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ABSTRACT

Parallel programming is a demanding task for developers partly because achieving scal-

able parallel speedup requires drawing upon a repertoire of complex, algorithm-specific,

architecture-aware programming techniques. Ideally, developers of programming tools would

be able to build algorithm-specific, high-level programming interfaces that hide the complex

architecture-aware details. However, it is a monumental undertaking to develop such tools

from scratch, and it is challenging to provide reusable functionality for developing such

tools without sacrificing the hosted interface’s performance or ease of use. In particular,

to get high performance on a cluster of multicore computers without requiring developers

to manually place data and computation onto processors, it is necessary to combine prior

methods for shared memory parallelism with new methods for algorithm-aware distribution

of computation and data across the cluster.

This dissertation presents Triolet, a programming language and compiler for high-level

programming of parallel loops for high-performance execution on clusters of multicore com-

puters. Triolet adopts a simple, familiar programming interface based on traversing collec-

tions of data. By incorporating semantic knowledge of how traversals behave, Triolet achieves

efficient parallel execution and communication. Moreover, Triolet’s performance on sequen-

tial loops is comparable to that of low-level C code, ranging from seven percent slower to 2.8×

slower on tested benchmarks. Triolet’s design demonstrates that it is possible to decouple

the design of a compiler from the implementation of parallelism without sacrificing perfor-

mance or ease of use: parallel and sequential loops are implemented as library code and

compiled to efficient code by an optimizing compiler that is unaware of parallelism beyond
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the scope of a single thread. All handling of parallel work partitioning, data partitioning,

and scheduling is embodied in library code. During compilation, library code is inlined into

a program and specialized to yield customized parallel loops. Experimental results from a

128-core cluster (with 8 nodes and 16 cores per node) show that loops in Triolet outperform

loops in Eden, a similar high-level language. Triolet achieves significant parallel speedup

over sequential C code, with performance ranging from slightly faster to 4.3× slower than

manually parallelized C code on compute-intensive loops. Thus, Triolet demonstrates that a

library of container traversal functions can deliver cluster-parallel performance comparable

to manually parallelized C code without requiring programmers to manage parallelism. This

programming approach opens the potential for future research into parallel programming

frameworks.
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CHAPTER 1

Introduction

Software developers want more performance. Hardware improvements have historically

driven a steady increase in processor speed that enabled users to speed up their software

simply by migrating to newer, faster processors. Recently, however, processor speeds have

stagnated due to physical limits on power consumption and dissipation. Meanwhile, multi-

core processors have proliferated, and networked computers have become commonplace. As

software developers can no longer wait for faster hardware, many turn instead to parallel

processing to meet their performance goals.

Many programs contain performance-critical loops that can be converted to parallel form.

A parallel loop executes many instances of the same task concurrently. While parallel execu-

tion speeds up a workload by partitioning it across many processors, it also incurs overhead

to launch tasks, move data, and combine results. Some components of the overhead do not

get faster as the number of processors is scaled up, limiting the maximum speedup that a

program can achieve through parallel execution. The need to mitigate overhead is one factor

that makes parallel programming harder than sequential programming.

A large repertoire of parallelization techniques has been catalogued [1, 2]. Parallel asso-

ciative reduction serves as one example. In sequential imperative languages, reductions are

typically written as a loop that updates an accumulator in each iteration. Such a loop can be

parallelized. To produce correct results, the parallelized loop must prevent interleaving of

accumulator updates. For instance, decoupled software pipelining can be used to parallelize

while keeping accumulator updates in their original order [3]. However, scalability is limited

because multiple accumulator updates cannot happen simultaneously. Reduction trees are
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a well-known scalable way of implementing reductions. In a (two-level) reduction tree, each

processor performs a sequential reduction using its own, locally stored accumulator. The

results from all processors are sent to the main processor, which performs another reduc-

tion to combine the processors’ results. A reduction tree computes parts of the reduction in

parallel, enabling greater speedup than the simpler loop with a single accumulator. The best

reduction tree structure depends on the architecture of the system where it executes: while a

two-level reduction tree works well on a moderately sized multicore processor, larger systems

typically use deeper reduction trees to avoid a bottleneck at the final step. Reduction trees

exemplify common properties of parallelization techniques: they apply to a specific class of

algorithms, their implementation depends on hardware organization, and they reduce the

overhead of naïve parallelization at the expense of additional complexity.

A commonly used low-level, high-performance parallel software development methodol-

ogy is for a developer to manually implement efficient parallelization techniques, starting

from a sequential C loop, as needed to meet his or her performance goal. This method-

ology sets a reference point against which to evaluate a high-level parallel programming

language. A high-level language should provide an easy-to-use interface to high-level par-

allelization techniques, while still providing substantial parallel speedup over sequential C

code. Many high-level languages and libraries satisfy this goal for shared memory environ-

ments by efficiently using threads and shared-memory communication. Fewer solutions exist

for distributed memory environments, because the communication latency of distributed

hardware is not easily hidden behind a high-level abstraction. Fewer still exploit the hybrid

of shared and distributed memory found in clusters of multicore computers. A simple high-

performance programming model would make it easier to speed up programs using clusters.

The system presented in this dissertation, Triolet, demonstrates a high-level and high-

performance approach to implementing distributed parallelization techniques. Triolet con-

sists of a programming language, compiler, and library. The programming language and

library adopt a high-level programming style based on container traversals, a common pro-

gramming abstraction. Internally, the library uses high-level knowledge of data structure
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traversal operations to assemble efficient sequential and parallel loops. Efficiency comes

from distributing work in a way that reduces communication requirements, avoiding move-

ment of unused data, traversing data in ways that exploit cache locality, and combining re-

sults in ways that mitigate communication and computation latency. On a 128-core cluster,

computationally intensive loops written in Triolet were found to yield a speedup of 9.6–99×

relative to simple loops in sequential C. The Triolet code is shorter and simpler than manually

parallelized C code. While manually parallelized C is sometimes faster (ranging from slightly

slower to 4.3× faster than Triolet), Triolet delivers much of the achievable speedup without

requiring a developer to invest time implementing hand-optimized parallel algorithms.

Triolet advances beyond prior systems in two ways. First, it demonstrates that distributed

container traversals can be implemented efficiently as library functions. In doing so, it shows

that high-level parallel operations can compile to efficient code without compiler support for

parallelism. Instead of generating parallel code within the compiler, parallel execution strate-

gies are implemented in library code. The compiler inlines and specializes the library code

by applying general-purpose optimizations. Such specialization is possible because all the

information needed to determine a typical program’s loop structure is available at compile

time. The net effect is similar to a parallelizing compiler that performs loop transformations

and inserts communication code. Decoupling the implementation of parallelism from the

design of the compiler makes it easier to develop and explore new parallelization techniques:

changes are made by writing or modifying library code.

Second, Triolet’s library uses a flexible mechanism for data and work distribution that re-

duces communication overhead for some distributed algorithms expressed as data structure

traversals. In prior implementations of distributed traversal, a given loop would use a single

partitioning strategy for both work and data. To express algorithms that traverse multiple

data structures in different ways (as in matrix multiplication) or that dynamically generate

inputs from some initial set (as in modeling physical interactions between nearby objects),

a programmer would have to restructure loops and data structures, which adds overhead

and complexity, or else explicitly manage data and work distribution in a lower-level pro-
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gramming model. Triolet’s container traversal functions internally build data distribution

strategies and nested loops instead of relying only on pre-built partitioning strategies. Com-

plex traversal patterns and loop nests can be assembled through compositions of library

function calls.

The next four sections discuss data structure traversals (Section 1.1), the design of li-

braries for optimizations (Section 1.2), prior approaches to data distribution (Section 1.3), and

elements of Triolet’s implementation that result in high parallel performance (Section 1.4).

1.1 Container Traversal as a Programming Abstraction

Triolet adopts a high-level programming style that uses container traversals as abstractions

of parallelizable loops. Container traversal interfaces have appeared many times in program-

ming languages and libraries. This section presents major categories of container traversal

interfaces and discusses their common properties.

Traversals embody common patterns of computation over collections of data. Sipelstein

et al. [4] describe and compare traversal functionality in various programming languages.

As an example, it is common to perform an operation independently on each element of a

collection, yielding a collection of computed results. Given a collection and an operation to

perform on its elements, the library function map carries out this task in many programming

languages. Each input is retrieved and each output stored by map. It applies the given op-

eration to each input to generate outputs. Traversals are suitable for expressing parallelism

because the semantics of common traversals do not imply an evaluation order. Since each

result of a map is independent of the others, its meaning is not affected by whether elements

are processed sequentially or in parallel.

The development of large vector-parallel processors fueled interest in data-parallel pro-

gramming [5]. The term “data-parallel” is commonly associated with the execution on vector

processors but is sometimes used independently of the execution model. Many data-parallel

programming languages use array traversal to express parallelism [6, 7, 8, 9]. When array
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traversals are executed on vector hardware, individual array elements are processed concur-

rently on different scalar processing units. Vector processors are SIMD, or single instruction,

multiple data, meaning that the same operation is executed concurrently on all scalar pro-

cessing units. If the processing of an array element involves control flow, it can be translated

into SIMD form for execution on vector processors [6]. Recent vector languages have targeted

GPUs and multicore CPUs [7, 8, 9, 10]. However, conforming to a SIMD execution model often

requires extra computation for storing and reorganizing arrays of data. This overhead was

acceptable on vector processors, but can be severely limited by memory bandwidth bottle-

necks on modern CPU and GPU architectures. Recent research has begun to address this

issue [7, 11].

A related line of parallel work uses array traversal to express parallel loops [12, 13, 14].

Individual array elements may be processed concurrently by different threads. To reduce

overhead, a thread typically processes a section of an array. The primary difference between

vector and loop parallelism is that the latter permits arbitrary control flow in loop bodies.

Container traversals embody sequential loops when applied to lazily generated collec-

tions of values, called iterators in this dissertation. Iterators are also known as streams or

lazy lists. In functional languages, the distinction between iterators, linked lists, and vectors

is blurred by optimizations that eliminate temporary data structures [8, 10, 13, 15, 16, 17, 18],

the use of lazy lists to interleave execution of loops, and implicit conversions between rep-

resentations [16, 17]. These techniques aim to reduce memory usage and/or execution time

by selecting the representation with the most suitable evaluation behavior and data storage

format for the context where it is used. Language INtegrated Queries (LINQ) is an iterator

library designed to subsume database queries, which would conventionally be written in the

domain-specific Structured Query Language [19]. CLU (short for “cluster”) introduced itera-

tors as a mechanism for writing imperative loops over containers [20]. Iterators in C++ and

Java are a more general class of programming interfaces derived from CLU iterators. Iterators

have also been used as a representation of parallel loops [19, 21].

Arrays, vectors, lists, and iterators can be generalized into a common container abstrac-
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tion. A container is a homogeneous collection of values organized into a logical shape, such

as a 2D array of a particular size. The notion of a container abstracts over differences in stor-

age format and evaluation semantics. At minimum, a container can be accessed by traversing

it, which reads each of its elements in a loop. Traversals also abstract over evaluation se-

mantics. An implementation of map, for instance, may execute sequentially or in parallel, and

it may generate all its results immediately or individual results when demanded. The result

value computed for each output position is the same regardless of these choices, and the no-

tion of traversal captures this common meaning. The notion of containers makes it possible

to reason about containers (including arrays, vectors, lists, and iterators) in a common way.

Container traversals are a broadly applicable way of writing loops. They express poten-

tial parallelism and convey useful information about access patterns, both properties being

useful for implementing parallel loops. The design of Triolet uses a custom iterator design

as its basic representation of parallelizable loops.

1.2 Library Functions as an Implementation Mechanism for Parallel

Programming Abstractions

How should tool developers provide high-level interfaces to parallelization techniques? To

parallelize code efficiently, it is necessary to transform code to suit the hardware on which

it will run, and this has traditionally been the domain of compilers. However, compilers are

complex pieces of software that are difficult to develop and extend. Integrating support for

new parallel abstractions into an existing compiler is a slow process, as evidenced by the

decades-long evolution of parallel features in long-lived languages or language extensions

such as Fortran, C++, Sisal, and OpenMP. This difficulty has motivated several lightweight

approaches illustrated in parts (b), (c), and (d) of Figure 1.1.

Lightweight interfaces consolidate the implementation of high-level parallel features into

a component of the compile-time toolchain or run-time library, relying on a preexisting com-

piler infrastructure to do most of the work. Many parallelization techniques need only a
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(a) Compiler
(b) Metaprogramming

system
(c) Embedded

domain-specific language
(d) Library

Figure 1.1: Steps of compilation and execution in different parallel programming approaches.
Each arrow is a step of compilation or execution. The step labeled in bold is where high-level
parallel abstractions are transformed into low-level code. Approaches (b), (c), and (d) separate
parallel software abstractions from the compiler.

limited degree of control over the program code. In such cases, decoupling high-level par-

allel features from other aspects of compilation makes them easier to develop. Classes of

lightweight interfaces are discussed below.

Embedded domain-specific languages (EDSLs) [22] (Figure 1.1(c)) are programming lan-

guages whose interfaces resemble libraries. To a user, an EDSL exposes abstract data types

and operations on them. Operations do not compute their results immediately, but gener-

ate embedded code for computing results. This code is executed when a result needs to

be extracted for use in the host language. For instance, an “array of integers” object may

comprise code that computes the desired array. An “array summation” function that returns

the sum as a host-language numeric value may compute the sum by extracting the code

from its array argument, combining it with reduction tree code that was written by the de-

veloper of the EDSL, compiling it, and executing it [23]. EDSLs have been developed to help

developers use restricted programming models including GPU shaders [24, 25, 26], vector

processors [24, 25, 26, 27], and database queries [19, 28, 29]. Delite [30] is a framework for

building parallel EDSLs.
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Metaprogramming systems are programs that generate source code in the form of text

or abstract syntax trees. The code they generate is compiled and linked along with the re-

mainder of a program as shown in Figure 1.1(b). A metaprogramming library may assem-

ble a reduction tree, for instance, by injecting problem-specific value-generating and result-

combining code into a parallel algorithm template supplied by the library. Owing to the

popularity of C++, a number of parallel loop abstractions have been developed using C++

template metaprogramming [31, 32, 33].

High-level parallel features can be packaged into library functions, which is the approach

taken in this work. Cole popularized this approach, calling such libraries “algorithmic skele-

tons” [34]. In this approach, a handwritten implementation of a reduction tree would be

provided as a library function. A user would customize the reduction to a specific problem

by passing value-generating and result-combining functions as arguments to the reduction

function. These functions would be called during the execution of the reduction tree. Note

that this functional programming style is different from procedural libraries such as MPI

(an abbreviation of “Message Passing Interface”), which require users to control the parallel

execution of all non-library code.

For creators of high-level parallel programming abstractions, libraries are arguably the

most constrained approach. The power of compilers, metaprogramming systems, and EDSLs

comes from their ability to manipulate programs prior to generating executable code. A

library function cannot manipulate the program it is part of, seemingly making it inadequate

for high-performance parallel programming abstractions [30]. Nevertheless, libraries can be

written so as to induce an optimizing compiler to perform static program transformations.

One of the ways that compilers speed up programs is by precomputing values that can be

determined at compile time. This strategy of evaluating the known parts of a program in

advance is a form of partial evaluation [35]. Such compile-time computation of programs

can be used like a metaprogramming system to statically transform code [36]. The idea

of designing library code to perform well when a compiler optimizes it together with code

that uses it exists in programming folklore but has not, to the best of my knowledge, been
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named. I call it library-driven optimization. Library-driven optimization has been used for

generating loops from container traversals in Haskell libraries [14, 17, 36, 37]. The side

effect free, statically typed nature of Haskell code facilitates such optimizations by removing

hard-to-analyze nonlocal effects and ensuring that optimizations will complete when run

exhaustively [38].

For library-driven optimization to be effective, library and user code must cooperate to

enable compile-time optimization. Compilers restrict the scope of what they will optimize to

limit code size and compilation time. If a library author intends a particular piece of code

to be statically evaluated, it must be written in a language subset that the compiler statically

evaluates. In Triolet, the subset excludes arrays, externally defined functions, mutable data,

and general recursion. Furthermore, code intended for static evaluation should not depend

on run-time input, because such data is unknown and prevents partial evaluation. Programs

that do not follow these restrictions will optimize poorly and run inefficiently. For instance,

the following Triolet code assigns different values to y depending on the value of an unknown

Boolean run_time_condition. Since the value of y following the if expression may come

from either branch, it is statically unknown, which inhibits optimization of sum. On the other

hand, if the compiler can simplify run_time_condition to True or False, optimization is

not inhibited.

if (run_time_condition): y = map(foo, x)

else: y = map(bar, x)

z = sum(y)

These restrictions are not onerous in practice. Many transformations can be expressed in

a non-looping, array-free functional language subset, and the loop structure of typical pro-

grams does not depend on run-time information.

In library-driven optimization, library functions make optimization decisions based on

statically known data in their arguments. Similarly to an EDSL, library functions can embed

code into their output that will be extracted by subsequent library function calls. However,

unlike an EDSL, a library cannot inspect or modify code. (Libraries can construct, but not

examine, functions.) Consequently, library-driven optimization cannot analyze or transform
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loop bodies. Many conventional loop transformations are guided by analysis of memory refer-

ences in a function body, but library code cannot examine the memory references performed

by a function. The inability to modify a function body’s code rules out loop transformations

such as loop distribution, tiling of nested loops, and vectorization of scalar code. Horizontal

fusion, which fuses loops that do not interact but have the same control flow, is not possible

with library-driven optimization since neither loop can “see” the other. These limitations

make sense in light of the library-driven optimization approach. Whereas loop transforma-

tions analyze low-level unoptimized loops and convert them into low-level optimized loops,

library-driven loop transformations assemble low-level optimized loops from high-level spec-

ifications.

The EDSL approach can be more powerful than library-driven optimization, but it achieves

this at the cost of replicating a compiler’s functionality. Whereas library-driven optimization

uses the same general-purpose optimization engine to simplify both the static and dynamic

parts of a program, embedded domain-specific languages usually contain their own opti-

mization engine [24, 25, 27, 30]. For instance, Delite optimizes its own internal high-level

representation of loops, called Delite ops. Delite’s optimizer performs constant subexpres-

sion elimination, constant propagation, dead code elimination, and code motion in addition

to domain-specific optimizations [30]. Delite does these optimizations even though it passes

its output to a Scala, C++, or CUDA backend compiler that is likely to perform similar opti-

mizations, presumably because these general-purpose optimizations improve the quality of

its domain-specific optimizations.

Metaprogramming engines perform compile-time evaluation like library-driven optimiza-

tion, but with an explicit distinction between statically and dynamically executed code. The

separation of static and dynamic execution allows a developer to control what is computed

at compile time instead of relying on a compiler to statically evaluate the right things. How-

ever, the control comes at the cost of a more complicated programming model. In the case

of metaprogramming iterator libraries, which are used for statically generating loops, iter-

ators are more complicate than the usual notion of lazily generated collections of values
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(Section 1.1). In metaprogramming libraries, iterators consist of two components that users

manipulate separately. An iterator’s static data consists of code that is injected into loop

bodies. Its dynamic data consists of the remaining information, which is run-time parame-

ters and inputs to loops. While metaprogramming is an invaluable approach to escape the

unpredictability of fickle optimization heuristics, the benefit of introducing guaranteed static

evaluation diminishes when compiler optimizations reliably evaluate a large subset of a pro-

gramming language.

A comparison between user-defined generic functions in an ordinary iterator library and

a metaprogramming library demonstrates the extra complexity of metaprogramming. In

Haskell, lists serve as iterators. A generic function augment for adding a value x to each

element of a list ys can be defined as follows. The type signature on the first line indicates

that the function operates on an arbitrary numeric type a, and that its parameter and return

iterators are both lists of a (written [a]). In the function body, the call of map applies (x+),

which adds x to a number, to each element of ys.

augment :: Num a => a -> [a] -> [a]

augment x ys = map (x+) ys

Analogous C++ code, using the Thrust iterator library, tracks the code of iterators through

C++’s static type system. Iterator code is exposed to users in the form of elaborate types.

The C++ code shown below is much more verbose than the Haskell code; however, its ver-

bosity is an effect of C++’s syntax rather than metaprogramming in general. In the code,

the definition of augment uses the iterator class transform_iterator and factory function

make_transform_iterator from the Thrust library. Two global type definitions are used in

writing the return type of augment. AugmentFunc(x) is the equivalent of the Haskell func-

tion (x+). The type alias Elem<T> is defined as a shorthand for the type of T’s elements.

At the metaprogramming level, augment operates on iterator code by relating an arbitrary

type Iterator, which is also the type of the function parameter ys, to a more complex type

transform_iterator<AugmentFunc<Elem<Iterator> >, Iterator>, which is the type of

its return value. The return type specifies how the returned iterator’s code is composed
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from code associated with transform_iterator, AugmentFunc, and Iterator. At run time,

augment inserts the values of x and ys into the returned iterator. These values contain run-

time information such as the loop bound that is needed when the loop executes.

template<typename Elem>

struct AugmentFunc : public unary_function<Elem, Elem> {

Elem x;

AugmentFunc(Elem _x) : x(_x) {}

Elem operator()(Elem y) {return x + y;}

};

template<typename Iterator>

using Elem = typename Iterator::value_type;

template<typename Iterator>

transform_iterator<AugmentFunc<Elem<Iterator> >, Iterator>

augment(Elem<Iterator> x, Iterator ys) {

return make_transform_iterator(ys, AugmentFunc<Elem<Iterator> >(x));

}

The elaborate iterator types in the C++ code express how to generate code when an iterator

is used. These details are irrelevant to users who, following the container abstraction, simply

want a dynamically generated collection of Elems. More generally, explicit separation of static

and dynamic program components is a burden on users.

Libraries, with the aid of compile-time partial evaluation, can perform high-level opti-

mizations similar to what a compiler, EDSL, or metaprogramming system can do. Library

code is decoupled from compiler code, which makes libraries more constrained than compil-

ers or EDSLs but also easier to develop. Since library-driven optimizations are expressed as

program code rather than metaprogram code, libraries do not require programmers to work

with an extra stage of execution as metaprogramming systems do. For these reasons, Triolet

uses library-driven optimization for implementing parallelization techniques.

1.3 High-Level Abstractions of Distributed Memory

In a distributed parallel program on a cluster, the latency of network communication is likely

to contribute to the program’s total running time. The negative effect of latency can be
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reduced by transferring needed data as soon as possible and overlapping communication

with computation. In a message-passing programming model such as MPI, programmers per-

form these optimizations by controlling when and how messages are sent. Most higher-level

programming models offer additional convenience but still task programmers with deciding

when to send messages and where to perform computation, largely because all automatic

message-passing schemes trade off some generality and/or efficiency.

The partitioned global address space (PGAS) programming model is popular in general-

purpose distributed programming languages [39, 40, 41, 42, 43]. It provides the convenience

of a single address space for referencing and accessing data, as in a shared memory system,

without hiding the critical performance difference between fast local memory access and

slow remote memory access [44]. Programmers explicitly place data in memory domains and

execute computation on memory domains. Programmers are expected to optimize communi-

cation by placing computation together with data that it uses frequently. Thus, PGAS models

simplify, but do not eliminate, the management of data and work distribution.

