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a small population learning through co-evolution.

Ultimately we �nd that the approach has limitations and is generally too slow for practical ap-

plication, but holds promise for future developments. Many extensions are presented which could
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a very rough level of skill, but were not competitive at even a beginner level.
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1 Introduction

Arti�cial Intelligence (AI) has been used in games for decades. Ranging from the

very simple behaviors of the Pac-Man ghosts to the arti�cial life simulations of the

Creatures series, AI in games allows us to create opponents, allies, pets, and game

mechanics which help to engage the player. These applications have at best produced

interesting gameplay for players, but often fall short of their desired results.

Most games where antagonistic play exists include some form of arti�cial opponents,

often called bots or agents, which take on the roles of other players. However, in

practice, players tend to prefer playing against other human players. Generally, this

is due to dissatisfaction with current arti�cial players [Spronck et al., 2004].

Many games rely on simple scripts in order to control their arti�cial agents. While

this is a cheap method of producing arti�cial intelligence, it lacks any capacity for

learning. Often, players will discover failures in the AI, such as predictable behaviors

under speci�c circumstances, which they can take advantage of. While the goals of

the game often encourage taking advantage of these failings, a lot of the enjoyment

is lost, resulting in a less entertaining experience overall.

In order to improve the player's experience and enjoyment, we seek to create arti�cial

agents which exhibit human-like behaviors. It is believed that human-like agents

which behave like living things are both more entertaining and engaging to the

player, thereby improving the player's enjoyment in the game [Spronck et al., 2004].

We shall apply state-of-the-art technologies to creating agents in a popular genre

of computer game, the First-Person Shooter (FPS). We will produce genetically

evolved neural networks using NeuroEvolution of Augmenting Topologies (NEAT)

which will be used to control arti�cial agents. These agents will then be evaluated to

assess if the system can produce agents which play well and also exhibit human-like

behaviors. The goal of the thesis is to evaluate the agents produced by NEAT to see

if they are well-playing or human-like; ideally, they would be both. We further limit

this by assessing if it is practical to use this architecture in a realistic environment,

such as commercial game development.

First we will present some background information on AI in games, focusing on game

balance, the connection to player immersion, and how arti�cial agents directly a�ect

both of these things. Then we will cover the necessary information for creating arti-

�cial intelligence using genetic algorithms and neural networks, building into using

NEAT. Next we will present FPS games as a game genre and research framework.
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We will also cover some related research to creating agents for FPS-style games.

After having introduced all of the literature, we will present the project of the thesis

and its implementation, including a precise de�nition of the project question and

its analysis. Finally the results will be presented and analyzed. The paper con-

cludes with a repetition of the core results and points and by presenting a number

of avenues to move forward.

2 AI and machine learning in games

Machine learning has been applied to games for decades, initially targeting boardgames.

The �rst application of machine learning to games was in the late 50's, when Samuel

[Samuel, 1959] applied a method similar to temporal di�erence learning [Sutton,

1988] to the game of checkers. Due to the success of this approach, other common

boardgames have been targeted such as tic-tac-toe, chess, and Go. Go remains a

very popular boardgame for AI research, as no solution to the game is known except

for on small boards [van der Werf, 2005].

Machine learning in games can be broken into two categories: online and o�ine

learning. Online learning implies that the system adapts and learns while the game

is running, typically to adapt to the player in some way. O�ine learning occurs

outside of the game, generally during the development of the game. Online methods

are required to be fast enough to operate within the game context without slowing

the game down and should reliably produce good results [Bakkes et al., 2009]. O�ine

learning does bene�t from both of these properties, primarily because they are useful

in reducing the time and e�ort required during game development. The results of

o�ine learning can easily be adjusted by a designer to improve gameplay.

Commercial video games do not often see large amounts of machine learning ap-

plied to them [Woodcock et al., 2000]. Applying machine learning techniques can

take control of the agents away from designers and developers and give it to the

game itself [Hunicke and Chapman, 2004], especially if online learning is used. This

means that the development of agents using online learning is uncontrolled and often

di�cult to predict, possibly even completely unpredictable. It is hard to say if an

agent will learn correct or useful behaviors, as well as di�cult to prevent them from

learning useless or problematic ones. Thus, while machine learning techniques are

occasionally applied in an o�ine environment to aid in development and design of

agents, online learning is still not used frequently in commercial games.
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There are also complexity issues with applying machine learning to games. Most

games have very complex and large state spaces, involving lots of information and

possible actions. This makes it di�cult to apply machine learning techniques to

them. Furthermore, agents need to adapt very quickly. Rapid and reliable adap-

tation of agents is a frequently encountered issue in AI for games research [Bakkes

et al., 2009].

Instead of applying complex, di�cult, and unpredictable machine learning methods

to game AI, most commercial games utilize some form of scripted behaviors [Arra-

bales et al., 2009, Tozour, 2002]. This allows designers to control exactly how an

agent will behave in a given set of circumstances. Unfortunately, this leaves these

scripted agents as very static actors, lacking any ability to adapt or learn. Their

behaviors are often easy to predict and may exhibit poor responses or leave exploits

available to the player. In modern, highly realistic games, people often expect the

agents to behave like real people, so when they fall short of this the players are

often disappointed. If the agents could learn, using machine learning techniques,

then they could be much more convincing [Fogel et al., 2004].

Even though it is not prevalent, video games continue to see more applications of

machine learning. While most applications are limited to research interests, some

commercial games have used machine learning techniques in their mechanics. Ex-

amples of such games include the Creatures series (Creature Labs) and the Black

and White series (Lionhead Studios).

The �rst game of the Black and White series, simply titled Black and White, was

highly successful and praised for its use of machine learning [Johnson and Wiles,

2001]. Black and White is a strategy god game where the player is cast as a divine

being with a group of followers to grow and nurture as the player sees �t. The

machine learning aspect of the game revolves around the creature which the player

selects at the beginning of the game to be their companion and to carry out their

wishes [Johnson and Wiles, 2001]. The developers of Black and White wished for

the creature to learn and behave in a natural way, so they applied a belief-desire-

intention architecture to them, which is a form of the standard arti�cial-life model

[Johnson and Wiles, 2001].

This application of machine learning greatly improved the enjoyment and interest

in the game for many players. Notably, it didn't do so in a way that most AI

a�ects gameplay, which is to increase or decrease di�culty. Instead, it was used as

a mechanic within the game.
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2.1 Game balance and player enjoyment

In order to apply machine learning to games, we must understand the basics of

how and why arti�cial agents are used in computer games. We should particularly

consider the impact of arti�cial agents on gameplay and what the goals of applying

them are.

One of the primary aspects which we can a�ect through game AI is game balance.

Game balance is important to player enjoyment [Hunicke and Chapman, 2004]. If

a game is too easy then it quickly becomes boring; if there is no challenge then

the player lacks a feeling of achievement. However, if the game is too hard then it

quickly gets frustrating, causing players to stop playing or otherwise react negatively

towards the game. In either case, the fun of the game is lost, and players will usually

stop playing the game in favor of something else. This means that games need to

strike a balance in how di�cult the game is throughout, making sure the player

never gets too bored or frustrated.

There is an ideal area where the player is having the most fun playing the game,

called the �owchannel [Hunicke and Chapman, 2004]. Essentially, this is a propor-

tional relationship between game di�culty and player skill. Outside of this area,

or pathway, players will generally enjoy the game less. While a player lacks skill or

abilities in playing a game, their ideal challenge is low. As a player's skill level rises,

they require a higher level of challenge.

Figure 1: The �owchannel, in which the di�culty of the game best matches the

player's skill level. [Hunicke and Chapman, 2004]
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One concept presented by the �owchannel is that not all players are at the same

skill level when playing the game. Some players will be highly experienced in the

game's style of play, whereas others may have never played any digital games before.

Additionally, a player's ability changes over time; while a player engages in the game

they learn and improve the skills required to play the game. Conversely, if a player

goes for a long time without playing, their skills may degrade.

In order to attempt to satisfy both expert and beginner players, games will often

have a di�culty setting. This allows both novices and experts to enjoy the game

by better matching their own skill level. However, this setting is rarely �ne grained,

often resulting in players being caught between two ill-�tting di�culty settings. In

this case a player may be forced to choose a di�culty setting which is slightly too

di�cult or slightly too easy. Furthermore, players do not know their own best setting

when �rst playing, and they may quickly regret their selection once in-game. This

poses an annoyance factor in many games, as sometimes the di�culty cannot be

changed once the game is started. For some games this may even require redoing

a lengthy and tedious setup procedure. Lastly, di�culty settings do not necessarily

scale against a particular play-style and they do not generally a�ect AI tactics

[Bakkes et al., 2009], meaning that the setting will not improve the game experience

for many players.

2.2 Dynamic di�culty and arti�cial players

In order to better manage game di�culty, machine learning can be applied to make

the challenge scale dynamically or to have the agents adapt to the skill of the player

[Spronck et al., 2004]. Additionally machine learning can be applied to make agents

more interesting [Fogel et al., 2004]. Being able to maintain a consistent challenge

and appearance for agents can positively a�ect the player's immersion. There is

signi�cant research applying machine learning to games in order to achieve dynamic

and adaptive di�culty scaling or agent learning, especially in an online context

[Bakkes et al., 2009].

2.2.1 Dynamic di�culty

Dynamic Di�culty Scaling (DDS) can be used to produce a more even game; a game

balanced against the currently active player [Spronck et al., 2004]. This means the

di�culty of the game is adaptive, and will therefore adjust over time in order to keep
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pace with the skill of the player. Since the di�culty is adjusted to the player at

an individual level, players are kept more interested and immersed [Andrade et al.,

2005].

DDS is an online mechanic. This means that it is utilized during gameplay. This is

often achieved by adjusting the di�culty between individual sessions or rounds of

the game, though it is readily possible to adapt during a session.

There are two primary methods for DDS: environmental manipulation and adaptive

AI. Environmental manipulation involves tweaking values or adding or removing

entities from the game environment [Hunicke and Chapman, 2004]. This can be

used to manipulate the player's inventory or resources indirectly by controlling what

is available in the world to pick up. Adaptive AIs instead modify the behaviors of

the existing entities to match the player's ability level, making the AI play better

or worse. This means that the player is always playing against an opponent of

reasonably even di�culty or skill.

An example of a DDS system is Hamlet [Hunicke and Chapman, 2004], a system

written for Half-Life. Hamlet uses environmental manipulation to either aid or fur-

ther challenge a player, depending on how well the player is performing. If the player

is doing badly then the game can aid the player by increasing the number or e�ective-

ness of health packs, making enemies drop more ammo, or reducing the number of

enemies in the map. Alternatively, it could decrease the number of enemies fought

at once, distributing the load on the player across more areas. Obviously, if the

player is doing too well for the desired di�culty then Hamlet can do the reverse;

make enemies stronger, decrease the number of dropped items, add enemies, or move

enemies around so they attack in higher concentrations.

A method to achieve adaptive AI is to utilize dynamic scripting. Dynamic scripting

was originally designed to create strong playing AIs [Spronck et al., 2004]. It is

an unsupervised and online method for learning AIs that is "fast, e�ective, robust,

and e�cient" [Spronck et al., 2004]. It operates by storing a collection of weighted

rules which are prede�ned by experts. In order to generate an opponent using this

method a set of rules is selected from the collection based on the weight of each rule.

In order to use dynamic scripting to create Adaptive AIs, the rule selection must be

changed to select rules such that the result plays at the player's level. Speci�cally, the

resultant AI must avoid being too di�cult. Three methods for adapting dynamic

scripting to player skill level have been presented and compared [Spronck et al.,

2004], top culling, high-�tness penalizing, and weight clipping, with top culling
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being found to be the most e�ective.

It should be noted that sometimes players actually want a super easy or an extremely

di�cult challenge, with no adaptive scaling. Allowing the player to select a base

di�culty setting can be used to constrain the adaptations or adjust the targets that

the adaptation is attempting to reach [Spronck et al., 2004]. This allows the player

to indicate how they wish to be challenged. Lastly, allowing players to turn o�

adaptive play enables them to try out new ideas or playstyles without a�ecting the

di�culty they are used to playing at while allowing them to set the game to a much

easier setting.

2.2.2 Arti�cial players

As a part of general game balance, arti�cial players a�ect the player enjoyment.

The challenge presented to the player by arti�cial opponents is critical to game

balance and game di�culty. If such an agent is too di�cult then it will easily

outmatch a human opponent. Conversely, if the agent is too stupid or predictable

then the human will easily overcome any challenges it presents. Because of the

impact on game balance and di�culty, the performance and style of arti�cial agents

is important to player enjoyment and immersion.

We can apply machine learning to arti�cial agents in order to produce agents which

better match player skill levels, particularly through the use of online learning. In

the context of game AI, online learning means that the agent learns as the game

is played, often changing in real-time or between play sessions in order to adapt to

the player. O�ine learning occurs outside of play, meaning that the agents do not

adapt or change while the game is played. While not directly useful for adaptive

agents, o�ine learning can be used in conjunction with online learning [Andrade

et al., 2005] in order to produce e�ective agents before the game is played. These

agents can then be improved during gameplay using online learning. This allows for

agents to be well-performing when the player �rst starts playing and to adapt to

the player over time. O�ine learning by itself can be used by designers to produce

agents which play well without having to worry about the agent adapting badly once

in the hands of the user [Stanley et al., 2005].

In addition to the di�culty of an agent, it is important that the agents be interesting

[Andrade et al., 2005, Fogel et al., 2004]. This implies that they should not be

strictly predicable and should employ tactics which at least appear to be intelligent
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and human-like. This improves the immersion of the player and makes the agents

into more than simple mechanical opponents. If the agents are made to act in a

human-like way, the game world feels similarly more alive.

