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ABSTRACT 
 

Systems biology explores how the components that constitute a biological system interact with 

each other to produce biological phenotypes. A number of tools for comprehensive and high-

throughput measurements of DNA/RNA, protein and metabolites have been developed. Each of 

these technologies helps to characterize individual components of the genome, proteome or 

metabolome and offers a distinct perspective about the system structure. My dissertation aims to 

characterize and analyze multiple types of omics data using existing and novel network-based 

approaches to better understand disease development mechanisms and improve disease diagnosis 

and prognosis.  

The transcriptome reflects the expression level of mRNAs in single cells or a population of cells. 

Understanding the transcriptome is an essential part of understanding organism development and 

disease. The first part of my thesis work focused on analyzing transcriptome data to characterize 

aggressiveness and heterogeneity of human astrocytoma, the most common glioma with a 

strikingly high mortality rate. A large-scale global gene expression analysis was performed to 

analyze gene expression profiles representing hundreds of samples generated by oligonucleotide 

microarrays. I employed a combination of gene- and network-based approaches to investigate the 

genetic and biological mechanisms implicated in observed phenotypic differences. I observed 

increasing dysregulation with increasing tumor grade and concluded that transcriptomic 

heterogeneity, observed at the population scale, is generally correlated with increasingly 

aggressive phenotypes. Heterogeneity in high-grade astrocytomas also manifests as differences 

in clinical outcomes and significant efforts had been devoted to identify subtypes within high-

grade astrocytomas that have large differences in prognosis. I developed an automated network 

screening approach which could identify networks capable of predicting subtypes with 

differential survival in high-grade astrocytomas.  

The proteome represents the translated product of the mRNA, and proteomics measurement 

provides a direct estimate of protein abundance. For the second part of my Ph.D. research, I 

analyzed mouse brain protein measurements collected by the iTRAQ technology to query and 

identify dynamically perturbed modules in progressive mouse models of glioblastoma. Network 
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behavior changes in early, middle and late stages of tumor development in genetically 

engineered mouse were tracked and 19 genes were selected for further confirmation of their roles 

in glioblastoma progression. In addition to this specific application to mouse glioblastoma data, 

the general pipeline represented a novel effort to isolate pathway-level responses to perturbations 

(e.g., brain tumor formation and progression) from large-scale proteomics data and could be 

applied in analyzing proteomics data from a variety of different contexts. 

The metabolome reflects biological information related to biochemical processes and metabolic 

networks involving metabolites. Metabolomics data can give an instantaneous snapshot of the 

current state of the cell and thus offers a distinct view of the effects of diet, drugs and disease on 

the model organism. The third part of my thesis is dedicated to building and refining genome-

scale in silico metabolic models for mouse, in order to investigate how the metabolic model 

responds differently under different conditions (e.g., diabetic vs. normal). This project was 

completed in two stages: first, I examined the state-of-art genome-scale mouse metabolic model, 

identified its limitations, and then improved and refined its functionality; second, I created the 

first liver-specific metabolic models from the generic mouse models by pruning reactions that 

lack genetic evidence of presence, and then adding liver-specific reactions that represent the 

characteristics and functions of the mouse liver. Finally, I reconstructed two liver metabolic 

models for mouse, with one for the normal (control) strain and one for mouse diabetic strains. 

These two models were compared physiologically to infer metabolic genes that were most 

impacted by the onset of diabetes. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 
 

1.1 A SYSTEMS APPROACH TO EXPLORING LIVING ORGANISMS 
 

More than a decade has passed since the term systems biology has been introduced into the 

language of modern biology [1]. Over the years, its definition has expanded greatly in its 

width and depth, but one central aspect of systems biology remains unique: it studies how the 

components that constitute the biological system interact with each other. Disease is 

becoming more generally perceived as the result of one or more genetically or 

environmentally perturbed biological networks [2]. As such, to better understand genotype-

to-phenotype relationships, we must focus our attention more on the interaction and 

dynamics of biological systems instead of only looking at the individual components of 

biological processes. This systems approach is in contrast to the classical reductionist 

approach, where biological systems are dissected into their constituent components. This 

traditional approach was once successful in the early days of biology, but it has reached its 

limits after more and more biologists realized the complexities of living systems cannot be 

explained fully by studying and viewing the components as disparate or disconnected. The 

system-level perspective offers an alternative to explain how individual pieces create the 

whole, or how genes interact to create a system-wide phenotype and behavior [3]. The 

different emphases of the two views are illustrated in Figure 1.1.  

 

In order to learn and understand how fundamental biological processes interact with each 

other, we need to connect two types of information together: the DNA sequence of the 

genome and the environmental signals and information that operate through living organisms 

to generate phenotypic responses [4]. To follow the dynamic networks and learn their 

responses to perturbations, a number of tools aiming for comprehensive and high-throughput 

measurements of DNA/RNA, protein and metabolites have been developed.  Each of them 

helps to characterize individual components of the genome, proteome or metabolome and 

offers a different slice of information about the model organism. In the next section, I will 

give a brief overview of the different high-throughput technologies to address specific 

hypothesis-driven questions.  
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1.2 OMICS DATA TO PROFILE AND CHARACTERIZE DISEASE 
 

The first type of omics data is transcriptomics. The transcriptome is a collective term for 

different RNA molecules, including messenger RNA (mRNA), which carries genetic 

information transcribed from DNA; ribosomal RNA (rRNA), the RNA component of the 

ribosome that is essential for protein synthesis; transfer RNA (tRNA) which physically 

connects nucleic acids and amino acids, as well as non-coding RNAs (RNAs that are not 

translated into proteins). The study of transcriptomics, also known as expression profiling, 

quantifies the expression level of mRNAs in a given cell population [5]. Understanding the 

transcriptome is essential to understanding development and disease: by measuring the 

differentially expressed transcripts under different conditions (e.g. disease vs. control), we 

could infer the functional elements of the genome and reveal key players in disease initiation 

and development. Different high-throughput technologies have been developed to measure 

the transcriptome, including the hybridization-based microarray as well as the newer, 

emerging sequence-based technology called RNA-seq. The core biological principle behind 

microarray is the hybridization between two complementary DNA strands, which pair up 

with each other by forming hydrogen bonds (Figure 1.2a). In contrast to microarray 

methods, RNA sequencing technologies directly measure the cDNA sequence and are able to 

provide a more concise estimate of the gene expression value [5]. However, sample 

collection using microarray hybridization is more affordable, more accessible and many 

more samples are available in data repositories, compared to data collected by RNA 

sequencing. A significant portion of my thesis was devoted to studying microarray data of 

brain cancer patients: collecting, normalizing, and comparing gene expression levels under 

different conditions, and developing data processing pipelines to better characterize brain 

cancer initialization and progression. 

 

The transcriptome can be seen as a precursor for the proteome, which represents the 

translated product of the mRNA. However, mRNA is not always translated into protein [6] 

and mRNA level is not the sole factor determining translated protein content. What further 

complicates the picture is the fact that proteins may undergo a wide variety of chemical 

modifications after translation, collectively known as post-translational modification. 
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Alternative splicing of the transcripts, where a single gene or transcript encode for multiple 

proteins [7] also explain why mRNA is often found not to be correlated highly with protein 

content [8]. Proteomics confirms the presence of protein, provides a direct measure of the 

amount of protein present, and gives a better understanding of the state of the living 

organism than genomics [9]. 

Mass spectrometry (mass spec) is an important technology to characterize protein content. It 

can be used as a valuable tool to identify and probe the covalent structure of proteins [10]. 

Another use of mass spec in proteomics is protein quantification. iTRAQ is a non-gel-based 

technique developed to quantify proteins by analyzing the derivatization of primary amino 

groups in proteins using isobaric tags [11]. Specifically, iTRAQ facilitates the comparative 

analysis of peptides and proteins in different conditions. The proteomics study in my Ph.D. 

research analyzed mouse brain protein measurements collected by the iTRAQ method and 

developed a general pipeline to isolate pathway-level responses to perturbations (e.g. brain 

tumor formation and progression) from large-scale proteomics data. 

In addition to transcriptomics and proteomics, metabolomics is a systems biology view on 

the interactions of metabolic pathways within an organics, which offers us fresh insights into 

the effects of diet, drugs, and disease. The metabolome reflects biological information exists 

in biochemical processes involving metabolites, which are the intermediates and end 

products of metabolism [12]. While transcriptomic and proteomic analyses do not tell the 

complete story of the underlying processes in a cell, metabolomics study can give an 

instantaneous snapshot of the current state of the cell.  

After the omics data have been generated, the next step is to identify all the components of a 

system, establishing their interactions and assessing their dynamics [13]. An effective way 

to integrate and interrogate these disparate types of information is using in silico models. In 

silico or computational modeling lies at the core of systems biology and it has evolved to be 

a valuable, fast and accurate tool to predict responses to various hypotheses. With increasing 

omics and clinical data, researchers have built complete and more realistic models that are 

beginning to produce lab-proven results.  These dry lab models help to frame more focused 

questions and design better laboratory experiments and clinical trial protocols.  One type of 

computational model is a genome-scale metabolic model. A metabolic model is a 
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mathematical representation of the biochemical transformations in the metabolic network of 

an organism. A network consists of multiple reactions happening in order, and a reaction 

consists of reactants and products (metabolites) as well as the genes catalyzing the reaction 

(Figure 1.3). If whole genome sequences are integrated with metabolic biochemical 

networks, a genome-scale metabolic model is constructed. The third part of my thesis is 

dedicated to building and refining genome-scale in silico metabolic models for mouse in 

order to study how the metabolic model respond differently under different conditions (e.g. 

diabetic vs. normal). 

1.3 DISSERTATION ORGANIZATION 
 

The goals of the work presented in my dissertation were to 1) investigate and explore cancer 

aggressiveness and heterogeneity in the context of human astrocytoma, using transcriptomic 

data 2) develop a framework to learn and quantify network-level changes in response to 

tumor progression in the context of mouse glioblastoma, using proteomics data 3) develop 

and refine genome-wide metabolic models for mouse liver,  under normal and diabetic 

conditions, using the mouse genome-scale metabolic network reconstruction as a starting 

point.  

 

In virtually all of my research projects, I was fortunate enough to interact and collaborate 

with many biologists, computer scientists and bioinformatics scientists. Without the 

numerous inspiring discussions and intellectual exchanges of information, none of the 

projects could have reached this far. In subsequent chapters of this dissertation, I have used 

the singular “I” to clarify ideas and analysis that I was directly responsible and “we” to 

indicate a more collaborative effort.  

 

The chapters in this dissertation are organized as follows: 

Chapter 1: Introduces the concept of systems biology and how transcriptomic, proteomic 

and metabolomic data each offer a distinct systems perspective to study the living organism. 

Chapter 2: Describes and summarizes the major observations and key results in the study of 

human astrocytoma using large-scale gene expression profiles. 
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Chapter 3: Presents the discovery of a novel prognostic network that could possibly 

distinguish different subtypes within aggressive human gliomas. 

Chapter 4: Describes a computational framework to discover key players in genetically 

engineered mice with induced mutations to drive glioma progression.  

Chapter 5: Examines the generic mouse model and suggests key functionality 

improvements that will provide a foundation on which to build metabolic models for mouse 

liver. Subsequently, I present the pipeline to reconstruct a liver model from the generic 

mouse model, and explain the construction processes of two versions: normal and diabetic 

liver models. 

Chapter 6: Provides a summary and conclusions for the work presented, and list future 

directions of my work. 
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1.4 CHAPTER 1 FIGURES 
 

 

Figure 1.1 The two views on biological systems: the reductionist view knows the precise states of 

all the organs and cells in the body; the systems view takes account of interactions among all 

components, and offers us a global perspective on the system as a whole. Adapted from [14] . 
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Figure 1.2 A) Hybridization step in microarray B) Heapmap of gene expression values 
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Figure 1.3 Structure of genome-scale metabolic network. Adapted from Systems Biology lecture 

slides, B.Ø. Palsson, UCSD 
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CHAPTER 2 UTILIZING TRANSCRIPTOMIC PROFILING TO EXPLORE 

AGGRESSIVENESS AND HETEROGENEITY OF BRAIN CANCER
1 

 

2.1 INTRODUCTION TO HUMAN ASTROCYTOMA 

 

Primary brain tumors comprise less than 2% of all human cancers but have strikingly high 

mortality rates. Glioma, the most prevalent primary brain tumor, accounts for ~42% of all 

adult brain tumors [15]. The most common gliomas, in turn, are astrocytomas, believed to 

originate from astrocytes [16, 17]. Astrocytomas are classified from grade 1 (least 

aggressive) to grade 4 (most aggressive) based on the World Health Organization (WHO) 

grading system [18].  

 

Presented here is my work on the analysis of the different grades of astrocytoma (excluding 

pilocytic astrocytoma, with normal brain tissues taken as control) to identify both distinct 

and common molecular states across grades. I have employed a combination of gene- and 

network-based approaches (Figure 2.1) to investigate the genetic and biological 

mechanisms implicated in observed phenotypic differences.  

 

Grade 1 tumors (pilocytic astrocytomas) represent distinct pathological and biological 

entities compared with other tumors [19] and thus were not included in this study. As such, I 

henceforth considered only grades 2 through 4. Grade 2 (G2) and grade 3 (G3) tend to 

progress to higher grades with recurrence. Grade 4 tumors (glioblastoma multiforme or 

GBM) commonly present as primary tumors (pGBM), with no prior history of occurrence at 

a lower grade. Secondary GBM (sGBM), on the other hand, has recurred in a patient 

previously diagnosed and treated for a lower grade [20]. Specific avenues of progression 

where astrocytoma manifests in G2 tumors that undergo transformation to the more 

aggressive G3 or GBM tumors, have been seen in both genetically engineered mouse 

models [21], as well as in humans [20]. My study included only GBMs with clear subtype 

                                                      
1 This chapter includes material that was reproduced with permission from the following publication: C Wang, CC 

Funk, JA Eddy, ND Price (2013) Transcriptional Analysis of Aggressiveness and Heterogeneity across Grades of 

Astrocytomas. PLoS ONE 8(10): e76694. doi:10.1371/journal.pone.0076694 (all sections; text was collaboratively 

written with Cory Funk, James Eddy and Nathan Price). 
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designations (primary or secondary) and investigates differences between GBMs and lower 

grades as well as between these subtypes. 

