
DESIGN OF A PHASE LOCKED LOOP BASED CLOCKING CIRCUIT
FOR HIGH SPEED SERIAL LINK APPLICATIONS

BY

RISHI RATAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor José Schutt-Ainé

ABSTRACT

Technology scaling and unprecedented growth in demand for ubiquitous, fast,

robust computing have been the driving forces leading the innovations in

high-speed interfaces. With the rise of heavy duty data centers to handheld

mobile devices, the desire for faster, low-power integrated inter-IC commu-

nication protocols is at an all-time high and has led the roadmap of the

semiconductor industry, making it one of the fastest growing yet fiercely

competitive industries. With the growing needs for ultra-low power yet

multi-Gbps signaling in both wired as well as wireline applications, inte-

grated systems on chip (SoCs) have become mainstream critical components

in modern computing systems. The ability to process and access ‘big-data’

is the fundamental demand in modern society where every second saved in

prompt communication as well as computation of information is critical. In

order to meet these needs of fast, robust signaling over the same old “lossy”

channels, the clock-frequencies need to scale accordingly and clever I/O links

need to be developed. The most crucial component of any high-speed I/O

link is the clocking circuitry: clock generator at the transmit (TX) end and

clock-recovery unit on the receive (RX) end.

This thesis provides an in-depth tutorial on circuit design, analysis and

simulation of on-chip PLL based clocking generator circuits for high-speed

serial link applications. An overview of high-speed links, along with the basic

building blocks that make up a serial link, is presented. The fundamentals

of PLLs are introduced and a complete guide to analysis and simulation of

a charge-pump phase-locked loop based clocking circuit at both behavioral

as well as transistor levels is presented for use as a synthesizer in a serial

link. Finally, a survey of potential future research areas to explore for both

PLLs in high-speed links as well as the complete serial link is provided with

an emphasis on signal integrity applications for future students pursuing

graduate studies in the fields of Signal Integrity and Mixed-Signal IC Design.

ii

To my family and friends, for their love and support.

iii

ACKNOWLEDGMENTS

As I approach the finishing stages of my graduate career, looking back there

are countless individuals who have helped make this journey special and

memorable. Graduate school is full of numerous uncertainties, various road-

blocks in terms of design and implementation of ideas; thus it is a journey

that though embarked on by one individual, really is a culmination of the

efforts of many people who have helped behind the scenes along the way. At

the end of it all, it is this support system that I am deeply indebted to for

helping each step of the way, motivating me in the most difficult of times

where there were only questions and no answers.

First and foremost, I want to thank my wonderful advisor Professor José

Schutt-Ainé for being my mentor, always motivating me to push myself to

the next level and being there for me like family. Dr. Schutt-Ainé was one of

the first to see potential in me back when I was just a sophomore and had no

direction in what I wanted to pursue in my career. He introduced me to the

field of circuits and sparked an interest in engineering. He has always been

extremely patient throughout the countless occasions I have visited his office

hours. Being a mentor and father-figure for me throughout my educational

career at UIUC, Prof. Schutt-Ainé has been the biggest contributor to my

successes throughout my collegiate career and will forever be a role-model

who I look up to as I start my professional career in industry.

Secondly, I would like to convey my heartfelt thank you to Professor Pavan

Kumar Hanumolu for guiding me throughout this thesis as a mentor. Prof.

Hanumolu stood by me with patience throughout the course of this thesis

work, and took time off from his busy schedule in providing me formal lectures

on PLLs one-on-one in his office at a time when it was very hectic for him

given that he had just moved to UIUC. Without Dr. Hanumolu’s constant

guidance and feedback this thesis would never have been completed.

Thirdly, I would like to sincerely thank my wonderful colleagues, mentors

iv

and friends in graduate school: Da Wei, Xu Chen, Tom Comberiate, Romesh

Nandwana, Mrunmay Talegaonkar, Yubo Liu, Ahmed Elkholy, Saurabh Sax-

ena, Tejasvi Anand, Guanghua Shu, Woo-Seok Choi, Drew Newell, Xinying

Wang, Jerry Yang and Maryam Hajimiri for always being patient to answer

all my questions, solving arcane problems during the simulation and design

process. These fine graduate students have stood by me since day one, pro-

vided constructive criticism on my work, painstakingly critiqued every figure

and most importantly constantly pushed me towards striving for nothing

short of excellence.

Furthermore, I am extremely grateful to Professor Steven Franke, Profes-

sor Christopher Schmitz, Professor Milton Feng, Professor Elyse Rosenbaum,

Professor Naresh Shanbhag, Professor Venugopal Veeravalli and Dr. Chan-

drashekhar Radhakrishnan for supporting me throughout my educational ca-

reer at UIUC and mentoring me every step of the way. Even when the chips

were down, they always believed in me and helped me gain an opportunity

to pursue my graduate studies.

I thank my family for always being by my side, motivating me to move

forward whenever I was faced with roadblocks. Lastly, I am eternally grateful

to my friends Ian Wetherbee, Rohan Bambery, Eric Iverson, Pourya Assem,

Sai Zhang, Min-Sun Keel, Anish Chivukula, Eclair Hanjing Gao, Dennis

Yuan, Jerry Sun, Nishant Nookala and Eric Kim for always standing by

me throughout my ECE career at UIUC. I am positive I have missed a few

people from the above list but I truly am very thankful to all those who I

have interacted with throughout my time at UIUC. Additionally, I am very

grateful for getting an opportunity to work with wonderful undergraduates

Rushabh Mehta, Ishita Bisht, Brady Salz, Ankit Jain, Haodong Guo, and

Pradyut Paul who have worked very diligently in getting the High Speed-

SerDes Design project off the ground from scratch.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Outline . 3

CHAPTER 2 HIGH SPEED SERIAL LINKS OVERVIEW 5
2.1 Simple Link Design . 5
2.2 Serial vs. Parallel Data Transmission 7
2.3 SerDes Building Blocks . 8

CHAPTER 3 PLL THEORY AND BACKGROUND 17
3.1 PLL Applications . 17
3.2 Basic PLL Building Blocks . 17

CHAPTER 4 PLLs IN CLOCKING CIRCUITS 23
4.1 Charge-Pump (CP) PLLs Overview 23
4.2 CPLL Linear Model and Analysis 24
4.3 CPLL Noise-Analysis . 26

CHAPTER 5 PLL BASED CLOCK GENERATOR 29
5.1 PFD . 29
5.2 CPs . 31
5.3 LF . 32
5.4 VCOs . 33
5.5 Divider . 34

CHAPTER 6 BEHAVIORAL LEVEL SIMULATION 35
6.1 Why Behavioral Modeling? . 35
6.2 Why Verilog-AMS? . 35
6.3 Basic Verilog-A/AMS Syntax 36
6.4 PLL Simulation in AMS Using Cadence Virtuoso 38

CHAPTER 7 TRANSISTOR LEVEL SIMULATION 54
7.1 What is SPICE? . 54
7.2 SPICE vs. Spectre . 54
7.3 Transient, PSS and PNoise Simulation Overview 55
7.4 PLL Simulation in Spectre Using Cadence Virtuoso 56

vi

CHAPTER 8 DISCUSSION . 87
8.1 Conclusion . 87
8.2 Future Work . 88

APPENDIX A CADENCE VIRTUOSO INSTALLATION GUIDE . . 92
A.1 Introduction . 92
A.2 Environment Setup . 93
A.3 Common Troubleshooting Tips 115

REFERENCES . 116

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the last 50 years, advances in Semiconductor Fabrication Technology

(SFT) coupled with innovations in Integrated Circuit (IC) technology scal-

ing have fueled an unparalleled growth in computing. This aggressive scaling

has revolutionized every aspect of modern society and triggered an insatiable

demand for faster data rates and higher processing power resulting in clock

frequencies and corresponding data rates approaching multi-GHz and multi-

Gbps ranges in everyday computing devices like personal computers, mobile

devices, entertainment consoles and other such devices. Access to informa-

tion promptly and efficiently in terms of power and portability/ease of use

is the major driver pushing the limits of IC technology. Thus, the need

for robust, high-speed, low-power and highly integrable compact systems-

on-chip (SOCs) is paramount for inter-IC communication interfaces such as

network switches, processor/memory interfaces across backplane channels.

In order to meet this growing demand for wideband systems, the Input/Out-

put (I/O) links need to scale proportionally with the increased data-rate

scaling; however in reality the off-chip I/O bandwidth (BW) has not scaled

appropriately and has become a major bottleneck in the overall system per-

formance. Furthermore, along with the off-chip I/O BW limitations, the

channel as well as package/connector interfaces have not scaled with SFT

making the design of high-speed I/O links extremely challenging due to the

increased transmission line loss, crosstalk, and signal distortion resulting in

intersymbol interference. As the demand for high data-rate interfaces has

skyrocketed, the clock-frequencies needed to realize such systems have corre-

spondingly reached the multi-GHz range necessitating the use of phase-locked

loops (PLLs) for on-chip clock synthesis.

1

Figure 1.1: IO Link Signaling Data-Rate Trends

Figure 1.1 shows the trends in data-rate scaling of I/O high-speed signal-

ing links as forecasted by the International Solid State Circuits Conference

(ISSCC) 2011 annual semiconductor roadmapping report [5]. The key take-

away from this graph is that the data-rates in inter-IC communication links

are scaling by a factor of 2X every 4 calendar years while IO channel BW

remains the same. The I/O BW scaling problem aside, the ability to design

robust, low-jitter on-chip clock synthesizer circuits is in itself an extremely

challenging task. Though research in the field of integrated high-frequency

clocking circuits has been going on for the past two-decades and lots of in-

novative designs have come into existence, one common facet missing from

the whole paradigm is complete documentation on process of simulation us-

ing the Electronic Design Automation (EDA) tools [6]. Most of the literary

works in this area primarily focus on novel system level designs for PLL based

clock synthesizers and some go into transistor-level details of the sub-blocks;

however very rarely do any of the prominent works describe the actual sim-

ulation process. As the clock-frequencies scale and demand for robustness

in the on-chip synthesizers increases, circuit designers also need to be aware

of potential Signal-Integrity (SI) problems associated with their intricate de-

signs. Since the channel BW is essentially the same at high-frequencies of

operation the PCB traces act as transmission-lines (TLs) leading to severe

degradation in signal quality due to reflections, ringing and cross-talk ef-

fects. Thus, every integrated circuit designer will invariably face SI problems

in their design which until recently was not a concern as the frequencies

were low enough that digital design did not require a formal understand-

2

ing of signal integrity during the development as well as verification process.

Therefore, the motivation for this thesis is to bridge the gap between cir-

cuit design and simulation for signal-integrity engineers who need the basic

expertise in mixed-signal design process to be able to provide the required

assistance to IC designers on designing high-speed SI aware systems.

1.2 Outline

This thesis is organized to serve as a training manual for students pursu-

ing mixed-signal integrated circuit design as their field of study in graduate

school. The goal is for this thesis to be their go-to guide to grasp a high-level

understanding of high-speed links and learn the simulation setup/procedure

to validate PLL based clocking circuits using the popular EDA tool Cadence

Virtuoso.

1. Chapter 1 provides an introduction to the research problem describing

the need for high-speed serial links and their future trends.

2. Chapter 2 provides an overview of high-speed links with an emphasis on

describing each of the building blocks, figures of merit to characterize

these links and lay the motivation for the industry-wide shift from

parallel to serial-link design for low power, cost-effective robust I/O

link design.

3. Chapter 3 describes the fundamentals of Phase-Locked Loops (PLLs)

and provides a brief overview of their ubiquitous use in modern day

wireline/wireless systems.

4. Chapter 4 covers a special class of PLLs, Charge-Pump PLLs, and

provides a linear model for small-signal as well as noise-analysis of

these PLLs.

5. Chapter 5 presents the transistor-level design of a Charge-Pump based

Integer-N clock generator circuit operating at an output frequency of

1.6GHz.

3

6. Chapter 6 describes the procedure for behavioral modeling and simu-

lation using Verilog-AMS for the clock-generator circuit described in

Chapter 5.

7. Chapter 7 describes the procedure for transistor-level simulation for

the clock-generator circuit described in Chapter 5.

8. Chapter 8 concludes the thesis with a discussion of the take-aways from

the clocking circuit designed earlier and provides a brief anecdote on

the signal integrity focus areas in high-speed link design and lists design

improvements on the basic Integer-N analog clock generating circuit to

accommodate industry trends within the field.

9. Lastly, the Appendix provides a step-by-step guide for installing and

configuring the Cadence Virtuoso environment.

4

CHAPTER 2

HIGH SPEED SERIAL LINKS OVERVIEW

2.1 Simple Link Design

Figure 2.1: Typical High-Speed Link Block Diagram

Generalized model of a High-Speed Serial Link (HSSL), as shown in Fig-

ure 2.1 [1], consists of a serializer and transmitter (TX) driven by a PLL

clock synthesizer, a channel and a receiver (RX) and Deserializer driven by

a Clock-Data Recovery (CDR) unit. The serializer accepts the incoming

parallel data-stream and converts it into a serial data-stream which is then

sent to the transmitter. The TX generates a train of pulses depending on

the data symbols to be transmitted across the channel and the pulse-width

which is determined by the timing instant of the transmit clock at both be-

gin/end/edges. The receiver basically comprises a sampler and a decision

5

circuit whose purpose is to sample the received data-bit stream from the

channel and recover, both the transmitted data as well as the clock. Once

the receiver recovers the transmitted serial bit-stream it is sent to the Dese-

rializer block whose job as the name suggests is to convert the received serial

data back to its original parallel form for future interfaces.

Figure 2.2: Typical Backplane Channel Interface

As discussed in the previous chapter, though the desired data-rates have

scaled along with technology scaling, the off-chip channel I/O BW has re-

mained the same. The channel is the electrical path between the TX and RX

blocks and in inter-IC communication systems typically comprises printed

circuit-board (PCB) traces, vias, connectors and other such I/O interface

components. Generally speaking, in high-speed I/O interfaces the channel

is typically a ‘backplane’ which essentially connects two PCBs together and

typically looks like the interface shown in Figure 2.2 [1]. The channel is

something that the designer has no control over and is thus just a ‘known

unknown’ to the link designer. It is known in the sense that the channel

impulse-response is known via measurement of S-parameters of the interface

using a Vector-Network-Analyzer (VNA) or via computational electromag-

netic modeling software such as Ansys HFSS. The manner in which channel

degrades the transmitted signal stream is the unknown aspect and the de-

signer’s aim is to design a mechanism for counteracting this degradation.

Thus, the whole challenge in high-speed link design is that we need to de-

sign a high signal-fidelity communication system that is fast, robust to losses

incurred in the channel and on top of all this it needs to be low-power and

must occupy the least possible area. The challenge in meeting all of the

aforementioned requirements is that at high-speeds the channel suffers from

6

various kinds of microwave losses due to impedance discontinuities between

connectors, substrate loss, cross-talk effects, reflections and ringing, all which

are difficult to predict and model [1].