In order to achieve more human-like behavior, agents are often made to learn and

adapt to changes in the environment and how other players act [Bakkes et al., 2009].

This requires that agents utilize some form of adaptive AI. In addition, the agents

should not be too challenging; instead they should present a challenge appropriate

to human abilities. Because of this, many approaches attempt to adapt agents to

perform at the level of the current player or players [Spronck et al., 2004].

However, simply providing an even challenge does not make agents seem more

human-like [Bakkes et al., 2009]. In the simplest case, agents adapted to a very poor

player may make numerous and unrealistic mistakes, such as endangering themselves

or attempting to force the player to make good moves. In the opposite case, agents

adapted to very good players may simply react very quickly or perform tasks with

inhuman accuracy and timing, rather than developing more advanced strategies.

The same is true for the reverse case; making agents human-like certainly does not

make them well-performing. It is possible for agents to exhibit human- or animal-

like behaviors and not perform the target task speci�cally because of the behaviors.

Behaviors such as running away or avoiding the task, as well as behaviors which

cause the agent to fail the task, would sometimes appear very human-like. However,

the agent is obviously not performing the task well in these cases.

Another factor in which game AI a�ects player enjoyment is whether or not the

AI cheats [Laird and VanLent, 2001]. In many games, especially traditionally, AI

agents have been made to cheat in order to gain an edge on the player. Examples

of cheating include the AI knowing things or being able to perform tasks which the

player is not able to do. In most cases, such as in the game Starcraft, this was

to enable the AI to play at a level which would challenge the player. While some

simple cheating enables the AI to provide a more even game, it also does not feel

like a fair opponent, frustrating players who become aware of the cheating.

An example of an architecture for producing adaptive agents was created by Bakkes

et al. using a case-based learning [Bakkes et al., 2009]. They applied this archi-

tecture to a real-time strategy game called Spring and achieved good results. The

architecture was shown to adapt reliably and quickly, and to be usable in an on-

line environment. Most impressively, it is capable of learning immediately, without

review, allowing it to adapt within a single play session.
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Traish et al. applied NeuroEvolution of Augmenting Topologies (NEAT) to real-time

strategy games [Traish and Tulip, Sept], producing a collection of agents capable of

playing Wargus. In their experiments, they found that NEAT was very pro�cient

at producing e�ective strategies. However, it required some particular constraints

in order to force NEAT to produce more complex strategies, rather than simply

optimizing a single strategy.

2.3 The illusion of intelligence

One frequently observed phenomenon is that the illusion of intelligence is indistin-

guishable from actual intelligence [Buckland, 2005]. The goal of game AI is simply

to create that illusion. As long as the illusion is maintained, the player will be-

lieve that the agent is actually intelligent, but once the illusion slips it is di�cult to

reclaim player immersion [Andrade et al., 2005, Buckland, 2005].

The developers of Halo (Bungie, 2001) invested a great deal of time and e�ort

into balancing the AI of the enemies and allies. They generally found that an

even challenge comes across as more intelligent [Champandard, 2007]. There is a

direct relationship between agent di�culty and apparent intelligence: increasing one

increases the other. They also found that agents can be made more human-like by

giving them reactive behaviors, such as running away or charging when angered. It

is also noted that biological-like sensor models improves believability.

One of the elements which really contributed to how human-like the Halo AI felt was

the reactions of the agents [Champandard, 2007]. The enemies were given a breaking

point behavior, which is initiated upon a certain set of conditions. For example, a

Grunt, a small, fairly easy enemy, will run away screaming if they witness the player

kill an Elite, one of the harder enemies. This presented a very convincing show of

the Grunt being terri�ed.

The Elites also exhibited a breaking point behavior. If an Elite was reduced to not

having any shields and low health, they would go berserk. This behavior consisted

of the Elite roaring, switching to a sword-like weapon, and charging the player, as

pictured in Figure 2. This was not a smart behavior, as the roar was done while

stationary and triggered by being near death. Often, the Elite would die before they

got through the entire animation. However, in terms of human-like behavior, it was

extremely convincing and entertaining for the Elite to scream de�ance at the player.

Originally, these breaking point behaviors did not happen every time [Champandard,
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Figure 2: An Elite from the game Halo, which has reached its breaking point. It

howls de�ance at the player in an amazingly human-like display.

2007]; the agents would only break some percentage of the time. However, it was

found that players did not always notice the behaviors or may not correctly attribute

the behavior to its cause. Because of this, majority of the agents were changed to

execute the behavior every time the conditions occurred. While some players would

still miss the connection, this greatly improved the human-like appearance of the

enemies.

Half-Life (Valve, 1998) used an interesting approach to give their opponents the

impression of being a well trained, cooperative �ghting force [Laursen and Nielsen,

2005]. They forced the number of active combatants to a maximum of two, cycling

out the attackers so they they seemed to work together. This meant that, out of

a large group on opponents, only two opponents would every be truly active in

the combat at a time, either moving or �ring, and everyone else would be hiding or

preparing to �re. Once an enemy became ready to attack, one of the active attackers

would hide behind cover and the now ready enemy would become an active attacker.

This e�ectively produces the illusion of an intelligent group tactic which is highly

coordinated.

Hingston [Hingston, 2009] created the BotPrize [Hingston, 2013] competition in 2009

as a testing environment for developing human-like bots in UnrealTournament2004

(UT2004). The contest is designed like a Turing test, originally proposed in 1950

by Alan Turing [Turing, 1950]. In the contest, humans and bots are put against

each other randomly such that the combatants do not know who is human. Each

contestant evaluates the humanness of all the other contestants, indicating whether
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the contestant thinks each opponent is human or not, resulting in a humanness score

for each player. Both human and arti�cial players get a score. The bots also judge

the other contestants, but these results are not used when calculating the averages.

In order to win the BotPrize, an AI must achieve a rating of at least 50% human.

In 2012 the BotPrize contest was won by two entrants. Mihai Polceanu produced the

MirrorBot [Polceanu, 2013], which emulated human behavior via online imitation.

The second place winner, UT�2, was produced by a team [Schrum et al., 2011,

Schrum et al., 2012, Karpov et al., 2012]. They received humanness scores of 52.2%

and 51.9% respectively. As UT�2 employed neural-based learning, we shall discuss

it more later.

3 Building AI for gameplay

In order to understand how NEAT functions, we need to look at how the underlying

systems is uses work and have been applied to games individually. NEAT utilizes

neural networks which it evolves using genetic algorithms. Genetic algorithms are

in turn a form of search-based learning.

3.1 Search-based learning

For many learning tasks we may not have a proper training set or ideal solution.

This poses challenges to training-based machine learning, such as traditional neural

networks or supervised machine learning techniques [Harman and Jones, 2001]. In

such cases it is more feasible to search from all possible solutions to �nd the best pos-

sible solution for the task [Harman, 2007, Togelius et al., 2011]. An example of such

a problem is to �nd the best actions to perform in the current circumstances when

playing a game or the best recognizer of a particular image. Search-based learning

is a process of building solutions and evaluating their relative �tness, meaning how

well they solve a given problem. Generally, this approach can be used to �nd good

solutions, though it does not always �nd the best solution.

The solutions produced through search based learning are not simple answers, but

models for producing answers from input information. Rather than �nd the right

answer for a particular problem, such as the sum of two numbers, the target solution

is a model for producing the right answer to a summation problem. This means that

once a good solution is found it can be reused in other forms of the same problem.
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It is possible for search-based algorithms to be trapped in a local optimum, where

the current solutions are good and no immediate variations seem better [Montana

and Davis, 1989, Priesterjahn et al., 2006]. This can cause search-based algorithms

to fail to �nd potentially better solutions in a di�erent part of the search-space.

3.1.1 Representation

In order to identify or build these solutions, it is necessary to be able to represent

them in some fashion that allows us to map out the search-space [Harman, 2007].

The search-space is the set of all possible solutions. Ideally, every solution is unique

in its representation and all solutions are possible to represent [Togelius et al., 2011].

While these are not technically strict requirements, it is generally wasteful to have

multiple representations for a solution, and any solutions without a representation

are either missed or must be evaluated separately.

The exact method of representation for a solution depends on the structure of the

solutions themselves and how the search will be carried out. The representation can

either be the solution itself or provide all of the necessary information to build the

solution [Togelius et al., 2011]. Typically, building the solution itself is accomplished

through some form of mapping from representation to solution.

3.1.2 Evaluation

The second challenge to search-based approaches is determining a method of eval-

uating �tness [Harman and Jones, 2001]. The �tness of a solution should indicate

how well and consistently the solution solves instances of the problem. In order to

measure the �tness of a solution, we build a �tness function which evaluates each

solution's performance or output and produces a �tness value. We can then use

these �tness scores to compare solutions to each other.

In some cases, a solution may be evaluated many times. This occurs most often

when the environment changes between solutions, or when a test cannot cover every

possible scenario [Togelius et al., 2011]. When this happens, the �tness score of

a solution is often some form of composite of the values produced by the �tness

function, generally a form of averaging.

The �tness function needs to re�ect, for example, if near correct answers are valuable,

as well as if a single completely wrong answer amongst otherwise perfect answers

is tolerable [Harman and Jones, 2001]. Measuring �tness is simpli�ed if the correct
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answer for an instance of the problem is known, though simply being able to recog-

nize a correct or good answer is su�cient. Note that it is often possible to recognize

a correct answer to a problem even without an algorithm to produce that answer in

advance.

3.1.3 Search

The number of possible solutions in the search-space can be extremely large, some-

times even in�nitely large, implying that an exhaustive search is infeasible. In order

to limit the number of solutions assessed, we use a search algorithm which selects

solutions to evaluate based on the current best solutions [Harman and Jones, 2001].

Typically this is accomplished by moving from well-performing solutions to solu-

tions which are �nearby� in the search-space. This produces a controlled movement

through the search-space, limiting the search to only solutions which are likely to

perform well. Furthermore, we may only want to move from solutions which are

well-performing, to see if the nearby solutions are better.

In order to move through the search-space, we need a starting point. In practice,

we tend to generate a random population of solutions [Harman, 2007]. Ideally, this

population is distributed throughout the search space. We then evaluate this popu-

lation and perform search from the best performing ones, building a new, similarly

sized population.

One drawback to using search-based learning is that it is possible to miss good

solutions in other areas of the search-space. This often occurs if the given population

falls into some form of local maxima, where the current population has no neighbors

which perform better, though there are still better performing solutions elsewhere in

the space [Harman, 2007, Togelius et al., 2011]. Basic search algorithms can prevent

us from discovering solutions which perform even better on the other side of these

neighbors. Despite this, a good solution is typically found even if it is not the best

solution.

Some example strategies to handling search are hill climbing, simulated anneal-

ing, and genetic algorithms [Harman, 2007]. Hill climbing uses a random starting

population and evaluates the �tness of each solution and their neighbors in the

search-space. For each solution, we then move to its neighbor which most improves

�tness, if it has one. This method is particularly susceptible to getting trapped in

a locally optimal solution, as it cannot climb �down� from a peak �tness value.
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Simulated annealing di�ers from the hill climbing approach in that it is allowed to

move to less �t solutions. It uses a probabilistic function to decide if it can move to

a less �t solution, rather than moving to a more �t one. This function decreases over

time, resulting in a greater exploration of the search-space initially and an eventual

transition to a more pure hill climbing approach.

We shall focus on how genetic algorithms perform search and how they represent

solutions.

3.2 Genetic algorithms

Genetic algorithms are a subset of search-based algorithms which utilize evolution-

ary algorithms to accomplish search [Harman, 2007]. The approach uses genetic

representations of solutions which are evolved over many iterations in order to pro-

duce well-performing solutions. This implies that the search is limited; rather than

evaluating all possible solutions, solutions similar to ill-performing ones are ignored.

This makes evolutionary algorithms useful when the search-space if very large.

3.2.1 Representation of solutions

The representation of solutions in genetic algorithms are handled in an abstract way

that is converted to the working model, roughly re�ecting the concepts of genotypes

and phenotypes from biological genetics [Togelius et al., 2011]. The actual genetic

representation is a genotype of the solution, while the solution itself is a phenotype.

It is possible for a genetic representation of a solution to directly equate to the

solution, meaning the representation e�ectively is the solution. More commonly,

however, the genetic representation is used to construct the solution, in a form of

genotype to phenotype mapping. All genetic representations can be seen as using a

genotype to phenotype mapping, even if the mapping is to itself.

The mappings from genotype to phenotype and be either indirect or direct [Togelius

et al., 2011]. A direct mapping is one with a fairly simple system for converting

the genotype to the phenotype. Often the elements in the genotype map directly to

elements in the phenotype. In an indirect mapping, the mechanics for producing the

phenotype can be much more complex, often utilizing some form of language. Gruau

et al. presented a cellular-based system for handling indirect mappings [Gruau et al.,

1996] for producing neural networks from genetic sequences, which was demonstrated

to work well. However, it has been shown that direct encodings can be just as ef-
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fective in the same context [Gomez and Miikkulainen, 1999] and it has been stated

that such indirect encodings require more detailed knowledge of how neural and ge-

netic mechanisms function in order to develop [Braun and Weisbrod, 1993]. Stanley

et al. argues that this might bias the search in unpredictable ways [Stanley and

Miikkulainen, 2002].

