by the square of crown-rump length (m2) 
*Peripheral male even before leaving the group definitively. Focal samples of this male were not included in the analysis.  
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Table 4.2. Composition of the diet (% based on amount of foods consumed in grams) of the two 
study groups based on the entire data set (1300 focal hours).   
 

  
  Dry Nortes Rainy Total 
     
YL 32.9% 11.7% 18.0% 22.2% 
ML 5.6% 37.8% 12.2% 14.8% 
Tot Leaves 38.4% 49.5% 30.2% 37.0% 
     
MF 7.7% 12.2% 54.0% 29.0% 
IF 46.4% 28.6% 15.2% 29.2% 
Tot Fruit 54.1% 40.8% 69.2% 58.2% 
     
Flowers 7.1% 9.7% 0.6% 4.7% 
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Table 4.3. Estimated mean (±SD) daily nutrient and energy intake (kJ per unit of metabolic body mass) for different non-human primate species 
 

Species Site 

Food 
ingested      
(g dry 

weight/day) 

Protein 
intake 

(g/mbm) 

Protein 
(kJ/mbm) 

NPE 
(kJ/mbm) 

Total 
energy 

(kJ/mbm) 
Reference 

Alouatta caraya Argentina 322 ± 60  168 ± 35e 842 ± 117 1011 ± 149 Fernández, unpub. data 

Alouatta palliata Panama 348 4.9 – 5.2   553 Nagy & Milton 1979, 
Milton 1979a 

 Nicaragua 173 ± 58 7.0   548c Williams-Guillén 2003 

Alouatta pigra Campeche, 
Mexico 218 ± 95 6.0e 102 ± 51e 526 ± 248 

(140 – 1282)* 628 ± 286 This study 

 Chiapas, Mexico 278 ± 69 8.6 130 430 
(25 – 1500)* 580 Amato 2013** 

 Tabasco, Mexico 116 ± 78 3.9e 66 ± 31e 296 ± 163 361 Aristizábal 2013 

Ateles chamek Bolivia 262  39e 373 
(143 – 1271)* 412 Felton et al. 2009a,b 

Gorilla beringei Uganda   182e 512 852 Rothman et al. 2008, 
2011 

Pan troglodytes Uganda     610b Conklin-Brittain et al. 
2006 

Papio hamadryas 
ursinus South Africa   (26 – 196)*de (186 – 893)*d 499 ± 226c Johnson et al. 2013 

Pongo pygmaeus Indonesia     647b Conklin-Brittain et al. 
2006 

a All values are estimations. Energy intake is based on rates of CO2 production in temporarily caged mantled howler monkeys 
b Values calculated assuming a high level of fiber fermentation 
c Original values in kcal converted to kJoules and divided by metabolic body mass 
d Extrapolated from Figure 2 in Johnson et al. 2013 
e Available Protein 
* Minimum and maximum values are reported 
** Calculations are based on literature estimates of nutritional values of the foods ingested 
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Table 4.4. LMM analysis of factors affecting daily available protein intake.  

 

 
*If zero is not included in the CI, the effect of the parameter is significant (in bold) 
SE = standard error, df = degrees of freedom 
 
  

Parameter Estimate SE df 95% Confidence Intervals* 

    Lower Upper 
Intercept 1.43 0.25 76 0.92 1.93 
Daily total feeding time 0.93 0.07 76 0.78 1.08 
% of leaves consumed 
(based on grams) 0.21 0.11 76 -0.01 0.44 
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Table 4.5. LMM analysis of factors affecting daily non- protein energy intake. 

*If zero is not included in the CI, the effect of the parameter is significant (in bold) 
SE = standard error, df = degrees of freedom 
 
 
  

Parameter* Estimate SE df 95% Confidence Intervals 

    Lower Upper 
Intercept 5.22 0.13 76 4.96 5.47 

Daily total feeding time 0.02 0.003 76 0.01 0.02 
% of fruit consumed 
(based on grams) 0.62 0.14 76 0.33 0.91 
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Table 4.6. LMM analysis of factors affecting daily AP:NPE 
 

 
*If zero is not included in the CI, the effect of the parameter is significant (in bold) 
SE = standard error, df = degrees of freedom 
 

  

Parameter Estimate SE df 95% Confidence Intervals* 

    Lower Upper 
Intercept 0.13 0.04 74 0.04 0.2 
Season (Nortes) 0.04 0.01 74 0.01 0.07 
Season (Rainy) 0.02 0.01 74 -0.003 0.05 

Daily total feeding time 0.04 0.01 74 0.02 0.07 
% of fruit consumed 
(based on grams) -0.11 0.02 74 -0.16 -0.07 
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CHAPTER 5 

CONCLUSIONS 

 

This dissertation examined the nutritional ecology of black howler monkeys (Alouatta pigra) 

during a 15-month study incorporating ecological, behavioral, and phytochemical data, and 

provided new insights into ateline feeding ecology, nutrition, and energetics. Three different 

approaches, addressed in the three main chapters of the dissertation, support the overall result 

that resource mixing and nutrient balancing are integral components of the foraging and feeding 

decisions of howler monkeys. The main findings of this research and their implications are 

outlined in this chapter.  