 

2.2 GENE EXPRESSION PROFILING: CHALLENGES AND STRATEGIES 

 

A lot of transcriptomic studies have been done on human astrocytoma and differentially 

expressed genes and molecular signatures have been identified in previous microarray 

experiments, in an attempt to address clinical needs [22-27]. Unfortunately, as most of these 

studies were statistically underpowered, these signatures failed on independent validation 

sets, thus rendering them ineffectual [28]. Lab effect can obfuscate signal from noise in 

phenotypically similar tumors if sampled from different studies [29]. This can be overcome 

through use of multiple data sets when properly normalized—also minimizing the inherent 

biological noise [30]. Our present study adopted such a uniform approach to process raw 

expression data from multiple labs with one standard adjustment method, thereby increasing 

sample-to-sample correlation and decreasing heterogeneity across the data collected in 

different studies (Figure 2.1A). 

 

Another strategy to mitigate biological noise is to analyze molecular profiles from 

individual genes or proteins in the context of biological network behaviors, and helps to link 

changes in gene expression to phenotype. Studying network behavior is especially relevant 

in cancer research as cancer stages and progression are marked by changes in network-level 

processes [31]. My research lab had previously developed a method called Differential Rank 

Conservation (DIRAC) [32], which measures the variation in network ranking (i.e., the 

relative ordering of genes from highest to lowest expression within a pre-defined network) 

among samples of the same phenotype and between samples of different phenotypes 

(Figure 2.1C). This enables evaluation of changes in gene expression at a network level 

based on relative expression between each of the network components, making the method 

independent of any normalization that does not affect rank (e.g., normalizing to total RNA, 

quantile normalization, etc.); additionally, the results do not depend on the other genes in the 
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transcriptome, meaning that it can be applied when only the genes in the network are 

measured.  

 

After explaining the key challenges in transcriptomic study and my strategies to address the 

problem, I will present the major observations and improvements in the next section. 

2.3 CONSENSUS PRE-PROCESSING REDUCES NOISE 

 

Appropriate computational pre-processing is an important step in combined analyses of 

multi-site data to reduce technical variability between different studies. Consensus pre-

processing, which normalizes raw expression data from multiple studies in a uniform 

manner, has been shown to reduce lab effects known to obfuscate biological signal when 

combining datasets from multiple labs [30]. Molecular signatures obtained after this step of 

processing have better prediction accuracy and lower variance than those from individual 

datasets. For example, average accuracy obtained training on four GBM datasets was 

considerably higher than training on individual GBM datasets [30]. We applied consensus 

pre-processing to the raw expression data for 336 patients collected from multiple 

independent studies. This greatly reduced sources of variation across studies, as measured 

by an increase in average sample-to-sample correlation from 81% to 91% (Figure 2.2). 

Reducing noise in the data enabled a more robust identification of variability across 

phenotypes. 

2.4 GLOBAL DYSREGULATION OF NETWORKS 

 

We first investigated global differences in network-level expression between astrocytoma 

grades by applying DIRAC to measure the rank conservation index of relative stability or 

consistency within each network ordering across a population [32]. If the orderings of genes 

within a specific network are mostly similar among different patients (i.e., highly conserved), 

the network is considered consistent within a phenotype. In the opposite case, more 

dissimilarity among patients is observed, and the network is considered heterogeneous or 

dysregulated. Extending this concept, averaging rank conservation indices over all networks 

provides a coarse measure of global regulation in different phenotypes.  
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We found that networks in normal brains are on average more highly conserved (0.957) than 

networks in advanced astrocytoma grades (G2, 0.937; G3, 0.930; and GBM (including both 

pGBM and sGBM), 0.915; P < 0.001 for ordering of phenotypes, based on one-way 

ANOVA) (Figure 2.3A&2.3B). In addition, global network rank conservation is 

significantly different between all pairs of phenotypes (P < 0.05, multiple pairwise t-tests). 

This trend demonstrates that more aggressive phenotypes have greater overall variation in 

network ordering among different samples. Increased genetic and cellular heterogeneity is a 

commonly recognized characteristic of highly malignant astrocytomas [33, 34]. GBM, the 

most malignant grade, is characterized by extensive heterogeneity as reflected in the 

moniker “multiforme,” which derives from early histopathologic descriptions of a single 

tumor's highly varied morphologic features and connotes cellular heterogeneity [35]. Here, 

we show in a quantitative manner that transcriptomic heterogeneity, observed at the 

population scale, is generally correlated with increasingly aggressive phenotypes. 

2.5 DIFFERENTIALLY REGULATED NETWORKS BETWEEN DISEASE STATES  

 

Certain networks appear consistent in one phenotype but show drastically more sample-to-

sample heterogeneity in another phenotype. Identifying the most differentially regulated 

networks can inform us about cellular processes and mechanisms most affected or perturbed 

from one disease state to another. We thus identified the most differentially regulated 

networks between normal samples and different astrocytoma grades as well as between 

different disease states (Table 2.1). For example, we identified 12 out of 248 networks that 

had a significant difference in conservation in comparing normal to G2 patients (P < 0.01 

for each comparison, based on a binomial distribution; see Chapter 2.9 Methods); 10 out of 

these 12 networks showed increased dysregulation in G2. Similarly, in comparing G2 to G3, 

G3 to primary or secondary GBM, a strong majority of significantly dysregulated networks 

exhibited greater heterogeneity in the more malignant phenotype (Figure 2.3) (P < 0.01 for 

each comparison, based on a binomial distribution). These quantitative results further 

support the idea that networks become increasingly dysregulated with increased malignancy.  
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2.5.1 DYSREGULATED NETWORKS IN G2 VS. NORMAL 

 

Among the 12 significantly differentially regulated networks (P < 0.01) between G2 and 

normal brain, 5 networks (PLCD, PLCE, AKAP13, CCR5, and ION) are known to 

regulate protein kinase C (PKC) signaling and increase calcium release into the cell (Figure 

2.3). Calcium signaling is a key player in neuronal transmission, microglia activation, and 

motility. Calcium signaling is especially crucial for transformed glioma cells to expand in 

the early stages of tumor development by sheer motility, as glioma cells cannot spread 

through the bloodstream [36]. Similarly, hyperactive PKC signaling is among the most 

distinguishing features of malignant brain tumors. PKC signaling stimulates both 

MAPK/ERK and PI3K/AKT pathways; it also supports degradation of extracellular matrices 

and allows for invasion of glioma cells [31].  

 

Three networks, ACETAMINOPHEN, SLRP, and PEPI, mediating immune system 

responses, also showed increased dysregulation in G2 patients (Figure 2.3C). The 

ACETAMINOPHEN network was named after the commonly used drug Acetaminophen 

to reduce pain, targeting the cyclooxygenase enzymes. This network is also involved in 

inducing expansion of myeloid-derived suppressor cells (MDSC), which suppress T-cell 

responses to tumor growth [37]. Increased instability of this network may contribute to 

gliomagenesis by supporting development of MDSCs and their accumulation in the tumor 

microenvironment [38]. The SLRP network consists of 5 small leucine-rich proteoglycans 

(SLRPs), which are ligands of the Toll-like receptors responsible of regulating innate 

inflammatory response [39].  

 

In contrast to the ACETAMINOPHEN and SLRP networks, PEPI showed significantly 

more consistent expression ordering in the cancer population (0.877 in normal and 0.945 in 

G2 patients, P = 0.006). This network activates neutrophils and generates the wound 

cleaning response—and is likely indicative of the normal physiological response to most 

tumors. In the early stage of forming malignant glioma cells, it is possible that some 

immune-related networks like PEPI act to prevent tumor cell migration and invasion 

through a more consistent expression program, while the dysregulation of other networks 
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like SLRP and ACETAMINOPHEN contributes to the immunosuppressive environment in 

the tumor.  

2.5.2 DYSREGULATED NETWORKS IN G3 VS. G2  

 

Comparing network states in high-grade G3 to low-grade G2, all 5 networks with significant 

change in consistency of gene ordering showed greater heterogeneity in the more aggressive 

cancer grade (Figure 2.3C). ERBB4 and NOTCH networks are part of the larger 

EGFR/ErbB signaling pathway. The key components in this pathway consist of four 

members of ErbB family of proteins (Erb1-4), which tend to form heterodimers and bind 

several cognate growth factors (e.g. EGF, TGF), activating downstream transcription factors 

(e.g. JUN, FOS) to regulate multiple cellular responses including proliferation and apoptosis 

[40]. This pathway has demonstrated substantial biological and transcriptional consequences 

such as activating downstream PI3K/AKT, PKC, and MAPK/ERK pathways. Up to 40% of 

GBMs display deletions in EGFR rendering it constitutively active, while others 

overexpress it through amplification or up-regulation of expression [41].  

 

The NOTCH network interacts closely with EGFR to facilitate tumor angiogenesis. Our 

observation that NOTCH shows greater variability in expression ordering at the higher 

grade—from 0.908 (in G2 tumors) to 0.856 (in G3 tumors)—supports the hypothesis that it 

plays different roles in tumorigenesis of low-grade astrocytomas and high grade gliomas. 

That is, while inactive NOTCH functions as a tumor suppressor in low-grade G2 tumors, it 

is activated and may act as an oncogene in high grade astrocytomas, especially primary 

GBM [42]. 

 

The TERT network, responsible for telomerase activation, also showed greater 

dysregulation in G3 compared to G2. Telomerase activation and subsequent telomere 

maintenance are generally associated with the malignant transformation of normal cells to 

cancer cells [43]. The increased transcriptomic heterogeneity and network ordering 

inconsistency in higher grade astrocytomas further supports the known fact of telomerase 

dysregulation in malignant cancer phenotypes [44].  
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2.5.3 DYSREGULATED NETWORKS IN GBM VS. G3  

 

We compared network conservation values between G3 and primary GBM and between G3 

and secondary GBM separately, and obtained 38 and 16 differentially regulated networks, 

respectively. 13 networks appeared as significant in both comparisons (P < 0.01). GBM 

displays all the pathological features in the lower grades such as altered regulation in 

transcription and metabolism, calcium, and EGFR signaling (Figure 2.3C). 

 

The PLCD, PLC, TRKA, and HBX networks all regulate release of intracellular calcium 

and function in similar ways as PLCE and PKC, identified in the lower grades. Notably, 

HBX includes 4 genes (GRB2, HRAS, SHC1, SOS1) that are part of the PI3K/AKT 

pathway—known  to be hyperactivated in GBMs, resulting in uncontrolled cell growth, 

survival, proliferation, angiogenesis, and migration [45].  

 

As expected, there are a number of networks involved in the complex EGFR regulatory 

pathway as in the other grades. The CBL network contains the ubiquitin ligase Cbl which 

degrades EGFR, thus down-regulates EGFR signaling [40, 46]; the ERBB3 network 

likewise contains functionally similar components and plays a similar role in EGFR 

signaling. TERC, another network in this list, behaves like TERT to control telomerase 

regulation.  

 

Interestingly, two networks (LDL and S1P) with critical roles in cholesterol metabolism 

also displayed significant dysregulation in GBM. LDL transports cholesterol, which is 

needed for cell membrane repair and synthesis, whereas S1P controls transcriptional 

regulation of cholesterol metabolism in response to cholesterol levels in the cell [47]. In 

addition, S1P connects to the earlier mentioned EGFR pathway through two sterol-

regulatory element-binding proteins (SREBF1 and SREBF2) that are activated by PI3K. The 

interplay between S1P, SREB proteins and EGFR regulate the expression of fatty-acid 

synthase, which synthesize fatty acid and plays key role in cancer pathogenesis [48]. It has 

been reported the EGFR mutations (EGFRVIII) and PI3K promote tumor growth and 

survival through SREBP-1 dependent lipogenesis [49].  
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2.5.4 DYSREGULATED NETWORK DISTINGUISHING PGBM FROM SGBM  

 

In comparing the two subtypes of GBM, primary to secondary GBM, it is interesting to note 

that the conservation value of S1P also decreased significantly from 0.812 in primary GBM 

to 0.769 in secondary GBM (P = 0.005). The SREBF1 gene in this network regulates and 

activates the IDH1 gene [50]. IDH mutations are commonly observed in lower grade and 

secondary GBMs but rarely in primary GBMs [51]. Thus, this network links IDH mutation 

to lipid homeostasis. Increased network dysregulation of S1P in secondary GBM offers 

quantitative support that IDH signaling is altered in this subset of GBMs. 

2.6 MONOTONICALLY INCREASING AND DECREASING GENES IN ASTROCYTOMA 

PROGRESSION 

 

Amidst the increased dysregulation of gene networks with increasing astrocytoma grade, we 

sought to identify instances where specific molecular changes—in this case, changes in 

expression of individual genes—occur in a unidirectional manner. We reasoned that such 

instances could provide insight into the oncogenic mechanisms or events that contribute to 

the pathology and/or transcriptomic heterogeneity found in astrocytoma. We therefore 

looked for genes whose expression level monotonically changed concomitant with 

increasing grade.  

 

31 and 6 genes were found to decrease or increase their respective expression from normal 

to G2, G3, and GBM (Figure 2.4, Table 2.2). In evaluating DEGs between G3 and GBM, 

only genes differentially expressed in both pGBM and sGBM compared to G3 were 

included (see Chapter 2.9 Methods). We also tested for the statistical significance of the 

directionality of the genes (P < 0.001, see Chapter 2.9 Methods). The fact that specific 

genes change consistently with increasing astrocytoma grade may reflect shared oncogenic 

mechanisms among phenotypically similar tumors. Interestingly, similar to the differentially 

regulated networks, several of these genes identified are also associated with key processes 

such as calcium signaling and metabolism and/or are located in the endoplasmic reticulum 

(ER) or mitochondria. The commonalities shared by gene-based and network-based analysis 
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may represent potential connections between genetic heterogeneity at the tumor level and 

expression heterogeneity at the population level.  

 

The significance of calcium signaling and metabolic genes may relate to how cells respond 

to additional metabolic requirements needed for tumor cell division and cell cycle 

progression with increased aggressiveness. At the same time, cells that ultimately constitute 

the tumor mass have been selected for their ability to avoid apoptosis while facilitating the 

increased metabolic flux. As such, we see genes implicated in regulation of apoptosis. We 

discuss in detail below how representative genes are involved in the above-mentioned 

functional categories and how they interact to bring about changes reflective of astrocytoma 

pathology. A summary of the genes and their respective functions is shown in Figure 2.5.  

2.6.1 GENES IMPLICATED IN CALCIUM SIGNALING AND/OR APOPTOSIS 

 

Among the monotonically changing genes, TMEM66, STRN3, CANX, and CPEB3 are 

known to affect calcium and apoptotic signaling; all of them, with the exception of CANX, 

showed decreased expression with increasing tumor grade.  