3.2.2 Genetic evolution

The strength of genetic algorithms is to be able to search only such parts of the

solution space that seem promising. This allows for good solutions to be found

more quickly compared to more basic search approaches. While it is still possible

for genetic algorithms to be caught in locally optimal solutions, they tend to be

less a�ected by them [Montana and Davis, 1989]. However, a su�ciently large local

optima may trap them [Priesterjahn et al., 2006].

As a search-based approach, the �rst task of genetic algorithms is to produce a

starting population of solutions. The exact nature of the starting population varies

depending on the representation and applications, though typically the initial popu-

lation is a randomly generated or selected collection of solution representations. We

then evaluate the �tness of each solution, enabling us to rank the solutions relatively.

From this we can generate a new population.

When creating a new population, we must decide if we wish to create an entirely

new population or if we wish to keep individuals of the current population. Some

approaches retain parts of previous populations when generating a new one, a process

called elitist reinsertion or elitism [Cole et al., 2004, Eshelman, 1990, Westra, 2007].

In this model, the best performing of either the previous population or all previous

populations are retained when a new population is generated. This is often used

in cases where a small population is in use, so that newly developed features or

behaviors are not lost. At this point, the worst solutions may be removed from the

population or kept for their genetic diversity.

The simpler model is to generate an entirely new population, discarding the previous

population and only keeping the o�spring. It is also possible to occasionally add

randomly generated or expert-crafted solutions to the current population, increasing

diversity and possibly avoiding getting trapped in local optima.

In the simplest case, a genetic representation is just an array of values. Each cell of

the array holds a gene which can only be selected from a �xed set of values. We can
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Figure 3: Two gene sequences are combined to form a child. The child's genes are

each randomly selected from one of its parents.

Figure 4: A single sequence is mutated to produce a new sequence. Here the genes

are represented by letters.

combine these sequences in a process called crossover to create new o�spring based

on the previous population. When performing crossover on two or more genetic

parents, we simply randomly choose which parent provides each gene in the array,

as demonstrated by Figure 3. In practice, crossover is performed using two parents.

When producing o�spring, it is also possible to alter the genes randomly using mu-

tation [Fogel et al., 1990]. Mutation is simply altering the genes in a representation

slightly as shown in Figure 4. This produces new solutions which are slightly dif-

ferent from existing ones. Mutation can be applied in addition to crossover or by

itself, allowing for the possibility of completely excluding any form of crossover from

the algorithm. A simple approach is to apply mutation for each o�spring after the

crossover step. The rate of mutation can be adjusted to better suit a given problem,

though it is typically kept at some low value or degrades to a low value from an

initially high one. This facilitates random search, without causing o�spring to lose

too much from the solution they are based on.
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3.2.3 The permutation problem

With some representations it is possible that the o�spring of two well-performing

solutions will be damaged and perform badly [Montana and Davis, 1989, Scha�er

et al., 1992, Radcli�e, 1993]. This can occur when the well-performing solutions

model similar solutions in very di�erent ways. This results in the o�spring not

representing either solution, possibly having what is e�ectively the same half of a

solution twice. This problem is referred to as the permutation problem [Stanley and

Miikkulainen, 2002, Radcli�e, 1993]. It can be visualized as a representation having

three genes and a genome of three elements, A, B, and C. A representation with one

of each gene will perform well, but those lacking one of the genes will have a lower

�tness. In this example, the two solutions ABC and CBA are well-performing, but

their o�spring could be ABA, which would not perform as well as its parents.

Handling the permutation problem is often challenging, and it must be either solved

or avoided [Stanley and Miikkulainen, 2002]. It is possible to design the solution

representation to avoid the permutation problem, though this is typically di�cult.

Alternatively, we can attempt to separate solutions in such a way as to prevent

di�ering solutions from producing o�spring, such as preventing ABC and CBA

from combining. How to accomplish this is far from trivial, however.

There is some debate as to whether or not even biology solves or avoids the permu-

tation problem [Stanley and Miikkulainen, 2002]. Arguably, avoiding the problem

is a solution, in that the problem does not arise. Therefore, there is not a strong

di�erence between the two, so accomplishing either method is acceptable.

3.2.4 Genetic algorithms in games

Genetic algorithms are frequently applied to game AI in academic research as the

evolutionary component of search [Agogino et al., 1999]. However, genetic algo-

rithms can be used for more than just learning in games. The Galactic Arms Race

game [Stanley, 2007] used compositional pattern producing networks (CPPNs) and

a variant of NEAT to procedurally generate weapons in a multiplayer game environ-

ment. A CPPN is a network of function nodes which produces outputs by running

input values through those functions. Each weapon had a CPPN which was used

to describe the movement and color of the particles �red from the weapon. The

number and power of the shots was �xed across all weapons.



18

Figure 5: Examples of procedurally generated weapons from GAR [Stanley, 2007].

3.3 Arti�cial neural networks

Arti�cial Neural Networks (ANNs) are an architecture of arti�cial intelligence com-

monly used as recognizers [Lippmann, 1987]. They take a collection of input signals,

calculate the activity of the network, and produce a collection of output signals.

Once a network is trained, it can be used as a black-box system to perform multi-

valued calculations; ANNs are a form of function approximation for functions which

handle many inputs and outputs.

3.3.1 Structure

The basic element of a network is the neuron [Lippmann, 1987]. Much like biological

neurons, neurons in ANNs produce a signal based on their inputs. Arti�cial neu-

rons have weighted input edges, or connections, leading from other neurons. The

weighting of these edges allows the neurons to prioritize some inputs over others, or

to treat some input signals as inhibitors. Neurons then perform a basic arithmetic

operation upon these weighted signals and emit a signal along any edges leading

from them.

A neuron is capable of handling multiple inputs, each with their own weighting. A

neuron will then produce a single signal which is then weighted individually via the

connections to other neurons. Exactly what signal a neuron produces and how it

calculates that signal are up to the implementation of the neurons. In some cases,

the produced signal may be on or o�, or it might be a �oating point value.

Figure 6 shows the structure of a neuron and the basic approach for handling inputs

and output. Each neuron is comprised of three parts: summation, a signal function,

and the output [Lippmann, 1987]. The neuron receives inputs from other neurons,

each multiplied by its respective weight. All of the inputs are summed together

to produce a single value. Finally the neuron runs this weighted sum through a

function to determine if and at what strength the neuron �res. The output signal



19

is carried to any neurons with connectors from this neuron.

Figure 6: A basic neuron.

There are many functions which can be applied to a neuron's summed input in

order to produce an output value [Lippmann, 1987]. Hard limiters, linear gradient

functions, and sigmoidal functions are fairly common. The function applied to

produce a neuron's signal tends to be identical across the network; all of the neurons

use the same function. However, it is possible to create networks with varying

functions. Compositional pattern producing networks [Stanley, 2007], which are

highly similar to neural networks, use this mechanic.

In addition to weighted input signals, neurons often have a bias value used in their

calculations [Lippmann, 1987]. This value is commonly shared with all neurons, but

can be made unique to each neuron as well, allowing more �exibility in the network

at the cost of increased complexity. This value can be used as a threshold, limit,

o�set, or bias, depending on the function used in the neuron itself.

Since ANNs are a form of function approximation, adjusting the network can change

which function they represent. This can be done readily in two ways, either by

altering the weights of the connections or by changing the structure of the network

[Lippmann, 1987]. Neurons with individual biases can have these biases altered

along with their connection weights. Thus neural networks can be used to better

approximate desired functions by iteratively adjusting the network to better match

values produced by those functions. This is how learning, or training, is achieved

using ANNs.
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Figure 7: A standard neural network with a single hidden layer of four neurons. The

network takes three input values and produces two output values [Glosser, 2013].

3.3.2 Forms of neural networks

In arguably the simplest form of network, traditionally a form of Hop�eld Net, the

incoming signals are simply true or false and only basic inversion weights are applied

[Lippmann, 1987]. In such a network, a neuron typically uses some form of hard

limiter or threshold function to process its inputs, producing only an 'on' or 'o�'

signal.

Perhaps the most commonly used form of an ANN consists of a layer of input neu-

rons and a layer of output neurons connected via some number of layers of internal

hidden neurons. In this architecture, traditionally called a multi-layer perceptron

[Lippmann, 1987], every neuron in one layer receives inputs from every neuron in

the previous layer. The input neurons provide externally provided signals along

their connections to the hidden neurons. The hidden neurons then perform trans-

formations on these signals, possibly utilizing many layers of hidden neurons, and

send weighted signals to the output neurons. The output neurons perform one last

operation upon their inputs, at which point the output neurons contain the output

signals for the whole network.
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These more complex networks typically use �oating point values for produced signals

in addition to �oating value weights. In these cases, the weights are usually bounded

in the range of [−1, 1], though they do not technically need to be bounded at all.

Networks that use �oating point values will often have some form of function for

the neurons to perform on their inputs, such as a Sigmoid or Gaussian function.

Such non-linear functions are generally more �exible than simple summation with

neuron-speci�c biases, as a series of linear functions can always be simpli�ed to a

single linear function. This means that multiple hidden layers do not meaningfully

increase the logic powers of the network in a linear function network, but can do so

in a network utilizing a non-linear output function.

3.3.3 Applications

One of the most typical and referenced uses of ANNs is for recognition, particularly

image recognition [Lippmann, 1987]. This involves training the network to recognize

whether an image matches other images, such as recognizing characters or faces.

Once a network has been trained it can be used to predict if an image or character

matches a target element. This is useful in security or general image matching tasks.

ANNs can be applied to machine learning for games in many ways. They have been

applied as army controllers for strategy games [Traish and Tulip, Sept], as well as

allowing more direct lower-level control, such as in Creatures or Black and White.

Generally, neural networks can be used as controllers for individual agents or as

higher-level controllers for teams of agents.

4 NeuroEvolution of neural networks

Utilizing genetic algorithms over neural networks allows us to generate neural net-

works to solve tasks. However, �rst we must be able to represent an ANN so that we

can map the search-space. We must also handle the permutation problem. When

doing these things, it is important to consider what changes in the network when

evolving it. The simplest approach is for the network's topology to be �xed, and the

weights between the neurons to change. However, it is more powerful for the topol-

ogy of the network to be evolved as well, even though this is much more complex.

NEAT [Stanley and Miikkulainen, 2002] evolves the topology of the network, rather

than simply evolving the weights. This allows it to start from a minimal topology and
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produce minimal topologies for networks, keeping the networks faster and simpler

than what would be possible if only the weights were changed.

The NeuroEvolution part of NEAT simply refers to evolving Neural Networks. Usu-

ally this is achieved, as in NEAT, by applying genetics. Augmenting topologies is

obviously in reference to the fact that the topology of the networks is changed.

Augmenting topology has some di�culties that must be addressed. Typical prob-

lems facing evolving ANNs are the di�culty of representation and the permutation

problem. When evolving structure, the representation gets even more challenging.

Since the network is not �xed, we require a method of describing connections between

neurons and the existence of neurons. The permutation problem becomes more

signi�cant as well, producing scenarios of duplicated connections or mismatched

networks. In order to overcome these issues, NEAT uses a genetic encoding of

connections, historical markings on the genes, and speciation.

4.1 Representation through genetics

NEAT encodes the connections between the neurons genetically. Each connection

gene indicates the neurons to connect, the weighting for the connection, and includes

an expression bit to allow genes to be turned o�. Each connection gene is also marked

with an innovation number, which indicates when the gene was added to the genome.

The genetic encoding also contains a list of node genes, which express the neurons

in the network which can be connected.

Mutation in NEAT can generate new connections as well as new topology in the

network. In order to add a new neuron to the topology, an existing connection is

split, adding the new neuron in the middle of it. The original connection is disabled,

and two new connection genes are added to describe the new connections. To better

handle the change in weighting, the connection weight to the new node is set to

1, while the connection from that neuron receives the original weighting. Adding a

connection is simpler; a connection gene is created which connects two previously

unconnected neurons together with a random weight.

4.2 Historical markings

Because NEAT allows the genomes to grow without any limitations, genomes of

various lengths will result, meaning the gene sequences of solutions can be very
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di�erent lengths. Furthermore, some of the genes may be identical to others in

di�erent locations, producing the same connection and a di�erent gene. This takes

the permutation problem to an extreme, meaning that two very di�erent genomes

often cannot perform crossover without producing highly damaged o�spring. NEAT

solves this using the historical markings on the genes.

The historical markings on genes allows NEAT to handle crossover between genomes

of di�ering lengths. When the gene is �rst created it is given a globally unique

numerical identi�er which functions as the historical indicator of the origin of the

gene. The identi�er is taken from a global counter, which is then incremented.

This means that any two genomes with similar ancestors can correctly align their

genomes, placing later genes further out and matching identical genes correctly.

NEAT also handles identical genes being created within the same generation such

that they get the same historical marking identi�er, so as to not duplicate genes.

In order to perform crossover between two gene sequences of di�ering lengths, NEAT

emulates the natural process of synapsis. Synapsis is the process of aligning homol-

ogous genes, or genes which function on the same trait, for crossover. This means

that genes do not get accidentally randomly inserted and that the resultant sequence

does not have multiple genes for the same trait. NEAT performs arti�cial synapsis

by comparing the historical markings of the genes and aligning genes with the same

historical markings. Once this is done, crossover can function normally, selecting

genes from each parent sequence randomly and taking the disjoint and excess genes

from the more �t parent. If the parents have equal �tness, then the excess and

disjoint genes are inherited randomly.

4.3 Speciation

Typically, as new topology is added, the �tness of a solution drops slightly. This

makes it di�cult to evolve more complex topologies, as the solution might be re-

moved or ignored in future evolution. Therefore it is important to protect innovation

as new topology is formed. NEAT separates the genomes into species, a process

called speciation, to protect innovation. This allows the species to compete within

their own niche rather than against the global population, meaning the o�shoots

have a chance to optimize.