Figure 2.3 [2] shows an example of the I/O link interface for a 10Gbps serial

link across a backplane channel. Notice that a clean signal when transmit-

ted across a backplane channel incurs tremendous amounts of loss from the

channel at an operating speed of 10Gbps making the signal at the receiver

virtually indistinguishable from noise and thus virtually garbage. In order

to limit the degradation of signal quality during transmission and reception,

the goal of mixed-signal designers is to design fast high-frequency clocks with

minimum timing skew at the TX end and minimal sampling errors at the RX

end.

Figure 2.3: 10Gbps Backplane Serial Link Interface

2.2 Serial vs. Parallel Data Transmission

Historically, parallel links have been widely used in I/O systems that are

connected to the CPU in computers via interfaces like PCI, PCI-X buses.

However, as the data-rates have scaled into multi-gigabit ranges, the parallel

link performance has not scaled accordingly with high signal fidelity. The

tolerance level in timing skew between parallel signaling links has reached

the practical limit achievable using traditional printed-circuit-boards (PCBs)

that typically use FR-4 substrates. Additionally, as the supply voltage lev-

els in modern CMOS process technologies have scaled down tremendously,

the legacy parallel bus voltage levels have not scaled proportionally, making

7

them incompatible with modern processes [6]. Thus, in order to mitigate this

performance limitation and supply voltage scaling problems posed by conven-

tional parallel-link design the industry has shifted to electrical point-to-point

serial link interfaces.

Serial links occupy small area on chip and require very few I/O pins as

compared to case of parallel links because the number of pins is not directly

proportional to the number of data input/output signals. In serial commu-

nication links clock-skew is not a problem at the receiver since TX clock is

typically not forwarded to the RX. In parallel links, on the other hand clock-

skew is the major source of signal degradation at the RX side since the TX

clock and data are transmitted separately. Furthermore, cross-talk effects are

minimized in serial links due to the absence of multiple conducting channels

in parallel that each have varying signals transmitted, whereas in parallel

links this is a major problem due to the presence of capacitive/inductive

coupling between multiple conducting parallel interconnect channels.

In the consumer electronics industry, serial links have found widespread ac-

ceptance in the form of USB (Universal Serial Bus) that connects peripheral

electronic systems to computer, and SATA (Serial Advanced Technology At-

tachment) which connects the computer motherboard with mass storage de-

vices (e.g. hard disk) and PCI-Express (Peripheral Component Interconnect)

that is used to connect cards (sound, video or other) to the motherboard.

Therefore serial communication has become the solution to higher and more

efficient data transmission in order to meet the demands and trends of the

higher capacity of communication technology [7].

2.3 SerDes Building Blocks

2.3.1 Serializer

The serializer circuit, as the name suggests, converts the input parallel-bus

data into a serial bit-stream form. It is a completely digital block and it pre-

cedes the TX driver circuit. At a fundamental level, a serializer is essentially

a Multiplexer circuit whose driving clock for the serialization process is the

TX CLK signal generated by the TX PLL.

8

2.3.2 Driver Amplifier

Driver amplifiers are found both at the TX as well as RX ends. The DA

(Driver Amplifier) is used to amplify the input serial bit-stream before it is

sent to the receiver through the channel. Another important task accom-

plished by the DA is that it provides impedance terminations that terminate

the channel input/output with 50Ω impedance.

2.3.3 Phase-Locked Loop (PLL) Clock Generator

IN

��

���

DIV

REF

OUT

���

��	 ��
�
�����

Figure 2.4: Typical PLL Based Clock-Generator Block Diagram

A PLL is a negative feedback system whose sole purpose is to use a reference

input clock of frequency fREF and generate a local clock on-chip at a desired

frequency, fOUT , such that the output clock is matched in phase to the input

clock and fOUT = αfREF , where α is a multiplying factor. PLLs are used in

every modern day high-speed system whether it be wired or wireless because

generating a high spectral purity clock at microwave frequencies/data-rates

is practically not feasible yet. Piezo-electric crystals are used exclusively

as the reference clocks for almost every on-chip interface system because

they have the highest-spectral purity and can output truly periodic, jitter-

free clock signals typically up to 200MHz. Due to the insatiable demand

for robust, high-speed signaling, a mere crystal oscillator is not enough to

meet the necessary requirements, so a PLL is essential. The most important

task of a PLL is therefore to produce clock signals with minimal timing

noise, i.e. the lowest possible jitter (in time domain) and phase-noise (in

frequency-domain). At a block-level, a typical PLL clock-generator circuit (as

shown in Figure 2.4) used to generate the high-speed on-chip clocks consists

of a phase-frequency detector (PFD), charge-pump (CP), loop-filter (LF),

voltage-controlled oscillator (VCO) and clock-divider (DIV). PFD tracks the

phase and frequency difference between the reference signal and the divider

9

output signal outputs digital pulse-width modulated (PWM) signals to the

CP which essentially converts these digital pulses into an analog current

signal. The LF then takes the CP output current signal, low-pass filters the

high-frequency noise components and outputs a control voltage that drives

the VCO. The VCO is the most-critical component within the PLL as it is

the circuit-block that generates the final output clock that is used to drive

the digital circuits of the link. Thus, a low phase-noise VCO is of paramount

importance in the PLL as the VCO phase-noise is the dominant noise-form

in the PLL. Finally, the divider is used in the feedback loop back to the PFD

as the VCO output needs to be brought back down to the same frequency

level as the reference clock so that the loop can dynamically drive all static-

phase errors between reference clock and divider clock to zero such that

fOUT = αfREF , where α is the multiplying factor and the loop is “locked”

to output a stable clock at the desired frequency of operation. The various

intricacies involved in PLL design are covered in the remainder of the thesis.

2.3.4 Channel

Figure 2.5: Typical Serial Link Channel Responses

Figure 2.5 [3] shows the attenuation levels a typical serial link channel incurs

as a function of operating frequency. Figure 2.6 and 2.7 show the eye diagram

outputs from a backplane channel interface at 1Gbps and 10Gbps data-rates

respectively. Notice that the eye is fully open at 1Gbps but at 10Gbps the

signal is almost indistinguishable from the noise at the receiver side due to

10

the tremendous loss and distortion incurred along the channel. The HSSL

designers need to be able to account for such losses when designing the blocks

of the HSSL at both a system as well as circuit level. As stated earlier, the

channel induced degradation is the primary limiting factor during the entire

link-design process.

0 2 4 6

x 10
−10

−1

0

1

In−phase Signal

Time (s)

A
m

p
li

tu
d

e
 (

A
U

)

Figure 2.6: 1Gbps Backplane Link Eye Diagram

0 2 4 6

x 10
−11

−1

0

1

In−phase Signal

Time (s)

A
m

p
li

tu
d

e
 (

A
U

)

Figure 2.7: 10Gbps Backplane Link Eye Diagram

2.3.5 Equalization

Equalization is a method of combatting the detrimental effects of intersym-

bol interference (ISI) caused by the bandlimited channel. Equalizers are

typically implemented as linear or non-linear adaptive filters. Equalization

performed before the channel is referred to as pre-emphasis and basically

involves passing the TX signal through a filter whose transfer function is the

inverse of the channel transfer function. Conversely, equalization at the RX

end is used to undo the distortion incurred in the received signal due to the

channel loss and dispersion. Most RX equalization schemes are adaptive and

11

are implemented using DSP techniques to cancel out the channel loss from

the received data-bits.

2.3.6 Clock and Data Recovery (CDR)

A CDR as the name suggests is responsible for extracting the clock infor-

mation of the transmitter from the received signal. In modern HSSLs, a

clock-recovery mechanism is essential at the receiver end because TX clock

information is typically embedded inside the incoming data pulse-stream at

the receiver input. At heart, a CDR is essentially a modified PLL circuit

wherein the phase-detector now has to sample the incoming data-stream and

extract both data and phase information from it [3]. The PD of the CDR

detects the transitions in the received data-stream and the VCO generates

a periodic clock that drives the decision circuit within the PD to retime the

distorted received data and then regenerates the system clock with lower

skew and jitter. CDR design is a lot more intricate than PLL design because

in the case of the CDR, loop bandwidth is often very small and governed by

the jitter tolerance specifications of the system, meaning there is not much

room for VCO phase-noise reduction. The most common implementation of a

CDR (as shown in Figure 2.8) includes a regular PLL loop to track the exact-

frequency of the TX clock, a phase-tracking loop with special phase-detector

to produce the retimed data and a common VCO to output a low-jitter,

phase-noise replica of the TX clock.

Figure 2.8: Typical Clock and Data Recovery Unit Implementation

12

2.3.7 Deserializer

The deserializer circuit, as the name suggests, converts the input serial bit-

stream data back into its original parallel bus form. It is also a completely

digital block and it succeeds the RX driver circuit. Basically, the deserializer

is just a demultiplexer circuit that is driven by the clock that is recovered by

the CDR.

2.3.8 Coding Schemes

Nonreturn-to-zero (NRZ) pulses are commonly used as the basis function for

discrete data transmission. The response of the channel to the NRZ pulse

is defined as the pulse response and is traditionally used to analyze and

model the effects of a channel on data transmission and also in the design of

equalizers in the case of channels with large attenuation at the frequency of

interest. Apart from NRZ signaling, designers can also implement advanced

modulation techniques for faster, robust signaling. For example, multilevel

PAM like PAM-4 has much higher spectral efficiencies and can transmit two

bits per symbol. This enables the transmission of an equivalent amount

of data in half the channel bandwidth. In modern serial links along with

the signaling schemes, some amount of encoding is also present in the data-

stream. Most commonly used encoding schemes are 8B/10B and 16B/20B

wherein 10bits or 20bits are sent but only 8bits/16bits are actual meaningful

data bits, and this is powerful as it improves the BER. The only drawback

of encoding is that it further adds complexity to the transceiver design as a

encoder/decoder circuit needs to be designed and more bits need to be sent

through the same bandwidth-limited channel.

2.3.9 HSSL Figures of Merit

HSSL performance is limited by the channel as well as the process technology

used during circuit design. Since data-rates are scaling faster than the avail-

able channel bandwidths, the major constraint in realizing robust, high-speed

interfaces is improving the maximum available clock frequency for on-chip

synthesis. The channel bandwidth is the major constraint in overall system

performance; thus, dealing with channel loss and designing clever equaliza-

13

tion techniques are the biggest design challenges in HSSLs today. Robustness

therefore is the most important metric of performance for link designers. The

primary figures-of-merit (FOM) for HSSLs are bit-error-rate (BER), jitter,

crosstalk analysis and timing/noise analysis [1].

BER in modern HSSLs is typically between 10−12 and 10−15 and it is the

main metric used to signify the integrity of the received data-bits. A BER of

10−12 means that 1 bit will incur an error along the link when we transmit a

total of 1012 bits. Measurement/Estimation of BER is one of the fundamental

challenges faced by link designers because in order to accurately conclude

that the link actually has a BER of the order 10−12, one needs to simulate a

random sequence of at least 1012 bits which even in current state-of-the art

simulators is next to impossible. Therefore, most simulators use statistical

means to collectively analyze the effects of deterministic noise sources such as

Intersymbol Interference (ISI), supply-noise, timing-jitter as well as random

noise sources like white-thermal noise and random jitter when estimating the

system BER.

A common method to measure timing jitter is to use eye-diagrams. Eye

diagrams are constructed by slicing the time-domain signal waveform into

small sections and overlaying them on top of each other such that the re-

sulting shape resembles an ‘eye’. The horizontal axis of the eye diagram

represents time and is typically one or two symbols wide, and the vertical

axis represents the amplitude of the signal. Ideally, we want the eye to be as

“open” as possible, since a larger eye opening signifies that there is a large

enough margin to meet any voltage and timing requirements needed by the

system. Quantitatively speaking, the minimum height and width of the data

at the receiver are key metrics for evaluating link performance. As link de-

signers, we want the receiver eye to be wide enough to provide adequate time

to satisfy the setup and hold requirement of the flip-flops used, and have suf-

ficient height to ensure that the voltage levels meet vil and vih requirements

of the system in the presence of multiple noise sources. Figure 2.9 [6] shows

an example of what sampling an eye with and without jitter means.

14

Figure 2.9: Eye Diagram Terminology and FOMs

The most prominent source of signal degradation in HSSLs over a bandlim-

ited channel is Intersymbol Interference (ISI). ISI results when a sequence of

signals are passed through a channel whose bandwidth is insufficient to allow

passage of all the spectral components of the signal. It is a form of signal

distortion caused due to reflections, channel resonances, and channel loss/dis-

persion. Simplest way to understand ISI is to view it as interference between

symbols wherein current bit/symbol causes distortion in subsequent/preced-

ing bit/symbol. ISI degrades as data-rates increase and channel bandwidth

remains the same, and the only way to combat it is through clever equal-

ization techniques on either the TX, RX ends or both. Another form of

interference which is slowly becoming a major hindrance for link designers

as data-rates scale is crosstalk (XT), which is a phenomenon occurring due

to presence of capacitive as well as inductive coupling between neighboring

signal lines in a transceiver. Typically, most of the XT effects are felt at the

connector/package levels of a channel where the signal spacings are small

compared to the distance between shields [6]. Near-End XT (NEXT) and

Far-End XT (FEXT) are the two classes of XT wherein NEXT is defined as

the XT due to energy dissipated from coupling between transmitted signal

and the reflected signal on the same chip, while FEXT is defined as the XT

due to energy dissipated from coupling between transmitted signals of two

different chips. NEXT is by far the most deleterious type of XT and the

most commonly observed kind because the TX energy levels are typically

very high compared to the RX signal levels so the received signal can really

be submerged inside it if proper care is not taken.

15

Finally, the last major metric in calculating the timing margin of a HSSL

is the jitter. Characterization of deterministic as well as random timing jitter

in a clock output is very important to a link designer. Essentially, jitter is

the time-domain variation in the clock-signal as shown in Figure 2.10 [10].

A commonly used method for jitter calculation is to close either side of the

eye horizontally by the amount of peak clock jitter. While this method can

be helpful in evaluating the effects of jitter at the receiver end, we will show

in this paper that this is an overly optimistic approximation of noise margin

degradation for transmitter jitter. Due to the need for integration of clock

generators such as PLLs in large digital chips, clock jitter is dominated by

power-supply and substrate noise, both of which do not scale with technol-

ogy. Therefore, as data rates increase, bit-periods become shorter and the

performance of multi-gigabit links will be limited by the clock jitter, thereby

initiating the importance of accurately analyzing the effects of clock jitter on

high-speed serial links. Figure 2.11 [5] provides a summary of common jitter

profiles in a typical serial link.

Figure 2.10: Timing Jitter Example

Figure 2.11: Summary of Common Jitter Profiles

16

CHAPTER 3

PLL THEORY AND BACKGROUND

3.1 PLL Applications

Phase-Locked Loops (PLLs) are one of the most fundamental and ubiquitous

circuits found in any communications (wireless, wireline) and high-speed dig-

ital systems. Monolithic CMOS implementation of PLLs has gained lots of

popularity over the last few decades due to an insatiable demand for high

performance digital systems. Most common uses of a PLL are in the form

of frequency synthesizers and carrier/clock recovery circuits both in the RF

domain as well as the high-speed digital domain.