 

TMEM66, also known as SARAF, is localized to the ER lumen and affects calcium storage 

[52]. Following calcium release from the ER, calcium stores are replenished through 

calcium release activated channels (CRAC) to re-enter the ER lumen [53]. Decreased 

SARAF, as we observed in our study, would potentially lead to an inability to close the 

CRAC channels and disrupt calcium homeostasis in aggressive gliomas.  

 

Striatin, calmodulin binding protein 3 (STRN3) is another monotonically decreasing gene 

and participates in apoptosis and calcium release. It is found to be both cytosolic and 

membrane-bound and is expressed primarily in the brain and muscle [54]. STRN3 binds 

with calmodulin in the presence of calcium [55]. It reacts with protein phosphatase 2a 

(PP2a), which, along with the promyelocytic leukemia (PML) protein, stimulates IP3R-

mediated Ca2+ release from ER. PML modulates calcium-mediated apoptotic stimuli 

through binding with PP2a and IP3R [56]. Decreased expression of STRN3 in aggressive 

gliomas likely reflects changed apoptotic calcium signaling mechanisms in these tumors. 
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Cytoplasmic polyadenylation element binding protein 3 (CPEB3) is a nucleocytoplasmic 

shuttling RNA-binding protein. It is involved in both calcium signaling and EGFR 

degradation. CPEB3 inhibits EGFR expression by preventing the translation of STAT5B, a 

regulator of EGFR transcription [57]. As a monotonically decreasing gene, lower expression 

of CPEB3 would similarly lead to an increase in EGFR. Notably, CPEB3 is located on 

chr10q 23.32, very close to the locus of PTEN (chr10q 23.31). Loss of this region is known 

to occur in several cancers [58] and it is conceivable that loss of CPEB3 contributes to 

altered EGFR signaling along with PTEN loss. 

 

In contrast to the above three genes, calnexin (CANX) was found to increase at the mRNA 

level with increased astrocytoma grade. CANX is an ER chaperone protein that binds with 

free calcium ions. It is a critical component of the mitochondria associated membrane 

(MAM), with over 80% of it located in the MAM, along with the aforementioned STRN3-

associated protein PP2A. CANX regulates the activity of sarcoplasmic/endoplasmic 

reticulum calcium ATPase (SERCA) by acting as a calcium buffer in the MAM [59]. 

Depending on its palmitoylation status, CANX shuttles between the ER and MAM [60].  

2.6.2 GENES IMPLICATED IN METABOLISM AND MITOCHONDRIA 

 

A few monotonically changing genes identified have metabolic functions. Proteins encoded 

by these genes sit closely to each other in the mitochondria, which is responsible for 

essential cellular processes such as energy production, storage of calcium ions, and cell 

death. In recent years, there has been increased reports of the role of mitochondria in 

calcium signaling [61], which helps to connect mitochondrial metabolic genes to calcium 

signaling. Metabolic regulation of calcium in mitochondria is mediated through the effects 

of dehydrogenases. Calcium ions activate matrix dehydrogenases, increase available NADH 

and electrons for the respiratory chain, and eventually accelerate ATP production [62].  

 

NDUFB8 and NDUFB1 are two monotonically decreasing genes that encode subunits of 

respiratory chain NADH dehydrogenase complex I. Decreased expression of these proteins 

causes respiratory chain dysfunction, reduces the driving force for calcium transfer and 
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available electrons in the respiratory chain, decreasing ATP production. This observation 

may reflect a reduction of mitochondrial ATP synthesis via oxidative phosphorylation—

contributing to the Warburg Effect; as the tumor grows to more aggressive stages, the 

metabolism of proliferating tumor cells is adapted to proliferation mechanism rather than 

efficient ATP production [63]. Interestingly, the NDUFB8 gene is also found very close to 

PTEN (locus of NDUF8: chr10q 24.31 and PTEN, chr10q 23.31).  

 

ACSL4 (acyl-CoA synthetase), a monotonically decreasing gene, converts fatty acids to 

fatty esters and plays an important role in lipid metabolism. Similar to CANX, ACSL4 is 

also found in MAM, which is a critical metabolic hub in lipid metabolism [64]. Though 

normally recognized as a metabolic gene, ACSL4 regulates synaptic vesicles along axons. 

Knockout of ACSL4 in embryonic stem cells was shown to significantly reduce neuronal 

differentiation [65]. A de-differentiated neuronal state in higher-grade tumors resembles 

how neural stem cells display higher potential of proliferation and angiogenesis [66].   

 

Other mitochondrial genes involved in metabolism include ornithine aminotransferase 

(OAT), a monotonically decreasing gene that converts arginine and ornithine into 

neurotransmitters glutamate and GABA. GABA receptors and glutamate transporters have 

been reported to be down-regulated in brain tumors [67]. Another mitochondrial gene 

identified is n-myristoyltransferase 2 (NMT2) which plays a role in protein myristoylation, 

proliferation, and apoptosis [68]. 

2.7 DIRAC-BASED CLASSIFICATION IDENTIFIES ACCURATE NETWORK SIGNATURES 

FOR DISTINGUISHING GRADES 

 

The high degree of transcriptomic heterogeneity observed in increasingly aggressive 

astrocytoma tumors creates substantial variance when searching for robust molecular 

signatures between grades. Still, identifying such signatures is critical to elucidating 

mechanistic differences between more and less aggressive tumors. Network-based 

approaches such as DIRAC are advantageous for extracting signal from noise, as the 

patterns of functional groups might be less within the same phenotype than those of 
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individual genes. Furthermore, DIRAC quantifies the relationships between genes, and 

operates on these pair-wise expression patterns within networks, thereby reducing the 

impact of noisy changes in single gene expression. Using DIRAC, we compared each of the 

four phenotypes to all other phenotypes (e.g., normal brain against G2, G3, GBM; G2 

against G3 and GBM; etc.) (Figure 2.6). 

 

We were able to clearly separate normal brain tissues from G2, G3, and primary GBM. 

Furthermore, these tumors could be distinguished from each other with good accuracies (> 

80%, except 78% in the case of G3 and pGBM). In separating secondary GBM from other 

grades, however, classification signals are not as strong (average accuracy of primary GBM 

and secondary GBM vs. all other phenotypes are 86% and 77%, respectively). This 

difference in classification performance very likely reflects the fact that secondary GBMs 

are derived from lower grades and therefore share more common genomic and 

transcriptomic characteristics in their expression profiles compared to primary GBMs, 

which develop spontaneously and display more pronounced phenotypic differences from 

other grades.  

 

It was also difficult to separate primary and secondary GBMs (accuracy 69%) based on their 

transcriptomes, even though they are known to develop from separate genetic pathways [69]. 

They are indistinguishable by histology, as both share the same histological grade [70]. Both 

subtypes share a number of genomic and transcriptomic similarities such as LOH on 

chromosome 10q and deregulation of the PI3K/ATK pathway [69]. Another reason for the 

relatively lower accuracy is possibly due to the signal present from other subtypes such as 

proneural (PN), mesenchymal, or proliferative subtypes (the latter two collectively known 

as non-PN) within GBMs, which appear to be more distinct than the transcriptomic 

differences we observe between primary and secondary GBM. In terms of survival, the PN 

subtype is reported to be less aggressive than other subtypes [25]. In support of this 

hypothesis, we applied DIRAC on a subset of GBM with known PN/non-PN designations, 

and separated the proneural subtype from the rest with an accuracy of 78%. This accuracy 

being higher than for the separation of pGBM and sGBM suggests that molecular subclasses 

in glioblastomas may look more different than traditional pGBM/sGBM classes, especially 
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in the context of network behavior; hence DIRAC detected the stronger classification 

signals more easily. The best 10 network-based classifiers selected by DIRAC to separate 

tumor samples from normal brains are listed in Table 2.3. In each pair-wise comparison, we 

included different metrics (sensitivity, specificity, and accuracy) and group size information 

to demonstrate the ability of DIRAC to distinguish different grades of brain tumors (Table 

2.4). 

2.8 CONCLUSIONS 

 

We report here a systems approach to investigate molecular changes underlying astrocytoma 

pathology. Leveraging a large cohort of publicly available gene expression data sets, we 

have conducted the first meta-analysis that examines together the transcriptomes of three 

astrocytoma grades along with corresponding normal samples. We have combined 

individual gene- and network-based approaches to identify meaningful patterns of 

expression within and between different grades. The trend we observed of greater network 

dysregulation with higher grade represents a quantified measure of increasing inter-patient 

transcriptomic heterogeneity in more aggressive astrocytomas. We also identified genes that 

exhibit monotonically increasing or decreasing expression with increased grade—these 

genes are potentially reflective of shared oncogenic mechanisms among phenotypically 

similar tumors. Notably, monotonically increasing or decreasing changes in gene expression, 

parallel to increasing network dysregulation, presents a putative bridge between the known 

genetic heterogeneity of astrocytomas and expression heterogeneity at the population level, 

as analyzed in this meta-study.  

 

Additionally, we identified networks distinguishing different astrocytoma grades from 

normal as well as network markers separating between glioma grades. This work presents 

significant results that enable better characterization of different human astrocytoma grades, 

and hopefully will lead to improvements in diagnosis and therapy choices.  
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2.9 METHODS 
 

2.9.1 COLLECTION AND INTEGRATION OF TRANSCRIPTOMIC DATA 

 

Raw microarray CEL files from previous studies were compiled from the NCBI Gene 

Expression Omnibus (GEO). We used data collected from the most abundant source 

platform currently, Affymetrix HG-U133A or its complimentary version, HG-U133-Plus 2.0 

GeneChips (Affymetrix, Santa Clara, CA). Table 2.5 lists the GEO accession number, year 

of publication, and the number and grades of samples reported in each original study. 

 

A “consensus pre-processing” method was applied to the CEL files to normalize differences 

introduced by non-uniform studies and sample preparation procedures. This method is 

described in greater detail in [30] and was used in that study to demonstrate that classifiers 

performed better on novel datasets when trained on multiple, integrated, pre-processed 

datasets. Briefly, common probe sets (22,277) shared by the two platforms (U133A and 

U133-Plus 2.0) were identified according Affymetrix descriptions, and GeneChip RMA 

(GC-RMA) normalization was applied to raw expression data for these probes across all 

microarray samples [71]. GC-RMA was implemented in the Matlab Bioinformatics Toolbox 

with the threshold for presence defined based on prior studies from Affymetrix [72]. Probes 

having 0% present calls for any phenotype were removed. Following these criteria, 15,827 

probes were kept for further analysis. 

 

When converting the probe intensity matrix to a gene expression matrix, probes that mapped 

to multiple genes were eliminated to remove ambiguity. For multiple probes corresponding 

to the same gene, the maximum intensity was used. Finally, all absolute intensity values 

were replaced by their relative ranks within each array.  

2.9.2 COMPUTATION OF RANK CONSERVATION INDICES IN DIRAC 

 

For all network analyses performed with DIRAC, expression levels of genes were grouped 

into 248 human signaling networks, defined according to the BioCarta gene sets collection 
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in the Molecular Signatures Database (MSigDB) [73]. For each selected network, we used 

DIRAC to compute the expected ordering of network genes (rank template) for each 

phenotype, and we subsequently measured how closely each sample’s network ordering 

matched the phenotype-specific template (rank matching score). The rank conservation 

index, calculated by averaging rank matching scores across samples in a phenotype, 

indicates how consistently each network is ordered within a population. Averaging the rank 

conservation indices over all networks for a phenotype provided a single value estimating 

the relative heterogeneity or dysregulation of networks for that phenotype.  

2.9.3 IDENTIFICATION OF MOST DIFFERENTIALLY REGULATED NETWORKS ACROSS GRADES 

 

The difference in rank conservation indices between two phenotypes (e.g., normal vs. cancer 

or lower grade vs. higher grade) was calculated for each network. Networks were ranked 

based on the magnitude of the difference. To establish statistical significance, the original 

phenotype labels were permuted and randomly assigned to samples, and the absolute 

difference in rank conservation indices was calculated for all networks in each phenotype. 

These steps were repeated for 1,000 permutations to generate a null distribution of rank 

conservation differences, and the significance level for each difference was measured as the 

probability of observing the same fraction or higher at random. 

2.9.4 IDENTIFICATION OF MONOTONICALLY CHANGING GENES 

 

We selected differentially expressed genes (DEGs) for each adjacent pair of astrocytoma 

grades, (control vs. G2, G2 vs. G3, etc.) based on the Wilcoxon rank-sum test (P < 0.05 

after Bonferroni correction). In the intersection of these DEG sets, genes with monotonically 

increasing ranks were defined as increasing genes, and monotonically decreasing ranks as 

decreasing genes.  

 

In order to test the robustness of these monotonically changing genes, we randomly selected 

80% of all samples in each phenotype, and with this subset of samples, we tracked whether 

genes were similarly increasing or decreasing across grades as they were with the full set of 

samples. We repeated this selection process 1000 times and recorded how often the 
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identified genes appear with the same pattern. Genes that appeared at least 500 times in 

1000 permutation tests were considered as high confidence genes and used for subsequent 

analysis. 

 

In order to test the significance of the directionality of genes, the original phenotype labels 

were permuted and randomly assigned to samples, and the number of monotonically 

changing genes in each permutation was calculated for both the increasing and decreasing 

case. The procedure was repeated for 1000 times and a null distribution for the gradation of 

genes was established. A P-value for the directionality/trend of the genes was assigned 

based on the probability of observing the same number of genes at random. 

2.9.5 CLASSIFICATION OF DISEASE PHENOTYPES WITH DIRAC 

 

In addition to conservation of network ordering within a phenotype (measured by the rank 

conservation index), DIRAC can also be used to identify networks ordered differently 

(variably expressed) between two phenotypes. Rank matching scores were calculated for 

each class, and predicted class labels were assigned based on similarity of each patient’s 

individual profile to either of the two templates. Apparent accuracy for classification with 

these predicted class labels was then calculated for all networks [32]. A null distribution of 

network classification rates was generated by randomly permuting phenotype labels 1000 

times, and the significance level was measured as the probability of observing classification 

rates. To address the issue of multiple-hypothesis testing, the corresponding false discovery 

rate (FDR) was calculated for each significance level, representing the fraction of expected 

false positives at any defined cutoff [32]. We used leave-one-out cross validation to estimate 

the error rate of DIRAC-based classification for each pair of phenotypes. 
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2.10 CHAPTER 2 FIGURES AND TABLES 

 

 

Figure 2.1 Overview of approach. 

