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Department of Physics

University of Helsinki

Professor Heikki Järvinen, Ph.D.

Department of Physics

University of Helsinki

Reviewers: Professor Markku Rummukainen, Ph.D.

Lund University

Swedish Meteorological and Hydrological Institute

Professor Mikael Hildén, Ph.D.

Finnish Environmental Institute

Opponent: Professor Rob Wilby, Ph.D.

Department of Geography

University of Loughborough

ISBN 978-952-5822-86-1 (printed version)

ISSN 0784-3496

Helsinki 2014

Unigrafia Oy

ISBN 978-952-5822-87-8 (pdf version)

http://ethesis.helsinki.fi

Helsinki 2014

Helsingin yliopiston verkkojulkaisut



Acknowledgements

While pursuing this dissertation during the years 2009-2014, my intrests on climate

change-related topics gradually expanded also to outside natural sciences. This learning

process most likely is visible in the thesis as well. A pivot point in this process was the

2012 NCAR IMAGe summer school, which allowed me to see the field from a completely

different perspective. The organizers and participants are gratefully acknowledged.

I acknowledge the Department of Physics and Prof. Hannu Koskinen for providing

me with the office spaces and the needed infrastructure. Academy of Finland, Finnish

Academy for Science and Letters and Nordic SARMA network are acknowledged for

providing funding for this thesis.

I acknowledge all my co-authors and various collaborators. Reviewers are acknowl-

edged for considerably improving the presentation and content of this dissertation.

Many thanks to several people at the Division as well as the Finnish Centre of Excel-

lence in Atmospheric Science for creating a stimulating and multi-disciplinary research

environment. I thank my supervisors and express my deepest gratitude to Jouni. I do

not understand how you manage to always have the time to give thorough comments for

each of your students. I also enjoyed your ”laissez-faire” preference of supervising and

the responsibility followed by it. Luckily, it eventually worked out even though I was

not always certain of it. I thank all the applied climate research people at the FMI for

enlightening coffee-table discussions, support in various topical issues and collaboration

in data management. A special thanks to Anna for proofreading this dissertation at the

very last minute. I am deeply grateful to my (extended) family. Without your diverse

support, I would have missed a great portion of the time or self-confidence needed to

make this thesis. Though, I must admit that also the lack of them can temporarily

act as a driving force. For Liina-Mari, Vilja and Arvo: I cannot express in words your

importance in my life.

Helsinki, 15.5.2014



Jussi Samuli Ylhäisi
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Abstract

Estimates of future climate conditions are commonly based on output of climate models,

which have several potential purposes of use in climate change adaptation problems. In this

study, data from state-of-the-art global and regional climate models were analysed, together

with their relevance for applications. Impact-specific aspects of projected future climate data

were analysed in two studies, the first of which focused on Finnish crop production and the

second on European road network. The other three studies had a more general focus and

a global domain. In these papers, projected future changes in daily temperature variability

and time-dependent development of uncertainty in climate model projections were studied.

A more general viewpoint was to assess the effect of climate model development on the cli-

mate projections. More sophisticated and complex models imply more complex interactions

within and between the model components. As a result, model spread in the 21st century

climate change projections has increased on all time scales. Neither the extent of the re-

ducible uncertainty, nor the means to reduce it, are known. Uncertainty in climate model

projections varies with the variable, spatial scale and the statistics of interest. The effect of

climate model development for annual mean climate projections is unsystematic and model-

dependent, which causes multi-model mean climate projections to be mostly statistically

indistinguishable between three climate model generations. Conventional analysis methods

used for multi-model ensembles do not fully exploit the superior process-understanding which

is present in the improved climate models.

The utility of climate models varies with the specific adaptation problem and also other

information sources are often needed. For crop production in Finland, changes in water

availability in the future climate are important, whereas the expected changes in climatic

factors only have a secondary importance compared to process understanding when estimating

future conditions of European road network. Still, the prevailing uncertainty in climate

model simulations should not prevent adaptation decisions from being made, as uncertainty

estimates are expected to remain comparable despite model improvement.