In order to determine the species of a network, NEAT actually looks at the gene

sequence. By using arti�cial synapsis as in crossover, it is possible to determine the
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genetic distance between two sequences, using the number of disjoint, excess, and

slightly altered genes. NEAT uses the calculation

δ =
c1E

N
+
c2D

N
+ c3 ∗ W̄

to determine the genetic distance between two sequences. Here W̄ is the average

weight di�erences between matching genes, and E and D are the numbers of excess

and disjoin genes respectively. explain terms. The coe�cients allow the formula to

be tuned to control which factors are most important and N , which is the number

of genes in the largest genome, helps to normalize the values. A �xed threshold δt is

compared against the resultant value to determine if two sequences are in the same

species. NEAT then keeps an ordered list of all the species, placing a sequence in

the �rst species it matches.

At �rst glance, sorting ANNs into species seems it would be a topology matching

problem. However, the historical markings make matching by genetics fairly triv-

ial. Furthermore, matching by topology would produce similar errors as matching

biological species by appearance does. This would result in incorrectly matching

two networks which actually have very di�erent historical backgrounds and genetic

makeup. This would actually trigger the permutation problem, rather than avoid

it.

In order to keep the species from growing too large, and thus crowding out other

species, each organism in a species is forced to share �tness with its entire species.

This is called explicit �tness sharing. Each organism is given an adjusted �tness

score which factors in the �tness of the species, using the genetic distance between

two organisms to determine species. This simpli�es to only considering the organ-

isms withing the same species when reproducing. Species then remove their lowest

performing members and the remainder reproduce. Once the o�spring are produced

the existing population is discarded, leaving only the o�spring of the well-performing

members of each species.

5 AI research in FPS games

When testing basic, comparatively simple arti�cial agents and architectures, First-

Person Shooter (FPS) games are frequently used due to their comparatively simple

and straight forward interactions as well as fairly monotonous state information. The

goals within the game are very simple; to survive and to defeat other opponents.
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5.1 FPS games

FPS games get their name from the rendering perspective involved in the game.

The player is presented with a 3-dimensional view of the game world as if they were

looking through the eyes of the character they control. Players move around the

environment, eliminating opponents and attempting to survive for as long as they

are able. While some games of the genre have storylines or more complex objectives,

this simple arena-style combat model is the baseline and heart of the genre.

Since the game is a shooter, weapons are obviously at the heart of the game. Most

such games have a large variety of weapons which can be used. Players must regulate

their ammunition and utilize these weapons to defeat their opponents. While most

weapons are generally some form of gun or launcher, for example a ri�e, machine

gun, or the ever popular rocket launcher, shooter games occasionally have some close

range weapons as well, such as Doom's chainsaw.

The environments in which the players move, simply referred to as maps, are closed

environments where the di�erent combatants are spawned at various locations.

Spawning is a term in many games for the creation or resurrection of an object,

such as the player's avatar. Various objects which can be collected, called pickups,

are scattered around the map, encouraging tra�c in certain areas with powerful or

popular pickups. Pickups commonly include weapons, ammo, and various power

ups such as temporary invisibility or additional damage.

Depending on the game mode, the players may be on teams or they may �ght in

a Free-For-All (FFA) fashion. In team combat, points are shared with the entire

team, though individuals within the team may compete for best score. In FFA-style

play everyone has their own score. The game usually ends when either a certain

score is reached or the timer runs out.

During the game, each combatant moves around the map seeking better weapons,

strategic control points, and enemies to frag. The term frag is used in many games

to mean kill, though as a softer term, since the death is usually temporary. The

origin of the word is not clear, though probably refers to the abrupt fragmentation

of the deceased. When a combatant dies, they are quickly respawned elsewhere on

the map to resume the match. Usually, weapons and other power-ups do not carry

over through death.

FPS games are very common, and there are many very popular ones. Two of the

earliest popular FPS games are Quake (id Software, 1996) and Doom (id Software,
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1993), both of which were developed by id Software and have developed successful

series after the original games. Quake introduced a large number of the primary

concepts involved in FPS games, particularly the multiplayer competitive aspects,

whereas Doom was a very story-driven game. Other games expanded upon these.

Unreal (Epic & Digital Extremes, 1998) was built following a similar style to Doom,

though with a superior engine because of advances in technology. The engine of

Unreal has been used and adapted over the years to produce the Unreal Tournament

series, which focused on multiplayer gameplay. Quake III Arena (1999), commonly

just referred to as Quake 3, also developed in this direction. Common games for AI

research in FPS games include Quake 3, UT2004, and Halo (Bungie, 2001).

These arena-style combat games require multiple combatants in order to occur,

meaning a human player requires opponents to play against. While the game is

primarily designed for multiplayer interaction, most games of the style include some

arti�cial agents for people to be able to play independently or with very few players.

These arti�cial players are called bots in the game. Bots can usually be con�gured

to have varying levels of di�culty, some ranging well beyond human abilities in

their timing, aim, and perception. It is possible to write bots for these games

through various means, allowing for interesting new bots to be created. This is

useful for research purposes, particularly when attempting to evaluate new arti�cial

intelligence approaches, especially for adaptive or general game AI.

5.2 Working environments

In order to test an agent in a FPS environment, we �rst need the environment

itself. While it would be possible to develop a game environment speci�cally for

testing [Stanley et al., 2005], it is far easier and more e�cient to use an existing

environment.

Two of the most common options are UnrealTournament and Quake. UnrealTour-

nament includes a scripting language, UnrealScript, which allows the game to be

modi�ed. This includes the ability to write new bots for the game. Quake III is

now open source and written in C++, allowing the game to be modi�ed and bots

to be controlled to a very extensive level.

When building agents for games, it is often helpful to utilize frameworks which

externalize the agent from the game. This can allow the agent to be applied to

multiple games with fewer changes, as well as allow the agent to play as if it were
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Figure 8: Pogamut communicates between the game and the agent through Game-

Bots2004 over TCP [Gemrot et al., 2009]. The agent can perceive and interact with

the world using GaviaLib.

a discrete client. This can also allow agents to be written in di�erent languages,

improving performance or enabling the use of existing code libraries.

5.2.1 Pogamut

Pogamut [Gemrot et al., 2009] is a toolkit that allows developers and researchers

to write arti�cial agents for various games using Java. It handles the interaction

and communication with the game, allowing for development to focus on the agent

itself. The library also includes basic elements for sensors and path�nding so that

higher-level agents can be designed and tested without the need for implementing

these lower-level logic elements. Additionally, Pogamut includes helpful tools for

debugging and visualizing the execution of the agents.

Pogamut is targeted primarily at UT2004 and utilizes GameBots2004 [Gemrot et al.,

2009], which is a version of GameBots designed to communicate information from

UT2004. GameBots2004 provides the information from the running game server

over TCP/IP, allowing bots to connect without needing to fully run an instance of

the game themselves. Pogamut then uses the GaviaLib library [Gemrot et al., 2009]

to connect to the environment provided by the GameBots2004 server, which handles

bot perception and interaction with the world.

Pogamut includes a number of additional systems, such as a planning controller

and an emotional state simulation, which have been developed externally. These

are integrated into Pogamut to allow for agents to be developed using them with

relative ease.

It is also possible to animate the controlled character through Pogamut. This could

be utilized to make the agents seem more believable and human-like. These ani-

mations do not a�ect gameplay, however, so they are only useful in self expression.

This kind of functionality could be used to produce behaviors similar to the breaking
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behaviors of Halo.

5.3 NeuroEvolving Robotic Operatives

NeuroEvolving Robotic Operatives (NERO) [Stanley et al., 2005] is a machine learn-

ing game. This means that at least some of the gameplay is centered on applying

some form of machine learning in order to train agents in-game. In NERO, the player

is attempting to evolve a squad of agents to compete with other similar squads.

The game of NERO occurs in a simpli�ed FPS, environment. The game has many

of the same elements of an FPS if considered from the perspective of the bots, but

lacks the more advanced terrain and navigation challenges such as lifts, grappling

points, or vertical space.

The evolution system applied in NERO is a real-time version of NEAT which allows

for the agents to be improved as the game progresses. It accomplishes this by

replacing the weakest intelligences with o�spring of the strongest at various intervals.

The easiest timing for this is when an operative is killed, though it is possible for

an agent to be replaced while it is still alive.

Agents are trained by creating goal conditions and behavior rewards and then evolv-

ing the populations until they succeed in these goals. Once the agents have learned

to perform their tasks or to behave in a desired way, their networks are frozen and

individuals from the population can be selected to be added to a team. This team is

then put against other teams in a competitive multiplayer environment. This makes

NERO something of a meta-, or two-level game. At the basic level it has evolved

agents playing the shooter game, and at a higher level it has human players building

teams of agents to pit against others.

The networks of NERO agents have very direct control over the actions of the agents,

being able to instruct the agent to move in speci�c directions, rotate, and to �re. It

does not use prede�ned activities such as ��re upon nearest enemy� or �move to �ag�.

This allows for more advanced behaviors to be developed than would be possible

using selectable scripted behaviors.

The sensor system used in NERO is robust. It has four types of sensors, enemy

sensors, object range �nders, line-of-�re sensors, and an on-target sensor. The enemy

sensors detect enemies in arced areas of the agent's view, activating in strength

proportional to the proximity of enemies in that area. The object range �nders

utilize rays to detect terrain or other obstacles. The line-of-�re sensors use rays
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�red from each enemy and determine the intersections on several rays �red from the

agent, allowing the agent to know how close they are to any enemy's line-of-�re in

various directions. Finally, the on-target indicates whether the agent is currently

looking directly at an enemy. Similar sensors could be added for detecting other

information, such as friendly-�re lines and proximity to important items.

5.4 Producing neural network-based agents

Westra [Westra, 2007] has applied evolutionary neural networks to FPS games. In

his tests, Quake III was used as the platform for testing the agents. While NEAT

was not used, evolutionary algorithms were applied to train the networks. The

networks used �xed topology and evolved the weights between the neurons.

There were some limitations to the maximum population size in Westra's tests. The

tests used an evolving population of only 6 agents, implying it is possible to evolve

reasonable solutions even with very small populations. To counter the size of the

population, elitist reinsertion was used to retain the top performing agents.

Westra's ANNs used less direct control over the agents than NERO's agents, instead

having the network choose a destination in the existing navigation map. However,

�ring was under direct control.

The agents produced generally performed better than the native bots, though occa-

sionally exhibited strange behaviors such as staring at walls. Some agents succeeded

in learning to seek ammo or health when needed, but no agents learned to seek both.

Gamez et al. produced a NeuroBot system [Gamez et al., 2011] which played

UT2004. NeuroBot competed in the BotPrize competition in 2011, scoring very

well and coming in second, suggesting that a neurally-based agent may be capable

of human-like behavior. NeuroBot uses a form of sensory salience to determine the

selected actions of the agents. In some ways, this is a fusion between direct con-

trol of the agent and controller systems. Rather than selecting speci�c actions, the

NeuroBot determines how and if it wishes to move, particularly moving in certain

patterns. In some cases certain systems may operate without input from the net-

work, however; for example the jumping module seems to become more active if an

enemy is near.

The UT�2 architecture uses NeuroEvolution in order to train an agent [Schrum

et al., 2011, Schrum et al., 2012]. It trains using pre-existing human traces in order

to mimic human behaviors. This allowed the agent to seem so human-like it won
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the BotPrize in 2012.

UT�2 does not use direct control over the agent, unlike NERO. Instead, the archi-

tecture has a collection of priority-ordered modules which dictate the behaviors the

agent exhibits.

6 Using NeuroEvolutionary agents in an FPS game

Through NEAT we can create neural network-based agents which can play games.

What we wish to �nd out is if this can produce human-like agents which are inter-

esting to play against. While we are not using a truly online mechanic, once fully

trained the system could be used as an adaptive architecture. Such an agent would

theoretically be able to keep the player well within the �owchannel for most of play.

We can build a system to train agents to play UT2004 using Pogamut and NEAT-

based agents. Much of the work on the system presented here will be on the sensors

and motors required to make it function.

The work here steps away from the existing work, either in complexity or application.

It's important to look at those di�erences to see what can be used and what kinds

of issues we may encounter.

6.1 Project hypothesis

The project was designed to answer the question �Can NEAT be applied to FPS-

style games in order to generate well-playing agents with human-like behaviors?�. In

this section we will assess this question and compare it to other research. To do

this, we will look at what the question means, whether or not it has been previously

answered, and what makes it a worthwhile question.

It is important to understand the intent of the question when trying to answer it,

otherwise an answer becomes di�cult to interpret. One important note at the very

beginning is that when we ask if it can we done, we really want to know if it is

practical to do. If it is possible but would take over a year of training time, then it

is far from practical. This raises the important point that this is not a question with

a binary answer. A simple yes or no leaves out extremely critical information, such

as how long the training takes, or if it produces other interesting results. Thus it

would be reasonable to understand the question as �What is the result of applying
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NEAT to FPS-style games?�. The question is phrased as it is in order to focus

on the performance and possibility of human-like behaviors, as that is the desired

information.

Well-playing is used here to mean an agent which can perform at a reasonable level

of performance. We do not care for an even game, so much as we do for the bot to be

able to accomplish basic game tasks. This means that a bot is well-playing if it can

perform the goals of the game. This means that both an extremely di�cult bot and

a very easy bot could both be well-playing, despite being imbalanced opponents for

most players; a di�cult opponent is likely to be unfairly built, relying on superhuman

abilities, and an easy bot opponent may not hold up well against an experienced

player. Human-like refers to any behaviors which would either come from being

controlled by a human player or behaviors which would be appropriate if the avatar

of the bot were alive. This accepts a fairly general de�nition of human-like in this

context.