Some algorithmic skeleton libraries provide a view of distributed data that is reminiscent

of the PGAS programming model [45, 32]. As in the PGAS model, code can access the entire

distributed data structure through the library API. Local accesses directly access memory,

while global accesses may perform network communication.

Distributed shared memory provides the simplicity of shared memory programming on

distributed hardware. The best-known approach, called software distributed shared memory

(software DSM), resembles a software implementation of cache coherence [46]. Software mon-

itors memory accesses and forwards the contents of written memory regions to processors

that use them. However, software DSM has not seen widespread adoption, in part because

it aims to be a nearly-invisible system software layer but performs poorly with some usage

patterns and does not integrate smoothly with existing software environments [47]. There

is room for simpler, domain-specific implementations of shared memory that do not expose

these issues.

A much simpler implementation of the shared memory model is possible for parallel
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traversals of immutable data structures. Since a traversal expresses a loop with a known

access pattern, the data that it will access is known in advance and it can be eagerly copied

to the destination. Since data is immutable, there is no need to monitor memory accesses

and forward updated data as in software DSM. Inputs are simply copied over the network

when a task is launched and results are copied back when it completes. This copying-

based shared memory model has been used in several algorithmic skeleton implementa-

tions [48, 49, 50, 28]. While these projects demonstrate the feasibility of a copying-based

shared memory model, they emphasize ease of use and scalable performance rather than ab-

solute performance. They do not attempt to deliver performance competitive with manually

parallelized MPI code.

1.4 Challenges in Producing High-Performance Parallel Code

The performance of manually optimized code in a low-level parallel programming model,

such as C with MPI and OpenMP, comes from the combined use of many programming tech-

niques. Inner loops sequentially compute results using mutable private storage. Cores on a

cluster node share input and output storage, partition work for cache locality, and avoid com-

munication by computing partial results locally. Cluster nodes partition work to minimize

communication, send only necessary data, and avoid communication by computing partial

results locally.

A high-performance distributed implementation of container traversals should employ

these techniques as well. Armed with high-level information about units of parallel work,

access patterns to input data, and result collection strategies, an implementation needs to

find efficient parallelization strategies for loops that a programmer has written in terms of

traversals. Even with high-level information, it is challenging to reproduce enough low-level

programming techniques in a library to approach the performance of manually parallelized

code.

Some implementation decisions can be illustrated with a function for evaluating the qual-
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ity of hash functions. A simple way to test the quality of a hash function f is to take a range

of input values x ∈ {0 . . . n− 1} and compute the low-order bits of the hash, f x mod 256,

for each x. Histogramming hash values helps to find undesirable biases in a hash function’s

output. In Triolet, a function can be defined to perform these operations as follows.

def hashDistribution(f, n):

inputs = range(n) # Range from 0 to n-1

hashed = (f(x) % 256 for x in inputs) # Hash each number modulo 256

return histogram(256, par(hashed)) # Histogram hashed values

The three steps of the computation are performed by the three lines of the function body.

Each line calls a library function that represents a parallelizable loop. The functions can be

understood as loops with n iterations, though all but the last actually consist of non-looping

code that constructs an iterator. The comprehension on the second line is syntactic sugar

for a call to map. The call to par on the last line indicates that the histogram should be

parallelized.

Finding an efficient parallel implementation can be framed as a scheduling problem. Each

iteration of each loop is a task to be scheduled. An example execution of hashDistribution

is shown in Figure 1.2(a). Tasks are shown as arrows and data are shown as boxes. His-

togram tasks, which have two inputs, appear as two-tailed arrows. While hashDistribution

executes directly as an optimized parallel loop, it is instructive to describe the intended be-

havior in terms of a sequence of transformations from simple to optimized code.

Potential parallelism is limited in Figure 1.2(a) because each histogram task modifies the

data produced by the previous task, producing a sequence of dependent tasks. For parallel

execution on two cores, input is partitioned into two pieces and a partial histogram is com-

puted on each piece as shown in Figure 1.2(b). This partitioning is chosen by histogram

using information about loop structure from the range, map, and par library calls. On a

cluster, work would be partitioned across cluster nodes in the same way. Because the flow of

data through these calls is statically known, compiler optimizations resolve the loop struc-

ture statically. The number of processor cores and loop iterations are found dynamically.

Compile-time optimizations inline and specialize the relevant library code, consisting in part
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(a) Task graph from source code. Boxes are drawn
around tasks created by each skeleton.

(b) After histogram privatization. Histogram tasks
are reassociated to yield two groups of indepen-
dent tasks.

(c) After fusion. Tasks from calls to histogram are
merged with the range and map tasks that produce
their input.

(d) After blocking. Groups of tasks are merged into
coarse-grained tasks.

Figure 1.2: A sample execution of hashDistribution, shown as a task graph, as successive
optimizations are applied.

of an outer parallel loop over cores and an inner sequential loop over values of x. This

transformation is analogous to histogram privatization.

Because each range and histogram task comprises only a few instructions, tasks should

be grouped into larger units of work to amortize run-time scheduling overhead and com-

munication costs. Loop fusion groups iterations of one loop with iterations of another (Fig-

ure 1.2(c)), reducing the amount of data transferred from one task to another and thereby

reducing communication overhead. Again, fusion occurs statically because the loop structure

is statically known.

To amortize the overhead of task creation, multiple tasks can be aggregated into one

coarse-grained task per core (Figure 1.2(d)). The library does this by executing a core’s work

in a sequential inner loop. Inlining the loop into the surrounding code enables further opti-

mizations to produce a C-like inner loop containing only arithmetic, data structure accesses,

and a call to f.

Library-driven optimization relies on the ability to compose optimized loops out of sim-

pler components. On shared memory, the primary concern is work distribution—specifically,
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loop fusion and blocking. General approaches in this area separate the creation of parallel

work from the decision of how to fuse and block loops by representing loop bodies as in-

dexed computations. That is, a loop is a computation parameterized over an index space

(called an iteration space). Examples of indexed loop representations are Single Assignment

C’s with-loops [13] and Repa’s delayed arrays [14]. An indexed representation represents a

collection of tasks with an unspecified schedule. Fusion, then, builds a loop whose body does

the work of multiple loop bodies. Work is distributed by executing the loop body at each

element of its index space and collecting the results.

A cluster implementation also needs to manage data distribution. The most efficient par-

allelization strategy shares storage within a node and passes messages across nodes. Triolet

uses sharing and message passing together (Section 1.4.1). In prior distributed implemen-

tations of container traversals, work and data distribution are the same [48, 49, 50, 28]. A

single data structure would be partitioned across processors and work would be assigned to

the processor that has its input data. More complex data movement schemes, such as sorting

by key, still tie work and data distribution together. Some parallel loops are not efficient to

execute in this manner, either because tasks use multiple inputs or because a unit of data

produces a variable number of subtasks. Triolet’s iterator design separates data decomposi-

tion from work decomposition (Section 1.4.2) and permits subtask creation (Section 1.4.3) to

support writing a broader variety of loops in terms of container traversals. Each of these fea-

tures generalizes prior container traversal implementations so as to confer high performance

onto a wider range of programs.

1.4.1 Hybrid Shared and Distributed Parallelism

Few container traversal interfaces exploit the memory organization of a cluster of multi-

processors. Either the implementation uses shared memory, in which case parallelism is

limited to one cluster node, or it uses message passing, in which case it redundantly copies

data between cores on the same node. This is unfortunate, as extra copying takes time and

the replicated data increases cache pressure. Of prior implementations, only Muesli uses
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shared-memory and distributed-memory parallelism together [45]. Figure 1.3 illustrates how

a well-designed data distribution mechanism avoids redundant copying in the parallel map

from the benchmark mri-q. The data distribution mechanism is responsible for supplying

a part of xs and all of ks to each core and collecting the outputs into a single array. The

runtime behavior of a purely message-passing framework is shown in Figure 1.3(a). Because

data is always copied between cores, even cores on the same node, this system creates extra

copies of ks and sends them over the network, adding communication overhead and cache

pressure.

Efficient parallel execution is possible with a two-level parallel work decomposition that

partitions data first across nodes and then across cores within a node. A typical divide-

and-conquer framework, adapted to this two-level work decomposition, would behave as

shown in Figure 1.3(b). The shared array ks is distributed to all nodes, not all cores. The

input array xs and the output array are subdivided across nodes and further subdivided

across cores. To separate the responsibilities of work decomposition and data partitioning,

divide-and-conquer frameworks typically express division and combining as functions. For

arrays, the functions would construct a new array at each divide or combine step, resulting

in the unnecessary copying shown in the figure. HDC (the Higher-Order Divide and Conquer

skeleton library) gives up flexibility for performance by providing skeletons with built-in,

optimized partitioning for 1D arrays [48].

Triolet’s work-partitioning strategy logically subdivides arrays without copying them,

eliminating redundant per-core and per-node copies of input data (Figure 1.3(c)). Subar-

rays are represented by slice objects, which are an array-like container. A slice object holds

a reference to the original array and the subarray bounds. Its interface imitates the behavior

of a new array extracted from the original one, while avoiding the overhead of creating a

copy. When using a slice object on the node where it is created, the original array is accessed.

When copying a slice object from one node to another, only the subarray is copied. Since slice

objects for data distribution are created and used over the scope of a parallel loop, compile-

time optimizations can normally extract their fields and inline their methods. Inner loops
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(a) Flat distributed parallelism.
Data is copied between cores
whether or not they inhabit the
same node.

(b) Generic divide-and-conquer par-
allelism. Data is shared on a node.
Array contents are copied when di-
viding and combining.

(c) Triolet’s divide-and-conquer
parallelism. Array contents are not
copied when dividing. The output
array is shared at the node level.

Figure 1.3: Data movement during the execution of a parallel map with different runtime data
distribution mechanisms. Time evolves downward. Arrows show data copying events.

after optimization directly access the slice object’s underlying array. Additionally, parallel

map creates one output array per node, with each core writing part of the array. Per-core out-

put arrays are not created. Other algorithms, such as reductions, still create per-core output

data. The resulting pattern of copying is close to what a programmer would produce using C

with OpenMP and MPI.

The Triolet runtime serializes data in order to permit communication of arbitrary data.

Serialization packs data into a single block of bytes that can be sent as an MPI message.

Serialization introduces an extra copying step into inter-node communication, which can

impact the performance of communication-bound loops. Triolet shares this overhead with

other systems that provide a shared memory view by copying objects.

1.4.2 Composing Data Distributions

When writing algorithms as data structure traversals, it is common to include data-rearranging

transformations on input data. Perhaps the most frequent instance of this is zipping arrays

together. For example, the benchmark mri-q contains a loop (sqrt(x*x + y*y)

for (x, y) in zip(reals, imags)) that computes the magnitudes of complex numbers
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whose real and imaginary parts are stored in separate arrays reals and imags. The real

and imaginary arrays are traversed together by first zipping them into one container. The

function zip combines its two arguments elementwise, producing a container holding pairs

of values. In this case, real and imaginary values are combined into complex numbers. Ac-

tually building an array of complex numbers would involve unnecessary work. This work is

eliminated in the shared memory domain by lazily rearranging data at the scale of individual

elements [17]. Instead of building an array, zip returns an iterator containing code that reads

from each input and constructs a pair of values. This code is executed on demand to read

complex numbers without rearranging stored data.

To avoid rearranging data on distributed memory hardware in a copying-based shared

memory model, data-rearranging functions like zip should also customize how data is copied

between distributed memory domains. In the case of two zipped arrays, the input data

is not a single array, but two. It should be distributed by partitioning both arrays across

nodes. Triolet generalizes this idea by representing a partitioning strategy as a function that

extracts the input data needed by a given subset of a loop’s iteration space. A subset of a

loop’s iteration space is represented by an index range. Triolet’s iterators contain partitioning

functions, and some traversal functions build new partitioning functions from old ones as

they reorganize data.

Parallel, 2D blocked dense matrix multiplication composes several data distribution func-

tions to efficiently distribute a block of each input array to each cluster node using two lines

of code. The matrix product AB is computed (after transposing B for faster memory access)

by evaluating dot products of rows of A with rows of BT :

zipped_AB = outerproduct(rows(A), rows(BT))

AB = [dot(u, v) for (u, v) in par(zipped_AB)]

Here, dot is taken to be defined as sequential code so that the computation of a single output

block is sequential. The block-based data partitioning is composed from several library func-

tion calls that change the logical arrangement of array data. The calls to the library function

rows reinterpret the 2D arrays A and BT as 1D iterators over array rows, where each array
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row is a 1D iterator over elements. The zip-like library function outerproduct creates a 2D

iterator paring rows of A with rows of BT . Together, the functions on the first line determine

a block distribution of input data. Iterators returned by rows associate each task with the cor-

responding array row. From these iterators, outerproduct associates each 2D matrix block

with the rows of A and B corresponding, respectively, to the block’s vertical and horizontal

extent. When parallel tasks are launched by the comprehension on the second line of code,

each task will be sent only the array rows that it needs to compute its output.

In the absence of support for general data partitioning strategies, a programmer can still

write additional code to partition data by extracting the data needed by each task. However,

manual partitioning entails redundant copying reminiscent of that discussed in the previous

section. A programmer must also manually tile loops in order to have coarse-grained units

of work that take blocks of data as input. Since manually written partitioning occurs outside

a parallel loop, it limits parallel scalability. For traversals using regular data reorganization

patterns such as those of rows, zip, and outerproduct, Triolet’s use of data partitioning

functions avoids copying in the same way as for a simple array traversal.

1.4.3 Nested Parallel Loops

In many algorithms expressed as container traversals, a single container element may pro-

duce a variable number of units of work, each of which produces an output value. In terms

of loops, such algorithms are nested loops where the inner and outer loops cooperate to

combine results. This cooperative behavior distinguishes nested traversals from the simpler

situation where an inner loop merely produces a result value. The difficulty of executing this

form of container traversal efficiently has motivated research in sequential compilation tech-

niques [18]. Prior approaches could not execute such nontrivial work distributions as a single

parallel loop. They would run multiple parallel phases, redistributing intermediate data so

that each phase performs one unit of work per container element. For some algorithms, this

can produce excessively fine-grained runtime tasks and/or increase a program’s asymptotic

memory requirements.
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An example of a loop with variable-length outputs comes from particle-based simulation.

Some simulation algorithms build a Verlet list or neighbor list holding all pairs of particles

that are separated by less than a given distance [51]. Assuming that a distance function

has been defined, particle pairs can be computed by visiting each pair of particles and, if the

distance is small, adding the pair to a list.

def neighbors(xs):

xs_indexed = zip(xs, range(len(xs)))

return [(x, y)

for (x, i) in par(xs_indexed)

for y in xs[i+1:]

if distance(x, y) < 2.0)]

Triolet uses a conventional translation of comprehensions into library function calls [52].

Each for and if clause is a separate operation. The list comprehension following the return

keyword can be read as a loop nest containing two loops and a guard. The outer for clause

(for (x, i) in par(xs_indexed)) loops over every element x of xs along with its index i.

The inner for clause (for y in xs[i+1:]) loops over every element of xs that is at index

i+1 or greater; or, in other words, it transforms every pair 〈x, i〉 from xs into a sequence of

triples 〈x, i,y1〉, 〈x, i,y2〉, . . . , where each yk is taken from xs. Visiting only higher indices

ensures that each pair of particles is visited only once. The if clause, or guard, skips loop

iterations for which the distance test evaluates to False. In the remaining iterations the

tuple (x, y) is put into an output list. Loop fusion is a necessary first step in order to avoid

the overhead of actually constructing the 〈x, i,y〉 triples. The fused loop, when executed

sequentially, is similar to the following Python pseudocode.

r = []

for (x, i) in xs_indexed:

for y in xs[i+1:]:

if distance(x, y) < 2.0:

r.append((x, y))

return r

Triolet’s loop representation is extended to support nested loops. A unit of work can

produce either a single result or an iterator over multiple results. These “inner” iterators

become nested loops after compile-time optimizations.
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While several frameworks support parallel execution and/or fusion of skeletons with

variable-length outputs, no prior framework produces parallelized and fused loops with low

overhead and without requiring custom compiler-based loop transformations. Some frame-

works employ rewrite-based fusion that replaces known combinations of functions with pre-

built, optimized functions [6, 8, 9, 53, 54]; however, this approach is limited by a library

implementor’s ability to anticipate and manually optimize useful patterns. NESL parallelizes

but cannot fuse these loops [6]. Scala’s parallel collections library uses lazily executed iter-

ators to achieve the same execution order as a fused loop [21]. However, its iterators are

not statically simplified to loops, resulting in significant overhead relative to when domain-

specific optimizations are applied [55, 56]. Traversals with variable-length outputs have been

fused by extending an EDSL with a new loop representation and new optimizations [56].

1.4.4 Irregular and Multidimensional Loops

Container traversal APIs for 1D containers and multidimensional arrays are both useful, but

are rarely found together. The division between interfaces arises partly because some opera-

tions are only meaningful in one setting and, consequently, some techniques for implement-

ing traversals are primarily used in one setting. Triolet supports both sets of functionality

through the same iterator interface. Though not directly related to distributed parallelism,

integrating both sets of functionality enables both 1D and multidimensional loops to take

advantage of the same parallel library code.

Traversal functions supporting variable-length outputs, and the issues involved in exe-

cuting them efficiently, are only relevant to 1D containers. The filter library function is

an example that conditionally discards elements of a container. Whereas discarding an ar-

bitrary subset of a list’s elements yields a list (by packing the remaining elements together),

discarding an arbitrary subset of an N-dimensional array does not, in general, yield an N-

dimensional array, as an arbitrary subset of array elements cannot be packed into an array

while preserving their relative positions. Consequently, functions involving variable-length

outputs are generally not provided for multidimensional arrays, and optimizations in multi-
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dimensional array interfaces treat such functions as second-class citizens. For instance, they

are not considered for fusion with subsequent loops. Internally, multidimensional loops are

represented in an indexed form that is not convenient for fusing such loops.

In interfaces designed around 1D data structures, multidimensional arrays are second-

class citizens. During optimization, traversal functions are either abstract primitive opera-

tions or represent step-by-step iteration through data. These representations support fusion

of loops with variable-length outputs, but require ad-hoc mechanisms for handling paral-

lelism and index space transformations. A programmer may work with multidimensional

arrays by flattening them to one dimension, but this involves expensive divide and modulus

operations to reconstruct the original array indices from flattened indices. Alternatively, a

programmer may use nested 1D arrays at the expense of additional levels of indirection to

access array elements. Neither choice is attractive for writing multidimensional loops.

Triolet’s iterators use both the indexed and step-by-step internal representation of loops.

Indexed representations can represent multidimensional loops and some forms of 1D loops.

They are converted to step-by-step representations when necessary to represent 1D loops

with irregular iteration behavior. Thus, Triolet supports both classes of functionality.

1.5 Summary of Contributions

This dissertation as a whole demonstrates that a container traversal interface is suitable for

writing high-level, high-performance distributed parallel loops: high-level because it intro-

duces minimal complexity beyond what arises in sequential programming, and high-performance

because it yields performance comparable to manually parallelized C code. This performance

comes from a suite of compile-time optimizations that remove abstraction overhead and a

set of container library implementation techniques that avoid unnecessary copying. Among

high-level container traversal programming interfaces for distributed parallelism where pro-

grammers do not manage parallel data decomposition, work decomposition, or result collec-

tion, Triolet is the first language implementation designed to reach C-like performance.
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This dissertation also demonstrates that library-driven optimization is an effective way to

implement distributed container traversals. In particular, it is the first application of library-

driven optimization to distributed communication. It thus serves as a counterpoint to the

bulk of prior research in distributed parallel programming, which supported communica-

tion through language features with semantics facilitating the implementation of a hidden

communication layer and through compile-time analysis and transformation of memory ref-

erences.

Some novel aspects to Triolet’s language, library, and compiler support the above broad

contributions.

• Copying and communication overhead are reduced by building specialized data decom-

position and distribution code for each loop. Data distribution functions are embedded

into iterators and are transformed by traversal functions. Custom data distributions

are built up as iterators are processed through multiple traversal functions. In contrast,

prior distributed container traversal implementations relied on a limited inventory of

pre-built communication patterns. To conform to input and output formats expected

by pre-built code, it was often necessary to reorganize or replicate data, increasing com-

putation and/or communication time. The extra processing is not compute-intensive,

which due to prior implementations’ lack of shared memory support made it unprof-

itable to parallelize, exacerbating its effect as a scalability bottleneck.

• Nested traversals can be executed as a single parallel loop. Prior work could only ex-

ecute “flat” parallel loops producing one intermediate result for each input container

element. Where inner loops were supported, they had to produce a single result. To

run nested traversals, it would be necessary either to manually tile loops or to run mul-

tiple phases of parallel execution. The latter choice would redistribute a potentially

large number of intermediate results between phases. Internally, Triolet’s library rep-

resents nested traversals with nested iterators. Result-collection code processes nested

iterators recursively and gets optimized to nested loops.
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• A shared programming interface and implementation is used for list traversal and

multidimensional array traversal. These constitute two sets of partially overlapping,

partially incompatible functionality. The shared functionality uses the same program-

ming interface and implementation, while the type system guarantees that incompatible

functionality is not used in an incorrect way. In particular, nested iterators only arise

in a subset of list traversal operations, and they cannot represent multidimensional

traversals. While many programming interfaces provide one or the other feature set,

Triolet merges the two gracefully.

• Triolet demonstrates a refinement to compiler inlining heuristics that allows recursive

functions with structurally decreasing arguments to be used within the library-driven

optimization paradigm. Functions may be annotated to indicate that they should be

inlined only if the compiler has statically determined the arguments’ data constructors

to a specified degree. This form of inlining guidance allows a compiler to unroll recur-

sive functions when it aids optimization without the unprofitable code explosion that

would result from unrolling recursion indiscriminately.

1.6 Organization of This Dissertation

The main contribution of this dissertation is a system that runs loops expressed using data

structure traversal on clusters of multicore processors with performance comparable to man-

ually parallelized C code. Triolet is a statically typed functional programming language. The

semantics of typed functional languages play a role in the Triolet language and the design of

a suite of compiler optimizations that statically evaluate programs. Chapter 2 presents some

background on functional language semantics. Chapter 3 presents the Triolet programming

language.

Triolet’s library is designed to work together with general-purpose compile-time opti-

mizations to deliver high performance. Triolet’s compiler follows in the footsteps of other

statically typed functional language compilers [57, 58]. The compiler extends prior methods
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for unboxed data layout with support for efficient data layout and automatic generation of se-

rialization code for communicating between remote processors. In particular, the compiler’s

unboxing support provides efficient low-level array support that is orthogonal to the design

of the library. Chapter 4 presents the organization of the compiler. Chapter 5 presents the

organization of the library and how compiler optimizations play a role in optimizing library

code.

Triolet’s design strives to be as efficient as manually parallelized C code, and as high-

level as prior functional algorithmic skeletons. Chapter 6 presents an evaluation of Triolet’s

performance and a discussion of its applicability to some realistic parallel code. The four

benchmarks evaluated in that chapter are derived from preexisting GPU benchmarks [59].