Keywords: climate change, climate model, adaptation, uncertainty
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J., Räisänen, J. and K. Jylhä (2010). Growing season precipitation in Finland

under recent and projected climate, Natural Hazards and Earth System Sciences,

10(7):1563–1574.

II Ylhäisi, J.S. and J. Räisänen (2014). Twenty-first century changes in daily

temperature variability in CMIP3 climate models, International Journal of Cli-

matology, 34:1414–1428.

III Bizjak, K.F., Dawson, A., Hoff, I., Makkonen, L., Ylhäisi, J.S. and A. Carrera
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1 Introduction

Earth’s climate system is currently undergoing a rapid change, the pace of which is

likely to further accelerate during the 21st century (Collins et al., 2013). Despite

mitigation efforts of greenhouse gas emissions which can limit the future level of climate

change (Rogelj et al., 2012), significantly different weather conditions to those observed

during the 20th century will likely be observed already during the next few decades,

in many parts of the world (Mahlstein et al., 2011). As this forces many natural and

human systems out of their natural coping range (Yohe and Tol, 2002), corresponding

adaptation measures necessarily need to be applied in order to reduce any harmful

impacts induced by proceeding climate change. To be able to proactively plan and

implement them, diverse information, such as that related to future climate conditions

and to relevant impacts caused by it, is needed (IPCC, 2012).

The societal need for scientific information on climate change creates incentives for the

scientific community to produce it (Asrar et al., 2013; Giorgi et al., 2009). This setting

creates an implicit one-way supply chain, which can serve as a motivation for climate

research: Through better scientific understanding, more reliable climate change projec-

tions can be achieved which again help to tackle climate change adaptation problems

resulting as better decisions (Dessai et al., 2009b; Shukla et al., 2010). However, real-

world applications also need socio-economic data sources (Weaver et al., 2013) and the

sensitivity of the application to climatic factors can be highly variable. Adaptation

can benefit from climate information, but also from the process understanding of the

specific application (Füssel and Klein, 2006).

Improved scientific understanding does not automatically guarantee more accurate fu-

ture climate projections globally, even though on a regional level this could be achieved

(Räisänen and Ylhäisi, 2012). Uncertainty sources of climate data are not limited to

differences in climate change between different models, but model simulations typically

need to be post-processed because of their biases in present-day climate (Maraun et al.,

2010), insufficient resolution (Fowler et al., 2007) or interpretation problems related to

use of different models (Knutti, 2010). A ”good” climate model is notoriously difficult

to unambiguously identify (Räisänen et al., 2010). The large volume of climate model

data sets can act as an obstacle for more widespread use of the models (Overpeck et al.,

2011).

Climate change simulations can only be verified indirectly, either using statistical or
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physical performance criteria. Climate projections are typically evaluated using sta-

tistical criteria (e.g. Papers I-V), as the evaluation of all the processes relevant for

climate variable of interest is more challenging. Identifying the subset of most impor-

tant processes is case-dependent and comprehensive evaluation of them typically needs

more data. In the statistical approach, the range of different future model simulations is

taken to represent both the response of the climate system to forcing and the imperfect

representation of it in the climate models. Assessment on the relative importance of

epistemic (reducible) uncertainty compared to aleatory (non-reducible) uncertainty in

future climate projections (Dessai and Hulme, 2004) is highly subjective, blurring the

magnitude of potential which exists to improve future climate projections. Should this

uncertainty be reduced, more tightly optimized adaptation decisions could be applied,

in general.

Transformation of climate information to end users necessarily alters the content. This

happens regardless whether quantitative or qualitative information is used, because of

inherent cognitive processes (Kahan et al., 2012; Budescu et al., 2009). Due to societal

applications, the utility of climate science can be substantially increased by the good

performance of the interface between scientific and user communities (Mastrandrea

et al., 2010). Several skills are needed from the people working at this science-society

interface: Knowledge of the climate models and the limitations related to them, sta-

tistical methods needed to refine the data to a format that is appropriate to use, user

needs and efficient methods of communication with them (von Storch et al., 2011; Swart

and Avelar, 2011).