A) We minimized experimental variation due to lab effects by performing uniform pre-

processing. B) Genes that either monotonically increased or decreased in parallel with increasing 

astrocytoma grade were identified. C) Molecular signatures that can accurately distinguish 

between different grades were established using Differential Rank Conservation (DIRAC). We 

also examined broad patterns of network regulation across all astrocytoma grades. 
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Figure 2.2 Pearson-correlation matrix before and after consensus pre-processing 

The heatmaps display correlation coefficients among all samples included in this study. The axes 

represent sample numbers. In the left figure, the purple borderlines of each box delineate 

different phenotypes, which coincide with the sample batches. Samples from the same 

laboratories or studies showed higher homogeneity than other samples. On the other hand, in the 

right figure, laboratory effects are much less obvious; tumor samples across different studies or 

phenotypes all look highly correlated with average correlation coefficient increased from 0.81 to 

0.91. 
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Figure 2.3 Network-level expression heterogeneity across tumor grades 

A) Global trend of network regulation level decreases with increeasing grade. The vertical axis 

represents examined networks, while the horizontal axis represents five phenotypes. Colors 

represent rank conservation indices for each network. Light colors indicate high consistency of 

network ranking in a phenotype and the dark colors indicate large heterogeneity of networks. 

Networks in sGBM and pGBM tumors become much more heterogeneous compared to the 

normal cases. B) One-way ANOVA comparing the mean rank conservation values of different 

phenotypes. C) A list of most deregulated networks between adjacent tumor grades and their 

major biological functions. The “>” and “<” indicate the magnitude of network regulation. For 

instance, AKAP13 has a larger rank conservation index in normal samples and thus is more 

regulated in normal compared to G2. 
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Figure 2.4 Genes showing consistent dysregulation with progression 

Colors on the heatmap represent relative expression values of genes in different phenotypes. The 

vertical axis lists the differentially expressed genes and the horizontal axis lists the phenotypes. 

All expression values are normalized as the percentage of maximum expression value for the 

gene across all phenotypes. For the up-regulated genes in panel A) the maximum expression is 

either sGBM or pGBM, so we see all genes have brightest color in these two phenotypes; 

similarly the down-regulated genes in panel B) decrease their expression systematically from 

normal to GBM, and the intensity level also increases with grade.  
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Figure 2.5 Functional categories among monotonically changing genes 
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Figure 2.6 Classification accuracy with biocarta database networks 

This heatmap displays leave-one-out cross-validation accuracies of DIRAC-based classifications 

on each phenotype vs. all other phenotypes. DIRAC could distinguish more distant grades like 

normal vs. GBMs; it is especially hard to separate G3 or pGBM from sGBM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 

 

 

 

 

 

 



32 

 

 

 

 

 

 

 



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

 

 

 

 

 

 

 

 

 



37 

 

CHAPTER 3 IDENTIFICATION OF PROGNOSTIC MARKERS FOR HIGH-

GRADE ASTROCYTOMAS 
 

3.1 HETEROGENEITY AND PROGNOSIS IN HIGH-GRADE ASTROCYTOMA 

 

Heterogeneity in high-grade astrocytomas (HGAs; i.e., G3 and GBM) also manifests as 

differences in clinical outcome, which are often difficult to predict. Because of this, much 

effort has been devoted to identifying subtypes within a large collection of samples. A long-

standing approach to classify HGAs is based on clinical histories of patients: primary 

tumors tend to occur in older patients, and correspond with slightly shorter survival time 

than secondary tumors [20]. Another approach by Phillips et al., utilized a set of 35 genes to 

group HGAs into three subclasses, each resembling a corresponding stage in neurogenesis. 

One subclass (proneural or PN), exhibiting longer average survival, contained neuronal 

lineage markers; the two other tumor classes (proliferative and mesenchymal, collectively 

known as non-proneural or non-PN) were enriched for neural stem cell markers and had 

short survival times [25]. 

 

This chapter presents my work on using an extension of DIRAC-based classification to 

identify networks capable of predicting subtypes with differential survival in HGA. We 

found that variable expression of an erythropoietin network, which is known to mediate 

neuroprotection through NF-κB signaling (EPONFκB), could efficiently separate HGA 

patients into two groups with a significant survival difference. The prognostic value of this 

network was enhanced when combined with an established scheme for separating HGA 

patients (i.e., proneural/non-proneural) [25]. Two classes separated by both markers differed 

more significantly than classes defined by histologically determined grades or by 

proneural/non-proneural status alone. 
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3.2 THE EPONFΚB NETWORK EXHIBITS PROGNOSTIC VALUE 

 

To further explore the effects of heterogeneity among more aggressive astrocytoma tumors, 

we aimed to identify subpopulations within combined G3 and GBM samples (HGAs) with 

different clinical outcomes. Perhaps the most clinically relevant metric to evaluate subtypes 

is patient survival; this has been previously explored for primary vs. secondary tumors and 

the proneural (PN) vs. non-proneural (non-PN) subtypes (described above). With available 

survival information from 239 patients, I found that the EPONFκB network showed 

significant prognostic value. Using a distance matrix based on the DIRAC metric (see 

Chapter 3.3 Methods), the genomic profiles of all HGA patients were grouped into two 

clusters using unsupervised clustering. Subsequent log-rank tests on the survival estimates 

of these two groups (EPOLONG and EPOSHORT, indicate longer or shorter survival times) 

gave a P-value of 1.8e-5 (corrected for multiple hypothesis testing) (Figure 3.1), 

outperforming separation by path of progression (primary vs. secondary tumors, P = 0.002). 

Besides this network, four other BioCarta-defined networks showed significant P-values in 

their respective log-rank tests (Table 3.1). 

 

I next sought to improve prognostic predictions by combining the EPONFκB marker with 

established subtyping schemes. Using the previously reported proneural signature on 

microarray samples collected and processed from GEO, PN patients can be seen to survive 

longer than non-PN patients (P = 5.7e-8) (Figure 3.1). However, the 73 patients labeled both 

as PN and EPOLONG differed from the 68 patients labeled both as non-PN and 

EPOSHORT with the highest significance (2.4e-10). This integrated method of clustering 

HGA patients also outperformed histological separation (G3 vs. GBM tumors, P = 7.7e-6) 

(Figure 3.1).  

 

Nearly all G3 specimens (20/21 or 95%) were labeled as both PN and EPOLONG, 

indicating both markers having similar powers in distinguishing histologically less 

aggressive populations. The EPOLONG subclass comprises significant numbers of both PN 

(73/161 or 45%) and non-PN (88/161 or 55%) subclasses, indicating that these two markers 
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identify different populations of patients in HGA. It is interesting to note that EPOLONG 

still contains a higher proportion of PN (45%) patients than EPOSHORT (10/78 or 13%).  

 

Involvement of the EPONFκB network in gliomas is an interesting and highly debated 

subject because of its relevance to clinical treatment.  Standard treatment of GBM with 

radiation does significant harm to the surrounding brain, resulting in significant collateral 

damage. This damage is referred to as “radiochemobrain” and results in slowing 

psychomotor skills, cognitive decline, fatigue, and loss of drive, all of which significantly 

reduce the quality of life [74]. To counteract these effects, patients are sometimes given 

hematopoetic growth factor erythropoietin (EPO) prior to and following radiation. EPO 

signaling cross-activates the anti-apoptotic transcription factor NF-κB, and mediates 

neuroprotection against oxidative stress. EPO has pleiotrophic effects on the brain including 

anti-apoptotic, antioxidative, neurotrophic, axon-protective, angiogenic, and neurogenic—

many of which are associated with neuroprotection against the side effects of radiation and 

chemotherapy [75-78]. In addition, EPO has also been shown to improve the responsiveness 

of tumors to radiation therapy in human glioma xenographs by increasing tumor 

oxygenation [79].   

 

For all the positive effects EPO is believed to have, some have argued that these same 

effects could potentially promote tumor growth. Recently, EPO signaling was shown to be 

involved in angiogenesis of human glioma cells as well as cancer stem cell maintenance 

[80]. Still, others have shown that while EPO does augment the survival of glioma cells, it is 

unlikely to appreciably influence basal glioma growth [81]. While my results implicate 

EPONFκB as a novel predictor of patient survival, it is unclear if the observed modulation 

reflects increased, decreased or variable network signaling. 

3.3 CONCLUSIONS 

 

I discovered a signature predictive of survival in HGA patients based on the gene rankings 

in the EPONFκB network. Strikingly, combining the EPONFκB network and previously 

reported signatures outperformed histology-based grading or those separated solely based on 
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proneural/non-proneural status as predictors of survival. The identification of the EPONFκB 

network as a potential prognostic factor demonstrates the utility of deriving molecular 

diagnostic signatures from multiple studies. Ultimately, the results of this analysis could 

lead to improvements in diagnosis and therapeutic decisions and ultimately enable better 

predication of clinical outcome of HGA patients. 

3.4 METHODS 

 

Time of survival (days or weeks) and subtype designations were available for 239 patients. 

The microarray expression matrix of this subset of patients was normalized as previously 

described. As an extension of DIRAC, a distance matrix was constructed for each selected 

network based on the pairwise orderings of the genes within the network. For example, if a 

network m consisted of six genes, there could be 
 
distinct ordered pairs; for a gene 

pair i and j, let X denote their corresponding expression values. If Xi < Xj or Xi > Xj for both 

patient A and B, the distance of these two patients was 0; otherwise the distance was 1. The 

direct sum of the distances for all 15 possible comparisons was then normalized by the size 

of the network, to give the final average distance of patients A and B on network m. We 

repeated this procedure for all patients to obtain a 239 × 239 distance matrix. 

 

Unsupervised clustering in Matlab resulted in two groups (linkage method: weighted 

average distance, Figure 3.2). The first split on top of the dendrogram separated the samples 

into the two largest groups (A, B). If one of the groups (e.g., B) did not contain at least 10% 

of all samples, its samples were considered as outliers and removed from subsequent 

analysis; the remaining group A was then split into two (A1 and A2) according to the next 

joint on the dendrogram. Further outlier removal and group splitting continued until two 

groups with reasonable sizes were determined. The Kaplan-Meier method was used to 

estimate the survival distributions. Log-rank tests were used to evaluate the difference 

between survival groups. To address the issue of multiple hypotheses testing, stringent 

Bonferroni correction was applied to P-values obtained from log-rank tests. 

 

 

  156

2 
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3.5 CHAPTER 3 FIGURES AND TABLES 
 

 

Figure 3.1 Comparison of different approaches to re-classify HGAs 

Censored data indicate the patients being alive by the end of the study. a) Survival estimates of 

two groups separated by histological grades b) by PN vs. non-PN subtype, c) by prognostic 

network marker EPONFκB, and d) by combined status of PN (non-PN) and EPOLONG (or 

EPOSHORT). The log-rank test on the combined case has a more significant prognostic value 

than existing best classification. 
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Figure 3.2 EPONFκB separates the patients into two clusters with survival difference, using 

hierarchical clustering 
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Table 3.1 Networks that can separate HGA patients into groups with statistically 

significant survival difference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BioCarta 

Network 

Survival 

Difference 

EPONFκB  1.8*10-5 

CARDIACEGF  6.8*10-3  

IL22BP  1.1*10-2 

EPO 1.1*10-2 

FIBRINOLYSIS  1.3*10-2  
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CHAPTER 4 ANALYZING PROTEOMIC DATA FROM GENETICALLY 

ENGINEERED MUS MUSCULUS STRAINS 
 

4.1 UTILIZING HIGH CONSISTENCY OF PROTEOMICS DATA 
 

As I explained briefly in Chapter 1, though proteins are the translated products of RNA, 

protein concentrations do not necessarily correlate with the amount of corresponding mRNA 

in the cell [82]. Proteomic data obtained by mass spectrometry-based analysis and iTRAQ 

[83], Selective Reaction Monitoring (SRM) [84], and the newly emerging SWATH 

technologies [85] can provide direct quantification of thousands of proteins in the cell 

simultaneously.  

The high consistency of protein measurement comes with a price, compared to gene 

expression data, which is intrinsically much noisier [86]. Protein measurement experiments 

are much more expensive and cover fewer targets compared to gene expression profiling. 

The most thorough and comprehensive protein experiments presently include only a few 

thousand proteins with fewer samples in per condition. The higher consistency, low noise 

level, and fewer measurement properties of proteomic data demand a unique processing and 

analysis pipeline that is fundamentally different from our approach to transcriptomic 

analysis in the last chapter. In this chapter, I focus on developing a framework that is 

statistically valid and sound, computationally simple and efficient and lastly, biologically 

valuable and meaningful. 

As previously stated, GBM is the most common human brain tumor and it has a high fatality 

rate; the experiments conducted in this section are also aimed at understanding more on 

brain tumor biology and developing potentially new therapies based on these discoveries. 

We aimed to query and identify dynamically perturbed modules in a progressive mouse 

model of glioblastoma, by tracking behavior changes of regulatory networks in early, 

middle and late stages in disease development through protein measurements. 

Most GBMs exhibit frequent aberrations in three prominent signaling networks: cyclin-

dependent kinase/retinoblastoma (CDK/RB), receptor tyrosine kinase 
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(RTK)/RAS/PI3K/PTEN and MDM2/p53 [87]. Retinoblastoma RB is a tumor suppressor, 

and impaired RB drives tumor progression and is associated with short survival time [88]. 

On the other hand, the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) 

protein is a member of Ras family, and activation of the KRAS gene is an essential step in 

cancer development [89]. Lastly, the phosphatase and tensin homolog (PTEN) also acts as a 

tumor suppressor gene whose loss of function leads to increased cell proliferation and 

reduced cell death [90].  

The present work develops a methodology to process and analyze proteomics data collected 

from three mouse strains, which had been genetically engineered to contain one or more 

combinations of gene mutations in the three major networks mentioned above.  Eventually, 

we hope to identify and validate potential protein targets that play significant roles in GBM 

initiation and progression, and discover potential drug targets and treatment strategies of 

GBM.  

4.2 OVERVIEW OF EXPERIMENTAL DESIGN, DATA PROCESSING AND ANALYSIS 

 

Three strains of mice, with two duplicates for each strain, were collected at four different 

time points: control (beginning of experiment), early, middle, and late. The strains were 

named TR-cre, TR-het, and TR-null, each of which had two, one, and no copies of PTEN, 

respectively (Table 4.1). Protein content was measured using iTRAQ for all four stages and 

for all three strains and a comprehensive set of more than 2000 proteins in most cases were 

quantified and recorded. The controls had no genetic mutations and served as reference 

channels for the tumor samples. Cancer samples at different time points were subsequently 

normalized against their references to obtain a relative expression level. The arithmetic 

average value of duplicate observations for the same stage was calculated to represent the 

overall protein content for that stage. After these steps of normalization and processing, we 

have 3 data points for each strain and 9 points for all strains. 