3.2 Basic PLL Building Blocks

3.2.1 Phase/Phase-Frequency Detector (PD or PFD)

In a PLL, unlike many other feedback systems, the variable of interest

changes dimension around the loop: it is converted from phase to voltage

(or current) by the phase detector, processed by the LPF as such, and con-

verted back to phase by the VCO. In the lock condition, the input and output

frequencies are exactly equal, regardless of the magnitude of the loop gain

(although the phase error may not be zero). This is an extremely important

property because many applications are intolerant or even small (systematic)

differences between the input and output frequencies [15].

The PD compares the phase of the output signal with the phase of the

reference signal and develops an output signal that is approximately propor-

tional to the phase-error Φe. The output voltage of the PD is proportional to

the phase-difference between the reference signal and the output signal. The

17

PD serves as an “error’-amplifier” in the feedback loop, thereby minimizing

the phase-difference, ∆φ, between the reference signal, Vref (t) and the os-

cillator output signal, Vout. The loop is considered to be “locked” if ∆φ is

constant with time, a result of which is that the input and output frequen-

cies are equal. In locked condition, all the signals in the loop have reached

steady state and the PLL operates as follows. The phase detector produces

an output whose DC value is proportional to ∆φ. The low-pass filter sup-

presses high-frequency components in the PD output, allowing the DC value

to control the VCO frequency. The VCO then oscillates at a frequency equal

to the input frequency and with a phase-difference equal to ∆φ. Thus, the

LPF filter generates the proper control voltage for the VCO. The VCO phase

can be seen to be an initial condition of the system, as it is independent of

the initial conditions in the LPF. Whenever two frequencies become equal

at a point in time and ∆φ has not established the required control voltage

for the VCO, the loop will continue the transient, temporarily making the

frequencies unequal again. In other words, both “frequency-acquisition” and

“phase-acquisition” must be completed. This behavior is to be expected be-

cause for lock to occur again, all the initial conditions of the system, including

the VCO output phase, must be updated [15].

The biggest pitfall of using just a PD is that it does not capture any step

changes in frequency; thus, in order to be able to track both phase and

frequency we need to use a phase-frequency detector (PFD). The purpose of

a PFD is to compare the reference clock signal and the VCO output clock

after division in both phase and frequency. These frequencies are generally

denoted by FREF and FV CO respectively. The basic structure can be divided

into logic control part and a charge pump. The charge pump is a current

source in series with a current sink and the output node is like a switch

that resides in between the source and sink. The logic part consists of two

D-Flip-Flops (DFFs) and the outputs of these DFFs control the switch of

the charge pump. Conceptually the PFD can be viewed as a state machine

with three states. The initial state is 0 and both DFFs will be reset if VCO

and reference signal are both high. In state -1 only current sink is turned

on and sinks charge out of the load, thereby decreasing the output voltage;

in state 0 current source and current sink are turned off so no charge is

injected or extracted out of the output node, thereby keeping the output

voltage unchanged. In state 1 only current source is turned on so charge can

18

be injected into the output node, thereby increasing the output voltage. The

state transitions are controlled by the edges of VCOs output and reference

signal; thus it is clear that the PFD is a purely digital circuit.

Figure 3.1: PFD Operation

(a) (b)

Figure 3.2: PFD Functionality

Figures 3.1 and 3.2 show the block diagram of a PFD and demonstrate its

functionality. Essentially, when the reference clock is faster than the divider

clock, UP signal is High, DN signal is Low and vice versa. Note that when

both the reference and divider clocks are synchronized both UP and DN

signals are set to be High. The phase frequency detector (PFD) is a circuit

that linearly translates the phase difference into voltage signals. The ideal

average input/output relationship should be:

Ve = KPD × φe (3.1)

where |φe| < 2π

KPFD is defined as the PFD gain.

19

3.2.2 Charge-Pump (CP)

The charge pump is the device that translates the digital voltage signals

generated from PFD into a current signal. Since the voltage controlled os-

cillator needs a stable voltage to control the oscillating frequency, a charge

storage capacitor is needed. In order dump enough charge into the capac-

itor, a charge pump is needed here. Together with the PFD the s-domain

transform becomes the following:

KPFD =
iCharge Pump

2π
(3.2)

3.2.3 Loop-Filter (LF)

PLLs act as high-pass filters so the purpose of the loop filter is to filter out

the high-frequency components from the output of the PFD. Typically, loop-

filters are just simple passive RC networks whose main objective is to filter

out the high-frequency noise data from the PFD output.

3.2.4 Voltage Controlled Oscillator (VCO)

VCOs are the most important and complex component of the overall PLL

design. The essential idea behind a VCO design is to generate a clock signal

based on the Barkhausen criteria for oscillation which states that the mag-

nitude of the VCO transfer function at the oscillation-frequency is 1 while

the phase is -180 degrees. Two most popular VCO topologies whose sample

architectures are ring-based and LC-tank based. Due to the superior noise

performance we chose to design a LC-Tank based VCO. VCO is the device

that generates the target clock. Ideally, its output frequency should be lin-

early related to the input control voltage. The Laplace transform function

of the VCO is derived as follows:

ωout(t) = KV COvctrl(t) (3.3)

L[ωout(t)] = ωout(s) = KV COvctrl(s) (3.4)

20

φout(t) =

t∫
0

ωout(τ)dτ =

t∫
0

KV COvctrl(τ)dτ (3.5)

L[φout(t)] = φout(s) =
ωout(s)

s
=
KV COvctrl(s)

s
(3.6)

Thus, the Laplace transform function for the VCO is:

HV CO(s) =
φout(s)

vctrl(s)
=
KV CO

s
(3.7)

The KV CO is defined as the VCO gain.

3.2.5 Divider

A frequency divider is needed to produce a clock signal that runs many times

faster than the reference clock. The PFD input clock and reference clock have

to be synchronized for PLL to be in locked condition. In order to perform

this task we use a fractional-N divider circuit, which divides the VCO clock

by the highest power of 2 factor to synchronize reference clock signal and the

divider output clock.

3.2.6 Analysis of a PLL in Locked-State

The open-loop transfer function of the PLL is equal toHO = KPDGLPF (s)KV CO

s
,

yielding the closed-loop transfer functionH(s) = Φout(s)
Φin(s)

= KPDKV COGLPF (s)
s+KPDKV COGLPF (s)

.

In its simplest form, a low pass filter is implemented to have the trans-

fer function GLPF (s) = 1
1+ s

ωLPF

,where ωLPF = 1
RC

. Thus, for a PLL con-

taining a first-order LPF the closed-loop response is represented as H(s) =
KPDKV CO

s
ωLPF

+s+KPDKV CO
indicating that the system is of second-order, where one

pole is contributed by the VCO and the other by the LPF. Here, K =

KPDKV CO is called the loop-gain and expressed in rad/s. In order to under-

stand the dynamic behavior of the PLL, the denominator of the second-order

closed-loop response is converted to a form commonly used in control the-

ory: s2 + 2ζωns + ω2
n, where ζ is the damping factor and ωn is the natural

frequency of the system. Therefore, the closed-loop response can now be

expressed as H(s) = ω2
n

s2+2ζωns+ω2
n
, where ωn =

√
ωLPFK and ζ = 1

2

√
ωLPF

K
.

Note that ωn is the geometric mean of the -3dB bandwidth of the LPF and

21

the loop-gain, and thus an indicator of the gain-bandwidth product of the

loop. The damping factor is inversely proportional to the loop gain. Typi-

cally, in a well designed second order system, ζ is usually greater than 0.5

and preferably equal to
√

2
2

so as to provide an optimally flat response. Thus,

K and ωLPF cannot be chosen independently; for example if ζ =
√

2
2

, then

K = ωLPF

2
. If s→ 0, we note that H(s)→ 1; i.e. a static phase shift at the

input is transferred to the output unchanged. We can examine the “phase

error transfer function” defined as He(s) = 1 −H(s) = Φe(s)
Φin(s)

= s2+2ζωns
s2+2ζωns+ω2

n

which drops to 0 as s→ 0 [15].

3.2.7 PLL Characteristics and Figures of Merit

The most important metrics of a PLL are Order, Type, Hold-In range, Lock-

in range, and Pull-in range. The order of a PLL is determined by the number

of poles in the loop while the type is determined by the number of integrators.

The VCO always has a pre-existing pole because it generates frequency from

phase via an integration; thus every PLL is at least of order 1 and type 1. As

the loop-filter poles increases and the PLL order and type increases as well

and higher the type, the better the PLL is at tracking both frequency and

phase. For instance, a type 2 PLL is capable of tracking both a step change

in phase as well as frequency with zero steady-state phase error while a type

1 PLL can only track a step change in phase.

Hold-In range of a PLL is a measure of the DC loop gain and the range

of frequencies under which the PLL can maintain a lock. Lock-In range is

a measure of the range of frequencies under which a PLL can acquire lock

without slipping any clock-cycles. Finally, the Pull-In range is the measure

of the range of frequencies for which the PLL can acquire lock by missing a

few clock cycles. It is important to note that the hold-in range is the largest

of the three and lock-in range is the smallest of the three metrics.

22

CHAPTER 4

PLLs IN CLOCKING CIRCUITS

4.1 Charge-Pump (CP) PLLs Overview

PFD
�in

��

�

��

���

����

�div

�ref

�out

���

�����

��

��

	

Figure 4.1: Charge-Pump PLL Block Diagram

Figure 4.1 shows the basic building blocks of a CPLL. Charge-Pump PLLs

offer many advantages over the classical voltage phase-detector PLL including

an infinite pull-in range and zero steady-state phase error. CPLLs also allow

one to use a passive filter and still have many of the benefits of using an

active filter with the voltage phase detector. The exception to this case is

when the VCO tuning voltage needs to be higher than the PLL can supply;

in this case, an active filter is necessary [15].

Phase-frequency detectors with charge-pump combination offer several ad-

vantages over the voltage charge pump and have all but replaced it. The PFD

and CP blocks are universally present in every PLL based synthesizer chip.

Using this approach completely bypasses issues of steady-state phase error

and hold-in range [10].

23

4.2 CPLL Linear Model and Analysis

+

-

+
�

�������
����

�
�REF (s)

�e(s)

�OUT (s)

����	�

� �	�

Vctrl (s)

	�

	�

Vctrl (s)

Figure 4.2: Linear s-Domain Model for Charge-Pump PLL

Figure 4.2 shows the linear s-domain model for CPLLs. From the previous

section we can now define the open loop transfer function as follows:

LG(s) = KPD · F (s) · KV CO

s
(4.1a)

= KPD ·KV CO ·
s+ 1

RC1

C2s2
(
s+ C1+C2

RC1C2

) (4.1b)

From the open loop gain we notice that

ωz =
1

RC1

; ωp1 = ωp2 = 0;ωp3 =
C1 + C2

RC1C2

(4.2)

The phase margin will be:

φM = arctan

(
ωugb
ωz

)
− arctan

(
ωugb
ωp3

)
(4.3)

where ωugb is the open loop unity gain bandwidth and ωz < ωugb.

In order to achieve maximum phase margin, the value of C1 and C2 have

to be chosen carefully. To calculate the expression of φM max we take the

first order derivative of Eq. 4.3 with respect to ωugb and equate the result to

zero, such that:

ωugb = ωz

√
C1

C2

+ 1 (4.4)

24

Subsequently,

φM max = arctan(

√
C1

C2

+ 1)− arctan(
1√

C1

C2
+ 1

) (4.5)

The design procedure of the loop filter is as follows:

1. Choose desired bandwidth ωugb, phase margin φM and resistor R ac-

cording to specification. Then calculate the Kc from Eq. 4.6:

Kc =
C1

C2

= 2(tan2(φM) + tan(φM

√
tan2(φM) + 1)) (4.6)

2. From Eq. 4.4 we have:

ωz =
ωubg√
C1

C2
+ 1

(4.7)

C1 =
1

ωzR
;C2 =

C1

Kc

; (4.8)

3. From aforementioned equations, we can determine the value for ICP :

ICP =
2πC2

KV CO

· ω2
ugb ·

√
ω2
p3 + ω2

ugb

ω2
z + ω2

ugb

(4.9)

It is vital to analytically confirm that the PLL will indeed lock when there

is a frequency step applied at the input. Without loss of generality assume

there is input frequency step ωin = ∆ω
s

, then Φin(s) = ∆ω
s2

. First, obtain the

closed loop transfer function:

HPLL(s) =
LG(s)

1 + LG(s)
(4.10)

Lastly, define steady state error transfer function:

Φerror(s)

Φin(s)
= He(s) = 1−HPLL(s) =

1

1 + LG(s)
(4.11)

25

Applying the final value theorem, we get the steady state error to be:

ΦFstep
ss error = lim

s→0
s ·He(s) · Φin(s) (4.12a)

= lim
s→0

s · 1

1 + LG(s)
· ∆ω

s2
(4.12b)

= lim
s→0

[RC1C2s
2 + (C1 + C2)s]∆ω

RC1C2s3 + (C1 + C2)s2 +KV COKPDs+ 1
(4.12c)

=
0

1
(4.12d)

= 0 (4.12e)

Eq. 4.12(a) to 4.12(e) indicate that the PLL we have designed can eliminate

any steady state phase error and relock when a frequency step is applied at

the input [8].

4.3 CPLL Noise-Analysis

The following equations describe the noise-transfer functions of the CPLL

and are used in determining the optimal PLL BW.

NTFIN(s) =
ΦOUT (s)

ΦIN(s)
=
N · LG(s)

1 + LG(s)
(4.13)

NTFDIV (s) = NTFIN(s) (4.14)

NTFCP (s) =
ΦOUT (s)

iCP (s)
=

2π

ICP
·NTFIN(s) (4.15)

NTFR(s) =
ΦOUT (s)

vR(s)
=

KV CO

s

1 + LG(s)
(4.16)

SΦIN
ΦOUT

= SΦIN
|NTFIN(s)|2 (4.17)

SiCP
ΦOUT

= SiCP
|NTFCP (s)|2 (4.18)

SvRΦOUT
= SvR |NTFR(s)|2 (4.19)

SΦV CO
ΦOUT

= SΦV CO
|NTFV CO(s)|2 (4.20)

GLPF (s) =
1

1 + s
ωLPF

(4.21)

26

H(s) =
KPDKV CO

s
ωLPF

+ s+KPDKV CO

(4.22)

s2 + 2ζωns+ ω2
n (4.23)

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(4.24)

ωn =
√
ωLPFK, ζ =

1

2

√
ωLPF
K

(4.25)

ζ =

√
2

2
, =⇒ K =

ωLPF
2

(4.26)

Figure 4.3: Loop-Gain and Phase-Margin Response

Figure 4.4: CPLL Output Noise Model

27

Figure 4.5: CPLL Output Noise Simulation

Figure 4.3 [8] shows the typical loop-gain and phase-margin plot for a

CPLL. Recall that phase-margin is the difference in phase between −180 ◦C

and the phase value corresponding to ωugb. Figure 4.4 shows the typical

noise-profile for each component in a CPLL based Integer-N synthesizer [12].

Figure 4.5 shows the noise-transfer function characterization for the PLL

using the above equations implemented in MATLAB. The beauty of this

analysis is that it accurately predicts what the noise-profile for the PLL will

look like so that the designer can determine the BW specifications for the

PLL from which the rest of the Loop-Filter and VCO specifications can be

determined.