Chapter 7 surveys and compares related work. Chapter 8 summarizes and concludes.
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CHAPTER 2

Introduction to Functional Programming

The design of the Triolet language, compiler, and libraries has foundations in functional

programming. This dissertation uses some conventions of discourse that are commonly

adopted in functional programming. For readers unfamiliar with functional programming,

this chapter introduces conventions, concepts, and syntax. Topics that are unique to Triolet

are avoided in this section in favor of foundational concepts.

2.1 Conventions

When discussing what code means, an expression may be identified with the result of its

execution, and two expression may be identified if their execution produces indistinguishable

results. For example, the Triolet expression iter [0,1,2,3,4]may be used in place of the value

that this expression returns (which cannot be written directly). Imaginary numbers provide a

parallel in mathematics: we identify the expression 1+2iwith the complex number produced

by multiplying 2 by i and adding 1, and we neither have nor need a more direct way of writing

this number. Continuing the example, the expression range 5 may stand for the same iterator

value as iter [0,1,2,3,4], even though they have different execution behavior, because they

can be used interchangeably (producing the same value) in all circumstances where both

expressions are valid.

This notion of equivalence between expressions underlies the execution semantics of

Triolet code. Triolet’s execution semantics is defined in terms of reduction rules specifying

how to replace expressions with equivalent, “simpler” expressions. When discussing how

code executes or what code means, reduction rules may be selectively employed to simplify
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an expression into a form that emphasizes a point. Again, this practice has parallels in

mathematics. Evaluating (
√

5 + 1)(
√

5 − 1) while approximating numbers to two decimal

places produces a nearly integral value:

(
√

5+ 1)(
√

5− 1) = (3.24)(1.24)= 4.02

The number 4.02 was obtained by repeatedly applying reduction rules to simplify expres-

sions. Is it a coincidence that the number is almost integral? Evaluating in a different order

makes it clear how the algebraic numbers cancel out to produce an integral result:

(
√

5+ 1)(
√

5− 1) = (
√

5)2 +
√

5−
√

5− 1 = 5− 1 = 4

Just as a change of evaluation order illustrated a point here, selective evaluation of functional

expressions is a useful tool for explaining how a piece of code works. Selectively evaluat-

ing expressions is also useful for understanding how compiler optimizations work: some

optimizations partially evaluate expressions at compile time, thereby reducing the work a

program must do when it executes.

A functional program can be executed by exhaustively applying rewrite rules. However,

expression rewriting is inefficient on real computer hardware. After performing high-level

optimizations, Triolet’s compiler compiles high-level functional code to executable code, fol-

lowing methods developed for other functional languages [60].

While it is instructive to understand the translation from functional expressions to ex-

ecutable code, the translation provides little insight into what happens when a given piece

of source code is executed. An apparently complicated and expensive programming lan-

guage feature can, in fact, be simple and cheap because optimizations reliably replace it by

cheaper operations in common cases. Santos’s operational semantics for high-level func-

tional code [61] covers the most important performance factors.

Triolet is a typed language. Types are usually hidden from code examples or shown

separately as type signatures, because systematically showing all type information tends to
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hamper readability. This should be understood as a notational convention. Programs contain

enough type information that a compiler and runtime system could, in principle, keep track

of the type of every value. One can sweep some details under the rug to read Triolet code

while ignoring types; however, once type-based overloading and data type representations

are brought into the picture, types are an essential part of Triolet’s semantics.

2.2 Reduction Semantics

There is a useful parallel between functional programming and mathematics. In both set-

tings, the meaning of an expression is given by the definitions of the variables and operators

used in the expression, rather than by the behavior of a processor. A human calculating the

value of an expression proceeds by substituting variables, instantiating formulas, and reduc-

ing terms. The expressions produced at every step of this process stand for the same value.

Understanding how to do the same with functional code helps in reading and writing func-

tional programs as well as understanding how compilers can optimize them. This section

presents an instance of discrete convolution, first as math, then as functional code to clarify

the relationship between math and code.

The convolution of a signal A with a kernel K having 3 nonzeros is defined as (A∗K)i =
∑1
k=−1Ai−kKk. The left-hand-side of this equation names the operator ∗ being defined. The

form of the left-hand-side indicates that ∗ is defined as a three-place operator. The right-

hand side of the equation gives the value of a convolution in terms of its three arguments.

Given a discrete signal x and convolution kernel y with values

x0 = 0.1 x1 = −0.2 x2 = −0.5

y−1 = 1 y0 = 0 y1 = −1

one can compute (x ∗ y)1, the convolution of x and y at index 1, through the following

steps. Multiple steps are condensed into one for brevity.
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(x ∗y)1 =
1
∑

k=−1

x1−kyk Instantiate convolution formula

= x1−(−1)y−1 +x1−0y0 + x1−1y1 Instantiate summation

= x2y−1 +x1y0 + x0y1 Reduce arithmetic

= −0.5(1)+−0.2(0)+ 0.1(−1) Instantiate formulas for x and y

= −0.6 Reduce arithmetic

In the calculation process, the operators ∗ and
∑

and the variables x and y are instantiated,

and arithmetic terms involving numbers are simplified.

In a functional setting, a programmer could define convolution in a way that closely fol-

lows the mathematical definition:

convolution A K i = let convAt k = A (i− k)∗K k

in mathSum (−1) 1 convAt

Just as the mathematical definition defined a new operator, ∗, this equation defines a new

variable, convolution. The left-hand side of the equation shows convolution called with three

arguments, indicating that its value is a three-argument function. The equals sign introduces

the function body. It can be read as forming an equation: the function call on the left is equal

to the expression on the right for any choice of parameters A, K, and i.

In the function body, let . . . in delimits a group of local variable definitions. One local

variable, convAt, is defined here. This variable holds a function that computes the original

convolution equation’s kth summand. (The ∗ now stands for multiplication.) The call to

mathSum carries out the summation (mathSum is defined in Section 2.3). This code is almost

a direct translation of the mathematical equation for convolution, yet (with a few syntactic

changes) it is also executable in Haskell or ML.

Signals x and y could, similarly, be defined as functions that take an index and return

the signal value at that index.

x 0 = 0.1
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x 1 = −0.2

x 2 = −0.5

x 3 = −0.4

y (−1) = 1

y 0 = 0.1

y 1 = −1

These equations utilize pattern matching: which equation gives the function’s result depends

on what argument x or y is called with. The first equation, for instance, says that a call of

x with argument 0 evaluates to 0.1. The function x compares its argument against each

equation until one matches, like a switch statement in C. It is a run-time error if no equation

matches.

Functional code, like mathematical formulas, can be evaluated (or reduced) at a source

code level. Evaluating code “on paper” is a useful way to understand how functions behave.

The evaluation of a call to convolution is traced below. A long arrow connects successive

steps of evaluation. As before, multiple steps of evaluation are condensed for brevity.

convolution x y 1 -→ let convAt k = x (1− k)∗y k

in mathSum (−1) 1 convAt

Inline convolution

-→ let convAt k = x (1− k)∗y k

in 0+ convAt (−1)+ convAt 0+ convAt 1

Inline mathSum

-→ let convAt k = x (1− k)∗y k

in 0+
(

x (1− (−1))∗y (−1)
)

+
(

x (1− 0)∗y 0
)

+
(

x (1− 1)∗y 1
)

Inline convAt

-→ 0+
(

x (1− (−1))∗y (−1)
)

+
(

x (1− 0)∗y 0
)

+
(

x (1− 1)∗y 1
)

Remove unused variable

-→ 0+ x 2∗y (−1)+x 1∗y 0+x 0∗y 1 Reduce arithmetic
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-→ 0+−0.5∗ 1+−0.2∗ 0+ 0.1∗−1 Inline x and y

-→ −0.6 Reduce arithmetic

These evaluation steps parallel the earlier mathematical calculation. Each step proceeds

by transforming an expression. Transformation is localized: to transform an expression, one

need examine only the expression itself and the definitions of variables that it uses.

2.3 Loops and Higher-Order Functions

Here mathSum is presented in more detail as an example of a loop (summation involves a

loop) and a higher-order function (mathSum’s third parameter is a function). A function is

higher-order if any of its parameters or return value must be a function for error-free evalu-

ation. The summation
∑u
k=l f(k) is computed by mathSum. The lower bound l, upper bound

u, and summand f are passed as parameters. By parameterizing over an arbitrary summand,

expressed as a function of k, mathematical summation can be defined as a function once and

for all.

mathSum l u f =

let loop i x = if i > u

then x

else let y = x + f i

in loop (i+ 1) y

in loop l 0

The local function loop decomposes the problem of summing over a range i . . . u into

computing a value at i and summing over a smaller range i+ 1 . . . u. Parameter x holds the

partial sum over l . . . i−1. If the range is empty, the sum is simply x; otherwise, a new partial

sum is assigned to y and loop is called to solve a new subproblem. With this breakdown,

the entire summation is computed by summing the full range with a partial sum of zero,
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loop l 0.

We can trace the execution of
∑2
k=0 k

2 by repeatedly inlining and reducing the call of loop.

With the help of the auxiliary function definition square x = x∗x, the call mathSum 0 2 square

expands into

let loop i x = if i > 2

then x

else let y = x + square i in loop (i+ 1) y

in loop 0 0

The loop is initially called with i = 0 and x = 0. Inlining and reducing once computes the

partial sum at index 0:

loop 0 0 -→ if 0 > 2

then 0

else let y = 0+ square 0 in loop (0+ 1) y

-→ loop 1 0

Evaluation yields another call of loop. This process repeats until i = 3, at which point the

Boolean condition evaluates to True and no further calls are made:

-→ if 1 > 2

then 0

else let y = 0+ square 1 in loop (1+ 1) y

-→ loop 2 1

-→ if 2 > 2

then 1

else let y = 1+ square 2 in loop (2+ 1) y

-→ loop 3 5
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-→ if 3 > 2

then 5

else let y = 5+ square 3 in loop (3+ 1) y

-→ 5

The administrative work of counting from 0 to 3 makes this tracing process rather te-

dious. By leaving square unevaluated, we can reduce the uninteresting work to reveal just the

three-element summation:

loop 0 0 -→ let y = 0+ square 0

in loop 1 y

-→ let y = (0+ square 0)+ square 1

in loop 2 y

-→ let y = ((0+ square 0)+ square 1)+ square 2

in loop 3 y

-→ 0+ square 0+ square 1+ square 2

Selectively evaluating the uninteresting work makes it clearer what this code accomplishes.

This trick was applied when inlining mathSum in Section 2.2. The ability to simplify individual

expressions is indispensable to understanding larger pieces of code.

2.4 Data Structures

A programming language’s built-in data types only serve a limited range of purposes, so most

languages also provide a way of constructing new data structures. This section introduces

algebraic data structures, which were used early on by the influential language ML and sub-

sequently spread into other languages. The power of algebraic data structures is their ability

to statically classify data through a type system. Static typing rules out some classes of
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programming bugs and enables run-time data representations to be more space-efficient and

time-efficient than less-expressive paradigms. This section presents algebraic data structures

in an untyped setting to emphasize their interpretation. Section 2.6 completes the picture

with algebraic data types that classify data.

Algebraic data structures originate from the application of abstract algebra to data struc-

ture design. An analogy from mathematics illustrates the central concepts. Given the term

1+ 2(3), we can reduce the addition and multiplication to get 7. But the term 1+ 2i (where i

is the imaginary unit) is already in its simplest form, despite having a multiplication and an

addition. The usual interpretation is that the term 1+ 2i does stand for a particular complex

number that is produced by multiplying 2 by i and adding 1, we just have no way to write this

number directly. Expressions of the form a+ bi (where a and b stand for real numbers) are

perfectly serviceable ways of writing complex numbers. Every complex number has a unique

decomposition into two real numbers a and b in this form, and every pair of real numbers

uniquely identifies a complex number. This uniqueness property means the the addition and

multiplication in a + bi are reversible: we can deconstruct a complex number into its two

constituent real numbers. Effectively this form is a data structure containing two fields, “real

part” a and “imaginary part” b.

Functional languages with algebraic data structures impose an operational semantics onto

the semantic notion that data structures are reversible functions. Functional languages dis-

tinguish functions (which can be reduced, but not deconstructed) from data constructors

(which can be deconstructed, but not reduced). To work with complex numbers in func-

tional code, assume for now that there is a predefined two-parameter data constructor called

Complex. The data expression Complex 1 2 is the functional equivalent of the term 1+ 2i. It

syntactically resembles a two-argument function call, but with a data constructor in place of a

function. A typical operational interpretation for this term is that it creates a new heap object

containing references to a type descriptor for Complex and the numbers 1 and 2 (Figure 2.1)

and returns the new object’s address. The first pointer points to a type descriptor hold-

ing statically generated information about the data constructor Complex. Type descriptors
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Figure 2.1: Memory organization of an algebraic data structure representing a complex num-
ber during the execution of untyped functional code.

hold whatever run-time information may be required about an object, such as the number of

fields the object has. The second and third pointers point to data structures representing the

floating-point numbers 1 and 2, respectively. The term Complex 1 2 is also used to write the

value returned by the expression. That is, this term stands for a piece of data consisting of

pointers to the data structures for Complex, 1, and 2 in that sequence.

Data is deconstructed by case expressions. A case expression examines an object’s data

constructor and binds its fields to variables. For example, functions could be defined to get

the real part, imaginary part, and magnitude of a complex number:

real x = case x of Complex y z. y

imag x = case x of Complex y z. z

mag x = case x of Complex y z. sqrt (y ∗y + z ∗ z)

The expression mag (Complex 3 4) is evaluated as follows.

mag (Complex 3 4) -→ case Complex 3 4 of Complex y z. sqrt (y ∗y + z∗ z)

-→ sqrt (3∗ 3+ 4∗ 4)

-→ 5

The case expression deconstructs the value Complex 3 4 into its constituent values 3 and 4,

putting them into y and z respectively. Deconstructing the value involves pattern matching:

the case expression first checks that the value is a Complex term, and signals a run-time error

if it is not. Operationally, the case expression checks the given value’s type descriptor, reads
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the value’s two fields into variables, and executes the subexpression.

Case expressions may supply handlers for several different data constructors, dynami-

cally selecting the one that matches the given value. For instance, Boolean values are data

terms consisting of a data constructor, either True or False, and no fields. A function to get

the absolute value of an integer could be written

abs x = case x ≥ 0

of True. x

False. 0− x

The case expression examines the result of x ≥ 0 and evaluates the matching handler. The

more familiar if . . . then . . . else . . . notation is shorthand for case . . . of {True. . . . ;

False. . . . }.

Functions and algebraic data structures take over the roles filled by lower-level primitive

operations in imperative code. Memory is written by data expressions and read by case

expressions. Conditional execution is accomplished through case expressions. Other control

flow transfers are accomplished through function calls.

2.5 Divergence

Evaluating an expression may fail to yield a value in one of several ways. A recursive function

may loop forever without producing a result. Some operations may produce run-time errors,

such as dividing by zero or reading an out-of-bounds array index. Many functional languages

have a primitive operation, error, that interrupts execution when evaluated. These outcomes

of evaluation are called divergence.

In Triolet, divergence is treated like a benign side effect. Compiler optimizations are

allowed to turn a diverging program into one that diverges for a different reason, or to remove

divergence from a function that both diverges and returns a value. The role of divergence is

similar to the role of “undefined behavior” in compiling C code [62].

38



The properties of divergence affect which compiler optimizations are safe and enable

some profitable transformations. By knowing that some parts of a function diverge, a com-

piler can infer additional information to use when optimizing other parts of the function.

Error checks, for instance, diverges by interrupting execution if a condition indicating an er-

ror is met. The compiler can infer that, if an error check does not diverge, its error condition

is not met. Suppose we have a function that requires its Complex argument to have a zero

real component:

foo x = case x of Complex y z. if y 6= 0 then error else cos z

If foo returns, its argument’s real component must be zero, and this fact can be used for

optimizing subsequent code. For example, in the expression let u = foo x in case x

of Complex y z. y + u, the real component of x is surely zero after foo returns. Thus,

y is known to be zero and the expression y +u can be simplified to u.

2.6 Types

To this point, this chapter has tacitly assumed an untyped language, where any term can be

used in any context. The term 1 + 2 is permissible, and so is the term 1 + convolution. But

the sum of an integer and a function is conventionally meaningless. Such a term, though

not useful, could still arise due to a programming error. It would be better for a compiler

to reject such code than to turn it into executable code that does nothing useful. Ruling out

such meaningless terms is the job of a type system.

Type systems aid software engineering and facilitate generation of efficient code. A type

annotation written by a programmer expresses a fact about program behavior that a compiler

can verify; thus, type annotations are machine-checked documentation. Type checking helps

to detect misbehaving code early and rule out some classes of bugs. By constraining the

possible values of variables and terms, a type system allows a compiler to create programs

that store less information (saving space) and check less information (saving time).
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Triolet uses a static type system. Static types are a compile-time notion for explaining how

a program behaves. Static type information does not exist at run time. Values are classified

into types; a type is a name for a set of values. A type is said to be inhabited if there are

values that have that type; its values are called its inhabitants. The value 1 is said to have

type Int or inhabit Int.

Variables and expressions are ascribed types to indicate what values they may contain or

evaluate to. We say, for instance, that a term or variable has type Int if its value can only be

an integer. (To avoid some subtleties regarding numeric types, in this section all numbers

are assumed to be integers.) For instance, the term 1+ 1 has type Int. Terms that have a type

are well-typed. Terms such as 1+ convolution are ill-typed; they cannot have a value, and are

rejected by the compiler.

A function’s type summarizes how it behaves when called. The type indicates what is

required of its arguments and what is guaranteed of its return value. Types allow a function’s

correctness to be verified in isolation from the rest of a program: requirements on parameters

are assumed to be true while checking the function, and verified in each place the function

is used. For instance, in the term let f x = x ∗ x + 1 in f , the function f takes and returns

integers. Its type is written Int → Int, the → operator denoting a function type. Since the

typing rules guarantee that f will only be passed Ints, it is not necessary for f to check

whether x is an Int before reading its value from memory.

In a language with immutable data and static typing, new data types may be defined

algebraically by declaring the name of a new type together with all the ways that values

of that type may be built [63]. As in the untyped setting, data values are built with data

constructors. Now, each data constructor is introduced with a type signature determining

what field types it takes and what result type it produces. The following example shows a

definition of a binary tree data type.

data IntTree :? where

IntBranch : Int× Int→ IntTree

IntLeaf : Int→ IntTree
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This definition introduces a type constructor, IntTree, and two data constructors, IntBranch

and IntLeaf, for creating trees whose leaves are labeled with an integer. The kind signature

IntTree :? indicates that IntTree is a type. The data constructors’ type signatures reflect the

fact that they take field values (whose types are given on the left of the arrow) and produce

a new piece of data (whose type is given on the right). IntBranch builds a new tree from two

trees representing its left and right subtrees. IntLeaf builds a new tree representing a leaf

from an Int representing its label.

Since a data type definition determines its constructors, it also determines how case ex-

pressions examine values of that type. For IntTrees, a case expression matching any IntTree

would have one handler for each of IntBranch and IntLeaf, as demonstrated by the following

leaf-counting function.

numLeaves t = case t

of IntBranch ` r . numLeaves ` + numLeaves r

IntLeaf x. 1

This function has type IntTree → Int. Since an IntTree can only be built with two data con-

structors, every possible argument value is handled by this function.

Because an algebraic data type definition lists all the ways that a data type can be built,

an implementation can use the definition to choose an optimized representation of the type

in memory. Any given Tree is either a branch or a leaf, so a tree’s type descriptor can simply

be a Boolean flag to distinguish between the two possibilities. Furthermore, the Int field’s

value does not have to be represented by a pointer to an Int object as it was in untyped

code. Since the field must be an integer, its value may be stored in the object as a machine

word, eliminating a level of indirection to access the data. Values whose contents are stored

directly as part of another value are called unboxed. The term “box” in this context refers

to the block of heap-allocated storage normally used to hold a value. A data type is called

unboxed if its values are always unboxed. Memory layout optimizations, including unboxing,

have a significant effect on performance. Unboxing transformations have been studied ex-

tensively [64, 65, 66, 67, 68]. Unboxing can dramatically improve the performance of access
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to small objects, such as numeric values, and array elements.

A type system statically constrains the possible values held in objects, reducing the possi-

bility of errors and eliminating some dynamic checks and boxing. In this section’s examples,

each piece of code is fixed to one type. However, a central feature of container libraries is

that the same container data types and functions may be reused on collections of values of

arbitrary types. The more powerful type system features discussed in the next section are

needed to express such code.

2.7 Polymorphism

Many functions and data constructors are polymorphic, working “the same way” for an arbi-

trary choice of types. For example, the function

select b x y = if b then x else y

selects one of x or y , depending on the Boolean value b. It can be used to select between two

values of any type (both values must have the same type). To select numbers (select b 0 1),

select can be given type Bool → Int → Int → Int. To select Booleans (select b False True), it

can be given type Bool → Bool → Bool → Bool. In fact, for any type τ, select can be given type

Bool → τ → τ → τ. This freedom to choose an arbitrary type for some parts of the code is

called polymorphism.

The type of a polymorphic function or data constructor expresses the range of all possible

types it may be ascribed. In a polymorphic type, type variables stand for the parts that can

vary. A polymorphic type for select may be written ∀α : ?. Bool → α → α → α. In this type,

the quantifier ∀ introduces a type variable α standing for an arbitrary type. Each time select

is called, a type is chosen to use in place of α. The caller makes this choice by passing a type

to use in place of α as an extra argument to select. This passing of type parameters can be

interpreted as computing type information while a program runs.

A closely related concept is that of parametric types. Just as a polymorphic function

works in the same way for arbitrary types, parametric types describe the same data struc-

42



tures for some arbitrary choice of the types held in the data structure. Linked lists are an

example. A value is not a LinkedList, but rather a LinkedList Int if it is a list containing Ints,

a LinkedList Bool if it is a list containing Bools, and so forth. Applying the parametric type

constructor LinkedList to an argument such as Int or Bool yields a concrete type that can be

used to describe some lists.

Parametric data type definitions, like polymorphic types, use type variables to stand for

the parts that vary. The trees from the previous section can be generalized to arbitrary label

types.

data Tree (α :?) :? where

Branch : Tree α× Tree α→ Tree α

Leaf :α→ Tree α

The type constructor Tree takes the label type as a parameter α. Occurrences of IntTree in

the previous section are now Tree α. In leaves, the label type Int has been replaced by α.
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CHAPTER 3

The Triolet Programming Language

This chapter introduces the Triolet programming language.

The Triolet programming language was designed to offer convenience and readability

for programmers. While the development of Triolet was not intended to introduce innovative

language features, no existing programming language completely suited Triolet’s design goals

of usability and high performance. Triolet achieves its goals by drawing elements from two

programming languages. Triolet’s syntax and control flow are Python-like to make it readable

to casual and novice users. Triolet code can usually be read as if it were Python code. Triolet’s

data structure semantics is Haskell-like to facilitate compile-time optimization. A fortuitous

overlap between the language features of Python and Haskell lets Python’s expression syntax

be reinterpreted in terms of Triolet’s data structures.

