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Abstract

One of the major challenges of mining topics from a large corpus is the quality of the constructed topics. While

phrase-generating approaches generally produce high quality output, they do not scale very well with the size of the

data. Thus, the state of the art solutions usually rely upon scalable unigram-generating methods, which do not produce

high quality human-readable topics, or are forced to use external knowledge bases. Furthermore, while document

collections naturally contain topics at different levels of granularity (general vs. specific), very few traditional methods

focus on generating high quality hierarchical topic structures.

This dissertation presents a series of approaches that directly addresses these challenges of generating high quality

phrase-based topics, both as a flat set and organized as a hierarchy, as well as some potential applications. First,

we describe a framework that generates high-quality topics represented by integrated lists of mixed-length phrases.

The key is adapting a phrase-centric view towards the construction and ranking of topical phrases. The approach

is domain-independent, and requires neither expert supervision nor an external knowledge base. The framework is

initially constructed to work on collections of short texts, such as titles of scientific documents. However, we then

show how the framework can be easily and robustly extended to work on collections of longer texts, and demonstrate

its applicability to human needs with a task-centric evaluation.

The dissertation then addresses the need to move beyond generating a flat set of topics, and present an approach to

constructing hierarchical topics, which extends the phrase-centric approach to create high quality phrases at varying

levels of granularity. Another application of this technique is then presented: the task of entity role discovery. By

tying entities in a community to topical phrases, users are able to explicitly understand both how and why individual

entities are ranked within a specific community. A final extension is then described, which is a combined approach

for constructing the hierarchy, which uses entity link information to improve the hierarchy quality.
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Chapter 1

Introduction

Yes, But Whats It Really All About, Then, When You Get Right Down To It, I Mean Really!

(Didactylos the Ephebian, Small Gods)

Let thy speech be short, comprehending much in few words.

(Ecclesiasticus 32:8)

‘What is it about?’ is a familiar question to everyone. Whether you are an avid reader looking to discover a new

book, or a researcher looking for terminology and prior work that is relevant to your research, the need to characterize

a document, or a collection of documents, pervades many areas of life. The latter problem - the need to characterize

a collection of documents - is most often addressed via querying or classification tasks. There has been much work

devoted to finding the most similar document to a query phrase, or to classify a document as belonging to one or

another label. Modeling the topics, or concepts, present in the document collection is often an integral part of these

tasks. However, few researchers have traditionally been interested in constructing a high quality representation which

would be easily interpretable by human users. This problem is precisely the focus of this dissertation.

Most current approaches to topic construction yield ranked lists of unigrams to represent topics. However, it has

long been known that unigrams account for only a small fraction of human-assigned index terms [66]. Furthermore,

a person who us unfamiliar with the topic may not be able to easily view unigrams, and automatically combine them

into ‘true’ phrases. For example, a person completely unfamiliar with the topic of Machine Learning would not be

able to know that the unigram list {‘support’, ‘vector’, ‘machine’} should actually be transformed into the phrase

‘support vector machine.’ Therefore, in order to construct high quality keyphrases for a given topic, it is important to

provide n-gram keyphrases rather than unigram keywords.

Table 1.1 presents one example of how the topic of Machine Learning might be denoted, within the universe

of Computer Science areas. The topic is represented by a list of high quality mixed-length phrases, of which the

top ranked are shown. Unlike existing unigram-centric methods, a person is not required to combine highly ranked

unigrams into phrases (e.g., if you are not familiar with Machine Learning, you may not be able to combine ‘support’,

‘vector’, and ‘machine’ into the name of a well-known classification technique.) The topic is also not limited to
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Table 1.1: The topic of Machine Learning, automatically constructed from the titles of CS papers published in DBLP.

learning
support vector machines
reinforcement learning

feature selection
conditional random fields

classification
decision trees

:

Table 1.2: The genre of Philosophy, automatically constructed from the descriptions of books designated as belonging to the
Philosophy genre on Goodreads.

twentieth century
ayn rand

human nature
philosophy

work
thought
theory

:

phrases of a given length (top unigrams, top bigrams, etc). This also mimics the natural behavior of a person asked to

generate topical phrases, since the constraint of limiting such phrases to any particular length is unnatural, and should

therefore not be imposed by a successful algorithm. A single phrase to serve as a label for the entire topic is often too

strong of a requirement, just as an expert on a topic is likely to use several phrases to describe it. On the other hand,

the general concepts of the topic should become clear after perusing just the few top ranked generated phrases, rather

than needing to peruse a very long list.

Scientific literature is not the only area which benefits from high-quality topical phrase construction. The catego-

rization of books (or other forms of entertainment, such as music) into genres is a complicated, subjective, and very

necessary task. Therefore automatically constructing useful representations of concepts such as genres which human

beings can then use in such tasks is a valuable contribution. Table 1.2 presents one example of how the Philosophy

genre might be described, represented by the top few phrases generated automatically from the descriptions of books

which are known to belong to this genre.

A different direction that is necessary to consider is that a flat representation of the topics (or concepts) in a dataset

may not always be as useful as a hierarchical organization at different levels of granularity. Therefore it is necessary

to be able to also construct high quality topical hierarchies from texts, where each topic is represented by a ranked list

of topical phrases, such that a child topic is a subset of its parent topic. For example, the topic of query processing

and optimization may be described by the phrases {‘query processing’, ‘query optimization’,. . .}, while its parent

topic of general problems in databases may be described by {‘query processing’, ‘database systems’, ‘concurrency
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control’,. . .} A sample of such a topical hierarchy is shown in Figure 7.1b

Root

information retrieval / natural language / machine 
trans lation / question answering

information 
retrieval / 
question 
answering / 

relevance 
feedback / 
information 
extraction

web 
search / 
search 
engine / 

world wide 
web /
semantic 
web

natural 
language/ 
speech 
recognition / 

part-of-speech 
tagging / 
language 
modeling

machine 
trans lation / 
statistical 
machine 

trans lation / 
word sense 
disambiguation 
/ named entity

query processing / database systems / concurrency 

control  / query optimization / data management

query 

processing / 
query 
optimization / 
deductive 
databases / 

relational 
databases

concurrency 

control  / 
database 
systems / 
dis tributed 
systems / 

main 
memory

arti ficial 

intelligence / 
knowledge 
base / 
database 
system / 

expert 
system

data 

management / 
data  
integration/ 
data 
warehousing / 

data 
warehouse

…
…

Figure 1.1: Topical hierarchy, constructed from the titles of computer science papers published in DBLP

In order to facilitate tasks such as efficient search, mining and summarization of heterogeneous networked data,

it is very valuable to discover and organize the concepts presented in a dataset into a multi-typed topical hierarchy.

Such a construction allows a user to perform more meaningful analysis of the terminology, people, places, and other

network entities, which are organized into topics and subtopics at different levels of granularity. Therefore, we also

consider how the constructed topical phrases may be used to discover the roles of entities which are connected to

the discovered topics. We then delve further into network data and expand our framework to automatically construct

multi-typed topical hierarchies, such as the one shown in Figure 7.1c

query processing 
database systems 
concurrency control  
query optimization 
data management 

divesh srivastava 
surajit chaudhuri 
jeffrey f. naughton 
nick koudas  
h. v. jagadish 

ICDE 
SIGMOD 
VLDB 
EDBT 
PODS 

information retrieval / 
retrieval / question 
answering / information 
retrieval system / 
relevance feedback 

w. bruce croft 
james allan 
maarten de rijke 
iadh ounis  
joemon m. jose 

SIGIR 
ECIR 
CIKM 
EMNLP 
HLT-NAACL 

Root 

…
 

…
 

…
 

…
 

…… 

Phrase Author Venue Phrase Author Venue 

Figure 1.2: Topical hierarchy incorporating heterogeneous entities, constructed from the titles, authors, and publication
venues of computer science papers published in DBLP

Throughout this dissertation, we seek to address several particular challenges associated with constructing topical

phrases. We focus on characteristics that render the topical phrases to be high quality in the eyes of human judgement,

rather than a particular metric (e.g., perplexity). We tackle the resulting non-trivial problem of evaluation through
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multiple user studies, developing methods that both inquire about topical phrase quality directly, and assess the quality

through task-based evaluations. We also keep a human-centric orientation as we explore how the topical phrase

construction techniques presented in this dissertation can be used in various interesting applications.

We also consistently constrain the techniques developed in this dissertation to be mostly unsupervised, and requir-

ing no external knowledge bases in addition to the document collections or networks with text components which are

used as data sources. Furthermore, we limit our reliance on linguistic techniques such as parsing as much as possible.

These limitations serve to develop methods which may be used with text from a wide variety of domains, or potentially

even different languages, and requiring very little in user knowledge or guidance, thus resulting in robust algorithms

which may be applied to various generalized tasks.

1.1 Structure of Dissertation

This dissertation presents a series of approaches and experiments addressing the challenges of generating high quality

phrase-based topics. The rest of this document is structured as follows:

Chapter 2 presents a literature review of previous approaches to topic and phrase discovery.

Chapter 3 introduces KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase

generation and ranking on collections of short texts. By altering the steps in the traditional methods of unsupervised

keyphrase extraction, KERT is able to directly compare phrases of different lengths, resulting in a natural integrated

ranking of mixed-length keyphrases. The effectiveness of KERT is demonstrated on two real world short document

collections

Chapter 4 adapts KERT for collections of longer text, outside of the scientific domain. A new, task-centric

evaluation of algorithm performance is also presented, effectively demonstrating the robustness and flexibility of the

KERT framework.

Chapter 5 moves beyond a flat set of topics and introduces CATHY (Constructing a Topical HierarchY), a phrase-

centric framework for topical hierarchy generation via recursive clustering and ranking.

Chapter 6 explores a further application of the CATHY framework to mine entity roles in topical communities,

such as the role of an author in a research community, or the contribution of a user to a social network community

organized around similar interests.

Chapter 7 unites the aims of chapters 5 and 6 by introducing CATHY HIN (Constructing a Topical HierarchY

from a Heterogeneous Information Network), which is both able to construct a hierarchy and incoporate non-textual

information during the construction.

Chapter 8 concludes and discusses future research directions.
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Chapter 2

Literature Review

In this chapter, we will briefly review the existing literature on topics that are related to the work presented in this

dissertation. Chapters 3 and 4 require an overview of topical keyphrase extraction and ranking, as well as a refresher

on unigram-generating topic models. Chapters 5-7 are related to the area of topical hierarchy construction. Chapter 6

is interested in role discovery, and the identification of hierarchical topical communities. Finally, Chapter 7 works in

the area of mining topics from heterogeneous information networks. The rest of this chapter presents related literature

for each of these areas in turn.

2.1 Topical keyphrase extraction and ranking

Keyphrases have traditionally been defined as terms or phrases which summarize the topics in a document [66].

Keyphrase extraction is an important step in many tasks, such as document summarization, clustering, and catego-

rization [44]. More recently, the definition has been expanded to include the notion of topical keyphrases - groups

of keyphrases which summarize the topics in a given document, or document collection [42]. Most existing work on

keyphrase extraction identifies keyphrases from either individual documents or a collection of long documents [65, 42].

However, recently there has been some interest in working with documents consisting of short text, such as a collection

of tweets [72], in order to summarize the document collection.

The state-of-the-art approaches to unsupervised keyphrase extraction have generally been graph-based, unigram-

centric ranking methods, which first extract unigrams from text, rank them, and finally combine them into keyphrases.

We mainly review the related work in extracting topical keyphrases from document collections rather than keyphrase

extraction from single documents. TextRank [48] constructs keyphrases from the top ranked unigrams in a document

collection. Topical PageRank [42] splits the documents into topics and creates keyphrases from top ranked topical

unigrams. Zhao et al [72] uses one example of short text - microblogging data from Twitter.

Some previous methods have used clustering techniques on word graphs for keyphrase extraction [41, 26], relying

on external knowledge bases such as Wikipedia to calculate term importance and relatedness. Barker and Cornac-

chia [3] use natural language processing techniques to select noun phrases as keyphrases.
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Tomokiyo and Hurst [65] take a language modeling approach, requiring a document collection with known topics

as input and training a language model to define their ranking criteria. Keyphrases are traditionally extracted as ngrams

using statistical modeling [68], or as noun phrases using natural language processing techniques [3].

2.2 Topic Modeling

Topic modeling techniques such as PLSA (probabilistic latent semantic analysis) [29] and LDA (latent Dirichlet

allocation) [7] take documents as input, model them as mixtures of different topics, and discover word distributions

for each topic.

LDA is perhaps the best known unigram-generating topic modeling technique. Each document in a collection is

viewed as having been generated by a mixture of topics, where each word is seen to have been generated by some

topic, with some probability. Figure 2.1 shows the plate notation for LDA.

Figure 2.1: Graphical model of LDA.

Formally, let φt denote the word distribution for topic t = 1, . . . , k. Let θd be the topic distribution of document

d. The generative process is as follows:

1. Draw φt ∼ Dir(β), for t = 0, . . . , k.

2. For each document d ∈ D,

(a) draw θd ∼ Dir(α).

(b) for each word position i in d

i. draw topic zi ∼Multi(θd)

ii. draw wi ∼Multi(φz)

The values α and β are Dirichlet prior parameters for θ and φ. The goal is to learn the set of topics, their associated

word probabilities, the topic of each word, and the particular topic mixture of each document. This is done with some
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kind of inference technique, such as Gibbs sampling[23]. Of particular interest to the work in this dissertation is that

each word in every document can then be labeled with the topic that generated it.

There are numerous extensions to LDA. For example, correspondence LDA [5] is proposed to model annotated

data, such as captioned images, having e.g., a generative model for image regions (Gaussian) and another generative

model for the caption text (multinomial). To capture the syntax of text, LDA has also been extended to capture text

syntax [25] by introducing a dependency between the topics that generate adjacent words. using a hidden Markov

model. The author-topic model [61] extends LDA by including the authorship information. In general, the area of

unigram-generating topic models is varied and well-studied.

2.3 Topical hierarchy construction

Topical hierarchies, concept hierarchies, ontologies, etc., provide a hierarchical organization of data at different levels

of granularity, and have many important applications, such as in web search and browsing tasks [22]. Although

there has been a substantial amount of research on ontology learning from text, it remains a challenging problem

(see [69] for a recent survey). The learning techniques can be broadly categorized as statistics-based or linguistic-

based. Statistics-based methods are like those presented in [46], where LDA is extended to learn a topic hierarchy.

Many studies are devoted to mining subsumption (‘is-a’) relationships [36], either by using lexico-syntactic patterns

(e.g., ‘x is a y’) [60, 51] or statistics-based approaches [71, 18]. Chuang and Chien [12] and Liu et al. [40] generate

taxonomies of given keyword phrases by supplementing hierarchical clustering techniques with knowledge bases and

search engine results. However, unlike most of these approaches, all of the methods presented in this dissertation

function without resorting to external knowledge resources such as WordNet or Wikipedia.

2.4 Role Discovery and Community Detection

Role analysis has its root in sociology. Sociologists use a notion of equivalence to assign nodes to different roles.

For example, automorphic equivalence requires nodes in the same equivalence class (role) to have equivalent neigh-

bors [20]. Network analysts use various notions of ‘centrality’ to find roles such as authorities and hubs [34]. Most

works in computer science present a very similar flavor of role definition. As a result, the techniques of role dis-

covery are all essentially either clustering [45, 30, 28], or ranking [31, 67, 9]. However, community knowledge has

been shown to be useful in role analysis [59, 11], and Costa and Ortale [16] recently developed a Bayesian approach

to jointly model the links generated by both communities and roles. They do not analyze the roles in communities

defined by a textual hierarchy.

Link-based community detection has been studied extensively in the past decade. A multitude of methodologies
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have been proposed for the community detection, or graph clustering problem in network analysis (see [57] and

[21] for comprehensive surveys). For hierarchical community discovery, both deterministic [70] and probabilistic

methods [14] have been proposed. Lancichinetti et al. [35] presents the first algorithm that finds both overlapping

communities and the hierarchical structure. Agglomerative, or bottom-up approaches are the most common in these

studies.

Some recent work shows that topic modeling can be used to augment community discovery [73, 43, 8, 74]. These

approaches can find mixed membership for entities in various topical communities. However, they also do not study hi-

erarchical communities. We perform top-down discovery of hierarchical topical communities, represented by phrases

mined from the text component of a heterogeneous information network, and then infer communities of entities via

their links to the text in the network.

2.4.1 Mining topics in heterogeneous networks

Basic topic modeling techniques such as PLSA [29] and LDA [7] described above take documents as input, and

output word distributions for each topic. Recently, researchers have studied how to mine topics when documents

have additional links to multiple typed entities [63, 62, 17, 10, 33, 64]. These approaches make use of multiple typed

links in different ways. iTopicModel [62] and TMBP–Regu [17] use links to regularize the topic distribution so that

linked documents or entities have similar topic distributions. Chen et al. [10] and Kim et al. [33] extend LDA to use

entities as additional sources of topic choices for each document. Tang et al. [64] argue that this kind of extension

has a problem of ‘competition for words’ among different sources when the text is sparse. They propose to aggregate

documents linked to a common entity as a pseudo document, and regularize the topic distributions inferred from

different aggregation views to reach a consensus.
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Chapter 3

Automatically Constructing Topical
Keyphrases from Short Text

3.1 Introduction

1Keyphrases have traditionally been defined as terms or phrases which summarize the topics in a document [66].

Keyphrase extraction is an important step in many tasks, such as document summarization, clustering, and catego-

rization [44]. More recently, the definition has been expanded to include the notion of topical keyphrases - groups of

keyphrases which summarize the topics in a given document, or document collection [42].

Most current approaches to topic construction yield ranked lists of unigrams to represent topics. However, it has

long been known that unigrams account for only a small fraction of human-assigned index terms [66]. Furthermore,

a person who us unfamiliar with the topic may not be able to easily view unigrams, and automatically combine them

into ‘true’ phrases. For example, a person completely unfamiliar with the topic of Machine Learning would not be

able to know that the unigram list {‘support’, ‘vector’, ‘machine’} should actually be transformed into the phrase

‘support vector machine.’ Therefore, in order to construct high quality keyphrases for a given topic, it is important to

provide n-gram keyphrases rather than unigram keywords.

On the other hand, it is inappropriate to discard all unigrams when approaching this task, or in fact to demonstrate

a bias towards any particular phrase length. For instance, consider that the unigram ‘classification’ and the trigram

‘support vector machines’ are both high quality topical keyphrases for the machine learning topic in the domain of

computer science. It is also not ideal to present separate ranked lists of topical phrases of each length, since when

people are asked to characterize topics, they do not limit themselves to e.g. listing only bigrams, but rather provide

a set of relevant phrases with no regard for phrase length. We should therefore also be able to perform integrated

ranking of mixed-length phrases in a natural way.

In this chapter we present KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase

generation and ranking. By altering the steps in the traditional methods of unsupervised keyphrase extraction, we

are able to directly compare phrases of different lengths, resulting in a natural integrated ranking of mixed-length

1This chapter contains materials from the following previously published work: Marina Danilevsky, Chi Wang, Nihit Desai, Xiang Ren, Jingyi
Guo, and Jiawei Han. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents. Proc. of 2014 SIAM Int.
Conf. on Data Mining (SDM’14), Philadelphia, PA, April 2014. 2014 Copyright SIAM. Reprinted with permission.
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keyphrases.

We demonstrate the effectiveness of our approach on two real world short document collections. The first is the

DBLP dataset, a collection of titles of recently published Computer Science papers in the areas related to Databases,

Data Mining, Information Retrieval, Machine Learning, and Natural Language Processing. These titles come from

DBLP,2 a bibliography website for computer science publications. The second is the arXiv dataset, a sample of titles

of physics papers published within the last decade. This collection of titles comes from arXiv,3 an online archive for

electronic preprints of scientific papers.

3.2 Framework

A key aspect of our framework is that we do not follow the traditional unigram-centric approach of keyphrase ex-

traction, where words are first extracted and ranked independently, and then combined to create phrases. Instead, we

construct topical phrases immediately after clustering the unigrams. By shifting from a unigram-centric to a phrase-

centric approach, we are able to extract topical keyphrases and implement a ranking function that can directly compare

keyphrases of different lengths.

3.2.1 KERT Algorithm Overview

When humans are asked to generate phrases that could represent a topic, the aspect of phrase length is seldom con-

sidered, except as a reasonable maximum for the considered topic (e.g. phrases in computer science generally do not

consist of more than four words). Therefore, we should generate topical keyphrases in such a way as to be able to

directly compare keyphrases of mixed lengths during the ranking step. We refer to this chracteristic as exhibiting the

comparability property. For example, the keyphrases ‘classification,’ ‘decision trees,’ and ‘support vector machines’

should all be ranked highly in the integrated list of keyphrases for the Machine Learning topic, in spite of having

different lengths.

Traditional probabilistic modeling approaches, such as language models or topic models do not have the compa-

rability property. They can model the probability of seeing an n-gram given a topic, but the probabilities of n-grams

with different lengths (unigrams, bigrams, etc) are not well comparable. These approaches simply find longer n-grams

to have much smaller probability than shorter ones, because the probabilities of seeing every possible unigram sum up

to 1, and so do the probabilities of seeing every possible bigram, trigram, etc. However, the total number of possible

n-grams grows following a power law (O(|V |n)), and ranking functions based on these traditional approaches invari-

ably favor short n-grams. While previous work has used various heuristics to correct this bias during post-processing

2http://www.dblp.org/
3http://arxiv.org
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steps, such as using a penalization term with respect to the phrase length [65, 72], our approach is cleaner and more

principled.

The key to KERT exhibiting the comparability property is representing the random event et(p) =‘seeing a phrase

p in a random document with topic t’. With this definition, the events of seeing n-grams of various lengths in different

documents are no longer mutually exclusive, and therefore the probabilities no longer need to sum up to 1. In order

to do this, we must therefore first discover the phrase ‘p’ and then calculate et(p) =. There are two ways to discover

keyphrases: either extract them from the text (as sequences of words which actually occur in the text), or to automat-

ically construct them [6], an approach which is regarded as both more intelligent and more difficult [8, 16]. We must

therefore clearly define our process of keyphrase discovery.

Like [72], our framework focuses on constructing topics from a collection of short documents. There are many

cases where the full text of a document collection is not available, or is too noisy, for the desired task of topic discovery

from the collection. The documents may also be a mix of multiple topics, in spite of their short length. In this work

we primarily evaluate our performance on two collections of scientific paper titles, which fit this criteria well. While

our framework could technically be applied to a collection of noisy short documents such as tweets, it would require

at least a reduction of noise in the documents as a pre-processing step in order to perform well, and this is out of the

scope of this work

When working with a short document, extracting phrases directly from the text is quite limiting as this approach

is too sensitive to the caprices of various writing styles. For instance, consider that two computer science papers titles,

one containing mining frequent patterns and the other containing frequent pattern mining, are clearly discussing the

same topic, and should be treated as such. A keyphrase may also be separated by other words: a document containing

mining top- k frequent closed patterns also contains the topic of frequent pattern mining, in addition to incorporating

the secondary topics of top-k frequent patterns, and closed patterns. Therefore, we define a phrase to be an order-free

set of words appearing in the same document and must construct our phrases.4

Definition 1 A phrase p with length n is defined as an order-free set of n words appearing in the same document.

Definition 2 A topical keyphrase p with length n belonging to topic t is defined as an order-free set of n words

appearing in the same document where each word in the set is assigned to topic t.

We are interested particularly in constructing topical keyphrases, which are phrases whose words all belong to the

same topic. Therefore, before we are able to construct these topical keyphrases, we must first assign every word in

every document to a topic. Algorithms that solve traditional topic modeling problems such as LDA [7] are particularly

4This is a simple way of saying that words may belong to the same phrase if they are colocated within the same window, and setting window size to be the entire
document. This is a reasonable thing to do when working with short documents such as scientific paper titles. In the next chapter we explore how to adapt KERT to
longer documents.
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well suited to this task precisely because they provide these topic assigments, in addition to estimating the topic

distributions. They are also widely used and well-understood, and can therefore be easily incorporated into our

framework for the purpose of assigning words to topics.

Moving backwards through the above overview, our steps for topical keyphrase generation and ranking are there-

fore as follows:

Step 1. Given a collection of short texts, cluster words in the dataset into topics, using an appropriate unigram-

generating topic model method.

Step 2. Construct candidate keyphrases for each topic according to the word topic assignments specified by the

topic model output.

Step 3. Rank the keyphrases in each topic t ∈ 1, . . . , k according to a well-defined ranking function.

In the following sections we detail the methodology for each of these steps.

3.2.2 Clustering Words using Topic Modeling

The first step of KERT is to cluster every unigram in every document to a topic. LDA [7] and its extensions have been

shown to be effective for modeling textual documents. In this chapter we specifically work with one modification of the

LDA [7] model, bLDA, which includes an additional background topic z = 0. This allows us to relax the assumption,

previously introduced in Section 3.2.1 that every word is informative, and allow to relegate uninformative unigrams

to a background topic, which effectively removes them from further consideration by KERT. At the same time, using

the relatively simple model of bLDA rather than a more specialized model allows us to focus on the performance of

the mining and ranking steps of KERT, which comprise our main contributions, rather than the unigram clustering

step. However, our framework can easily incorporate the output of many topic models, such as PLSA [29], LDA [7],

PY [56] and SAGE [19].

As an example, Table 3.1 shows the outputs of LDA and bLDA on the DBLP dataset, mentioned in Section 3.1.

The topical quality of unigrams generated by LDA and bLDA appear comparable, though bLDA is better at filtering

out common, background words which should not belong to any topic. In the rest of this chapter, we refer to bLDA as

the topic model component of our framework.

bLDA models each document by a mixture of the foreground topics z = 1, . . . , k and the background topic. For

each word in a document, we decide if it belongs to the background topic or one of the foreground topics, and then

choose the word from the appropriate distribution.