It was decided to use NEAT for this project because of its success in other areas. It

has been shown to be e�ective in RTS style games and in FPS-like games. We apply

NEAT to a complete FPS environment in order to see if it can perform well in a real

game environment. While NERO showed that NEAT is capable of functioning in a

simpli�ed FPS-like game, we wish to see how it will fare in a larger, more demanding

environment.

A real FPS was used, rather than an environment only slightly more complex than

that of NERO, primarily because stepping up the complexity iteratively is a detailed

and di�cult process. It would take signi�cant work to recreate a system which

would be able to range between NERO's level and that of a real FPS, and most of

those steps would not reveal anything of interest. Additionally, iteratively increasing

complexity in increments is more useful when determining where a system breaks

down, rather than if it works at a more complex level.

Ultimately, the goal of the project is to experiment with using this architecture to

develop interesting opponents to play against. We seek to evaluate if this architec-

ture is feasible for producing agents which will improve the immersion of the player.

As we have established, player immersion is a key element in the enjoyment in the

game; thus it is something which both players and producers wish to maximize.

Ideally, the architecture would provide interesting bots. However, establishing ways

to modify the architecture for future research is also valuable.

Westra [Westra, 2007] produced a very similar system to the one presented here,
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with some key di�erences. Westra actively decides against using NEAT, instead

focusing on standard neural networks. Westra expresses an opinion that NEAT

would not add anything to the work, expecting that normal methods would serve

equally well. Additionally, Westra uses some prede�ned behaviors which the network

selects from, rather than giving direct control to the agent. This impairs the agents

ability to produce more novel behaviors, as it is limited in how it can move and

behave. However, it reduces the complexity that the network needs to manage,

making it much simpler for agents to learn to play well.

NERO [Stanley et al., 2005] is far more similar to the work presented here, using

NEAT to directly control agents which traverse a landscape and attempt to destroy

enemies. The primary di�erentiating factor between the bots in NERO and the

bots presented here is their level of complexity. Looking at NERO as a FPS-style

game, it is extremely simpli�ed; it has an apparently �at landscape with only simple

obstructions, no limits on ammo, and only one weapon. However, NERO does use

direct control over the agent, rather than scripted behaviors. NERO shows that

directly controlled bots can be well-performing and interesting in this simpli�ed

environment, but that does not necessarily extend to the more complex environment

of a real FPS game.

The NeuroBot produced by Gamez et al.. [Gamez et al., 2011] used salience-based

controllers to determine what behaviors were desired by the neural-based controller.

Rather than give the network direct control, the network produces signals which

motivate certain actions. The controllers themselves then workout how to translate

this into activity. This is not a purely neural-driven system, as other components

can motivate actions, such as direct responses to enemy presence. This means that

the network is only part of the overall control of the agent. We seek to evaluate

direct control agents.

UT�2 [Schrum et al., 2011, Schrum et al., 2012] was built using aspects and concepts

from NEAT, but did not utilize it directly. It also had a number of underlying

systems and controllers, meaning it did not utilize direct control via the network.

Additionally, UT�2 was trained using human traces, so it did not discover new

behaviors, but was attempting to emulate human ones.

In comparison to these works, the most distinct properties of this work are that

it uses NEAT to produce agents with direct, neuronal control and that we seek to

see what behaviors the agents will exhibit, rather than seeking to produce speci�c

behaviors. We hope that the agents will learn well-performing behaviors, which
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we encourage through �tness scoring, but we do not build any behaviors into the

system. The network must learn to move towards goals and de�ne good actions.

6.2 Design of the agent architecture

When building the system, there are a number of design decisions to make. For

example, we must play attention to how we communicate with the neural-based

agents. This involves de�ning the formulation of the inputs for the network and

creating outputs which can translate signal values to meaning.

We must also de�ne our testing environment as well as how training will occur.

Importantly, we must decide how results will be evaluated and what things will be

assessed and how.

6.2.1 Core framework

The system was designed using Pogamut and GameBots2004 to play UnrealTour-

nament2004. The goal was to apply NEAT to the bots to test how well-playing

and human-like the result is. This means we needed a system which would allow

for NEAT-based agents to control the bots via Pogamut and be able to evolve. We

needed systems to initialize, control, and save and restore the genetics in order for

the testing to be viable.

Because Pogamut is designed such that bots are created using the Java programming

language, a Java implementation of NEAT was necessary. NEAT itself was originally

written in C++. Fortunately, there are freely available implementations of NEAT

for several languages. jNEAT is a Java implementation created from the original

C++ implementation of NEAT and includes a few tests of the system as well as a

basic GUI for the test environment. The core NEAT implementation from jNEAT

was used as well as the saving and loading systems. The �le operations needed to

be slightly modi�ed to allow for non-contiguous testing and generation tracking, but

otherwise the implementation served. There were a few compilation errors which

needed to be �xed at the very beginning, but these mostly originated from non-

ASCII text in the code.

In order to organize the NEAT variable assignments and the motor and sensor

initialization, a data loader class is used. This class sets all relevant NEAT variables

at start up, including the population size. It also creates lists of all of the motors
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and sensors which the bots will use. The sensors and motors will be discussed in

more detail in the following section.

Since Pogamut uses GameBots for network communication to the controlled agents,

the bots have a series of events which they implement. They receive events for

initialization, have update events, and can register listeners for gameplay events,

such as receiving damage or killing something. This allows the bots to be responsive

to events around them and to execute logic at a �xed interval.

Pogamut uses a 250ms update tick, meaning a bot gets a chance to execute logic

every 250ms. The sensors and motors are updated in this update tick. This means

that the agents driven by this system actually react very slowly, as they do not

respond to events directly. This speed is still fast enough to match a decent player's

reaction time, but it would be very slow compared to a highly skilled player.

The update logic starts by calculating the sensor inputs, which it then provides to

the agent's neural network. The neural network is then simulated to produce the

output signals. These output signals map to the motor controls for the agent, and

are passed to the motors. Some of the motors activate actions directly, though most

of the systems, such as moving and shooting, are executed after the motors have set

the information they need in order to work appropriately.

There were a few options on how to instantiate the bots themselves. Pogamut

provides a system for spawning each agent as a separate thread. The example

agents do this in their main functions. These agents will respawn on death, without

disrupting the thread. However, they do not persist through a map change, so they

need to be restarted if the game restarts.

In the system, the bots are started by a server controller, which is actually the

primary thread started when testing begins. When the controller �rst starts, it

initializes the data loader class, which sets up the sensors and motors and initializes

the NEAT con�guration settings. NEAT is informed at this point how many sensors

and motors are in use. The controller then establishes a connection to a running

game instance. Once this connection is established, it sets the current map if we are

not on the correct map. Once the game is connected and the correct map is active,

the controller starts a number of bots equal to the NEAT population size, each in

their own thread.

The server controller keeps a running timer for the game session. This is used to

force reset the game session after a �xed time limit. The game's native systems for
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time limits were too soft and would not change the session if there was a tie, so an

alternative method needed to be found. Instead, the controller restarts the game by

telling the server to change the map. However, only one map selection is ever used,

so the map is only reloaded.

When the server controller resets the game, all of the current population is saved

to a �le, along with their �tness scores. The �le's name indicates the population

size, the numbers of sensors and motors, and what generation the agents were. A

clone of this �le is saved to a �le which only indicates the population size and the

numbers of sensors and motors without the generation number, thereby indicating

it was the most recent population.

When the controller starts up the agents, either from a restart or when testing begins,

it attempts to load the most recent population which has the correct population size

and number of sensors and motors. If this fails, generally meaning there is not a

previous population with the appropriate properties to load, a new population is

created. Once the population is loaded the NEAT evolution process is activated,

combining and mutating on the previous population. This produces a population of

equal size which is then used as the population controlling the bots for this session.

Since the number of bots spawned is equal to the population size which NEAT pro-

vides, every NEAT brain has a body. This was chosen to give the entire population

approximately the same amount of time to play. It would have been possible to swap

out which agents were controlling which bots at de�ned intervals, such as when they

die, but this was not deemed necessary.

6.2.2 Sensors and motors

In order to drive the agents using neural networks, the networks need some form

of inputs and outputs. These inputs and outputs are generally handled as signal

values. In this case, the signal values are real numbers between 0 and 1.

For this attempt, the agents were given direct control over the bots, as seen in NERO.

This means that the agents had outputs which cause direct responses from the bot,

rather than triggering prede�ned complex behaviors. Essentially, this means that

the agents move the bots using controls very similar to what a human player would

have.

One of the philosophies applied to the design of the sensors and motors was to

provide enough information through them that a human player could learn to play
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using them. While a human player would have di�culty processing and parsing the

information as fast as a computer, if the information were su�cient for a human to

accomplish basic tasks in the game environment then a neural network-based agent

could theoretically be able to learn to perform these tasks as well.

At the end of development, the networks had a total of one-hundred-�fty-one (151)

sensors. The sensors were often duplications of each other, rather than each being

unique, meaning that there are far fewer kinds of sensors than sensor instances.

The types of sensors include �xed values, raycast distance measures, arc-partitioned

enemy detectors, direction and distance detectors for pickups, and health and armor

sensors.

There were three �xed values sensors, each emitting a di�erent value; 0, 0.5, and

1. These were provided so the network could guarantee those values if necessary.

These function similarly to a ground value. Three were provided to allow for �xed

values at di�erent levels of activation. The signals only range from 0 to 1, so 0.5 is

the middle value to the range, and the zero and one provide the extremes.

The only internal sensors were health and armor sensors. The health sensor returned

a percentage out of 200, meaning at the starting value of health (100) the bot would

receive a signal of 0.5 from this sensor. The maximum amount of health in the game

is actually 199, so the sensor never quite reports 1. Using 200 was chosen to keep the

numbers more rounded. The two armor sensors each covered one of the two kinds of

armor, high and low. The types of armor come from slightly di�erent pickups and

stack di�erently. Low armor maxes at 50, while high armor caps at 100. The two

sensors give a percentage value out of their respective maximum. Bots start without

any armor, so these signals start at 0.

The majority of the sensors designed and provided to the agents are dedicated to

information from the external environment. There is a lot of world for the agent

to keep track of, and, as it has no systems for memory, it needs to be informed

of everything constantly. This means that the locations of all items, enemies, and

terrain needs to be fed to it each frame.

The raycast sensors provide a signal based on the proximity to terrain, where a high

signal is close proximity and a low signal is far. Each sensor uses a single raycast

to determine if there is terrain in the direction that the individual sensor instance

looks relative to the bot. This means that, as the bot turns, the raycasts adjust

accordingly; the forward pointing cast is always directly forward relative to the bot.

There are 27 instances of this kind of sensor, each pointing in a di�erent direction.
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Type Number

Fixed Value 3

Terrain Raycasts 27

Enemy Sensors 30

Pickup Direction 26

Pickup Distance 26

Active Weapon 12

Weapon Primary Ammo 12

Weapon Secondary Ammo 12

Health 1

Armor 1

Shield 1

Table 1: Numbers of types of sensors used in the system.

See �gure 9 for more information on the distribution. It is worth noting that this

is a weak method of providing terrain information, as it has many blindspots and

gives no information on what the terrain might be like; the terrain might be deadly

or move.

More rays were not used due to computation time concerns, as each bot was already

using twenty seven rays. However, additional rays might have been bene�cial. An

alternative method for providing solid terrain information was considered which used

areacasting, but a cheap method could not be found in the framework.

The enemy sensors are based on the areacast sensors in NERO as seen in Figure 10.

However, Pogamut does not provide a system for areacasting; it is likely that this

functionality is missing from UT2004, which would make providing it through Game-

Bots or Pogamut expensive. Instead, we de�ne a higher-level tracker object which

handles de�ned arcs and calculates the signal each arc should provide when informed

of relative enemy locations.

Each enemy sensor de�nes an area which it is interested in. This area is de�ned as

two pairs of angles and a distance. The angles de�ne a pyramid which originates

from the bot. The distance is the maximum distance away in which we care about

enemies being visible.

A loop over all visible enemies is performed each logic tick before the sensors are

handled, wherein the squared distance and the relative angles to each enemy are
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Figure 9: The raycasts form a fan of lines away from the bot, giving it forward

vision of the terrain. Green lines are not currently colliding with terrain; red lines

are. Note that there are multiple layers of rays, allowing the agent to see downward

at di�erent angles. There are two primary types of gaps in the agent's vision here;

it does not see terrain upward and there are blindspots between the rays.
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Figure 10: The sensors used for providing enemy proximity information in NERO.

The arcs in NERO only worked laterally, meaning the sensors did not consider if

an enemy was above or below the bot. Additionally, if multiple enemies were in

the same arc the activations from each one were summed. In this project, only the

closest enemy in the arc was used. Image Source: NERO [Stanley et al., 2005]

calculated and passed to the tracker object. The tracker object informs all of its

stored arcs of the enemy information passed to it, and each arc handles if that enemy

is within its area and updates accordingly. The arcs are responsible for calculating

the signal value they should provide. The signal produced is calculated using the

inverse distance activation, such that a higher value means closer proximity. For the

calculation the squared distances are used.

The enemy sensors themselves do very little work. On bot initialization the sensors

register the arc area they are interested in with the high-level tracker. Then, when

queried, they return the signal of their matching arc. The sensors return the signal

exactly as it is calculated, so high values indicate close enemy proximity. This pro-

vides the network with information on visible enemies with no arti�cial blindspots.