On an annual basis, the black howler monkey diet was found to be more fruit-based than 

expected, considering that howler monkeys have been described as behavioral folivores (Milton, 

1978) and semifolivores (Rosenberger et al., 2011). I found that individuals consumed an equal 

amount (~29% of total dry weight consumed) of mature and immature fruits, which accounted 

for 58.2% of their diet. Leaves, in contrast, accounted for 37% of the diet. This fruit-biased 

pattern found in black howler monkeys is consistent with data reported for other howler species 

such as Alouatta macconnelli and A. belzebul (>50% fruits, when considering amount of food 

consumed) (Pinto and Setz, 2004; Garber et al., in press). 

In A. pigra, leaves accounted for approximately 50% of the diet only during one season 

of the year (the nortes, a relatively colder period with lower precipitation than the rainy season, 

and low young leaf and mature fruit availability). Mature leaves were highly consumed during 

the nortes (38% vs 12% young leaves) and daily protein intake accounted for 20 ± 4% of total 

energy during this season. Phytochemical data indicated, however, that there were no significant 
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differences in the nutrient content of mature and young leaves selected by howler monkeys, 

including available protein and protein-to-fiber ratio. Both young and mature leaves of some of 

the most commonly consumed species (e.g., Bursera simaruba) were found to contain moderate 

to high amounts of condensed tannins. How howlers are able to detoxify large amounts of 

condensed tannins remains unclear, however proline-rich proteins present in the howlers' saliva 

could counteract the negative effects of tannins due to their high binding affinity for these 

molecules (Milton, 1998; Espinosa-Gomez et al., 2012). 

The analysis of how food selection was affected by the phytochemical characteristics of 

foods (Chapter 3) showed that howler monkey food selection was not driven by the protein 

content of foods or by the protein-to-fiber ratio of leaves; instead, individuals showed temporal 

preferences for foods high in lipids (specifically, Dendropanax arboreus and Metopium brownei 

mature fruits), whose importance in the diets of howler monkeys has been traditionally 

overlooked. A similar pattern of selecting foods high in lipids is reported for sakis (Pithecia 

spp.), which feed on seeds and arils that can contain >60% lipids (dry matter) (Norconk and 

Conklin-Brittain, 2004). These results indicate that howlers generally did not target specific food 

items or plant species based on their nutrient content, but when they did, as in the case of 

preference towards lipids during the nortes, it was to balance the intake of protein and non-

protein ingested (i.e., to maintain a relatively constant ratio of protein and non-protein energy), 

rather than maximizing the intake of energy or a particular nutrient. 

The analysis of feeding patch choice (Chapter 2) revealed that black howler monkeys 

moved between food patches characterized by resources of differing nutritional composition. In 

only four occasions the howlers did deplete a feeding patch. In addition, behavioral observations 

indicated that aggression at feeding sites was rare (0.018 aggressions/hour), and therefore 
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feeding competition was not a primary factor affecting howler patch choice decisions. In the 

majority of the cases (49.4%), howler monkeys left a patch to move from one food type to a 

different food type. Switching between young leaves to immature fruits, and from fruits to young 

leaves, occurred more frequently than expected by chance. Protein intake was higher in leaf than 

in fruit patches, thus moving between fruit and leaf patches was associated with different 

nutritional intakes. Based on this evidence, nutrient balancing appeared to be the most critical 

factor in howler monkey patch choice. 

The analysis of howler daily nutrient intake using a nutritional geometry approach 

(Chapter 4) provided direct evidence that howler monkeys maintained a constant ratio of protein 

and non-protein energy despite seasonal changes in the specific food items consumed and the 

proportion of food types exploited (i.e., when they changed from a primarily fruit-based diet, to a 

diet characterized by a higher intake of leaves and flowers). In this regard, black howler 

monkeys differed from Ugandan mountain gorillas (Gorilla beringei) and Bolivian spider 

monkeys (Ateles chamek) in their nutrient regulation strategy. Whereas gorillas were found to 

prioritize, and maintain a constant seasonal intake of non-protein energy, spider monkeys were 

found to prioritize and maintain a constant daily intake of protein (Felton et al., 2009a; Rothman 

et al., 2011). Protein prioritization, or a strategy associated with the regulation of protein intake 

rather than other nutrients, and a feeding pattern of maintaining a constant daily protein intake 

despite variation in the intake of carbohydrates and lipids, also has been suggested for a 

population of black howler monkeys in Palenque, Mexico (Amato and Garber, in press). 