28

CHAPTER 5

PLL BASED CLOCK GENERATOR

5.1 PFD

Figure 5.1 shows the NAND PFD implementation used in the design of the

PLL used in this thesis. In Figure 5.2 the transistor-level implementation for

each of the circuits shown in Figure 5.1 are displayed with the appropriate

sizing.

����

����

��

��

���

�	�����

����

��

��

Figure 5.1: NAND PFD Implementation

29

8µm

0.18µm

4µm

0.18µm

8µm

0.18µm
8µm

0.18µm

12µm

0.18µm

12µm

0.18µm

12µm

0.18µm

8µm

0.18µm

8µm

0.18µm

8µm

0.18µm

8µm

0.18µm

4µm

0.18µm

8µm

0.18µm

16µm

0.18µm

16µm

0.18µm

16µm

0.18µm

8µm

0.18µm

8µm

0.18µm

8µm

0.18µm

16µm

0.18µm

Figure 5.2: PFD Transistor Level Circuit Blocks

One of the major challenges during the design of an efficient PFD circuit is

the “dead-zone” problem. “Dead-zone” is refers to the region wherein there

is no output for inputs. It is equal to the sum of the on-times of the pull-

up/pull-down switches in the charge-pump and is typically a problem because

the presence of dead-zone causes the PLL to operate in “open-loop” when the

phase-error is zero. One method to overcome the dead-zone issue is to ensure

that the PFD generates equal UP/DN pulses whose width is larger than the

switch-on time of the CP switches. The NAND-PFD implementation is one

example of a PFD circuit where the dead-zone issue is avoided. The D-Flip-

Flops are designed using cross-coupled NAND-latches and even though this

uses up a lot of on-chip area and burns a lot of power in the PFD circuit, the

large delay in UP/DN feedback paths allows the pulse-widths to be just larger

than the switch-on time of the PMOS/NMOS transistors that act as the pull-

up/pull-down switches in the CP. The maximum operating frequency of a

PFD circuit is determined by the reset path delay such that Fmax <
1

2TRST
.

In the case of a NAND PFD circuit, TRST = 2TNAND2 + TNAND4, where we

intentionally design the NAND4 circuit to have a high delay to minimize the

reset period.

30

5.2 CPs

Figure 5.3 shows the CP implementation used in the design of the PLL used

in this thesis. The transistor-level implementation is also displayed with the

appropriate sizing.

�� ��

8µm

0.18µm

8µm

0.18µm

8µm

0.18µm
8µm

0.18µm

����

ITAIL = 3mA

M0

M2

M1

M3

���

��

��

i��

���

���

��

��
i����

���

���

��

��

��

��

16µm

0.18µm

8µm

0.18µm

16µm

0.18µm

16µm

0.18µm

16µm

0.18µm

8µm

0.18µm

8µm

0.18µm

8µm

0.18µm

M0

M1

M2

M3

M4

M5

M6

M8

i��

Figure 5.3: Bootstrapped Charge-Pump Implementation

The charge-pump circuit needs to be carefully designed in because it is

the main contributor to low-frequency PLL noise. The current mismatch in

the charge-pump leads to static-phase offset and causes ripples in the control

voltage, thereby creating a ‘jittery’ VCO output clock. Thus, it is important

31

to design a CP circuit that has equivalent pull-up and pull down currents and

equal on-time for the PMOS/NMOS switches. Though several CP architec-

tures exist, a ‘Bootstrapped’ CP design is used in the clock-generating PLL

studied in this thesis. The advantage of the Bootstrapped architecture is

that it allows differential current steering, it can operate with low-swing UP,

DN signals. It is thus very prominent in PLLs that use high-speed reference

clock signals. The term ‘bootstrapped’ are appropriate because the voltage

following op-amp between the pull-up and pull-down current networks en-

sures that an equal voltage level is maintained on either ends such that the

pull-up current is equal to the pull-down current.

5.3 LF

C1 = 72.766pF

R = 5kΩ

C2 = 561.27fF

��

Figure 5.4: Loop-Filter Implementation

Loop-Filter is designed using the design-procedure described in Chapter 4 in

the CPLL design procedure algorithm. The algorithm was implemented in

MATLAB to choose the values shown above in Figure 5.4.

32

5.4 VCOs

����� ����

CL0=100fF CL1=100fF CL2=100fF

5µm

0.18µm

12µm

0.18µm

12µm

0.18µm

5µm

0.18µm

12µm

0.18µm

3µm

0.18µm

12µm

0.18µm

5µm

0.18µm

10µm

0.18µm

24µm

0.18µm

M0

M1

M2

M3

M4

M5

M6

M7

�����

����

M8 M9

���

12µm

0.18µm
�����

M8 M9

����

3µm

0.18µm

���

Figure 5.5: Single-Ended 3-Stage Ring Oscillator

A 3-Stage ring-oscillator is implemented with a driver inverter (as shown

in Figure 5.5 with full transistor-level sizing) whose size is fixed such that

the input capacitance seen by the divider remains constant while the VCO

frequency is changing. M8 and M9 act as the pull-up resistors, i.e. they are

PMOS transistors that are biased to be in triode/resistive region. In order

to ensure the oscillation starts, the gate of M9 is driven to ground while gate

of M8 is driven by the control voltage which alters the phase-delay between

the ring to vary to the oscillation frequency.

33

5.5 Divider

���

��

�

�

�

�

���

DFF

����������

� �

�

���

M0

M1 M7

M8 M10 M11

M5M3M2

M6

M9

4µm

0.18µm

8µm

0.18µm

8µm

0.18µm

4µm

0.18µm

4µm

0.18µm

8µm

0.18µm

4µm

0.18µm

4µm

0.18µm

8µm

0.18µm

4µm

0.18µm

8µm

0.18µm

Figure 5.6: TSPC Based D Flip-Flop Architecture

����

DFF

����������

�

DFF

����������

�

DFF

����������

� ����

Figure 5.7: Divider Architecture

The divider circuit consists of 3-DFFs that are connected together in the

manner shown in Figure 5.7 to realize a divide-by-8 operation. Division in

binary is essentially a left-shift operation; thus, tying the outputs of each

DFF to clock input of the next while connecting the input to the inverse of

output in a feedback ensures a left-shift operation. Since the PLL output

frequency is in the GHz range, the DFF design is very critical. To realize a

fast DFF with low clock-skew and delay a TSPC (True-Single Phase Clock)

architecture (as shown in Figure 5.6) is employed. The basic idea is that

when CLK is high transistors M1 and M9 are ON/OFF respectively and vice

versa, thereby preserving the state except when CLK goes from low to high,

in which case the output follows the data-input signal denoted by D.

34

CHAPTER 6

BEHAVIORAL LEVEL SIMULATION

6.1 Why Behavioral Modeling?

Traditionally SPICE is used as a common simulation engine to simulate

analog/mixed-signal circuit. However, when simulating large networks the

simulation times can become extremely long, thereby limiting the allowed

design revisions to the circuit designer. It is very tedious to describe the

behavior of a circuit using SPICE unless the complete physical transistor-

level structure of the circuit is known to the designer. Furthermore, the

SPICE simulation process is very technology dependent in that with tech-

nology scaling the SPICE models need to be updated as the older models

become obsolete and invalid for accurate simulation. The aforementioned de-

sign process has remained virtually the same over the past few decades and

even though the digital design synthesis process has progressed significantly

by incorporating electronic system-level (ESL) design automation techniques,

the mixed signal design process is very slow, laborious and therefore error-

prone. Digital design engineers, though working with millions of transistors,

have been able to automate the design flow, but analog designers have been

unable to do so even though most analog circuits only consist of tens of

thousands of devices.

6.2 Why Verilog-AMS?

Verilog-AMS is a high-level Hardware Description Language (HDL) used to

describe the structure and behavior of analog and mixed-signal systems. It

is an extension to the IEEE 1364 Verilog HDL standard and is very power-

ful in providing fast prototyping capabilities for mixed-signal systems. The

35

key advantage of circuit modeling using Verilog-AMS is that it provides a

single language and simulator ecosystem that can be shared between ana-

log, digital and system-level designers. Verilog-AMS leverages the superior

speed and capacity offered by traditional Verilog and allows event-driven

capabilities within analog model simulation, making it an attractive choice

when simulating highly complex mixed-signal circuits such as PLLs, CDRs,

ADCs, and DACs. The only pitfall of using Verilog-AMS is that it cannot re-

place traditional transistor level SPICE simulation completely as it does not

have synthesis capabilities like its digital counterpart Verilog. However, at

the onset of the design phase, using Verilog-AMS for circuit modeling is very

powerful for a mixed-signal circuit/system design engineer as it offers fast

prototyping/verification for behavioral level simulation, thereby expediting

the time-to-market for the system.

Verilog-AMS combines both Verilog-D and Verilog-A including a few ad-

ditional mixed-signal constructs to provide a HDL language capable of per-

forming truly mixed-signal simulation. Cadence has been the front-runner

in promoting the language making it an industry standard, and has led the

majority of the advancement efforts ever since its release in 2003. The power

of Verilog-AMS simulator in Cadence Virtuoso is that it can perform co-

simulation among behavioral analog/digital blocks described by correspond-

ing Verilog-A and Verilog-D models respectively as well as transistor-level

circuit blocks by running the Spectre simulation. When a circuit consist-

ing of transistor-level circuit elements, analog behavioral modules written

in Verilog-A and digital behavioral modules written in Verilog-D is simu-

lated, the AMS simulator in Cadence partitions the testbench into analog

and digital components. The simulator then merges the analog simulation

results from Spectre with the digital simulation results from NC-SIM and

the resulting output is plotted just like that in the case of traditional Spectre

simulation [4].

6.3 Basic Verilog-A/AMS Syntax

A typical skeleton of a Verilog-AMS code is shown in Figure 6.1 where the

main components of a Verilog-A/AMS code are listed.

36

Figure 6.1: Verilog-AMS Sample Code

In the first line of the sample code shown in Figure 6.1 [4], we include

the ‘disciplines.vams’ header file. This file is a collection of physical signal

types that are commonly used in Verilog-AMS and are thus referred to as

‘natures’. Electrical disciplines consist of ‘voltages’ and ‘currents’ and are

used most commonly during mixed-signal system modeling where ‘voltage’

and ‘current’ are ‘natures’. Every Verilog-AMS component is defined as a

‘module’ and modules are the basic building blocks of any given Verilog-

AMS files as they describe the component being modeled. Ports are the

points where connections are made to the given component. Every port is

required to have a direction associated with it, and by default in Verilog-

AMS language there are three types of ports: input, output and inout.

The keyword electrical signifies that the signals associated with the ports

described as electrical are of ‘voltage’ and ‘current’ natures. Additionally,

analog is the keyword after which point the Verilog-AMS compiler starts

actual modeling as the logic/process starts after the ‘analog begin’. Finally,

every Verilog-AMS component code should end with the word endmodule

as it signifies the point at which the compiler stops parsing of the code [4].

37

6.4 PLL Simulation in AMS Using Cadence Virtuoso

6.4.1 PFD+CP

1. Create a new library and name it ‘PLLBehav’. Now within the Library

Manager window, click on File→ New → Cell V iew and call the new

VerilogAMS file pfd. Choose the ‘VerilogAMSText’ option from the

drop-down Menu as shown in Figure 6.2. Click ‘OK’ and a text editor

window will open up.

2. Figure 6.3 shows the ‘PFD’ code used in the design. The PFD is

a completely digital circuit; thus, this code is essentially in Verilog-

D syntax where the UP, DN signals are generated by comparing the

rising edges of the flip-flops that have a CLK signal of FREF and FDIV

respectively.

Figure 6.2: PFD Verilog-AMS Code Setup

38

Figure 6.3: PFD Verilog-AMS Code

3. Once you have written the code as shown in Figure 6.4, save and exit

the text editor. A pop-up window like Figure 6.4 will open up. Click

‘Yes’ to generate the symbol for the ‘pfd’.

Figure 6.4: PFD Verilog-AMS Symbol

4. Within the ‘PLLBehav’ library you created above, click on File →
New → Cell V iew and call the new schematic pfd tb as shown in

Figure 6.5. Double-click on this cell-view and a schematic window will

open up.

39

Figure 6.5: PFD Verilog-AMS Schematic

5. In order to create a circuit in the schematic editor, we need to add

‘instances’ or circuit-components like transistors, supply nets and wires.

To add an instance press I from your keyboard. This will open up a

‘Component Browser’. Choose the ‘PLLBehav’ library and within it

select the symbol for ‘pfd’. Repeat the same process to add the ‘vpulse’

components found in the ‘analogLib’ library. Make sure the ‘fref’ and

‘fdiv’ sources have a 100ps delay between each other. Figure 6.6 shows

what your test-bench schematic should look like.

Figure 6.6: PFD Verilog-AMS Testbench

6. When simulating Verilog-AMS files in Cadence Virtuoso, we need to

create a ‘config’ file whose job is to link the analog test-bench sources

and the verilog simulation engines together. In order to do so, within

the ‘pfd test’ cell-view click on File → New → Cell V iew and call

the new config pfd test as shown in Figure 6.7. Double-click on this

cell-view and a New Configuration window will open up. Click on ‘Use

Template’, choose the AMS template and configure the setup as shown

in Figure 6.8(a). Finally the configuration setup will look like that

40

shown in Figure 6.8(b), so click on ‘Save’ and press ‘Open’. Now a

window like the schematic view will open up but this time it will have

config in the title.

Figure 6.7: Config File Creation

(a) (b)

Figure 6.8: Config File Setup

7. We will simulate our circuits using Cadence AMS Simulation engine.

AMS is capable of simulating Verilog-AMS as well as Spectre com-

ponents. Spectre is a variant of HSPICE developed by Cadence and

provides greater accuracy, speed and flexibility especially when dealing

with mixed signal circuits.

8. Make sure you first ‘Check and Save’ your config file and click on

Launch→ ADE to open up the ADE window.

41

9. Click on Setup→ Simulator to make sure the Simulator is set to AMS.

Select the output nodes and choose a transient simulation for 100ns as

shown in Figure 6.9.

Figure 6.9: PFD Verilog-AMS ADE Outp Window

10. In the final output waveform shown in Figure 6.10 it is clear that the

PFD is functioning correctly. Notice that the UP,DN pulses are ap-

propriately modulated as ‘REF’ and ‘DIV’ signals diverge from one

another.

42

Figure 6.10: PFD Verilog-AMS Simulation Output

11. Within the ‘PLLBehav’ library follow the steps described earlier to

create a model for the CP as shown in Figure 6.11 and save the file as

‘cp’.

Figure 6.11: CP Verilog-AMS Code

12. Figure 6.12 shows the ‘PFD+CP’ testbench schematic. Create a new

schematic named ‘cp test’ as well as a config file following the same

procedure as the PFD. When simulating using the ADE AMS simulator

follow the procedure similar to that shown in Figure 6.9.

43

Figure 6.12: PFD+CP Verilog-AMS Testbench

13. One of the powerful advantages of behavioral modeling is that we can

easily alter values of design variables to modify the functionality of

a block. In the ‘config’ testbench file if you click on the ‘CP’ block

and press q, a window as shown in Figure 6.13 will appear. Enter the

appropriate value of charge-pump current as per the design objectives.