This system also allows for arcs to overlap, which is used to provide an additional

targeting arc at the bot's look focus, as well as left and right sweep arcs to help it

adjust its aim. See �gure 11.

The agent is also provided with a number of sensors to aid it in locating pickups

in the game. The pickups include basic items, like ammo or health, which often

come in many forms. There are also pickups for each weapon available on the map.

In order to provide the information of where a pickup is relative to the agent, we

provide two signals per pickup. The �rst signal is a direction to move in order to

approach the pickup and the second is the total distance along the path. In order

to produce these signals, we need to build a viable path to reach the item. We
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(a) The environment in front of

the bot is partitioned into �ve pri-

mary sections; FarLeft, Left, Center,

Right, and FarRight. There is also

a tight focus partition and vertically

narrow left and right partitions.

(b) The �ve primary partitions are

further partitioned into smaller ar-

eas by splitting them into Down,

Low, Mid, High, and Up partitions.

The tight focus partition is only as

tall as it is wide. There are also nar-

row Up and Down partitions.

Figure 11: Each arc partition provides a signal based on the inverse distance to the

nearest enemy in the arc's range. If an enemy is very close a large signal is provided.

If there are no visible enemies in the arc then it returns 0. Most of the arcs overlap

only at their edges, but a few are designed to overlay the others, providing additional

information to aid in targeting. The Focus, NarrowUp, NarrowDown, NarrowLeft,

and NarrowRight partitions form an elongated crosshair over the other primary

partitions.
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do this by having a manager object attached to the bot which calculates paths to

all registered pickups using the Floyd-Warshall map provided through Pogamut.

The sensors then use the calculated path to provide their information. The distance

sensor simply returns the inverse distance to the pickup over the total path, meaning

proximity has a higher signal value. This uses a large maximum value after which 0

is returned. The direction sensor returns a unit circle value which indicates in what

direction the next navigation node on the path is; the signal value is distributed

around a circle, so that each discrete value is a slightly di�erent angle.

As an example, lets say there is a weapon pickup on the other side of a wall from

the agent, as in Figure 12. If we were to give the agent a direct line to the pickup,

it would run directly into that wall. Instead we look at the built-in navigation map

and determine the shortest path to the pickup. From this, we can determine which

way the agent should move in order to get there, and approximately how far away

the pickup is.

Our distance sensor can simply provide an inverse distance using the squared values.

We actually use the equation

1 − distance2/MaxDist2

in order to determine the signal strength. The direction sensor is a little more

surprising, as we must consider the second node on the path rather than the �rst.

If we used the �rst node in the path, we would always be pointing at the nearest

node in the navigation map. This is because we must �rst determine where we are

in relation to that map, so the �rst node is the closest node to the bot. The only

time this is the desired direction is if the path only contains that node, meaning the

pickup we are looking at is there. Instead, we provide the direction to the second

node on the path.

In addition to the pickup sensors, each weapon has three additional sensors. The

�rst is a true or false value as to whether the weapon is active. This provides

the bot with the information of which weapon is currently active. The other two

weapon-speci�c sensors are ammo sensors for the primary and secondary ammo for

the weapon. The ammo sensors return a percentage value out of the maximum for

that kind of ammo. This allows the agents to track how much ammo they have in

each weapon.

There were twenty two motors provided to the agents which allowed for direct control

over the actions of the bot. They include basic motor function such as forward,
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Figure 12: The pickup we are looking for is around a few corners, on the other side

of a solid wall. The path to the pickup is marked. We would provide the direction

to the green node as the direction signal.

backward, and stra�ng left and right, rotational control, primary and alternate �re,

jumping, and crouching. Additionally, there is a motor for each weapon which is

used to activate that weapon. Most of the motors were designed to handle movement

through space. They were designed to give the agents direct control over movement,

rather than moving to or away from things.

The lateral motion motor controls, like the environmental sensors, work relative to

the direction of the bot; for example, the forward motor always moves the bot in

the direction the bot is facing. The movement motors are handled collectively, as

Pogamut does not handle multiple movement actions well. Instead, each motor sets

or alters some information which the bot tracks. After all of the motors have been

processed we can calculate the desired movement vector. Once we know where we

are moving to a movement action is created to perform the translation.

The rotation controls are also built into the lateral movement system, changing the

look vector of the bot based on how the agent desired to turn. The rotation is

calculated similarly to the movement, such that the motors inform the agent how

they wish to turn. The rotation is then performed relative to the bots current facing

direction.

To exemplify this, the motors can be thought to pull the bot in di�erent directions.

When they receive a signal, they provide a motivator in their own direction. Fig-
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Pickups Tracked

Health Pack

Mini Health Pack

Super Health Pack

Super Shield Pack

Extra Damage Powerup

Assault Ri�e Ammo

Assault Ri�e Grenade

Bio Ri�e Ammo

Flak Cannon Ammo

Lightning Gun Ammo

Link Gun Ammo

Minigun Ammo

Redeemer Ammo

Sniper Ammo

Table 2: The non-weapon pickups which were tracked by the system.

ure 13 arranges the motors so that we can visualize about how they a�ect the bot.

Opposite signals cancel each other out, so an equal signal to both the left and right

motors would result in a net-zero change.

The original design of this movement control system was based on the idea of each

movement direction being a single motor. However, since the signals are positive

only, this was replaced with two motors per axis. This is because the motors were

originally designed for the signal range of −1 to 1. It would also have been possible

to scale the activation, such that 0.5 is the midpoint, rather than using 0 as the

point of inversion.

Primary and alternate �re, jumping, and crouching are all activation motors with

a high bias. Once the signal reaches a certain level, the motor is activated. In the

case of the jump and crouch motors, this means the motor creates an action for the

bot to execute which is then sent to Pogamut. In the case of primary and alternate

�re, this means that a �ag is set in the bot determining whether it should be �ring,

and the bot handles any changes in this state similarly to how the lateral motion is

handled.

Because of the way crouching and jumping are handled, if both �re one overrides the

other, as it is not possible to perform both simultaneously. A controller could have
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Weapons Tracked

Translocator

Shield Gun

Assault Ri�e

Bio Ri�e

Shock Ri�e

Link Gun

Minigun

Flak Cannon

Rocket Launcher

Lightning Gun

Sniper

Redeemer

Table 3: The weapons which were tracked by the system. Each weapon also counted

as a pickup.

been created for this, but did not seem necessary for just jumping and crouching.

While the controller might have allowed for double jumping to be handled, this was

a lower priority task and a simple method for handling this was not found.

The weapon activation motors were the only motors which did not involve spatial

motion. Weapon activation was handled di�erently from jumping, as a bias system

would allow for many weapons to be activated at once. This produced a scenario

where the bot would continuously change weapons, often alternating between the

two earliest de�ned, activated motors. Instead, the motors produce a bid value,

using the signal received as the bid, which they register to an arbitration object

attached to the bot itself. Once all of the motors are processed, the arbitration

system looks at which weapon is most highly desired and activates that weapon.

This eliminates the rapid switching and gives the bot a bit more freedom in how it

uses these motors.

6.3 Project lifespan

Some elements of the project changed as the project developed. Generally, these

were responses to failures in the existing systems or programming errors. These

changes impacted how the �nal testing was carried out.
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Type Number

Movement 4

Rotation 2

Fire 1

Alternate Fire 1

Jump 1

Crouch 1

Activate Weapon 12

Table 4: Numbers of types of motors used in the system.

The original tests were primarily to get the bots functional and to test the basic

motors and sensors. After a few runs it was noted that the populations were rapidly

converging upon single networks. This turned out to be because NEAT was not

con�gured properly and was not actually performing any crossover or mutation.

Additionally, many sensors and motors did not work properly. Eventually, a debug

system was added in order to test that the inputs and outputs signals were being

produced correctly, which greatly aided the testing.

Some sensors and motors changed over the course of the project, being replaced

with better systems; for instance, the enemy detection was originally made to use

raycasting like the terrain detection does. The weapon selection originally used

activation, like jump and crouch, but this resulted in the rapid switching e�ect

described above and so the motors were changed. The distance to pickups was also

a later addition, and the �rst set only told the direction to move in for each pickup.

Initial testing attempted to train the agents to be competitive by having native bots

to play against. However, at later stages, once the system was working properly,

this mostly resulted in the agents learning to avoid play, as we shall see in the next

chapter. In order to give the bots a chance to learn to perform other behaviors

without having to learn to hide or evade �rst, a system of co-evolution was decided

upon. In addition, the population size varied many times over the course of di�erent

tests to try and �nd a good number.

6.4 Experimental procedures

The �nal testing system used co-evolution on a population of eighteen. These were

decided upon based on the results of the system trials. Co-evolution gives the agents
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Figure 13: The movement motors induce a change in the desired position or looking

direction of the bot. A forward signal motivates the agent forward, while a backward

signal does the reverse. If both of these �re at the same time, they have a nullifying

e�ect upon each other.

a chance to experiment and adapt in an environment which they largely dominate.

Since they are free to explore and the most deadly or dangerous element in the

environment is the agents themselves they are never far outmatched.

The population of 18 was chosen after experimenting with population sizes ranging

from 6 to 32. A population of six was felt to be too small. The map is quite

large, so six players wandering randomly would not frequently meet. Additionally, a

population of only six has limited space for exploration and speciation. Conversely,

a population of thirty-two resulted in the map being quite crowded. The population

of eighteen resulted in a good consistency across most of the map.

The game mode chosen for testing was FFA. This implies that the agents are not

learning cooperative behaviors, but to play individually. This simpli�es some of the

state, as this is the simplest game mode. The agents did not need to be provided

wth state information for allies or or learn to avoid friendly �re.

Since the system uses saving and loading, it could be seamlessly stopped and

restarted later, allowing it to be run for long periods without needing to run con-

tinuously. The target for the �nal test was to run for a thousand generations. In

practice, this is enough to exhibit basic behaviors in many cases. At a thousand

generations we can expect to see at least some of the basic behaviors expect of an
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agent in the game to developed.

An additional bonus to this saving and loading system is it provides additional

data. For each generation the �tness of every agent for that play session is known.

Additionally, the generation can be reloaded to review the agents' behaviors.

For the duration of testing, no human interaction was added; the agents played

entirely on their own. At various intervals an observer logged into the game as a

spectator to evaluate the behaviors of the agents.

7 Practical testing and assessment

Over the course of the development of the project, several formal and informal trials

were conducted. While most of the trials were intended to be to evaluate the function

of portions of the implementation, such as the motors, they nevertheless provided

interesting perspectives on the application and results of the architecture overall.

We also observed many interesting behaviors, both in the system tests and the long

experiment trial. While the results were not as e�ective as hoped, they were still

quite interesting and promising.

Ultimately, the system is found unviable for such a large and complex environment.

Improvements might allow it to function, however.

7.1 Initial testing and experimentation practices

Several shorter trials were carried out with changes and improvements between them.

Many of these were used to evaluate the status of the system at the time and the

improvements were based on the results of the previous trial. These tests were

intended to be used to evaluate the state of the system at various points, rather

than to evaluate the system overall.

Initial trials did not yet have a server controller, so the map was changed to a

randomly selected map when the game timer expired. The controller was added

to give control over the map change to the testing environment. This allowed the

testing to work on a very �xed timing system and to always use the same map.

From this point onward the Asbestos map was used.

The Asbestos map was selected for various reasons. A key point is that it is a

deathmatch map, meaning it is not designed for capture the �ag or teams, but
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instead to give to run around and to have fairly balanced and distributed spawn

points. Secondly, it does not have any terrain hazards � things like lava, acid, or pits

� which kill anything which falls into them. This means the bots don't have to learn

to avoid such hazards. It also has very few lifts, meaning the navigation is simpli�ed

to mostly linear terrain. It included many ramps and there were elevations, but

with only one meaningful lift which can be safely ignored it was one of the simplest

environments to traverse. Additionally, it is a large map, which gave enough space

for a larger population.

In order to observe and evaluate the bots, the server was joined as a spectator.

This allows the observer to �y around the game environment without interacting

with it. The bots were tagged so that they could be found rapidly within the

space, and movement vectors were attached to them to allow the observer to see in

what direction they were moving. Health bars and other such information were also

provided via Pogamut.

In addition to in-game observation, in each game session one of the bots was selected

to provide signal information from its sensor and motors. This was provided as a

table view in a basic Java GUI window. While di�cult to read, this information

could be used to produce a general impression of how the agents were functioning

and what they were seeing.

The �tness system developed in several ways over the course of the short-term trials.

Initially, �tness was based on kills and deaths, just as a temporary placeholder. In

the �nal system, �tness also valued pickups at varying values as well as damaging

enemies. Table 5 shows the �tness score values for certain events. For a short time

a �tness value was attached to distance moved, but this was eventually eliminated

as it valued running in circles more highly than exploring.



49

Event Value

Damage Other 1.0

Kill 10.0

Take Damage -0.5

Death -4.0

Picked Up Ammo 2.0

Picked Up Health 2.0

Picked Up Armor 2.0

Picked Up Shield 2.0

Picked Up Weapon 2.0

Table 5: Fitness scores of certain actions and events.

7.2 Results from initial testing

For most of the short-term trials, native bots were spawned for the agents to play

against. The bots never developed to be at all competitive with these scripted

bots, so the native bots were removed. However, the bots did learn to move ran-

domly when damaged, and to jump randomly when moving. Many of them moved

constantly, though some occluded themselves in geometry immediately after being

spawned, not moving until injured. During a time when the enemy sensors were bro-

ken, majority of the bots tended to occlude themselves, rather than evading enemies

they could not detect.