Due to the extremely small size of samples for each condition, conventional gene analysis 

tools, such as Gene Set Enrichment Analysis (GSEA), which is a computational method to 

determine whether a set of genes show statistically significant differences between two 
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biological states, phenotypes and conditions are not suitable [91]. For the current study, it is 

almost impossible to reach statistical significance if we use the Kolmogorov-Smirnov test 

chosen by GSEA. We also cannot use Top-Scoring Pair (TSP) or DIRAC, both excellent 

methods to identify simple disease classifiers, for similar reasons. The unique nature of 

proteomics data calls for a method that is computationally very simple, and at the same time 

offers statistical power even if we only have one or two samples in each condition. 

With these considerations in mind, I developed a method that groups genes into a priori 

defined sets of genes and calculates if the median of this particular set of genes show a 

difference between two cancer stages. By grouping genes into networks and calculating if 

the median expression value changes significantly as a group, the significance of networks 

could be evaluated using the Wilcoxon rank-sum test, which compares two matched 

samples to assess whether their population median ranks differ [92]. It is an alternative to 

the paired student’s t-test, without the assumption that the populations are normally 

distributed [93]. The non-parametric nature of the Wilcoxon is especially suitable for the 

present data because we have no prior knowledge on the distributions of the genes in a gene 

set.  

The manually curated gene set database I selected for data processing was the Biocarta 

pathway database, which was defined according to the BioCarta gene sets collection in the 

Molecular Signatures Database. Genes were grouped into 248 human signaling networks 

[91]. Before grouping gene expressions into BioCarta gene sets, we mapped mouse genes 

into their human orthologs according to Mouse Genome Informatics (MGI) database [94, 

95]. Gene sets having at least two genes were kept in the collection for further analysis. 

Around 2000 genes were mapped to 159, 148, 157 gene sets in TR-cre, TR-het, and TR-null 

strains respectively. 

4.3 EXAMINATION OF PERTURBED NETWORKS IN DIFFERENT STRAINS 

 

We were interested in identifying networks displaying different group behavior, as 

measured by the network median under different cancer stages. To identify the networks, I 

compared expression profiles at different time points against each other (early vs. middle, 
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early vs. late, middle vs. late) and ranked the networks according to the P-values of rank-

sum test. Networks that showed significant changes (P-values < 0.05) under various cancer 

stages were named perturbed networks. Perturbed networks could either show up-regulation 

if the network median increases, or down-regulation if the network median decreases. The 

results of up- or down-regulation varied significantly from strain to strain. 

For all three strains, we used the symbol μ to represent the median value of the gene sets, 

and μearly, μmid, μlate to represent the corresponding network medians at different time points.  

Figure 4.1 showed how different networks responded to cancer progression in the three 

cancer stages.  

Both the TR-cre and TR-null strains (Figure 4.1A and C) demonstrated an overall pattern 

of up-regulation when GBM progressed from early to middle and late stages. Higher 

expression at more advanced tumor stages usually implies more genetic activity at the 

cellular level, and could reflect the body’s counter efforts to restore the diseased cells to 

normal states. Genes involved in these correction mechanisms could be tumor suppressors 

or targets of tumor suppressors which act to prevent the tumor from advancing or promote 

immune responses in tumor [96-98]. The majority of genes being up-regulated might also be 

oncogenes or targets of oncogenes which are involved in tumorigenesis pathways and cause 

tumor cells to survive and proliferate [99-101].  Another possible reason for the observed 

differences in expression is how the raw data were normalized after initial measurement. 

However I was not able to access raw data to assess this hypothesis. .  

In contrast to these two strains, the TR-het strain displayed much lower gene expression at 

the network level when the tumor progressed to the late stage (Figure 4.1B). The reason 

that most genes are under-expressed might be that the glioma had rapidly evolved to 

glioblastoma, and extensive necrosis had occurred in the late stage. The possible presence of 

large amount of cell death and microvascular hyperplasia might help to explain the low or 

even lack of activity of most genes [102, 103]. 
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4.3.1 PERTURBED NETWORKS FROM THREE STRAINS 

 

For the TR-cre strain, I observed a total of 10 networks for which the median expression 

value increased from early to middle stage, and from early to late stage (Figure 4.2A). I also 

identified another 9 networks with up-regulated average expression in one, but not both 

cases (i.e., up-regulation from early to middle, or from early to late stage). I did not discern 

any pathways with significant changes from middle to late stage.  

The perturbed networks from The TR-het strain, in which one copy of the tumor suppressor 

PTEN was knocked out, demonstrated very different behavior from the TR-cre strain. There 

were 87 networks with μmid > μearly, but no networks showed increased μ from early to late 

stage, or from middle to late stage. The top 10 perturbed networks ranked by P-values are 

shown in Figure 4.2B. In fact, all genes showed down-regulation advancing to late GBM. 

As explained earlier, the rates of progression in different strains vary significantly from each 

other, and in this strain, a high percentage of necrosis or apoptosis in cancer tissue might 

already be present in this terminal stage. The extremely low gene expression levels did not 

reflect meaningful biological events and it is also not valid to compare progression events at 

this stage to earlier stages, or to stages of other strains, therefore the particular set of data 

was not kept for further analysis.  

 

Late stage GBM appeared earlier in the mouse strain with heterogeneous PTEN (PTEN +/-), 

but not in other two strains, which might be explained by the stochastic p53 mutation driven 

by KRAS activation. It has been hypothesized that KRAS activation would positively select 

for p53 missense mutant cells [104]. P53 tumor suppressor proteins are encoded by the 

TP53 genes, which guard and conserve genome stability by preventing genome mutation 

[105]. Gene mutations can change the resultant protein structure, resulting in effects on cell 

replication. Tumor cells that are genetically unstable may be allowed to replicate [106].  In 

fact, this gene represent one of the most frequently occurring perturbations in human tumors 

[107]. There are at least two genetic pathways leading to GBM, a de novo pathway without 

P53 mutation, and a progressive pathway with P53 mutation [108]. P53 mutations in 

gliomas coupled with heterozygous deletion of PTEN allele may imply an additive effect of 
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combined gene deficiency that drives glioma progression, therefore explaining the fast 

tumor growth in this case. Supporting this hypothesis is the finding that PTEN +/- mice with 

concomitant inactivation of CDKN1B, a key player in CDK/RB pathway, showed 

accelerated neoplastic transformation, and these mice all developed prostate cancer within 

the first three months of life [109].  

 

The TR-null mouse strain, with both PTEN alleles inactivated, displayed a more similar 

gene and network pattern to the TR-cre strain, than to the TR-het strain, with middle and 

late protein profiles showing higher network medians than early stage protein profiles 

(Figure 4.2C). The experimental results suggest that homozygous deletions at the PTEN 

locus might slow the glioma development process compared to the heterozygous deletions. 

PTEN -/- is a much rarer event in gliomas than PTEN +/-; while PTEN LOH was detected 

in 30% primary GBMs [69, 110], only 5-10% loss of both PTEN alleles were detected in 

similar cases [111, 112]. Gliomas losing both alleles of PTEN might represent a distinct 

subset of GBMs that worth more effort to investigate the mechanisms of tumor initiation 

and progression [104].  

4.3.2 SELECTION OF TARGETS FOR VALIDATION 

 

After I examined all networks in each strain, over all stages, I concentrated my efforts to 

identify the most perturbed networks appearing across multiple strains, and subsequently 

selected a subset of genes that could be validated by Western blot to confirm their 

significance. I only selected networks for which the network median either increased or 

decreased in at least 1 out 3 possible scenarios (μearly < μmiddle, μearly < μlate, μmiddle < μlate). 

This yields a total of 268 gene targets across all strains. The numbers of commonly shared 

significant genes between any two strains and among all three strains are indicated on 

Figure 4.3. Among all the 268 genes, 18 were selected based on their known roles in GBM 

progression as well as P-values associated with the networks they came from. If a gene 

appeared in more than one network, P-values for that particular gene was averaged across 

all the networks in which it appeared (see Chapter 4.4 detailed methodologies). Western 

blotting for these proteins is currently ongoing.  
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4.4 CONCLUSIONS 

 

In this chapter, I describe the development of a methodological and systematic way to 

process and analyze proteomics data, which reflect the amount of protein content present in 

cells. This project aimed to identify individual proteins and networks that were most 

perturbed when GBM developed as a result of mutations in one or more major signaling 

pathways, common to GBM. Protein profiling was done on three genetically engineered 

mouse strains and over 2000 proteins were tracked at three tumor development stages: early, 

middle and late. The TR-het strain, in which one copy of PTEN was knocked out, displayed 

faster tumor progression than TR-cre, in which both PTEN copies were kept intact and TR-

null, which lost both copies of PTEN. I aggregated related genes into gene sets and analyzed 

their collective behavior, captured by a single metric called network median (or μ) across 

stages, and assigned statistical significance based on Wilcoxon rank-sum test. The most 

perturbed networks ranked by P-values from each strain were identified. A small subset of 

genes selected from these significant networks across all strains is now waiting for further 

experimental validation to confirm their potential values in GBM initiation and progression. 

4.5 DETAILED METHODOLOGIES 

 

For each network with more than two genes, a network median across all gene components 

in the network was computed at each time point in the dynamic time series data (i.e., early, 

middle or late). For example, if a network consists of three genes, and they have expression 

values 1, 2, 3 at early stage, and the same set of genes are expressed at 5, 7, and 9 at middle 

stage, we will compare the early median value 2 with the middle median value 7. The 

statistical question set out to answer is: Is 7 significantly higher than 2 given the 

observations? The Wilcoxon rank-sum test was used to evaluate the significance and 

direction of change. 

If the question is framed in statistical language, we tested the null hypothesis (H0), which 

states that the median difference of this particular gene set under two conditions is zero, 
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against the alternative hypothesis (H1) that the median difference is not zero, and whether 

the median increases or decreases if the alternative hypothesis is true. 

For each gene expression value, |X2,i – X1,i| was calculated and the signs of the differences 

were noted. Pairs with zero differences (|X2,i – X1,i|=0) were excluded to reduce the sample 

size. Next, the absolute differences were ordered from largest to smallest and their ranks (Ri) 

in the ordering were recorded. In our example, the three absolute differences 4, 5 and 6 

received a rank of 1, 2 and 3 respectively. Pairs with the same ties received a rank equal to the 

average of their ranks.  

The test statistic was calculated as follows: 

T = ∑ 𝑠𝑔𝑛[(𝑋2,𝑖 − 𝑋1,𝑖) ∗ 𝑅𝑖]
𝑁
𝑖=1 .  

Last, T was compared with cutoff value to decide whether to keep or reject the null 

hypothesis. If the alternative hypothesis is accepted, i.e if the comparison is statistically 

significant, a score of 1 would be assigned to this test (i.e., middle vs. early). Similar 

procedures were repeated for early vs. late, and middle vs. late; scores are assigned based on 

the statistical test results. The maximum possible score for a network is 3, and this happens 

when both middle and late stages showed significantly higher network medians than early 

stage, and at the same time, the metric was also higher in late stage than in middle stage. 

After the sum of scores (possible values 0, 1, 2, 3) were calculated for all networks, the 

networks were ranked according to the sum of scores. For networks with the same score, P-

values were used to break the ties and gave them different significant levels.  

The genes in the statistically significant networks were aggregated for each strain; I found 

that a large amount of genes were shared among different strains. These genes showed their 

essential roles in GBM independent of genetic backgrounds. To make sure that all three 

strains were contributing evenly to a 250-gene list, all networks in the TR-cre and TR-het 

with scores 1 and above, and networks in the TR-null strain with scores at least 2 were 

selected for further examination. . 
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4.6 CHAPTER 4 FIGURES AND TABLES 
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Figure 4.1 Heatmaps of network medians at different GBM stages 

A) TR-cre strain B) TR- het strain and C) TR-null strain. Network medians are ranked from low 

to high in their respective early stage 
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Figure 4.2A Most perturbed networks from the TR-cre strain 

 

FIGURE 4.2B Most perturbed networks from the TR-het strain 
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FIGURE 4.2C Most perturbed networks from the TR-null strain 

The vertical axis indicates relative average network median μ after normalized as percentage of 

the control channel, and the horizontal axis lists the names of the networks. Early stage is shown 

as blue, middle as green and late as red bars. Most perturbed networks showed up-regulation in 

more advanced cancer stages.  
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Figure 4.3 Gene sets selected from perturbed networks 

The three circles represent perturbed networks and the gene sets in them. The three numbers 78, 

93, and 177 represent common genes shared by two adjacent strains, and 77 genes are shared 

across all three strains. The numbers are not proportional to the area in the Venn diagram.  
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 RB KRAS PTEN 

TR-cre inactivated activated +/+ 

TR-het inactivated activated +/- 

TR-null inactivated activated -/- 

Table 4.1 Combinations of gene knockouts for different mouse strains 
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CHAPTER 5 RECONSTRUCTING LIVER METABOLIC MODEL FOR MUS 

MUSCULUS 
 

In this chapter, I describe my work in building the first liver metabolic models for mouse. In 

order to reconstruct metabolic models in a tissue-specific context, we need to start with a 

functional generic model, which contains information for all reactions and metabolites in a 

generic cell. From there, we look for evidence of which genes and reactions exist in a liver 

cell and remove reactions without such evidence. Therefore this chapter is divided into two 

parts: first, examine and refine genome-scale models for mouse, and second, build liver 

models out of the generic mouse model. 

5.1 REFINING GENOME-SCALE METABOLIC MODELS FOR MUS MUSCULUS  
 

5.1.1 RECONSTRUCTION OF GENOME-SCALE METABOLIC MODELS 

 

As I explained in the introduction, metabolic analysis can offer a distinct perspective and 

valuable insights into the molecular mechanisms of a particular organism. A metabolic 

model is a mathematical representation of the biochemical pathways in the metabolic 

network of an organism. Each reaction consists of metabolites, genes, transcripts, proteins 

and the network consists of inter-connected reactions. For a certain organism, 

physiochemical constraints (e.g. conservation of mass) are added after the metabolic 

network has been assembled. A stoichiometric matrix S, of size m × n, where m is the 

number of participating metabolites and n is the number of corresponding reactions in the 

network, is used to describe the relationships between metabolites and reactions. Each 

element Si,j in the matrix represents the stoichiometric coefficient of the metabolite in the 

corresponding reaction. Constraint-based modeling typically analyzes metabolic fluxes at 

steady state (S × v = 0, where v is the flux distribution vector containing flux values for each 

reaction)—i.e. zero net change in metabolite concentrations. Other constraints such as upper 

and lower reaction bounds (maximum flux vmax and minimum flux vmin) and reaction 

reversibility, when known, are placed on each reaction. The resulting model is then ready to 

be used for phenotype simulations using various constraint-based reconstruction and 
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analysis (COBRA) methods [113]. When the metabolic biochemical pathways are integrated 

with whole genome sequences, a genome-scale metabolic model is constructed. 