Triolet was modeled after Python because Python is widely used and its syntax includes

list comprehensions and first-class functions, both heavily used in Triolet. The similarity

to Python is meant to lower the initial learning barrier by enabling novice programmers to

intuit the meaning of Triolet code from their knowledge of Python. The strategy of grafting a

functional semantics onto an existing imperative language’s syntax follows in the footsteps of

Single Assignment C [13] and Copperhead [7]. In particular, Copperhead is also a functional

language using Python syntax.

Triolet is intended for accelerating small, compute-intensive loops within an application,

similar to how OpenCL is used. In a typical use case, a developer would start by writing

an application in C and C++. Upon finding that the application spends much of its time in

computationally intensive, parallelizable loops, the developer would rewrite those loops as
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Triolet functions. Using Triolet’s C++ API, he or she would write C++ code to convert between

C++ and Triolet data, and insert calls to Triolet functions.

The following example code shows the structure of a typical Triolet file. This file contains

two statements: a definition of the function minimum, and a statement that exports this

function to C++ (by creating a wrapper function that can be called from C++). The exported

function’s type is written using the syntax described in Section 3.1. The body of minimum

defines a function min for selecting the least of two values, then calls the library function

reduce1 to find the minimum of all values in xs. Section 3.2 describes statements. Section 3.3

describes expressions. Sections 3.4 and 3.5 describe Triolet’s library functions.

def minimum(xs):

def min(x, y):

if x < y: return x

else: return y

return reduce1(min, xs)

export cplusplus minimum : list(float) -> float

A C++ file that calls minimum might look as follows.

#include "minimum_cxx.h" // File generated by Triolet compiler

using namespace Triolet;

// Call the Triolet function on a 100-element list

float minimum100(float *p)

{

List<Float> l = CreateFloatList(100, p); // Copy to a new Triolet list

return (float) minimum(l); // Call the Triolet function

}

3.1 Types

The abstract syntax of kinds and types is shown in Figure 3.1. Types are always specified on

exported functions. Types may optionally annotated onto function parameters and returns.

A require statement can optionally be used to specify the type of a local variable. Type
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α ∈ Identifiers

kind ::= type | kind -> kind Kind

type ::= α Type variable or constructor

| type([type,]+) Type application

| ([type,]∗) Tuple type

| type [* type]∗] -> type Function type

Figure 3.1: Syntax of Triolet types.

annotations are useful for documentation and debugging. They can also constrain the types

of terms when there is not enough information for type inference to determine a type.

Triolet has a simple kind system (in the technical sense). There is a single base kind,

type. Arrow kinds κ1 -> κ2 are inhabited by parametric types.

Type application is written in function syntax, e.g., list(int) is the application of list

to int. Tuple types are written in tuple syntax, e.g., (int, float, bool) is the application

of the 3-tuple type constructor to int, float, and bool. Function types are written with

an arrow. If a function takes multiple arguments, the domain is written as a product. For

instance, the type of a Boolean NAND function is bool * bool -> bool.

3.2 Statements

The syntax of statements is shown in Figure 3.2. Assignment and conditional execution work

as in Python. Return statements must be provided with a return value.

A sequence of function definitions without intervening statements acts as a set of mutu-

ally recursive function definitions. Because definitions are recursive, such functions can be

used to write sequential loops.

An assert statement evaluates a Boolean expression and diverges if the result is False.

Assertions express conditions that must hold during execution. The compiler may use these

conditions in optimizing code. For example, an assertion can be used to indicate that the size
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stm ::= target = exp Assignment

| if exp: suite [elif exp: suite]∗ [else: suite] Conditional execution

| return exp Function return

| def + Function definition group

| assert exp Dynamic assertion

| require x : type Static assertion

suite ::= stm∗

poly-sig ::= @forall([x [:kind],]∗) [@where([type,]∗)] Polymorphic type signature

def ::= [poly-sig] def x([x [:type],]+) [-> type]: suite Function definition

export ::= export cplusplus [str] x : type Export declaration

top ::= def | export Top-level statement

module ::= top∗ Triolet module

Figure 3.2: Syntax of Triolet statements and global definitions.

of a list is known at compile time:

def f(A):

assert len(A) == 4

return len(A)

The second statement will only execute if len(A) has the value 4, so the compiler can replace

the second len(A) with a literal 4.

A require statement declares the type of a variable. Declaring types is useful for de-

bugging type errors, and is occasionally necessary to resolve operator overloading. In the

following example, the definition and use of ones are overloaded such that the type of ones

is not uniquely determined. The require statement fixes the type of ones.

def size(A):

ones = [1 for x in A]

require ones : view(list_dim, int)

return sum(ones)

Function definitions optionally take parameter and return type annotations. The follow-

ing example restricts size to functions that take a list(int) parameter and return an int.

def size(A : list(int)) -> int:

ones = [1 for x in A]
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require ones : view(list_dim, int)

return sum(ones)

Function definitions can also be given polymorphic type annotations. Polymorphic type

annotations declare type parameters and type class constraints. The following annotates a

polymorphic type onto size. This is the same type that is inferred if the function definition

is not annotated.

@forall(t : type -> type, a)

@where(Repr(t(a)), Repr(a), Traversable(t), shape(t) == list_dim)

def size(A : t(a)) -> int:

ones = [1 for x in A]

require ones : view(list_dim, int)

return sum(ones)

A Triolet file consists of a sequence of function definitions and export declarations in

arbitrary order. An export declaration directs Triolet to generate a wrapper that allows a

function to be called from another language. The following statement exports size on lists

to C++. The C++ function is called triolet_size.

export cplusplus "triolet_size" size : list(int) -> int

3.3 Expressions

The syntax of Triolet expressions is shown in Figure 3.3.

A target designates the destination of an assignment. A variable target assigns a vari-

able. For instance, in [1 for ix in range(10)], the target ix binds the variable ix. The

context where the target appears determines what value is bound; in this case, values bound

to ix come from the iterator returned by range(10). A tuple target deconstructs a tuple

and assigns its fields to targets. In [magnitude * exp(angle) for (magnitude, angle)

in A], the values taken from A must be 2-tuples and their two fields are bound to x and y

respectively.

Most expressions exp are analogous to their Python equivalents. Function calls and

lambda expressions must take at least one argument. Generators and comprehensions play
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x ∈ Identifiers

n ∈ Numbers

⊕ ∈ {or,and,<,<=,>,>=,==,!=,|,&,^,<<,>>,
+,-,*,/,//,%,**,->}

target ::= x Variable binding

| ([x,]∗) Tuple binding

exp ::= x Variable

| n | True | False | None Literal

| ([exp,]∗) Tuple

| [[exp,]∗] List

| -exp | not exp Unary operator

| exp ⊕ exp Binary operator

| exp[exp] Subscript

| exp[[exp]:[exp][:[exp]]] Slice

| (exp gen) Generator

| [exp gen] Comprehension

| exp([exp,]+) Call

| exp if exp else exp Conditional

| lambda [x,]+: exp Anonymous function

| let target = exp in exp Local binding

gen ::= for target in exp clause∗ Value generator

clause ::= for target in exp Iteration

| if exp Guard

| let target = exp Local binding

Figure 3.3: Syntax of Triolet expressions.
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a more prominent role in Triolet than in Python, since they are used in parallel program-

ming. Triolet introduces let expressions and let clauses as a way to locally bind variables.

The expression let (x, y) = foo(x) in x + y takes the result of foo(x), which must be

a tuple, and adds its two fields together.

A generator expression or comprehension contains a body exp followed by a sequence gen

of generator clauses. The sequence of clauses can be read as a loop nest, with the expres-

sion forming the loop body. For example, the expression [x*y for x in xs for y in ys

if x > 0 and y > 0] is analogous to the following Python loop.

result = []

for x in xs:

for y in ys:

if x > 0 and y > 0:

result.append(x*y)

A let clause, like a let expression, can be used to locally bind variables in a generator.

3.4 Introduction to Container Functions

Triolet has a library of functions that operate on collections of values. Most of these functions

can exploit parallelism by partitioning a collection and processing each partition in a separate

thread. Informally, a container is a data structure that holds a collection of values. Formally,

a container in Triolet is a value whose type is an application of a traversable type constructor

(Section 3.5.3). In Triolet, containers can hold an arbitrary data type and all values in a given

container must have the same type.

Triolet’s container functions are generalized to work with a variety of container types. For

the purposes of this section, container functions are assumed to operate only on lists. This

restriction simplifies the description of how the contents of a container get transformed. This

understanding carries along to Section 3.5, which generalizes the structure of containers.

Mapping A map, performed by map, transforms each element of an array by a given func-

tion. The expression map(f, [x, y, z]) applies the function f to the array elements x,

50



y, and z, returning an array equal to [f(x), f(y), f(z)]. Many algorithms have commu-

nication-free parallel phases, expressed as a mapping of some function over an array.

A list comprehension with a single for clause is equivalent to a map. However, the two

forms are generalized differently in Section 3.5.

Reduction A reduction, performed by reduce, combines all the elements of a data struc-

ture into one result value by repeatedly applying a given associative or pseudo-associative

binary function f . The binary operation’s identity value z is used as the initial value of

the result. The expression reduce(f, z, [k, l, m, n]) computes f(f(f(f(z, k), l),

m), n). The associativity and identity properties of f and z admit other ways of com-

puting the result, which can be exploited for parallelism. If the result is computed as

f(f(f(z, k), l), f(f(z, m), n)) instead, then a parallel computer could evaluate the

subterms f(f(z, k), l) and f(f(z, m), n) in parallel.

Summation, performed by sum, is a common special case of reduction where the binary

function is addition and the identity element is zero. Signal processing and physical mod-

eling often involve computations of the general form
∑

x f(x); these can be written with

map and sum. For example, the norm of a vector |~v| is
√

∑

vi∈~v v
2
i . In Triolet, this is writ-

ten sqrt (sum (map (lambda v_i: v_i*v_i, v))). The call to map computes all squared

components v2
i , the call to sum sums them, and the call to sqrt takes the square root.

Reductions that are idempotent, but do not have an identity value, can be written using

reduce1. This function uses an element of its input list like an identity value. That is,

reduce1(f, [x, y, z]) is equivalent to reduce(f, x, [y,z]) as long as f is idempotent.

This function diverges when given an empty list. Such reductions typically arise when finding

a least or greatest value with respect to some ordering.

Histogramming A histogram is an array recording the number of occurrences of discrete

values in a set, such as the number of times each integer is found in some array. Elements of a

histogram array are called bins. Triolet’s histogram function computes weighted histograms.

A weighted histogram computation takes an array of key-weight pairs as input, sums the
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weights at each key, and builds an array of the summed values. The array size is given as

the first parameter. For instance, the expression histogram(4, [(0,10), (1,5), (0,9),

(2,-5)]) constructs a four-element array and populates it with the given key-weight pairs,

producing [19,5,−5,0]. An unweighted histogram is computed by using 1 for every weight.

Range construction A range, computed by range, is an array holding the sequence of inte-

gers from zero up to a given bound. The expression range(4) returns [0,1,2,3]. Ranges are

the container analogue of counted loops. When a range is used as the input to a container

operation, the values in the range play the role of a loop counter. For instance, the Triolet

expression sum(map(f, range(n))) represents the same computation as the following C

code fragment.

s = 0;

for (i = 0; i < n; i++) s = s + f(i);

Slicing Slicing selects array elements whose indices lie in a given range. A slice expression

a[l:u:s] selects the elements of array a at indices from the lower bound l up to and exclud-

ing the upper bound u at intervals of the stride s. For example, the expression [2, 3, 5, 7,

11, 13, 17, 19][1:7:2] selects the elements at indices 1, 3, and 5, returning [3,7,13].

Zipping Zipping, performed by zip, combines two arrays by tupling together array elements

at corresponding indices. The name “zip” recalls how a zipper’s two rows of teeth line up

when it is closed. The expression zip([-3,-2,-1], [4,5,6,7]) returns [〈−3,4〉, 〈−2,5〉,

〈−1,6〉]. The tail of the longer argument array is dropped. It is sometimes convenient to store

a collection of data in multiple arrays, each holding a different property of the data. This is

called “structure-of-arrays” storage. Zipping is used to combine data from multiple arrays

as input to a parallel computation. For instance, given some complex numbers stored as an

array of real components and an array of imaginary components, the arrays could be zipped

together to create an array of real-imaginary pairs for further processing. The resulting array

is often called “array-of-structures” since each array element is a data structure with two
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fields.

Filtering Filtering, performed by filter, selects those elements of an array that satisfy

a given test. Tests are given as functions that map array elements to a Boolean value. For

instance, the function lambda x: x >= 0 identifies nonnegative array elements. The expres-

sion filter(lambda x: x >= 0, [1, -2, 3, 4]) returns the nonnegative array elements

as a new array, [1,3,4].

Singleton construction The unit function creates a one-element array containing a given

value. For instance, unit(5) yields [5]. This function is a building block of nested loops.

List comprehensions, described later in this section, sometimes translate into code that calls

unit.

Flattening Some algorithms expand a single input value into multiple outputs. The array-

creating functions introduced so far cannot do this, as they produce at most one array ele-

ment per loop iteration. Multiple outputs may be produced by creating an array of arrays,

then flattening it into an array.

Flattening is employed, for example, in finding all ordered pairs of neighbors in a given

set of points, where two points are neighbors if the distance between them is less than 1.

Consider a set of points s having members s0, s1, s2. One can map over s twice to create all

pairs of points.

all_pairs = map(lambda x: map(lambda y: (x, y), s), s)

This computes [[〈s0, s0〉, 〈s0, s1〉, 〈s0, s2〉], [〈s1, s0〉, 〈s1, s1〉, 〈s1, s2〉], [〈s2, s0〉, 〈s2, s1〉, 〈s2, s2〉]].

Supposing a function is_neighbor is available to decide whether the points in a pair are

neighbors, one can then filter the inner lists to obtain neighbor points.

neighbor_pairs =

map(lambda xys: filter(lambda xy: is_neighbor(xy), xys), all_pairs)

This computes a list of lists containing all neighbor pairs, [[〈s0, s0〉, 〈s0, s1〉], [〈s1, s0〉, 〈s1, s1〉,

〈s1, s2〉], [〈s2, s1〉, 〈s2, s2〉]]. The nesting of lists is an artifact of the nested loops that created

53



this data structure. Typically, further processing would treat all pairs in the same way. The

nested list organization provides no useful information compared to a flat list, but adds

needless complexity to further processing. One can apply the flattening function concat to

concatenate the sub-lists, yielding [〈s0, s0〉, 〈s0, s1〉, 〈s1, s0〉, 〈s1, s1〉, 〈s1, s2〉, 〈s2, s1〉, 〈s2, s2〉].

Some container libraries, including Triolet’s, supply an alternative flattening function

concatMap that is a combination of map and concat. Either of concat and concatMap can

be implemented in terms of the other according to the following formulas:

concat x = concatMap (λy. y) x

concatMap f x = concat (map f x)

Although concat is conceptually simpler, concatMap is more amenable to loop fusion and

can lead to lower asymptotic space usage.

List comprehensions List comprehensions are a syntactic form for writing mapping, filter-

ing, and concatenation with a loop-like syntax. Derived from mathematical set comprehen-

sion notation, they first appeared in the SETL programming language [69] and were subse-

quently adopted into many other languages. List comprehensions are translated into calls of

map, concatMap, filter, and unit [52].

The simplest nontrivial list comprehension consists of a body followed by a single genera-

tor clause, for example [x * x for x in range(5)]. The generator clause for x

in range(5) loops over range(5), binding each element of the range to x. The body com-

putes x * x on each generated value, and the results are collected into a list, producing

[0,1,4,9,16]. Looping over array elements and building a result is precisely what map does,

and this expression could be written without list comprehensions as map(lambda x: x * x,

range(5)).

List comprehensions may also contain guard clauses, introduced by the if keyword.

A guard clause in a list comprehension skips loop iterations, just as filter skips array
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elements. For instance, [x * x for x in range(5) if x > 0] does the same thing as

map(lambda x: x * x, filter(lambda x: x > 0, range(5))).

A comprehension with multiple for clauses translates into a loop nest flattened with

concatMap. The neighbor list computation presented above can be written more compactly

as [(x, y) for x in s for y in s if is_neighbor((x, y))].

3.5 Containers

Lists are awkward at storing many kinds of data. Matrix and image data, for instance, are nat-

urally organized as 2D arrays. Moreover, lists are eagerly evaluated (each container function

fully generates its result before the next begins), which can lead to unnecessary storage of

temporary values. Triolet generalizes container functions over different logical arrangements

of data (Section 3.5.1). Triolet further generalizes over different storage formats, supporting

both access to individual elements of a container (Section 3.5.2) and collective access to all

elements of a container (Section 3.5.3). In this way, the same library interface can be used to

access different data types having different performance characteristics.

3.5.1 Domains

Containers in Triolet denote finite maps with restricted domains. That is, a container de-

notes a set (its domain) drawn from a set of sets (a domain type), together with a function

associating a value to each of the set’s elements. The elements of the set are called indices.

Domains originated as a programming language abstraction in ZPL [70, 71], where they were

called “regions.” Chapel [43] and Haskell [72] provide similar abstractions for re-mapping

array indices. Whereas ZPL, Chapel, and Haskell use concrete arrays as the underlying stor-

age format, Triolet abstracts over storage formats using the overloaded interfaces in Sections

3.5.2 and 3.5.3.

Programmers use 1D arrays for (at least) two different ways of organizing data, whose

indexing semantics differ. A collection of data may represent an ordered sequence, such as a
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sequence of images ranked from lightest to darkest. An element’s position is relative (“x is

in fifth place”). A collection may instead represent a mapping from integer indices to values,

such as the values of an electronic signal sampled at times 0,1, . . . . An element’s position

is absolute (“x is at position 5”). Removing the element at position 0 means something

different in each case: in the former, x becomes fourth among the remaining elements, but

in the latter, x’s associated sampling time and thus its position is unchanged. In Triolet,

these semantics are captured by different domain types. Indices of ordered sequences are

described by values of type list_dim. Indices of regularly spaced, integer-to-value mappings

are described by dim1.

A value of type list_dim describes the index space of a container, such as a list, whose

elements represent an ordered sequence of values. A list’s domain is the set {n | 0 ≤ n < l},

and the list contains a concrete array holding one value for each element of the domain. For

some operations on domains, it is useful to have a distinguished domain that is larger than

all other domains. The largest list domain represents the set {n | 0 ≤ n} of all nonnegative

integers. In Triolet, the domain type of lists is list_dim, which denotes the set of domains

{{n | 0 ≤ n < l} | l ∈ N ∪ {∞}}. A list_dim data structure holds the upper bound of a

domain, i.e., the value of l. The list [0.5,2.5,1.5] denotes the domain {0,1,2} and mapping

{0 , 0.5,1, 2.5,2 , 1.5}.

A dim1 describes the index space of a container whose elements represent a one-dimen-

sional array. The counterpart of list for this domain type is called array1. Like a list, its

elements are stored in a concrete array. Like a region in ZPL, a dim1 can have an arbitrary

lower bound and arbitrary positive stride between elements. It is defined in this way so that

a slice expression such as a[l:u:s] can be understood as restricting a to the subdomain

given by the slice l:u:s. In the common case where the stride s is 1, a dim1 denotes the set

of all integers between a given lower bound l and upper bound u, including l but excluding

u. In the general case, a dim1 additionally has a stride s > 0 and alignment a = l mod s, and

denotes the set of integers between l and u that are multiples of s offset by a, {n | l ≤ n <

u∧ ∃m. n =ms + a}.
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Higher-dimensional array domains consist of a dim1 for each dimension, and denote the

Cartesian product of the dim1 sets. Triolet provides domain types dim2 and dim3, and array

types array2 and array3, analogous to the 1D types.

3.5.2 Indexable Containers

An indexable container type supports random access to its elements. Indexable containers

are a generalization of arrays. Each indexable type has three associated operations. First,

an indexable object can be subscripted, using the subscript operator, to extract a value at

a given index. The expression a[9] extracts the element of a at index 9. The expression

b[(0,1,2)] extracts the element of b at index (0,1,2). Second, an indexable object can be

sliced to extract a subset of its elements. The slice expression a[5:50] extracts the elements

of a at indices 5 up to and excluding 50 in the form of a new indexable container (whose exact

type is hidden and implementation-dependent). In the list_dim domain, a slice’s elements

are shifted so that indices start from zero; in other domains, elements keep their original

indices. Third, the domain of an indexable object can be retrieved by calling domain. A client

that uses an indexable container can access its contents in whatever way is convenient.

The indexable interface is also used as internal abstraction layer within the library to

parallelize loops. Divide-and-conquer parallel kernels examine their input’s domain when

operating on a whole data structure, such as allocating storage for a new output array. Parallel

kernel slice a loop’s input data structure to partition it across threads. Individual threads

repeatedly index into their input data structures. To afford the library some flexibility in

how it schedules work, data structures that can be accessed in parallel expose a less general

interface, described in the next section.

3.5.3 Traversable Containers

A traversable container type is one that provides a method of looping over, or traversing its

elements. The iter function creates an iterator that loops over a container’s elements. The
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build function assembles a new container from the elements of an iterator. These two meth-

ods together constitute the traversable interface. These functions are usually not needed in

Triolet source code since most container functions call iter on their argument. For instance,

the expression [2*x for x in a] is syntactic sugar for build(map(lambda x: 2*x,

iter(a))). It calls iter on the input, a, to convert it to an iterator, calls map to trans-

form the iterator’s contents, and calls build on the transformed iterator to convert it to a

container. The input and output container types are determined by type inference based on

the surrounding code.

Triolet’s iterators are a fairly complicated data structure because they carry information

about potential parallelism, parallel communication, and loop nesting; their internal structure

is the subject of Chapter 5. Semantically, iterators are a traversable data structure whose

contents are computed lazily. They can be understood as a sort of restricted array that has

different performance characteristics.
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CHAPTER 4

Compiling Triolet Code

The Triolet compiler is responsible for eliminating the many levels of abstraction in Triolet

code, yielding high-performance object code. Triolet source code heavily utilizes overloading,

generic functions, first-class functions, and dynamically allocated data. These features, if

not dealt with by compile-time optimizations, carry a heavy run-time penalty. Optimized,

high-performance Triolet code spends most of its execution time reading and writing pre-

allocated arrays, computing with scalar data held in registers or on the stack, and branching

to statically known instructions.

The compiler’s organization, shown in Figure 4.1, broadly follows the design of other

compilers for statically typed, functional languages, such as GHC [57] and TIL [58]. The

compiler frontend translates the language’s full syntax into a simpler internal language while

elaborating type and representation information that is implicit in source code. The output of

the frontend is a small functional language based on System F [73]. High-level optimizations

are performed at this level. These optimizations are designed to minimize the frequency

of function calls and dynamic creation of heap-allocated data structures, both of which are

costly in general. After high-level optimization, the internal representation is lowered to a

low-level, imperative backend language that is a variant of Administrative Normal Form [74].

While the backend language still has first-class functions, its data types and other operations

are not far removed from processor-level instructions. The backend’s primary responsibility

is to generate efficient code from function calls. Low-level optimizations perform additional

inlining and simplification. Closure conversion translates first-class functions into global

functions, data structure manipulation, and transfers of control flow [60, 75]. Finally, C
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Figure 4.1: Flowchart showing stages of the Triolet compiler.

code is generated and processed through the GCC compiler, which employs a large suite of

instruction-level optimizations.