Formally, let φt denote the word distribution for topic t = 0, . . . , k. Let θd be the topic distribution of document d.

Let λ denote a Bernoulli distribution that chooses between the background topic and foreground topics. The generative

process is as follows:
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Table 3.1: Outputs of LDA and bLDA on the DBLP dataset, T=5.

(a) LDA. Top unigrams for each topic

T1 T2 T3 T4 T5

data web data learning model
mining information query knowledge models
clustering search database approach text
algorithm retrieval systems networks language
efficient system databases reasoning semantic

(b) bLDA. Top unigrams for each topic

T1 T2 T3 T4 T5

data information system learning model
mining web database classification knowledge
efficient search systems models language
queries retrieval distributed selection reasoning
query text management algorithm logic

1. Draw φt ∼ Dir(β), for t = 0, . . . , k.

2. For each document d ∈ D,

(a) draw θd ∼ Dir(α).

(b) for each word position i in d

i. draw yd,i ∼ Bernoulli(λ)

ii. if yd,i = 0, draw wd,i ∼Multi(φ0), otherwise

A. draw topic z ∼Multi(θd)

B. draw wd,i ∼Multi(φz)

where α and β are Dirichlet prior parameters for θ and φ.

We use a collapsed Gibbs sampling method for model inference. We iteratively sample the topic assignment

zd,i for every word occurrence wd,i in each document d until convergence. In traditional topic modeling tasks, the

sampled topic assignments are mainly used to estimate the topic distribution φz . In our case, we are more interested in

the topic assignments for the words in each document, because these values are the foundation of our topical keyphrase

generation step, as described in the next section. We use the maximum a posteriori (MAP) principle to label each word

occurrence: zd,i = arg maxzd,i=0,...,k P (zd,i|W ).
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3.2.3 Candidate Keyphrase Generation

As described in Section 3.2.1, we define a topical keyphrase to be an order-free set of words appearing in the same

document and belonging to the same topic. After the clustering step described in Section 3.2.2 is completed, each

word wd,i in each document d has a topic label zd,i ∈ {0, . . . , k}. If a set of words in a document d are assigned a

common foreground topic t > 0, these words may comprise a topical phrase in t (e.g. {‘frequent’,‘pattern’,‘mining’}

in the topic of ‘Data Mining’). If this set occurs in many documents with the topic label t, it is likely to be a good

candidate keyphrase for that topic.

We use frequent pattern mining approaches to mine the candidate topical phrases. For each topic t, we construct

a topic-t word set ptd = {wd,i|zd,i = t} consisting of the words with the topic label t for each document d. We

unite all the topic-t word sets into the topic-t set Dt = {d|ptd 6= ∅}. We may then mine frequent word sets from

ptDt
= {ptd|d ∈ Dt} using any efficient pattern mining algorithm, such as FP-growth [27]. We require a good topical

keyphrase to have enough topical support ft(p) > µ in order to filter out some coincidental co-occurrences (where

ft(p) denotes the frequency of the word set p in topic t).

We thus define a candidate topical keyphrase for topic t to be a set of words p = {w1 . . . wn} which are simulta-

neously labeled with topic t in at least µ documents, as discovered by the frequent pattern mining step. We then move

on to ranking the candidate topical keyphrases within each topic.

3.2.4 Ranking Keyphrases for Topic Representation

Our goal is to construct a ranking function to evaluate the quality of topical keyphrases. Such a ranking function

must successfully represent human intuition for judging what constitutes a high quality topical keyphrase. We now

present the characteristics that such a ranking function should have, together with the criteria that represent these

characteristics. As a running example, consider constructing and ranking keyphrases for topics in Computer Science.

Characteristic 1 A representative keyphrase for a topic should cover many documents within that topic.

Criterion 1 Coverage: Coverage, which may be referred to by other names such as frequency, or importance, is

the most basic criteria, required by every ranking function that tackles this same problem. Example: ‘informa-

tion retrieval’ has better coverage than ‘cross-language information retrieval’ in the Information Retrieval topic.

A keyphrase that is not frequent in a topic should never be highly ranked as being representative of that topic, regard-

less of its length, or its value according to any other criteria. This further suggests that the combined ranking function

should be constructed in such a way that a topical keyphrase with low coverage is guaranteed to have a lower rank.

Characteristic 2 A keyphrase should rank high in a topic if it is representative of that one particular topic, and is not

representative of other topics, thus helping to distinguish between topics.
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Criterion 2 Purity: A keyphrase is pure in a topic if it is only frequent in documents belonging to that topic and not

frequent in documents within other topics. Example: ‘query processing’ is more pure than ‘query’ in the Database

topic. Like Coverage, some version of this criterion is also present in most ranking functions, though it might be

referred by other names, such as ‘informativeness’ [65] or ‘relevance’ [72].

Characteristic 3 Since a keyphrase may consist of more than a single word, it must in some sense be a ‘real’ phrase

that may be interpreted by a person, and not a random set of words.

Criterion 3 Phraseness: Since KERT constructs phrases as word sets, this criterion evaluates the candidate topical

keyphrases discovered in the previous step, somewhat following the intuition in [65]. A group of words should be

combined together as a keyphrase if they co-occur significantly more often than the expected chance co-occurrence

frequency, given that each term in the phrase occurs independently. Example: ‘active learning’ is a better phrase

than ‘learning classification’ in the Machine Learning topic, since the latter simply combines two unigrams which are

frequent in the topic. It is of course possible for both a unigram, and a word set containing that unigram to both be

reasonable topical keyphrases, for example as with ‘learning’ and ‘reinforcement learning’ for the topic of Machine

Learning.

Criterion 4 Completeness: A keyphrase is not complete if it is a subset of a longer keyphrase, in the sense that it

rarely occurs in a document without the presence of the longer keyphrase. Example: ‘support vector machines’ is

a complete phrase, whereas ‘vector machines’ is not because ‘vector machines’ is almost always accompanied by

‘support’.

The combination of Phraseness and Completeness take the place of other NLP criteria that have been used by

approaches which perform phrase extraction rather than phrase construction, such as part-of-speech tagging (e.g. is

the phrase a noun group? [41, 42]) or suffix sequences [54]. The Phraseness and Completeteness ranking criteria

together embody the characteristic of a phrase having ‘semantic coherence’: being ‘understandable’ to people [41]

or having ‘term cohesion’ [13]. We also do not go the route of evaluating this characteristic by calculating semantic

relatedness between words, which has been used in other approaches using knowledge bases such as Wikipedia [41].

This is because we wish to avoid relying on external information which may possibly be unavailable, or not relevant

for a particular dataset, for instance if the dataset is domain-specific.

The step of generating candidate topical keyphrases allows us to represent the random event et(p) = ‘seeing a

phrase p in a random document with topic t.’ The KERT algorithm therefore exhibits the comparability property

and is able to directly compare phrases of any length, according to the ranking criteria. Formally, the probability

of et(p) is defined to be P (et(p)) = ft(p)
|Dt| . In the subsequent sections we define our measures representing the 4

criteria of coverage, purity, phraseness, and completeness using quantities related to this probability. Because we
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work with relatively short documents, which we assume to be uniformly informative, we do not consider criteria

based on document structure, or the location of the phrase in the document.

Coverage

A representative keyphrase for a topic should cover many documents within that topic. For example, ‘information

retrieval’ has better coverage than ‘cross-language information retrieval’ in the topic of Information Retrieval. We

directly quantify the coverage measure of a phrase as the probability of seeing a phrase in a random topic-t word set

ptd ∈ Dt:

πcovt (p) = P (et(p)) =
ft(p)

|Dt|
(3.1)

Purity

A phrase is pure in topic t if it is only frequent in documents about topic t and not frequent in documents about other

topics. For example, ‘query processing’ is a more pure keyphrase than ‘query’ in the Databases topic.

We measure the purity of a keyphrase by comparing the probability of seeing a phrase in the topic-t collection

of word sets and the probability of seeing it in any other topic-t′ collection (t′ = 0, 1, . . . , k, t′ 6= t). A reference

collectionDt,t′ = Dt∪Dt′ is a mix of topic-t and topic-t′ documents. If there exists a topic t′ such that the probability

of et,t′(p) =‘seeing a phrase p in a reference collection Dt,t′ ’ is similar, or even larger than the probability of seeing

p in Dt, the phrase p indicates confusion about topic t and t′. The purity of a keyphrase compares the probability of

seeing it in the topic-t collection and the maximal probability of seeing it in any reference collection:

πpurt (p) = log
P (et(p))

maxt′ P (et,t′(p))
(3.2)

= log
ft(p)

|Dt|
− log max

t′

ft(p) + ft′(p)

|Dt,t′ |

Phraseness

A group of words should be grouped into a phrase if they co-occur significantly more frequently than the expected co-

occurrence frequency given that each word in the phrase occurs independently. For example, while ‘active learning’ is

a good keyphrase in the Machine Learning topics, ‘learning classification’ is not, since the latter two words co-occur

only because both of them are popular in the topic.
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We therefore compare the probability of seeing a phrase p = {w1 . . . wn} and seeing the n words w1 . . . wn

independently in topic-t documents:

πphrt (p) = log
P (et(p))∏

w∈p P (et(w))
(3.3)

= log
ft(p)

|Dt|
−
∑
w∈p

log
ft(w)

|Dt|

Completeness

A phrase p is not complete if a longer phrase p′ that contains p usually co-occurs with p. For example, while ‘support

vector machines’ is a complete phrase, ‘vector machines’ is not, as ‘support’ nearly always accompanies ‘vector

machines.’

We thus measure the completeness of a phrase p by examining the conditional probability of observing p′ given p

in a topic-t document:

πcomt (p) = 1−max
p′%p

P (et(p
′)|et(p)) (3.4)

= 1−max
w

P (et(p ∪ {w})|et(p))

= 1− maxw ft(p ∪ {w})
ft(p)

Keyphrase Topical Quality Ranking Function

We can combine these 4 measures into a comprehensive function representing the quality of a topical keyphrase by

viewing them within an information theoretic framework. As described above, the coverage criterion is in some

sense the most important, since a keyphrase with low coverage will be necessarily of low quality, regardless of its

performance according to the other criteria. We can enforce this by representing the relationships between coverage,

phraseness, and purity using two pointwise Kullback-Leibler(KL)-divergence metrics.

Pointwise KL-divergence is a distance measure between two probabilities that takes the absolute probability into

consideration, and is more robust than pointwise mutual information when the relative difference between probabilities

need to be supported by sufficiently high absolute probability.5 The product of coverage and purity, πcovt (p)πpurt (p) =

P (et(p)) log P (et(p))
P (et,t∗ (p))

is equal to the pointwise KL-divergence between the probabilities of et(p) and et,t∗(p). Like-

wise, the product of coverage and phraseness, πcovt (p)πphrt (p) is equivalent to the pointwise KL-divergence between

the probability of et(p) under different independence assumptions. We combine these two metrics with a weighted

5Note that Tomokiyo et al. [65] uses KL-divergence metrics to derive their ranking function as well, but they require an annotated foreground corpus and a
background corpus as input. Furthermore, they consider language models only for consecutive ngrams and do not exhibit the comparability property. So their ranking
function behaves quite differently from ours.
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summation, and implement the completeness criterion as a filtering condition to remove incomplete phrases:

Qualityt(p) =


0 πcomt ≤ γ

πcovt [(1− ω)πpurt + ωπphrt ](p) o.w.
(3.5)

Input: Document collection D, topic number K, parameters γ, ω, µ
Output: Topics, represented as ranked lists of mixed-length phrases

Using a unigram-generating topic model, label each word wd in each document d ∈ D with a topic label t,
t ∈ 1 . . .K

foreach topic t do
Construct topic-t word sets ptd = {wd,i|zd,i = t} for each d
Unite all topic-t word sets into topic-t set Dt = {d|ptd 6= ∅}
foreach word set ptd|d ∈ Dt do

if ft(p) > µ then
p is a candidate topical keyphrase for topic t

end
end

end

foreach topic t do
foreach keyphrase p do

if πcomt > γ then
Qualityt(p) = πcovt [(1− ω)πpurt + ωπphrt ](p)

else
Qualityt(p) = 0

end
end
Sort keyphrases p by Qualityt(p) in descending order

end
Algorithm 1: The KERT Algorithm

Here, γ ∈ [0, 1] controls how aggressively we prune incomplete phrases. γ = 0 corresponds to ignoring the

completeness criterion and retaining all closed phrases, where no supersets have the same topical support. As γ

approaches 1, more phrases will be filtered and eventually only maximal phrases (no supersets are sufficiently frequent)

will remain. The other three criteria rank keyphrases that pass the completeness filter.

Although Qualityt(p) is a combination of two metrics, the coverage criterion is a factor in both. This reflects

the fact that when P (et(p)) is small, phrase p has low support, and thus the estimates of purity and phraseness will

be unreliable and their role should be limited. When P (et(p)) is large, phrase p has high support, and magnifies the

cumulative effect (positive or negative) of the purity and phraseness criteria.

The relative weights of the purity and phraseness criteria are controlled by ω ∈ [0, 1]. Both measures are log

ratios on comparable scales, and can thus be balanced by a weighted summation. As ω increases, we expect more

topic-independent, but common phrases to be ranked higher.
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For each topic t, we construct a topic-t word set ptd = {wd,i|zd,i = t} consisting of the words with the topic label

t for each document d. We unite all the topic-t word sets into the topic-t set Dt = {d|ptd 6= ∅}. We may then mine

frequent word sets from ptDt
= {ptd|d ∈ Dt}

Table 3.2: Top 10 ranked keyphrases in the Machine Learning topic by different methods.

Method Top 10 Topical Keyphrases

kpRelInt* learning / classification / selection / models / algorithm / feature / decision / bayesian / trees /
problem

kpRel learning / classification / learning classification / selection / selection learning / feature / decision
/ bayesian / feature learning / trees

KERT–cov effective / text / probabilistic / identification / mapping / task / planning / set / subspace / online

KERT–pur

support vector machines / feature selection / reinforcement learning / conditional random fields
/ constraint satisfaction / decision trees / dimensionality reduction / constraint satisfaction prob-
lems / matrix factorization / hidden markov models

KERT–phr
learning / classification / selection / feature / decision / bayesian / trees / problem / reinforcement
learning / constraint

KERT–com
learning / support vector machines / support vector / reinforcement learning / feature selection /
conditional random fields / vector machines/ classification / support machines / decision trees

KERT
learning / support vector machines / reinforcement learning / feature selection / conditional ran-
dom fields / classification / decision trees / constraint satisfaction / dimensionality reduction /
matrix factorization

3.3 Experiments

3.3.1 Judging Topical Keyphrase Quality

In our first set of experiments, we use the DBLP dataset - a collection of paper titles in Computer Science - to evaluate

the ability of our method to construct topical keyphrases that appear to be high quality to human judges, via a user

study. The titles were minimally pre-processed by removing all stopwords, resulting in 33,313 documents consisting

of 18,598 unique words. We first describe the methods we used for comparison, and then present a sample of the

keyphrases actually generated by these methods and encountered by participants in the user study. We then explain

the details of our user study, and present quantitative results.

Ranking Methods for Comparison

We use bLDA, introduced in Section 3.2.2, to perform the word clustering step and create input for all the methods

that we compare. We resort to a Newton-Raphson iteration method [50] to learn the hyperparameters, and empirically
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set λ = 0.1, which yields coherent results for our dataset.6

To evaluate the performance of KERT, we implemented several variations of the function, as well as two baseline

functions. The baselines come from Zhao et al [72], who focus on topical keyphrase extraction in microblogs, but

claim that their method can be used for other text collections. We implement their two best performing methods:

kpRelInt* and kpRel.7 We also construct variations of KERT where the keyphrase extraction steps are identical, but

each of the four ranking criteria is ignored in turn. We refer to these versions as KERT–cov, KERT–pur, KERT–phr, and

KERT–com.

These variations nicely represent the possible settings for the parameters γ and ω, which are described in Sec-

tion 3.2.4. In KERT we set γ = 0.5 and ω = 0.5. KERT–com sets γ = 0 to demonstrate what happens when we

retain all closed phrases. As γ approaches 1, more phrases will be filtered but a very small number of maximal phrases

(no supersets are frequent) will not be. KERT–phr sets ω = 0 and KERT–pur sets ω = 1, to demonstrate the effect of

ignoring phraseness for the sake of maximizing purity, and ignoring purity to optimize for phraseness, respectively.

For Step 2 of every KERT variation, we set µ = 5.

Qualitative Results

Table 3.2 shows the top 10 ranked topical keyphrases generated by each method for the topic of Machine Learning.

kpRel and kpRelInt* yield very similar results, both clearly favoring unigrams. However, kpRel also ranks several

keyphrases highly which are not very meaningful, such as ‘learning classification’ and ‘selection learning.’ Removing

coverage from our ranking function yields the worst results, confirming the intuition that a high quality keyphrase

must at minimum have good coverage. Without purity, the function favors bigrams and trigrams that all seem to be

meaningful, although several high quality unigrams such as ‘learning’ and ‘classification’ no longer appear. Removing

phraseness, in contrast, yields meaningful unigrams but very few bigrams, and looks quite similar to the kpRelInt*

baseline. Finally, without completeness, phrases such as ‘support vector’ and ‘vector machines’ are improperly highly

ranked, as both are sub-phrases of the high quality trigram ‘support vector machines.’

User Study and Quantitative Results

To quantitatively measure keyphrase quality, we invited people to judge the generated topical keyphrases generated

by the different methods. Since the DBLP dataset generates topics in Computer Science, we recruited 10 Computer

Science graduate students - who could thus be considered to be very knowledgeable judges in this domain - for a user

study.
6The learned α = 1.0 is smaller than the typical setting due to the nature of our short text, and β = 0.07 is larger because in our dataset, different topics often

share the same words.
7Their main ranking function kpRelInt considers the heuristics of phrase interestingness and relevance. As their interestingness measure is represented by re-Tweets,

a concept that is not appropriate to our dataset, we reimplement the interestingness measure to be the relative frequency of the phrase in the dataset, and we therefore
refer to our reimplementation as kpRelInt*. kpRel considers only the relevance heuristic.
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Table 3.3: nKQM@K (methods ordered by performance)

Method nKQM@5 nKQM@10 nKQM@20

KERT–cov 0.2605 0.2701 0.2448
kpRelInt* 0.3521 0.3730 0.3288
KERT–phr 0.3632 0.3616 0.3278
kpRel 0.3892 0.4030 0.3767
KERT–com 0.5124 0.4932 0.4338
KERT 0.5198 0.4962 0.4393
KERT–pur 0.5832 0.5642 0.5144

We generated five topics from the DBLP dataset. As can be seen from the bLDA output in Section 3.2.2, Topic 5 is

very mixed and difficult to interpret as representing just one research area. We discarded it, leaving four topics which

are clearly interpretable as Machine Learning, Databases, Data Mining, and Information Retrieval. For each of the

four topics, we retrieved the top 20 ranked keyphrases by each method. These keyphrases were gathered together per

topic and presented in random order. Users were asked to evaluate the quality of each keyphrase on a 5 point Likert

scale. The complete set of instructions for the user study can be found in Appendix C.

To measure the performance of each method given the user study results, we adapted the nKQM@K measure

(normalized keyphrase quality measure for top-K phrases) from [72], which is itself a version of the nDCG metric

from information retrieval [32]. We define nKQM@K for a method M using the top-K generated keyphrases:

nKQM@K =
1

T

T∑
t=1

∑K
j=1

scoreaw(Mt,j)
log2(j+1)

IdealScoreK

Here T is the number of topics, and Mt,j refers to the jth keyphrase generated by method M for topic t. Unlike

in [72], we have more than 2 judges, so we define scoreaw as the agreement-weighted average score for the Mt,j

keyphrase, which is the mean of the judges’ score multiplied by the weighted Cohen’s κ [15]. This gives a higher

value to a keyphrase with scores of (3,3,3) than to one with scores of (1,3,5), though the average score is identical.

Finally, IdealScoreK is calculated using the scores of the top K keyphrases out of all judged keyphrases.

Table 3.3 compares the performance across different methods.8 The top performances are clearly variations of

KERT with different parameter settings. As expected, KERT–cov exhibits the worst performance. The baselines per-

form slightly better, and it is interesting to note that kpRel, which is smoothed purity, performs better than kpRelInt*,

and even slightly better than KERT–phr. This is because kpRelInt* adds in a measure of overall keyphrase coverage in

the entire collection, which hurts rather than helps for this task. Removing completeness appears to have a very small

negative effect, and we hypothesize this is because high-ranked incomplete keyphrases are relatively rare, though very

8Although we cannot directly evaluate which differences between the nKQM values are statistically significant, we examined the differences between the distribu-
tions of mean judge scores. We found, for example, that the preference for phrases generated by KERT–pur was statistically significant, whereas the difference between
KERT and KERT-com was not.
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obvious when they do occur (e.g. ‘vector machines’). KERT–pur performs the best - which may reflect human bias

towards longer phrases - with an improvement of at least 50% over the kpRelInt* baseline for all reported values of K.

3.3.2 Maximizing Mutual Information

In order to perform a quantitative evaluation, we use a dataset which, unlike the DBLP collection, has been labeled.

In the arXiv dataset, each physics paper title is labeled by its authors as belonging to the subfield of Optics, Fluid

Dynamics, Atomic Physics, Instrumentation and Detectors, or Plasma Physics. We minimally pre-processed the

titles by removing all stopwords, resulting in 9,722 titles evenly sampled from the specified 5 physics subfields, and

consisting of 9,648 unique words. Since the titles are labeled, we can explore which method maximizes the mutual

information between phrase-represented topics and titles. As the collection has 5 categories, we set T=5.

For each method, we do multiple runs for various values of K (the number of top-ranked phrases per topic con-

sidered), and calculate the mutual information MIK for that method as a function of K. To calculate MIK , we label

each of the top K phrases in every topic with the topic in which it is ranked highest. We then check each paper title

to see if it contains any of these top phrases. If so, we update the number of events “seeing a topic t and category c”

for t = 1 . . . T , with the averaged count for all those labeled phrases contained in the title; otherwise we update the

number of events “seeing a topic t and category c” for t = 1 . . . T uniformly, where c is the Primary Category label

for the paper title in consideration. Finally, we compute mutual information at K:

MIK =
∑
t,c

p(t, c) log2
p(t, c)

p(t)p(c)
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Figure 3.1: Mutual Information at K (MIK) for various K. Methods in legend are ordered by performance, high to low.
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We compare the baselines (kpRelInt* and kpRel), KERT, and variations of KERT where only coverage (KERTcov),

only purity (KERTpur), and only coverage and purity (KERTcov+pur) are used in the ranking function. We use the output

of bLDA with the same parameter settings as specified in Section 3.3.1. Figure 5.3 shows MIK for each method for

a range of K.

It is clear that for MIK, coverage is more important than purity, since KERTpur is by far the worst performer. Both

baselines perform nearly as well as KERTcov, and all are comfortably beaten by KERTcov+pur (> 20% improvement

for K between 100 and 600), which uses our coverage and purity measure. It is interesting to note that adding

in the phraseness and completeness measures yields no improvement in MIK. However, the experiments with the

DBLP dataset demonstrate that these measures - particularly phraseness - are very helpful in the eyes of expert human

judges. In contrast, while MIK is definitely improved with the addition of the purity measure, people seem to prefer

that this metric not affect the keyphrase ranking. Although we outperform other approaches in both evaluations, these

observations show interesting differences between theory-based and human-centric evaluation metrics.
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Chapter 4

A New Domain, A New Dataset, A New
Evaluation

4.1 Introduction

There are several natural extensions to the KERT framework, which we present in this chapter. First, we would like to

examine how well KERT works with long text. Second, it would be beneficial to leave the specific arena of scientific

literature. Finally, one of the goals of the work presented in this dissertation is to assist human-centric applications.

Therefore it is necessary to find such an application and demonstrate the usefulness of KERT for accomplishing it.

Goodreads1 is a ‘social cataloguing’ website which allows users to search, organize, and review Goodreads’

database of books (other social cataloguing sites include Last.fm and Flixter.) The nice thing about using ‘social

cataloguing’ data is that there is an explicit need for the task of categorization. In the case of Goodreads, books are

categorized as belonging to specific genres, by members of Goodreads (For an example of a Goodreads book together

with its description, see Figure 4.1.) Genre categorization is itself a subjective task, since each person decides indi-

vidually which genre a book does or does not belong to. Many genre categorizations spawn active debates, such as

whether a book belongs to the genres of science fiction or fantasy (or both - or neither.)

FREE and DISCOUNT Kindle book
deals!
Daily free and discounted Kindle ebook
deals delivered by email every single day!
Romance, Mystery/Thriller, Religious
Fiction, and more!
www.ebookarrow.com

Shadow of Silence
A mesmerizing conclusion keeps the
reader glued to the page until the final
word.
www.goodreads.com
12 five star ratings »

more links...

more details... edit details

Get a copy: Amazon online stores ▼ Libraries More…

Mary, Mary (Alex Cross #11)
by James Patterson (Goodreads Author)

FBI Agent Alex Cross is on vacation with his family in Disneyland when
he gets a call from the Director. A well-known actress was shot outside
her home in Beverly Hills. Shortly afterward, an editor for the Los
Angeles Times receives an e-mail describing the murder in vivid details.
Alex quickly learns that this is not an isolated incident. The killer, known
as Mary Smith, has done this before and plans to kill again.

Right from the beginning, this case is like nothing Alex has ever been
confronted with before. Is this the plan of an obsessed fan or a spurned
actor, or is it part of something much more frightening? Now members of
Hollywood's A-list fear they're next on Mary's list, and the case grows by
blockbuster proportions as the LAPD and FBI scramble to find a pattern
before Mary can send one more chilling update.(less)

Paperback, 448 pages
Published October 1st 2006 by Vision (first published January 1st 2005)

sponsored links

To see what your friends thought of this book, please sign up.