Figure 6.13: CP Verilog-AMS Testbench Variable Setup

14. The purpose of the charge-pump is to convert the digital PWM signal

outputs from the PFD into a current. As seen in the code and from

the final output waveform shown in Figure 6.14, it is clear that the

44

‘PFD+CP’ is functioning correctly. When UP is high the current the

pull-up current source is on and when DN is high the pull-down current

source is on.

Figure 6.14: PFD+CP Verilog-AMS Simulation Output

6.4.2 LF

We use the analog loop-filter as shown in Figure 5.4.

6.4.3 VCO

1. The VCO is the most critical component of the PLL we try to model

using Verilog-AMS because it allows us to behaviorally estimate the

jitter specifications. Within the ‘PLLBehav’ library follow the steps

described earlier to create a model for the VCO as shown in Figure

6.15 and save the file as ‘vco’. Only the white-noise jitter is considered

in this design and it is modeled by a Gaussian white-noise probability

distribution function.

45

Figure 6.15: VCO Verilog-AMS Code

2. Figure 6.16 shows the ‘VCO’ testbench schematic. Create a new schematic

named ‘vco test’ as well as a config file following the same procedure as

the PFD. When simulating using the ADE AMS simulator follow the

procedure similar to that shown in Figure 6.9.

Figure 6.16: VCO Verilog-AMS Testbench

3. Just like in the case of the ‘CP’ in the ‘config’ testbench file, if you

click on the ‘VCO’ block and press q, a window as shown in Figure

6.17 will appear. Enter the appropriate value VCO design parameters

as per the design objectives.

46

Figure 6.17: VCO Verilog-AMS Testbench Variable Setup

4. The VCO circuit is supposed to generate a periodic square-wave output

at the desired frequency of interest (as a function of the control voltage)

with a certain jitter level which in our case is chosen to be 2% Unit-

Interval (UI) of period. From the final output waveform shown in

Figure 6.18 it is clear that the ‘VCO’ is functioning correctly.

47

Figure 6.18: VCO Verilog-AMS Simulation Output

6.4.4 Divider

1. Divider is essential when designing a clock-generating circuit as we need

to scale down the VCO output clock to the reference frequency level

such that the two signals can be compared. Within the ‘PLLBehav’

library follow the steps described earlier to create a model for the Di-

vider as shown in Figure 6.15 and save the file as ‘div’. Figure 6.19

shows the code to implement the divider in Verilog.

48

Figure 6.19: Divider Verilog-AMS Code

2. Figure 6.20 shows the ‘Divider’ testbench schematic. Create a new

schematic named ‘div test’ as well as a config file following the same

procedure as the PFD. When simulating using the ADE AMS simulator

follow the procedure similar to that shown in Figure 6.9.

Figure 6.20: Divider Verilog-AMS Testbench

3. Just like in the case of the ‘CP and VCO’, in the ‘config’ testbench file

if you click on the ‘Divider’ block and press q, a window as shown in

Figure 6.21 will appear. Enter the appropriate value of divide ratio as

per the design objectives.

49

Figure 6.21: VCO Verilog-AMS Testbench Variable Setup

4. The divider circuit is supposed to generate a periodic square-wave out-

put that is fraction of the VCO output frequency. From the final output

waveform shown in Figure 6.22 it is clear that the ‘Divider’ is function-

ing correctly in that it divides the VCO output signal by a factor of

8.

Figure 6.22: Divider Verilog-AMS Simulation Output

50

6.4.5 Complete PLL Analysis with Jitter

1. Create a new schematic within the ‘PLLBehav’ library and name it

‘PLL’. Your schematic should look that shown in Figure 6.23. Now

create a config file for this setup and at the end your configuration

window should look like Figure 6.24.

Figure 6.23: PLL Verilog-AMS Testbench

Figure 6.24: PLL Verilog-AMS Config Setup

2. Using the steps described earlier in this chapter, configure your ADE

window as shown in Figure 6.25 and simulate the circuit.

51

Figure 6.25: PLL Verilog-AMS ADE Setup

3. The PLL circuit outputs are shown in Figure 6.26. It is clear that

the PLL achieves lock within the first 100ns because in the testbench

we provide an initial condition of Vctrl = 0.9V and keep the currents

at the loop-filter capacitors at an initial condition of 0A. These initial

conditions are provided to ensure that the simulation time is small.

From the final output waveforms it is clear that the ‘PLL’ is indeed

functioning correctly.

Figure 6.26: PLL Verilog-AMS Simulation Output

52

4. To simulate the jitter at the VCO output during lock-condition, se-

lect the vout waveform, click on Measurements → EyeDiagram and

configure the setup as shown in Figure 6.27. Your final output should

look like that shown in Figure 6.27 once you click on ‘Plot Eye’. The

simulated edge-to-edge jitter is 0.96ps which is extremely good. How-

ever, it is important to note that this number is not realistic as we

have only accounted for random jitter caused by white-noise and the

model is only behavioral so any transistor-level non-idealities are not

captured. Nevertheless, behavioral modeling is very powerful in per-

forming rapid prototyping of the PLL circuit elements and performs a

system level noise/timing budget for the design before delving straight

into transistor level design.

Figure 6.27: PLL Verilog-AMS Jitter

53

CHAPTER 7

TRANSISTOR LEVEL SIMULATION

7.1 What is SPICE?

Simulation Program with Integrated Circuit Emphasis (SPICE) is a general-

purpose circuit simulation program that was originally developed at the Uni-

versity of California-Berkeley to serve as a numerical circuit solver that is

capable of performing DC, Transient, as well as AC analyses for electronic cir-

cuits. The simulator in general is capable of performing the aforementioned

analyses on circuits containing resistors, capacitors, inductors, independent

voltage and current sources, dependent sources, lossless and lossy transmis-

sion lines, switches, uniform distributed RC lines, and the five most common

semiconductor devices: diodes, BJTs, JFETs, MESFETs, and MOSFETs.

Many variants of SPICE have been developed since with the most popular

ones being HSPICE and Spectre.

7.2 SPICE vs. Spectre

The Spectre circuit simulator is a variant of SPICE that was developed by

Cadence to simulate analog and digital circuits at the differential equation

level. Although at a high-level the Spectre and SPICE circuit simulators are

quite similar in terms of functionality, Spectre directly is not dependent on

SPICE and the two simulators also have differing syntax. The parent algo-

rithms for both are primarily the same in that both use the Modified Nodal

Analysis (MNA) method involving implicit integration methods, Newton-

Raphson, and direct matrix solution, but the source codes are not borrowed

from original open-source SPICE. Spectre is optimized for faster speed as well

accuracy compared to SPICE and is thus much more reliable and accurate.

54

7.3 Transient, PSS and PNoise Simulation Overview

Transient response is the time-domain simulation response for a given circuit

and is used to study the time-domain behavior of voltages and currents at

any given node in a network. It is a powerful analysis method to study

amplifier circuits; however, in the case of oscillators it falls short in being

able to accurately characterize the harmonic behavior of the outputs. Thus,

to study oscillator, mixer circuits or for that matter any circuit that has a

time-varying or periodic nature, the Periodic Steady State (PSS) analysis is

the preferred method of simulation.

PSS is a large-signal analysis tool and is powerful in accurately determin-

ing the approximate small-signal period of the circuit being analyzed. It

uses the Iterative Shooting Newton method to algorithmically determine the

fundamental frequency of the circuit/system based on the input-source fre-

quency excitation. In PSS, a circuit is evaluated for one period of the target

frequency and this period is dynamically adjusted until all node voltages and

branch currents fall within a specified tolerance level. Thus, when simulating

large networks the PSS simulation often fails to converge and the time-step

needs to be manually adjusted. It is also possible that the simulator is just

not robust enough for PSS to converge if the time-step is made too small.

The first step in a PSS simulation is to perform a transient simulation on the

network from time t = 0 to t = 1
ffund

. The next step is then to adjust the

time-step adaptively such that the voltage and currents at stabilize within

the threshold levels set for the start and stop times of the shooting interval.

Figure 7.1 further describes this phenomenon graphically. Note: It is critical

to remember that PSS simulation is only valid, and thus will only work, if

the circuit/system being analyzed is periodic as the fundamental assumption

of PSS analysis is periodicity.

Figure 7.1: PSS Simulation Algorithm

55

As discussed in earlier chapters, when studying oscillators and PLL circuits

the phase-noise is a very important parameter to calculate/simulate. Phase

noise is the most significant source of noise in oscillators, and since it is

spectrally centered around the fundamental oscillation frequency, methods

like filtering cannot eliminate it. PNoise analysis engine within Spectre is

equipped to predict the phase-noise, as well as the total-noise profile which

includes thermal, flicker and shot noise. Once the PSS simulation for the

circuit being analyzed has been completed, the PNoise analysis can be started

and it computes the frequency convention, noise-folding and aliasing effects

for the circuit/system.

7.4 PLL Simulation in Spectre Using Cadence Virtuoso

This section presents a detailed step-by-step tutorial on conducting transistor

level simulations using Cadence Virtuoso’s Spectre circuit simulator engine.

First, an inverter circuit used inside the PFD is described to illustrate the

basic steps required in creating a new schematic and testbench. Second, an

in-depth VCO simulation guide illustrates the steps involved in performing

PSS and PNoise simulations. Lastly, the full PLL consisting of the PFD,

CP, Filter, VCO and Divider blocks is simulated at the transistor level along

with the various steps involved in validating lock condition, noise profile and

transient response.

7.4.1 Creating a New Schematic

1. Create a new library and name it PLL. Now within the Library Man-

ager window click on File → New → Cell V iew and call the new

schematic inv. Double-click on this cell-view and a schematic window

will open up.

2. In order to create a circuit in the schematic editor we need to add

‘instances’ or circuit-components like transistors, supply nets and wires.

Since we use an inverter as an example, recall that we need one NMOS

and one PMOS transistor; thus, to add an instance press I from your

keyboard. This will open up a ‘Component Browser’. Choose the

56

‘analogLib’ library. You will notice all the components housed within

the ‘tsmc18rf’ library listed. The key trick to know is that you can

search for a specific component from the ‘Filter’. Search for ‘nmos2v’

and follow the steps outline in Figure 7.2.

(a)

(b)

Figure 7.2: Inserting NMOS Transistor on Schematic

57

3. Similarly, following the same steps as (2), add a PMOS transistor to

your schematic by choosing the ‘pmos2v’ transistor from the ‘tsmc18rf’

library. Your schematic should now look like Figure 7.3.

Figure 7.3: PMOS Transistor

4. In order to add wires to your schematic, press W from your keyboard

and make appropriate connections across all transistor elements. Figure

7.4 demonstrates the steps involved in labeling wires with a circuit

schematic. This will come in very handy during simulation, especially

when dealing with circuits with several components.

(a)

(b)

Figure 7.4: Inserting Wire Names on Circuit

58

(a)

(b)

(c)

Figure 7.5: Creating Pin Names

59

5. It is often advisable to add ‘Pin’ names to each of the IO terminals

in a circuit. Thus, to add pins to your schematic press P from your

keyboard or click on the pin symbol as shown in Figure 7.5 and make

appropriate connections across all IO ports. Figure 7.5 demonstrates

the steps involved in labeling wires with a circuit schematic.

Note: The ‘VDDA’ and ‘GNDA’ pins should be chosen to be ‘InputOut-

put’ when selecting the ‘Direction’ during pin creation.

6. Finally your schematic should look like Figure 7.6. Now click on ‘Check

and Save’ icon (as shown in Figure 7.7) in the toolbar so that you can

move onto the next step of creating a symbol for the inverter schematic.

Figure 7.6: Inverter Schematic

Figure 7.7: Check and Save

60

7.4.2 Creating a Symbol

1. When dealing with large circuits its often advisable to generate symbols

for each sub-circuit in the design and perform all simulations by plac-

ing the corresponding symbols in a testbench. Figure 7.8 summarizes

the steps involved in generating a symbol from the inverter schematic

designed in the previous section.

(a)

(b)

Figure 7.8: Generating Symbol from Schematic

2. Once you create the symbol it will pop up in a new window. By de-

fault Cadence will generate a rectangular symbol, but you can edit the

61

generated symbol as per your needs. In our case we will edit the sym-

bol shape to make it resemble the traditional inverter symbol used in

conventional system design (as shown in Figure 7.9). To edit the shape

use the ‘Edit Pallete’ as shown in Figure 7.9(a) via a red highlighted

box.

(a)

(b)

Figure 7.9: Designing Schematic Symbol

7.4.3 PFD, CP, Filter, VCO and Divider Schematics

1. Using the steps mentioned in the subsections above, create a new

schematic as well as symbols for ‘nand2’, ’nand3’ and ‘nand4’ circuits

respectively. Make sure you change the symbol shapes for the nand

circuits to the conventional symbols shapes.

62

2. Create a new schematic and save it as ‘pfd’. Place the ‘nand2’,‘nand3’,‘nand4’

and ‘inv’ symbols in the schematic and connect the four components

in the NAND-PFD form as shown in Figure pfd.

3. Create a new schematic and save it as ‘bias amp’. Now recreate the

biasing op-amp that is part of the charge-pump schematic shown in

Figure 5.3.

4. Create new schematic and save it as ‘cp’. Place the biasing amplifier

created in the previous step and recreate the charge-pump circuit shown

in Figure 5.3 from section 5.2.

5. Create a new schematic and save it as ‘filter’. Recreate the loop-filter

circuit shown in Figure 5.4 from section 5.3.

6. Create a new schematic and save it as ‘vco’. Recreate the VCO circuit

shown in Figure 5.5 from section 5.4.

7. Create a new schematic and save it as ‘dff’. Now recreate the biasing

D Flip-Flop that is part of the divider schematic shown in Figure 5.6.

from section 5.5.

8. Create a new schematic and save it as ‘div’. Recreate the Divider

circuit shown in Figure 5.7 from section 5.5.

7.4.4 Creating a Testbench

Create a new schematic following the steps outlined in the earlier sections

and name it ‘Tb pfd cp filter’. This will be the testbench schematic from

which we will run all our simulations to test that the PFD, CP and the

Filter are functioning as expected. Insert ‘vdc’, ‘gnd’ and two ‘vpulse’ from

the Component Library by navigating to the ‘Analog Parts’ library. Figure

7.10 shows the initial conditions to be set for the voltage sources ‘vdc’, ‘vpulse

for Vref’ and ‘vpulse for Vdiv’, respectively and Figure 7.11 shows what your

testbench schematic should look like at the end of this step.

63

(a) (b)

(c)

Figure 7.10: Sources in PFD+CP+Filter Testbench

64

Figure 7.11: PFD+CP+Filter Testbench

Now create a new schematic and name it ‘Tb vco’. This will be the test-

bench schematic from which we will run all our simulations to test that the

VCO is functioning as expected. Insert ‘vdc’, ‘gnd’ and two ‘vdc’ from the

Component Library by navigating to the ‘Analog Parts’ library. The initial

conditions to be set for VDD are same as shown in Figure 7.10(a), while for

the second ‘vdc’ source the DC voltage should be set to a parametric variable

‘vctrl’. Figure 7.12 shows what your testbench schematic should look like at

the end of this step.