For a few of the trials, NEAT was con�gured to not perform crossover or mutation.

In these trials the populations rapidly converged upon the most �t individuals. By

the third or fourth game session all of the bots would perform the same behaviors.

This resulted in two populations of bots which rotated in place and �red until out

of ammo. One of the populations jumped constantly, while the other crouched.

The �rst population was lacking motors to crouch, and neither population had item

pickup sensors. This was before the enemy sensor rewrite.

Towards the end of the system development the trials were usually carried out for

longer periods to test how the agents were developing. The most commonly observed

behavior was for the agents to move randomly when injured and to attempt to

occlude themselves behind geometry.
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7.3 Results from the long-term trial

The primary, long-term trial was executed on a locally hosted server with the bots

and controller attached. No native bots were used, and the game itself did not have

a score or time limit. Instead, the server controller from the project managed the

restarting of the game and initialization of the bots. The system was left to run for

over a thousand generations, which required about 80 hours.

The results of the long-term trial were varied. Mostly, the bots stood in place unless

in�uenced by something in the immediate vicinity, like a very close pickup or enemy.

Some of the bots did explore the space at what appeared to be at random until they

encountered a pickup or enemy.

Some of the bots which did not explore instead tended to occlude themselves within

geometry. Occasionally they would �re from their concealed locations, particularly

using the area-of-e�ect �re. Generally, this �re was focused away from immediate

geometry.

Once a nearby pickup was encountered most of the bots would generally move to-

wards it. Upon encountering a nearby enemy the bots would generally attempt to

�re upon them. Sometimes the bot waited until the enemy was appropriately in

their line-of-�re, though often they would simply �re if an enemy were visible. They

frequently made use of the area-of-e�ect alternate �re in lieu of aiming.

The bots never exhibited any evidence of aiming. Some would hold their �re unless

they would likely hit the enemy, but the closest any of the bots got to aiming was

to rotate slowly until aligned.

Often, bots would be seen dueling each other in groups. These bots were generally

injured, though few kills resulted. Most of the bots dueled by moving in a circle

facing outward; they would turn and strafe in order to circle around a point behind

them. They did not consistently keep an enemy in front of them this way, and

would sometimes produce overlapping circles. If they encountered geometry then

they simply collided with it and continued moving in the same pattern.

The bots rarely score a kill even after over a thousand generations, though most

game sessions would have two or more. They are still not well-performing and do

not present any kind of challenge appropriate to play against a human player. The

bots are often out of ammo, meaning they cannot �re upon enemies. They do not

seem to have established a connection between these two values, as many would

attempt to �re upon enemies even when out of ammo.
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The bots never seemed to learn to seek anything they did not have. Generally they

would pick things up opportunistically, but they did not navigate or explore well

enough for this behavior to bene�t them majority of the time. Since all bots started

at half of maximum health and with only basic weapons they should have had many

things to seek.

Even the bots which randomly explored the space did not do so quickly or well.

They had serious issues navigating or maneuvering, often running into the world

geometry. When they did exhibit an intent in movement towards something, they

would strafe to the item and continuously rotate. At times when stra�ng from their

current orientation would not bring them nearer to the target they would pause and

rotate in place. This would produce odd arcs of movement and leave them waiting

in place for periods of time.

Most of the signal patterns observed had the agents producing very slight motor

signals for the forward and backward motors and very strong signals for the left

and right motors and rotational motors. The minor signals for front and back were

approximately equal, causing them to e�ectively nullify the other. The left and

right motor and rotational motors produced a similar nullifying e�ect upon each

other. In practice, in order to stop moving the agents would maximize both the left

and right motors, rather than dropping them to zero. The rotational motors were

utilized similarly, though they rarely stopped rotating.

The weapon selection signals observed indicated that the agents' preferred weapon

was often actually the starting weapon, though occasionally they preferred the mini-

gun. The next ranking weapon, after these two weapons, was the �ak cannon. They

rarely possessed other weapons besides the starting weapons, however, so it is un-

known whether they would have learned to use other weapons or not.
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Figure 14: When two or more bots occupied an area, they often would perform what

looked like a duel. Neither could aim and often victory went to the one with the

most ammo or the one which got o� a lucky shot with a grenade. Many duels ended

in the bots both running out of ammo.

Figure 15: The agents frequently were observed placing themselves in corners or

holes, occluding themselves behind geometry. The one pictured here rotated con-

stantly.
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7.4 Analysis

Overall, the agents are neither very human-like nor well-performing. They do have

some interesting behaviors that are somewhat human-like. Ultimately, the agents

are not functional as adaptive agents, and would not be capable of providing a

challenge to a human player; they adapt far too slowly.

In terms of keeping a player in the �owchannel, the resulting bots only succeed for

a short period of time. They are interesting to observe, but far too easy to kill

and avoid, so they pose no di�culty to a human player. It might be possible to

adapt the system to produce agents which hold the player in the �owchannel more

consistently, however.

7.4.1 Assessment of behaviors

The bots have been observed to occlude themselves behind geometry in many of the

trials. This is likely an attempt to hide for safety. It improves the bot's chances of

not dying, at the cost of not �nding many pickups or in�icting much damage. Some

of the bots which exhibited this behavior would occasionally �re, even if they could

not see an enemy. This was probably an attempt to improve their �tness value

via in�icting damage to opponents. Often this �re occurred when an enemy was

present, though some would launch area-of-e�ect grenades even when they could

not see an enemy. Randomly �ring grenades into hallways or down slopes is a

relatively e�ective tactic for dealing damage when you cannot see enemies or have

di�culty aiming at them.

Hiding like this is a reasonably valid strategy, as it blocks enemy line of sight and

�re (See Figure 16). This decreases the chances of the bot being noticed by enemies.

It also means that an enemy has increased di�culty when attempting to hit the bot.

Figure 16: With the geometry of the level partially occluding this bot, it is more

di�cult to see or �re upon.
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The hiding behavior was prevalent in the short trials. This is likely in part due to

the fact that they had limited or broken enemy sensors, meaning they could not

correctly determine the cause or source of their deaths. They also did not have

much chance of �ghting back this way.

In the longer trails the hiding behavior was still reasonably common but not as

pervasive. Many of the agents would appear to explore a bit more, as well as to

opportunistically collect pickups.

This hiding behavior might have been a local optimum. It's di�cult to change the

strategy without losing the element which makes it a strong tactic: being di�cult

to shoot at. In order to improve beyond this point, agents must actually leave

concealment. This is sometimes di�cult for new players, as well.

In the longer trials, the agents have also been observed to collect pickups opportunis-

tically. This is a very common tactic amongst human players; as a player moves

about the map, they will frequently collect whatever is nearby. While many human

players will move about the map seeking something in particular, it is not uncom-

mon for a human player to simply run about the map at random. The success of

the opportunistic pickup behavior is good. This is a commonly exhibited behavior

of human players, and if carried out well can make the agent seem very human-like.

In the shorter trials, the agents never exhibited any tendency towards exploration.

In the longer trials, however, there were some bots which would. This exploration

appeared mostly random, rather than directed towards certain distant items, imply-

ing that the agents were not seeking distant weapons. The exploration might have

been induced to encourage encountering enemies, which would be productive for the

agents. It might also have been to encourage encountering pickups, which could be

collected opportunistically.

The exploration occurred mostly as only somewhat guided movement. The agents

generally moved into open space, occasionally clinging to walls. It seems that the

exploration was essentially a �move anywhere� behavior, rather than a �what's over

there?� kind of behavior.

Anytime the agents occurred in groups, they would appear to duel. This consisted

largely of random movements and poor attempts to �re upon each other. While

the behavior did not occur well, its existence is promising. Killing and damaging

enemies is a very �t activity for the agents, so this did maximize their �tness. The

methods the agents employed also re�ected the intent of dealing damage, while deal-
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ing with other skill limitations. Agents would either �re normally when they might

hit an enemy, or attempt to �re an area-of-e�ect grenade. These are both common

behaviors in new players, as they maximize possible damage without requiring much

skill in aiming. The �rst approach is known as �spray and pray�, attempting to hit

an enemy by �lling the space with projectiles, rather than with directed �re. The

second simply minimizes the need to aim.

The agents generally lacked a seeking behavior. This is unfortunate, as it is critical

to playing well. It is not uncommon for new players to �nd themselves out of ammo

frequently, should they succeed in surviving for long enough periods, but they fairly

quickly learn to obtain ammo and keep an eye on the current amount they have.

While this means that even human players fail this task, the agent is performing at

the very worst level in this regard.

The agents seemed to have selected the primary weapon as a preferred weapon.

This may have simply be random chance, as the agents were not seen to collect

multiple weapons during play, however it might have been a learned behavior. The

agents relied on the methods of �re from the primary weapon, particularly the direct

�re and area-of-e�ect secondary �re, so moving to other weapons could have been

detrimental to their overall �tness.

Another perspective on the possibility of the selection of weapons being learned, is

that the weapons most preferred were generally some of the best weapons in the

game for people with lower skill. The minigun provides a high rate of �re and works

well for the spray and pray strategy the agents exhibited. The �ak cannon, which

also had a high bid value, is very good for �lling an area, as it has a larger area of

�re. It also possesses an area-of-e�ect alternate �re. If the agents had been given

more experience with weapon selection, they may have preferred this weapon over

the others.

While not strictly a behavior, how the agents move contributes to their human-like

appearance. Since they do not strictly follow the Floyd-Warshall map, they move

more like human players would. This makes them more convincing than the native

bots of the game. However, they typically move erratically, rather than with an

obvious intent. While observation tends to indicate that they move towards things,

they do not move directly towards things.
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7.4.2 Implementation assessment

A number of design choices in the implementation of the system may have led to

some of the less ideal results in the agents. We should identify these and separate

them from the issues in the architecture and method itself. It is possible these

would be improvable without altering the architecture; rather, only elements of the

implementation need to be changed. We also should consider what improvements

can be made to these implementation areas.

Many of the issues the bots had were related to movement and orientation. It is

likely the bots would have performed far better if this problem were resolved. It

may be possible to produce a better collection of motors for enabling the bots to

move about the space.

Since the bots were constantly producing con�icted motion actions, it is likely that

providing them with opposing motors was in error. Simplifying this system to a

single motor per axis would likely improve the bots' ability to maneuver. The

easiest way to do this is to use the middle value as the zero point, treating the

motor signals similarly to the inputs provided by the control sticks on a gamepad

controller.

An alternative solution for the motor control issue is to utilize some form of higher-

level abstraction, such as an arbitrated task-selection method which would execute

prede�ned behaviors such as moving towards the nearest pickup of a type or di�erent

movement patterns for evading and attacking enemies. This method would diminish

the versatility of the bots, making them play much more like a standard AI. This

would improve the relative skill level of the agents compared to this trial. However,

it would reduce the possibility of human-like behaviors in the agent.

If the motor controls were altered to handle horizontal rotation as a single motor, it

would make sense to alter the input signals from the pathing sensors to match. As

such, the signal passed by a direction sensor would be the rotation signal to provide

in order to turn to face that direction. This would allow nearly linear pass-through

of values to produce logical results.

The bots spent a lot of time out of ammo, often stagnating the game in a state where

none of them could even �re upon each other. This is probably a failure of the �tness

system, as there was no cost or indicator that attempting to �re while out of ammo

was wrong. If a negative �tness value had been applied to either being out of ammo

or attempting to �re while out of ammo this might have improved. However, it
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may not have produced ammo seeking. If being out of ammo were penalized they

may have instead learned to conserve their ammo. If �ring while out of ammo were

penalized they may have learned to simply not to attempt �ring when out of ammo.

Obtaining pickups was already valued as �t, but one possibility would have been

to value obtaining needed pickups more highly. Additional �tness could have been

attached to obtaining health when running low, or on collecting ammo if low. Al-

ternatively, have larger supplies of things could have been evaluated as �t, giving

the agent a higher �tness score for the items in its inventory.

Since the bots never learned to aim, it is likely that a �tness value for being aligned to

hit an enemy would have been bene�cial to this. However, determining whether the

bot's current weapon would have hit an enemy might have been an overly challenging

and computationally expensive task simply to provide a �tness bonus. Instead, a

negative �tness value for missing would be much simpler to provide and potentially

function similarly. This runs the risk of the agents learning not to �re at all, but if

the penalty is far outweighed by a positive �tness value from hitting enemies then

it might work.

When designing the system, we were presented with the di�culty of determining

what information to provide to the agents and how. Given the results of the exper-

iments, it is di�cult to evaluate how well we accomplished this. The information

provided to the agents is reasonably thorough, though some spatial information is

missing in terms of geometry detection. It is possible that the number of sensors

contributed to the agents' slowness of learning, but providing less information may

have impaired their ability to learn overall.

The terrain sensors likely need to be improved, as they provide fairly sparse data. A

wider battery of sensory information could be used, though this may require changes

to the architecture. One possible method to improve the geometry detection may

be to use areacasting, as in the enemy sensors. This would eliminate the blindspots

in the agents' sense of the local terrain. Backward-facing detection may also be a

good improvement, to compensate for the lack of memory of local terrain.

A system of saturation could also be applied to simulate memory, such that sensors

changed values more smoothly. This could help smooth out reaction times as well

as the reactions themselves. This could also help limit the agents to reacting within

time frames which seem fairly human.

An alternative version of the enemy sensors could utilize bleeding, in order to sim-
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ulate a general sense of an enemy being in a particular direction. This could also

be combined with tighter, smaller partitions. If the focus partitions had a higher

sensitivity while the outer partitions bleed more this could produce a fairly accurate

simulation of human perception. This would be best implemented if combined with

signal smoothing.