Mystery 316 users

Thriller 138 users

Mystery > Crime 120 users

Suspense 72 users

Thriller > Mystery Thriller 58 users

Mystery > Detective 29 users

Mystery > Murder Mystery 28 users

Adult Fiction 14 users

Adult 12 users

Novels 8 users

See top shelves...

Recommend it  |  Stats  |  Recent status updates

Join GoodreadsDiscover new books on Goodreads
Sign in to see your friends' reviews:

Want to Read
Rate this book

 3.89  ·   rating details  ·  28,015 ratings  ·  792 reviews

Friend Reviews

Lists with This Book

Readers Also Enjoyed

Genres

About James Patterson

register tour sign inTitle / Author / ISBN Home My Books Friends Recommendations  Explore  

Figure 4.1: Example of a Goodreads book, together with its description.

1http://www.goodreads.com
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Generating topical phrases using books descriptions from Goodreads can therefore yield two natural evaluation

metrics. The first is akin to that studied in the previous chapter: How well does this set of phrases describe a particular

genre? The second is a new way of evaluating the success of the algorithm: How well does this set of phrases describe

a particular book? The idea here is that if a book is designated by many people as belonging to a particular genre, then

a high quality genre representation would allow a person to look at the book’s description and decide to also designate

the book with this genre. Thus, we are able to construct a classification task, with an existing gold standard (the genre

designations of books by the Goodreads community) in order to further evaluate KERT and compare it to existing

approaches.

In this chapter we demonstrate the robustness and flexibility of KERT by showing that it can be successfully

applied to a collection of longer texts, which are no longer limited to the scientific domain. We present a series of

experiments on a labeled dataset of book descriptions to evaluate the quality of automatically generated phrases as

representations of genres.

4.2 Adapting KERT for the Goodreads dataset

The KERT framework, as presented in the previous chapter, is as follows:

Step 1. Given a collection of short texts, cluster words in the dataset into topics, using an appropriate unigram-

generating topic model method.

Step 2. Construct candidate phrases for each topic according to the word topic assignments specified by the topic

model output.

Step 3. Rank the phrases in each topic t ∈ 1, . . . , k according to a well-defined ranking function.

The Goodreads dataset has several new characteristics that must be considered. The most important one for the

KERT framework is that the collection is now of medium-length texts, each text consisting of one or more descriptive

paragraphs, and therefore no longer falling under the category of short text. The domain is also no longer that of

scientific literature. Finally, this is a labeled dataset, as each book description is characterized as belonging to one or

more genres, and which can also serve as an additional source of information

4.2.1 Adapting the clustering step

Background LDA could serve very well for a dataset of long text. However, in this chapter we also seek to demonstrate

the ability of KERT to incorporate additional information if it is available. Labeled LDA (LLDA) [55] is a variation

of the well-know LDA topic model, with the additional ability to incorporate label information for text corpora. It is

particularly well suited to working with Goodreads data because each book in Goodreads is designated as belonging
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to genres by Goodreads members. Since the set of possible genres is relatively stable, a genre can therefore be treated

as a label for a book description. Since the framework of KERT is modular and flexible, we can easily use LLDA to

accomplish the first step, yielding word topic assignments.

multiple topics per document, it is not appropriate
for multi-labeled corpora because, as an unsuper-
vised model, it offers no obvious way of incorpo-
rating a supervised label set into its learning proce-
dure. In particular, LDA often learns some topics
that are hard to interpret, and the model provides
no tools for tuning the generated topics to suit an
end-use application, even when time and resources
exist to provide some document labels.

Several modifications of LDA to incorporate
supervision have been proposed in the literature.
Two such models, Supervised LDA (Blei and
McAuliffe, 2007) and DiscLDA (Lacoste-Julien
et al., 2008) are inappropriate for multiply labeled
corpora because they limit a document to being as-
sociated with only a single label. Supervised LDA
posits that a label is generated from each docu-
ment’s empirical topic mixture distribution. Dis-
cLDA associates a single categorical label variable
with each document and associates a topic mixture
with each label. A third model, MM-LDA (Ram-
age et al., 2009), is not constrained to one label
per document because it models each document as
a bag of words with a bag of labels, with topics for
each observation drawn from a shared topic dis-
tribution. But, like the other models, MM-LDA’s
learned topics do not correspond directly with the
label set. Consequently, these models fall short as
a solution to the credit attribution problem. Be-
cause labels have meaning to the people that as-
signed them, a simple solution to the credit attri-
bution problem is to assign a document’s words to
its labels rather than to a latent and possibly less
interpretable semantic space.

This paper presents Labeled LDA (L-LDA), a
generative model for multiply labeled corpora that
marries the multi-label supervision common to
modern text datasets with the word-assignment
ambiguity resolution of the LDA family of mod-
els. In contrast to standard LDA and its existing
supervised variants, our model associates each la-
bel with one topic in direct correspondence. In the
following section, L-LDA is shown to be a natu-
ral extension of both LDA (by incorporating su-
pervision) and Multinomial Naive Bayes (by in-
corporating a mixture model). We demonstrate
that L-LDA can go a long way toward solving the
credit attribution problem in multiply labeled doc-
uments with improved interpretability over LDA
(Section 4). We show that L-LDA’s credit attribu-
tion ability enables it to greatly outperform sup-

D

↵ ✓

� ⇤

Nzw w K

�

⌘

Figure 1: Graphical model of Labeled LDA: un-
like standard LDA, both the label set ⇤ as well as
the topic prior ↵ influence the topic mixture ✓.

port vector machines on a tag-driven snippet ex-
traction task on web pages from del.icio.us (Sec-
tion 6). And despite its generative semantics,
we show that Labeled LDA is competitive with
a strong baseline discriminative classifier on two
multi-label text classification tasks (Section 7).

2 Labeled LDA

Labeled LDA is a probabilistic graphical model
that describes a process for generating a labeled
document collection. Like Latent Dirichlet Allo-
cation, Labeled LDA models each document as a
mixture of underlying topics and generates each
word from one topic. Unlike LDA, L-LDA in-
corporates supervision by simply constraining the
topic model to use only those topics that corre-
spond to a document’s (observed) label set. The
model description that follows assumes the reader
is familiar with the basic LDA model (Blei et al.,
2003).

Let each document d be represented by a tu-
ple consisting of a list of word indices w(d) =
(w1, . . . , wNd

) and a list of binary topic pres-
ence/absence indicators ⇤(d) = (l1, . . . , lK)
where each wi 2 {1, . . . , V } and each lk 2 {0, 1}.
Here Nd is the document length, V is the vocabu-
lary size and K the total number of unique labels
in the corpus.

We set the number of topics in Labeled LDA to
be the number of unique labels K in the corpus.
The generative process for the algorithm is found
in Table 1. Steps 1 and 2—drawing the multi-
nomial topic distributions over vocabulary �k for
each topic k, from a Dirichlet prior ⌘—remain
the same as for traditional LDA (see (Blei et al.,
2003), page 4). The traditional LDA model then
draws a multinomial mixture distribution ✓(d) over
all K topics, for each document d, from a Dirichlet
prior ↵. However, we would like to restrict ✓(d) to
be defined only over the topics that correspond to

Figure 4.2: Graphical model of Labeled LDA. Unlike traditional LDA, the label set Λ influences the topic mixture θ,
in addition to the topic prior α .

Like traditional LDA, Labeled LDA models each document as a mixture of underlying topics with the caveat that

the topics for each document are constrained to be only those corresponding to the document’s label set. Formally, let

each document d with length N be represented by a tuple consisting of a list of word indices wd = (w1, . . . , wN ) and

a list of binary topic presence/absence indicators Λd = (l1, . . . , lK) where each lk ∈ 0, 1 and K the total number of

unique labels in the corpus, and thus also the number of topics.2

In contrast with the traditional LDA model which draws a multinomial mixture θd for every document d over all

K topics, LLDA restricts θd to be defined only over the topics that correspond to its labels Λd. Figure 4.2 presents the

plate notation. The generative process is as follows:

1. Draw βk ∼ Dir(η), for each topic k = 1, . . . ,K.

2. For each document d ∈ D,

(a) For each topic k = 1, . . . ,K.

i. Draw Λdk ∈ (0, 1) ∼ Bernoulli(Φk)

(b) Draw αd = Ld × α

(c) Draw θd ∼ Dir(αd)

(d) For each word position i in d

i. Draw topic zi ∼Multi(θd)

ii. Draw word wi ∼Multi(βzi)

2It is trivial to add a background topic as an aditional label present in each document, and we in fact do so, in order to improve phrase quality.
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where α and η are Dirichlet prior parameters. The document’s labels Λd are first generated, with Φk as the label

prior for topic k. The vector of these labels is then defined as λd = k|Λdk = 1. We can now construct Ld, the

document-specific label projection matrix of size Md ×K, where Md = |λd| as follows: For each row i ∈ 1, . . . ,Md

and column j ∈ 1, . . . ,K:

Ldij =

1 if λdi = j

0 otherwise
(4.1)

We now use Ld to project the parameter vector of the Dirichlet topic prior α to a lower dimension vector αd,

whose dimensions correspond to the topics represented by the document’s labels.

For example, suppose K = 4 and that a document d has labels given by Λd = 0, 1, 1, 0 which implies λd = 2, 3,

then Ld would be:

0 1 0 0

0 0 1 0


Then, θd is drawn from a Dirichlet distribution with the Dirichlet restricted to topics 2 and 3.3

We once again use the maximum a posteriori (MAP) principle to label each word occurrence and use that infor-

mation for the subsequent steps of KERT.

4.2.2 Adapting the phrase construction step

In the previous chapter, we worked with a dataset of short texts and were therefore able to use the entire document

as the window size when performing the second step - constructing candidate phrases. When the text is longer, using

the entire document is both prohibitive from a scalability standpoint, and incorrect from an interpretation standpoint.

Therefore, after the topic assignment step is complete, it is necessary to impose a window restriction on the phrase

construction process. A simple way to do this is to break each document into reasonably sized windows, effectively

turning the original collection of mid-length texts into a new collection of (many more) short texts. There is a range of

options for choosing such windows, and we discuss several variations later in this chapter. A reasonably conservative

option that we use on the Goodreads dataset, is to denote punctuation and stopwords as delimiters of breakpoints. For

example, the first sentence of the book shown in Figure 4.1, which reads, ‘FBI Agent Alex Cross is on vacation with

his family in Disneyland when he gets a call from the Director,’ would be broken into 6 short texts: {‘fbi agent alex

cross’, ‘vacation’, ‘family’, ‘disneyland’, ‘call’, ‘director’}. As each unigram would have a topic assignment from

step 1 of KERT, steps 2 and 3 can now proceed as described in the previous chapter, since the ranking step requires no

3Example adapted from [55]
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adaptation.

In this way, by choosing a different unigram-generating topic model, and by introducing the step of breaking the

text into windows, KERT is able to easily work with a new and very different dataset as compared to the collections

of scientific paper titles used in the previous chapter.

4.3 Experiments

4.3.1 Goodreads dataset

We crawled Goodreads for all books which have been labeled as belonging to a particular genre by at least 100 people,

and which had a description written in English. For each book, the title, author, and description was obtained. Each

book was also labeled as belonging to a genre if at least 100 users designated it as such. This process yielded a little

over 24,000 books.

The book descriptions were stemmed and lemmatized using the Python Natural Language ToolKit [4], and the

stopwords were removed. The result was a collection of medium-length texts, with an average length of 67 unigrams.

Each text also had one or more labels designating the genres the book belongs to, according to Goodreads members.

We conducted identical experiments on three datasets. For each dataset, we chose three genres, selected that

portion of our dataset consisting of books which have been labeled with one or more of these genres, and constructed

topical phrases to characterize each genre. The three genre groups chosen were:

• Humor, Thriller, Philosophy (HPT) (1,235 books). These genres were chosen because they have almost no

overlap (only 3 books belong to more than one genre), and should not be too difficult to distinguish.

• Children, Young Adult, New Adult (CYN) (3,384 books). These genres were chosen because they represent

an age progression of the reader. There is a respectable amount of overlap between the first two genres (272

books designated as both Children’s and Young Adult), and the last two genres (55 books designated as both

Young Adult and New Adult), but none between the first and last genre.

• History, Philosophy, Religion (HPR) (1,231 books). These genres were chosen because they are reasonably

related, with some overlap between each pair of genres (there are 72 books designated as belonging to more

than one genre)

Choosing three genres for each experiment (rather than two, four, etc.) such that the sizes of each of the three

datasets are comparable allows us to keep algorithm parameters consistent throughout the three experiments, and

demonstrate robustness against which particular genres are chosen. Like the setting for the experiments on short texts
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in the previous chapter, we set α = 10, a bit larger than the typical setting, to reflect the fact that each book description

is likely to belong to just a subset of the genres, not all of them. We similarly set η = 0.1, a bit larger than the typical

setting, because different genres may share the same words. We set µ = 10,4 γ = 0.9, and ω = 0.2, though we

anecdotally note that the results do not change too much with varying the latter two parameters. We limit the length

of possible phrases to 5.

To perform the experiments we used Amazon Mechanical Turk5, a crowdsource service that provides a platform

for human workers to perform intelligence tasks for remuneration. We required that participants completing our

study be able to speak English, have already performed over 1,000 other tasks on Mechanical Turk, and have a 95%

success rate (reflecting the rate of tasks completed correctly, as judged by those setting the tasks.) The complete set of

instructions for both tasks can be found in Appendix B.

We compared the efficacy of KERT with PDLDA [39] and Turbo Topics [6], two phrase-generating approaches

that are meant to perform well on longer documents, such as news articles, and which should therefore be well-suited

to handling the Goodreads dataset. For each experiment, we use each algorithm to generate three topics, and then

manually label each topic with the genre that it best fits, for evaluation purposes. So, for instance, for the experiment

on the HPT dataset, we match up one topic to represent the Humor genre, one topic for the Thriller genre, and one for

the Philosophy genre. However, study participants never see these manually created genre labels, and are only shown

the top phrases for each generated topic.6

4.3.2 Qualitative Results

Tables 4.1, 4.2, and 4.3 show the top 15 phrases generated by KERT, Turbo Topics, and PDLDA representing the

genres Humor, Thriller, and Philosophy. PDLDA finds a number of well-formed longer phrases (though the unigrams

are not at all descriptive), but the topics are fairly mixed, although these particular three genres are not very related.

Turbo Topics has only unigrams bubble up to the top, although the topic differentiation is pretty good. On the other

hand, KERT demonstrates both a clean differentiation of the different topics and an array of descriptive phrases,

including many authors and literary characters that are well-known in the given genre.

4.3.3 Genre Characterization Study

To mimic the first KERT study done on short text, participants were presented with a set of topical phrases asked

to rate how well each set describes a particular genre. So, for example, in the HPR experiment (Humor, Thriller,

4Recall that this is the minimum support parameter for the phrase construction step, which means that a phrase must exist in 10 windows, not in
10 descriptions in order to qualify.

5https://www.mturk.com
6As PDLDA separately generates lists of topical n-grams of each length, etc, we use the top 5 unigrams, top 5 bigrams, and top 5 trigrams.
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Table 4.1: Top 15 phrases generated by KERT representing the genres Humor, Thriller, and Philosophy

Philosophy Thriller Humor

twentieth century secret service agent stephanie plum bounty hunter
ayn rand serial killer ankh morpork

human nature dean koontz joe morelli
english translation alex cross dave barry
walter kaufmann mitch rapp bill bryson
michel foucault medical examiner bertie wooster

western philosophy fbi agent comic strip
moral philosophy jack reacher grandma mazur
marcus aurelius sara linton jasper fforde

originally publish jeffrey tolliver greg heffley
20th century united states terry pratchett

political philosophy homicide detective arthur dent
pure reason kay scarpetta scott pilgrim
major work james bond janet evanovich

philosophical work jane rizzoli laurie notaro

Table 4.2: Top 15 phrases generated by TurboTopics representing the genres Humor, Thriller, and Philosophy

Philosophy Thriller Humor

work year world
life murder man

reader secret life
human day time

philosophy death make
story call love
write killer thing
year woman turn

person begin family
history truth friend

question kill live
time force end
make case child
mind past good
show crime great

Philosophy), a participant would see the nine sets of topical phrases shown in Tables 4.1, 4.2, and 4.3 (with each

column shown independently), and would be asked to rate, on a 5 point Likert scale, how well each topical phrase

represents the ‘Humor’ genre.

For each of the three experiments, nine topical phrase groups were generated (since each experiment had three

genres). Each set of nine phrase groups was paired with one of the three genres. 20 people were asked to evaluate

each such combination. Therefore, this study generated a total of 1,620 data points for evaluation.
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Table 4.3: Top 15 phrases generated by PDLDA representing the genres Humor, Thriller, and Philosophy

Philosophy Thriller Humor

life life life
young woman united states serial killer
world war ii john stuart mill popular comic strip

find find work
jack reacher san francisco human nature

boston medical examiner secret service agent oliver wendell holmes
world time world

year ago stephanie plum bill bryson
wee free men camp green lake lazy sunday afternoon

man world philosophy
medical examiner alex cross ankh morpork

commander gray pierce alex cross series dr sara linton
time make make

grandma mazur small town twentieth century
beautiful young woman supreme court justice henry david thoreau

Table 4.4: Overall accuracy for Genre Characterization

Humor Children’s History
Philosophy Young Adult Philosophy
Thriller New Adult Religion

KERT 4.33 > 2.10†† 3.85 > 2.84†† 4.28 > 2.43††

PDLDA 2.65 ≈ 2.49 3.68 > 3.22∗∗ 2.82 ≈ 2.62
TurboTopics 3.77 > 2.27†† 3.55 > 3.20∗∗ 3.37 > 2.84∗∗∗

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

Evaluating overall accuracy

For each experiment, each algorithm was first evaluated on its overall accuracy. We compared the Likert score distri-

butions for the topical phrase groups whose genre matched the genre being queried, and the Likert score distributions

for the topical phrase groups whose genre did not match the genre being queried. For example, in the HPR experi-

ment, an algorithm’s overall accuracy compare the scores that the algorithm’s ‘Humor’ topical phrases earned when

asked how well these topical phrases describe the ‘Humor’ genre (as well as the algorithm’s ‘Thriller’ topical phrases

for the ‘Thriller’ genre, and ‘Philosophy’ topical phrases for the ‘Philosophy’ genre), against the scores that KERT’s

‘Thriller’ and ‘Philosophy’ topical phrases earned when asked how well these topical phrases describe the ‘Humor’

genre (and the same for the other two sets of combinations). If the algorithm performs well, the first set of scores

should have a high mean (> 3), representing the fact that they are a good, or very good match for the genre that they

are supposed to be describing. The second set of scores should have a low mean (≤ 3), representing the fact that they

are a neutral, bad, or very bad matches for the genres that they are not supposed to be describing. There should also

be a statistically significant difference between the two distributions, which we tested using Wilcoxon Rank Sum.
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Table 4.5: Inter-rater agreement for Genre Characterization (weighted κ)

Humor Children’s History
Philosophy Young Adult Philosophy
Thriller New Adult Religion

KERT 0.72 0.71 0.73
PDLDA 0.70 0.73 0.73
TurboTopics 0.75 0.72 0.74

Table 4.6: Pairwise accuracy for Humor, Philosophy, Thriller)

Humor Philosophy Thriller

KERT vs PDLDA 4.00 > 2.45∗∗∗ 4.70 > 2.40† 4.30 > 3.10∗∗∗

KERT vs TurboTopics 4.00 > 2.55† 4.70 ≈ 4.50 4.30 ≈ 4.25
PDLDA vs TurboTopics 2.45 ≈ 2.55 2.40 < 4.50† 3.10 < 4.25∗∗∗

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

Table 4.4 presents the results of this study. Similar to what we seen in the previous chapter, PDLDA generally

struggles to yield groups of phrases which clearly belong to a particular topic. KERT is able to clearly differentiate

between genres in all three experiments. TurboTopics suceeds in two out of three experiments, but the differences

between the ‘correct’ and ‘wrong’ distributions are less strong than with KERT.

Evaluating inter-rater agreement

We briefly report the inter-rater agreement for each experiment, calculated using weighted Cohen’s κ [15], as it is

well-suited to ordinal data. The κ value does not vary much, regardless of the algorithm or the genre, suggesting that

the observed variations in the data are not there due to, for example, there being significantly higher consensus for

KERT than for the other algorithms. The κ value remains around 0.70 - 0.75, which does reflect the subjectiveness

and noisiness of the task.

Evaluating pairwise accuracy

The second level of analysis directly compared the performances of the three algorithms on each genre, of each of the

three experiments, using a paired Wilcoxon Rank Sum text. Tables 4.6, 4.7, and 4.8 present the results of this analysis.

So, for example, the first cell of Table 4.6 shows that for the topical phrase sets which were intended to describe the

‘Humor’ genre, the mean score of KERT (4.00) is larger than the mean score of PDLDA (2.45), with the difference

between the two distributions being significant at p < 0.01.

In the HPT experiment, KERT is clearly more successful than PDLDA within all three genres. In the ‘Humor’

genre, KERT is better than TurboTopics, but the latter is equally good at representing the Philosophy and Thriller

genres. All of the algorithms struggle with the CYN experiment, with the only successes being KERT and TurboTopics
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Table 4.7: Pairwise accuracy for Children’s, Young Adult, New Adult)

Children’s Young Adult New Adult

KERT vs PDLDA 4.25 > 3.55∗∗ 3.60 ≈ 3.90 3.70 ≈ 3.60
KERT vs TurboTopics 4.25 ≈ 4.00 3.60 ≈ 3.40 3.70 ≈ 3.25
PDLDA vs TurboTopics 3.55 < 4.00∗ 3.90 ≈ 3.40 3.60 ≈ 3.25

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

Table 4.8: Pairwise accuracy for History, Philosophy, Religion)

History Philosophy Religion

KERT vs PDLDA 3.60 < 4.10∗ 4.65 > 2.15† 4.60 > 2.20†

KERT vs TurboTopics 3.60 ≈ 3.80 4.65 > 3.80∗∗∗ 4.60 > 2.50†

PDLDA vs TurboTopics 4.10 ≈ 3.80 2.15 < 3.80∗∗∗ 2.20 ≈ 2.50

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

both besting PDLDA in the Children’s genre. PDLDA scores a rare victory over KERT in the History genre of the

HPR experiment, but KERT is more successful than both PDLDA and TurboTopics in both of the other genres.

4.3.4 Book Characterization Study

For the second study, participants were presented with a set of topical phrases and asked to rate how well each set

describes a particular book. This is akin to labeling a book with appropriate genres. So, for example, in the first

experiment (Humor, Thriller, Philosophy), a participant would see the nine sets of topical phrases shown in Tables 4.1,

4.2, and 4.3 (with each column shown independently), and would be asked to rate, on a 5 point Likert scale, how well

each topical phrase represents a book description, such as the one shown in Figure 4.1.

For each of the three experiments, nine topical phrase groups were generated (since each experiment had three

genres). For each set of nine phrase groups, five books were selected for evaluation for each one of the three genres

(where each book was labeled with exactly one genre). 10 people were asked to evaluate each such combination.

Therefore, this study generated a total of 4,050 data points for evaluation.

Evaluating overall accuracy

For each experiment, each algorithm was once again first evaluated on its overall accuracy. We compared the Likert

score distributions for the topical phrase groups whose genre matched the genre of the presented book and the Likert

score distributions for the topical phrase groups whose genre did not match the genre of the presented book. For

example, in the HPR experiment, an algorithm’s overall accuracy compare the scores that the algorithm’s ‘Humor’

topical phrases earned when asked how well these topical phrases describe a book labeled as belonging to the ‘Humor’

genre (as well as the algorithm’s ‘Thriller’ topical phrases for ‘Thriller’ books, and ‘Philosophy’ topical phrases for
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Table 4.9: Overall accuracy for Book Characterization)

Humor Children’s History
Philosophy Young Adult Philosophy
Thriller New Adult Religion

KERT 3.53 > 2.09†† 3.93 > 1.87†† 3.99 > 1.88††

PDLDA 2.50 ≈ 2.42 2.11 > 2.28∗∗ 2.05 ≈ 2.04
TurboTopics 3.11 > 2.42†† 3.33 > 3.00∗∗ 3.30 > 2.75††

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

Table 4.10: Inter-rater agreement for Book Characterization (weighted κ)

Humor Children’s History
Philosophy Young Adult Philosophy
Thriller New Adult Religion

KERT 0.69 0.75 0.76
PDLDA 0.70 0.76 0.77
TurboTopics 0.71 0.75 0.74

‘Philosophy’ books), against the scores that KERT’s ‘Thriller’ and ‘Philosophy’ topical phrases earned when asked

how well these topical phrases describe ‘Humor’ books (and the same for the other two sets of combinations). If the

algorithm performs well, the first set of scores should have a high mean (> 3), representing the fact that they are a

good, or very good match for books belonging to the genre that they are supposed to be describing. The second set of

scores should have a low mean (≤ 3), representing the fact that they are a neutral, bad, or very bad matches for books

belonging to the genres that they are not supposed to be describing.

Table 4.4 presents the results of this study. Once again, PDLDA struggles to yield groups of phrases which clearly

belong to a particular topic. Both KERT and TurboTopics are able to clearly differentiate between genres in all three

experiments, but the differences between the ‘correct’ and ‘wrong’ distributions for KERT are consistently better than

those for TurboTopics. We also see that PDLDA is consistently either equal to or worse than TurboTopics.

Evaluating inter-rater agreement

We again briefly report the inter-rater agreement for each experiment, calculated using weighted Cohen’s κ [15].

Similar to the Genre Characterization study, the κ value does not vary much, and again remains around 0.69-0.76

regardless of the algorithm or the genre.