In addition to the compilation path for Triolet source code along the left of Figure 4.1,

the compiler processes library code written in a human-readable form of the high-level and

low-level intermediate languages. These steps are shown along the right side of the figure.

Type declarations in library code are taken into account during type inference of Triolet code.

Library functions are compiled to object code, and they may also be inlined during high-level

or low-level optimizations.

The compiler is shaped by the need to translate Triolet source to the high-level internal

representation, optimize, and then translate to object code. Accordingly, the core language

used by high-level optimizations is presented first, in Section 4.1. Section 4.2 summarizes the

optimizations performed by the compiler. While none of these optimizations are new, some

have been adjusted to better handle data structures and optimizations. Section 4.3 presents
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the backend of the compiler.

4.1 Core Language

Figure 4.2 presents Triolet’s core language, where most optimizations take place. Core is an

extension of System F [73]. Like System F, the core language is functional and statically typed.

Evaluation is eager. The core language’s distinctive feature is its support for unboxed object

fields and mutable initialization of fields. These features support efficient initialization and

reading of numeric arrays in generic, parallel library code.

Triolet uses one of three storage strategies for run-time objects, depending on their type.

Boxed objects are dynamically or statically allocated pass-by-reference data. Boxing is a sim-

ple storage strategy to implement, but it imposes a modest cost: the dynamic allocator is

invoked each time a boxed object is created, metadata is added to each object to support

runtime services such as marshaling, and a memory operation is performed to read or write

an object field. These costs constitute a significant overhead for small objects such as num-

bers. This overhead can be reduced by consolidating many objects into fewer, larger boxed

objects. Objects are called unboxed when their storage is allocated within other objects or

program variables. Triolet distinguishes two unboxed storage strategies. Value objects are

unboxed objects with pass-by-value semantics. They can be decomposed into primitive types

and allocated to program variables. Bare objects are unboxed objects with pass-by-reference

semantics. Since any bare object is represented by a reference, they can be used in code

where the object’s type is unknown. The two unboxed storage strategies each play a role in

high-performance code. Value objects represent small data that can be held directly in reg-

isters. Bare objects represent compact aggregations of data, such as arrays, whose elements

can be located with pointer arithmetic rather than by dereferencing pointers.

Types are classified into storage strategies using the kind system. This method of tracking

storage strategies is adopted from previous work [53]. Kinds are used to classify types based

on their storage strategy. An object’s type may have kind box, val, or bare. References to
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Type constructors T Data constructors C

Type-level integers Ntype Type variables α,β,γ, . . .

Integer literals N Value variables . . . , x, y, z

Kinds κ, ι ::= box | val | bare | mut | Z | κ → κ

Types τ,π ::= α | τ τ | ∀α : κ. τ | λα : κ. τ | τ → τ

| T | Ntype | Int | Arr | Mut | Sto

Data types data ::= data T α : κ : κ where C α : κ τ

Expressions c, d, e ::= x | N | let x = e in e | error τ

| e e | e τ | λx : τ. e | Λα : κ. e

| case e of e ⇒ C α x. e | e ⇒ C τ τ e

Figure 4.2: Syntax of Core.

imperatively accessed bare objects have types of kind mut. The kind Z classifies type-level

integers, used for array sizes.

Types include the usual terms of System F plus built-in and user-defined constants. We

write type-level integers with a subscript (e.g., 3type) to distinguish them from integer values.

Since we do not perform arithmetic on type-level integers, they are merely symbolic constants

as far as the compiler is concerned. Int is an unboxed integer type. Unboxed array types are

built with the primitive type constructor Arr. An Arr τ π , for any τ and π , is an unboxed

object consisting of τ instances of π laid out consecutively in memory. Unboxed arrays are a

building block for user-level array objects, which are heap-allocated and have arbitrary size.

A Mut τ is a reference to a mutable object of type τ. A Sto is a store fragment [76, 77]

denoting the state of a piece of mutable data at some point in time. Types are erased in the

compiler backend and do not exist at run time.

Data type definitions create additional type-level constants. To simplify the presentation,

data type definitions are shown for single-constructor data types only. The data type defini-

tion data T α : κ : κT where C β : ι τ defines a new type constructor T and data constructor

C. Objects built with C have field types τ, which depend on type parameters α determined

by the context where the object is used and existential types β determined when the object

is created.

Expressions include variables, application, and abstraction terms as in System F. Integer
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literals have type Int. Let expressions bind the result of an expression to a variable. An error

expression, which represents an unrecoverable run-time error, interrupts execution. A data

expression d ⇒ C τ π e, for some data constructor C with associated type constructor T ,

creates a new object of type T τ containing existential types π and values computed by e.

A case expression case c of d ⇒ C α x. e reads the contents of the object computed by c

into type variables α and variables x for use in expression e. Both case and data expressions

take size parameters d holding run-time size information. When an expression has no size

parameters, we omit the ⇒ symbol.

Imperative computation is encoded using store-passing. A store fragment is a value rep-

resenting a particular state of some part of memory. An imperative update to memory takes a

store fragment (representing the old state of memory) as input and produces a new one (rep-

resenting the new state). Passing store fragments from one imperative operation to the next

makes dependences visible to the compiler so that they are preserved during optimization.

Multiple store fragments representing disjoint parts of memory can exist simultaneously.

For instance, in a parallel loop, each parallel task access a disjoint piece of memory. [Fix this

sentence.] These are represented by logically splitting writes to its own piece of an array.

Note that Triolet does not attempt to analyze imperative side effects, nor guarantee their

safety, so the compiler and type system do not need special machinery for representing store

fragments.

4.1.1 Kind System

Core generalizes System F’s kind system to support multiple storage strategies as shown in

Figure 4.3. Where System F has only the kind ? of proper types, Core has the four kinds

box, val, bare, and mut. The kinding rules statically assign one of these kinds to every

variable, expression, and object field. Kind information is used during optimization and code

generation.

Functions are boxed and can take and return objects of any proper type. Since universal

quantification has no run-time effect, a universally quantified type ∀α :κ.τ has the same kind
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α : κ ∈ Γ
Γ ` α : κ

Γ ` τ : κ1 → κ2 Γ ` π : κ1

Γ ` τ π : κ2

Γ , α : κ1 ` τ : κ2 κ2 ∈ {box, val,bare}
Γ ` ∀α : κ1. τ : κ2

Γ ` τ : κ1 κ1 ∈ {box, val,bare,mut}
Γ ` π : κ2 κ2 ∈ {box, val,bare,mut}

Γ ` τ → π : box

Γ , α : κ1 ` τ : κ2

Γ ` λα : κ1. τ : κ1 → κ2

Int : val Arr : Z→ bare→ bare Mut : bare→mut Sto : val

Figure 4.3: Kinding rules and kinds of constants in Core.

as τ. Objects of kind box, val, and bare can have universally quantified types. Other kinding

rules are the same as in System F.

Algebraic data types must have kind box, bare, or val. Consider a data type definition,

data T α : κ : κT where C β : ι τ. The data type’s storage strategy κT must be one of these

three kinds. Furthermore, the field types τ must all have one of these three kinds. Two

additional restrictions apply to unboxed data type definitions. First, data types of kind val

may only contain value and boxed fields, so that their contents can be allocated to registers.

Bare fields cannot be stored in registers. Second, recursively defined types must be boxed, so

that unboxed objects of a given type have a bounded size. Since the kind annotation κT on

a data type definition determines the storage strategy of the type, memory layout decisions

are made on a per-type basis.

4.1.2 Data Constructor Type Signatures

Data constructors are assigned type signatures summarizing their behavior. These signatures

are used, among other things, to compute memory layouts. Two forms of type signature

are used. Initially, a data constructor’s type signature is taken directly from its data type

definition. A definition data T α : κ : κT where C β : ι τ introduces a constructor C with

type signature ∀α : κ. ∀β : ι. τ → T α. The signature relates the type of an object T α,

to the types of its fields, τ, for all choices of α and β. Type signatures are then refined

(Section 4.1.4) by adding a list of size parameter types τs to indicate what run-time size
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information is required when accessing an object of type T . Refined signatures are written

∀α : κ. τs ⇒ ∀β : ι. τ → T α. Refined signatures are used for type checking and lowering.

Sometimes it is necessary to match, or instantiate, a constructor signature to a given type

T π in order to determine what a value of that type contains. The notation C � sig is used

to mean that C’s signature is instantiated to the signature sig. For a constructor C : ∀α : κ.

∀β : ι. τ → T α and any well-kinded substitution θ = [π/α], we have C � ∀β : ι. θ(τ)→ T π .

When a particular choice of existential types πe is also given, we write �πe for instantiating

the fields to those types. Letting θe = [πe/β], we have C �πe θe(θ(τ))→ T π .

4.1.3 Memory Layout

An object is represented concretely as a sequence of primitive values. These values may be

held in variables or laid out sequentially in memory. To generate code that creates, reads, or

writes an object requires knowledge of its structure in terms of primitive values, which we

call its layout. This section defines layouts and associates core types with layouts.

To simplify the presentation, this section assumes that memory is word-addressed, prim-

itive types occupy one word, and algebraic data types have a single constructor. The Trio-

let compiler passes run-time size and alignment information and inserts padding bytes for

alignment. Multi-constructor unboxed types are tagged unions having the maximum size

and alignment of all constructors. While these details entail more complex calculation, they

follow the same overall framework.

Layouts are nested sequences of primitive values:

ς ::= Int | Ptr | 〈〉 | ς × ς

The primitive layouts Int and Ptr occupy one word of memory. The unit layout 〈〉 occupies

zero words of memory. The product layout ς1 × ς2 consists of a ς1 abutting a ς2, like a two-

member struct in C. Nested products ς1× (ς2×· · · ) are abbreviated 〈ς1, ς2, . . . 〉 or 〈ς〉. An

unboxed array is a product of N instances of ς, written ςN . Often, only the number of words
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Γ ` τ : box

Γ ` τ ↓field Ptr

Γ ` τ : κ κ ∈ {val,bare} Γ ` τ ↓ ς
Γ ` τ ↓field ς

N ∝Ntype Γ ` τ ↓field ς

Γ ` Arr Ntype τ ↓ ςN Γ ` Int ↓ Int

C � ∀β : ι. τ → T π Γ , β : ι ` τ ↓field ς

Γ ` T π ↓ 〈ς〉
Γ , α : κ ` τ ↓ ς
Γ ` ∀α : κ. τ ↓ ς

Figure 4.4: Inference rules for memory layout of Core types.

occupied by a layout matters. The size in words of ς is written size(ς). The size of Int or Ptr

is 1, the size of 〈〉 is 0, and the size of ς1 × ς2 is size(ς1)+ size(ς2).

An object is laid out as a sequence of fields, which we write as a product. Since boxed

fields are just pointers, an object with two boxed fields would have layout 〈Ptr,Ptr〉. An

object’s unboxed fields become part of the object’s layout. For example, the layout of a

Stored Int is 〈Int〉, rather than 〈Ptr〉, since its field is unboxed. A Tuple (Stored Int) (Stored Int)

has two unboxed fields, and each field has layout 〈Int〉, so the tuple’s layout is 〈〈Int〉, 〈Int〉〉,

which is a sequence of two Ints sitting in memory.

Memory layout rules are presented in Figure 4.4. The layout of a type is given by a

judgment of the form Γ ` τ ↓ ς, meaning that in type environment Γ , an object of type τ has

layout ς. The layout rules can be read as an algorithm for computing ς from Γ and τ. As

an algorithm, layout computation proceeds by structural recursion on τ and on the fields of

objects. The related judgment Γ ` τ ↓field ς means that an object field of type τ has layout ς.

The first two rules state that the layout of a boxed field is Ptr, while the layout of an unboxed

field of type τ is the layout of τ.

The remaining rules give the layouts of types. The layout of an array Arr Ntype τ is

computed by finding the layout of τ, then creating a product of N instances of that layout.

We write N ∝Ntype to mean that the type-level integer Ntype represents the same number as

the integer N. The layout of Int is simply Int. The next rule gives the layout of any algebraic

data type T π . The layout of the type is the product 〈ς〉 of the layouts of its fields. The
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field types, found from the type parameters and constructor type signature, determine the

field layouts. The final rule gives the layout of a universally quantified type. Since universal

quantification has no run-time effect, the layout of ∀α : κ. τ is the layout of τ. Functions are

opaque objects and are not assigned a layout.

Some first-class polymorphic types cannot meaningfully be assigned a layout, because

an object of that type can represent multiple types having mutually inconsistent layouts. If

we attempt to derive the layout of such a type, we will eventually ask for the layout of a

∀-bound or existential type variable. None of the rules in Figure 4.4 give the layout of a type

variable; after all, an unknown type has an unknown layout. Layouts dependent on an exis-

tential variable are reported as errors when data type definitions are analyzed (Section 4.1.4).

Layouts dependent on a ∀-bound variable are detected in code during lowering. While de-

tecting errors during lowering is sufficient to rule out invalid code, detecting errors before

optimization would likely yield more consistent error reports. Early error detection is not

implemented. Such errors can be fixed by boxing problematic objects or fields so their layout

does not affect the enclosing object’s layout.

4.1.4 Using Layouts for Polymorphic Code Generation

The compiler uses layout information for generating code in several instances. Layouts are

used when generating code to construct or inspect types, discussed in detail in Section 4.3.

Layout information is used to compute a type’s size, for example when allocating storage or

indexing into an array. It is used for generating serialization and deserialization code for each

data type. In each case, the computation proceeds recursively over a data type’s layout. Due

to polymorphism, some information is not available at compile time. The compiler arranges

for this information to be passed as run-time parameters.

To find what type information should be passed at run time, the compiler analyzes each

data type definition to determine parameters associated with that type. Parameters associ-

ated with data types are reflected in the types of data expressions, case expressions, and

compiler-generated functions for computing sizes, serializing values, and deserializing val-

67



ues. The types of data constructors and compiler-generated functions indicate what param-

eters they require. When type checking functions, the compiler verifies that the required

run-time parameters are passed at each data expression, case expression, and function call.

To identify run-time parameters associated with a given algebraic data type T , the com-

piler attempts to compute the layout of its type T α. The computation process looks through

the known parts of the type’s structure to find parts whose size depends on a type param-

eter, and thus is not statically known. For example, consider the following definition of an

unboxed tuple type.

data Tuple (α,β : bare) : bare where tuple :α× β→ Tuple α β

To compute the size of a Tuple α β, the size of the data constructor tuple is computed.

It contains fields of type α and β, and so its size depends on the sizes associated with

those two type parameters. Therefore, the size of a Tuple α β is a function of the sizes

Sz α and Sz β. After adding size parameters, the type signature of tuple is ∀α,β : bare.

(Sz α, Sz β)⇒ α× β → Tuple α β.

Polymorphic code may be reused to manipulate multiple data types having different sizes.

In such code, size-computing expressions generated by the compiler will include terms that

stand for the size of a type variable’s layout. Since such sizes cannot be computed statically,

programs are required to supply each unknown size where needed by passing size parame-

ters.

4.1.5 Type Checking

Typing in core is similar to System F in most respects. Unboxing support imposes some extra

conditions, as some information must be fixed at compile time and some information must

be passed at run time. Extra conditions imposed by unboxing are described here along with

the full typing rules for data and case expressions.

In order for the backend to break down value objects into primitive values that fit in

registers, all variables and expressions of kind val must have a statically known layout. The
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auxiliary judgment Γ ` τ ok defined below holds if τ has a statically known layout or if it has

a pass-by-reference storage strategy.

Γ ` τ : val Γ ` τ ↓ ς
Γ ` τ ok

Γ ` τ : κ κ ∈ {bare,box,mut}
Γ ` τ ok

This judgment is added to System F’s typing rules to ensure that variables introduced by λ,

Λ, and case terms are ok, and that the result of every expression is ok.

The typing rules for case and data expressions use the type signature of a given data

constructor to relate the type of an object to the types and kinds of its existential types,

fields, and size parameters. Bare objects are typed differently in data expressions since they

are initialized as mutable objects. We write Γ ` e : init(τ) to mean that e is a τ or an initializer

for τ. That is, it is shorthand for Γ ` e : Mut τ → Sto if τ has kind bare, or Γ ` e : τ otherwise.

C � τs ⇒ ∀β : ι. τ → T π Γ ` e : T π

Γ , β : ι, x : τ ` c : πc Γ ` d : τs Γ ` τ ok

Γ ` case e of d ⇒ C β x. c : πc

C � τs ⇒ ∀β : ι. τ → T τu

Γ ` τe : ι Γ ` e : init(τ[τe/β]) Γ ` d : τs

Γ ` d⇒ C τu τe e : init(T τu)

4.2 High-Level Optimizations

The high-level optimizations in Triolet closely follow those in GHC [61, 57], since the internal

languages of both compilers are similar. Triolet’s high-level optimization phases are summa-

rized here. Since some optimizations enable others, the phases are run repeatedly.

Expression flattening Expressions are restructured to increase other opportunities for op-

timization. The general effect of restructuring is to produce a flatter-looking program con-

taining longer sequences of let and case expressions. Expressions bound to variables are
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decomposed into smaller pieces, and variables become visible over larger scopes, both of

which aid later optimizations. An example of flattening is to transform let z = (let y =

f x in 1 + y) in h z, which assigns the result of a complicated expression to z, into

let y = f x in (let z = 1 + y in h z), where the right-hand side of every assignment is

a simple expression.

Simplification The compiler performs a large number of optimizations in a forward pass

over the program [57]. Some of these optimizations directly reflect reduction rules; conse-

quently, they have the combined effect of evaluating parts of the program whose outcome is

known statically.

While most of Triolet’s simplification steps follow previous methods, Triolet’s inlining

strategy was refined to support library-driven optimization of recursive functions. During

simplification, inlining copies the definition of a function to a site where the function is

called. The primary benefit of inlining is that it enables further simplification of the function

body using information available at the callsite. Its drawback is that it replicates code, poten-

tially increasing the compilation time and program size. In library-driven optimization, some

functions are meant to be inlined and specialized for the parameter values given at their call-

sites. Programmers can annotate important functions to direct the compiler to aggressively

inline them. However, inlining recursive functions tends to result in an unprofitable code

explosion. Compilers generally do not inline recursive functions. An early implementation of

Triolet’s compiler inlined recursive functions up to a fixed depth. While this aggressive strat-

egy did inline performance-critical functions, it also led to code bloat and long compilation

times, motivating a targeted approach.

Triolet introduces inlining annotations to profitably inline recursive functions with struc-

turally decreasing arguments. Calls are inlined only if the structurally decreasing components

of the function arguments are statically known. This inlining technique can be demonstrated

with the tree leaf counting function from Section 2.6, repeated here.
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numLeaves t = case t

of IntBranch ` r . numLeaves ` + numLeaves r

IntLeaf x. 1

Suppose a program contains the expression numLeaves (IntBranch (IntLeaf 1) (IntLeaf n)).

Since numLeaves is recursive, it could be inlined an arbitrary number of times. However, only

three instances are useful: inlining the original call enables the IntBranch term to

be processed statically, then inlining the two recursive calls enables the IntLeaf terms

to be processed statically. On the other hand, if a program contains the expression

numLeaves (foo 500), and foo is not inlined, then inlining is not useful at all because it

is not known whether the result of foo is an IntBranch or IntLeaf. Inlining is only profitable

when the argument’s data constructor is statically known.

In Triolet’s core language, the function definition can be annotated with an inlining hint,

inline_struct(C), to enable recursive inlining. The letter C means that inlining is enabled

only if the argument’s constructor is known, while T means it does not matter. In general

there is one letter per function parameter. When used on structurally decreasing parameters,

this inlining method cannot lead to runaway code growth because inlining occurs at most

once for each statically known data constructor, and new constructors are not introduced in

the inlined code. Triolet does not verify that parameters are structurally decreasing, but such

checks are possible.

Triolet’s library expresses nested traversals with a recursive data type as discussed in

Section 5.2. Loops implemented in the library process this data type recursively and should

be inlined. Inlining is practical since typical programs have shallow loop nesting (and thus

a shallow recursion depth). In the unusual case where the nesting depth is not statically

known, recursion is not expanded, avoiding code explosion.

Occurrence analysis Occurrence analysis [38] detects how often each variable is used after

it is bound. The analysis pass annotates variable bindings with information about their uses.

This information is used for deciding which optimizations are beneficial. For instance, if a
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function is never called, its definition can be deleted (and the occurrence analyzer does so);

if it is called in exactly one place, inlining it will eliminate a function call without increasing

program size and is always beneficial; if it is called in many places, inlining will increase code

size and should only occur if its benefits outweigh this cost.

The analysis also identifies functions that are certain to be called at least once. The

“certain to be called” property is similar to postdominance [78]. If a function is definitely

called, it is safe to hoist code out of the function body. Otherwise, hoisting is unsafe because

it may cause a program to execute code that it did not originally execute, increasing execution

time or causing a program to diverge.

Common subexpression elimination The use of overloaded operations translates into code

for dynamically constructing and consulting dictionaries of overloaded methods. After other

optimizations, a function may end up containing multiple pieces of code that build the same

method dictionaries. Triolet employs common subexpression elimination to eliminate this

redundant code. Because overloading is always resolved in the same way for any given type,

any two dictionaries of the same type must be identical. This observation leads to a simple

common subexpression elimination policy that checks whether types are equal, rather than

whether expressions are identical. If an expression has a dictionary type, and a variable of

the same type is in scope, the expression can be replaced by the variable.

Hoisting Hoisting moves variable bindings closer to the beginning of the function they are

defined in and pulls them out of nested functions, as long as they do not depend on locally

defined variables. Hoisting increases the scope of a variable binding, improving opportunities

for other optimizations. When code is hoisted out of a function, it may also reduce the

number of times the code is executed.

Data structure flattening Data structure flattening [64] eliminates boxing of values passed

to and returned from functions via direct function calls. The main benefit of this transfor-

mation is to remove memory allocation from inner loops. Innermost loops typically compile
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Types σ ::= Int | Ptr | 〈〉 | σ × σ
Values v ::= x | N | 〈〉 | v × v
Patterns p ::= v | 〈〉 | p × p
Expressions e ::= v | e e | e op e | λx : σ. e | let p = e in e

| loadσ e | storeσ e e | alloc e

Figure 4.5: Syntax of the backend’s intermediate representation.

to a single, recursive function. While other optimizations can typically eliminate memory

allocation from the body of the loop, the call to the next iteration cannot be eliminated by

inlining, so other optimizations do not get a chance to eliminate the allocation of any values

passed to the next iteration. Data structure flattening “unpacks” data structures into their

fields, which are passed as multiple arguments or return values.

4.3 Backend

The compiler’s backend serves as a bridge from Core to low-level C code. In contrast to Core’s

data types, the backend language’s abstraction of data is close to the physical processor

implementation. Local variables hold small, monomorphic structures that can potentially be

put into processor registers. Data structures reside either in local variables or in memory.

Memory is accessed with load and store operations. The first stage of the compiler’s backend

translates case and data expressions into memory operations and packing and unpacking of

local variables.

The backend language is shown in Figure 4.5. It is monomorphic and does not associate

type information with pointers or memory locations. Types σ are defined identically to

layouts ς. Products are unpacked using the multi-assignment pattern let x × y = . . . in . . . .