Figure 7.12: VCO Testbench

Finally, create a new schematic and name it ‘Tb div’. This will be the

testbench schematic from which we will run all our simulations to test that

the VCO is functioning as expected. Insert ‘vdc’, ‘gnd’ and a ‘vpulse’ from

the Component Library by navigating to the ‘Analog Parts’ library. The

initial conditions to be set for VDD are same as shown in Figure 7.10(a),

while for the second ‘vpulse’ source they are shown in Figure 7.13. Figure

7.14 shows what your testbench schematic should look like at the end of this

step.

65

Figure 7.13: Vpulse configuration for Divider

Figure 7.14: Divider Testbench

66

7.4.5 Circuit Simulation Using Spectre

7.4.6 Launching ADE

1. We will simulate our circuits using Cadence Spectre Simulation engine.

Spectre is a variant of HSPICE developed by Cadence and provides

greater accuracy, speed and flexibility especially when dealing with

mixed signal circuits.

2. Make sure you first ‘Check and Save’ your testbench schematic and

click on Launch → ADE to open up the ADE window as shown in

Figure 7.15.

3. Click on Setup → Simulator to make sure the Simulator is set to

Spectre as shown in Figure 7.15.

(a)

(b)

Figure 7.15: Simulating Circuit with ADE

67

4. Now click on Setup→Model Libraries to configure the Spectre model

files. Figure 7.16 shows the path you need to browse to in order to get

the correct model files for the PDK. You most likely would not need to

manually type the model file paths as Virtuoso should take care of it,

but in case you do the path is listed.

(a)

(b)

Figure 7.16: Configuring Model Files

7.4.7 PFD+CP+Filter ADE Setup

1. Transient analysis of any circuit is key to study the time domain be-

havior. We will simulate the PFD+CP+Filter testbench and observe

the resulting plots for ‘UP’, ‘DN’, signals to ensure that the PFD is

functioning properly.

68

2. In ADE window click on the AC,DC,Tran icon on the right pane.

Choose the ‘tran’ simulation type, pick the stop time to be 100ns and

choose ‘moderate’ in the ‘Accuracy details’.

3. Click on V ariables → Copy From Cellview and insert the filter pa-

rameters as shown in Figure 7.17.

4. Click on the green ‘Play’ button to run the simulation and the plots

should automatically pop up in a new output window. If you right click

on the name of the signal listed in the left panel, you can navigate to

options that change the thickness and color of the output waveform.

Additionally, right-clicking anywhere on the output window and navi-

gating to ‘Graph Properties’ allows you to alter the background color

as well.

Figure 7.17: PFD+CP+Loop-Filter Testbench ADE Window

5. Your final output waveform should look like that shown in Figure 7.18.

Notice that the UP,DN pulses are appropriately modulated as ‘REF’

and ‘DIV’ signals diverge from one another; thus, the PFD is indeed

functioning correctly.

69

Figure 7.18: PFD Spectre Simulation Output

7.4.8 VCO ADE Setup

Recall from the earlier sections that for oscillators it is critical to perform

Transient as well as PSS simulations. We will therefore simulate the VCO

testbench and observe the resulting transient and PSS simulation outputs

for ‘Vout’ signals to ensure that the VCO is functioning properly. Addition-

ally, since the VCO is the major noise contributor to the PLL, we will also

characterize the VCO Phase-Noise by performing PNoise simulation on the

testbench.

1. In ADE window click on the AC,DC,Tran icon on the right pane.

Choose the ‘tran’ simulation type, pick the stop time to be 4µs and

choose ‘moderate’ in the ‘Accuracy details’.

2. Click on V ariables → Copy From Cellview and insert the PMOS,

NMOS width and ‘vctrl’ parameters as shown in Figure 7.19.

3. Click on the green ‘Play’ button to run the simulation, and the plots

should automatically pop up in a new output window. If you right-click

on the name of the signal listed in the left panel, you can navigate to

options that change the thickness and color of the output waveform.

Additionally, right-clicking anywhere on the output window and navi-

gating to ‘Graph Properties’ allows you to alter the background color

as well.

70

Figure 7.19: VCO Testbench ADE Window

4. Your final output waveform should look like that shown in Figure 7.20.

Notice that the output node voltage ‘vout’ is oscillating thus the VCO

is indeed functioning correctly.

Figure 7.20: VCO Transient Simulation Output

5. For a VCO, a key figure-of-merit is the control voltage tuning range.

Thus, we have to perform a parametric analysis in order to observe

the change in ‘frequency’ as well as KV CO as a function of ‘Vctrl’. In

order to do so in the ADE setup window click on Tools→ Parametric

Analysis and a window like Figure 7.21 should pop-up. Within the

parametric analysis window, when you double-click on the variable box,

a drop-down list will show up from which you should pick ‘vctrl’.

71

Figure 7.21: Vctrl Parametric Analysis Setup

To run the parametric analysis, click on the ‘Play’ within the Parametric-

Analysis window. This setup is basically going to run the transient

simulation To−From
StepSize

times by varying the control-voltage input to the

VCO.

6. To plot frequency vs. Vctrl and KV CO vs. Vctrl we need to use the

‘Calculator’ tool in-built within ADE. Click on Tools → Calculator.

The Calculator window as shown in Figure 7.22 will open up and within

it now you should select ‘Vt’ from the toolbar. The schematic will

open up, so within the schematic select the ‘vout’ node. From the

‘Function-Panel’ within the Calculator window choose the ‘frequency’

and ‘average’ functions to make up the function shown in Figure 7.22.

Now go back to the ADE window, click on the right-pane and select

the ‘Pick-Outputs’ button. A window will pop up so within it select

‘Get-Expression’ and name it ‘freq’. This will bring the expression you

just created in the Calculator so that you can plot it. Conversely, you

can also click on the ‘plot’ button shown in the red-box in Figure 7.22

to plot the expression; however, doing so makes the title of plot look a

little too crammed.

72

Figure 7.22: ADE Calculator

7. Repeat the same steps as above to create an expression within the

calculator to compute the KV CO. Use the ‘deriv’ function within the

Calculator Function Panel to do so. Finally, click on the ‘Play’ button

within the ADE window to plot frequency vs. Vctrl and KV CO vs.

Vctrl curves. Your output should look like Figure 7.23.

Figure 7.23: Frequency vs. Vctrl and KV CO vs. Vctrl Simulation Plots

73

The KV CO calculated in Figure 7.23 is the value used to calculate the

required charge-pump current as well as C1 and C2 values from the

loop-filter. In our case, the VCO output frequency is 1.675GHz with a

Vctrl=0.9V and a KV CO = 652.106MHz/V.

8. Now, in order to simulate the VCO Phase-Noise we need to perform

the PSS, PNoise simulations. For the PSS simulation, in the ADE

window click on the AC,DC,Tran icon on the right pane. Choose the

‘pss’ simulation type, pick the parameters using those shown in Figure

7.24(a). It is critical to note that the beat frequency here is the target

frequency of the VCO and the reason we have to check the ‘oscillator’

option and select ‘vout’, ’gnd’ terminals from the schematic is because

by default PSS simulation expects a differential output.

9. To run the PNoise simulation, in the ADE window click on the AC,DC,

Tran icon on the right pane. Choose the ‘pss’ simulation type, pick the

parameters using those shown in Figure 7.24(b). Its critical to note that

the phase-noise in the VCO is only dominant in the low-pass thus we

limit our simulation frequency range to be from 1kHz to 10MHz as after

the 10MHz the phase-noise will not cause any significant degradation

to oscillator output performance. Note: To view the PNoise simulation

results in the main ADE window click on Results → Direct P lot →
Main Form at which a window like Figure 7.25. Choose ‘Phase-Noise’

and click on the ‘Plot’ button.

74

(a) (b)

Figure 7.24: VCO PSS & Pnoise Simulation Setup

Figure 7.25: VCO Phase-Noise Simulation Plot Step

The output waveform for the simulated phase-noise will look like Figure

7.26. In our case, we find that the Phase-Noise at a 1MHz offset is

equal to -94.32dBc/Hz, which is very reasonable for a ring-oscillator

type single-ended VCO topology.

75

Figure 7.26: VCO Phase-Noise Simulation Plot

7.4.9 Divider ADE Setup

1. We now simulate the divider testbench and observe the resulting plots

for ‘IN’, ‘OUT’, signals of the divider circuit to ensure its proper func-

tionality.

2. In ADE window click on the AC,DC,Tran icon on the right pane.

Choose the ‘tran’ simulation type, pick the stop time to be 100ns and

choose ‘moderate’ in the ‘Accuracy details’.

3. Click on the green ‘Play’ button to run the simulation and the plots

should automatically pop up in a new output window.

76

(a)

(b)

Figure 7.27: Divider Spectre Simulation Output

4. Your final output waveform should resemble Figure 7.27. Notice that

each half-wave of the output pulse comprises of four half-pulses of the

input, meaning the period of the output pulse is one-eighth of the input

pulse period. Thus, our divider is functioning properly in that it divides

the input pulse frequency by 8 with a small setup-time delay of 209ps.

77

7.4.10 Complete PLL Schematic and Testbench

1. Using the steps mentioned in the subsections above create new schematic

and save it as ‘PLL’.

2. Place the ‘pfd’, ‘vco’ and ’div’ symbols in the schematic, connect the

components in together and generate a symbol for the full PLL schematic

as shown in Figure 7.28.

Figure 7.28: PLL Schematic

3. Create a new schematic and save it as ‘Tb PLL’. Design the testbench

schematic as shown in Figure 7.29.

Figure 7.29: PLL Testbench

4. In the PLL testbench choose the ‘Vref’ using the ‘Vpulse’ source within

analogLib and configure it as shown below in Figure 7.30.

78

Figure 7.30: Vpulse Configuration for PLL Testbench

7.4.11 PLL ADE Setup

Now that we have verified the functionality of each of the components of the

PLL at a transistor level, the final task is to characterize the PLL locking

behavior, overall phase-noise profile and jitter profile.

1. In ADE window click on the AC,DC,Tran icon on the right pane.

Choose the ‘tran’ simulation type, pick the stop time to be 4µs and

choose ‘moderate’ in the ‘Accuracy details’.

2. Click on V ariables → Copy From Cellview and insert the PMOS,

NMOS widths of VCO inverters, charge-pump output current, ICP ,

reference signal period, and the loop-filter parameters as shown in Fig-

ure 7.31.

79

3. Click on the green ‘Play’ button to run the simulation and the plots

should automatically pop-up in a new output window.

Figure 7.31: PLL Testbench ADE Window

4. Your final output waveform should look like that shown in Figure 7.32.

Notice that the VCO input control voltage ‘vctrl’ is essentially flat and

settled thus the PLL is in steady-state lock state.

Figure 7.32: PLL Settled Transient Simulation Output

If we zoom into a 50ns window we notice that there is a slight con-

trol voltage ripple, but the loop is approaching steady state lock point.

From Figure 7.33 the rippling behavior of ‘vctrl’ can be seen to be

prominent for the first 10ns and then slowly decaying away as we ap-

proach 50ns time-frame.

80

Figure 7.33: PLL Vctrl Voltage before Lock

5. Another method to verify that PLL is in steady-state locked condition

is to plot the output frequency versus time. Figure 7.34 shows that the

PLL achieves lock around 1µs and remains locked to 1.6GHz output

frequency after that.

Figure 7.34: PLL Frequency Locking in Steady-State

To plot frequency we need to use the ‘Calculator’ tool in-built within

ADE. Click on Tools→ Calculator. The Calculator window as shown

in Figure 7.22 will open up and within it now you should select ‘Vt’

from the toolbar. The schematic will open up, so within the schematic

select the ‘vout’ node. From the ‘Function-Panel’ within the Calcula-

tor window choose the ‘freq’ function to plot the PLL output frequency

with respect to time. Once again, like in the case of the VCO frequency

vs. vctrl plot, go back to the ADE window, click on the right-pane and

select the ‘Pick-Outputs’ button. A window will pop-up so within it se-

lect ‘Get-Expression’ and name it ‘freq’. This will bring the expression

81

you just created in the Calculator so that you can plot it.

6. Now, in order to simulate the PLL Phase-Noise we perform the PSS,

PNoise simulations. For the PSS simulation, in the ADE window click

on the AC,DC,Tran icon on the right pane. Choose the ‘pss’ simula-

tion type and pick the parameters using those shown in Figure 7.35(a).

Note that in this case the beat frequency will be the reference frequency

as that is the only fundamental input frequency to the PLL. Addition-

ally, the reason we do not have to check the ‘oscillator’ option and

select ‘vout’, ’gnd’ terminals from the schematic is that PLL is, as the

name suggests, not an oscillator.

7. To run the PNoise simulation, in the ADE window click on the AC,DC,

Tran icon on the right pane. Choose the ‘pss’ simulation type, pick the

parameters using those shown in Figure 7.35(b). It is critical to note

that the phase-noise in the VCO is the dominant source of phase-noise

in the complete PLL, and since VCO noise is typically most prominent

at a 1MHz offset, we limit our simulation frequency range to be from

1kHz to 10MHz as after the 10MHz the phase-noise will not cause

any significant degradation to oscillator output performance. One key

difference between the PNoise setup and VCO is that now the phase-

noise of interest is of the 8th relative harmonic to the fundamental

reference frequency because we have a divider ratio of 8 in our PLL.

82

(a) (b)

Figure 7.35: PLL PSS & Pnoise Simulation Setup

The output waveform for the simulated phase-noise will look like Figure

7.36. In our case, we find that the Phase-Noise at a 1MHz offset is

equal to -113.31dBc/Hz, which is very reasonable for an Integer-N clock

synthesizer PLL with an output frequency of 1.6GHz in steady-state.

83

Figure 7.36: PLL Phase-Noise Simulation Plot

8. Since clock generator circuits are responsible for generating the system

master-clock, the timing (deterministic) jitter as well as random jitter

are key figures-of-merit to minimize clock-induced timing errors during

transmission as well as reception of digital data bits. In order to char-

acterize the deterministic timing jitter we plot the PLL eye diagram

for a small time-interval once the PLL is in lock condition. Similar

to the frequency measurement, we plot the eye diagram by exporting

the ‘vout’ curve into Calculator and using the ‘eyeDiagram’ function

as shown in Figure 7.37.

Figure 7.37: Eye Diagram Setup for PLL Output

In Figure 7.38 we see that the output voltage eye for the PLL has some

deterministic timing jitter associated with it.

84

Figure 7.38: PLL Output Eye Diagram Plot

If we zoom-in to the plot, in the area of the ‘vout’ rising-edge, and

place markers at points where the voltage passes 1.0V, we notice that

the deterministic timing jitter of our PLL as shown in Figure 7.39 is

5.62ps.

Figure 7.39: PLL Deterministic Jitter Plot

Finally, to calculate the random edge-to-edge jitter of our PLL we

need to re-run the PNoise simulation but this time with jitter. In

order to do so change the ‘Noise-type’ in the PNoise setup shown in

Figure 7.35(b) to ‘jitter’. Once you have run the PNoise simulation

85

with jitter, navigate to Results → Direct P lot → Main Form from

the main ADE window and a window like Figure 7.40 will pop up.