Evaluating pairwise accuracy

The second level of analysis once again directly compared the performances of the three algorithms on each genre, of

each of the three experiments, using a paired Wilcoxon Rank Sum text. Tables 4.6, 4.7, and 4.8 present the results of
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Table 4.11: Pairwise accuracy for Humor, Philosophy, Thriller)

Humor Philosophy Thriller

KERT vs PDLDA 3.04 > 2.44∗∗ 3.94 > 2.32† 3.60 > 2.74†

KERT vs TurboTopics 3.04 > 2.48∗ 3.94 > 3.56∗ 3.60 ≈ 3.28
PDLDA vs TurboTopics 2.44 ≈ 2.88 2.32 < 3.56† 2.74 < 3.28∗∗

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

Table 4.12: Pairwise accuracy for Children’s, Young Adult, New Adult)

Children’s Young Adult New Adult

KERT vs PDLDA 4.32 > 1.66†† 3.90 > 2.02†† 3.58 > 2.66†

KERT vs TurboTopics 4.32 > 3.38†† 3.90 > 3.28∗∗ 3.58 ≈ 3.34
PDLDA vs TurboTopics 1.66 < 3.38†† 2.02 < 3.28†† 2.66 < 3.34†

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001

this analysis. So, for example, the first cell of Table 4.6 shows that for the topical phrase sets which were intended

to describe the ‘Humor’ genre, the mean score of KERT on ‘Humor’ books (3.04) is larger than the mean score of

PDLDA (2.44), with the difference between the two distributions being significant at p < 0.05.

In the HPT experiment, KERT is more successful than PDLDA within all three genres, and better than TurboTopics

in all but ‘Thriller’. Given how much the algorithms struggled with the CYN experiment, it is very interesting to see

that for this second evaluation task, KERT is able to clearly best the other two algorithms in 5 out of 6 cases (it is

as successful as TurboTopics for the ‘New Adult’ genre). In the HPR experiment, KERT is decidedly bettern than

PDLDA (compare with the fact that in the first evaluation, PDLDA was better than KERT for the history genre), and

remains either better than or equal to TurboTopics. Finally, we again note that PDLDA is consistently either equal to

or worse than TurboTopics across all three experiments.

Characterizing Books Belonging to Multiple Genres

In the third experiment’s dataset (History, Philosophy, Religion), there is a substantial enough amount of books which

are labeled with more than one genre that we also ran an experiment seeing whether these books could be correctly

categorized. This is a more difficult problem. Table 4.14 presents the overall accuracy for each of the three algorithms.

Table 4.13: Pairwise accuracy for History, Philosophy, Religion)

History Philosophy Religion

KERT vs PDLDA 3.72 > 2.96† 4.10 > 1.64†† 4.16 > 1.56††

KERT vs TurboTopics 3.72 ≈ 3.48 4.10 > 3.90 4.16 > 2.52††

PDLDA vs TurboTopics 2.96 > 3.48∗∗∗ 1.64 < 3.90†† 1.56 < 2.52††

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01 † p < 0.001 † †p < 0.0001
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Table 4.14: Overall accuracy for book characterization for books with multiple labels)

History
Philosophy
Religion

KERT 2.96 > 2.28††

PDLDA 2.15 ≈ 2.11
TurboTopics 3.19 ≈ 3.27

† † p < 0.0001

KERT is the only algorithm to have a statistically significant difference between the two ‘correct’ and ‘incorrect’ score

distributions, although it struggles to have a sufficiently high mean for the ‘correct’ score distribution. However, this

task appears to be overall too noisy for human judgement

4.4 Scalability

In this section we examine the scalability of KERT, PDLDA, and Turbo Topics. Table 4.15 presents the runtime

of generating topical phrases for each of the three genre groups described in this chapter. Turbo Topic’s runtime is

clearly the worst, growing exponentially with the size of the dataset. PDLDA is the most efficient, but as the above

analysis showed, the generated results are generally unacceptably muddled. KERT’s runtime is not too much worse

than PDLDA, and significantly better than Turbo Topics. Over 99% of the runtime is devoted to the step of topic

assignment (running LLDA), but once that bottleneck is passed, the rest of the framework runs in 1 or 2 seconds.

Table 4.15: Comparing runtimes of KERT, PDLDA and Turbo Topics, on Goodreads datasets.

Humor Children’s History
Philosophy Young Adult Philosophy
Thriller New Adult Religion

# books* 1,235 3,384 1,231

KERT 10 m 17 s 22 m 29 s 10 m 35 s
PDLDA 2 m 36 s 4 m 50 s 3 m 16 s
TurboTopics 20 m 10 s 5 hr 54 m 50 s 52 m 3 s
*Note that this refers to the number of books, not the number of windows constructed from the text.

For comparison, we also examined the performance of Turbo Topics and PDLDA on several collections of short

texts, as shown in Table 4.16. In addition to the DBLP dataset and the arXiv dataset, we extracted the title of 13,638

papers from the ACL Anthology Network Dataset,7 to form yet another short text collection, referred to in Table

4.16 as the ACLtitle dataset. Finally, we also created a very large short text dataset using a full collection of the titles

available in DBLP (DBLPfull), consisting of over 1.8 million paper titles. 8

7http://clair.eecs.umich.edu/aan/index.php
8This DBLP snapshot was constructed on Sept 29, 2012.
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Table 4.16: Comparing runtimes of KERT, PDLDA and Turbo Topics, on short texts.

DBLPfull DBLP arXiv ACLtitle

# documents 1,832,469 33,313 9,722 13,638

KERT* 1 h 46 m 1 s 27.57 s 13.1 s 23.3 s
PDLDA 1 d 5 h 17 m 13 s 15 m 32 s 4 m 35 s 12 m 17 s
Turbo Topics 27 d 4 h 58 m 10 m 58 s 9 m 22 s
*For KERT we set µ = 10 for DBLPfull; we set µ = 5 for DBLP, arXiv, and ACLtitle

KERT clearly outperforms both PDLDA and Turbo Topics on every short dataset. On the three smaller collections

of short texts (DBLP, arXiv, and ACLtitle), KERT takes less than half a minute, while PDLDA takes up to 15 minutes,

and Turbo Topics takes as long as five hours (on the DBLP dataset). The runtime of Turbo Topics quickly becomes

unacceptable, requiring nearly a month to run on DBLPfull. PDLDA shows a significant improvement over Turbo

Topics as the datasets increase in size, taking a day where Turbo Topics took a month, and 15 minutes where Turbo

Topics took 5 hours. However, KERT’s improvement over PDLDA is nearly as great, requiring 8 minutes to PDLDA’s

2 days, and finishing the full DBLP dataset in under two hours. The bulk of KERT’s runtime is once again devoted to

the step of topic assignment.

4.5 On Breaking Text Into Windows

We end this chapter with a discussion of the process of breaking text into smaller windows, which is a necessary step

for KERT’s analysis of longer text. As described above, in this set of experiments we amend the KERT framework

by breaking the text into short windows after the topic assignment step is complete, and before beginning the phrase

construction step. A reasonably conservative option that we use on the Goodreads dataset, is to denote punctuation

and stopwords as delimiters of breakpoints. However, we considered several other options as well, the effect of which

we demonstrate using the phrases that were generated to represent the genres Humor, Thriller, and Philosophy:

• Table 4.17 reproduces an earlier table from this chapter, showing phrases generated by KERT using windows

delimited by any kind of punctuation or by stopwords.

• Table 4.18 shows the phrases generated using sentences as windows, so that a phrase may be constructed from

any unigrams within the same sentence.

• Table 4.19 shows the phrases generated using only any kind of punctuation as window delimiters, so that a

phrase may be constructed from any unigrams not separated by a period, comma, etc.

• Table 4.20 shows the phrases generated using the NLP approach of chunking, which identifies grammatically

structured parts of sentences [44]. In particular, we use the Python Natural Language ToolKit [4] to identify
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noun phrases, and turn each noun phrase into a window. A noun phrase (NP) is a part of the sentence in which

information about the noun is gathered, such as ‘black dog’.

Using only sentences or only punctuation as window delimiters increases the size of the window and allows

for unigrams which are more separated to be combined into phrases. Thus, these two approaches can find the phrase

‘critique pure reason,’ which of course represents the seminal philosophical work ‘Critique of Pure Reason’, and which

cannot be identified by the more conservative approach, which would split the title into two windows. However, this

is then a tradeoff for seeing phrases such as ‘laugh loud’ (which must have originall been ‘laugh out loud’). These

differences do not appear to be very severe, although we hypothesize that using a window as large as a whole sentence

may turn out to be too permissive for some other datasets, such as scientific literature.

The results generated actually using noun phrases as windows are very similar to those in Table 4.17. However,

unlike the other three text breaking approaches, which do not add almost any time to the KERT framework, the method

of using noun phrases requires Part-Of-Speech tagging of the text, and is therefore considerably more time-intensive.

Therefore, KERT is able to generate basically the same phrases in much less time, and without the need for the external

knowledge of grammar (which also needs to change if the dataset domain or language changes), and is a better choice

than relying on this NLP technique.

We draw attention to those topical phrases which are agreed upon as belonging in the top 15 by all of the window

breaking methods by putting them in bold (e.g., all four methods agree that ‘twentieth century’ is a good topical phrase

for the Philosophy genre). To be conservative, we do not count phrases that are clearly subsets of one another (e.g.,

‘ankh morpork’ and ‘city ankh morpork’). The phrases that meet this criteria are generally of good quality, suggesting

a potential approach that would leverage multiple segmentation strategies to ‘vote’ for a good phrase, thus giving extra

weight to phrases such as ‘serial killer’ for the Thriller genre.
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Table 4.17: Top 15 phrases generated using windows delimited by any kind of punctuation or by stopwords,
representing the genres Humor, Thriller, and Philosophy (this method was the one used in the above experiments).
Phrases in bold are ranked in the top 15 by all four of the window breaking methods discussed in this section.

Philosophy Thriller Humor

twentieth century secret service agent stephanie plum bounty hunter
ayn rand serial killer ankh morpork

human nature dean koontz joe morelli
english translation alex cross dave barry

walter kaufmann mitch rapp bill bryson
michel foucault medical examiner bertie wooster

western philosophy fbi agent comic strip
moral philosophy jack reacher grandma mazur

marcus aurelius sara linton jasper fforde
originally publish jeffrey tolliver greg heffley

20th century united states terry pratchett
political philosophy homicide detective arthur dent

pure reason kay scarpetta scott pilgrim
major work james bond janet evanovich

philosophical work jane rizzoli laurie notaro

Table 4.18: Top 15 phrases generated using windows delimited by sentences, representing the genres Humor, Thriller,
and Philosophy. Phrases in bold are ranked in the top 15 by all four of the window breaking methods discussed in this
section.

Philosophy Thriller Humor

critique pure reason women murder club stephanie plum bounty hunter
ayn rand alex cross hitchhiker guide galaxy

twentieth century serial killer bertie wooster gentleman
human nature dean koontz joe morelli cop

work philosophy jack reacher city ankh morpork
english translation medical examiner calvin hobbes

20th century fbi agent dave barry
century 19th mitch rapp laugh loud

michel foucault homicide detective grandma mazur
moral philosophy secret service san francisco

marcus aurelius jason bourne janet evanovich
alain botton sara linton comic strip

social political rhyme sachs bill watterson
publish volume lincoln rhyme bill bryson

major work police department spaceman spiff
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Table 4.19: Top 15 phrases generated using windows delimited by any kind of punctuation, representing the genres
Humor, Thriller, and Philosophy. Phrases in bold are ranked in the top 15 by all four of the window breaking methods
discussed in this section.

Philosophy Thriller Humor

critique pure reason alex cross stephanie plum bounty hunter
ayn rand medical examiner bertie wooster gentleman

twentieth century serial killer joe morelli cop
english translation dean koontz calvin hobbes

human nature jack reacher laugh loud
philosophy work lincoln rhyme dave barry
michel foucault fbi agent jasper fforde
social political mitch rapp grandma mazur

include introduction sara linton bill bryson
19th century jason bourne janet evanovich

moral philosophy young woman bill watterson
philosophical work united states ankh morpork

alain botton rhyme sachs comic strip
literary criticism kay scarpetta arthur dent
writing selection police department bail bond

Table 4.20: Top 15 phrases generated using windows defined by identifying noun phrases, representing the genres
Humor, Thriller, and Philosophy. Phrases in bold are ranked in the top 15 by all four of the window breaking methods
discussed in this section.

Philosophy Thriller Humor

twentieth century secret service agent stephanie plum bounty hunter
ayn rand alex cross joe morelli

human nature serial killer ankh morpork
marcus aurelius jack reacher dave barry

western philosophy dean koontz comic strip
moral philosophy medical examiner bertie wooster
michel foucault mitch rapp bill bryson

understand concern fbi agent grandma mazur
english translation homicide detective greg heffley

major work young woman scott pilgrim
walter kaufmann jane rizzoli janet evanovich
literary criticism kay scarpetta laurie notaro
originally publish sara linton bill watterson

20th century maura isles calvin hobbes
political philosophy james bond jasper fforde
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Chapter 5

Extending the Framework to Construct
Hierarchical Topical Phrases

5.1 Introduction

1A different direction that is necessary to consider is that a flat representation of the topics (or concepts) in a dataset

may not always be as useful as a hierarchical organization at different levels of granularity. Therefore it is necessary

to be able to also construct high quality topical hierarchies from texts, where each topic is represented by a ranked list

of topical phrases, such that a child topic is a subset of its parent topic. We are therefore motivated to create a robust

framework for constructing high quality topical hierarchies from texts in different domains.

For this task, we return to working with datasets of short texts, as introduced in Chapter 3. Our framework aims

to construct a hierarchy where each topic is represented by a ranked list of topical phrases, such that a child topic

is a subset of its parent topic. For example, the topic of query processing and optimization may be described by the

phrases {‘query processing’, ‘query optimization’,. . .}, while its parent topic of general problems in databases may

be described by {‘query processing’, ‘database systems’, ‘concurrency control’,. . .}

Our goal has several challenges. Topical phrases that would be regarded as high quality by human users are likely

to vary in length (e.g., ‘support vector machines’ and ‘feature selection’ would both be good phrases for a topic about

machine learning). Existing phrase extraction and ranking approaches are term-centric and cannot directly compare

such mixed-length phrases, highlighting the need for a phrase-centric approach. Globally frequent phrases are not

assured to be good representations for individual topics, demonstrating the need to infer the frequency of phrases in

each topic. Finally, we must be able to recursively estimate each phrase’s topical frequency for subtopics, in order to

construct a topical hierarchy.

Although there exist several topic modeling apporaches that can model the hierarchical dependency of unigram-

based topics [24, 38, 49], it is challenging to apply these techniques to our scenario because i) since our text is sparse,

the distribution estimates are quite brittle [19] when calculating multiple topic levels, and ii) these methods compute

the entire hierarchy simultaneously and do not support recursive discovery of subtopics from a topic.

1This chapter contains materials from the following previously published work: Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang,
Phuong Nguyen, Thrivikrama Taula, and Jiawei Han. A Phrase Mining Framework for Recursive Construction of a Topical Hierarchy. Proc. of
2013 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD13), Chicago, IL, Aug. 2013. Copyright 2013 ACM, Inc.
http://doi.acm.org/10.1145/2487575.2487631. Reprinted with permission.
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In this chapter we present CATHY (Constructing A Topical HierarchY), a phrase-centric framework for topical

hierarchy generation via recursive clustering and ranking. CATHY adapts the phrase construction and ranking ap-

proaches of the KERT framework; however, unigram-generating topic models are not able to naturally construct a

hierarchy of topics, such that a child topic is a subset of its parent topic. Therefore the greatest contribution of this

chapter is the transformation of the topic assignment step into one of hierarchical topic assignment. We also demon-

strate the efficacy of CATHY on collections of short texts through a series of experiments.

5.2 Problem Formulation

Traditionally, a phrase is defined as a consecutive sequence of terms, or unigrams. However, as discussed in Chapter

3 this definition can be quite limiting as it is too sensitive to natural variations in the term order, or the morphological

structure of a phrase. For instance, consider that two computer science paper titles, one containing ‘mining frequent

patterns’ and the other containing ‘frequent pattern mining,’ are clearly discussing the same topic, and should be

treated as such. A phrase may also be separated by other terms: ‘mining top-k frequent closed patterns’ also

belongs to the topic of frequent pattern mining, in addition to incorporating secondary topics of top-k frequent patterns,

and closed patterns. Therefore, we continue to define a phrase to be an order-free set of terms appearing in the

same document. Our framework can work with alternative definition of phrases as well, such as traditonally defined

consecutive ngrams.

Definition 3 (Phrase) A phrase P with length n is an unordered set of n terms: P = {wx1
, . . . , wxn

|wxi
∈ W},

where W is the set of all unique terms in a content-representative document collection. The frequency f(P ) of a

phrase is the number of documents in the collection that contain all of the n terms.

We use phrases as the basic units for constructing a topical hierarchy.

Definition 4 (Topical Hierarchy) A topical hierarchy is defined as a tree T in which each node is a topic. The root

topic is denoted as o. Every non-root topic t with parent topic par(t) is represented by a ranked list of phrases

{Pt, rt(Pt)}, where Pt is the set of phrases for topic t, and rt(P t) is the ranking score for the phrases in topic t. For

every non-leaf topic t in the tree, all of its subtopics comprise its children set Ct = {z ∈ T , par(z) = t}. A phrase

can appear in multiple topics, though it will have a different ranking score in each topic.

To construct a topical hierarchy, we must soft cluster phrases into a hierarchy and find representative phrases for

each topic. As an example, consider the task of judging what constitutes high quality phrases for various topics in

computer science. There are four criteria for judging the quality of a phrase, previously presented in Chapter 3:
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• Coverage: A representative phrase for a topic should cover many documents within that topic. Example: ‘infor-

mation retrieval’ has better coverage than ‘cross-language information retrieval’ in the Information Retrieval

topic.

• Purity: A phrase is pure in a topic if it is only frequent in documents belonging to that topic and not frequent in

documents within other topics. Example: ‘query processing’ is more pure than ‘query’ in the Databases topic.

• Phraseness: A group of terms should be combined together as a phrase if they co-occur significantly more often

than the expected chance co-occurrence frequency, given that each term in the phrase occurs independently.

Example: ‘active learning’ is a better phrase than ‘learning classification’ in the Machine Learning topic.

• Completeness: A phrase is not complete if it is a subset of a longer phrase, in the sense that it rarely occurs

in a document without the presence of the longer phrase. Example: ‘support vector machines’ is a complete

phrase, whereas ‘vector machines’ is not because ‘vector machines’ is almost always accompanied by ‘support’

in documents.

The measures which represent these criteria can all be characterized by an important concept: topical frequency.

Definition 5 (Topical Frequency) The topical frequency ft(P ) of a phrase is the count of the number of times the

phrase is attributed to topic t. For the root node o, fo(P ) = f(P ). For each topic node in the hierarchy, with subtopics

Ct, ft(P ) =
∑
z∈Ct fz(P ), i.e., the topical frequency is equal to the sum of the sub-topical frequencies.

Table 5.1 illustrates an example of estimating topical frequency for phrases in a computer science topic that has 4

subtopics. The phrase ‘support vector machines’ is estimated to belong entirely to the Machine Learning (ML) topic

with high frequency, and therefore is a candidate for a high quality phrase. However, ‘social networks’ is fairly evenly

distributed among three topics, and is thus less likely to be a high quality phrase. Section 5.3.3 discusses how such

candidate phrases are actually ranked, using measures based on estimated topical frequency.

Table 5.1: Example of estimating topical frequency. The topics are assumed to be inferred as machine learning,
database, data mining, and information retrieval from the collection

Phrase ML DB DM IR Total

support vector machines 85 0 0 0 85
query processing 0 212 27 12 251
world wide web 0 7 1 26 34
social networks 39 1 31 33 104
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5.3 CATHY Framework

In order to estimate the topical frequency for each phrase, we need to infer the dataset’s topics. We perform topic

inference and estimate topical frequency by analyzing our dataset’s term co-occurrence network.

Formally, every topic node t in the topical hierarchy is associated with a term co-occurrence network Gt. The root

node o is associated with the term co-occurrence networkGo constructed from the collection of content-representative

documents. Go consists of a set of nodes W and a set of links E. A node wi ∈ W represents a term, and a link

(wi, wj) between two nodes represents a co-occurrence of the two terms in a document. The number of links eij ∈ E

between two nodes wi and wj is equal to the number of documents containing both terms. For every non-root node

t 6= o, we construct a subnetwork Gt by clustering the term co-occurrence network of its parent par(t). Gt has all of

the nodes from Gpar(t), but only those links belonging to the particular subtopic t.

We chose to use term co-occurrence network for topic analysis instead of document-term topic modeling because

the it naturally supports recursive mining: the clustering result for one topic can be used as the input when further

partitioning the topic into subtopics. The CATHY framework generates a topical hierarchy in a top-down, recursive

way:

Step 1. Construct the term co-occurrence network Go = (W,E) from the document collection. Set t = o.

Step 2. For a topic t, cluster the term co-occurrence network Gt into subtopic subnetworks Gz, z ∈ Ct, and

estimate the subtopical frequency for its subtopical phrases using a generative model.

Step 3. For each topic z ∈ Ct, extract candidate phrases based on estimated topical frequency.

Step 4. For each topic z ∈ Ct, rank the topical phrases using a unified ranking function based on topical frequency.

Phrases of different lengths are directly compared, yielding an integrated ranking.

Step 5. Recursively apply Steps 2 - 5 to each subtopic z ∈ Ct to construct the hierarchy in a top-down fashion.

5.3.1 Clustering: Estimating Topical Frequency

We first introduce the process of clustering for one topic t. We assume Ct contains k child topics, denoted by

z = 1 . . . k. The value of k can be either specified by users or chosen using a model selection criterion such as the

Bayesian Information Criterion [58].

In the term co-occurrence network Gt, we assume every co-occurrence of two terms wi and wj is attributed to

a topic z ∈ Ct = {1, . . . , k}. We represent the total link frequency ei,j between wi and wj as a summation of the

number of links between wi and wj in each of the k topics: eij =
∑k
z=1 e

z
ij . The goal is thus to estimate ezij for

z = 1 . . . k, which is unlike most network analysis approaches.

We develop a generative model of the term co-occurrence network, and estimate topical frequency fz, z ∈ Ct.
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A generative model for term co-occurrence network analysis

To generate a topic-z link, we first generate one end node wi following a multinomial distribution p(wi|z) = θzi ,

and then generate the other end node wj with the same multinomial distribution p(wj |z) = θzj . The probability of

generating a topic-z link (wi, wj) is therefore p(wi|z)p(wj |z) = θzi θ
z
j .

With this generative assumption for each individual link, we can derive the distribution of topical frequency for

any two terms (wi, wj). If we repeat the generation of topic-z links for ρz iterations, then the chance of generating a

particular topic-z link between wi and wj can be modeled as a Bernoulli trial with success probability θzi θ
z
j . When ρz

is large, the total number of successes ezij approximately follows a Poisson distribution Pois(ρzθzi θ
z
j ).

Now we can write down the generative model for random variables ezij with parameters ρz, θz .

ezij ∼ Poisson(ρzθ
z
i θ
z
j ), z = 1, . . . , k (5.1)

|W |∑
i=1

θzi = 1, θzi ≥ 0, ρz ≥ 0 (5.2)

The constraints guarantee a probabilistic interpretation. According to the expectation property of the Poisson distribu-

tion, E(ezij) = ρzθ
z
i θ
z
j . Also, according to the additive property of expectations,

E(
∑
i,j

ezij) =
∑
i,j

ρzθ
z
i θ
z
j = ρz

∑
i

θzi
∑
j

θzj = ρz

In other words, ρz is the total expected number of links in topic z.

One important implication due to the additive property of Poisson distribution is that

eij =

k∑
z=1

ezij ∼ Poisson(

k∑
z=1

ρzθ
z
i θ
z
j ) (5.3)

So given the model parameters, the probability of all observed links is

p({eij}|θ, ρ) =
∏

wi,wj∈W
p(eij |θi, θj , ρ)

=
∏

wi,wj∈W

(
∑k
z=1 ρzθ

z
i θ
z
j )eij exp(−∑k

z=1 ρzθ
z
i θ
z
j )

eij !
(5.4)

In this model, the observed information is the total number of links between every pair of nodes, including zero links

and self-links. The parameters which must be learned are the role of each node in each topic θzi , wi ∈W, z = 1, . . . , k,

and the expected number of links in each topic ρz . The total number of free parameters to learn is therefore k|W |.

We learn the parameters by the Maximum Likelihood (ML) principle: find the parameter values that maximize the
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likelihood in Eq. (7.2). We use an Expectation-Maximization (EM) algorithm that can iteratively infer the model

parameters:

E− step : êzij = eij
ρzθ

z
i θ
z
j∑k

t=1 ρtθ
t
iθ
t
j

(5.5)

M− step :

ρz =
∑
i,j

êzij (5.6)

θzi =

∑
j ê
z
ij

ρz
(5.7)

Intuitively, the E-step calculates the expected number of links êzij in each topic z between the terms wi and wj : the

ratio of êzij to eij is proportional to its Poisson parameter ρzθzi θ
z
j . The M-step calculates the ML parameter estimates:

θzi is the ratio of the total number of links in topic z where one end node is wi and ρz , which is the sum of the total

expected number of links in topic z.

We update êzij , θ
z
i , ρz in each iteration. Note that if eij /∈ E, we do not need to calculate êzij because it equals

0. Therefore, the time complexity for each iteration is O((|E| + |V |)k) = O(|E|k). Like other EM algorithms, the

solution converges to a local maximum and the result may vary with different initializations. The EM algorithm may

be run multiple times with random initializations to find the solution with the best likelihood. We empirically find that

the EM algorithm generally requires hundreds of iterations to converge, although we can improve the efficiency with

some acceleration tricks. For example, we do not need to update a parameter in each iteration if it converges before

the whole model converges. Similar tricks are used in other generative models such as [2], and we omit the details

here.