The first genome-scale reconstruction of metabolic networks, which appeared in 1999, was 

for Haemophilus influenzae Rd [114]. Since then, different methods for building and 

analyzing metabolic networks of genome-scale models have been established for all 

branches of life [115, 116]. 

Because disease results from the malfunction of one or more biological networks, diseased 

states show aberrant metabolic networks as compared to the normal state. Metabolic genes 

controlling reactions in the networks exhibiting abnormal expression levels can be identified 

in gene expression data. Tracking the activities of these significant genes or biomarkers can 

help us distinguish diseased vs. normal states. Therefore, metabolic reconstruction is an 

effective approach to infer biomarkers that may represent critical nodes in the perturbed 

networks, leading to insights into new drug treatment targets. These new therapies could 

either be used to convert the diseased network back to a normal state or permit the specific 

killing of the diseased cells [117]. 

5.1.2 METABOLIC RECONSTRUCTIONS FOR MUS MUSCULUS AND HUMAN 

 

The mouse serves as a fundamental experimental animal to mimic human diseases to 

improve understanding of the causes and progression of disease symptoms [118-120]. In 

this chapter, I examine the existing efforts to reconstruct genome-scale mouse metabolic 

models and made necessary changes to improve and refine its functionality. 

The largest and most comprehensive mouse metabolic reconstruction to date contains 1,415 

metabolic genes accounting for reactions in eight cellular compartments (cytosol, 

mitochondrial, extracellular, golgi, lysosome, ribosome, and nucleus) [120]. Despite these 

capabilities, the current model lacks the ability to simulate several essential metabolic 

functions. For instance, simulations of the current mouse model failed to produce any of the 

nine non-essential (should be synthesized de novo by mouse) amino acids (AAs) when 

provided with glucose and other inorganic metabolites. Synthesis of non-essential AAs 

within the body without supply in the diet represents a fundamental ability of mammalian 
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metabolism and the inability of the model to complete this implicates missing reactions in 

major metabolic pathways. 

Dealing with these limitations, missing links in this mouse metabolic network model had to 

be identified. The improved model needs to pass a universal functional test, which includes 

functional central metabolic pathways (glycolysis, TCA cycle, pentose phosphate pathway), 

a functional fatty acid synthesis pathway (from acetyl-CoA to palmital-CoA), and 

demonstrates the capability of synthesizing non-essential amino acids, nucleotides and key 

membrane lipids from glucose. 

Released in 2007, Homo sapiens Recon 1 is a comprehensive literature-based genome-scale 

metabolic model that accounts for the functions of 1496 genes, 2766 metabolites, and 3311 

reactions. [121]. In 2013, Recon 2 which represents a “consensus metabolic reconstruction” 

and the most comprehensive representation of human metabolism was released. Compared 

to its predecessors, the reconstruction has improved its functional and topological features, 

doubled its reaction numbers and included many more unique metabolites [122]. Due to the 

high sequence homology between human and mouse (range around 85%~92%), a mouse 

metabolic model was published in 2010; the model was built by searching for genes 

homologous to Human Recon 1 within the mammalian genome [120]. The draft model 

contained 1,415 metabolic genes and was termed (iMM1415). This model represents the 

largest and most comprehensive mouse reconstruction to date. Unlike the corresponding 

human model, there had been limited efforts extending this mouse metabolic model to better 

our understanding of mouse metabolism. Specifically, there has been no study focusing on 

building tissue-specific models for the mouse. Moreover, the current mouse models still 

lacks some fundamental metabolic capabilities as a generic model (Table 5.1).  

5.1.3 IDENTIFYING LIMITATIONS AND INACCURACIES IN THE GENERIC MODEL 
 

I obtained an updated version of the generic mouse model from the author of iMM1415. 

This revised model consists of 1752 transcripts representing 1361 unique genes (iMM1361). 

The reduction in the number of genes compared to iMM1415 is due to removal of some 

genes being human genes in the former model. 
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A universal metabolic test was used to determine whether iMM1361 possesses the basic 

functionality of a cell. Metabolites tested include precursor metabolites in central metabolic 

pathways such as glycolysis and the TCA cycle, non-essential amino acids (AA), 

nucleotides, palmital-CoA, cholesterol, and several membrane lipids. This model is 

incapable of producing any of the non-essential amino acids and the nucleotides and certain 

lipids (Table 5.1). The production of non-essential amino acids were tested in the following 

condition: the networks were allowed to uptake glucose and inorganic compounds such as 

oxygen, carbon dioxide, phosphate, and other ions. All other organic compounds besides 

glucose were constrained to be efflux only. The production of nucleotides was tested in the 

same medium. 

 

Linear programming approaches (flux balance analysis (FBA) or flux variability analysis 

(FVA)) in the COBRA toolbox were  used to solve the equation S × v = 0 given upper and 

lower bounds on the metabolite concentrations. FBA gives a particular flux distribution, 

while FVA gives flux boundaries of the reactions which could equally return equivalently 

optimal solutions to maximize or minimize the objective function [113].   In each test, the 

objective function was to maximize the production of the selected metabolite (i.e., any of 

the AA or nucleotides).   

 

I traced the amino acid formation pathways and found two missing reactions involved in 

glutamate metabolism (BiGG ID 2169419, 2169428). These two reversible reactions 

synthesize glutamate from α-ketoglutarate with glutamate dehydrogenase. Two metabolic 

genes (EC number 1.4.1.2 and 1.4.1.4), have been added to the model accordingly. The 

existence of the reactions and related genes has been validated in literature [123, 124]. With 

the addition of these two reactions, the model is capable of producing all non-essential AAs, 

nucleotides and necessary lipids. 
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5.2  RECONSTRUCTION OF TISSUE-SPECIFIC MODELS FOR MUS MUSCULUS 

 

5.2.1 NECESSITY TO BUILD TISSUE-SPECIFIC MODELS 

 

Complex multicellular organisms such as mouse or humans consist of many distinct tissues 

and cell types, each only expressing a fraction of the metabolic genes encoded within the 

genome [121]. To accurately track changes in active genes for specific tissues involved in 

the initiation and progression of certain diseases, we need to study these diseases in a 

tissue/organ-specific context. Previous efforts have reconstructed and analyzed individual 

tissue models [125-128] for humans, while a few others have furthered the efforts by 

simulating the metabolism of a larger system containing multiple tissues or cell types and 

taking into account the interactions among them [129, 130]. Specifically, Recon 1 was 

tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. 

These three cell-specific networks were integrated using a novel multi-tissue type modeling 

approach to simulate known metabolic cycles and study diabetes [131]. 

Though a lot of efforts have been devoted to build tissue-specific models for humans based 

on human recon 1 and recon 2, there had been very few studies focused on building 

analogous tissue specific models for mouse. Our study aimed to create the first liver specific 

mouse models based on our improved and refined version of the generic model, presented in 

Chapter 5.  The main focus for this study is the liver, for which the major metabolic cell 

type is the hepatocyte. The liver represents an essential metabolic organ in which glucose 

circulates through after it enters the blood; it uses alternative sugars as energy sources, 

completes the urea cycle, and produces urea from nitrogen. Many metabolic disorders and 

diseases such obesity, diabetics, and fatty liver diseases all involve the crucial body organ 

liver. In this chapter of my dissertation, I present the reconstruction of two liver-specific 

metabolic models for mouse, with one for the normal (control) strain and one for mouse 

strains with diabetes. These two models were compared physiologically to infer metabolic 

pathways that were most impacted by the onset of diabetes. 
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5.2.2 DIABETES AND DIET-INDUCED OBESITY IN HUMANS 

 

Diabetes mellitus is a chronic disease that typically requires intensive, lifelong management. 

According to the International Diabetes Federation as of 2011, 336 million people 

worldwide have type 2 diabetes, resulting in 4.6 million deaths each year, or one death every 

seven seconds [132]. In the United States, 12% of American adults, and >25% of those over 

the age of 65, are affected. Currently, there is no cure for diabetes. What exacerbates the 

problem is that diabetes increases the risk of heart disease, stroke, and microvascular 

complications such as blindness, renal failure, and peripheral neuropathy [132]. Type 2 

diabetes mellitus (T2DM) makes up most of diabetic cases. Reported causes to this disease 

include lifestyle factors such as age, pregnancy, obesity, and genetic factors. 

Over the past 50 years, we have witnessed a dramatic increase in T2DM. The massive 

increase in diabetes incidence is not due to genetic changes; rather, it is largely a 

consequence of the concomitant increase in obesity [133]. It is widely recognized that 

defective insulin secretion caused by reduced β cell function is the key problem in T2DM.  

Insulin transports glucose entering the blood stream to the muscle, fat, and liver cells—

where it can be used as energy sources to the body. Obesity lowers insulin sensitivity in 

peripheral tissues; then, to compensate for this, β cells up-regulate insulin secretion. The 

degree to which they are able to do so determines whether or not the individual develops 

diabetes [134]. Obesity and related T2DM are generally accepted as a consequence of 

dietary imbalance rather than genetically programmed diseases [135]. They are modulated 

by lifestyle and diet, which induce pathophysiological changes throughout the body [136]. 

Several genes implicated in T2DM have also been identified, but how exactly they interact 

with each other remains enigmatic.  

5.2.3 GENETIC STRAINS OF OBESITY AND DIABETES OF MOUSE 

 

As I introduced earlier in Chapter 5, the mouse is a primary mammalian model system for 

genetic research. With available inbred knockout mouse strains, the mouse metabolic 

reconstructions could be examined for their phenotype prediction capabilities [137].  It is 
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essential that the rodent models imitate particular characteristics of human disease and 

resemble the genetic changes in diabetic and obese patients.  

Established genetic strains of obesity and diabetes include db/db mice, ob/ob mice, Zucker 

diabetic fatty rats, etc. [135]. These models are obtained by inducing mutations in certain 

chromosomes. As previously mentioned, human diabetes and obesity are largely diet-

induced, chronic consumption of a high-carbohydrate, high-fat diet by normal rodents 

provides an adequate rodent model to study these diseases of interest [135]. 

A common inbred strain of laboratory mice, which is usually used as a background for these 

genetic variants is C57BL/6 ((often referred to as “C57 black 6” or “black 6”). Its popularity 

is largely due to the availability of congenic strains, easy breeding, and robustness. Two 

distinct substrains of the B6 mice, C57BL/6J from Jackson Laboratories ("J") and 

C57BL/6N from NIH ("N") were later developed, distributed, and maintained by different 

investigators [138, 139]. Though externally similar, these two sub-strains are genetically 

distinct from each other.  I built reconstructions exclusively for the C57BL/6J strain, though 

the protocol could be easily extended to other mouse strains, if needed later. Subsequent 

analysis of these models will provide us insights into the pathophysiology of the disease 

(e.g., diabetes) and selection of the potential therapeutic targets.  

5.2.4 ALGORITHMS FOR AUTOMATIC RECONSTRUCTION OF TISSUE-SPECIFIC MODELS 

 

Earlier in this chapter, I presented my improvement of the generic mouse model, which laid 

a solid foundation on which to build the liver-specific reconstructions. Having picked the 

mouse strain (B6) and decided on the disease to study (diabetes), the next step was to select 

an algorithm, a computational method to decide which reactions from the generic, whole 

body model should stay in the final liver model, and which should not, based on gene 

expression data that tell us which genes are expressed in the tissues.  

 

The model-building algorithm (MBA) by Jerby et al. addresses this challenge [128]. It 

derives a tissue-specific metabolic model from a generic one based on network integration 

with various molecular data sources. First, core reactions are inferred from gene expression 

data. They are further split into two groups: reactions with high and moderately high 
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likelihood reactions (CH and CM). The final optimal model will include all CH reactions, a 

maximal number of CM, and a set of gap filling reactions.  

 

To determine whether to remove or keep a certain reaction from a given iteration, the 

potential reactions were scanned in random order. The scanning order of candidate reactions 

affects the resulting model. Therefore, the algorithm is executed 1000 times with different, 

random pruning orders to construct multiple candidate models. These candidate models 

were further compared and analyzed to reach the final viable and consistent model. 

 

However, the accuracy of the optimal model is limited by the fact that even 1000 iterations 

could only cover a small portion of the large space of possible orderings.  Another problem 

with MBA is its modeling building process is very time-consuming. A more deterministic 

and simulation-independent ranking of potentially removable reactions could help to 

accelerate model building time dramatically [140]. Our laboratory recently developed a 

method called metabolic Context-specificity Assessed by Deterministic Reaction Evaluation 

(mCADRE) (Figure 5.1), which fulfills the same purpose as MBA, but with two additional 

advantages: first, non-core reactions are ranked according to their own expression evidence 

and connectivity map to other reactions in the network and then removed in the inverse 

order of this ranking [140]; second, the performance of mCADRE was significantly better 

than MBA. Its performance was evaluated by reconstructing a human liver model and 

comparing it with the model built using MBA. mCADRE demonstrated improved model 

functionality, and significant shorter reconstruction time (under the same configuration, 

mCADRE required only about 10 CPU-hours while MBA took approximately 10,000 CPU-

hours) [140]. 

5.2.5 DATA COLLECTION AND PROCESSING FOR BUILDING TISSUE-SPECIFIC MOUSE 

MODEL 

 

Microarray gene expression data were used to identify highly expressed or non-expressed 

genes for both normal and disease models. For each model, I compiled raw microarray CEL 

files from previous studies as cataloged in the NCBI Gene Expression Omnibus (GEO). I 

focused strictly on data from the microarray platform Mouse Genome 430 2.0 (Affymetrix, 
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Santa Clara, CA). Table 5.2 lists the number of samples and studies collected for normal 

and diabetic liver. For the control tissue model (Table 5.2A), I included only gene 

expression data for the B6 mouse strain. Within this strain, I excluded gene expression 

profiles with genetic modifications on the B6 genotype (transgenic or knockout models, 

models with gene mutations etc., because these changes may directly affect their phenotypes 

(e.g., weight gain), thus defeating our purpose of building a “control” strain for mouse).  For 

the disease (i.e., diabetes) model (Table 5.2B), I only included expression obtained from F2 

mice inbred from a diabetic strain and B6. 

In order to read the probe sequences from the Affymetrix platform (i.e., Mouse Genome 430 

2.0), I obtained two relevant files: first, a FASTA file containing the probe sequence 

information [141], and second, the CDF library file which specifies which probe set each 

probe belongs to on the selected GeneChip array [142]. With these two files ready, I used 

the “affyprobeseqread” command in Matlab Bioinformatics Toolbox to obtain the structure 

containing the probe set IDs from the selected mouse platform. 