However, in that study the authors did not conduct focal follows of the same individual during 

the entire day, calculated nutrient and energy intake based on published nutritional values for 

neotropical plant species, and used values of crude protein estimates rather than available 
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protein. Thus, their finding of protein prioritization is either best considered as a general estimate 

of howler monkey nutritional strategies, or, based on differences in forest productivity and 

habitat types, it can be considered as evidence that the nutritional strategies of a given species 

might vary according to site-specific ecological characteristic. Protein prioritization also has 

been described in humans (Simpson et al., 2003; Simpson and Raubenheimer, 2005) and linked 

to problems of overingestion of fat- and carbohydrate-rich foods, leading to obesity. Overall, 

these studies suggest that 1) nutrient prioritization strategies are common among a wide range of 

primate taxa, and 2) nutrient regulation may be less tied to a specific dietary emphasis (e.g., leaf-

enriched or fruit-based diet), but a response to ecological factors. For example, site-specific 

characteristics such as the nutritional composition of available foods, the presence/absence of 

staple food species, and the intensity of fluctuations in resource availability appear to play an 

important role in determining the type of nutritional strategy adopted by different primate 

populations. Thus, the use of nutritional geometry in identifying the nutritional prioritization and 

nutrient balancing strategies of free-ranging animals is an important tool that should be 

implemented to analyze food choice, feeding ecology, and decision-making associated with why 

leave a patch and which patch to visit next. 

Another significant finding of this dissertation was that the average daily metabolizable 

energy intake of individuals (628 kJ/mbm) was higher than what was reported for a population of 

“ripe-fruit specialists” such as spider monkeys (Ateles chamek) (~400 kJ/mbm) (Felton et al., 

2009a; Felton et al., 2009b; Di Fiore et al., 2011). Also daily energy obtained from lipids and 

carbohydrates was on average higher in A. pigra (526 kJ/mbm) than in A. chamek (373 kJ/mbm). 

These results highlight the capacity of howler monkeys to maintain high energy intake even 

during periods of leaf consumption, and offer an explanation as to how howlers can afford the 
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high rates of reproduction and rapid growth that characterize them compared to other atelines 

(Ross, 1991; Leigh, 1994). Given that life history strategies are characterized by a series of 

dissociable components that respond to different selective pressures (Blomquist et al., 2009), the 

importance of diet and energetics in shaping life history characteristics should not be 

underestimated. Future studies should focus on estimating energy balance in howler monkeys, 

taking into account not only energy intake, but also daily energy expenditure to more precisely 

assess the amount of energy available to invest in processes such as rapid growth and 

reproduction. Additional research also is needed to determine if patterns of high energy intake 

and balancing protein and non-protein energy intake are shown by black howler populations at 

other sites, by other howler monkey species, and by other atelines. Similar studies are currently 

being conducted on A. pigra in Tabasco, Mexico (Aristizabal, 2013), and on A. caraya in 

Argentina (Fernandez, in prep.), thus offering opportunities for comparisons that will be valuable 

for advancing the field of nutritional ecology. 

Howler monkeys are one of the most studied neotropical primates, and studies that focus 

on basic aspects of their diet are numerous (Di Fiore et al., 2011). A recent review shows a much 

higher sampling effort towards atelines, and Alouatta spp. in particular (37.4% of all studies 

analyzed), compared to other neotropical primate taxa, even when differences in geographic 

distribution were taken into account (Hawes et al., 2013). However, this dissertation revealed 

that the results obtained using traditional methods of feeding time and assumptions on the 

nutritional content of fruits, leaves, and flowers, are at odds with new analytical frameworks that 

focus on nutritional geometry. Thus, we need to re-examine what is known of howler feeding 

ecology and nutrition. In particular, the quantification of feeding rates; the estimation of daily 

amounts of food ingested; the calculation of daily nutrient and energy intake; the assessment of 
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available protein rather than crude protein in the plant parts consumed by howler monkeys; the 

calculation of food selectivity indices based on measures of food availability rather than on plant 

species abundance; and the identification of nutrient prioritization patterns, all contributed to 

offer a more comprehensive picture of howler monkey nutritional ecology. This research, in fact, 

showed that hypotheses regarding primate dietary strategies, energy conservation, and 

adaptations to overcome energetic stresses are based on assumptions (e.g., that the howler 

monkey diet is energy-limited) that are not supported by empirical data. One of the goals of this 

dissertation was to demonstrate that using direct measures of nutrient and energy intake, it is 

possible to reliably assess the nutritional status and nutritional goals of wild primates. This 

approach is applicable to many primate species, and understanding the nutritional and energetic 

strategies of primate taxa characterized by different dietary patterns will offer critical insight into 

the behavioral, digestive, and physiological adaptations that human and non-human primates 

have acquired to exploit resources varying in their phytochemical characteristics under different 

environmental pressures.  
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