It is important to note that our method naturally supports top-down hierarchical clustering. To further discover

subtopics of a topic, we can extract the subnetwork where Ez = {êzij |êzij ≥ 1} (expected number of links attributed

to that topic, ignoring values less than 1) and then apply the same generative model on the subnetwork. This process

can be recursively repeated until the desired hierarchy is constructed.

Topical frequency estimation

Using the learned model parameters, we can estimate the topical frequency for a phrase P = {wx1
. . . wxn

}:

fz(P ) = fpar(z)(P )
ρz
∏n
i=1 θ

z
xi∑

t∈Cpar(z) ρt
∏n
i=1 θ

t
xi

(5.8)

This estimation is based on two assumptions: i) when generating a topic-z phrase of length n, each of the n terms is

generated with the multinomial distribution θz , and ii) the total number of topic-z phrases of length n is proportional
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to ρz . It is easy to see that when n = 2, fz({wi, wj}) reduces to êzij .

5.3.2 Topical Phrase Extraction

Since we define phrases to be sets of frequent terms, we develop an algorithm to mine frequent topical patterns. The

goal is to extract patterns with topical frequency larger than some threshold minsup for every topic z. In contrast to

traditional frequent pattern mining problem, the topical frequency of each pattern is unknown and must be estimated.

The results from the clustering step in Section 5.3.1 are necessary for our estimation.

To extract topical frequent patterns, one can first mine all frequent patterns with a traditional pattern mining

algorithm such as Apriori [1] or FP-growth [27], and then filter them using the topical frequency estimation using

Eq. (7.14). The following two properties of topical frequency can be further exploited to speed up this step:

Property 1 A phrase’s topic-z frequency has an upper bound of the topic-z frequency of any of its subphrases.

Property 2 A phrase’s topic-z frequency has an upper bound fpar(z)(P ′)
ρz

∏n
i=1 θ

z
xi∑

t∈Cpar(z) ρt
∏n

i=1 θ
t
xi

, where P ′ ⊂ P is

any subphrase of P .

Note that for only the top level topics z ∈ Co, the parent topical frequency fpar(z)(P ) is equal to f(P ) and must

be counted from the text. However, for all lower levels, the parent topical frequency fpar(z)(P ) was already calculated

when the parent topic was generated, and therefore never needs to be counted.

One problem with the extracted frequent term sets is that every subset of a frequent phrase is also a frequent

phrase. However, some of these subphrases should be removed according to the Completeness criterion, previously

described in Section 5.2. Like in KERT, for each topic, we remove a phrase P if there exists a frequent phrase P ′,

such that P ⊂ P ′, fz(P ′) ≥ γfz(P ). The remaining patterns are referred to as γ-maximal patterns (0 ≤ γ ≤ 1).

When γ = 1, this is equivalent to a closed pattern, and when γ = 0, this is a maximal pattern. We empirically set

γ ≈ 0.5, which removes a phrase if its topical frequency is no more than twice of some superphrase. In other words,

if a phrase co-occurs with a superphrase more than half the time, we consider that it is subsumed by the superphrase,

and should be removed. According to Property 1, pruning can be performed by comparing the frequency of a length-n

phrase with all of its length-(n + 1) superphrases. The collection of all of the γ-maximal phrases of a topic z forms

the candidate phrase set Pz .

5.3.3 Ranking

As discussed in Section 5.2, topical phrases in Pz are ranked according to four criteria: coverage, purity, phraseness,

and completeness. The last criterion is already employed as a filter for the phrase extraction step, parameterized by γ.

So we now combine the remaining three criteria into a ranking function using a probabilistic modeling approach.

47



The key idea, which remains the same as in the KERT framework, is to consider the occurrence probability of

‘seeing a phrase p in a random document with topic t.’ With this definition, the events of seeing n-grams of various

lengths in a document are no longer mutually exclusive, and therefore the probabilities no longer need to sum to 1.

We construct estimations for occurrence probability and two contrastive probabilities that will be used to compare

against the occurrence probablity. We use mz to denote the number of documents that contain at least one frequent

topic-z phrase. Similarly, we use mZ to denote the number of documents that contain at least one frequent topic-z

phrase for some topic z ∈ Z. We can then calculate the occurrence probability of a phrase P conditioned on topic z:

p(P |z) =
fz(P )

mz
(5.9)

The independent contrastive probability is the probability of independently seeing every term in phrase

P = {wx1
, . . . wxn

} conditioned on topic z:

pindep(P |z) =

n∏
i=1

p(wxi |z) =

n∏
i=1

fz(wxi)

mz
(5.10)

and the mixture contrastive probability is the probability of a phrase P conditioned on a mixture of multiple sibling

topics Z ⊂ Cpar(z), Z % {z}:

p(P |Z) =

∑
t∈Z ft(P )

mZ
(5.11)

We can now define the three remaining ranking criteria: coverage, purity, and phraseness. The coverage of a phrase

is directly quantified by p(P |z). The phraseness can be measured by the log ratio of the occurrence probability to the

independent contrastive probability log p(P |z)
pindep(P |z) . The purity can be measured by the log ratio of the occurrence

probability and the mixture contrastive probability log p(P |z)
p(P |Z) . The definition of purity is configurable by altering the

makeup of the topic mixture Z. For example, using the mixture of all the sibling topics Cpar(z) as the topic mixture

results in a weaker purity criterion. However, deliberately choosing the subset Z so that the contrastive probability

p(P |Z) is maximized, results in a stronger purity criterion.

The three criteria are unified by the ranking function:

rz(P ) = p(P |z)
(

log
p(P |z)
p(P |Z)

+ ω log
p(P |z)

pindep(P |z)

)
(5.12)

where ω controls the importance of the phraseness criterion. This formulation of the ranking function has several

desirable characteristics:

• The coverage measure p(P |z) is the most influential, since the other two criteria are represented by log ratios of

p(P |z) and a contrastive probability, and the effect of contrastive probability on the ranking score is smaller than the
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influence of p(P |z). This is a desirable property because when a phrase P has low support, the estimates of purity and

phraseness are unreliable; but their effect is small since the value of p(P |z) would be correspondingly low. Therefore,

a phrase with low coverage would inevitably be ranked low, as should be the case for representative phrases.

• The relative importance of the purity and phraseness measures is controlled by ω. Both measures are log ratios

on comparable scales, and can thus be balanced by weighted summation. As ω increases, we expect more topic-

independent but common phrases to be ranked higher. We therefore restrict ω ∈ [0, 1] because our task requires

topic-related phrases to be highly ranked.

• The ranking function can also be nicely represented as a pointwise Kullback-Leibler (KL) divergence in an

information theoretic framework. Pointwise KL divergence is a distance measure between two probabilities. It is more

robust than pointwise mutual information because the former also considers absolute probability. In pointwise KL

divergence, the relative difference between probabilities must be supported by a sufficiently high absolute probability.

The product p(P |z) log p(P |z)
p(P |Z) is equivalent to the pointwise KL divergence between the probabilities of p(P |z) and

p(P |Z). Likewise, p(P |z) log p(P |z)
pindep(P |z) is equivalent to the pointwise KL divergence between the probabilities

of p(P |z) under different independence assumptions. Therefore, Eq. (7.15) can also be interpreted as a weighted

summation of two pointwise KL divergence metrics.

5.4 Experiments

In this section we first introduce the datasets and methods we used for comparison. We then describe our 3-part

evaluation: i) we conduct a user study with ‘intruder detection’ tasks to evaluate hierarchy quality; ii) we use category-

labeled data to evaluate the mutual information between phrase-represented topics and known topical divisions; and

iii) we present several case studies.

5.4.1 Datasets

We analyze our performance on two datasets:2

DBLP. We collected a set of titles of recently published computer science papers in the areas related to Databases,

Data Mining, Information Retrieval, Machine Learning, and Natural Language Processing. These titles come from

DBLP, a bibliography website for computer science publications. We minimally pre-processed the dataset by remov-

ing all stopwords from the titles, resulting in a collection of 33,313 titles consisting of 18,598 unique terms.

Library. We obtain titles of books from the University of Illinois Library catalogue database in 6 general cate-

2The datasets are available at http://illimine.cs.illinois.edu/cathy
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Figure 5.1: Each method generates a hierarchy. For each method, we show the subtrees rooted at Level 2 that are the
most likely to represent the topics of Information Retrieval and Databases. The ordering of words in each phrase are
determined by the most frequent ordering in the documents, and two phrases only differeing in plural/single forms are
shown only once.
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gories: Architecture, Literature, Mass Media, Motion Pictures, Music, and Theater. We pre-processed the titles by

removing all stopwords and terms with frequency less than 5 in the dataset. We also remove titles over 10 words in

length, and titles not in English. The resulting dataset contains 33,372 titles consisting of 3,556 unique terms.

5.4.2 Methods for Comparison

As the topical hierarchy construction problem setting that we study is new, there are no directly comparable algorithms.

We implement several methods:

SpecClus: As one baseline, we implement a common framework of clustering-based ontology construction, which

first extracts all concepts from the text and then hierarchically clusters them. We adapt this to our setting by first

mining all frequent phrases using FP-growth [27], a typical pattern mining algorithm. We then implement spectral

clustering [53] for the clustering step, where the similarity metric between two phrases is their co-occurrence count

in the dataset. This approach uses K-means to perform hard clustering after computing a spectral embedding of the

similarity graph. Finally, we rank phrases in each cluster based on their distance from the cluster center. In order to

go down in the hierarchy we recursively perform the same clustering and ranking on each cluster of phrases.

hPAM: As a second baseline, we use a state-of-the-art hierarchical topic modeling approach: the hierarchical

Pachinko Allocation Model [49]. hPAM takes documents as input and outputs a specified number of supertopics and

subtopics, as well as the associations between them. However, it builds a hierarchy for 3 levels simultaneously, not

recursively, so we only generate a hierarchy with 3 levels.3

hPAMrr: For each topic, hPAM outputs a multinomial distribution over unigrams. These distributions can be used

to calculate the coverage and purity measures in our ranking function (phraseness and completeness do not matter

when all candidate phrases are unigrams). We therefore also implement a method that reranks the unigrams in each

topic generated by hPAM, with our ranking function adopting the distribution learned by hPAM. We refer to the result

as hPAMrerank, or hPAMrr. Note that we cannot rerank SpecClus because it does not generate a probability distribution

that can be input into our ranking function.

CATHYcp: In this version of CATHY the ranking function only considers the coverage and purity criteria, and not

phraseness or completeness (γ=1, ω=0). This allows us to more closely compare the performance of our clustering

and mining step with hPAM, using hPAMrr.

CATHY: For evaluation we set minsup=5, γ=ω=0.5 for phraseness and completeness criteria, and we use the

strong definition of purity, as discussed in Section 5.3.3

3hPAM has several parameters. Our tuning shows that the optimal values of mixture prior between supertopic and subtopic are 1.5 and 1.0
respectively. The mixture prior over topics in the same level is optimal at 1.0 for both levels. The optimal prior for topic distribution over terms is
0.01.
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5.4.3 Topical Hierarchy of DBLP Paper Titles

Our first evaluation assesses the ability of our method to construct topical phrases that appear to be high quality to

human judges, via a user study. We construct hierarchies with 4 levels from the DBLP dataset. For simplicity we set

the number of subtopics for the root node to be 5, for all other non-leaves to be 4, for all of the methods. Since hPAM

and hPAMrr only construct 3 levels of the hierarchy, we compare the 3-level hierarchies across all methods, and the

full hierarchies for the 3 methods which constructed them.

In the following subsections, we present a sample of the hierarchies actually generated by these methods and

encountered by participants in the user study. We then explain the details of our user study, and present quantitative

results.

Qualitative Results

Figure 5.1 shows a subset of hierarchies constructed by CATHY and the two baselines, SpecClus and hPAM. In

general, CATHY constructs high quality phrases, representing the areas and subareas on both levels. hPAM outputs

unigrams that are fair at conveying the top-level topics when considered jointly, but independently are topic-ambiguous

(e.g., ‘services’ for IR). hPAM’s second level subtopics are generally more difficult to interpret, and some parent-child

relationships are not clearly observed. SpecClus tends to generate phrases with good purity but unsatisfactory coverage

and phraseness (e.g., ‘querying spatial’ for DB).

Word and Topic Intrusion User Study

To quantitatively measure topical phrase quality, we invited people to judge the topical phrases generated by the

different methods. Since the DBLP dataset generates topics in computer science, we recruited 9 computer science

graduate students - who could thus be considered to be very knowledgeable judges - for a user study. We first describe

the two tasks administered in the user study, and then discuss the obtained results. The complete set of instructions for

both tasks can be found in Appendix C.

In order to evaluate the quality of the generated topical phrases, we adapt two tasks from Chang et al. [8], who

were the first to explore human evaluation of topic models. Our first task is Topic Intrusion, which tests the quality of

the parent-child relationships in the generated hierarchies. Our second task is Phrase Intrusion, which evaluates how

well the hierarchies are able to separate phrases in different topics. Both tasks are depicted in Figure 5.2.

Topic Intrusion Task: Participants are shown a parent topic t and T candidate child topics. T − 1 of the child

topics are actual children of t in the generated hierarchy, and the remaining child topic is not. Each topic is represented

by its top 5 ranked phrases. Participants are asked to select the intruder child topic, or to indicate that they are unable
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Phrase Intrusion 

Question 1/80           Topic Intrusion 

Parent topic  
database systems 
data management 
query processing 
management system 
data system 

Child topic  1 
web search 
search engine 
semantic web 
search results 
web pages 

Child topic 2 
data management 
data integration 
data sources 
data warehousing 
data applications 

Child topic 3 
query processing 
query optimization 
query databases 
relational databases 
query data 

Child topic 4 
database system 
database design 
expert system 
management system 
design system 

Question 1/130 data mining association rules  logic programs data streams  

Question 2/130 natural language query optimization  data management  database systems  

Figure 5.2: Examples of user study questions. In the Topic Intrusion task (left), participants are asked to select which
child topic does not belong to the given parent topic (Child topic 1). In the Phrase Intrusion task (right), participants
are asked to select which phrase does not belong with the others (Question 1: ‘logic programs’; Question 2: ‘natural
language’)

to make a choice.

Phrase Intrusion Task: Participants are shown T phrases. T − 1 of the phrases come from the same topic and

the remaining phrase is from a sibling topic. Each phrase is a top-5 ranked phrase in the topic which it represents.

Participants are asked to select the intruder phrase, or to indicate that they are unable to make a choice.

For the user study we set T = 4, and asked participants 80 Topic Intrusion questions and 130 Phrase Intrusion

questions. Questions are generated from the hierarchies constructed by each of the methods. We sample questions

from each hierarchy in a uniform way, drawing equally from all topics in each level.

We then calculate the agreement of the user choices with the actual hierarchical structure constructed by the

various methods. We consider a higher match between a given hierarchy and user judgment to imply a higher quality

hierarchy. For each method, we report the average percent of questions answered ‘correctly’ (matching the method),

as well as the average percent of questions that users were able to answer.

Since the hPAM and hPAMrr hierarchies had one fewer level than other methods, we present two analyses. Table

5.2 presents the results from the full set of questions, except the questions generated by hPAM and hPAMrr (4 Levels),

and the results from only those questions taken from the shared levels of every method’s hierarchies (3 Levels).

For the Topic Intrusion task, CATHY outperforms all non-CATHY methods by a large margin. CATHY does

slightly better than CATHYcp in the 3 level hierarchy, and is significantly better in the 4 level hierarchy, suggesting

that participants found the phraseness and completeness criteria to be helpful. SpecClus slightly outperforms hPAM,

because hPAM generates broad unigrams with good coverage, which makes the parent-child relationships difficult
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Table 5.2: User study results, for 3 level and 4 level hierarchies. Higher values indicate a higher quality constructed
hierarchy

Topic Intrusion Phrase Intrusion

3 Levels Correct Answered Correct Answered

hPAM 34.4% 75.6% 38.8% 78.9%
hPAMrr 32.2% 72.2% 47.8% 77.2%
SpecClus 38.9% 65.6% 36.1% 77.2%
CATHYcp 78.9% 97.8% 57.8% 90.0%
CATHY 82.2% 98.8% 57.2% 88.9%

4 Levels Correct Answered Correct Answered

SpecClus 34.4% 68.3% 32.9% 77.4%
CATHYcp 61.7 % 96.7% 56.7% 88.5%
CATHY 78.3% 97.8% 54.1% 89.3%

to identify, while SpecClus yields phrases with better purity which, when considered jointly, represent a topic more

successfully. Participants answered more questions generated by the hPAM variations than by SpecClus, which,

combined with the resulting accuracies, suggests that hPAM generated the least well-separated hierarchy (even with

reranking).

CATHY and CATHYcp outperform other methods comparably in the Phrase Intrusion task. As hPAM favors high

coverage phrases which are often topic-ambiguous, it posted a low performance. hPAMrr considers phrase purity as

well as topical coverage, and therefore performs much better on this task. SpecClus favors purity, and thus is more

likely to generate seemingly unrelated high ranked phrases in the same topic, which is reflected here by its poor

performance. Once again, participants were more likely to answer questions generated by the CATHY variations than

by any of the other three methods.

5.4.4 Topical Hierarchy of Book Titles

In this section, we work with the Library dataset. Since the book titles are labeled with their subjects, we examine

how well a high quality topical phrase can predict its category, and vice versa. For this, we construct a hierarchy and

measure the coverage-conscious mutual information at K (CCMIK) of the labels with the top level branches. Our

evaluation is based on [49] but we modify their definition of mutual information to also depend on coverage because

we represent topics with phrases.

As we saw in Section 5.4.3 that CATHY generally performs equal to or better than CATHYcp, and hPAMrr similarly

outperforms hPAM, we simply compare the performances of CATHY, hPAMrr, and SpecClus, with 6 topics (k = 6).

For each method, we do multiple runs for various values of K (the number of top-ranked phrases per topic considered).

To calculate CCMIK , we label each of the top K phrases per topic with the topic in which it is ranked highest. We
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then check if each title contains any of these top phrases. If so, we update the number of events “seeing a topic t and

category c” for t = 1 . . . k, with the averaged count for all those labeled phrases in the title; otherwise we update the

number of events “seeing a topic t and category c” for t = 1 . . . k uniformly, where c is the category label for the title.

Finally, we compute coverage-conscious mutual information at K:

CCMIK =
∑
t,c

p(t, c) log2
p(t, c)

p(t)p(c)

Figure 5.3 shows CCMIK for each method, K∈ [1, 100]. Since CCMIK considers the coverage of a phrase as

well as its mutual information with a category, its value generally grows with K. Both CATHY and SpecClus demon-

strate this by slowly improving over time, although CATHY is consistently much better at differentiating the categories

as K increases. hPAMrr prefers unigrams with high coverage, and thus hits an asymptote almost immediately because

it is unable to improve on the performance of the first few phrases.
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Figure 5.3: CCMIK values for various methods (methods in legend are ordered by performance, high to low)

5.4.5 On Defining Term Co-occurrence

Term co-occurrence can be defined in many ways: two term may be said to co-occur if they appear in the same

sentence, same paragraph, or in a window of N unigrams of each other [47]. Because we worked with collections of

short texts, we consistently defined term co-occurrence for our framework to mean co-occurring in the same document.

However, most traditional methods of keyphrase extraction only consider phrases to be sequences of terms which

explicitly occur in the text. We ran a variation of CATHY which emulates this behavior by defining two terms to
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Figure 5.4: A level 3 topic and its level 4 subtopics, from hierarchies constructed by CATHY on two different DBLP
term co-occurrence networks: document-based co-occurrence (top) and adjacency-based co-occurrence (bottom).
Document-based co-occurrence yields better quality phrases, especially at lower levels

co-occur only if they are actually adjacent in the same title, and constructed a hierarchy on the DBLP dataset.

Using adjacency co-occurrence results in a sparser network and lowers the estimated phrase topical frequencies at

every level. As can be seen in Figure 5.4, we observe lower quality phrases in the adjacency-based hierarchy (e.g., the

topics which are supposed to be represented by the two rightmost children are very difficult to identify.)

In this work, we address the problem of constructing a topical hierarchy from short, content-representative texts,

where topics are represented by ranked lists of phrases. We design a novel phrase mining framework to cluster, extract

and rank phrases which recursively discovers specific topics from more general ones, thus constructing a top-down

topical hierarchy. A key aspect of our approach involves shifting from a unigram-centric to a phrase-centric view in

order to consistently generate high caliber topics over multiple levels. By evaluating our approach on two datasets

from different domains, we validate our ability to generate high quality, human-interpretable topic hierarchies.
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Chapter 6

Using Hierarchical Topical Phrases for
Entity Community Discovery

6.1 Introduction

1People and social communities are often characterized by the topics and themes they are working on, or commu-

nicating about. The roles played by different entities in these communities are of great interest in many contexts of

social network analysis. We may be interested in discovering the role of an author in a research community, or the

contribution of a user to a social network community organized around similar interests. These types of role discovery

tasks center around topical communities mined from social or information networks.

We are also often interested in analyzing such roles at different levels of granularity. In the real world, topical

communities - communities built around shared topics - are naturally hierarchical. People participate in large com-

munities, encompassing many interests, as well as small, focused subcommunities. Therefore, in order to analyze the

various roles that an entity plays in such different contexts, we must also be able to work with topical communities

and subcommunities.

In this chapter we use the CATHY framework to study a new problem of mining entity roles in hierarchical topical

communities.2 We first use CATHY to detect topical communities from the text component of a social or information

network. We can then discover the roles of authors who publish in these communities. The hierarchical structure of the

topical communities allows us to distinguish between, e.g., authors who publish on a diverse range of database topics,

and authors who are particular experts in query processing. We illustrate our role mining techniques with multiple

examples on a real world dataset.

6.2 Role Discovery

We build directly on the results from the previous chapter, working with the DBLP dataset. In this section we illustrate

two types of role discovery that can be performed using the topical community hierarchy constructed from this dataset.

1This chapter contains materials from the following previously published work: Marina Danilevsky, Chi Wang, Nihit Desai, Jiawei Han. Entity
Role Discovery in Hierarchical Topical Communities. Proc. of 2013 ACM SIGKDD Int. Workshop on Mining Data Semantics in Heterogeneous
Information Networks (MDS’13), Chicago, IL, Aug. 2013. Copyright 2013 ACM, Inc. Reprinted with permission.

2A topical community was previously simply called a topic - the new nomenclature reflects only a focus on the role mining application presented
in this chapter.
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First, given a topical community and an entity type, which entities play the most important roles in the community? For

example, an author’s contribution to the topics of a community (by way of published papers) represents the author’s

role in that community. Second, for a given topical community and specific entity, what is that entity’s role in the

community? For instance, which topics within the community get published in a particular conference? Or, which

specific topics within the community does an author contribute to? The topical community hierarchy allows for more

nuanced role discovery for a given entity, presenting detailed information at different levels of granularity.

6.2.1 Ranking Community Entities

The role of an entity in a topical community can be interpreted as that entity’s contribution to the community. For

example, the role of an author is represented by the work the author does on the community’s topics; the role of a

venue is represented by the topics in the community which get published in the venue. Therefore, a natural question

to ask is which entities play the roles of top contributors to a particular topical community.

If we consider the role of an entity E in a community z to be that of a contributor of documents (e.g., the role of

an author is defined by how many papers he has published on the community’s topics), we can represent the entity’s

contribution by estimating the number of documents connected to E which belong to z.

Denote the estimated number of documents in a community z as |Dz|, and the set of all documents connected to

E as DE . For example, in the DBLP dataset, the subset DA is the set of papers authored by A, and DV is the set of

papers published in V . Then, we need to estimate |DE,z|, the number of documents attributed to E in community z.

We must first estimate the community frequency of every document dE ∈ DE . We described in the CATHY

framework how to estimate fz(P ), the community frequency of phrase P . We proceed in a similar top-down recursive

fashion in order to estimate the document community frequency, DFz(dE).

For each document dE we first perform the intermediate step of calculating the total phrase frequency of dE in

community z by adding up the normalized community-z frequencies of all the phrases in dE :

TPFz(dE) =
∑
P∈dE

fz(P )∑
c∈ChParent(z) fc(P )

(6.1)

The next step is to calculate the normalized document frequency of dE in community z:

DFz(dE) =
TPFz(dE)∑

c∈ChParent(z) TPFc(dE)
DFParent(z)(dE) (6.2)

The community frequency of a document is distributed among that community’s children, so that the document fre-

quency in a given community is the sum of the document frequencies in the community’s children,
∑
c∈Chz DFc(d) =

DFz(d). One exception is that a few documents may contain no frequent topical phrases in any subcommunities
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because we filter out infrequent topical phrases. For such documents we do not count their contribution to any sub-

communities.

Figure 6.1 shows a hypothetical distribution of document frequency for some document. The document frequency

values for every set of subcommunities sum up to the document frequency in the parent community (where the fre-

quency at the root is necessarily 1 for any document).
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Figure 6.1: A hypothetical distribution of document frequency values for a document, in a hierarchy with 3 levels,
beginning at the root.

Finally, we calculate the entity community frequency EFz(E) by summing up the contributions of all the docu-

ments dE ∈ DE to community z:

EFz(E) = ΣdE∈DE
DFz(dE) (6.3)

Since some documents may not contribute to any of the subcommunities, the entity frequency in a given commu-

nity should be equal to or larger than the sum of the entity frequencies in the community’s children,
∑
c∈Chz EFc(E) ≤

EFz(E). It is clear now that EFz(E) is precisely our estimate for |DE,z|.