In types, values, and patterns, we abbreviate nested products σ1 × (σ2 × · · · ) as 〈σ1, σ2, . . . 〉

or 〈σ 〉. There are the usual primitive operations for integer and pointer arithmetic. A value

of type σ is loaded from address e by loadσ e and stored to a pointer by storeσ e. An e-word

block of memory is allocated by alloc e.
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read(Γ , p,n, τ) =



















loadσ (p +n) if Γ ` τ : val and Γ ` τ ↓ σ
loadPtr (p +n) if Γ ` τ : box

p +n if Γ ` τ : bare

write(Γ , p,n, τ, e) =



















storeσ (p +n) e if Γ ` τ : val and Γ ` τ ↓ σ
storePtr (p +n) e if Γ ` τ : box

e (p +n) if Γ ` τ : bare

Figure 4.6: Code generated for reading and writing object fields. Code generation uses a type
environment Γ , object pointer p, field offset n, and field type τ.

When generating address calculation for the fields of an object, the compiler computes

a size for each of the object’s fields as described in Section 4.1.4. The object’s size is the

sum of the sizes of all its fields, and the offset of each field is the sum of the preceding

fields’ sizes. We write layout(Γ , T π, e) for computing the size and field offsets of T π

using type environment Γ . The values of size parameters are supplied by e. For instance,

layout(Γ ,Tuple α β, (sα, sβ)) produces the expression let 〈m〉 = sα in let 〈n〉 = sβ in (m +

n)×〈0,m〉, which evaluates to a product containing the size of a polymorphic tuple and the

offsets of its two fields.

Individual object fields are read and written differently depending on their storage strat-

egy (Figure 4.6). We write read(Γ , p,n, τ) for reading an object of type τ from the address

p + n, and write(Γ , p,n, τ, e) for using the object or initializer returned by e to write an ob-

ject of type τ to the address p + n. For writing multiple fields, we extend read and write to

lists: read(Γ , p,n, τ) and write(Γ , p,n, τ, e). Boxed and value objects are read and written by

transferring data between a variable and memory. The data is either an object or a pointer.

Bare fields, on the other hand, cannot be transferred to a variable. Reading a bare field sim-

ply returns a pointer to the field. Writing a bare field is accomplished by passing the field’s

address to a given initializer function.

For example, to lower the data expression stored 2, we would first determine that the

object being constructed has a field at offset 0 of type Int and kind val. The field is written

by write(Γ , p,0, Int,2), which is the store operation storeInt p 2. The rest of the lowering
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algorithm wraps this into the initializer λp : Ptr. storeInt p 2.

With layouts and field-accessing operations, we are now ready to describe the lowering

of data and case expressions. We write lower�e�Γ for the translation of Core expression e to

an equivalent backend expression, using type information from the Core type environment

Γ . Most of the time, Γ is simply passed along from one step to another; lower�e� is shorthand

for lower�e�Γ .

An object with the val storage strategy is lowered to a product value. For this storage

strategy, lowered data expressions construct product values.

lower�C τu τe e� = 〈lower�e�〉 if Γ ` C τu τe e has kind val

Lowered case expressions, conversely, unpack product values. In addition to unpacking a

value, the lowering algorithm computes the local type environment to use while lowering the

body of the case expression. The type T π of the case expression’s scrutinee c is used to

infer type information for the bound type variables β and fields x.

lower
�

case c of C β x. e
�

= let 〈x〉 = lower�c� in lower�e�(Γ , β : ι, x : τ)

where Γ ` c : T π

Γ ` C � ∀β : ι. τ → T π

if Γ ` T π : val

Objects with the box or bare storage strategies reside in memory, and operations on

them are lowered to memory operations. Lowering a data expression d ⇒ C τu τe e starts

by finding the type T τu of its result value. Code to compute the value’s layout is generated

using the type and run-time size information d. The computed object size and field offsets

are used to allocate storage and to write fields. For boxed objects, storage is allocated. For

bare objects, the address of the object’s storage is passed in as a parameter.
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lower
�

d⇒ C τu τe e
�

=
let 〈n〉 ×m = layout(Γ , T τu, lower�d�) in

let p = alloc m in

let 〈〉 = write(Γ , p,n, τ, lower�e�) in p

where Γ ` C �τe τ → T τu

if Γ ` T τu : box

lower
�

d⇒ C τu τe e
�

= let 〈n〉 ×m = layout(Γ , T τu, lower�d�) in

λp : Ptr.write(Γ , p,n, τ, lower�e�)

where Γ ` C �τe τ → T τu

if Γ ` T τu : bare

Case expressions compute the data type’s layout, then read the object’s fields. As with

value objects, they update the local type environment while processing the body of the ex-

pression.

lower
�

case e of d ⇒ C β x. c
�

=

let p = lower�e� in

let 〈n〉 ×m = layout(Γ , T π, lower�d�) in

let 〈x〉 = read((Γ , β : ι), p,n, τ) in

lower�c�(Γ , β : ι, x : τ)

where Γ ` e : T π

Γ ` C � ∀β : ι. τ → T π

if Γ ` T π : box or Γ ` T π : bare
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CHAPTER 5

Optimization-Friendly Container Library Design

There is a large semantic gap to be bridged for Triolet’s library to deliver high performance.

Like other container traversal interfaces, Triolet’s functions represent semantically meaning-

ful operations on data rather than mechanisms for controlling work distribution and commu-

nication. It is the programmer’s job to describe an algorithm and the library’s job to execute

it efficiently. To economize on memory traffic and parallel communication, the library con-

tains code to distribute parallel work across cluster nodes and cores, to distribute data across

nodes, and to gather results efficiently. The library is designed so that much of this decision

making is resolved statically by compile-time optimizations. Inner loops, at least, must be

constructed statically in order to minimize overhead.

Section 5.1 explains prior approaches to loop fusion. Section 5.2 explains how Triolet’s

iterators build on prior loop fusion techniques. Section 5.3 describes how mutable data is

confined to individual tasks in order to avoid races and missing updates. Section 5.4 gen-

eralizes iterators for programming with multidimensional arrays. Section 5.5 describes how

Triolet manages parallel tasks and communication. Much of this section pertains to the inter-

action between library code and compiler optimizations. When discussing interaction with

optimizations, code is presented using Triolet’s core language from Chapter 4. Notational

conventions from Chapter 2 are employed to shorten the code examples: type annotations

are elided, function definitions are shown in equational form, some functions are shown as

infix operators, and if is used as a synonym for Boolean case. Additionally, Haskell-style

class declarations are used to present data type definitions that describe traits of types.

Parts of this chapter appeared in the ACM Symposium on Principles and Practice of Parallel Programming [79].
The material is used with permission.
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5.1 Loop Fusion Background

Container traversals express simple container transformations. It may take a composition of

several container traversals to write what would be a single parallel loop in a low-level parallel

language. Loop fusion merges multiple traversals into a single loop. In a library-driven opti-

mization framework, because loop fusion brings together information from multiple library

calls, it is the foundation on top of which other parallel loop implementation techniques are

built.

A dot product function, defined as follows, provides an example where performance can

benefit from loop fusion.

def dot(xs, ys): return sum(x*y for (x, y) in par(zip(xs, ys)))

This statement defines dot as a function of xs and ys. The body of dot calls the library

functions zip, par, map, and sum to sum the elementwise product of xs and ys. The call of

map arises from desugaring the list comprehension that performs the elementwise product.

Loops execute sequentially by default. The call to par designates the loop as parallel, direct-

ing the library to use all available parallelism when computing the dot product. Though not

computationally intensive enough to benefit from cluster parallelism, dot exhibits the impor-

tance of loop fusion. All four library functions are fused into a single loop. The work of map

and sum is parallelized. Data distribution code is built by zip.

While dot has a relatively simple looping pattern, some algorithms loop over irregular or

multidimensional iteration spaces, which adds complexity to loop fusion, work distribution,

and result collection. Triolet builds on several existing loop fusion strategies, discussed in

this section, to support fusion in a broader variety of cases than any individual loop fusion

strategy can do.

At the most basic level, a library may operate only on data structures whose contents are

stored in memory, such as arrays. Each function contains a loop that reads its entire input

and writes its entire output. Library writers may use parallel algorithms within each function,

but they cannot take advantage of loop fusion directly. Compilers may fuse loops by rewrit-
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ing known patterns of function calls [6, 8, 56]. For example, any pair of calls to filter (dis-

cussed in Section 3.4) matching the pattern filter g (filter f a) can be fused by rewriting it to

filter (λx. f x && g x) a. That is, extracting the subset of a consisting of values that sat-

isfy predicate f , then extracting the subset of the subset that satisfies predicate g, is the

same as extracting the subset of a that satisfies both f and g. The rewritten code does

the work of both filter calls in one pass over a. Because this approach involves designing

ad-hoc fusion rules for each pattern, its effectiveness is limited by a library implementor’s

ability to anticipate and make rules for all combinations of function calls. To rewrite the

example histogramming code to a single loop, for instance, requires a preexisting histogram-

of-doubly-nested-loop function (or a generalization thereof) to be available. It is unlikely that

a library would contain such a pattern. A more systematic approach is necessary to fuse a

larger inventory of loops.

In an imperative setting, loop fusion interleaves the execution of loops on an iteration-

by-iteration basis [80]. Unfortunately, functions with variable-length outputs, such as filter,

have dependence patterns that cannot be expressed purely in terms of loop iterations. In

the example above, the first iteration of the second call to filter may depend on any iteration

of the first call to filter. Consequently, this example cannot be fused by reordering loop

iterations.

Triolet uses a relatively simple and robust approach to loop fusion that depends only on

general-purpose compile-time optimizations. This approach uses what we call virtual data

structures in place of some of a program’s arrays. Several virtual data structure encodings,

listed as the rows of Table 5.1, have been developed to enable loop fusion. In the table, a

check mark means the feature can be used or its output is fusible. What they have in com-

mon is that they all contain a function that is called to compute the data structure’s contents.

Use of a function effectively defers computation until results are needed. Compile-time opti-

mizations inline the function at the site where it is used, typically in a loop body, fusing loops.

In the example from Section 1.6, map and concatMap return virtual data structures instead of

arrays. Unfortunately, none of the encodings is versatile enough to use as a general-purpose,
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Table 5.1: Features of fusible virtual data structure encodings.

Parallel Zip Filter
Nested

traversal
Mutation

Indexer 3 3

Stepper 3 3 3

Fold 3 3

Collector 3 3 3

parallelizable fusion mechanism. For instance, none of the encodings can fuse loops to get

the desired parallel loop in Section 1.6.

The rest of this section presents the virtual data structures in Table 5.1 and explains why

each encoding has limited applicability. The following section introduces a new encoding

used by Triolet that builds on these encodings to work around their limitations. We use as an

example a list holding consecutive integers [0,1,2]. When used as the input to a container

traversal, this list is analogous to a counted loop with three iterations.

Indexers An indexer encoding consists of a size and a lookup function. The ith element of

a data structure is retrieved by calling the lookup function with argument i. The example list

would be encoded as the pair 〈3, λi. i〉: the list’s size is 3, and its ith element is i. Mapping a

function f over this data structure builds a new virtual list whose lookup function calls the

original lookup function, then calls f on the result: 〈3, λj. f ((λi. i) j)〉, which the compiler

simplifies to 〈3, f 〉. Summing the elements of this data structure proceeds by looping over all

indices less than 3, calling the lookup function on each, and summing the results. The map

function and many other indexer-based functions consist of straight-line code that builds an

indexer, rather than a loop that builds an array. Loop fusion becomes a function inlining task,

which is typically easier for compilers to accomplish than traditional loop transformations.

Since indexers allow any element to be retrieved independently of the others, indexers can

be used in parallel loops. In C++, readable random access iterators fill the role of indexers.

Thrust [33] and Repa [14] use indexers internally to generate fused parallel loops. Paral-

lel loop bodies in functional languages [12, 13] resemble indexers, though they are special
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syntactic forms rather than ordinary functions.

The random-access nature of indexers makes them unsuitable for fusing loops that pro-

duce a variable number of outputs per input, including the functions concatMap for nested

traversal and filter for conditionally skipping elements. To retrieve a value at one index, one

must compute some information about all lower indices, which wastes work. For instance,

to look up the output at index 10, it’s necessary to find the producers of all output elements

up to index 10. The usual solution is to precompute the necessary index information using

a parallel scan, but because parallel scan is a multipass algorithm, fusion is impossible; all

temporary values have to be saved to memory at some point.

The values at different indices can be computed independently, enabling parallel execu-

tion of indexers. While an indexer’s lookup function is independent, loops built from index-

ers may have cross-thread interactions. In many algorithms, parallel tasks communicate with

one another to collect results. Sequential loop iterations may also share data. For instance,

in a sequential reduction, the accumulator may be accessed by every loop iteration. Since

the value at each index is independent of the others, an indexer cannot represent reductions,

variable-length outputs, or other forms of interaction across loop iterations.

Steppers A stepper encoding is a coroutine that returns one data structure element each

time it is run, until all elements have been extracted. Steppers are not parallelizable since it

is only possible to retrieve the “next” element at any given time. In C++ and other imperative

languages, readable forward traversal iterators play the role of steppers. The Haskell vector

library uses the fusible stepper encoding presented by Coutts et al. [17]. In this encoding, a

stepper contains a suspended state and a function for getting the next value. Getting the next

value can either Yield a new state and one data structure element, or signal that traversal is

Done.

81



data Step (α : box) : box where Step : s × (s → Next s α)→ Step α

data Next (s,α : box) : box where

Yield : s ×α→ Next s α

Done : Next s α

The list [0,1,2] would be encoded using a stepper function g that increments a counter

and yields the counter’s current value:

let g i = if i == 3 then Done else Yield (i+ 1) i

in Step 0 g

Mapping a function f over this value would produce a new stepper function h that applies f

to the value yielded by g:

let g i = if i == 3 then Done else Yield (i+ 1) i

h i = case g i

of {Done→ Done; Yield s x → Yield s (f x)}

in Step 0 h

The Done and Yield values constructed in g are immediately used in h. Inlining followed by

case-of-case transformation [57] reorganizes code to eliminate these temporary data struc-

tures, producing a new stepper function that is like g, except that it calls f on the value it

yields:

h i = if i == 3 then Done else Yield (i+ 1) (f i)

Triolet’s virtual data structure encoding also takes advantage of compile-time optimizations

that eliminate temporary data structures.

Steppers are a fairly versatile sequential encoding. Although nested traversals are fusible,

optimizing the fused code to a nested loop is difficult [17] and has only recently been demon-

strated using a custom optimization engine [18]. In experiments using Eden, steppers were
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slower by roughly a factor of two to five than imperative loop nests. A nested traversal

produces a stepper (the outer loop) whose suspended state contains another stepper (one

instance of the inner loop). Each outer loop iteration constructs a new inner stepper. In typ-

ical loops, all inner stepper functions are instantiations of the same static function, but the

compiler cannot take advantage of this to inline the code. Instead, Next objects containing

boxed values are created dynamically. Triolet’s compiler does no better in this situation.

Folds A data structure can be encoded as a function that folds over its elements in some

predetermined order. The function calls a given worker function on each data structure

element to update an accumulator. The fusion scheme for lists that uses this as the canonical

form of loops is called fold/build fusion [16]. The list [0,1,2] has the following fold encoding.

λw z. let loop i x = if i == 3

then x

else loop (i+ 1) (w i x)

in loop 0 z

Its meaning is clearer after unrolling the loop to get λw z. w 2 (w 1 (w 0 z)), which calls w

to update an accumulator with the values 0, 1, and 2 in turn. Nested traversals do not pose

the same optimization trouble for folds that they do for steppers. In a nested traversal, the

worker function passed intow calls another fold function that contains its own loop. Inlining

moves the value of w to its callsite in the body of loop, bringing the inner fold function along

to produce a nested loop.

Unlike indexers and steppers, folds offer no flexibility in execution order. A fold processes

each data structure element in sequence without interruption. This inflexibility rules out

fusion of zip, which pairs up elements at corresponding indices in multiple data structures.

A fused zip would read from each of several data structures in an interleaved fashion. It is

a common pattern to store data in a structure-of-arrays format, then zip the arrays together

in preparation for a loop that uses all the fields. Folds do not support this pattern.
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Collectors A collector is an imperative variant of a fold. Instead of updating an accumulator,

the worker function uses side effecting operations to update its output value. Collectors are

used by Scala’s collection library [56] and SkeTo [32]. Chapel implements zip by treating

the first iterator as a parallel collector and the other as indexers [81]. Triolet uses collectors

in sequential code for histogramming and for packing the results of variable-length output

traversals into an array.

Conversions The rows of Table 5.1 are in decreasing order of how much the user of a

virtual data structure can control its execution order. Indexers offer the greatest control,

steppers offer less, and folds and collectors offer no control. A higher-control encoding can

be converted to a lower-control one. Although no encoding supports zips and mutation,

for instance, one could fuse histogram(n, map(f, zip(a, b))) by zipping and mapping

over indexers, converting the result to a collector, and computing a histogram of the result.

A collector that is created from indexer 〈n,f 〉 loops over all indices up to n, calls f on each

index, and passes the generated values to the worker function:

idxToColl 〈n,f 〉 =

λw s. let loop i s2 = if i == n

then s2

else loop (i+ 1) (w (f i) s2)

in loop 0 s

However, this conversion removes the potential for parallelization, since a collector’s use of

side effects is not compatible with parallel execution.

Triolet’s iterator library is layered on top of a library of fusible operations for manip-

ulating each of these virtual data structures. We use conventional names for these library

functions along with a subscript to indicate what encoding they are implemented for, e.g.,

mapIdx, mapStep, mapFold, and mapColl are map functions over indexers, steppers, folds, and

collectors. We use conversion functions named by their input and output encoding, such as
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idxToColl.

5.2 Hybrid Iterators

There is at least one fusible encoding supporting every desirable feature in Table 5.1, and

this suggests that a hybrid encoding could overcome the limitations in the previous section.

Triolet’s encoding is hybrid in two ways. First, the library builds nested loops, possibly with a

different encoding at each nesting level. Second, the library converts between encodings when

needed. To illustrate, consider the computation of sum(filter(lambda x: x > 0), xs),

which selects the positive numbers in array xs and sums them. Suppose xs has the value

[1,−2,−4,1,3,4]. The call to filter returns [1,1,3,4]. For the implementation of sum,

indexers are the only parallelizable, fusible form at our disposal so far. Using indexers, each

thread is assigned a specific number of elements to process. For instance, one thread may

sum the first two values while the other sums the last two. Unfortunately, computing which

index each output of filter resides at requires a complete pass through the data, making a

fusible indexer encoding impossible.

A better fusion strategy is to partition the input array xs across threads and have each

thread sequentially filter and sum one partition. The key to fusion is that our implementation

of filter does not reassign indices, but rather produces either zero or one output at each

index so that it is compatible with indexer-based parallelization and fusion. Conceptually,

the call to filter transforms [1,−2,−4,1,3,4] into the nested list [[1], [], [], [1], [3], [4]],

then the call to sum partitions this nested list into [[1], [], []] and [[1], [3], [4]] and sums the

two parts in parallel. By encoding the nested list as an indexer of steppers, we ensure that

the filter computation is fused with the summation.

In general, a loop may have arbitrarily nested filter operations and/or traversals. Each

level of nesting may produce a predetermined number of values using an indexer, or a vari-

able number of values using a stepper. Thus an iterator can consist of an indexer containing

values, a stepper containing values, an indexer containing iterators, or a stepper containing
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iterators. We name these cases IdxFlat, StepFlat, IdxNest, and StepNest:

data Iter (α : box) : box where

IdxFlat : Idx α→ Iter α

StepFlat : Step α→ Iter α

IdxNest : Idx (Iter α)→ Iter α

StepNest : Step (Iter α)→ Iter α

Nested iterators can be understood as loop nests where all loops work together to produce a

sequence of values.

Triolet’s iterators are flexible enough to fuse all the difficult patterns in Table 5.1, while

also keeping indexer-based loops available so that they can be distributed across parallel

tasks. Figure 5.1 shows Iter-based implementations of some common skeleton functions.

The functions zip, filter, concatMap, and collect implement four of the five features from

Table 5.1. Section 5.5 addresses the remaining feature, parallelism. Reductions are illustrated

by sum. Each function inspects the form of its arguments and computes a result accordingly.

In most cases, these functions just call a lower-level fusible function at each level. For

instance, the sum over an iterator is computed by computing a partial sum at each nesting

level, using either sumIdx or sumStep. In a nested iterator, sum calls itself to sum inner loops.

The interesting cases are where a function converts between encodings or adds a level

of nesting. In the sum-of-filter example, filter receives an an IdxFlat term. The body of filter

(as shown in the first equation) calls mapIdx to transform each element of the indexer into

a stepper. The outer level of the resulting iterator remains indexer-based and parallelizable,

while the inner level decides whether to process a given value. The functions filter and sum

examine their argument values and build return values in such a way that, after inlining, each

Iter term is a short-lived value that compiler optimizations can eliminate. The summation

simplifies by inlining filter, then sum, then the recursive call to sum:
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zip (IdxFlat xs) (IdxFlat ys) = IdxFlat (zipIdx xs ys)

zip xs ys = StepFlat (zipStep (toStep xs) (toStep ys))

where toStep (IdxFlat xs) = idxToStep xs

toStep (StepFlat xs) = xs

toStep (IdxNest xss) = concatMapStep toStep (idxToStep xss)

toStep (StepNest xss) = concatMapStep toStep xss

filter f (IdxFlat xs) = IdxNest (mapIdx (StepFlat ◦ filterStep f ◦ unitStep) xs)

filter f (StepFlat xs) = StepFlat (filterStep f xs)

filter f (IdxNest xss) = IdxNest (mapIdx (filter f) xss)

filter f (StepNest xss) = StepNest (mapStep (filter f) xss)

concatMap f (IdxFlat xs) = IdxNest (mapIdx f xs)

concatMap f (StepFlat xs) = StepNest (mapStep f xs)

concatMap f (IdxNest xss) = IdxNest (mapIdx (concatMap f) xss)

concatMap f (StepNest xss) = StepNest (mapStep (concatMap f) xss)

collect (IdxFlat xs) = idxToColl xs

collect (StepFlat xs) = stepToColl xs

collect (IdxNest xss) = λw s1. idxToColl xss (λxs s2. collect xs w s2) s1
collect (StepNest xss) = λw s1. stepToColl xss (λxs s2. collect xs w s2) s1

sum (IdxFlat xs) = sumIdx xs

sum (StepFlat xs) = sumStep xs

sum (IdxNest xss) = sumIdx (mapIdx sum xss)

sum (StepNest xss) = sumStep (mapStep sum xss)

Figure 5.1: Triolet iterator functions.
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sum (filter f (IdxFlat ys))

= sum (IdxNest (mapIdx (StepFlat ◦ filterStep f ◦ unitStep) ys))

= sumIdx (mapIdx (sum ◦ StepFlat ◦ filterStep f ◦ unitStep) ys)

= sumIdx (mapIdx (sumStep ◦ filterStep f ◦ unitStep) ys)

Iterators are completely eliminated, leaving behind indexer and stepper code that is further

optimized into a simple loop nest.