The “consensus pre-processing” method which I used in Chapter 2, was again applied to 

process CEL files to normalize differences introduced by non-uniform studies and sample 

preparation procedures. This method is described in greater detail in [30]. This algorithm 

returned us with normalized gene expression files, and the associated Presence/Absence 

calls and the corresponding probes for each gene feature.  

The metabolic mouse reconstruction identifies genes by Entrez Gene IDs, rather than by 

probe set IDs from consensus pre-processing. It was necessary to find the correspondence 

between two sets of identifiers and filter out probes without matched gene IDs. The BioMart 

software, which offers the free service of converting between different formats of gene 

identifiers, was used to complete the gene mapping task [143]. I started with 45101 probe 

sets on the selected mouse platform and ended with 20963 genes after these steps.  

5.2.6 GENERATION OF TISSUE SPECIFIC MODELS USING MCADRE 

 

As explained earlier, mCADRE is a very efficient and robust automatic reconstruction 

algorithm that prunes reactions with insufficient evidence to stay in the tissue models. A few 
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key metrics were calculated and tuned before and during the pruning process, which 

influenced heavily the final reactions included in the tissue model. Before all potential 

reactions could be lined up for examination, they needed to be ranked properly.  

For each gene, a ubiquity score U(g) was calculated by quantifying how often a gene g is 

expressed across all samples of the tissue of interest.  A ubiquity score ranges from 0 to 1 

and is a parameter indicating the prevalence of the gene in the tissue.  

The expression-based evidence Ex was calculated for each gene-associated reaction by 

assigning specific rules to combine and integrate the ubiquity scores of multiple genes 

involved in the reaction [140]. Ex was used to rank reactions from high to low, and reactions 

with sufficiently high Ex (Ex >= 0.9 in my study) were defined as the core reaction set. For 

non-core reactions with low expression-based evidence or reactions without associations to 

known metabolic genes, a network topology metric connectivity-based evidence Ec was 

introduced to rank them. A third reaction ranking metric, confidence level scores El which 

provides literature support to each reaction in the generic mouse model, was added to 

further distinguish reactions with similar expression and connectivity-based scores. The 

details and formulae of ranking reactions followed from the original mCADRE paper and 

were described in detail in [140]. 

After the reactions were ranked, they were examined in order to determine whether they 

should be kept in the tissue model. Non-core reactions could be pruned from the generic 

model, if their removal affected fluxes through the core reaction set, or resulted in failure to 

produce key metabolites from glucose. A list of key metabolites was compiled based on 

literature evidence and included principle metabolites common to all cellular models [131]. 

These metabolites included precursor metabolites from central metabolic pathways 

(glycolysis, TCA cycle, pentose phosphate pathway), amino acids, lipids, and nucleotides. 

Successful production of these products from glucose represents the most essential 

metabolic functions that are common to both the generic model and to the tissue model. 

Therefore, this basic functionality test was carried out in the generic model before the 

pruning started, and was also examined for each non-core reaction, to make sure the 

removal of the candidate reaction would not result in the failure of this test. 
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For core-reactions, I followed suggestions from the original mCADRE paper to allow for a 

flexible core reaction set, which would increase tissue-specificity of metabolic pathways. 

The principle behind a flexible core is that, when there is enough strong evidence saying a 

reaction should not be included, even a core reaction could possibly be removed. The 

parameter representing the ratio of inactivated core reactions to inactivated non-core 

reactions was tuned to balance sensitivity and specificity: a low ratio keeps more reactions 

with strong positive evidence, while a high ratio removes more reactions with strong 

negative evidence [140]. This parameter was selected to be 0.2 for both the control and 

disease liver models. For the control model, if the ratio was increased to higher values (from 

0.2-0.5 to 0.5-0.8), another 18 core reactions related to chondrointin/heparan sulfate 

biosynthesis would be excluded from the model, however, there is literature evidence stating 

these reactions should be present in mouse liver [144]. For the disease model, increasing the 

ratio would also exclude partial heparin biosynthesis pathway, so 1/5, which means for each 

core reaction to be removed, at least five non-core reactions need to be removed at the same 

time, was chosen for both models as the optimal balance to keep reactions with strong 

positive evidence, and exclude reactions with strong negative evidence.  

After these parameters were experimentally determined, mCADRE was used to create the 

preliminary versions of normal-liver and diabetes-liver.  

5.2.7 ADDING FUNCTIONALITY TO IMPROVE SPECIFICITY 

 

The models coming straight out of mCADRE only possess the universal functionality for all 

cell types; they lack the specific characteristics unique to each cell type. For example, the 

hepatocytes are capable of generating glucose from various non-carbohydrate carbon 

substrates such as pyruvate, lactate and glycerol, through a process called gluconeogenesis. I 

collected a comprehensive set of liver specific functionality tests from various research 

studies and implemented them in both liver models.  

Gluconeogenesis Tests 

The hepatocyte is responsible for a wide range of biochemical functions and 

gluconeogenesis is amongst the most important responsibilities of hepatocytes. It is the 
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primary mechanism to maintain blood glucose level in mammals. The main gluconeogenic 

precursors are lactate, glycerol and two glucogenic amino acids (alanine and glutamine). 

These four precursors account for more than 90% of the overall gluconeogenesis [145]. 

Other less important gluconeogenic substrates include additional 11 glucogenic amino acids 

and 5 amino acids that are both glucogenic and ketognic. Another key substrate is pyruvate, 

which interconverts with lactate in the Cori Cycle and is the first designated substrate of the 

gluconeogenic pathway. The hepatocyte network was tested for its ability to produce 

glucose from all of above-mentioned substrates. Gluconeogenic simulations with the 

reactions, substrates and maximized glucose production were listed in Table 5.3. It is worth 

mentioning that metabolic simulations initially showed that only 19/21 substrates could 

generate glucose. The two substrates threonine (Thr-L) and methionine (Met-L) failed to 

produce glucose when they were provided to the network. We further examined the original 

generic metabolic network and similar problems also existed there. The problem was traced 

to the need to transport propanoyl-CoA, which is produced in the cytosol by an intermediate 

product 2-Oxobutanoate in threonine and methionine degradation, to mitochondria, so 

propanoyl-CoA could be used by downstream reactions to produce other essential 

intermediates in the metabolism pathway. By identifying the gap and completing the 

pathway, the addition of missing reactions further refined the metabolic network in the 

generic mouse model. 

Ketogenesis tests 

Another key function of hepatocytes is their capability to produce ketone bodies 

(acetoacetate and β-hydroxybutyrate) in the mitochondria in response to low glucose 

concentration in the blood. Carbohydrates are usually the first sources for energy, but when 

carbohydrate stores are exhausted, cells turn to fatty acids to generate energy. Ketone bodies 

are produced from the β-oxidation of fatty acids. The production of acetoacetate and β-

hydroxybutyrate were tested using Stearoyl-CoA (C18:0) as a model fatty acid. The 

simulations can be found in Table 5.4A. 

Alternative sugar metabolism tests 
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The liver is able to utilize alternative sugars other than glucose as energy sources [146].  I 

tested the ability of the hypatocyte networks to produce ATP from fructose, galactose and 

mannose. These three sugars were chosen to demonstrate the functionality of the network 

because all of them were metabolized primarily in the liver [147-149]. The simulations 

showed that the alternative sugar sources could produce the same amount of ATP on a 

molar basis as glucose (22.8 ATP/mol). The simulations can be found in Table 5.4B. 

Amino acid degradation, ammonia and ethanol detoxification tests 

Three degradation simulations were also tested on the liver metabolic networks: ammonia 

detoxification, ethanol degradation, and amino acid degradation. Ammonia is a by-product 

of amino acid metabolism. The amino group is removed and converted to ammonia-NH3, 

which is a toxic compound and is converted to urea in the urea cycle. Eventually urea is 

eliminated from the body through the kidneys. I simulated the ammonia detoxification 

process by allowing for glucose uptake, optimizing for ammonia uptake, and the both liver 

models were able to convert ammonia into urea. Alcohol was metabolized first to 

acetaldehyde and then to acetate, which enters the Krebs cycle and eventually broken down 

into carbon dioxide and water. Similar to alcohol, amino acids could also be oxidized to 

CO2 and H2O to generate energy. The energy produced from amino acid accounts for 10 to 

15% of all energy in the whole body [150]. The amino acids were first converted to 

ammonia and then enter the urea cycle, where they are converted to urea for excretion. 

Therefore, amino acid metabolism is intimately intertwined with ammonia and ethanol 

degradation. The simulation details of these three catabolic processes are listed in Table 

5.4C. 

Glycogen and cholesterol production tests 

The last set of functionality tests is glycogen and cholesterol production. In liver cells, extra 

glucose is mainly stored as glycogen and functions as one important form of long-term 

energy storage. The inter-conversion between glucose and glycogen is as follows: when the 

body needs energy, glycogen is rapidly broken down into glucose-6-P and then enters 

glycolysis pathway, providing the cell with source of energy. When the glucose level in 

blood is high (e.g., after a carbohydrate-containing meal), glycogen synthesis is activated to 
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store extra glucose. The liver also synthesizes large quantities of cholesterol, which is an 

essential component of lipid membranes. Glycogen and cholesterol production from glucose 

were tested in the liver models in a manner similar to the precursor tests in Chapter 6.6 and 

listed in Table 5.4D. The hepatocyte network could not synthesize glycogen from glucose at 

the beginning. The problem was traced to a missing transport reaction, which is responsible 

to bring Tyr-ggn (a primer for glycogen synthesis) from outside of the cell to the inside.  

A total of six reactions were added to both liver models in an attempt to improve tissue 

specificity. The reactions and their associated genes and simulations are summarized in 

Table 5.5. 

5.2.8 MANUAL CURATION OF LIVER SPECIFIC BIOMASS FUNCTION 

 

The biomass reaction for the liver models was manually curated based on the published 

molecular content of the hepatocytes. The relative content of protein, lipids, carbohydrate, 

glycogen, water, and nucleotides is listed in Table 5.6 and Figure 5.2. As expected, the 

liver cells contain a large portion of protein (52%) because their role in synthesis and 

storage of proteins. Either mouse or rat was used to define the proportion of each nutrient 

whenever they were available; in the absence of direct experiment measurements collected 

for mouse or rat liver, published data for human was used to define the cell composition.   

The protein proportion in the cell consists of 20 amino acids. The total amino acid content in 

the liver cell is further broken down in Table 5.7A. The values collected are measured in 

nmol per gram of liver tissue. In order to obtain the coefficients for the biomass equation, 

the values went through sequential calculations and eventually were converted to mmol per 

gram of dry weight of cell tissue.  

The lipid distribution of the mouse liver cell including phospholipid, cholesterol, and 

triglycerols were also curated from different studies for mouse or rat (Table 5.7B). The 

nucleotide composition of mouse liver cells was adapted from reported values measured for 

generic mouse cells (Table 5.7C).   

After the molecular content of a liver cell was properly defined according to published data, 

the generic biomass function was replaced by the corresponding tissue-specific biomass 
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equation to reflect the objective of a hepatocyte cell. I assumed that the disease cell and the 

normal cell have identical objectives to utilize the nutrients to grow and reproduce. In both 

types of cells, they were given a finite amount of glucose, essential amino acids, and fatty 

acids. Inorganic compounds and ions were not constrained. The relative amounts of each 

nutrient were largely adopted from [151]. After setting the biomass functions in both models 

as the objective function and maximizing for biomass production, a normal cell and a 

diabetic cell were found to have a maximized biomass flux of 0.0907 and 0.0977 mmol/g 

dry cellular weight (DCW) respectively. 

5.2.9 DISEASE MODEL VS. CONTROL MODEL 

 

After implementing appropriate tissue functionality tests to normal-liver and diabetes-liver 

and accounting for liver cell biomass changes, the two models were finalized and their 

characteristics are shown in Figure 5.3. Normal and disease liver models share a large 

number of reactions as well as the genes associated with the reactions. There are 112 

reactions (4.68%) and 29 genes (2.08%) unique to the diabetic metabolic model. These 29 

genes that were overexpressed only in the diabetic patients were further analyzed to reveal 

their potential association with diabetics. Using MetacoreTM [152], a bioinformatics online 

tool for pathway analysis,  I analyzed how the input gene list intersects with Gene Ontology 

(GO) biological processes classification, and calculated the statistical significance of the 

intersection using a hypergeometric distribution [153]. The top three most enriched 

processes are: phosphagen and phosphocreatine metabolic process (P-value 5.00e-7), L-

fucose metabolic process (P-value 4.16e-7) and long chain fatty acid metabolic process (P-

value 8.32e-7). The phosphagens are energy storage compounds that can supply energy 

needs at a high rate. Phosphocreatine is one of the eight phosphagens and the most 

extensively studied phosphagen system [154]. They could synthesize ATP and decrease 

blood glucose content [154, 155], and having elevated levels of phosphagen-related genes 

may imply the body’s effort to restore the high blood glucose level to normal. Similarly, 

impaired and dysregulation fatty acid metabolism has been reported for obesity, insulin 

resistance and T2DM [156, 157]. In diabetic cases, reduced insulin sensitivity in the liver 

promotes de novo fatty acid synthesis, and increased fats flow to the liver peripheral tissues. 
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Both effects cause excessive accumulation of hepatic fatty acids in the liver and eventually 

contribute to the development of fatty liver [157].  

On the other hand, there are 37 reactions and 19 genes that showed evidence of presence 

only in normal liver cells, but not in diabetic liver cells. MetacoreTM was again used to 

characterize the genes. The top three most enriched GO processes for under-expressed genes 

are thiamine metabolic process (P-value 1.51e-4), pyrimidine-containing metabolic process 

(P-value 4.44e-3), and vitamin metabolic process (P-value 7.37e-3). Thiamine is a vitamin 

that plays a critical role in glucose metabolism [158]; it is known to be involved in the 

conversion of carbohydrates to glucose, and reduced thiamine metabolism may be due to the 

quick consumption and depletion of thiamine in diabetic patients as  a result of high glucose 

metabolic activity.  

Using MetacoreTM, I constructed a protein-protein interaction network using the gene 

products of the combined sets of over-expressed and under-expressed genes (Figure 5.4). 

The proteins either interact directly with each other (e.g., KCRM interacts with NCX1) or 

two proteins in the candidate lists interact with a common protein outside the candidate lists 

(e.g., both NCX1 and PCD2 interact with Carveolin2). The network consists of two sub-

networks; a small one consists of two seeding genes and a larger one containing seven 

candidate genes. Both genes in the 2-gene network have been well known for their 

association with diabetes. The malic enzyme 1 (ME1) is a key regulator of fatty acid 

synthesis pathway and is highly susceptible to Type 2 diabetes [159]. It has been validated 

that ME1 is a causal gene in for diabetic traits and genetically engineered mouse model with 

ME1 knocked out were resistant to both diabetes and obesity development [160, 161]. 