In this dissertation, previously poorly-known aspects of future climate simulations were

analysed from a statistical perspective, using fairly conservative analysis methods. The

general aim in Papers I, II, IV and V was to provide generally applicable climate

information for various applications whereas application-specific climate information

was provided in Paper III. The primary objective was to advance the interpretation

of the statistical uncertainties in future climate projections. The secondary objective

was to evaluate the effect of climate model development on these uncertainties, both

for best-estimate (Paper V) and probabilistic (Paper IV) climate projections.

9



2 Review of papers and the author’s contribution

This thesis consists of five peer-reviewed publications that both apply climate model

projections in impact assessments (Papers I, III and IV) and analyze previously

poorly studied characteristics related to climate model simulations themselves (Papers

II, IV and V).

Paper I investigates the reliability of model- and observation-based precipitation prod-

ucts over Finland, from an agricultural perspective. For this, growing season precipi-

tation for several interpolated observation-based products and different ENSEMBLES

models are used together with process-based assessment of the results.

Paper II provides data analysis for 21st century changes in daily temperature vari-

ability as simulated by CMIP3 climate models. Metrics for quantifying the range and

skewness of temperature variability are introduced and applied for the whole tem-

perature distribution. Possible physical mechanisms underlying the changes in daily

temperature variability are explored as well as the connection between mean climate

conditions and the daily temperature variability.

Paper III investigates the effect of climate change for the European road network.

A process-based road model is applied in order to assess the sensitivities of the road

structure to weather variables.

Paper IV applies an analysis of variance method to future climate projections, using

multiple scenarios from several CMIP5 and CMIP3 simulations. The total variance

within each ensemble is divided into internal, model and scenario components. The

relevance of each of these variance components for different user groups is discussed

and a rational risk-analysis framework for engineering-type decision-making problems

is shown.

Paper V applies another analysis of variance method to three generations of climate

models. This is used to quantify the effects of climate model development on climate

projections both from the viewpoints of an individual user and a model data provider.

The paper provides an assessment of the relative importance of model development.
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3 Climate change adaptation

3.1 Information demands and key concepts

Climate change adaptation has been on the political agenda since IPCC AR4, as the

need has gradually become evident (PielkeJr et al., 2007; Beck, 2011): any mitigation

efforts take a long time to have substantial effects and climate will be changing to

some extent (Rogelj et al., 2012, Paper IV). Oppenheimer et al. (2014) proposed a

conceptual framework on the factors affecting climate-related risks (Figure 1). Here,

the risk constitutes both from climatic and socio-economic factors. In general terms,

exposure is defined as the presence of people and infrastructure in places (and settings)

that could be adversely affected by certain climatic events and vulnerability states the

predisposition to experience these adverse effects. The framework as such can be

applied to climate change adaptation and Fig. 1 also demonstrates how adaptation

risk assessments need socio-economic data in parallel with climate data. Focusing

on climatic component is only a partial solution in several adaptation problems as

development choices can also affect the risk level (e.g. Prudhomme et al., 2010; Brown

et al., 2012).

Figure 1: Factors affecting climate-related risks (Oppenheimer et al., 2014)
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If adaptation is viewed from the perspective of Fig. 1, motivation for it is only par-

tially restricted by the epistemological limits of climate prediction (Dessai et al., 2009a;

Brown and Wilby, 2012) as vulnerabilities and risks of the system at hand to environ-

mental hazards can be assessed also from a bottom-up perspective. Several adaptation

assessments nowadays have combined both top-down and bottom-up approaches (e.g.

Moss et al., 2010; New York City, 2013; New York City Panel on Climate Change,

2013; Smith, 1997). Interplay between different communities is important: External

climate information can even appear as irrelevant to local decision-makers who have

extensive internal knowledge from the local systems and their sensitivities (Mastran-

drea et al., 2010; Dessai et al., 2004), whereas the climate modelling community is

specifically interested from the climate component (Dessai et al., 2009b; Shukla et al.,

2010).