Normalizing Phrase Community Frequency

Eq. 6.1 normalizes a phrase’s contribution to a document in a given community. Why do we not use the unnormalized

fz(P ) which would ensure that a phrase that is more frequent in z influences the document more?

We argue that normalization is better. We would like to fit the document community frequency with the phrase

community frequency, i.e., fc(P ) ≈ ∑P∈dDFc(d). Consider a phrase P in document d. The total contribution of

DFc(d) to fc(P ) for all children c of one community z is
∑
cDFc(d) = DFz(d). If DFc(d) = fc(P )∑

c fc(P ) (i.e., the

normalized community frequency) holds for all d 3 P , then we have exactly fc(P ) =
∑
P∈dDFc(d). However,

this is impossible when there are multiple phrases in a document and they have different normalized community

frequency. Instead, we can try to minimize the square error
∑
P∈d

∑
c[

fc(P )∑
c fc(P ) − DFc(d)]2 with the constraint∑

cDFc(d) = DFz(d). Solving this constrained optimization problem yields the solution in Equation 6.2.

We also evaluated the accuracy of using normalized and unnormalized phrase community frequency. We labeled

each document in our collection with the community in which it was most frequent, according to both estimates. We
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found that nearly 1
3 of the documents ended up with different community labels. We sampled a random 1% of these

papers, and manually labeled them. We found that the labeling accuracy dropped by 20% from normalizing the phrase

contribution to not normalizing. Therefore, normalizing phrase contribution actually does perform better.

Variations in Entity Ranking

Let |Dz| denote the estimated number of documents in a community z. Let DE denote the set of all documents

connected to E where DFParent(z)(dE) 6= 0, dE ∈ DE . Then, |DE,z| denotes the estimated number of documents

attributed to entity E in community z (and is precisely equal to EFz(E), the entity community frequency of E as

defined in Equation 6.3). Ranking entities by the value of |DE,z| means only taking into account how much of the

topic an entity covers. This ranking would find, for example, the authors who have published the most number of

papers on the topics of a particular community. We refer to ranking entities by EFz(E) as ERankCov .

However, this entity ranking function is not able to discover authors who are more dedicated to their role in a given

community than to sibling communities. In order to take this into account, we adapt the notion of purity to apply to

entities.

We can calculate the occurrence probability of entity E in community z:

p(E|z) =
|DE,z|
|Dz|

(6.4)

and the contrastive probability of seeing E conditioned on a mixture of multiple communities Z ⊂ ChParent(z),

Z % {z} (which is analogous to Eq. 5.11):

p(E|Z) =

∑
c∈Z |DE,c|∑
c∈Z |Dc|

(6.5)

We again choose the subset of Z to maximize this probability and strengthen the purity criterion.

We evaluate the purity of entity E in z by comparing the probability of seeing a document E conditioned on

community z and the contrastive probability defined by Eq. 6.5.

The criteria of entity purity and coverage can then be unified in an analogous way to Eq. 7.15, with the exception

that the notion of phraseness is not applicable to entities. We refer to ranking entities by this value asERankCov+Pur:

ERankCov+Pur(E, z) = p(E|z) log
p(E|z)
p(E|Z)

Table 6.1 shows the top ranked authors in the four subcommunities of Data Mining, based on ERankCov and

ERankCov+Pur. When only coverage is used for ranking, many authors are highly ranked in all communities (e.g.

Philip Yu, Jiawei Han, and Christos Faloutsos are top-5 authors in every community). When both coverage and purity
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Table 6.1: Top ranked authors in the four subcommunities of Data Mining, based onERankCov andERankCov+Pur.

(a) ERankCov

{sensor networks,
selectivity estimation,
large databases, pattern
matching, spatio-temporal
moving objects, large
collections}

{time series, nearest
neighbor, moving ob-
jects, time series data,
nearest neighbor queries}

{association rules, large
scale, mining association
rules, privacy preserving,
frequent itemsets}

{high dimensional, data
streams, data mining, high
dimensional data, outlier
detection}

divesh srivasta eamonn j. keogh jiawei han philip s. yu
nick koudas philip s. yu philip s. yu jiawei han
jiawei han christos faloutsos jian pei charu c. aggarwal
philip s. yu hans-peter kriegel christos faloutsos jian pei
christos faloutsos jiawei han ke wang christos faloutsos

(b) ERankCov+Pur

{sensor networks, selec-
tivity estimation, large
databases, pattern match-
ing, spatio-temporal
moving objects, large
collections}

{time series,
nearest neighbor, mov-
ing objects, time series
data, nearest neighbor
queries}

{association rules, large
scale, mining association
rules, privacy preserving,
frequent itemsets}

{high dimensional, data
streams, data mining, high
dimensional data, outlier
detection}

divesh srivasta eamonn j. keogh jiawei han charu c. aggarwal
surat chaudhiri jessica lin ke wang graham cormode
nick koudas michail vlachos xifeng yan s. muthukrishnan
jeffrey f. naughton michael j. passani bing liu philip s. yu
yannis papakonstantinou matthias renz mohammed j. zaki xiaolei li

criteria are taken into account, only those authors who are significantly more dedicated to one community are highly

ranked, resulting in no overlap between communities. Some prolific authors, such as Christos Faloutsos, are no longer

highly ranked anywhere, because their contributions are fairly equal among the communities. We are able to easily

discover both of these roles.

Table 6.2 shows further examples of ranking authors (using ERankCov+Pur) within two subcommunities of the

Database community. By showing the top ranked phrases for each author in a community (we discuss how these are

generated in the following section) we are able to see both which authors play the most important roles, and what part

of the community each author contributes to.

6.2.2 Entity Role in Community

The second type of role discovery we illustrate is finding out a specific entity’s role in a given topical community. In

order to represent an entity’s role in a community, we want to highlight the subset of the communities which illustrates
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Table 6.2: The top ranked authors (using ERankCov+Pur) in two subcommunities of the Database community, along
with each author’s top ranked phrases in each community. Each subcommunity is represented by its top-ranked
phrases, shown in the first row of each table.

(a) A Database subcommunity

{query processing / query optimization / deductive databases /
materialized views / microsoft sql server / relational databases}

elke a. rundensteiner query processing / query optimization / materialized views / stream processing
/ object-oriented databases

hamid pirahesh query processing / query optimization / materialized views / relational data /
relational xml

surajit chaudhuri query optimization / relational databases / microsoft sql server / materialized
views / relational data

jeffrey f. naughton materialized views / xml query / query processing / relational xml /
maintenance view

per-åke larson materialized views / microsoft sql server / query optimization / materialized
maintenance views / relational data

vivek r. narasayya microsoft sql server / materialized views / relational databases /
query management / sql data

serge abiteboul materialized views / xml data / schemas / query evaluation / materialized main-
tenance views

(b) A Database subcommunity

{concurrency control / database systems / main memory /
load shedding / database concurrency control / load balancing}

avi silberschatz concurrency control / main memory / locking / database systems / transaction
management

david b. lomet recovery / systems recovery / b-trees / transactions recovery /
performance access

henry k. korth concurrency control / database systems / main memory / protocol / transaction
systems

bharat k. bhargava concurrency control / distributed systems / distributed database / recovery /
distributed database systems

c. mohan concurrency control / recovery / locking / data systems / transaction systems

ahmed k. elmagarmid database systems / concurrency control / distributed database /
distributed systems / access control

nancy lynch concurrency control / locking / nested transactions / control transactions /
concurrency transactions

the contribution of the entity. We now therefore introduce a phrase entity community contribution ranking function:

Cont(P |z, E) = −p(P |z)log(
p(P |z)
p(P |z, E)

) (6.6)

where p(P |z) = fz(P )
|Dz| and p(P |z, E) =

fz,DE
(P )

|DE,z| .

fz,DE
(p) represents the frequency of phrase P in community z for the document subset DE . We estimate it as∑

d∈DE ,d3P DFz(d). Cont(P |z, E) has a nice information theoretic interpretation as the pointwise Kullback-Leibler

(KL) divergence between the likelihood of seeing phrase P in the documents in community z, and the likelihood of
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query processing / access methods / performance evaluation / 
system data / database mining / system mining / high performance / 
data storage / efficient query processing / object oriented 

object oriented / 
intelligent 
system / 
multimedia 
system / 
database issues / 
data tool 

files / signature 
files / load 
control / 
parallel 
systems / 
performance 
evaluation 

query processing / 
query rewriting / 
complex 
processing / 
query design / 
querying 
databases 

future 
directions / 
data 
storage / 
data tools / 
directions / 
future 

data mining / data streams / nearest neighbor / time series / 
mining patterns / mining large / large graphs / selectivity 
estimation / outlier detection / mining data streams 

selectivity 
estimation / 
sensor networks / 
similarity 
queries / 
pattern matching / 
range queries 

nearest 
neighbor / 
time warping / 
moving objects / 
nearest neighbor 
search /  
time series 

data mining / 
large graphs / 
mining 
graphs / 
mining 
patterns / 
large datasets 

data mining / 
outlier detection / 
mining data 
streams / 
anomaly 
detection / 
massive data 

23.8 

5.9 5.7 4.8 4.9 

67.8 

16.7 16.4 20.0 14.3 

Faloutsos(in(DB(
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pattern / 
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streams / 
querying xml 
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time series 
data / moving 
objects / mining 
time series 

association rules / 
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association rules / 
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data / outlier 
detection / 
mining data 
streams / 
uncertain data 
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(a) The roles of Philip S. Yu in Data Mining
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(b) The roles of Christos Faloutsos in Data Mining

Figure 6.2: Contrasting the roles of two authors, Philip S. Yu and Christos Faloutsos, in the Data Mining community
and subcommunities. The estimate for the number of papers the author contributes to each community is also shown.

seeing phrase P specifically in the documents linked to entity E, in z. Pointwise KL divergence is a distance measure

between two probabilities. Therefore, Cont(P |z, E) upranks P if its frequency in the community in conjunction with

the entity E is higher than would be expected, based on its overall topical community frequency.

However, using only the Contribution ranking does not give ideal results. Table 6.3 shows the roles of two au-

thors, Philip S. Yu and Christos Faloutsos, in one of the subcommunities of Data Mining subtopics. Using only the

contribution ranking function defined in Eq. 6.6 results in poor quality phrases such as ‘fast large.’ On the other hand,

using only the phrase quality ranking function defined in Eq. 7.15 - which we refer to here as Qual(P |z) - is also

insufficient, as it only evaluates the quality of a phrase, regardless of any entity information. Therefore, we define

a Combined ranking function for a phrase P which incorporates both the relationship between the entity E and the

phrase, as well as phrase quality:

Comb(P |z, E) = αCont(P |z, E) + (1− α)Qual(P |z) (6.7)

The value of α ∈ [0, 1] can vary. In our experiments, we empirically set α = 0.5. Table 6.3 illustrates that the

Combined ranking function yields a better list of phrases to represent the roles of the authors.

We can therefore use the Combined ranking function to discover the role of an entity in different topical com-

munities in the hierarchy. As an example, Figure 6.2 shows the roles of Christos Faloutsos and Philip S. Yu in the

Data Mining community, and its subcommunities. We also show the entity frequency for each community (EFz(E)),

which represents the estimate for the number of papers written by that author in the community.3 The sum of the en-

tity frequencies in the subcommunities do not quite add up to the entity frequency of the parent community because,

as discussed in Section 6.2.1, a document does not contribute to the child subcommunities if all of its phrases have

become too infrequent in them.

While both authors are prominent in the Data Mining community, Figure 6.2 illustrates how their roles are con-

3It so happens that our dataset contains more papers written by Philip Yu than by Christos Faloutsos, and so the entity topical community
frequencies are higher for Philip Yu.
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Table 6.3: Using phrase quality, phrase entity community contribution, and a combination of both to represent the
roles of Philip S. Yu and Christos Faloutsos in a Data Mining subcommunity

Phrase P. S. Yu C. Faloutsos P. S. Yu C. Faloutsos
Quality (Contribution) (Contribution) (Combined) (Combined)

time series data time time series nearest
indexing warping neighbor

nearest data distance nearest time
neighbor similarity neighbor warping
moving distance fast time time series moving
objects data objects
time series time moving nearest
data fast large similarity objects neighbor

search
nearest similarity time series
neighbor indexing fast large mining time series
queries
mining time series fast similarity time series distance
time series patterns patterns

trasted in that community, and even more strongly in the subcommunities. For instance, in the third (from left)

subcommunity, Philip Yu contributes work on the topics of mining frequent patterns and association rules, whereas

the contribution of Christos Faloutsos is more geared towards the topics of mining large datasets and large graphs.

As another example of role discovery, Figure 6.3 shows the role of the SIGIR venue in all 5 top level communities,

as well as the subcommunities of Machine Learning and Information Retrieval. The role of a venue in a community is

represented by those topics within the community that are published in the venue. Thus, we can see that the Machine

Learning topics that get published in SIGIR are techniques related to IR tasks such as feature selection methods that

may be used for filtering, and approaches to text categorization and classification problems.

By examining the roles of different venues within a single community, we can also gain some insight to the flavor

of each venue. As an example, Table 6.4 compares the roles of three venues - SIGIR, WWW, and ECML - in the

general IR community. While both SIGIR and WWW are usually characterized as IR venues, we can clearly see that

SIGIR plays a more broad role, publishing most of the topics present in the community, whereas WWW focuses only

on those topics that are directly related to the web. On the other hand, ECML is considered to be an ML venue, and

its contribution to the IR community is the publishing of papers on topics that use machine learning techniques. Note

that all three venues share some high-ranked phrases, illustrating how the roles of all three venues overlap in this

community. If we were to strictly label venues, and therefore the papers they publish, as belonging exclusively to one

or another community, we would not be able to discover these interesting roles.
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260.0 583.0 
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vector machines / 
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model /  
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76.6 

text 
categorization / 
text 
classification / 
document 
clustering / multi-
document 
summarization / 
naïve bayes 

160.3 

Figure 6.3: The role of the venue SIGIR in several communities and subcommunities. The estimated number of papers
published in SIGIR within each community is also shown.

Table 6.4: The roles of three venues - SIGIR, WWW, and ECML - in the general Information Retrieval community

SIGIR WWW ECML

information retrieval web search word sense disambiguation
question answering semantic web world wide web
web search search engine information extraction
natural language question answering semantic role labeling
document retrieval web pages knowledge discovery
relevance feedback world wide web query expansion
query expansion web services machine translation
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Chapter 7

Beyond Text: Constructing Hierarchical
Topical Phrases from Heterogeneous
Networks
7.1 Introduction

1 In this final chapter, we extend the work of the previous two chapters into a more robust method of construct-

ing topical hierarchies from heterogeneous information networks. Rather than first constructing a topical hierarchy

from the text component, and then using the heuristic method previously presented to mine entity roles, we now

describe a combined approach for constructing the hierarchy, which uses entity link information in addition to term

co-occurrence.

Few existing approaches for constructing topical hierarchies from text utilize link information from heterogeneous

entities that may be present in the data. Conversely, existing methods for heterogeneous network analysis and topic

modeling have demonstrated that multiple types of linked entities improve the quality of topic discovery (e.g., Net-

Clus [63]), but these methods are not designed for finding hierarchical structures (See Figure 7.1a for an example

output of NetClus). Therefore, there is no existing method that is able to construct a multi-typed topical hierarchy

from a heteregeneous network. We recursively construct a topical hierarchy where each topic is represented by ranked

lists of phrases and entities of different types. We go beyond the topical hierarchies that are constructed by analyzing

textual information alone (e.g., Figure 7.1b), and enrich the topic representation with ranked lists of heterogeneous

entities, which provides additional informative context for each topic in the hierarchy (shown in Figure 7.1c). Our

approach retains the benefits of NetClus, a recently developed technique for analyzing heterogeneous networks, but is

far more robust and well-suited to the task of topical hierarchy construction. Our unified general model is not confined

to a particular network schema, and incorporates an inference algorithm that is guaranteed to converge.

7.1.1 NetClus

As illustrated in Figure 7.2, the input to the NetClus algorithm is a heterogeneous network of star-schema. The

example network has one central object type—the star object—and four types of attribute objects (where the type

1This chapter contains materials from the following previously published work: Chi Wang, Marina Danilevsky, Jialu Liu, Nihit Desai, Heng
Ji, and Jiawei Han. Constructing Topical Hierarchies in Heterogeneous Information Networks. Proc. 2013 IEEE Int. Conf.on Data Mining
(ICDM’13), Dallas, TX, Dec. 2013. Copyright IEEE 2013. Reprinted with permission.
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(a) NetClus [63] – clusters of heterogeneous entities. Each rounded rectangle represents one cluster, containing a ranked list of
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(c) CATHYHIN – topical hierarchy of heterogeneous entities. Each node has a ranked list of phrases and two ranked entity pattern
lists

Figure 7.1: Sample output from three methods run on a computer science publication network with term, author, and venue
attributes

67



of an object is denoted by its shape and color family). Only links between a star object and an attribute object are

allowed. For example, a collection of papers may be transformed into a star schema where each paper is a star object,

and attributes such as authors, venues, and terms are attribute objects.

NetClus performs hard clustering on the star objects, and the induced network clusters consist of star objects and

their linked attribute objects. Thus, an attribute object may belong to multiple clusters, but each star object is assigned

to precisely one cluster. Next, the attribute objects within each subnetwork cluster are ranked via a PageRank-like

algorithm, which is based on the structure of the cluster. A generative model then uses the ranking information to

infer a cluster distribution for each star object. The cluster memberships of the star objects are then adjusted using

a k-means algorithm, and the ranks of attribute objects are re-calculated. Thus, the NetClus algorithm iterates over

clustering the star objects based on their inferred membership distribution (as calculated by a generative model based

on the existing ranking information), and re-ranking the attribute objects within each newly defined network cluster.

The heterogeneous nature of the attribute objects is respected during the ranking step, as only objects of the same type

are ranked together, as shown in Figure 7.2.

The iterative clustering and ranking steps of NetClus thus mutually enhance each other. The clustering step

provides a context for the ranking calculations, since the ranks of the attribute objects should vary among different

clusters (e.g., different areas of computer science). The ranking step in turn improves the quality of found clusters,

since highly ranked objects should serve as stronger indicators of cluster membership for their linked star objects.

NetClus can be naturally extended for topical hierarchy construction: after each network is clustered, each of the

induced subnetworks are then used as new input, and may thus be recursively clustered and ranked. However, several

properties of NetClus render it undesirable for the task of topical hierarchy construction:

1. Topics are represented by ranked lists of terms, and other individual attribute objects. For topics of fine

granularity in the hierarchy, this representation may be hard to interpret because single terms and entities may be

ambiguous.

2. NetClus assumes a star schema, which hinders its application to more general information networks.

3. NetClus hard clusters star objects, which are usually documents. However, a document is often related to a

mixture of topics, especially in the lower levels of a hierarchy. The forced hard clustering can thus result in lost

information, as relevant documents fail to appear in relevant subtopics, further decreasing the hierarchy’s quality.

4. The iterative algorithm used by NetClus is not guaranteed to converge. The deeper into the hierarchy, the

more severe this problem becomes because the output of one level will be input of the next level of the constructed

hierarchy.
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Figure 7.2: An illustration of the NetClus framework. (L) NetClus analyses a star schema network, where every link is between
a central object and an attribute object of some type (central objects are denoted by stars; attribute objects of the same type are
represented by the same shape and color family, with individual objects differentiated by hue). (M) The star objects are partitioned
into clusters so that each star appears in exactly one cluster. (R) Attribute objects (which may appear in multiple clusters) are
ranked within each cluster, grouped by type. NetClus iterates over these clustering (M) and ranking (R) steps, as denoted by the
two-way circular arrow symbol

U
ni

ve
rs

ity
 o

f I
lli

no
is CATHYHIN

Constructing Topical Hierarchies in Heterogeneous Information Networks
Authors: Chi Wang, Marina Danilevsky, Jialu Liu, Nihit Desai, Heng Ji, Jiawei Han

This work was funded in part by: National Science Foundation, US Army Research Lab & Network Science Collaborative Technology Alliance, Microsoft Research

WHAT IS CATHYHIN
CATHYHIN is a framework for recursively constructing a topical hierarchy where each topic is repre-
sented by ranked lists of phrases and entities of different types. We go beyond the topical hierarchies 
that are constructed by analyzing textual information alone and enrich the topic representation with 
ranked lists of heterogeneous entities, which provides additional informative context for each topic 
in the hierarchy. Our unified general model is not confined to a particular network schema. Though 
unsupervised, our model can learn the importance of links of different types automatically.
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support vector machines 85 0 0 0 85
query processing 0 212 27 12 251
Hui Xiong
SIGIR Conference
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Frequency:      Information retrieval is more frequent than cross-language information retrieval in the IR 
Exclusiveness:  Query processing is a more exclusive phrase than query in the Databases topic.
Cohesiveness:  Active learning is a more cohesive pattern than learning classification in the Machine Learning topic.
Completeness: Vector machines is not a complete phrase, but support vector machines is.

Experimental Results

Quality of DBLP and NEWS Topical Hierarchies
We perform a user study with three tasks: topic intrusion (which child topic does not belong to the 
parent topic) and phrase and entity intrusion (which phrase or entity does not belong with the 
other phrases or entities). The table shows % correct intruders identified using each approach.

Topical Pattern Mining and Ranking

Generative Model

CATHYHIN Framework Overview
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Pattern: A pattern Px of type x is a set of type-x nodes: Px = {vi

x}
Example: pattern of type ‘term’ is the set {support,vector,machines}

Topic: Every non-root topic t with parent topic Par(t) is represented by m ranked lists of patterns 
L1, . . . ,Lm where Lx = {Pi

x,t} is the sequence of patterns for type x in topic t. The subtopics of every 
non-leaf topic t in the tree are its children.

ML Topic for `term’ pattern: <learning, support vector machines, reinforcement learning, feature selection, ... >

Heterogeneous Topical Hierarchy: a tree of topics. The tree initially has one node, the root node 
(entire document collection). Any leaf node (topic) in the tree can be expanded by finding its chil-
dren (subtopics); this process is recursive as the output of a topic serves as input for its subtopics.
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DBLP (Database Area) Term-Term Term-Author Author-Author Term-Venue Author-Venue Overall

TopK -0.5228 -0.1069 0.4545 0.0348 -0.3650 -0.0761
NetClus -0.3962 0.0479 0.4337 0.0368 -0.2857 0.0260
CATHYHIN (equal weight) 0.0561 0.4799 0.6496 0.0722 -0.0033 0.3994
CATHYHIN (norm weight) -0.1514 0.3816 0.6971 0.0408 0.2464 0.3196
CATHYHIN (learn weight) 0.3027 0.6435 0.5574 0.1165 0.1805 0.5205

DBLP (20 Conferences) Term-Term Term-Author Author-Author Term-Venue Author-Venue Overall

TopK -0.4825 -0.0204 0.5466 -1.0051 -0.4208 -0.0903
NetClus -0.1995 0.5186 0.5404 0.2851 1.2659 0.4045
CATHYHIN (equal weight) 0.2936 0.8812 0.6595 0.5191 1.0466 0.6949
CATHYHIN (norm weight) 0.1825 0.8674 0.9476 0.7472 1.3307 0.7601
CATHYHIN (learn weight) 0.4964 1.0618 0.7161 1.1283 1.7511 0.9168

Phrase Venue Author Topic Phrase Location Person Topic

CATHYHIN

DBLP

0.83 0.83 1.0 1.0 0.65 0.70 0.80 0.90
CATHYHIN1 0.64 – – 0.92 0.40 0.55 0.50 0.70
CATHY 0.72 – – 0.92 0.58 – – 0.65
CATHY1 0.61 – – 0.92 0.23 – – 0.50
CATHYheur_HIN – 0.78 0.94 0.92 – 0.65 0.45 0.70
NetCluspattern 0.33 0.78 0.89 0.58 0.23 0.20 0.55 0.45
NetCluspattern_1 0.53 – – 0.58 0.20 0.45 0.30 0.40
NetClus 0.19 0.78 0.83 0.83 0.15 0.35 0.25 0.45
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Four criteria for pattern ranking using topical frequency

The topical frequency ft(P
x) of a pattern P of type x is the number of times the pattern is attributed 

to topic t. For the root node o, this is f(P). For each topic node, the topical frequency is the sum of 
sub-topical frequencies.

Node-typed and 
edge-weighted network Topical pattern mining and ranking

Recursive hierarchy construction

Topic partitioning

Evaluation metric: 
heterogeneous pointwise mutual information

where vx are the top K most probable type-x 
nodes in the given topic. HPMI is just PMI for x=y.

Number of links (and nodes) in datasets

DBLP paper titles (33k) published in 20 conferences in the areas of AI, DM, IR, DB, and NLP. 
NEWS article titles (43k) on 16 top stories from Google News. 

DBLP (Database Area) is subset of the DBLP dataset consisting only of papers published in 5 Database conferences. By using this dataset, which roughly 
represents a subtopic of the full DBLP dataset, we analyze the quality of discovered subtopics in a lower level of the hierarchy.

Learning Link Type Weights

The links between any two nodes 
can be decomposed into unit- 
weight links, each having a topic 
label which is either a subtopic z, 
or a background topic label 0.

The generative process 
of the unit-weight links

The ‘collapsed’ generative 
process of the link weights

Generative process for a topic-z link with unit weight:
1) Generate the link type (x,y) according to a multinomial distribution θ.
2) Generate the first end node u1 from the type-x ranking distribution φx,z.
3) Generate the second end node u2 from the type-y ranking distribution φy,z.