Similarly, the mitochondrial branched-chain aminotransferase 2 (BCAT2) showed reduced 

expression in obesity and states of insulin resistance, which coincides with our finding that 

BCAT2 was under- or not expressed in diabetic mice [162].  

Genes in the larger network also have supporting literature proving their established 

relationship with diabetes; for instance, the sodium-calcium exchanger isoform 1 (NCX1) 

plays a key role in regulating cytoplasmic calcium required for insulin secretion [163], while 

vesicular monoamine transporter type 2 (VMAT2) is highly expressed in beta cells in the 
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pancreas and it has been used as a marker of sympathetic nerve terminals to quantify the 

amount of nerve loss from the islets of diabetic rats [164, 165].  

5.3 CONCLUSIONS 
 

In this chapter, I presented my work on the first liver model reconstruction for normal and 

diabetic mice. I started with improving and refining the state-of-art generic metabolic model 

for mice (Chapter 5.1), and then comparing and choosing the most suitable algorithm for 

reaction selection, eventually I successfully created relevant working liver models which 

possess the basic cell functions as well as liver-specific functions such as gluconeogenesis. 

This project ended with connecting relevant gene products to create a protein-protein 

interaction network. This protein-protein interaction network provides a valuable and 

comprehensive map to demonstrate connections among genes susceptible to diabetes, either 

being up- or downregulated. The genes and reactions unique to the normal-liver and to 

diabetes-liver demonstrated key metabolic differences between these two states, and provide 

a good starting point to better understand the metabolic pathways and mechanisms in 

diabetes, and  to identify potential therapeutic targets for diabetic patients.  
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5.4 CHAPTER 5 FIGURES AND TABLES 
 

 

Figure 5.1 The tissue model building method (adapted from [128]) 
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Figure 5.2 Hepatocyte cell composition 
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Figure 5.3 A) Reactions and B) genes in the final versions of normal and diabetes liver. 
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Figure 5.4 Interactions among diabetic-related genes 
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Name of metabolites Number of 

metabolites 

Category 

Alanine, arginine, asparagine, aspartate, 

glutamine, glutamate, glycine, proline, serine 

9 Non-essential amino acid 

ATP, CTP, GTP, UTP, dATP, dCTP, dGTP, 

dTTP 

8 Nucleotide 

Ceramide, phosphatidylethanolamine, 

phosphatidylserine 

3 Lipid 

Table 5.1:  list of metabolites current mouse model fails to produce 
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Authors of study 

(Year, GSE number) 

GSM sample numbers Number of 

samples in 

each study 

Ackert-Bicknell et al (2006, GSE 5959) 

[166] 

GSM138289 to GSM138291 3 

Khetchoumian et al (2007, GSE9012) [167] GSM228786 to GSM228790 5 

Kozul et al (2008, GSE9630) [168] GSM243352 to GSM243410 59 

Tijet et al (2006, GSE 10082) [169] GSM254871 to GSM254873 

GSM254877 to GSM254883 

254885 

11 

Hughes et al (2009,GSE11923)[170] GSM301348 to GSM301395 48 

MacLennan et al (2009, GSE12748) [171] GSM319519, GSM319609 and 

GSM319903 

3 

Vollmers et al (2009, GSE13060) [172] GSM327055 to GSM327129 24 

Vollmers et al (2009, GSE13063) [172] 
 

GSM327154 to GSM327161 8 

Vollmers et al (2009, GSE13064) [172] 

 

GSM327162 to GSM327169 8 

Huang et al (2008, GSE13149) [173] GSM329271 to GSM329295 25 

Yates et al (2009, GSE15633) [174] GSM391335 to GSM391340 6 

Mohapatra et al (2010, GSE16207) [175] GSM406976 to GSM406993 18 

Tisserand et al (2011, GSE19675) [176] GSM491305 to GSM491308, 

GSM491317 to GSM491321 

9 

Uehara et al (2011, GSE20562) [177] GSM516651 to GSM491321 20 

Lee et al (2010, GSE21224) [178] GSM530635 to GSM530650 16 

Lee et al (2010) N.A. GSM541742 to GSM541757 16 

Yu et al (2010, GSE21861) [179] 

GSM543655, 57, 59, 61 

GSM543655, GSM543657, 

GSM543659, GSM543661 

4 

Dateki et al (2010, GSE22534) [180] GSM559519, GSM559520 2 

Dateki et al (2010, GSE22535) [180] GSM559521 to GSM559524 4 

Ding et al (2010, GSE 22879) [[181] GSM565203 to GSM565206 4 

Mongan et al (2010, GSE23780) [182] GSM586822 to GSM586831 10 

Duval et al (2010, GSE24031) [183] GSM591473 to GSM591490 18 

Edmonds et al (2011, GSE26695) [184] GSM657144 to GSM657163 20 
Pachikian et al (2011, GSE26986) [185] GSM664751 to GSM664754 4 

Zhang et al (2011, GSE27038) [186] GSM665999 to GSM666001, 

GSM666005 to GSM666007 

6 

Table 5.2A Summary of microarray expression datasets included to reconstruct the control 

liver model 
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Authors of study 

(Year, GSE number) 

Mouse strain GSM sample numbers Number of 

samples in 

each study 

Stewart et al (2010, 

GSE24637) [187] 

TALLYHO x C57BL6 F2 GSM607572 to GSM 

607587 

16 

Davis et al (2011, 

GSE 30140) [188] 

C57BL/6 x DBA/2 F2 GSM746336 to GSM 

746551 

264 

Table 5.2B Summary of microarray expression datasets included to reconstruct the diabetic 

liver model 
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Input substrate 

reaction 

Gluconeogenic 

substrate 

Max 

glucose/substrate 

flux 

EX_glyc(e) Glycerol 0.484 

EX_lac_L(e) L-Lactate 0.343 

EX_ala_L(e) Alanine 0.336 

EX_gln_L(e) L-Glutamine 0.497 

EX_pyr(e) Pyruvate 0.272 

EX_thr_L(e) L-Threonine 0.420 

EX_arg_L(e) L-Arginine 0.584 

EX_asn_L(e) L-Asparagine 0.275 

EX_asp_L(e) L-Aspartate 0.319 

EX_cys_L(e) L-Cysteine 0.316 

EX_glu_L(e) L-Glutamate 0.527 

EX_gly(e) Glycine 0.017 

EX_his_L(e) L-Histidine 0.356 

EX_ile_L(e) L-Isoleucine 0.750 

EX_met_L(e) L-Methionine 0.303 

EX_phe_L(e) L-Phenylalanine 0.616 

EX_pro_L(e) L-Proline 0.620 

EX_ser_L(e) L-Serine 0.230 

EX_trp_L(e) L-Tryptophan 0.600 

EX_tyr_L(e) L-Tyrosine 0.685 

EX_val_L(e) L-Valine 0.500 

Table 5.3 Gluconeogenic simulations. In all simulations, the optimized reaction is EX_glu-

D(e). 
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Optimized reaction Metabolite Max ketone 

body/fatty acid 

flux 

EX_acac(e) Acetoacetate 1.50 

EX_bhb(e) Β-hydroxybutyrate 1.48 

Table 5.4A Ketogenic simulations 

Optimized reaction Tested sugar mol ATP/mol sugar 

ATPM Fructose 22.8 

ATPM Galactose 22.8 

ATPM Mannose 22.8 

Table 5.4B Alternative sugar simulations 

Simulation Optimized reaction Reaction in the 

model 

Metabolite uptake 

rate 

Ammonia 

detoxification 

Ammonia uptake EX_nh4(e) 

 

Maximized 

Ethanol degradation Ethanol uptake EX_etoh(e) Maximized 

Amino acid 

degradation 

Amino acid uptake EX_asn_L(e)* Maximized 

Table 5.4C Ammonia, ethanol and amino acid degradations 

* In the table L-Asparagine was used as a model amino acid to demonstrate the simulation process, all 20 

amino acids were tested in both networks.  

Optimized reaction Reaction equation Tested metabolite Mol metabolite/mol 

glucose 

DM_glycogen(c) glycogen[c]  Glycogen, cytosol 0.077 

DM_chsterol(c) chsterol[c]   Cholesterol, cytosol 0.091 

Table 5.4D Glycogen and cholesterol production simulations 
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Simulation  Reaction added Reaction equation Entrez 

Genes ID 

Ketogenesis EX_stcoa(e) stcoa[e] <=>  N.A 

Ketogenesis STCOAt stcoa[e] <=> stcoa[c] N.A 

Alternative sugar 

metabolism 

FRUt4 na1[e] + fru[e] <=> na1[c] + fru[c] 230612.1 

Alternative sugar 

metabolism 

MAN6PI man6p[c] <=> f6p[c] 110119.1 

Gluconeogenesis CSNAT2c coa[c] + pcrn[c] <=> ppcoa[c] + crn[c] 12908.1 

Glycogen production Tyr_ggnt Tyr-ggn[e]  -> Tyr-ggn[c] N.A 

Table 5.5 Reactions added to the liver models after automatic pruning 
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Cell components Component g/100g Wet weight g/g Dry weight g/g 

Protein 17.3 [189] 0.172 0.519676 

Lipids 7.95 [190] 0.079 0.23881 

Glycogen 4 [191] 0.040 0.120156 

Water 70.5 [192] 0.702 N.A. 

DNA 0.15 [193] 0.001 0.004506 

RNA 0.53 [194] 0.005 0.015921 

Total 100.43 1.00 1.00 

Table 5.6 Composition of the mouse liver cell 
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Amino acid nmol/g tissue Amino acid nmol/g tissue 

alanine 3.239 leucine 0.221 

arginine 0.032 lysine 0.476 

asparagine 0.143 methionine 0.062 

aspartate 7.47 phenylalanine 0.087 

cysteine 0.013 proline 0.194 

glutamate 1.772 serine 0.957 

glutamine 5.369 threonine 0.446 

glycine 2.249 tryptophane 0.01 

histidine 0.697 tyrosine 0.131 

isoleucine 0.142 valine 0.215 

Table 5.7A Amino acid of mouse liver cell. All values correspond to the rat data [195] 

Lipids %(g/g lipids) 

Sphingomyelin 0.015 

Cholesterol 0.052 

Cholesterol esters 0.028 

Monophosphoinosito  0.048 

Phosphatidylethanolamine 0.093 

Phosphatidylcholine and lisolecithin  0.246 

Cardiolipin  0.017 

Triacylglycerol  0.386 

Total 0.885 

Table 5.7B Lipid composition of the mouse liver tissue [196] 

DNA mol/mol DNA RNA mol/mol RNA 

dAMP 0.3 AMP 0.18 

dCMP 0.2 CMP 0.3 

dGMP 0.2 GMP 0.34 

dTMP 0.3 UMP 0.18 

Table 5.7C Nucleotide composition of the mouse liver cell [197] 
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CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS 
 

The last decade has witnessed an explosion in the amount of omics data generated by high-

throughput technologies. The large amount of digital information enables a systems level 

understanding of the dependencies and correlations among molecular components. In my Ph.D. 

research work, I focused on utilizing a systems approach to analyze and characterize various 

diseases by exploring available transcriptomics, proteomics and metabolomics data.   

In addition to analyzing a wide range of data types, I also studied a variety of diseases: human 

astrocytoma, mouse glioblastoma and mouse diabetes. In collecting and integrating proteomics 

and transcriptomics data from multiple lab sources, I utilized a uniform processing platform to 

increase sample-to-sample correlation and decrease heterogeneity across the data collected in 

different studies. To further mitigate biological noise and maximize disease effect, I also 

analyzed gene or protein expression levels in the context of biological network behaviors, which 

takes interactions among related gene or proteins into account and helps to link changes in gene 

expression to phenotype.  

More specifically, I investigated and explored cancer aggressiveness and heterogeneity in the 

context of human astrocytoma, using transcriptomic data. Leveraging a large cohort of publicly 

available gene expression data sets, I have conducted the first meta-analysis that examines 

together the transcriptomes of three astrocytoma grades along with corresponding normal 

samples. I combined individual gene- and network-based approaches to identify meaningful 

patterns of expression within and between different grades. I quantified network dysregulation in 

each tumor grade and concluded that there is increasing inter-patient transcriptomic 

heterogeneity in more aggressive astrocytomas. Using a gene-based methodology, I also 

identified individual genes that exhibit monotonically increasing or decreasing expression with 

increased grade.  

Having examined the heterogeneity in high grade astrocytoma, I moved on to develop pipelines 

to identify biomarkers indicative of clinical outcome. I developed an automated framework to 

screen all candidate networks in the pre-defined network database and discovered the 

erythropoietin network that is predictive of survival in HGA patients. This signature is known to 
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mediate neuroprotection through NF-κB signaling (EPONFκB). If the EPONFκB network is 

combined with previously reported signatures, the predictive power outperformed histology-

based grading or those separated solely based on proneural/non-proneural status as predictors of 

survival. This pipeline is scalable and is capable of screening through a large number of 

networks rapidly and efficiently. For the EPONFκB network to move into clinical practice and 

adopted by medical doctors in regular diagnosis and prognosis, future experimental validation 

involving many more patients is required.  

The mouse is usually the organism of choice to study human disease, and in the proteomics 

section of my dissertation, I analyzed large-scale proteomics data collected at different stages of 

mouse glioblastoma. Protein profiling was done on three genetically engineered mouse strains 

and over 2000 proteins were tracked at three tumor development stages: early, middle, and late. 

Individual proteins and networks that were most perturbed when GBM developed as a result of 

one or more major signaling pathways that exhibit frequent aberrant behavior in GBM become 

dysfunctional were identified. Ongoing experimental work is in progress to validate the selective 

protein targets of the genes.   

Last, I developed the first genome-wide metabolic models for the C57BL/6J mouse liver,  under 

normal and diabetic conditions, using mouse whole cell model as a starting point. I started with 

improving and refining the state-of-art generic metabolic model for mice, and then compared and 

chose the most suitable algorithm for reaction selection, eventually I successfully created 

relevant working liver models that possess the basic cell functions as well as liver-specific 

functions such as gluconeogenesis and amino acid degradation. Future work could follow the 

liver model reconstruction pipeline to create similar models for other tissues. For example, we 

could create adipose and muscle metabolic models for diabetic mice, and eventually add a 

connection compartment (i.e., the blood compartment) to form a multi-tissue model by 

integrating individual tissue models [131]. 
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