Zipping together two flat indexers uses an indexer-based zip function to bring together

the elements at each index. If one or both iterators have variable-length components, it

is necessary to identify corresponding elements of the input iterators by traversing them

sequentially or by computing the positions of their output elements. Triolet’s implementation

traverses them sequentially by converting both arguments to steppers and traversing them

together.

The variable-output functions filter and concatMap work similarly to each other. They add

a level of loop nesting in order to preserve the potential parallelism of indexers and avoid the

overhead of stepper-based nested traversals. Functions that consume iterators, like collect

and sum, transform each level of nesting into a loop.

The functions in Figure 5.1 need to be inlined to enable subsequent optimizations. Com-

pilers are normally reluctant to inline recursive functions, as doing so can blow up code size

and/or execution time. We manually annotate these functions to indicate that they should

be inlined only when the compiler knows their Iter argument’s constructor, which ensures

that inlining only occurs when it would expose further optimization opportunities. Inlining

eventually terminates because each level of recursion consumes one level of statically known

loop nesting.
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5.3 Imperative Algorithms

Some library functions can be implemented more efficiently using mutable arrays. Mutable

values are used locally within some leaf tasks, such as the mutable array in a histogramming

computation. However, unrestricted use of mutable data can lead to race conditions and

sharing of mutable data between nodes, which has undesirable consequences for correctness

and performance. It is helpful to keep track of where mutable objects are used. Imperative

library functions confine side effects to the scope of a single thread using a pattern modeled

on state transformers [82]. Store fragments, representing the state of a thread-local muta-

ble object, are passed around locally within a task to track dependences. Once imperative

updates are complete, the mutable object reference is converted to an immutable reference,

consuming the mutable store. The immutable reference is returned.

5.4 Multidimensional Iterators

So far, the Iter data type is good for variable-length and nested looping patterns, but is awk-

ward for looping over multidimensional arrays. On the other hand, indexer-based libraries

like Repa and loop-based functional languages like Single Assignment C are well suited to

loops over multidimensional arrays, but they do not support fusion of nested, variable-length

traversals. This section generalizes Iter for multidimensional loops and arrays.

Matrix transposition is an example of an algorithm that is awkward to write using 1D ar-

rays. The transpose of a matrix A can be written by giving the transposed matrix’s elements

as a function of their indices. For a given matrix A whose dimensions are width and height,

transposition would be written in Triolet as [A[x,y] for (y, x) in range((height,

width))]. The functions map (implicitly called by the comprehension) and range are over-

loaded for multidimensional iteration spaces.

Simulating a multidimensional loop using 1D iterators would introduce overhead. Us-

ing a one-dimensional comprehension [ . . . for i in range(height * width)] would

require reconstructing the 2D indices x and y from i using expensive division and
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modulus operations. Alternatively, using nested comprehensions [[ . . . for x in width]

for y in height] results in an array of arrays, which adds an additional pointer indirection

to subsequent lookups.

We introduce a type class called Domain to characterize index spaces. Each index space

is a type that is a member of Domain. One-dimensional organizations of data, as we have

been discussing up until now, have type Seq. A value of type Seq holds an array length.

Two-dimensional arrays have a width and a height, so a 2D domain Dim2 holds a pair of

integers.

data Seq : box where seq : Int→ Seq

data Dim2 : box where dim2 : Int× Int→ Dim2

Each domain type d has an associated type Index d whose values identify individual indices

within a domain. An Index Seq is an Int and an Index Dim2 is an 〈Int, Int〉.

A number of functions are defined differently for each domain type. The definition of

class Domain, below, lists overloaded types and functions that are defined differently for

each domain d and are used here.

class Domain (d : box) where

type Index d : box

idxToFold : (α→ β → β)→ β→ Idx d α→ β

idxToColl : (α→ State→ State)→ Idx d α→ State→ State

zipWith : (α→ β → γ)→ Iter d α→ Iter d β → Iter d γ

Each of these functions is related to looping over all indices in a domain. The functions

idxToFold and idxToColl convert an indexer to a fold or collector that loops over all points in

the domain. The function zipWith visits all points in the intersection of two domains.
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We also generalize Idx to arbitrary domains d:

type Idx d α = 〈d, Index d → α〉

We then generalize Iter over arbitrary domains. Every Idx α is converted to a Idx d α, pro-

ducing the following generalized algebraic data type.

data Iter (d,α : box) : box where

IdxFlat : Idx d α→ Iter d α

StepFlat : Step α→ Iter Seq α

IdxNest : Domain d× Idx d (Iter Seq α)→ Iter Seq α

StepNest : Step (Iter Seq α)→ Iter Seq α

Only the IdxFlat constructor can create iterators of arbitrary domain types. It simply

allows an Idx d α to be used through the Iter interface. The other three constructors contain

variable-length traversals, which do not preserve array dimensionality—removing arbitrary

elements of a 2D array does not in general yield a 2D array, for instance—so it does not make

sense for them to build multidimensional iterators.

IdxNest puts the contents of a multidimensional indexer into a 1D order. Essentially,

this iterator “forgets” the multidimensional structure of the indexer. To do a variable-length

traversal over a multidimensional array, users would start by flattening it to a sequence using

the following function.

flatten (IdxFlat xs) = IdxNest (mapIdx unitSeq xs)

5.5 Parallelism

Triolet’s runtime uses Threading Building Blocks for thread parallelism and MPI for dis-

tributed parallelism. We implement wrapper functions that expose these interfaces as generic
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parallel skeletons. On top of these wrappers, we layer high-level skeletons that allow users

to select what degree of parallelism to use.

We add a field to Iter holding a flag to indicate what degree of parallelism to use. Users

designate an iterator as parallel by calling localpar (for thread parallelism) or par (for dis-

tributed and thread parallelism) on it, thereby setting the flag. Parallel skeletons inspect

the flag and invoke the appropriate distributed, threaded, and sequential functions. For in-

stance, a distributed-parallel histogram performs a distributed reduction, which performs

one threaded reduction per node, which sequentially builds one histogram per thread.

Triolet includes runtime facilities for serializing and deserializing objects to byte arrays.

The compiler automatically generates serialization code from the definitions of algebraic data

types; we override the compiler for a few types (Section 5.6). Functions are represented by

heap-allocated closures and are also serialized. Serializing an object transitively serializes

all objects that it references. Pointers to global data are serialized as a segment identifier

and offset. Since the majority of serialized data typically resides in pointer-free arrays, such

arrays are serialized using a block copy to minimize serialization time.

5.6 Array Partitioning

Distributed traversal of an array should partition the array across distributed tasks, but the

compiler-generated serialization code would send the entire array to every task. To support

array partitioning with minimal implementation complexity, iterators keep track of array

partitions so that the runtime can send a partition to each distributed task. In principle,

Triolet’s compiler could take the compiler-driven approach of analysis to discover what data

a parallel loop accesses, followed by transformation to copy only the relevant data to remote

processors. Triolet employs a much simpler library-driven solution that takes advantage of

the divide-and-conquer nature of skeletons.

Consider again the loop sum(filter(lambda x: x > 0), xs). If this data is split be-

tween two tasks, each task would ideally receive half of the array xs. If the domain of xs is
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d and the block of memory holding array elements is a, the expression would return a flat

indexer that reads an element of a and pairs it with its index, IdxFlat 〈d,λi. 〈a[i], i〉〉. It is

this reference to a that, in the simple serialization strategy, drags the entire array along when

it is serialized.

We enhance the functionality of indexers to address this problem. We call the new data

structure a slice. Slices of arrays keep track of what subarray the library intends to use.

Library functions partition data by modifying the subarray information, and the runtime

uses the subarray information to serialize only the data that a remote task actually needs.

The Slice data type is defined as follows.

data Slice d α where

Slice : β→ source data

d→ domain

(β→ Index d → α)→ lookup

(β→ d → Index d → Slice d α)→ partition

(β→ Serializer (Slice d α))→ serializer

(β→ Deserializer (Slice d α))→ deserializer

(β→ β)→ preserve

Slice d α

This is a well-known object-oriented pattern: the first field is a piece of data, of some hidden

type β, and the remaining fields are methods for accessing that data. Traversing an array

creates a Slice whose source data holds the array and the location of the subarray that will

be accessed. The next two fields provide functionality equivalent to an indexer’s domain

and lookup function. The partition field extracts a subset of the slice. It takes a domain

and offset, and constructs a new slice. Partitioning an array is a constant-time operation:

it merely creates a new slice whose source data contains the original array and the location

of the subarray. The next two fields are serializer and deserializer functions, whose types

we have abbreviated as Serializer (Slice d α) and Deserializer (Slice d α). The compiler-
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generated serialization functions for this data type delegate their work to these functions.

When an array slice is partitioned and then serialized to a buffer, the serializer function

copies the subarray to the buffer (along with the Slice’s other fields). The deserializer reads

the subarray out into a new array.

There is one catch to this interplay between the library and the runtime. Compile-time

optimizations are often smart enough to statically eliminate slice objects, preventing slice-

based array partitioning from taking place at run time. The preserve field of Slice is used for

selectively inhibiting these optimizations. Distributed low-level skeletons, like the parallel

sum in sum(par(myLargeArray)), invoke the field to ensure that slices are preserved, while

shared-memory and sequential skeletons allow slices to be optimized away. This function

calls an externally defined identity function on the parts of the source data that must be

accessed through the slice, preventing the compiler from analyzing the flow of values and

bypassing the slice object.

The final iterator type, after adding the changes from Section 5.5 and this section, is

shown below. Each constructor holds a parallelism hint telling the library whether to execute

in parallel. Indexer-based iterators contain an input data structure in the form of a slice

object. When an iterator over an array is sent from one node to another, the slice object

directs the runtime system to copy only the iterator’s input subarray.

data Iter d α where

IdxFlat : ParHint→ Slice d α→ Iter d α

StepFlat : ParHint→ Step α→ Iter Seq α

IdxNest : ParHint→ Domain d⇒ Slice d (Iter Seq α)→ Iter Seq α

StepNest : ParHint→ Step (Iter Seq α)→ Iter Seq α
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CHAPTER 6

Evaluation

To show how a solid skeleton framework can deliver high performance without burdening

programmers, four benchmarks from the Parboil benchmark suite [59] have been converted

into Triolet, Eden, and C+MPI+OpenMP. This chapter discusses these benchmarks’ perfor-

mance and the degree to which different languages required manual optimizations. The

benchmarks chosen were those found, by inspection, to contain loops with high compute

intensity, meaning that they perform many operations per byte of input. When parallelizing

on a cluster, high compute intensity allows to amortize the overhead of message passing.

Because the goal is to demonstrate the performance of high-level code, benchmarks were

initially written in a straightforward style, using higher-order functions in Triolet and Eden

and simple loop nests in C. Some manual optimizations were performed on the Eden code to

resolve issues that severely degraded performance: Loops were manually blocked, using lists

at the outer level and arrays at the inner levels, and histograms were rewritten to use imper-

ative loops nests. Distributed parallel loops use the same problem decomposition strategy in

all languages. Because the same parallelization strategies are used, performance comparisons

reveal overhead incurred in each language.

For each benchmark, performance is normalized as speedup against sequential C to

provide a measure of absolute performance. As a highly efficient implementation layer,

C+MPI+OpenMP serves as a useful reference point against which to evaluate the scalability

and parallel overhead of the high-level languages.

C code is compiled with GCC 4.7.3 -O3. Eden code is compiled with GHC-Eden 7.6.1 -O2

Parts of this chapter appeared in the ACM Symposium on Principles and Practice of Parallel Programming [79].
The material is used with permission.
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with LLVM 3.2 as the backend. All three versions use OpenMPI as a distributed communica-

tion layer. Tests are run on a group of eight Amazon EC2 cluster compute nodes with two

8-core Xeon E5-2670 processors per node (a total of 16 cores per node). Hyperthreading was

disabled. Parboil includes a range of input problem sizes for each benchmark. Data sets were

selected to have a sequential C running time between 20 and 200 seconds, which is large

enough for the C+MPI+OpenMP code to scale up to the full test system. Reported parallel

times are the average of five runs.

6.1 Eden Overview

Eden is a distributed-parallel extension of GHC [49]. Although Eden is not designed to com-

pete with low-level programming models, it is able to achieve significant performance and

scalability at small core counts when used in concert with high-performance array libraries.

Eden code is valid Haskell code that executes sequentially if compiled with an unmodified

GHC. Eden’s runtime system uses MPI to create and communicate among parallel execu-

tion contexts. Eden, unlike GHC, does not support shared-memory multithreading. Though

Haskell uses lazy evaluation, data are fully evaluated before being sent from one execution

context to another. Eden provides a library of parallel list-processing skeletons as a higher-

level abstraction over processes.

Skeletons are implemented to use a two-level work distribution similar to that used in

Triolet and C+MPI+OpenMP. By taking advantage of the cluster’s topology, these skeletons

outperform the flat communication strategy of the skeletons included in Eden. The main

process distributes work to one process in each node, which further distributes work to other

processes in the same node. This avoids a communication bottleneck at the main process that

occurs in a flat communication strategy. Results are aggregated in the same two-level way.

As in Eden’s skeleton library, one processor on each node is reserved for communication so

that communication is not delayed by the execution of other work.
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Table 6.1: Lines of source code in parallel kernels in each benchmark.

Triolet Eden C+MPI+OpenMP
Benchmark Compute Marshal Total Compute Marshal Total Total

mri-q 21 20 41 27 40 67 151
tpacf 49 47 96 66 52 118 151
sgemm 31 24 55 145 33 178 273
cutcp 59 23 82 70 52 132 194

6.2 Source Code Size

Source code size serves as an approximate measure of the code complexity involved in dif-

ferent programming styles. When one language allows a kernel to be written in less code, it

is either because the language provides more concise building blocks, such as one-line list

comprehensions taking the place of multi-line for loops, or because more of the work is done

by a runtime system or a library. Code size is a crude measure because it is influenced by

superficial differences in programming style. Nevertheless, it reveals some significant trends

across benchmarks.

Table 6.1 tabulates the number of lines of code used for each parallel kernel. In Triolet

and Eden, total lines of code are classified into “compute” for computing results and “mar-

shal” for marshaling data between languages. Marshaling is needed because Triolet and Eden

manage data structures on a separate heap. Code for input, output, timing, and using exter-

nal code (i.e., #include directives in C and import statements in Haskell) is not counted.

The Triolet and Eden code of mri-q, tpacf, and cutcp are similar in size and smaller

than the C+MPI+OpenMP code. Much of the C+MPI+OpenMP code consists of MPI-level loop

blocking and communication. Some of the C+MPI+OpenMP code is partially replicated and

specialized so that the MPI master and worker ranks execute different code. For instance,

the master and worker nodes execute the same computation in parallel, but with different

communication code interspersed with the computation code. While this code replication is

avoidable, it arguably reflects a realistic development practice.

The Triolet code of sgemm is much shorter than the other two languages because the

Triolet code relies on Triolet’s library for 2D block decomposition. Neither Eden nor MPI have

97



 0

 50

 100

 150

 200

 250

 300

tpacf mri-q sgemm cutcp

T
im

e
 in

 S
e
co

n
d
s

C
Eden

Triolet

Figure 6.1: Sequential execution time of benchmarks.

such library features. Block decomposition took over 120 lines of code in Eden and C with

MPI. The same code was reused in Eden for inter-node and intra-node work decomposition. In

C+MPI+OpenMP an OpenMP collapse directive was used for intra-node work decomposition.

Overall, the high-level languages reduce code size by providing more functionality in

library code.

6.3 Sequential Execution Time

Comparing the sequential execution time of the benchmarks across languages reveals how

well the Triolet and Haskell compilers eliminate abstraction overhead. Kernel code of the

benchmarks consists of simple loop nests that perform arithmetic and read and write arrays.

In C these operations are written more or less directly, while in Triolet and Haskell they are

written with generic higher-order functions that must be simplified away.

Sequential execution times are shown in Figure 6.1. The execution time of high-level code

ranges from on par with C code to almost 3× slower. Flat loops compile to efficient code:
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performance parity is achieved on the flat loop benchmarks, mri-q and sgemm, except for

mri-q in Eden. Eden’s runtime is 50% longer because the backend misses a floating-point

optimization that computes sinf and cosf together when they are called with the same ar-

gument. Nested loop benchmarks tpacf and cutcp lose more performance relative to C, with

the deeply nested loop from cutcp losing the most. Due to the size of the generated code, it

is difficult to identify the source of the overhead. In parallel execution, these execution time

differences are less significant than differences due to parallelization overhead.

6.4 Parallel Speedup and Scalability

6.4.1 MRI-Q

The main loop of mri-q computes a non-uniform 3D inverse Fourier transform to create a

3D image. It is heavily computation-bound and has a simple memory access pattern, making

it straightforward to parallelize. In Triolet, it can be distilled down to a line of code:

[sum(ftcoeff(k, r) for k in ks) for r in par(zip3(x, y, z))]

The code consists of a parallel map over image pixels, summing contributions from all

frequency-domain samples. The body of ftcoeff, not shown, performs several floating-

point math operations. This code yields parallel performance on par with manually written

MPI and OpenMP (Figure 6.2).

Eden does not provide a data structure supporting an efficient, parallel map operation.

Nevertheless, one can be built from lists (supporting a parallel, high-overhead map) and vec-

tors (supporting a sequential, efficient map), borrowing a technique from another Haskell

library [37]. Arrays are chunked into lists of 1k-element vectors. The parallel loop is tiled to

match the structure of the data: mapFarmB traverses the list in parallel, while V.map traverses

a vector. (The chunk-building code is not shown.)

mapFarmB (V.map (\r -> V.sum $ V.map (ftcoeff r) ks)) points

99



 0

 20

 40

 60

 80

 100

 120

 0  32  64  96  128

S
pe

ed
up

 o
ve

r 
se

qu
en

tia
l C

Cores

linear
C+MPI+OpenMP

Triolet
Eden

Figure 6.2: Scalability and performance of mri-q implemented in different languages.

While the Eden code scales well, it loses performance due to a missed floating-point op-

timization. The performance loss is also visible in the sequential Eden execution time (Sec-

tion 6.3).

C+MPI+OpenMP is the most verbose, dedicating more code to partitioning data across MPI

ranks than to the actual numerical computation. While mri-q’s communication pattern fits

MPI’s scatter, gather, and broadcast primitives, these were not as efficient as the Triolet code;

the fastest version used nonblocking, point-to-point messaging.

6.4.2 SGEMM

The scaled product αAB of two 4k×4k element matrices is computed in sgemm. The multi-

plication is parallelized after transposing matrices so that the innermost loop accesses con-

tiguous matrix elements. The array layout reflects this benchmark’s original design for wide

vector parallelism on GPUs; to multiply matrices efficiently without using vector hardware,

both input arrays and the output array are transposed in separate loops.

The product of A and BT is written in Triolet as a parallel evaluation of dot products:
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def dot(u, v):

return sum(x*y for (x, y) in zip(u, v))

zipped_AB = outerproduct(rows(A), rows(BT))

AB = [alpha*dot(u, v) for (u, v) in par(zipped_AB)]

The first two lines define dot product as multiplying two arrays elementwise and summing

the products. The next line calls rows to reinterpret the matrices as 1D virtual arrays of

arrays, where each inner array is one row, then outerproduct to zip A and B together into a

2D virtual array containing row i of B and row j of A at position i, j. The last line performs

a parallel map to compute dot products and construct the array. The parallel map performs

a block decomposition of C, distributing chunks of A and B across cluster nodes and cores.

Slices created by the calls to rows carry the necessary information to enable this data dis-

tribution. Similar 2D decompositions are written as part of the parallel C+MPI+OpenMP and

Eden code.

Transposition is a sequential bottleneck in Eden since it does too little work to parallelize

profitably on distributed memory. We parallelize it over shared memory on a single node in

Triolet and C+MPI+OpenMP. At 128 cores, transposition takes 35% of Eden’s execution time.

All versions of the code exhibit limited scalability due to transposition time and com-

munication time (Figure 6.3). C+MPI+OpenMP and Triolet spend similar amounts of time in

communication and in parallel computation, resulting in similar performance. Triolet’s per-

formance stops rising toward eight nodes as it spends more time constructing messages.

At eight nodes, 40% of Triolet’s overhead relative to C+MPI+OpenMP is attributable to the

garbage collector [83], which is slow when allocating objects comprising tens of megabytes.

The garbage collection overhead was determined by comparing to the run time when libc

malloc was substituted for garbage-collected memory allocation. The Eden code fails at two

nodes because the array data for a chunk of work is too large for Eden’s message-passing

runtime to buffer.
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Figure 6.3: Scalability and performance of sgemm implemented in different languages.

6.4.3 TPACF

The tpacf application analyzes the angular distribution of observed astronomical objects.

It uses histogramming and nested traversals, presenting a challenge for conventional fusion

frameworks. Three histograms are computed using different inputs. One loop compares

an observed data set with itself; one compares it with several random data sets; and one

compares each random data set with itself. The code is parallelized across data sets and

across elements of a data set.

In Triolet, the common code of the three loops is factored out and written once. The

function on lines 1–4 of Figure 6.4 contains the common part of all three histogram com-

putations, dealing with correlating pairs of values taken from a pair of data sets. This code

maps score over all given pairs of objects to compute a similarity between members of each

pair and collects the results into a new histogram. On lines 6–10, randomSetsCorrelation

computes a parallel histogram over a collection of random data sets. Parameter corr1 com-

putes a histogram from one random data set, and rands is an array of random data sets. The

function body consists of a parallel reduction that computes histograms of individual data
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1 def correlation(size, pairs):

2 values = (score(size, u, v)

3 for (u, v) in pairs))

4 return histogram(size, values)

5

6 def randomSetsCorrelation(size, corr1, rands):

7 empty = [0 for i in range(size)]

8 def add(h1, h2):

9 return [x + y for (x, y) in zip(h1, h2)]

10 return reduce(add, empty, par(corr1(r) for r in rands))

11

12 def selfCorrelations(size, obs, rands):

13 def corr1(rand):

14 indexed_rand = zip(indices(domain(rand)), rand)

15 pairs = localpar((u, v)

16 for (i, u) in indexed_rand

17 for v in rand[i+1:])

18 return correlation(size, pairs)

19 return randomSetsCorrelation(size, corr1, rands)

Figure 6.4: Triolet code of tpacf’s self-correlation loop.

sets and adds them together.

The selfCorrelations of random data sets are computed in lines 12–19. The func-

tion corr1 computes the self-correlation of one data set rand (lines 13–17). Self-correlation

examines all unique pairs of values (rand[i], rand[j]) where j > i. Line 15 pairs each el-

ement of rand with its index. For each index-element pair (i, u) (line 16), a slice consisting

of elements at higher indices is extracted (rand[i+1:] on line 17), and u is paired with each

element v of that slice (line 15). Line 18 computes a correlation histogram from these pairs.

Line 19 runs corr1 in parallel over the random data sets and sums the generated histograms.

The other two parallel histogramming loops are defined similarly to selfCorrelation.