We may wish to discover topics that are biased towards certain types of links, and the bias may 
vary at different levels of the hierarchy. Links between venues and other entities may be import-
ant indicators in the top level of the hierarchy, but less useful for discovering subareas in lower 
levels (authors  in different subareas may publish in the same venue). 
We introduce a link type weight αx,y > 0 for each link type (x,y). We use these weights to 
scale a link’s observed weight up or down, so that a unit-weight link of type (x,y) in the 
original network will have a scaled weight αx,y . Thus, a link of type (x,y) is valued more 
when αx,y > 1, less when 0 < αx,y < 1, and becomes negligible as αx,y approaches 0.

Link type weight αx,y is negatively correlated with two factors
• The average link weight, which balances the scale of link 
weights of different types (e.g., a type-1 link always has X 
times greater weight than a type-2 link).
• The KL-divergence of the expected link weight distribu-
tion to the observed link weight distribution, which mea-
sures the importance of a link type in the model. The more 
the prediction diverges from the observation, the worse the 
quality of a link type.
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Probability of all observed links:

Use an EM algorithm to iteratively infer the model parameters.

Figure 7.3: An illustration of the CATHYHIN framework. (L) Step 1: CATHYHIN analyses a node-typed and edge-weighted
network, with no central star objects. (M) Step 2: A unified generative model is used to partition the edge weights into clusters
and rank single nodes in each cluster (here, node rank within each node type is represented by variations in node size). (R bottom)
Step 3: Patterns of nodes are ranked within each cluster, grouped by type.
(R top) Step 4: Each cluster is also an edge-weighted network, and is therefore recursively analyzed. The final output is a hierarchy,
where the patterns of nodes of each cluster have a ranking within that cluster, grouped by type.
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7.2 CATHYHIN Framework

This section describes our framework CATHYHIN (shown in Figure 7.3), which incorporates the two positive char-

acteristics of NetClus: the utilizing of heterogeneous link types, and the mutually enhancing clustering and ranking

steps, while overcoming the disadvantages discussed in Section 7.1.1.

Definition 6 (Heterogeneous Topical Hierarchy) A heterogeneous topical hierarchy is defined as a tree T in which

each node is a topic. The root topic is denoted as o. Every non-root topic t with parent topic Par(t) is represented

by m ranked lists of patterns L1, . . . , Lm where Lx = {P x,ti } is the sequence of patterns for type x in topic t. The

subtopics of every non-leaf topic t in the tree are its children Ct = {z ∈ T , Par(z) = t}. A pattern can appear in

multiple topics, though it will have a different ranking score in each topic.

This definition of the heterogeneous topical hierarchy addresses the first aforementioned criticism of NetClus by

representing each topic as multiple lists of ranked patterns, where each list contains patterns of objects, rather than

individual objects (e.g., phrases rather than unigrams). For instance, the topics in Figure 7.1c each contain 3 lists of

patterns.

Our approach does not restrict the network schema, and does not perform hard clustering for any objects. We

discover topics by hierarchically soft clustering the links, so that any node may be assigned to multiple topics and

subtopics. This removes the restrictions outlined in criticisms 2 and 3 of NetClus. We only require a collection of

some kind of information chunks, such as documents, so that each chunk contains multiple objects and we can mine

frequent patterns from these chunks.

Formally, every topic node t in the topical hierarchy is associated with an edge-weighted network Gt = ({V tx},

{Etx,y}), where V tx is the set of type-x nodes in topic t, and Etx,y is the set of link weights between type x and type y

nodes (x and y may be identical) in topic t. ex,y,ti,j ∈ Etx,y represents the weight of the link between node vxi of type

x and node vyj of type y. For every non-root node t 6= o, we construct a subnetwork Gt by clustering the network

GPar(t) of its parent Par(t). Gt inherits the nodes from GPar(t), but contains only the fraction of the original link

weights that belongs to the particular subtopic t. Figure 7.3 visualizes the weight of each link in each network and

subnetwork by line thickness (disconnected nodes and links with weight 0 are omitted).

If the original network naturally has a star schema, but the star type is not included in the final topic representation

(e.g., the document), we can construct a ‘collapsed’ network by connecting every pair of attribute objects which are

linked to the same star object. In the derived network, the link weight ex,y,ti,j between two nodes vxi and vyj is therefore

equal to the number of common neighbors they share in the original star-schema network.

Our framework employs a unified generative model for recursive network clustering and subtopic discovery. The

model seamlessly integrates mutually enhanced ranking and clustering while guaranteeing convergence for the infer-
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Table 7.1: Notations used in our model

Symbol Description
Gt the HIN associated with topic t
V t
x the set of nodes of type x in topic t

Et
x,y

the set of non-zero link weights of type (x, y)
in topic t

Par(t) the parent topic of topic t
Ct the set of child topics of topic t
z child topic index of topic t
m the number of node types

nx,y
the total number of links between type-x and
type-y nodes

vxi the i-th node of type x
ex,y,zi,j the link weight between vxi and vyj in topic z
φx,z the distribution over type-x nodes in topic z
φx the overall distribution over type-x nodes
ρz the total link weight in topic z
θ the distribution over link type (x, y)

αx,y the importance of link type (x, y)

ence algorithm, thus addressing the final critique of NetClus.

Our framework generates a heterogeneous topical hierarchy in a top-down, recursive way:

Step 1. Construct the edge-weighted network Go. Set t = o.

Step 2. For a topic t, cluster the network Gt into subtopic subnetworks Gz, z ∈ Ct using a generative model.

Step 3. For each subtopic z ∈ Ct, extract candidate topical patterns within each topic, and rank the patterns using

a unified ranking function. Patterns of different lengths are directly compared, yielding an integrated ranking.

Step 4. Recursively apply Steps 2 - 3 to each subtopic z ∈ Ct to construct the hierarchy in a top-down fashion.

We describe steps 2 and 3 in the following subsections.

7.2.1 Topic Discovery in Heterogeneous Information Networks

Given a topic t and the associated network Gt, we discover subtopics by performing clustering and ranking with

the network. We now describe our unified generative model and present an inference algorithm with a convergence

guarantee. We further extend our approach to allow different link types to play different degrees of importance in the

model (allowing the model to, for example, decide to rely more on term co-occurrence information than on co-author

links).

The generative model

We first introduce the basic generative model, which considers all link types to be equally important. For a given

topic t, we assume Ct contains k child topics, denoted by z = 1 . . . k. The value of k can be either specified by users
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(a) The generative process of the ‘unit-
weight’ links

(b) The ‘collapsed’ generative process of the
link weights

Figure 7.4: Two graphical representation of our generative model for links in a topic t. The models are asymptotically
equivalent.

or chosen using a model selection criterion.

In general, the network Gt contains m node types and m(m+1)
2 link types.2 Similar to NetClus, we assume each

node type x has a ranking distribution φx,z in each subtopic z ∈ Ct, such that φx,zi is the importance of node vxi in

topic z, subject to
∑
i φ

x,z
i = 1. Each node type x also has a ranking distribution φx,0 for the background topic, as

well as an overall distribution φx, where φxi is proportional to the degree of node vxi . In contrast to NetClus, we softly

partition the link weights in Gt into subtopics. We model the generation of links so that we can simultaneously infer

the partition of link weights (clustering) and the node distribution (ranking) for each topic.

To derive our model, we first assume the links between any two nodes can be decomposed into one or multiple

unit-weight links (e.g., a link with weight 2 can be seen as a summation of two unit-weight links). Later we will discuss

the case where the link weight is not an integer. Each unit-weight link has a topic label, which is either a subtopic

z ∈ Ct, or a dummy label 0, implying the link is generated by a background topic and should not be attributed to any

topic in Ct.

The generative process for a topic-z link, z ∈ Ct (or background topic link, resp.) with unit weight is as follows:

1. Generate the link type (x, y) according to a multinomial distribution θ.

2. Generate the first end node u1 from the type-x ranking distribution φx,z (or φx,0, resp.).

2We assume the network is undirected, although our model can be easily extended to directed cases.
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3. Generate the second end node u2 from the type-y ranking distribution φy,z (or φy , resp.).

Note that when generating a background topic link, the two nodes i and j are not symmetric, so that we attribute

half of it to i → j and the other half to j → i. The first end node is a background node, and can have a background

topic link with any other nodes based simply on node degree, irrespective of any topic. Highly ranked nodes in the

background topic tend to have a link distribution over all nodes that is similar to their overall degree distribution. See

Figure 7.4a for a graphical representation of the model.

With these generative assumptions for each unit-weight link, we can derive the distribution of link weight for any

two nodes (vxi , v
y
j ). If we repeat the generation of topic-z unit-weight links for ρz iterations, then the process of

generating a unit-weight topic-z link between vxi and vyj can be modeled as a Bernoulli trial with success probability

θx,yφ
x,z
i φy,zj . When ρz is large, the total number of successes ex,y,zi,j asymptotically follows a Poisson distribution

Pois
(
ρzθx,yφ

x,z
i φy,zj

)
. Similarly, the total number of background topic links ex,y,0i,j asymptotically follows a Poisson

distribution Pois
(
ρ0θx,y

φx,0
i φy

j+φ
x
i φ

y,0
j

2

)
.

One important implication due to the additive property of Poisson distribution is:

ex,y,ti,j =

k∑
z=0

ex,y,zi,j ∼ Poisson
(
θx,ys

x,y,t
i,j

)
(7.1)

where sx,y,ti,j =
∑k
z=1 ρzφ

x,z
i φy,zj + ρ0

φx,0
i φy

j+φ
x
i φ

y,0
j

2 .

This leads to a ‘collapsed’ model as depicted in Figure 7.4b. Though we have so far assumed the link weight to be

an integer, this collapsed model remains valid with non-integer link weights (due to Property 3, discussed later).

Given the model parameters, the probability of all observed links is:

p
(
{ex,y,ti,j }|θ, ρ, φ

)
=
∏
vxi ,v

y
j

(
θx,ys

x,y,t
i,j

)ex,y,t
i,j exp

(
−θx,ysx,y,ti,j

)
ex,y,ti,j !

(7.2)

We learn the parameters by the Maximum Likelihood (ML) principle: find the parameter values that maximize

the likelihood in Eq. (7.2). We use an Expectation-Maximization (EM) algorithm that can iteratively infer the model

parameters.

E-step:

êx,y,zi,j =
ex,y,ti,j ρzφ

x,z
i φy,zj∑k

c=1 ρcφ
x,c
i φy,cj + ρ0

2 (φx,0i φyj + φxi φ
y,0
j )

(7.3)

êx,y,0i→j =
ex,y,ti,j ρ0φ

x,0
i φyj

2
∑k
c=1 ρcφ

x,c
i φy,cj + ρ0(φx,0i φyj + φxi φ

y,0
j )

(7.4)
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M-step:

ρz =
∑
i,j,x,y ê

x,y,z
i,j , θx,y =

∑
i,j e

x,y,t
i,j∑

i,j,x,y e
x,y,t
i,j

(7.5)

φx,zi =
∑

j,y ê
x,y,z
i,j∑

u,j,y ê
x,y,z
u,j

, φx,0i =

∑
j,y ê

x,y,0
i→j∑

u,j,y ê
x,y,0
u→j

(7.6)

We update ê, φ, ρ in each iteration (θx,y is a constant). In the E-step, we perform the clustering by estimating ê.

In the M-step, we estimate the ranking distribution φ. Like other EM algorithms, the solution converges to a local

maximum and the result may vary with different initializations. The EM algorithm can be run multiple times with

random initializations to find the solution with the best likelihood.

The subnetwork for topic z is naturally extracted from the estimated ê (expected link weight attributed to each

topic). For efficiency purposes, we remove links whose weight is less than 1, and then filter out all resulting isolated

nodes. We can then recursively apply the same generative model to the constructed subnetworks until the desired

hierarchy is constructed.

Learning link type weights

The generative model described above does not differentiate between the importance of different link types. How-

ever, we may wish to discover topics that are biased towards certain types of links, and the bias may vary at different

levels of the hierarchy. For example, in the computer science domain, the links between venues and other entities may

be more important indicators than other link types in the top level of the hierarchy; however, these same links may be

less useful for discovering subareas in the lower levels (e.g., authors working in different subareas may publish in the

same venue).

We therefore extend our model to capture the importance of different link types. We introduce a link type weight

αx,y > 0 for each link type (x, y). We use these weights to scale a link’s observed weight up or down, so that a

unit-weight link of type (x, y) in the original network will have a scaled weight αx,y . Thus, a link of type (x, y) is

valued more when αx,y > 1, less when 0 < αx,y < 1, and becomes negligible as αx,y approaches 0.

When the link type weights αx,y are specified for our model, the EM inference algorithm is unchanged, with the

exception that all the ex,y,ti,j should be replaced by αx,ye
x,y,t
i,j . When all αx,y’s are equal, the weight-learning model

reduces to the basic model. Most of the time, the weights of the link types will not be specified explicitly by users,

and must therefore be learned from the data.

We first note an important property of our model, justifying our previous claim that link weights need not be

integers.

Property 3 (Scale-invariant) The EM solution is invariant to a constant scaleup of all the link weights.
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Due to the scale-invariant property of the link weights, we can assume that w.l.o.g., the product of all the non-zero

link weights remains invariant before and after scaling:

∏
ex,y,t
i,j >0

ex,y,ti,j =
∏

ex,y,t
i,j >0

αx,ye
x,y,t
i,j (7.7)

which reduces to
∏
x,y α

nx,y
x,y = 1, where nx,y = |Etx,y| is the number of non-zero links with type (x, y). With this

contraint, we maximize the likelihood p({ex,y,ti,j }|θ, ρ, φ, α):

max
∏
vxi ,v

y
j

(θx,ys
x,y,t
i,j )αx,ye

x,y,t
i,j exp(−θx,ysx,y,ti,j )

(αx,ye
x,y,t
i,j )!

(7.8)

s.t.
∏
x,y

αnx,y
x,y = 1, αx,y > 0 (7.9)

With Stirling’s approximation n! ∼ (ne )n
√

2πn, we transform the log likelihood:

max
∑
vxi ,v

y
j

(
αx,ye

x,y,t
i,j log(θx,ys

x,y,t
i,j )− θx,ysx,y,ti,j (7.10)

−αx,yex,y,ti,j [log(αx,ye
x,y,t
i,j )− 1]− 1

2
log(αx,ye

x,y,t
i,j )

)
s.t.
∑
x,y

nx,y logαx,y = 0 (7.11)

Using the Langrange multiplier method, we can find the optimal value for α when the other parameters are fixed:

αx,y =

[∏
x,y

(
1

nx,y

∑
i,j e

x,y,t
i,j log

ex,y,t
i,j

θx,ys
x,y,t
i,j

)nx,y
] 1∑

x,y nx,y

1
nx,y

∑
i,j e

x,y,t
i,j log

ex,y,t
i,j

θx,ys
x,y,t
i,j

(7.12)

With some transformation of the denominator:

βx,y = nx,y
∑
i,j

ex,y,ti,j log
ex,y,ti,j

θx,ys
x,y,t
i,j

(7.13)

=

∑
i,j e

x,y,t
i,j

nx,y

∑
i,j

ex,y,ti,j∑
i,j e

x,y,t
i,j

log
ex,y,ti,j /

∑
i,j e

x,y,t
i,j

θx,ys
x,y,t
i,j /

∑
i,j e

x,y,t
i,j

we can see more clearly that the link type weight is negatively correlated with two factors: the average link weight and

the KL-divergence of the expected link weight distribution to the observed link weight distribution. The first factor is

used to balance the scale of link weights of different types (e.g., a type-1 link always has X times greater weight than a
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type-2 link). The second factor measures the importance of a link type in the model. The more the prediction diverges

from the observation, the worse the quality of a link type.

So we have the following iterative algorithm for optimizing the joint likelihood:

1. Initialize all the parameters.

2. Fixing α, update ρ, θ, φ using EM equations (7.3)-(7.6), with all the ex,y,ti,j replaced by αx,ye
x,y,t
i,j .

3. Fixing ρ, θ, φ, update α using Eq. (7.12).

4. Repeat steps 2) and 3) until the likelihood converges.

In each iteration, the time complexity isO(
∑
x,y nx,y), i.e., linear to the total number of non-zero links. The likelihood

is guaranteed to converge to a local optimum. Once again, a random initialization strategy can be employed to choose

a solution with the best local optimum.

7.2.2 Topical Pattern Mining and Ranking

Having discovered the topics using our generative model, we can now identify the most representative topical patterns

for each topic. This is done in two stages: topical pattern mining and ranking the mined patterns. These stages are

nearly identical to those described in the original CATHY framework, but we present them here for completeness.

Pattern mining in each topic

A pattern P x of type x is a set of type-x nodes: P x = {vxi }. For example, a pattern of a ‘term’ type is a set

of unigrams that make up a phrase, such as {support, vector,machine} (or ‘support vector machine’ for simpler

notation). A more general definition of a pattern can involve mixed node types within one pattern, but is beyond the

scope of this paper.

A pattern P that is regarded to be representative for a topic t must first and foremost be frequent in the topic. The

frequency of a pattern f(P ) is the number of documents (or other meaningful information chunks) that contain all

the nodes in the pattern (or the number of star objects that are linked to all the nodes). The pattern must also have

sufficiently high topical frequency in topic t.

Definition 7 (Topical Frequency) The topical frequency ft(P ) of a pattern is the number of times the pattern is at-

tributed to topic t. For the root node o, fo(P ) = f(P ). For each topic node with subtopicsCt, ft(P ) =
∑
z∈Ct fz(P )

(i.e., topical frequency is the sum of sub-topical frequencies.)

We estimate the topical frequency of a pattern based on two assumptions: i) For a type-x topic-t pattern of length

n, each of the n nodes is generated with the distribution φx,t, and ii) the total number of topic-t patterns is proportional
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to ρt.

ft(P
x) = fPar(t)(P

x)
ρt
∏
vxi ∈Px φ

x,t
i∑

z∈CPar(t) ρz
∏
vxi ∈Px φ

x,z
i

(7.14)

Both φ and ρ are learned from the generative model as described in Section 7.2.1.

To extract topical frequent patterns, all frequent patterns can first be mined using a pattern mining algorithm such

as FP-growth [27], and then filtered given some minimal topical frequency threshold minsup.

Pattern ranking in each topic

The same four criteria for judging the quality of a pattern are used:

• Frequency – A representative pattern for a topic should have sufficently high topical frequency.

• Purity – A pattern is pure in a topic if it is only frequent in this topic and not frequent in other topics. Example:

‘query processing’ is more pure than ‘query’ in the Databases topic.

• Phraseness – A group of entities should be combined together as a pattern (a ‘phrase’) if they co-occur sig-

nificantly more often than the expected co-occurrence frequency given the chances of occurring independently.

Example: ‘active learning’ is a better pattern than ‘learning classification’ in the Machine Learning topic.

• Completeness – A pattern is not complete if it rarely occurs without the presence of a longer pattern. Example:

‘support vector machines’ is a complete pattern, whereas ‘vector machines’ is not because ‘vector machines’ is

almost always accompanied by ‘support’ in occurrence.

The pattern ranking function should take these criteria into consideration. The ranking function must also be able

to directly compare patterns of mixed lengths, such as ‘classification,’ ‘decision trees,’ and ‘support vector machines.’

Let Nt be the number of documents that contain at least one frequent topic-t pattern, T a subset of CPar(t) that

contains t, and NT the number of documents that contain at least one frequent topic-z pattern for some topic z ∈ T .

We use the following ranking function that satisfies all these requirements:

rt(P ) =


0, if ∃P ′ ) P, ft(P

′) ≥ γft(P )

p(P |t)
(

log p(P |t)
maxT p(P |T ) + ω log p(P |t)

pindep(P |t)

)
o.w.

(7.15)

where p(P |t) = ft(P )
Nt

is the occurrence probability of a pattern P , measuring frequency; pindep(P |t) =
∏
v∈P

ft(v)
Nt

is the probability of independently seeing every node in pattern P , measuring purity; and p(P |T ) =
∑

t∈T ft(P )

NT
is the

probability of phrase P conditioned on a mixture T of t and other sibling topics, measuring phraseness. Incomplete

patterns are filtered if there exists a superpattern P ′ that has sufficiently high topical frequency compared to P . γ ∈

[0, 1] is a parameter that controls the strictness of the completness criterion, where a larger value of γ deems more
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phrases to be complete. Complete phrases are ranked according to a combination of the other three criteria. Frequency

plays the most important role. The weight between purity and phraseness is controled by a parameter ω ∈ [0,+∞),

with larger values of ω biasing the ranking more heavily towards phraseness.

7.3 Experiments

We evaluate the performance of our proposed method on two datasets (see Table 7.4 for summary statistics of the

constructed networks):

• DBLP. We collected 33,313 recently published computer science papers from DBLP3. We constructed a hetero-

geneous network with three node types: term (from paper title), author and venue, and 5 link types: term-term,

term-author, term-venue, author-author and author-venue.4

• NEWS. We crawled 43,168 news articles on 16 top stories from Google News,5 and ran an information extraction

algorithm [37] to extract entities. We constructed a heterogeneous network with three node types: term (from article

title), person and location, and 6 link types: term-term, term-person, term-location, person-person, person-location

and location-location.

Our recursive framework relies on two key steps: subtopic discovery and topical pattern mining. The major

contribution of this paper is the subtopic discovery step. Hence, our evaluation is twofold: i) we evaluate the efficacy

of subtopic discovery given a topic and its associated heterogeneous network; and ii) we perform several ‘intruder

detection’ tasks to evaluate the quality of the constructed hierarchy based on human judgment.

7.3.1 Efficacy of Subtopic Discovery

We first present a set of experiments designed to evaluate just the subtopic discovery step (Step 2 in Section 7.2).

Evaluation Measure. We extend the pointwise mutual information (PMI) metric in order to measure the quality of our

multi-typed topics. The metric of pointwise mutual information PMI has been proposed in [52] as a way of measuring

the semantic coherence of topics. It is generally preferred over other quantitative metrics such as perplexity or the

likelihood of held-out data [64]. In order to measure the quality of our multi-typed topics, we extend the definition of

PMI as follows:
3We chose papers published in 20 conferences related to the areas of Artificial Intelligence, Databases, Data Mining, Information Retrieval,

Machine Learning, and Natural Language Processing from http://www.dblp.org/
4As a paper is always published in exactly one venue, there can naturally be no venue-venue links.
5The 16 topics chosen were: Bill Clinton, Boston Marathon, Earthquake, Egypt, Gaza, Iran, Israel, Joe Biden, Microsoft, Mitt Romney, Nuclear

power, Steve Jobs, Sudan, Syria, Unemployment, US Crime.
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Table 7.2: Heterogeneous pointwise mutual information in DBLP (20 Conferences and Database area)

DBLP (Database Area) T-T T-A A-A T-V A-V Overall

TopK -0.5228 -0.1069 0.4545 0.0348 -0.3650 -0.0761
NetClus -0.3962 0.0479 0.4337 0.0368 -0.2857 0.0260
CATHYHIN (equal weight) 0.0561 0.4799 0.6496 0.0722 -0.0033 0.3994
CATHYHIN (norm weight) -0.1514 0.3816 0.6971 0.0408 0.2464 0.3196
CATHYHIN (learn weight) 0.3027 0.6435 0.5574 0.1165 0.1805 0.5205

DBLP (20 Conferences) T-T T-A A-A T-V A-V Overall

TopK -0.4825 -0.0204 0.5466 -1.0051 -0.4208 -0.0903
NetClus -0.1995 0.5186 0.5404 0.2851 1.2659 0.4045
CATHYHIN (equal weight) 0.2936 0.8812 0.6595 0.5191 1.0466 0.6949
CATHYHIN (norm weight) 0.1825 0.8674 0.9476 0.7472 1.3307 0.7601
CATHYHIN (learn weight) 0.4964 1.0618 0.7161 1.1283 1.7511 0.9168

For each topic, PMI calculates the average relatedness of each pair of the words ranked at top-K:

PMI(w,w) =
2

K(K − 1)

∑
1≤i<j≤K

log
p(wi, wj)

p(wi)p(wj)
(7.16)

where PMI ∈ [−∞,∞], and w are the top K most probable words of the topic. PMI = 0 implies that these words

are independent; PMI > 0 (< 0) implies they are overall positively (negatively) correlated.

However, our multi-typed topic contains not only words, but also other types of entities. So we define heteroge-

neous pointwise mutual information as:

HPMI(vx,vy) =


2

K(K−1)
∑

1≤i<j≤K log
p(vxi ,v

y
j )

p(vxi )p(v
y
j )

x = y

1
K2

∑
1≤i,j≤K log

p(vxi ,v
y
j )

p(vxi )p(v
y
j )

x 6= y

(7.17)

where vx are the top K most probable type-x nodes in the given topic. When x = y, HPMI reduces to PMI. The

HPMI-score for every link type (x, y) is calculated and averaged to obtain an overall score. We set K = 20 for all

node types.6

Methods for Comparison:

• CATHYHIN (equal weight) – The weight for every link type is set to be 1.

• CATHYHIN (learn weight) – The weight of each link type is learned, as described in Section 7.2.1. No

parameters need hand tuning.

• CATHYHIN (norm weight) – The weight of each link type is explicitly set as: αx,y = 1∑
i,j e

x,y
i,j

. This is a

6The one exception is venues, as there are only 20 venues in the DBLP dataset, so we set K = 3 in this case.
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Table 7.3: Heterogeneous pointwise mutual information in NEWS (16 topics collection and 4 topics subset)

NEWS (4 topics subset) T-T T-P P-P T-L P-L L-L Overall

TopK -0.2479 0.1671 0.0716 0.0787 0.2483 0.3632 0.1317
NetClus 0.1279 0.3835 0.2909 0.3240 0.4728 0.4271 0.3575
CATHYHIN (equal weight) 1.0471 0.7917 0.4902 0.8506 0.6821 0.6586 0.7610
CATHYHIN (norm weight) 0.7975 0.8825 0.5553 0.8682 0.8077 0.7346 0.8023
CATHYHIN (learn weight) 0.9935 0.9354 0.5142 0.9784 0.7389 0.7645 0.8434

NEWS (16 topics) T-T T-P P-P T-L P-L L-L Overall

TopK -1.7060 -0.8663 -0.8462 -1.0238 -0.5665 -0.4578 -0.8783
NetClus -0.3847 0.0943 0.0313 -0.1114 0.1291 0.1376 -0.0274
CATHYHIN (equal weight) 0.7804 1.0170 0.8393 0.8354 0.9467 0.6382 0.8749
CATHYHIN (norm weight) 0.8579 1.1143 0.9086 0.8530 0.9624 0.7143 0.9284
CATHYHIN (learn weight) 0.9234 1.1109 0.7966 0.9731 0.9718 0.6965 0.9500

heuristic normalization which forces the total weight of the links for each link type to be equal.