Choose ‘Jee’ and pick an event-time at a point where PLL is in steady-

state lock. You can also choose a specified BER. In modern links the

BER is typically 10−12, but we plot the jitter over various BER ranges

as shown in Figure 7.41.

Figure 7.40: PLL Random Jitter Plot Setup

Figure 7.41: PLL Random Jitter Plot

This concludes the characterization of the clock-generator circuit at a

transistor level and we have successfully verified its proper functionality.

86

CHAPTER 8

DISCUSSION

8.1 Conclusion

Overall, thus far in this thesis the foundational motivation for the use of

High-Speed Serial Links has been described, fundamentals of PLLs as well

as Charge-Pump PLLs have been covered, and an in-depth step-by-step tu-

torial on design/simulation of an on-chip clock synthesizer at both a be-

havioral level using Verilog-AMS and transistor level using Cadence Spectre

have been described. The designed PLL based clock-generator circuit de-

scribed in Chapter 5 operates at an output frequency of 1.6GHz at lock with

-113dBc/Hz phase-noise, 5.62ps deterministic jitter and 5.27ps edge-to-edge

random jitter at a BER level of 10−12. Although many design improvements

can be made at the circuit level to optimize the phase noise and jitter per-

formance of the clock-generator circuit, the motivation for this thesis was to

provide a tutorial style training manual for a student pursuing mixed-signal

IC design at the beginning of their graduate studies; thus, the circuits used

for the Integer-N synthesizer are very basic/standard. In this last chapter

to conclude the thesis, a summary of future design improvements for the

circuit designed/simulated in this thesis is outlined from both a system as

well as circuit architecture level. Lastly, an outline of the potential areas of

research to explore in the field of high-speed serial links design with a signal

integrity focus is presented. Often times when pursuing graduate work in

a diverse and mature field of Electrical and Computer Engineering such as

Mixed-Signal Circuit design, especially with a focus on Signal Integrity, a

new student needs some guidance and initial training to jump-start their ca-

reers. Therefore, the final section of this thesis concludes with a few words of

advice for new students pursuing this field of study to enable them in solving

unexplored areas within this field.

87

8.2 Future Work

8.2.1 Design Improvements

The PLL based clock-generator circuit designed and simulated in this thesis

is very basic and is not optimized for optimal phase-noise and jitter perfor-

mance for use as an on-chip clock signal in modern day high-speed serial links.

Such a simple circuit topology was however chosen in order to simplify the

complexity of the system and allow non-circuit designers, especially engineers

in the field of signal integrity, to understand the basics of the mixed-signal

circuit design/simulation flow using the ubiquitous tool like Cadence Virtu-

oso. The following list outlines some of the design changes that enhance the

speed as well as robustness by optimizing the phase-noise, jitter and power

consumption of the on-chip synthesizer:

1. Replace the NAND-PFD with other PFD topologies such as Pass-

Transistor or Glitch-Latch Flip-Flop.

2. Implement an actual biasing current-sink in the Charge-Pump and

drive this sink by an external off-chip voltage signal. Additionally, im-

plement a differential charge-pump to minimize the CP induced noise

and UP/DN current mismatch.

3. If using a ring-oscillator VCO topology, bias the circuit using a self-

biasing circuit to reduce the control voltage ripples as well as suppress

the supply-induced noise. Additionally, the oscillator should be made

differential instead of single-ended as this would greatly improve the

phase-noise and jitter performance [9].

4. Implement a TSPC Split-Output latch within the divider or a modified

variant of it to reduce the divider-induced delay which translates into

additional jitter at the output.

5. Consider implementing a LC-tank based VCO. Although it will increase

the area of the circuit, the phase noise and jitter performance will be

much better than even a differential ring-VCO design [10, 1].

6. Perform Monte Carlo analysis within Cadence ADE XL to optimize the

design over PVT corners to select the optimal sizing for the transistors.

88

7. The industry-wide trend is to move towards all-digital PLLs. Digital

PLLs offer many advantages over analog PLLs mainly in the fact that

they eliminate the need for an analog loop-filter as well as a charge-

pump, thereby saving area and power consumption. The disadvantage

currently however is that quantization noise associated with the Time-

to-Digital Converter (TDC) inside a digital PLL severely degrades the

phase noise of the system. Thus, even the current state-of-the-art

DPLLs are no match in terms of spectral purity performance at high-

speeds compared to the analog PLLs. However, with improvements

in transistor scaling and machine learning algorithmic noise-tolerance

methodologies in digital signal processing, as well as stochastically en-

hanced circuit design techniques, the future really lies in the study of

synthesizable DPLLs. Thus, this area of study should definitely be of

utmost priority while performing research on clocking circuit design for

high-speed serial link applications [11, 12].

8.2.2 Signal Integrity Focus

In the realm of signal integrity (SI) engineering, the principle of utmost

importance is to ensure robust signaling between a driver transmitter and a

receiver across a channel medium. As clock frequencies and the associated

data rates keep rising with technology scaling and advances in SFT while the

channel bandwidth remains roughly the same and package sizes rapidly scale

down, the need for superior SI designs in high-speed digital systems is at

an all-time high with demand only increasing in the upcoming years. Since

the off-chip I/O BWs become the major design bottleneck while demand for

low-power designs becomes ubiquitous, it is critical to study SI problems in

high-speed serial links.

Typical high-speed serial links are limited by the electrical PCB channels;

thus, being able to model all the effects of the channel is key to designing

robust systems. The skin-effect has become a major problem in PCB trace

channels as the high-frequency signals experience a large series resistance due

to current migration toward conductor outer surfaces, and traditional mod-

eling techniques are no longer useful as they assume the metal surfaces are

perfectly smooth, whereas in reality there is a significant roughness present

89

which is actually random in nature. Furthermore, the frequency-dependent

dielectric-losses experienced along these PCB substrates are difficult to char-

acterize due to lack of the required sophistication in measurement techniques

as well as statistical modeling. Measurement is a challenge because for ac-

curate models the setup needs to be passive as well as causal, both of which

are very difficult to ensure in practice. Therefore, statistical modeling of the

substrate effects would be extremely valuable to enhance the understanding

of the channels used in high-speed interface systems. Recall that a backplane

or PCB trace can essentially be treated as a transmission line; thus, being

able to quantitatively characterize propagation delay, system characteristic

impedance, as well as discontinuities during high speed signaling will be very

valuable in easing out equalization requirements on both TX as well as RX

sides [13].

Overall link performance is analyzed in terms of the TX/RX timing jitter

as well as BER specifications. Since the channel is fixed, as mentioned earlier,

one prominent method to combat the jitter and ISI-inducing effects of the

channel is to perform equalization. Sophisticated TX pre-emphasis equaliza-

tion and RX side adaptive DFE are vital to link designers as the data rates

approach the Tb/s ranges over the upcoming years while the off-chip I/O

BW remains about the same. Lastly, formulation of a robust statistical BER

analysis and time-domain empirical jittery analysis framework involving all

interference sources for any given HSSL will be key to fully characterizing the

non-idealities present in links today without the need to over/under design

at a circuit level.

8.2.3 Steps for New Students

When embarking on a journey to study and solve new problems in the field

of High-Speed Serial Link design, whether it be specifically in the area of

clocking circuits, equalization or signal integrity, it is critical to have strong

system-level understanding of the HSSL architecture. Once familiarized with

the system level basics of links, the student (if interested in circuit design)

should take ownership of a specific block within the overall link and focus on

optimizing it for low-power, high-speed applications. Conversely, students

interested in exploring signal integrity issues in HSSLs should familiarize

90

themselves with Behavioral modeling as well as basics of transistor-level de-

sign and simulation analysis so that they explore new HSSL architectures

that have high signal integrity even at multi-GHz to THz speeds.

Ideally, in order to make meaningful contributions in the field of HSSL

designs, a strong knowledge-base in fields of Integrated Circuits, Electromag-

netics, RF/Microwave theory and Digital Signal Processing is key. Thus, at

the onset of their graduate career students performing research in the area

of robust, fast-signaling HSSLs should take the fundamental graduate-level

courses in areas of Digital IC Design, Analog IC Design, Phase-Locked Loop

Design, Electromagnetics and DSP. Lastly, ability to exercise the EDA tools

like Cadence Virtuoso, Agilent ADS, Ansys HFSS as well as programming

in MATLAB and Verilog are essential in order to gain hands-on experience

and perform rapid-prototyping of new research ideas.

91

APPENDIX A

CADENCE VIRTUOSO INSTALLATION
GUIDE

A.1 Introduction

The motivation for this manual is to provide a step-by-step tutorial on in-

stalling Cadence Virtuoso IC 6.15 tools from scratch, configuring the envi-

ronment and using the tool to design and simulate circuits. In this short-

tutorial users are exposed to the complete steps involved in configuring their

machine to run the Cadence Virtuoso IC 6.15 design environment along with

its ancillary softwares, converting their host computer into a server, remotely

connecting to it and launching the Virtuoso simulator engine from the termi-

nal window followed by a detailed guide to create their own custom circuits

and simulate them using the Cadence Spectre circuit simulator.

Cadence is an Electronic Design Automation (EDA) environment that in-

tegrates various circuit design and verification applications and tools (both

in-house proprietary as well as external third party vendor tools) in a single

framework allowing unified IC design and verification in a single environment.

The tools are generic and allow the designer to configure the environment

depending on the fabrication technology of choice by installing the appropri-

ate PDK (Process-Design Kit).

This tutorial document is not intended to be a one-stop reference for all

the features available in Cadence Virtuoso Design Environment. Instead, it

is only meant to be a quick-start guide for circuit designers to be able to use

the EDA tool to effectively simulate their designs for quick prototyping and

verification of their designs.

92

A.2 Environment Setup

A.2.1 Installing Cadence Virtuoso

1. Cadence Virtuoso design tools only work on Linux OS and best on

RedHat based systems. In the scientific community a stable OS ca-

pable of running Cadence well is Scientific Linux which is an open-

source Linux OS inspired from RedHat Enterprise Linux OS. Install

the SL 6.4 64-bit x86 version from [http://ftp1.scientificlinux.

org/linux/scientific/6.4/x86_64/iso/]. Make sure you install

the SL-64-x86 64-2013-03-21-Everything-DVD1.iso and SL-64-x86 64-

2013-03-21-Everything-DVD2.iso as it is the full enterprise version.

Note: If your machine is 32-bit you can also install the 32-bit version

from [http://ftp1.scientificlinux.org/linux/scientific/6.5/

i386/iso/http://ftp1.scientificlinux.org/linux/scientific/6.

5/i386/iso/].

2. Once you have installed the OS, make a new directory under the path

/home/EEAPPS and name it C ADENCE INSTALL. In this tutorial

we will be installing ‘Virtuoso IC6.15’ suite, ‘MMSIM 11.1’ (required for

Spectre/Spectre-RF simulators), ‘IUS8’ (used for Verilog simulations in

Cadence Design Suite), ‘HSPICE’ and a few ‘PDKs’ (Process Design

Kit). Download the Cadence Virtuoso IC6.15 files (from your ftp file

sever) and store them in your computer under /home/EEAPPS/CA-

DENCE INSTALL/IC615 folder. This folder is the location where you

will keep the raw installation files during installation.

Note: When you are downloading your Cadence Virtuoso files from

your ftp server location they will most likely be in tar file formats.

You will have 7 files for Base version and 8 files for the Hotfix ver-

sion. First download them into your Downloads folder and then extract

the files one by one into the /home/EEAPPS/CADENCE INSTALL.

Make sure while you untar your files you ’untar’ each ‘Base’ file into

the same folder and each ‘Hotfix’ file into the same folder so at the

end of the whole process you will have two folders inside the ‘CA-

DENCE INSTALL’ folder named IC06.15.011 lnx86.Base and IC06.15.132-

615 lnx86.Hotfix . Although all the installation will be performed from

93

the Hotfix files it is very important to also have the Base files ex-

tracted as a path to them will be needed during the installation setup.

3. Before you start the installation process open up a terminal window

and type in su to make sure that you have root user privileges.

4. A key feature of Scientific Linux environment to note is that if you ever

have any missing packages that cause an error you just have to type

in yum install PackageName in the terminal window. We will be

using this throughout the installation process when we encounter such

situations.

5. Install the following packages:

(a) yum install elfutils elfutils-libelf libXp

(b) yum install libXext.i686

(c) yum install libelf.so.1

(d) yum install libXrender.so.1

Note: You need these packages for InstallScape (Cadence Instal-

lation Wizard) to work.

6. Create a new directory by typing:

mkdir -p /home/EEAPPS/CADENCE INSTALL/IC615/ . Now move

the extracted Base and Hotfix folders to the ‘IC6.15’ folder you just

created.

7. In the terminal window browse to the following folder:cd /home/EEAPP-

S/CADENCE INSTALL/IC615/ IC06.15.132-615 lnx86.Hotfix/CDROM1

and then type in sh SETUP.SH to start the installation process [14].

94

Figure A.1: Installing Virtuoso from Installscape Step 1

8. You will now see the following instructions so follow the steps indicated

below very carefully:

(a) Specify path of install directory [OR type [RETURN] to exit]:

/home/EEAPPS/IC615

(b) Directory /home/EEAPPS/IC615 does not exist. Create? [y/n]:

y

(c) Do you have InstallScape for lnx86 platform installed somewhere

[y/n]? n

(d) Do you want to install InstallScape for lnx86 [y/n]? y

(e) Type the path to InstallScape installation directory [(q to exit)]:

/home/Cadence/InstallScape

9. Now a window like Figure A.1 will pop up so follow the instructions

shown in it to browse into the correct folder that contains the installa-

tion files.

95

10. From this point onwards follow the instructions shown in Figures A.2

through A.14 very carefully to complete the installation process for

Virtuoso. Make sure you do exactly as shown in these figures to ensure

the software gets installed properly.

11. Once you reach the last step as shown in Figure A.14 hit ‘Done’.

Figure A.2: Installing Virtuoso from Installscape Step 2

96

Figure A.3: Installing Virtuoso from Installscape Step 3

Figure A.4: Installing Virtuoso from Installscape Step 4

97

Figure A.5: Installing Virtuoso from Installscape Step 5

Figure A.6: Installing Virtuoso from Installscape Step 6

98

Figure A.7: Installing Virtuoso from Installscape Step 7

Figure A.8: Installing Virtuoso from Installscape Step 8

99

Figure A.9: Installing Virtuoso from Installscape Step 9

Figure A.10: Installing Virtuoso from Installscape Step 10

100

Figure A.11: Installing Virtuoso from Installscape Step 11

Figure A.12: Installing Virtuoso from Installscape Step 12

101

Figure A.13: Installing Virtuoso from Installscape Step 13

Figure A.14: Installing Virtuoso from Installscape Step 14

102

A.2.2 Installing MMSIM (Spectre/SpectreRF/HSpice)

1. Now that you have installed virtuoso in order to actually use the

HSPICE or Spectre simulation engines you need to install the MM-

SIM package.