Each societal system has its individual coping range for environmental conditions

(any physical phenomena affected by climate) which they can reactively accommo-

date (IPCC, 2012). In the altered climatic conditions, this coping range might be

exceeded and adaptating to these conditions might become increasingly more impor-

tant. Assessing by how much future conditions may exceed the coping range can be

done with the help of climate models (Chapter 3.3). This can be estimated in proba-

bilistic terms as uncertainties in climate change projections affect the estimates. Small

uncertainty intervals in the climate projections might be considered a desirable feature

as the applied adaptation measures could be optimized to meet more narrow environ-

mental conditions (Weitzman, 2009). Vulnerability and exposure are tightly linked

with societal development (PielkeJr, 2005) and hence they can be increased or reduced

independently of climatic variability (Smit and Wandel, 2006; Preston et al., 2011).

Simplified, the ability to to affect these factors of risk are defined by the adaptive

capacity of the system (IPCC, 2012).

One conceptual knowledge supply chain used to create estimates from altered future

climate conditions is illustrated in Figure 2 (Mearns et al., 2001; Füssel and Klein,

2006). The figure illustrates the linear progress of information flow from emission

scenarios to range of possible impacts. Climate models are located at the middle of this

causal chain, making them affected both by emission scenarios (as they are upper in the

chain) and allowing them to affect estimates of impacts (lower down the chain). Each

step of the chain can be estimated using highly varying approaches, or even omitted.

Each community needs some input data from the upper parts of the supply chain, in

13



together with information on the related limitations of it. Without this information,

the communities downstream the chain fail to sample the range of possible outcomes

and the sensitivity of eventual adaptation decisions to them cannot be estimated. The

requirement for knowledge on working practices also applies in the opposite direction:

For example, climate modeling community needs to be able to respond to the needs and

requirements of the impact community. Each step of the supply chain can contribute to

projection uncertainty of the application-relevant climate data and consequently have

the potential to affect adaptation decisions.

Figure 2: Knowledge supply chain of climate information (modified from Mearns

et al., 2001; Füssel and Klein, 2006).

Modern view of adaptation is provided in Fig. 1, whereas the more limited framework

of Fig. 2 (”impact approach” in Carter et al. (1994) or ”predict-and-adapt paradigm”

in Hulme et al. (2011)) was more favoured prior to vulnerability assessments (Füssel

and Klein, 2006). Prevailing uses of it can still be seen. For example, weather event

attribution has been proposed to have the potential to allocate adaptation funding

14



(Stott et al., 2004; Otto et al., 2013; Hulme et al., 2011). Viewed strictly from this

natural sciences - driven perspective, adaptation and its costs are defined as a com-

plement to failed mitigation efforts (Beck, 2011). This linear model-of-expertise has

been challenged on various levels in the adaptation literature. For example, non-linear

approaches between climate and society have been implemented as a part of the RCP-

scenarios (Moss et al., 2010). On a smaller scale, several authors have suggested a

collaborative use of local information and large-scale information on climatic impacts

(Dessai et al., 2004; Mastrandrea et al., 2010; Pidgeon and Fischhoff, 2011).

A fundamental limitation to proactive adaptation (Paper IV) is related to extremely

long time scales related to climate change (order of decades, e.g. Mahlstein et al., 2011),

compared e.g. to those of weather forecasts (order of days). This may be in discrepancy

with human perception and cause decision-makers as well as the general public to be

likely to forget the threats posed by climate change if severe weather events do not

occur for a while (Hansen et al., 2012). Essential for the selection of climate data to

be used in adaptation is to identify whether (Hallegatte, 2009) or not (e.g. Paper

III) the climate component will experience substantial changes during the time scale

related to the application.