• NetClus – The current state-of-the-art clustering and ranking method for heterogeneous networks. We use the

implementation in Deng et al. [17]. The smoothing parameter λS is tuned by a grid search in [0, 1]. Note that

the link type weight learning method for CATHYHIN does not apply to NetClus because NetClus is not a single

unified model.

• TopK – Select the top K nodes from each type to form a pseudo topic. This method serves as a baseline value

for the proposed HPMI metric.

Experiment Setup. We discover the subtopics of four datasets:

• DBLP (20 conferences) – Aforementioned DBLP dataset.

• DBLP (database area) – A subset of the DBLP dataset consisting only of papers published in 5 Database con-

ferences. By using this dataset, which roughly repesents a subtopic of the full DBLP dataset, we analyze the

quality of discovered subtopics in a lower level of the hierarchy.

• NEWS (16 topics) – Aforementioned NEWS dataset.

• NEWS (4 topic subset) – A subset of the NEWS dataset limited to 4 topics, which center around different types

of entities: Bill Clinton, Boston Marathon, Earthquake, Egypt.

Experiment Results. All the methods finish in 1.5 hours for these datasets. As seen in Tables 7.2 and 7.3, our

generative model consistently posts a higher HPMI score than NetClus (and TopK) across all links types in every

dataset. Although NetClus HPMI values are better than the TopK baseline, the improvement of our best performing

method - CATHYHIN (learn weight) - over the TopK baseline are better than the improvement posted by NetClus by
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factors ranging from 2 to 5.8. Even the improvement over the TopK baseline of CATHYHIN (equal weight), which

considers uniform link type weights, is better than the improvement posted by NetClus by factors ranging from 1.6 to

4.6.

CATHYHIN with learned link type weights consistently yields the highest overall HPMI scores, although CATHY-

HIN with normalized link type weights sometimes shows a slightly higher score for particular link types (e.g., Author-

Author for both DBLP datasets, and Person-Person for both NEWS datasets). CATHYHIN (norm weight) assigns a

high weight to a link type whose total link weights were low in the originally constructed network, pushing the discov-

ered subtopics to be more dependent on that link type. Normalizing the link type weights does improve CATHYHIN

performance in many cases, as compared to using uniform link type weights. However, this heuristic determines the

link type weight based solely on their link density. It can severely deteriorate the coherence of dense but valuable link

types, such as Term-Term in both DBLP datasets, and rely too heavily on sparse but uninformative entities, such as

Venues in the Database subtopic of the DBLP dataset.

We may conclude from these experiments that CATHYHIN’s unified generative model consistently outperforms

the state-of-the-art heterogeneous network analysis technique NetClus. In order to generate coherent, multi-typed

topics at each level of a topical hierarchy, it is important to learn the optimal weights of different entity types, which

depends on the link type density, the granularity of the topic to be partitioned, and the specific domain.

Table 7.4: # Links in our datasets

DBLP
(# Nodes)

Term
(6,998)

Author
(12,886)

Venue
(20)

Term 693,132 900,201 104,577
Author – 156,255 99,249

NEWS
(# Nodes)

Term
(13,129)

Person
(4,555)

Location
(3,845)

Term 686,007 386,565 506,526
Person – 53,094 129,945
Location – – 85,047

7.3.2 Topical Hierarchy Quality

Our second set of evaluations assesses the ability of our method to construct a hierarchy of multi-typed topics that

human judgement deems to be high quality. We generate and analyze multi-typed topical hierarchies using the DBLP

dataset (20 conferences) and the NEWS dataset (16 topics collection).

Experiment Setup. As in the evaluation of the original CATHY framework, we adapt the same two tasks from Chang

et al. [8], who were the first to explore human evaluation of topic models. Each task involves a set of questions asking
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Table 7.5: Results of Intruder Detection tasks (% correct intruders identified)

DBLP NEWS

Phrase Venue Author Topic Phrase Location Person Topic

CATHYHIN 0.83 0.83 1.0 1.0 0.65 0.70 0.80 0.90
CATHYHIN1 0.64 – – 0.92 0.40 0.55 0.50 0.70
CATHY 0.72 – – 0.92 0.58 – – 0.65
CATHY1 0.61 – – 0.92 0.23 – – 0.50
CATHYheur HIN – 0.78 0.94 0.92 – 0.65 0.45 0.70
NetCluspattern 0.33 0.78 0.89 0.58 0.23 0.20 0.55 0.45
NetCluspattern 1 0.53 – – 0.58 0.20 0.45 0.30 0.40
NetClus 0.19 0.78 0.83 0.83 0.15 0.35 0.25 0.45

humans to discover the ‘intruder’ object from several options. Three annotators manually completed each task, and

their evaluations scores were pooled.

The first task is Phrase Intrusion, which evaluates how well the hierarchies are able to separate phrases in different

topics. Each question consists of X (X = 5 in our experiments) phrases; X − 1 of them are randomly chosen from

the top phrases of the same topic and the remaining phrase is randomly chosen from a sibling topic. The second task is

Entity Intrusion, a variation that evaluates how well the hierarchies are able to separate entities present in the dataset in

different topics. For each entity type, each question consists of X entity patterns; X − 1 of them are randomly chosen

from the top patterns of the same topic and the remaining entity pattern is randomly chosen from a sibling topic. This

task is constructed for each entity type in each dataset (Author and Venue in DBLP; Person and Location in NEWS).

The third task is Topic Intrusion, which tests the quality of the parent-child relationships in the generated hierarchies.

Each question consists of a parent topic t andX candidate child topics. X−1 of the child topics are actual children of

t in the generated hierarchy, and the remaining child topic is not. Each topic is represented by its top 5 ranked patterns

of each type - e.g., for the NEWS dataset, the top 5 phrases, people, and locations are shown for each topic.

For each question, human annotators select the intruder phrase, entity, or subtopic. If they are unable to make

a choice, or choose incorrectly, the question is marked as a failure. The instructions remained the same as those

used in the original CATHY studies, and complete set of instructions for the tasks can be found in Appendix C (the

instructions for Entity Intrusion are identical to those for Phrase Intrusion.)

Methods for Comparison:

• CATHYHIN – As defined in Section 7.2

• CATHYHIN1 – The pattern length of text and every entity type is restricted to 1.

• CATHY – As defined in Chapter 5, the hierarchy is constructed only from textual information.

• CATHY1 – The phrase length is restricted to 1.
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• CATHYheuristic HIN – The method presented in the previous chapter, which uses a heuristic entity ranking

method based on the textual hierarchy generated by CATHY, and the original links in the network. Since

neither CATHY nor CATHY1 provides topical ranks for entities, we use this method to have a comparison for

the Entity Intrusion task.

• NetCluspattern – NetClus is used for subtopic discovery, followed by the topical mining and ranking method of

CATHYHIN, as described in Section 7.2.2 (this can also be thought of CATHYHIN, where Step 2 is replaced

by NetClus).

• NetCluspattern 1 – Equivalent to NetCluspattern with the pattern length of text and every entity type restricted to

1.

• NetClus – As defined in [63].

The pattern mining and ranking parameters for both CATHY and CATHYHIN are set to be minsup = 5, ω =

γ = 0.5. The optimal smoothing parameter for NetClus is λS = 0.3 and 0.7 in DBLP and NEWS respectively.

Table 7.5 displays the results of the intruder detection tasks. For the Entity Intrusion task on the DBLP dataset,

we restricted the entity pattern length to 1 in order to generate meaningful questions. This renders the methods

CATHYHIN1 and NetCluspattern 1 equivalent to CATHYHIN and NetCluspattern respectively, so we omit the former

methods from reporting.

Experiment Results. The Phrase Intrusion task performs much better when phrases are used rather than unigrams,

for both CATHYHIN and CATHY, on both datasets. The NEWS dataset exhibits a stronger preference for phrases,

as opposed to the DBLP dataset, which may be due to the fact that the terms in the NEWS dataset are more likely

to be noisy and uninformative outside of their context, whereas the DBLP terms are more technical and therefore

easier to interpret. This characteristic may also help explain why the performance of every method on DBLP data is

consistently higher than on NEWS data. However, neither phrase mining and ranking nor unigram ranking can make

up for poor performance during the topic discovery step, as seen in the three NetClus variations. Therefore, both

phrase representation and high quality topics are necessary for good topic interpretability.

For the Entity Intrusion task, all of the relevant methods show comparable performance in identifying Author and

Venue intruders in the DBLP dataset (though CATHYHIN is still constistently the highest). Since the DBLP dataset

is well structured, and the entity links are highly trustworthy, identifying entities by topic is likely easier. However,

the entities in the NEWS dataset were automatically discovered from the data, and the link data is therefore noisy

and imperfect. CATHYHIN is the most effective in identifying both Location and Person intruders. Once again, both

better topic discovery and improved pattern representations are responsible for CATHYHIN’s good results, and simply

enhancing the pattern representations, whether for CATHY or NetClus, cannot achieve competitive performance.
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Table 7.6: The ‘Egypt’ topic and the least sensible subtopic, as generated by three methods (only Phrases and Locations are
shown)

CATHYHIN CATHYheuristic HIN NetCluspattern

{egypt; egypts; death
toll; morsi} / {Egypt;
Egypt Cairo; Egypt Is-
rael; Egypt Gaza}

{egypt; egypts morsi;
egypt imf loan; egypts
president} / {Egypt;
Cairo; Tahrir Square;
Port Said}

{bill clinton; power nu-
clear; rate unemployment;
south sudan} / {Egypt
Cairo; Egypt Coptic; Israel
Jerusalem; Libya Egypt}

↓ ↓ ↓

{death toll; egyptian;
sexual harassment; egypt
soccer} / {Egypt Cairo;
Egypt Gaza; Egypt Is-
rael}

{supreme leader;
army general sex;
court; supreme court}
/ {US; Sudan; Iran;
Washington}

{egypts coptic pope;
egypts christians; obama
romney; romney cam-
paign} / {Egypt Cairo;
Egypt Coptic; Israel
Jerusalem; Egypt}

CATHYHIN performs very well in the Topic Intrusion task on both datasets. Similar to the Phrase Intrusion task,

both CATHYHIN and CATHY yield equally good or better result when phrases and entity patterns are mined, rather

than just terms and single entities. The fact that CATHYHIN always outperforms CATHY demonstrates that utilizing

entity link information is indeed helpful for improving topical hierarchy quality. As a worst-case study, Table 7.6 illus-

trates three representations of the topic ‘Egypt’ (one of the 16 top stories in NEWS dataset), each with its least com-

prehensible subtopic. The locations found within the CATHYHIN subtopic are sensible. However, CATHYheuristic HIN

first constructs phrase-represented topics from text, and then uses entity link information to rank entities in each topic.

Thus the entities are not assured to fit well into the constructed topic, and indeed, the CATHYheuristic HIN subtopic’s

locations are not reasonable given the parent topic. Finally, NetCluspattern conflates ‘Egypt’ with several other topics,

and the pattern representations can do little to improve the topic interpretability.

In all three intruder detection tasks on both datasets, CATHYHIN consistently outperforms all other methods,

showing that an integrated heterogeneous model consistently produces a more robust hierarchy which is more easily

interpreted by human judgement.
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Chapter 8

Conclusions

The outcome of any serious research can only be to make two questions grow where only one grew before.

(Thorstein Veblen)

8.1 Conclusions of the Dissertation

In this dissertation, we introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical

keyphrase generation and ranking on collections of short texts. By altering the steps in the traditional methods of

unsupervised keyphrase extraction, KERT was able to directly compare phrases of different lengths, resulting in a nat-

ural integrated ranking of mixed-length keyphrases. The effectiveness of KERT was demonstrated on two real world

short document collections, yielding over 50% improvement over a baseline method according to human judgement

and over 20% improvement according to mutual information.

We next adapted KERT for collections of longer text, outside of the scientific domain. We demonstrated the

robustness of the KERT framework by easily altering the first step of the framework to use a topical assignment

method which was better suited to a different dataset. We also showed the effectiveness of KERT on medium-length

text as well as short, requiring only a small additional step of breaking text into windows after the topical assignment

step is completed. The modular nature of KERT allows us to keep documents intact when performing the topic

assignment step, ensuring that the relationships between unigrams within the same document are reflected by the

model, information which would be lost if the documents had to be separated into windows from the very beginning.

On the other hand, the simple and efficient pattern mining technique used in KERT yields the same result as using

time- and information-intensive language-based processes such as chunking in order to discover good quality phrases.

A new, task-centric evaluation of algorithm performance was also presented, effectively demonstrating the quality

of the KERT framework in assisting with important and subjective classification-style tasks. Finally, we show that

KERT’s runtime is efficient compared to other phrase-generating approaches.

The next step was to move beyond a flat set of topics and introduce CATHY (Constructing a Topical HierarchY),

a phrase-centric framework for topical hierarchy generation via recursive clustering and ranking. The process of topic
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assignment underwent a serious transformation in order to be able to successfully generate topics where where each

topic is represented by a ranked list of topical phrases, such that a child topic is a subset of its parent topic. It is very

difficult to use the output of a topic model over a dataset to split that dataset into subsets and proceed to discover the

subtopics present in those subsets. We therefore created a graph-based algorithm which transformed the text into a

term co-occurence graph, and the topic assignment problem into one of link clustering. However, in keeping with

our human-centric focus, we still ensured that every topic and subtopic could be represented as a high-quality list

of mixed-length phrases. Both qualitative and quantitative evaluations against several hierarchy-generating methods

show that CATHY is able to generate a much higher quality topical hierarchy from a collection of short texts.

The following chapter explored a further application of the CATHY framework to mine entity roles in topical

communities, such as the role of an author in a research community, or the contribution of a user to a social network

community organized around similar interests. In particular, we demonstrate our method on a bibliographic dataset,

which we use to discover the roles of authors and publication venues in the context of the hierarchical topical commu-

nities. Finally, the penultimate chapter united the aims of chapters 5 and 6 by introducing CATHY HIN (Constructing

a Topical HierarchY from a Heterogeneous Information Network), which is both able to construct a hierarchy and

incoporate non-textual information during the construction. Using entity link information (e.g., terms are related via

being used by the same author) improves the quality of the phrases in the constructed hierarchy, such that the topics

generated by CATHY HIN are found to be slight better than those generated by CATHY.

8.2 Future Research Needs

There will never stop being a need for algorithms which generate results that are interpretable to humans. There will

also likely never be a perfect way to evaluate the quality of these results. This dissertation has barely touched the sur-

face of the problem of evaluating results aimed at human judgement, and there is a great need for more research in this

direction. In particular, task-centric evaluation is a promising direction to explore, since the goal of these approaches

is to improve the quality of human tasks of browsing and analyzing large collections of topical information. Datasets

which naturally lend themselves to well-defined tasks, such as the Goodreads dataset and the task of characterizing

the genre of a book, will hopefully become more widely and easily available.

This dissertation also leaves unsolved the natural next step for CATHY of working on longer texts. KERT em-

ployed a relatively simple and successful approach of breaking text into windows following the initial step of topic

assignment (an approach which in itself merits further careful study, since we hypothesize that the ideal breaking

technique might vary for text collections from different domains.) However, the term co-occurrence graph constructed

by CATHY would be too noisy if used directly on a long document, since it would connect terms whose semantic dis-
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tance is too great. On the other hand, simply breaking the long text into short windows prior to constructing the term

co-occurrence graph loses information that does connect terms which are present in the same document. A formal-

ized approach to adapting CATHY (and CATHY HIN) to collections that have longer text components is undoubtably

necessary.

All of the frameworks presented in this dissertation would benefit from working with high quality entity extraction

algorithms. Identifying and extracting entities from text is a complex and widely-studied area. A good entity extrac-

tion algorithm would allow CATHY and CATHY HIN to work with better quality networking with text components,

because the links between documents and the entities present in them would be found to be more trustworthy. Sim-

ilarly, entity disambiguation algorithms (ones which discover that ‘POTUS’ and ‘Barack Obama’ refer to the same

individual - at least, at the time of the writing of this dissertation) would improve the quality of the network datasets

for CATHY and CATHY HIN. However, as seen in the sample results shown in Chapter 4, KERT could also greatly

benefit from identifying entity information in some datasets, such as the names of authors or literary characters in the

Goodreads dataset, differentiating them from actual phrases found in the text.

Overally, we hope that this dissertation has in some small way contributed to the understanding of generating top-

ical phrases from document collections, such as book descriptions, or from networks with text and entity components,

such as bibliographic data. We also hope that by keeping a human-centric orientation in mind while developing the

presented techniques, we will encourage future research that will continue to help people with the many difficult,

subjective, and confusing information tasks that will continue to face humanity.
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Appendix A

Instructions for KERT User Study on
DBLP Dataset

The following are the instructions of the user study presented in Chapter 3, which was distributed to participants as an

Excel file.

Computer Science Topical Keyphrase Survey - Phrase Quality

Thank you for your interest! This survey is part of a research project studying the quality of topical keyphrases as

generated by various algorithms. It is being conducted by Marina Danilevsky (danilev1@illinois.edu) and Chi Wang

(chiwang1@illinois.edu), graduate students in the Data Mining group under Dr. Jiawei Han, in the Department of

Computer Science at UIUC. Please feel free to contact us if you have any questions.

If you volunteer to participate and complete this survey, you will receive $5!

This survey will present 5 collections of keyphrases in 5 tabs, where each keyphrase collection represents one of

the following topics in the area of computer science: (1) Machine Learning, (2) Databases, (3) Data Mining, and (4)

Information Retrieval. For each topic, you will be asked to evaluate the list of keyphrases on a scale of 1-5 based on

the quality of the keyphrase.

A high quality keyphrase will exhibit all 4 of the following characteristics:

• Coverage: A high quality topical keyphrase should be representative of the topic, and provide good coverage of

lots of work done in that topic. For example, “information retrieval” has better coverage than “cross-language

information retrieval” in the Information Retrieval topic, because “information retrieval” is more general and

more frequent in that topic, whereas “cross-language information retrieval” is more specific and less frequent in

that topic.

• Purity: A high quality keyphrase should be strongly associated with only that topic, and not associated with the

other topics. For example, “query processing” is more pure than “query” in the Database topic, since “query” is

more often found in the other topics such as Information Retrieval, whereas “query processing” is more specific

to the Database topic.

• Phraseness: A high quality keyphrase should be a phrase that makes sense in that topic, made up of unigrams
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which frequently co-occur in that topic. For example, “learning classification” is not a very good phrase in the

Machine Learning topic, because although “learning” and “classification” both occur often in that topic, they do

not co-occur often. On the other hand, “active learning” is a very good phrase in the Machine Learning topic.

• Completeness: A high quality keyphrase should be a complete phrase, rather than an incomplete subset of a

longer phrase. For example, “vector machines” is not a complete phrase in the Machine Learning topic, because

it is almost always encountered as a subset of the phrase “support vector machines,” which is a complete phrase.

Phrases which exhibit all of these characteristics for the given topic should be ranked higher. Phrases which exhibit

only some of these characteristics should be ranked lower.

For each topic, the keyphrases have been generated using multiple approaches, and are presented in completely

random order. You are therefore asked to carefully evaluate each keyphrase independently. Please give every phrase a

score! However do not spend more than a few seconds on each question.

This part of the survey consists of 4 tabs, labeled 3.1 - 3.4. On each tab, you will be asked to evaluate the quality

of keyphrases for one of the topics. The topic will be specified at the top of the page. Please proceed through the tabs

in order.

When you have completed this survey, please save this file to record your responses to this survey, and email this

file to either Marina (danilev1@illinois.edu) or Chi (chiwang1@illinois.edu). We will then contact you to provide you

with your reward of $5.
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Appendix B

Instructions for KERT User Studies on
Goodreads Dataset

The following are the instructions of the two user studies presented in Chapter 4, which were administered using the

Amazon Mechanical Turk Platform. A HIT for these studies consisted of 9 sets of topical phrases (one set per genre,

per algorithm) and either a genre name, such as ‘Humor’, for the Genre Characterization study, or a book description

for the Book Characterization study. Each user received $0.30 per HIT as remuneration.

Instructions for the Genre Characterization Study

You will be asked to read several genre descriptions. You will then evaluate how well each genre desription charac-

terizes a given genre. Each genre description is a set of words of phrases, describing a broad class of books (a genre)

Each genre description has been generated by a particular computer algorithm. We want to understand which of these

algorithms are better at generating genre descriptions.

A Good (rating a 5) Genre Description is not too narrow (could only describe 1 or 2 books), and not too general

(could describe any book)

Read through each genre description. Rate each genre description on how well it characterizes the genre from 1

(worst) to 5 (best). You can rate more than one genre description as being good, and more than one as being bad.

Choose the best rating for each description, regardless of any other rating you put down.

Acceptance Criteria: To be completly transparent, the following criteria will be used to determine which HITs are

approved and rejected:

• All questions must be answered.

• ALL descriptions should NOT be the same score (many responses can have the same score, but if all responses

are the same the HIT will be rejected)

Instructions for the Book Characterization Study

You will be asked to read a book description and several genre descriptions. You will then evaluate how well each

genre desription characterizes this book. Each genre description is a set of words of phrases, describing a broad
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class of books (a genre). Each genre description has been generated by a particular computer algorithm. We want to

understand which of these algorithms are better at generating genre descriptions. You need NOT have read this book

to complete this HIT.

A Good (rating a 5) Genre Description...

• Is not too narrow (could only describe 1 or 2 books), and not too general (could describe any book)

• Contains at least a couple phrases that are directly related to the presented book

• A majority of phrases should be similar to the presented book, though the phrases may not be strongly related

• Does not have many phrases that are completely unrelated to the presented book

Read through the book title, author(s) and description Rate each genre description on how well it characterizes the

book from 1 (worst) to 5 (best) You can rate more than one genre description as being good, and more than one as

being bad. Choose the best rating for each description, regardless of any other rating you put down.

Acceptance Criteria: To be completly transparent, the following criteria will be used to determine which HITs are

approved and rejected:

• All questions must be answered.

• ALL descriptions should NOT be the same score (many responses can have the same score, but if all responses

are the same the HIT will be rejected)
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Appendix C

Instructions for CATHY User Study on
DBLP Dataset

The following are the instructions of the two user studies presented in Chapter 5, which were distributed to participants

as an Excel file.

Instructions for Computer Science Topical Keyphrase Survey

Thank you for your interest! This survey is part of a research project studying the quality of topical keyphrases as

generated by various algorithms. It is being conducted by Marina Danilevsky (danilev1@illinois.edu) and Chi Wang

(chiwang1@illinois.edu), graduate students in the Data Mining group under Dr. Jiawei Han, in the Department of

Computer Science at UIUC. Please feel free to contact us if you have any questions.

If you volunteer to participate and complete this survey, you will receive $15!

A keyphrase is a phrase which is a good label, or representation for a particular topic. This survey will present

keyphrases from Computer Science topics. The survey is divided into 2 sections. Each question in Section 1 will

present a set of phrases and ask you to select which phrase is most unlike the other phrases. Each question in Section

2 will present several sets of phrases and ask you to basically select which phrase set is most unlike the other phrase

sets.

Please proceed through this survey by entering your responses for each question, moving through the tabs in order

from left to right. Each section will begin with a tab explaining the instructions for answer the questions in that section

in detail. Please read the detailed instructions for each section carefully! Please periodically save this file to not lose

your work.

When you have completed this survey, please save this file to record your responses to this survey, and email this

file to either Marina (danilev1@illinois.edu) or Chi (chiwang1@illinois.edu). We will then contact you to provide you

with your reward of $15.

Computer Science Topical Keyphrase Survey - Section 1 - Phrase Intrusion

Each question in this section will present a set of phrases and ask you to select which phrase is most unlike the other

phrases - in other words, which phrase is the intruder?
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For example, for the question:

• {black dog, orange cat, red dog, small ring}

The correct answer would be 4, because “small ring” is the phrase intruder, the phrase which is most unlike the

others.

The phrase intrusion questions have been generated using multiple approaches, and are presented in completely

random order. You are therefore asked to carefully evaluate each phrase intrusion questions independently. Please

enter a response for each question! However do not spend more than a few seconds on each question. If you have

really tried, but still feel like you cannot choose a clear answer for a question, please enter 0 as your response.

Computer Science Topical Keyphrase Survey - Section 2 - Topic Intrusion

Each question in this section will present a set of phrases that represents a parent topic as well as several other sets of

phrases that represent potential child topics. You will be asked to select which topic is the least likely to be a child of

the parent topic - in other words, which child topic is the intruder?

For example, for the question:

• Parent topic: {house pets, colorful animals }

1. Child topic: {black dog, orange cat }

2. Child topic: {blue fish, lizard }

3. Child topic: {large table, small ring }

4. Child topic: {bird, brown hamster }

The correct answer would be 3, because “small ring” and “large table” are not likely children of the parent topic.

The topic intrusion questions have been generated using multiple approaches, and are presented in completely

random order. You are therefore asked to carefully evaluate each topic intrusion question independently. Please enter

a response for each question! However do not spend more than a few seconds on each question. If you have really

tried, but still feel like you cannot choose a clear answer for a question, please enter 0 as your response.
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