2. Download the MMSIM installation files from your ftp server and keep

the tar files in the Downloads folder. You will have 3 files for Base ver-

sion and 3 files for the Hotfix version. Extract the files one by one into

the /home/EEAPPS/CADENCE INSTALL. Make sure that while you

untar your files you ‘untar’ each ‘Base’ file into the same folder and each

‘Hotfix’ file into the same folder so at the end of the whole process you

will have two folders inside the ‘CADENCE INSTALL’ folder named

MMSIM11.10.214 lnx86.Base and MMSIM11.10.617 lnx86.Hotfix [14].

Although all the entire installation will be performed from the Hotfix

files it is very important to also have the Base files extracted as a

path to them will be needed during the installation setup just like you

did during Virtuoso installation.

3. Open up the terminal window and create a new directory inside the

CADENCE INSTALL folder by typing in mkdir -p /home/EEAAPS/-

CADENCE INSTALL/MMSIM11.1/ . Now move the extracted Base

and Hotfix folders to the ‘MMSIM11.1’ folder you just created.

4. In the terminal window browse to the following folder:

cd /home/EEAPPS/CADENCE INSTALL/

MMSIM11.1/MMSIM11.10.617 lnx86.Hotfix/CDROM1 and then type

in sh SETUP.SH to start the installation process.

5. You will now see the following instructions so once again follow the

steps indicated below very carefully:

(a) Specify path of install directory [OR type [RETURN] to exit]:

/home/EEAPPS/MMSIM11.1

(b) Do you have InstallScape for lnx86 platform installed somewhere

[y/n]? y

(c) Type the path to InstallScape installation directory [(q to exit)]:

/home/Cadence/InstallScape

103

6. Now a window like Figure A.15 will pop up so follow the instructions

shown in it to browse into the correct folder that contains the installa-

tion files.

7. From this point onwards follow the instructions shown in Figures A.16

through A.22 very carefully to complete the installation process for

Virtuoso. Make sure you do exactly as shown in these figures to ensure

the software gets installed properly.

8. Once you reach the last step as shown in Figure A.22 hit ‘Done’.

Figure A.15: Installing MMSIM from Installscape Step 1

104

Figure A.16: Installing MMSIM from Installscape Step 2

Figure A.17: Installing MMSIM from Installscape Step 3

105

Figure A.18: Installing MMSIM from Installscape Step 4

Figure A.19: Installing MMSIM from Installscape Step 5

106

Figure A.20: Installing MMSIM from Installscape Step 6

Figure A.21: Installing MMSIM from Installscape Step 7

107

Figure A.22: Installing MMSIM from Installscape Step 8

9. Now that you have installed both Virtuoso and MMSIM the most crit-

ical step is to configure the environment variables correctly. In order to

do so you will need to change your OS’s shell to bash. To figure out the

current shell of your OS open up a terminal and type in echo $SHELL.

To change the shell to bash if it is not set by default type in chsh -s

/bin/bash. If you actually were successful in changing the shell type in

echo $SHELL, and you should get /bin/bash as an output.

10. Open up your current bash file by typing gedit .bashrc & in the terminal

window. Now replace the text with that of Section 2.3. Save the

updated file and close it.

11. In the terminal window type in source .bashrc to update your bash

settings.

108

A.2.3 Installing a PDK

1. Download the PDK from your foundry vendor and extract the files in

a new directory called PDK under the path: /home/EEAPPS .

2. Create a working directory in your home folder as this will be the

directory where you will launch Virtuoso from and will store all your

files. For the purposes of this tutorial call your work directory ckt180

under your ‘Documents’ folder.

3. Copy the cds.lib file from the PDK you installed above and open it up

in a text editor.

4. Make sure your ‘cds.lib’ has the following items before you launch vir-

tuoso. We have to do this to include the in-built libraries that come

with the Virtuoso software.

(a) SOFTINCLUDE /home/EEAPPS/IC615/share/cdssetup/cds.lib

(b) SOFTINCLUDE /home/EEAPPS/IUS08.20.015/tools/inca/files/cds.lib

(c) SOFTINCLUDE /home/EEAPPS/TSMC018/cds.lib

(d) DEFINE ahdlLib $CDSHOME/tools/dfII/samples/artist/ahdlLib

5. At this point Virtuoso is ready for launch so browse to your work

directory and type virtuoso &. See Figure A.23.

A.2.4 Remote Connections Setup

In order to remotely login to the Server from your machine follow the in-

structions provided below:

1. Windows OS Users:

(a) Install the SSH client MobaXterm[http://mobaxterm.mobatek.

net/download-home-edition.html] depending on your prefer-

ence.

(b) Install Xming X Server [http://sourceforge.net/projects/

xming/] for Windows to allow X-forwarding during the SSH ses-

sion. Also, install Xming-fonts from [http://sourceforge.

109

net/projects/xming/files/Xming-fonts/]

Note: Without installing Xming you will not be able to open Vir-

tuoso or for that matter any application with a GUI.

(c) Launch your SSH client, type ssh -X username@natcsi.ece.illinois.edu,

hit ‘Enter’. You will prompted to type in a password so type it in

and again hit ‘Enter’. Now you can follow the steps outlined in

Figure A.23.

2. Mac OSX Users:

(a) Install XQuartz 2.7.5 for Mac OSX if you are using OSX Moun-

tain Lion or later. If you have an older OS then you will already

have X11 pre-installed in your system. Check your ‘System Pref-

erences’ to check whether X11 is turned on.

Note: Without installing XQuartz or enabling X11 (depending

upon your OSX version) you will not be able to open Virtuoso or

for that matter any application with a GUI.

(b) Launch your SSH client and type ssh -X username@natcsi.ece.illinois.edu,

hit ‘Enter’. You will prompted to type in a password so type it in

and again hit ‘Enter’. Now you can follow the steps outlined in

Figure A.23.

3. Linux OS Users:

(a) Launch Terminal and type ssh -X username@natcsi.ece.illinois.edu,

hit ‘Enter’. You will prompted to type in a password so type it in

and again hit ‘Enter’. Now you can follow the steps outlined in

Figure A.23.

Figure A.23: Launch Instructions for Virtuoso

110

A.2.5 Configuring Bash Environment

. bashrc

Source g l o b a l d e f i n i t i o n s

i f [−f / e t c / bashrc] ; then

. / e t c / bashrc

f i

User s p e c i f i c a l i a s e s and f u n c t i o n

a l ias mat=‘cd /home/ r i s h i /matlab ; matlab &’

a l ias cscope =‘/home/EEAPPS/Cscope/ a i b i n / cscope ’

################# Hspice ###################

SYNOPSYS HOME=/home/EEAPPS

HSP HOME=$SYNOPSYS HOME/HSPICE

SCL HOME=$SYNOPSYS HOME/SCL

HSP BIN=$HSP HOME/ hsp i c e / bin

SCL BIN=$SCL HOME/ l inux / bin

export LM LICENSE FILE=/home/EEAPPS/HSPICE/ linmac . dat

export PATH=${HSP HOME}/ hsp i c e / bin :$PATH

export PATH=/home/EEAPPS/Cscope/ a i b i n / :$PATH

################## IC ######################

export MMSIM ROOT=/home/EEAPPS/MMSIM

export OA HOME=/home/EEAPPS/IC615/oa

export CDSHOME=/home/EEAPPS/IC615

export CDSDIR=/home/EEAPPS/IC615

export CDS ROOT=/home/EEAPPS/IC615

export CDS INST DIR=//home/EEAPPS/IC615

export DD DONT DO OS LOCKS=SET

export CDS LIC FILE=5280@cadence . webstore . i l l i n o i s . edu

export CDS Netlist ing Mode = ‘ ‘ Analog”

export PATH=${CDS INST DIR}/ t o o l s / bin :$PATH

export PATH=${CDS INST DIR}/ t o o l s / d f I I / bin :$PATH

export PATH=${CDS INST DIR}/ t o o l s / p l o t / bin :$PATH

export PATH=${CDS INST DIR}/ t o o l s / dracu la / bin :$PATH

export PATH=${CDS ROOT}/ t o o l s / bin :$PATH

export PATH=${CDS ROOT}/ t o o l s / d f I I / bin :$PATH

export PATH=${CDS ROOT}/ t o o l s / dracu la / bin :$PATH

111

export PATH=${CDS ROOT}/ t o o l s / p l o t / bin :$PATH

export PATH=${CDS ROOT}/ t o o l s / i c c r a f t / bin :$PATH

export PATH=/home/EEAPPS/ I n s t a l l S c a p e / i s c a p e / bin :$PATH

export PATH=${MMSIM ROOT}/ t o o l s / d f I I / bin :$PATH

export PATH=${MMSIM ROOT}/ t o o l s / s p e c t r e / bin :$PATH

export PATH=${MMSIM ROOT}/ t o o l s / u l t ra s im / bin :$PATH

export PATH=${MMSIM ROOT}/ t o o l s / bin :$PATH

export CDS AUTO 64BIT=ALL

export CDS LOAD ENV=CSF

export EDITOR=/usr / bin / ged i t

################ IUS #######################

export CADENCE CURR IUS=$SYNOPSYS HOME/IUS08 . 2 0 . 0 1 5

export PATH=${CADENCE CURR IUS}/ t o o l s . lnx86 / bin :$PATH

export PATH=${CADENCE CURR IUS}/ t o o l s / bin :$PATH

export PATH=${CADENCE CURR IUS}/ bin :$PATH

################## MATLAB ###########

export PATH=/home/MATLAB/R2013b/ bin :$PATH

A.2.6 Creating a Library in Cadence Virtuoso

1. The first task after launching Virtuoso is to organize all your designs

into appropriate libraries. To view all the libraries in the current work

directory click on Tools → LibraryManager as outlined in Figure

A.24, and the Library Manager window will pop up as shown in Figure

A.25.

Note: If you want to manually add a library that you copied from

an external source into your Cadence work directory you would need

to edit the cds.lib file found in your work directory folder by opening

it in a text-editor.

112

Figure A.24: Launch Instructions for Library Manager

Figure A.25: Library Manager Window

2. To create a new library click on File → New → Library and name

the library as TestLib as highlighted in Figure A.26. After creating

the new library you need to specify the Technology File to be used

in your respective PDK. In our case we will ‘Attach an existing tech-

nology library’, specifically the ‘tsmc18rf’ which corresponds to 180nm

CMOS process. Figure A.27 shows the steps involved in attaching the

appropriate technology file to a new library.

113

(a) Create New Library

(b) New Library Name

Figure A.26: Steps to Create New Library

(a) (b)

Figure A.27: Attaching Tech File

Refer to Chapters 6 and 7 for full behavioral/circuit-level simulation

guide.

114

A.3 Common Troubleshooting Tips

Some of the most commonly recurring errors are discussed below along with

the possible solution to resolve them:

1. Often when working on a common server machine with multiple users

logging onto the same account, the cadence filesystems gets “locked”

preventing any edit operations on any of the files associated with the

given user. The error will resemble the following statement in the

terminal window if such an event occurs: *WARNING* file /home-

/rishi/CDS.log File is already locked by some other process. In order

to fix this problem navigate to your home directory. Note that the

home directory is not the directory from which virtuoso is launched,

instead it is its the parent directory. Delete any of the files of the form

‘CDS.log’, ‘CDS.log.1’ and ‘CDS.log.cdslck’. After deleting these files

refresh Virtuoso by navigating to the Cadence Virtuoso ‘Log’ window

and clicking on File→ Refresh.

2. When sharing libraries among users within a server make sure you

add the library name in the ‘cds.lib’ file contained in your cadence

launch directory. Additionally, make sure while copying the files, the

destination user has write/edit privileges as lack of the write permission

will limit edit capabilities within virtuoso.

3. During simulation of complex circuits the Cadence simulation folder

gets full and often causes the entire machine to hang. In order to

prevent this from happening periodically, delete the contents of the

‘simulation’ folder found within your Cadence launch directory.

4. Always save the one functional simulation setting by navigating to the

Session → SaveState window within the ADE window. Make sure

you select ‘Cellview’ as this would also save the simulation plots from

the last simulation, thereby saving some simulation time for future use.

115

REFERENCES

[1] S. Palermo, CMOS Nanoelectronics Analog and RF VLSI Circuits,
Chapter 9. New York City, N.Y.: McGraw-Hill, 2011.

[2] E. Alon, “High-speed electrical interface circuit design: Lecture
1,” 2011. [Online]. Available: http://bwrcs.eecs.berkeley.edu/Classes/
icdesign/ee290c s11/lectures/Lecture01 Intro 2up.pdf

[3] V. Stojanović, “Channel-limited high-speed links: Modeling, analysis
and design,” Ph.D. dissertation, Stanford University, Palo Alto, 2004.
[Online]. Available: http://chipgen.stanford.edu/papers/vs thesis.pdf

[4] K. Kundert and O. Zinke, Designer’s Guide to Verilog-AMS, Chapter
3. Boston, M.A.: Kluwer-Academic Publishers, 2004.

[5] D. Friedman, “International solid-state circuits conference trends 2013,”
2013. [Online]. Available: http://isscc.org/doc/2013/2013 Trends.pdf

[6] J. C. Chen, “Mutli-gigabit serdes: The corner-
stone of high speed serial interconnects,” 2011. [On-
line]. Available: http://www.design-reuse.com/articles/10541/
multi-gigabit-serdes-the-cornerstone-of-high-speed-serial-interconnects.
html

[7] M. Assaad, “Design and modelling of clock and data recovery
integrated circuit in 130 nm cmos technology for 10 gb/s serial data
communications,” Ph.D. dissertation, Univ. of Glasgow, Glasgow, 2009.
[Online]. Available: theses.gla.ac.uk/707/1/2009assaadphd.pdf

[8] P. Hanumolu et al., “Analysis of charge-pump phase-locked loops,”
IEEE Transactions on Circuits and Systems-I, vol. 51, no. 9, pp. 1665–
1674, 2004.

[9] U.Ku-Moon. P.K. Hanumolu, “Effect of power supply noise on ring osc
phase noise,” 2004. [Online]. Available: http://web.engr.oregonstate.
edu/∼moon/research/files/newcas04 supply.pdf

116

[10] M. Mansuri, “Low-power low-jitter on-chip clock generation,”
Ph.D. dissertation, Univ. of California, Los-Angeles, 2003.
[Online]. Available: http://www.ece.tamu.edu/∼spalermo/ecen689/
pll thesis mansuri ucla 2003.pdf

[11] U.Ku-Moon. P.K. Hanumolu, G.Y. Wei and K. Mayaram, “Digitally-
enhanced phase-locking circuits,” in Proc. IEEE Custom Integrated Cir-
cuits Conference’07), San Jose, USA, Sep. 2007, pp. 361–368.

[12] V. Kratyuk et al., “A design procedure for all-digital phase-locked loops
based on a charge-pump phase-locked-loop analogy,” IEEE Transactions
on Circuits and Systems-II, vol. 54, no. 3, pp. 247–251, 2007.

[13] J. Fan et al., “Signal integrity design for high-speed digital cir-
cuits:progress and directions,” IEEE Transactions on Electromagnetic
Compatibility, vol. 52, no. 2, pp. 392–400, 2010.

[14] R. Helinski, “Installing cadence ic 6.1,” 2010. [Online].
Available: http://www.ece.unm.edu/∼jimp/vlsiII/cadence install/
installing cadence.pdf

[15] B. Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuits,
Chapter 1. Piscataway, N.J.: IEEE Press, 1996.

117