Triolet is expressive enough to efficiently partition the loop nest across nodes and cores

without manual partitioning. The Eden and C+MPI+OpenMP implementations of tpacf par-

tition data according to the number of available cores. In Eden, only the outer loop over

rands is parallelized. In the original program, rands is an array containing 100 arrays, and
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Figure 6.5: Scalability and performance of tpacf implemented in different languages.

consequently the loop cannot be parallelized on more than 100 cores. To use more cores, the

Eden code subdivides these arrays, doubling the size of rands. In C+MPI+OpenMP, each core

within a node operates on its own histogram array. Since the OpenMP runtime does not trans-

parently manage per-core data, the C+MPI+OpenMP code explicitly creates the right number

of arrays and determines which array to use within the loop body. For a programmer, manual

partitioning typically entails one or more iterations of performance optimization. Triolet’s

library support for parallel histograms over nested iterators and runtime support for thread

parallelism uses the parallel architecture efficiently.

Triolet and C+MPI+OpenMP scale similarly (Figure 6.5). Triolet is slightly faster due to

a more even distribution of computation time across nodes. Eden has somewhat worse se-

quential performance and a higher communication overhead.

6.4.4 CUTCP

The cutcp benchmark is taken from a molecular modeling application. It computes the

electrostatic potential induced by a collection of charged atoms at all points on a grid. An

104



 0

 10

 20

 30

 40

 50

 60

 0  32  64  96  128

S
pe

ed
up

 o
ve

r 
se

qu
en

tia
l C

Cores

linear
C+MPI+OpenMP

Triolet
Eden

Figure 6.6: Scalability and performance of cutcp implemented in different languages.

atom’s a field affects those grid points within a distance c. The body of the computation

is essentially a floating-point histogram: it loops over atoms, loops over nearby grid points,

skips points that are not within distance c, and updates the grid at the remaining points.

This computation is done by nested loops and conditionals in the C code or nested traversals

in Triolet. Subsets of atoms are processed in parallel.

As in tpacf, the Eden code’s sequential performance suffers when using nested traver-

sals. Using an imperative loop nest improves sequential performance by 5×, and the faster

version is used for performance measurements.

Performance of Triolet and C+MPI+OpenMP saturates quickly (Figure 6.6), as the over-

head of summing histograms dominates execution time. As in sgemm, Triolet has significant

garbage collection overhead. Approximately 60% of Triolet’s execution time at eight nodes

arises from allocator overhead.
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Figure 6.7: Execution time of benchmarks implemented in C+MPI+OpenMP, Triolet, and Eden
on 128 cores. Bars are colored to show time spent in different stages of parallel computation.
Part (b) shows the data of part (a) rescaled for comparison between implementations of a
benchmark.

6.5 Breakdown of Parallel Execution Time

No single factor limits parallel scalability in these benchmarks. The breakdown of execution

time in Figure 6.7 narrows down where overheads affect each benchmark. The figure shows

execution time for all benchmarks in all languages on 128 cores. Time is classified based on

the life cycle of distributed parallel loops into the following categories.

Distributed computation is when all processors are computing in parallel. This is the only

category that utilizes all cores. Other categories indicate inefficient use of cores.

Overlap between distributed computation and communication occurs when some cores are

doing distributed computation while others have not begun or have already finished.

Overlap is likely to result from load imbalance or communication delays.

Communication is time spent sending data to cores at the beginning of a loop or receiving

data from cores at the end.
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Serialization is time spent packing or unpacking messages in the main thread.

Non-distributed computation is time spent in sequential or thread-parallel computation.

Measurements come from sampling the clock at the beginning and end of communication

events in Triolet and C+MPI+OpenMP code. Additionally, in Triolet, the time spent serializing

and deserializing messages in the main thread was measured. In C+MPI+OpenMP data is not

serialized or deserialized.

Data was collected in Eden by measuring the reduction in execution time when distributed

loop bodies or entire distributed loops were replaced by trivial computation (such as creat-

ing a zero-filled array). Evaluation of unused inputs was forced to ensure that they would

be computed in Haskell’s lazy execution model. Event times were not used because Eden’s

use of laziness allows different stages of execution to overlap, making it unclear how to

categorize time. The Eden execution trace in Figure 6.8 shows an extreme example where

four processors begin executing a parallel loop body after most others have finished. While

asynchronous communication is also used in some Triolet and C+MPI+OpenMP code, they

showed smaller delays. The measurement method used in Eden cannot identify overlap be-

tween stages and cannot distinguish serialization from communication; thus, only distributed

computation, communication, and non-distributed computation are shown.

Distributed computation dominates the execution time of the compute-intensive bench-

marks mri-q and tpacf. Eden’s sequential execution in tpacf is spent in a self-correlation

loop. This is a parallelizable triangular loop representing 0.3% of tpacf’s work. Triolet and

C+MPI+OpenMP use TBB and OpenMP to dynamically balance work across threads. To paral-

lelize it in Eden, work would have to be partitioned in a way that balances load.

Load imbalance in the C+MPI+OpenMP implementation of tpacf is evident in the large

overlap time. The cause is unclear, since Triolet has less load imbalance with the same work

distribution.

The communication-intensive benchmark sgemm spends the greatest fraction of time in

communication and serialization in all implementations. Eden’s large communication time is
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Figure 6.8: An execution trace of sgemm on four cluster nodes as displayed by the Eden
trace viewer. Each horizontal band is a core’s execution timeline. Wide black bars indicate
computation, wide grey bars indicated blocked or delayed execution, and narrow light bars
indicate idling. The four bars displaced to the right show that four processors started late.

a combination of the additional cost of sending messages in two hops (inter-node followed by

intra-node) and the work of partitioning and merging arrays between hops. Serialization and

deserialization take 30% of Triolet’s execution time. Even C+MPI+OpenMP’s relatively short

communication phase takes 30% of its total execution time.

Of Eden’s sequential execution time in sgemm, 35% is spent transposing matrices. Trans-

position contains virtually no computation and so cannot amortize the cost of message pass-

ing in a distributed memory model. The remainder is spent splitting and merging arrays.

In cutcp, the time spent in distributed computation varies dramatically between imple-

mentations. The difference is not simply due to cross-language differences in efficiency, since

it is larger than the difference in sequential execution time in Figure 6.1. As discussed in Sec-

tion 6.4.4, cutcp’s use of per-processor private output arrays introduces additional work for

creating and summing arrays. Some of the overhead in Triolet is attributable to the garbage

collector. Eden’s overhead may have the same origin.
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CHAPTER 7

Related Work

This dissertation draws from a broad range of prior work on container libraries, functional

languages, parallel languages, and algorithmic skeletons. This chapter compares in detail

the work lying at the intersection of these categories—data-parallel, functional, distributed

skeletons—and presents some representatives of more distantly related container traversal

interfaces.

It is not always straightforward to identify differences and similarities between languages.

Similar features may be presented in different ways. For instance, although Sisal’s loops

closely resemble Fortran loops, their behavior is closer to a parallel map due to the absence

of side effects in the loop body. Different parallel execution models may be interconvertible

in some situations. For instance, loop fusion can partially transform NESL’s vector-parallel

execution model into a thread-parallel execution model. To facilitate comparisons across

languages, this chapter defines some language features and optimizations so as to apply to

both loop-based and traversal-based programming interfaces.

Table 7.1 lists features of programming languages and libraries that use container traver-

sals for expressing parallel loops. A programming abstraction is counted as a container

traversal if it manages communication and parallelism of user-defined code over a container.

That is, it processes a collection of inputs (such as a range of numbers, or the elements of

a data structure) using a user-defined function to compute results from subsets of the data,

and executions of user-defined functions do not interact with one another in normal usage.

The first five columns of the table show what kind of loops can be written in each frame-

work.
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Table 7.1: Feature comparison of parallel container traversal implementations.

Kinds of loops Loop optimizations
Runtime system
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Parallel loop

Sisal 3 3 3 3 3 3 Shared or at sync 3

SaC 3 3 3 3 Shared
Delite 3 3 3 3 3 3 Shared 3

Repa 3 3 3 Shared
Vector

ZPL 3 3 3 3 3 Explicit
NESL 3 3 3 3 3 3 Shared
DPH 3 3 3 Shared

Manticore 3 3 3 Shared
Copperhead 3 3 3 Shared 3

Collection

Scala 3 3 3 3 3 3 3 3 Shared
Query

Spark 3 3 3 3 At sync
DryadLINQ 3 3 3 3 At sync 3

Functional data-parallel skeleton

HDC 3 3 3 At sync 3

PMLS At sync 3

Eden At sync 3

HdpH Explicit
Triolet 3 3 3 3 3 3 3 3 3 Shared & at sync 3

Other data-parallel skeleton

Muesli 3 3 3 3 Explicit
SkeTo lists 3 3 3 3 3 3 Explicit 3
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Array traversal A framework supports array traversal if it has loops that partition array

elements across processors. Frameworks that do not support array traversal use a

different container type such as lists or lazy sequences.

Multidimensional array traversal If a framework’s array traversal functionality can be ap-

plied to multidimensional arrays, it supports multidimensional array traversal.

Nested traversal A framework supports nested traversal if it has a way to expand a sequence

by transforming each of its elements into an arbitrary number of new elements. The

canonical nested traversal function is concatMap.

Imperative loops A framework is shown as supporting imperative loops if it allows mutable

data structures to be updated within a loop. Updates are generally restricted to “output-

only” operations that cannot be used for communication across loop iterations.

Sort by key Some frameworks support an operation that sorts and groups elements by a

user-defined ordering or hash function. Variants of this include sorting by key, rela-

tional joins, and the sort phase of map-reduce frameworks. If a framework can only

implement sorting via scan operations, it is not counted as having a sort by key oper-

ation. Scan-based sorting cannot “send” values directly to the destination indicated by

their key, but must perform extra phases of communication.

The next five columns describe which optimizations are performed transparently by the

framework. Optimizations facilitate high-level programming by obviating manual loop trans-

formations.

Fusion A framework is shown as performing fusion if it can co-schedule the iterations of

multiple skeletons such that one skeleton’s output is directly consumed by another

without saving it into a data structure or sending it between threads. Fusion can be

achieved statically through loop transformations or dynamically through lazy evalua-

tion.
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Filter fusion This form of fusion involves fusing a skeleton that discards or skips values,

such as filter, with a subsequent skeleton.

Nested traversal fusion This form of fusion involves fusing a nested traversal with a subse-

quent skeleton.

Imperative loop fusion This form of fusion involves loops that perform imperative updates.

Array distribution A framework distributes arrays if it partitions array data into chunks for

parallel processing. A framework may distribute an array for the lifetime of the array,

or only while traversing it. Distribution is not necessary in a shared memory system

but may improve performance by reducing false sharing. In frameworks that distribute

lists but not arrays, programmers can block workaround is to tile loops.

The last two columns describe runtime system features.

Communication Different runtime mechanisms may be used to share data between threads.

Implementations relying on shared memory hardware use shared memory communica-

tion.

Distributed-memory language implementations may communicate only at synchroniza-

tion points (at sync). An alternative used by some languages is to emulate shared mem-

ory at run time by dynamically passing messages when remote data is read or written;

no language in the table does this.

Some skeleton libraries, lacking language and runtime support, rely on the programmer

to insert explicit communication.

Sisal has a shared memory and a distributed memory implementation but the two mod-

els can’t be used together, shown as “Shared or at sync.” Triolet uses shared memory

and distributed parallelism together, shown as “Shared & at sync.”

Automatic marshaling Some distributed frameworks automatically determine how to mar-

shal data structures, or turn them into messages for transmission over a network. In
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distributed frameworks without automatic marshaling, programmers must write mar-

shaling code, typically in the form of serialization functions for each data type. Auto-

matic marshaling is inapplicable to shared memory frameworks.

7.1 Parallel Loop Languages

One line of language development extends the paradigm of mapping loop iterations to par-

allel processors. Because dependences are the primary obstacle to effective loop paralleliza-

tion in imperative languages such as Fortran and C, these languages facilitate a programming

style without side effects [84]. These languages tend to share the characteristics of indexers,

supporting multidimensional arrays and loop fusion but lacking optimizations for variable-

length loops.

Sisal is a functional language developed as an alternative to Fortran for parallel program-

ming. Parallelism is expressed through parallel for loops. Values produced in a loop body

can be collected into a new array and/or reduced to a result value. Table 7.1 describes Sisal

90 because the language implementation for this version of Sisal is described in detail [85].

It has an implementation for shared memory and another for distributed memory systems.

The programming language only supports 1D arrays; nevertheless, the compiler supports

multidimensional arrays and attempts to recognize programming idioms corresponding to

loops over multidimensional arrays. Sisal compilers fuse loops on an iteration-by-iteration

basis, so traversals with variable-length outputs cannot be fused [86].

Single Assignment C (SaC) is a functional language that expresses parallelism through

array comprehensions [13]. SaC introduces support for multidimensional arrays and generic

programming, whereas Sisal has been monomorphic until recently. Like Sisal, SaC’s compiler

performs loop fusion on an iteration-by-iteration basis and thus does not fuse traversals with

variable-length outputs.

Delite [54, 55] is a framework for implementing embedded domain-specific languages.

The framework is designed to be extended with new language features, and its extensibility

113



has been used to make several programming languages. Thus, Delite represents a family

of programming languages that share a common infrastructure. The common infrastruc-

ture includes an intermediate program representation and optimizer that includes container

traversal operations used for writing parallel loops. Delite has an extensible set of primitive

container traversal operations, each of which is implemented by handwritten code for a given

target. Loop fusion is based on rewriting combinations of container traversals.

Repa is a Haskell library for parallel loop programming [14]. Repa uses indexers to achieve

loop fusion.

7.2 Vector Languages

Vector languages are loosely modeled on vector processors, where instructions operate in

parallel on the elements of an array. Effectively, each vector operation is a 1D parallel loop

over one or more arrays. While vector languages do not adhere rigorously to the model, they

inherit a tendency to flatten all data structures into arrays of scalars and to flatten programs

into sequential programs containing small, parallel inner loops. Loop fusion is an important

transformation for merging loops, and it is employed by all vector languages.

ZPL was developed to provide a simple and accurate performance model for parallel pro-

gramming. Programs execute in SIMD fashion and communication is explicit. It is a vector

language in the sense that users are encouraged to view a program as if each statement

executes in parallel across all processors or across all array elements.

The seminal vector language, NESL, has been deployed on a variety of computers, in-

cluding some distributed memory systems [6]. The entry in Table 7.1 characterizes NESL’s

multicore implementation [10]. Although data structures are semantically immutable, NESL’s

runtime system opportunistically mutates arrays when it detects that the old array contents

are no longer used, allowing imperative algorithms to run with efficient asymptotic perfor-

mance [6]. The multicore backend can only fuse loops having the same number of iterations,

so filter operations and nested traversals cannot be fully fused [10].
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DPH (Data Parallel Haskell) generalizes the flattening transformation to work in the con-

text of Haskell programs [8]. It employs rewrite-based loop fusion, which again can only fuse

loops having the same number of iterations. Although DPH is designed to support nested

traversal, the implementation in the latest release (version 0.7.0.1) is incomplete.

Manticore [9] and Copperhead [7] each depart from the vector model to improve program

performance. Both languages compile nested loops as-is instead of flattening them, which

avoids the overhead of reorganizing data. Neither language supports nested traversals.

7.3 Collection Libraries

Many programming languages have a standard library of collections. Collection libraries tend

to be feature-rich (these rows of Table 7.1 are filled more densely than most other rows), but

are not necessarily designed with parallelism in mind. Use of lazy sequences achieves a fused

execution order for a broad range of looping patterns.

Scala collections [21] provides both parallel and sequential higher-order functions. Per-

formance comparisons between Scala collections and Delite-hosted languages suggest that

the former incurs significant overhead [55].

7.4 Query Languages

Query languages have feature sets based on traditional database query languages, but have

recently begun to converge with list-processing and array-processing interfaces. Query lan-

guages tend to be designed for very large data sets where disk access latency and network

throughput limitations are more significant than processing speed. Consequently, their de-

signs do not emphasize efficient execution of inner loops, but rather aim to reduce disk

and network I/O through efficient scheduling. Frameworks such as MapReduce [87] and

Hadoop [88] simplify low-level issues of fault tolerance and distributed storage, but are diffi-

cult to program directly. Higher-level query languages provide container traversal interfaces
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to these low-level frameworks.

DryadLINQ [28] is a version of LINQ for cluster computing. It uses services in the .NET

framework to marshal functions and data across the network. Tasks are dynamically sched-

uled to balance load and reduce communication. Dependent tasks scheduled to the same

processor communicate through iterators, yielding a fused execution behavior.

Spark [29, 89] provides an interface resembling Scala iterators for operating on dis-

tributed objects. Whereas most query languages store temporary data on disk, Spark can

cache stored data in memory to reduce the effective access time.

7.5 Functional Data-Parallel Skeletons

Prior work on functional data-parallel skeletons has emphasized simple, high-level control of

parallelism rather than generality or high absolute performance. Languages and libraries in

this category minimize the differences between the framework and a preexisting library or

language. For instance, rather than introducing new programming language features or new

collection types, these frameworks adopt existing languages and data structures. Several

of these frameworks (PMLS [90, 50], Eden [49], and HdpH [91]) adopt their host language’s

convention of using linked lists rather than arrays, which negatively impacts performance.

Loidl et al. [92] compare the performance of functional skeleton frameworks.

HDC (Higher-order Divide and Conquer) is a skeleton-based parallel compiler for a subset

of Haskell [48, 93]. HDC’s core parallel abstraction is a divide-and-conquer parallel skeleton.

Haskell lists are represented as arrays for efficiency. The compiler statically analyzes and

transforms uses of skeletons to select a parallel schedule.

HdpH [91] provides a skeleton interface on top of a lower-level parallel library. HdpH’s

runtime system, unlike other functional skeleton frameworks, supports both shared and dis-

tributed parallelism. However, HdpH’s skeletons either use node-level thread parallelism or

global work stealing; to take advantage of locality, one must write a nested loop using two

different skeletons.
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7.6 Other Data-Parallel Skeletons

Some skeletons perform compile-time code transformation by using C++’s template metapro-

gramming facilities. Muesli [45] takes advantage of both shared and distributed memory

parallelism. The SkeTo list library [32] uses a collector design to fuse loops over lists.
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CHAPTER 8

Conclusion

This dissertation has presented Triolet, a system for high-level, high-performance parallel

programming of clusters. Triolet uses container traversals as a familiar high-level program-

ming abstraction. A parallel loop may be a composition of multiple traversals, each perform-

ing a simple transformation on a collection of values. The high-level semantics of container

traversals convey useful parallelism and access pattern information to the implementation.

Container traversal code is transformed at compile time into efficient parallel and sequen-

tial loops. For parallel loops that are naturally expressed using Triolet’s library of container

traversals, Triolet offers similar complexity to a sequential programming language and per-

formance roughly comparable to manually parallelized C code.

Triolet’s performance comes from several new techniques for mapping container traver-

sal interfaces onto distributed hardware. Data is shared within a cluster node, reducing com-

munication overhead and memory use relative to a purely message-passing implementation.

Some container traversal functions construct problem-specific data distribution strategies.

Some container traversal functions introduce nested loops to process irregular workloads

without introducing costly communication phases. Like prior loop fusion frameworks for

sequential and shared-memory parallel programs, Triolet embeds these techniques into a

common internal representation of iterators and containers. Mapping a large collection of

traversal functions into a common internal representation affords a degree of extensibility

and composability, simplifying the task of designing a library that merges combinations of

traversals into a single loop.

Triolet’s results convey a few lessons for implementors of distributed container traver-
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sal frameworks. Triolet demonstrates the usefulness of a flexible internal representation of

communication and work distribution. Prior implementations of container traversal typically

inject user code into pre-built parallel loops that distribute work and perform communica-

tion. In such a framework, developers reorganize loops and data structures to fit the pre-built

computational structure, which often introduces overhead. Triolet’s iterators allow more flex-

ible construction of data distribution schemes and parallel loop nests, reducing the need to

reorganize loops and storage.

Triolet also demonstrates the usefulness of combining shared memory and message pass-

ing in a container traversal framework. Although the combination’s performance benefits are

widely recognized, nearly all container traversal implementations use only one or the other.

In distributed parallel loops on clusters, sharing within a cluster node reduces communica-

tion overhead and cache pressure. Moreover, some algorithms do too little computation to

offset their message-passing overhead, and thus are better suited to shared-memory paral-

lelization. These differences translate to large performance benefits for some parallel loops.

For programming language implementors, Triolet serves as a counterpoint to the notion

that high-level, high-performance parallel programming requires language and compiler sup-

port for parallelism. Triolet’s parallel features are implemented as library code. Libraries

are easier than compilers to develop, extend, and integrate with other software, making li-

braries an attractive approach to implementing parallel features. Triolet extends prior work

in library-driven loop optimization with more flexible library abstractions for building loops.

The library design motivated a refinement to the design of compiler optimizations: inlining

was enabled for some cases of structurally recursive functions. These concepts can guide the

design of other parallel programming systems.

It remains to be seen how Triolet’s library design can be adapted to other programming

languages. The library relies on some uncommon type system features. Triolet’s type sys-

tem plays a role in explaining and validating the programming interface, implementation,

and compiler optimizations, in resolving overloading, and in detecting erroneous programs.

Higher-kinded types express aspects of the container interface. Existential polymorphism
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hides the types of temporary data structures used by iterators while still making type infor-

mation available to optimization. Polymorphic unboxed types allow generic code to operate

on efficiently packed data. Triolet’s library design can probably be used in languages lacking

these features, though it may mean giving up some usability, clarity, or performance.

8.1 Future Directions

Triolet demonstrates loop parallelization on a computational cluster for several algorithms

using a variety of common container traversals. There are a number of directions this work

could be extended.

It is desirable to compile the same high-level code to a variety of computing platforms.

Triolet currently uses multiple cores and cluster nodes. However, Triolet cannot currently

exploit other sources of parallelism found in high-performance computing platforms today.

Triolet does not utilize the computing capabilities of GPUs or the vector units of CPUs. Ex-

tending Triolet to support these targets would broaden its applicability.

Triolet’s execution model is that of a sequential program containing parallel loops. All

data resides in the main processor’s memory except when a parallel loop is running. Many

applications are a poor fit for this execution model. Alternatives are to persistently distribute

data across the memories of different processors, store data on a distributed filesystem, or

stream data through a system without permanently storing it. Others have argued that all

these use cases can be targeted by a common container traversal interface [29]. These execu-

tion models have different performance implications, yet they all fit the container traversal

programming style, suggesting that a common infrastructure may suit them.

Triolet has only scratched the surface of the algorithms that can be expressed as con-

tainer traversals. It is an open question whether a broad set of traversals and traversal-

related optimizations can fit into a single framework. Some classes of algorithms have in-

teresting and nontrivial sharing patterns, and have been expressed as container traversals.

Sorting, grouping, and relational joins have been demonstrated in database query languages
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and database-inspired map-reduce frameworks [19, 28, 29]. Graph traversals, graph algo-

rithms, and unstructured mesh algorithms have also been demonstrated [94, 95]. While loop

parallelization of stencil algorithms has received much attention, container traversal expres-

sion of such algorithms has not been thoroughly explored [96]. Each of these classes of

algorithms has its own characteristic data reuse patterns suited to specialized communica-

tion strategies. Attempting to develop a common interface for all these patterns could foster

a better conceptual and theoretical framework for the efficient parallel implementation of

container traversals.
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