The generic nature of the ammo and weapon sensors resulted in a larger number

of sensors than strictly necessary, as well a set of twelve sensors which are on in a

mutually exclusive fashion. Not all weapons even have a secondary ammo type, so we

did not need a sensor for each weapon's secondary ammo. For most of these weapons,

the weapon's primary ammo was reported again as secondary ammo. However, this

was not viewed as a problem in context, as the impact was seen to be fairly low. It

is unclear if this redundancy had any a�ect on the agents' learning.

The weapon activation sensors could have been compressed into a single sensor,

rather than using a sensor per weapon, if we wished to reduce the number of sensors.

In this case, we preferred to keep the information channels more direct, even though

this added a need to learn the associations. It is not clear whether one system would

have been easier for the agent to understand over the other. The method chosen

was to provide information which would make the most sense to a human user or

observer.

It's possible that the agents did not learn to seek anything as the information signals

to navigate towards the pickups which were provided did not map to the motor

signals required to actually do so. Rotating toward the next point on the path to

the pickup would be most easily accomplished by rotating in the direction of the

angle until it reduced to zero. The simplest way of doing this would be to rotate in

one direction in all cases until correctly oriented to move towards the pickup, which

is actually very close to what's observed from the agents.

The jump motor actually limits the agents' ability to move. It does not support a

double-jump, which is a mid-air jump which can be performed in-game. This is not

a huge issue, but for advanced navigation purposes it would be good to have. The

crouch motor and the jump motor also con�ict, but this is more a limitation of the

game than the implementation here.

In the experiments, we attempted to train the agents on all tasks simultaneously. It

might be more productive to attempt to train agents on single tasks before moving

on to others, as used in NERO. For example, agents could be trained to move

towards enemies through �tness scores, and then once this has been learned have
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the same population trained to aim and �re upon the enemy. There was success in

this approach in NERO, so this might be a viable method of training the agents in

a more complex environment as well. This would also allow for training agents to

play in di�erent ways.

After testing was complete, it was noted that the agents did not have sensors for

rocket launcher ammo or normal shield packs. For this set of trials, this oversight

did not seem to matter, however for future implementations it would make sense to

include these pickups in the list of tracked items.

7.4.3 Discussion of the architecture

Some issues in the results may require the architecture itself to change. It is im-

portant to consider these and possible extensions to the architecture by which the

results may be improved, without breaking the goals of the original architecture.

The fact that hiding may be a locally optimal solutions indicates that the system

is still reasonably susceptible to this problem. One method which could be used

to encourage moving away from hiding is to attach a cost to standing still. In

comparison, humans explore most when bored. If the agents could be made to

be 'bored' in a sense, generally to �nd repetitive actions or standing still to be

costly, then they may be motivated towards new behaviors. This could bene�t their

appearance as human-like agents as well as improve their rate of learning. It could

also be used to encourage exploring the search-space, similar to simulated annealing.

One of the major limitations of the architecture is it lacks any properties of per-

sistent state. The network can only respond to its current state, and not what it

was looking at or doing previously. This can result in the agents changing direction

rapidly in short spans of time, sometimes bouncing between two points. This move-

ment pattern was observed during the initial trials. Additionally, agents forget any

enemies they lose sight of.

Adding any form of state tracking could enhance the agents in this regard. One

option is to utilize a second set of sensors which decay over time, allowing for previous

signals to be retained in some way. If each signal from the primary sensor was

factored into such a retaining sensor then a smoother transition would be evident.

Alternatively, many of the sensors could function this way, only changing gradually.

Another option for state retention is to have feedback built into the network, where

the previous motor signals are provided to the network. This could also utilize the
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decay method above to provide the motors signals smoothed out over several frames.

A more advanced extension to the system could be to apply a chemical-based state

system, akin to that used in the Creatures series. The agents could contain chem-

icals, which exist within the agent at concentrations from 0 to 1. We could then

have a sensor for each chemical which used the concentration directly.

In order to manipulate these chemical concentrations, an organ-like system could be

applied. Organs would be able to transport chemicals from the environment into the

agent, or push them from the agent into the environment. Other organ functions

could be to consume some chemicals to produce others or to store chemicals for

release under certain events. It would be possible to make some organs into motors,

allowing the agent to release chemicals itself.

These two systems could give the agent a form of memory and allow for more complex

state feedback. With memory and state, the agents might be more consistent. This

also introduces a system through which boredom or other emotional states might be

implemented. If an agent could learn to associate some chemical states with positive

or negative �tness, it might be able to react believably to them during gameplay.

The sensory perception of terrain could have been improved using �elds, rather than

raytracing. However, any �eld-based information would still require simpli�cation

to neural sensors. Drawing from cognitive research and the human eye, some prepro-

cessed information could be provided for where boundaries and elements exist, such

as edge detection or distance approximation sensors. It's possible that just having

less focused sensors would improve detection, such as having fuzzy area detection.

Alternatively, the chemical system could be utilized to help the agent understand

the map. The agent could leave pheromones on the map, allowing it to have a form

of memory related to navigation. This might require the ability to sense nearby

chemicals on the map, as well as chemicals in di�erent directions. This information

may not be easy to provide to the agent, particularly when trying to detect nearby,

non-immediate chemicals. Detection of chemicals at the agent's location could easily

be accomplished using a duplication of the standard chemical sensors which looked at

the agent's position rather than their internal chemical concentrations. Detection of

chemicals in the local area could be implemented as larger scope detection, detection

of nearby points, or detection of largest, nearby concentrations. In team-based

environments, map-based chemical detection could even be used as a form of indirect

communication between the agents.
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Despite the shorter trials not being meant to demonstrate longer-term learning or

to produce well-performing bots, we still established some properties of the system

overall from them.

Even in the shorter trails, it was evident that learning was taking place. The under-

lying system and architecture works towards producing more �t agents over time.

When no mutations were occurring, convergence towards the most �t solution of the

initial population was guaranteed. This re�ects positively on the system as a whole,

but is not new information.

Any work on motors or sensors frequently requires modifying the number of sensors.

This causes already trained agents to become worthless frequently, as a population of

agents has a �xed number of inputs and outputs. This makes iterative development

on the AI infeasible.

The system is highly susceptible to minor errors in motors or sensors, and any

changes to them may change how an agent behaves. Additionally, the amount of

information required is hard to gage, so it is di�cult to estimate what information

should be provided to the network and how. In theory, more information is better,

as the network can disregard useless information, but this can greatly increase the

necessary training time. The more information that is provided, the more time the

agent requires to build useful models from it.

Training of the agents required several days of time. If run continuously, the training

time used would have covered slightly more than three days. Even at this point the

agents were not well-performing, so a much longer training time would be called

for to produce well-performing agents. This presents the issue that, if it cannot be

accelerated, training takes a very long time.

Combined, these qualities make the system infeasible for use in a more time-limited

environment, such as the game industry.

There may be solutions to each of these general problems, such as accelerated train-

ing or the ability to evolve new connections to added motors or sensors. If the

training can be run is a rapidly simulated environment it can be trained in less

time. This would permit far more generations to be achieved in shorter time, as

well as reducing the cost of iterative development. If a system for connecting motors

or sensors which did not previously exist could be utilized then previously trained

networks could be retained. This would nearly eliminate the cost of modifying the

sensors and motors, making the system much more feasible.
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7.5 General assessment and moving forward

The system did not produce as e�ective results as the other methods presented in the

paper. A good deal of this is the simpli�ed nature of the architecture. Because the

goal was to see what results this architecture would produce in this context, we did

not wish to attach other architectural elements to it to improve play. Additionally,

we did not wish to provide pre-de�ned behaviors to the agents in order to allow the

architecture to produce novel behaviors.

Most of the behaviors observed, both in the long and short trials, were interesting.

The bots were often reasonably human-like, if terribly stupid. They developed a

number of behaviors typical of beginning players, such as running and hiding, though

with lower quality motor control. Ultimately, the system does seem capable of

producing agents with reasonably human-like behaviors, but the inherent complexity

of the FPS game used and the limitation of time limited their reachable potential.

The agents succeed in a very basic and simple illusion of human-like behaviors. This

is created in this scenario partially by the range of motion the bots exhibit. The

erratic nature of the agents' behaviors also factors into their human-like appearance.

This is not a strictly maintainable part, as improving and learning would reduce how

erratically they move, though it is likely that it would transition to an unpredictable

nature and only slightly erratic actions.

It is possible that the bots would eventually learn behaviors to help them succeed

in the game. They have learned approximations of or parts of generally good be-

haviors, such as �ring on enemies or picking up items, which supports the idea and

possibilities of the system, but it is unknown how many generations it would require

for the agents to reach a level of performance necessary to engage a human player.

It is not even known if any number of generations would produce well-performing

agents. The task space is complex enough that even at a thousand generations they

are not well-performing.

The system in its current state is not rapid nor reliable enough to be practical for

most applications. It takes too long to train a population and the result is not

guaranteed to accomplish anything.

The system presents a number of opportunities. It may be possible to alter it to

produce agents which are well-playing. With more training time and better systems

it may be possible to produce interesting bots, though the work required may be

too large for normal game development environments.
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From an academic perspective, it seems reasonable that this system could be adapted

to produce the desired results. The most important improvement would likely be

the ability to retain previously trained populations. With this, the long training

time would be better invested and changes could be made more freely.

In future tests of this system, it would be bene�cial to have an environment which

could be simulated more rapidly, allowing for more time e�cient training. If the

agents could play a full length game in a fraction of the time, many more generations

could be produced.

In this environment, the entire population was replaced each game session. It might

be interesting to test an elitist approach to see how it compared. Alternatively, a

collection of the best bots could be used to produce each population, rather than

the previous population.

8 Conclusions

We have tested using NEAT to create human-like, interesting, and well-playing

agents for a FPS game. The resultant agents were interesting and somewhat human-

like, but not well-playing. It was generally concluded that the task is too complex

for the system to produce good solutions within a thousand generations.

We utilized NEAT to evolve neural agents with over one hundred �fty sensors and

twenty two motors. The testing was accomplished using Pogamut communicating

with a GameBots system in UT2004. Final testing was performed as in co-evolution

environment, without native bots.

Our original question was if this architecture can be applied to FPS style games to

produce human-like and well-playing agents. The results suggest that it is not a

practical approach, especially in a time limited environment. The training seems to

be neither rapid nor reliable. It is possible that later generations would have been

better performing or that changes to the system may improve results, however. The

results suggested that the architecture worked overall, but not in a reasonable time

frame. Additionally, the architecture is very sensitive to minor changes, such as a

change in the sensors and motors.

Overall, at slightly over a thousand generations, the agents still could not play at a

beginner level. They had di�culty traversing the environment and rarely seemed to

be able to accomplish basic tasks. Neither do they have the skills necessary to aim
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nor do they have any concept of needing ammo to be able to �re. It is uncertain

that they would develop there skills or connections with further training, making

the system unreliable.

In order to reach even a thousand generations required days of continuous training.

In a realistic environment, training cannot take more than a few hours; at most a

day. This disparity indicates that the system is no where near the requirements of

a rapid learning system, making it completely impractical for online learning.

The results indicate that agents have learned some basic behaviors appropriate to

beginning players. They �re when enemies are present, attempt to evade damage,

and sometimes appear to attempt to conceal themselves. This suggests that ad-

ditional time spent training could produce agents with better skills. The resultant

behaviors also lacked the usual robotic appearance of most game AI. A large portion

of this was their erratic behavior, but the lack of rails to the behaviors made the

agents appear to act more smoothly than a standard bot. This achieves, at least in

part, the desire for human-like behavior.

The greatest limitation of the system was the need to discard previously trained

agents when the underlying system changed. This limits iterative development and

means that correcting errors or adding missing sensors or motors is extremely costly.

If this challenge can be solved then populations would only need to be discarded if

they cannot be transitioned, which could save a lot of training time.

Several possible additional �tness metrics were proposed in the analysis above.

These include penalizing missing enemies or �ring when out of ammo or giving

positive �tness for looking at an enemy. The exact results of such �tness metrics is

di�cult to predict, it is possible that penalizing missing may train an agent to not

�re for example, but it is reasonable to test them.

Alternatively to standard NEAT, real-time NeuroEvolution of Augmenting Topolo-

gies (rtNEAT) could be applied to allow agents to train while the game is running.

This would remove the need for discrete game sessions and allow agents to improve

over the course of a single game.

It was noted that limitations of the system may be the cause of the agents' inability

to play well, such as the locomotion controls being poorly designed. The most

obvious next step for this system would be to test with di�erent motors or sensors,

to see how that a�ects the results. Two immediate directions which could be taken

to improve this system were presented.
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It was suggested that non-direct control over movement would be a viable direction

to approach. This loses some of the �exibility and power derived from direct control,

but reduces the task complexity signi�cantly. An approach similar to the methods

used by Westra [Westra, 2007] may be appropriate here.

One limitation to the system is that the agents do not have any form of memory.

Some form of internal state is proposed to solve this issue, such as feedback motors

or event sensors with decays.

It may be more appropriate to test this architecture in an environment which is

more open, allowing the agents to explore more. In general, simplifying the task

environment may help improve the results. One option is to use the methods used

in NERO, where the agents are trained on speci�c tasks at any given time, rather

than all tasks at once. Alternatively, a simpler game environment may be used.

There are many possible directions for new research and improvements which could

be applied to this architecture and evaluated. While this version does not reliably

or rapidly produce human-like or well-playing agents, it seems to show potential.
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