Individual weather events have also the ability to boost adaptation assessments. For

example, The city of New York has had a long history of activities related to climate

change adaptation, but after the dramatic event of Hurricane Sandy a new initiative

was launched to address the aims to improve the resilience of the city to harmful effects

caused by climate change (New York City, 2013). The local Climate Change panel was

also reconvened and the actual climate change estimates were updated (New York City

Panel on Climate Change, 2013). The applied strategy here was to actively monitor

earlier implemented decisions and accordingly revise them through a learning process

as new information becomes available. This type of approach is highlighted also in the

adaptation literature and is known as iterative risk management (e.g. IPCC-TGICA,

2007; National Research Council, 2009). This strategy can be applied under those deep

uncertainties which are related to future climate change (Weaver et al., 2013) or if this

uncertainty is strongly conditional on the state of the scientific understanding (Paper

IV). If future conditions are highly uncertain, adaptation decisions of today need to

be compatible with a wide range of different outcomes (Hallegatte, 2009).

15



3.2 Communication of climate information

3.2.1 Different user groups and their needs

How is climate information used in various applications and how is this information

communicated? This is heavily dependent on the type of application and user group.

Modifying the classification of Themeßl (2011), climate data user groups can be clas-

sified as

1. climate and climate impact researchers

2. environmental and conservation organisations or NGOs

3. private sector (consultants, spatial planners, architects, ...)

4. local/regional/national/multi-national public institutions and authorities

5. politicians and policy makers

In COST VALUE (2013) the users are schematically divided into first-order end users

(e.g. climate researchers) who will need raw climate data for impact assessments and

second-order end-users (e.g. policy-makers) who need information on the projected

changes in the impacts relevant to the systems of interest. Those second-order end-

users with strong systemic emphasis need holistic assessments and might only have a

limited interest to apply climate projections as such. They will also need more support

in interpretation of the data. The needs of first-order end-users are often more limited

and less ambiguous (Paper IV). In the between of these schematic user groups, there

are several end users that need variously aggregated climate data for further research

activities (Forsius et al., 2013).

Provision of probabilistic and comprehensive climate information is vital for all user

groups, as it is needed in defining the risk levels to various climate phenomena. Most

applications need to take into account the whole range of climate uncertainties as

equally important for them (Kunreuther et al., 2013). For local-scale adaptation, the

user has no influence to development pathways of global climate and can treat climate

projections as non-reflexive (Paper IV).
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Risks can, however, be perceived very differently by different users. Their evaluation

can either be based on subjective or objective criteria. Subjective risk assessments can

be based to qualitative criteria and thus can be influenced by the receiver’s personal

opinions, world-views and cognitive processes (Kahan et al., 2012; Shanahan, 2007).

This can often lead to over-confidence towards the personal beliefs of the receiver (Kah-

neman, 2003; Budescu et al., 2009; Mannes and Moore, 2013; Cohen, 2003; Leiserowitz,

2006). Objective risk assessments, such as cost-benefit assessments (Hallegatte et al.,

2012; Weaver et al., 2013), are typically quantitative. Using this approach, a ratio-

nally behaving decision-maker will want to maximize his/her benefit on a well-defined

scale (Neumann and Morgenstern, 1944). Climate model simulations in various sig-

nificance levels (in addition to the most common 5 % level as e.g. in Papers I, II

and V) translate to risk values of a Type I error (falsely rejecting the null hypothesis,

i.e. models falsely simulate changes in climatic conditions) and can have relevance for

applications. Over-confidence of the user, however, can increase Type II errors (failure

to reject the null hypothesis, i.e. climatic conditions will change in the future despite

a belief this not happening) in adaptation if the future changes in climate are not

taken into account. This can result from several reasons, for example by the too large

uncertainty interval in climate projections which can be judged by some users to make

the projections themselves unusable (Schneider, 2009). On the other hand, a major

proportion of decision-makers are risk-aversive as they give more emphasis to negative

outcomes with low probabilities (Kahneman, 2003). This can favour Type I errors in

adaptation if the estimated damages related to future climate events are very high.

3.2.2 Science-policy interface

In the first half of the 20th century, political aspects of many scientific disciplines were

rather limited and scientific ethos could ideally be considered as being guided by the

four general norms (Merton, 1973):

• universalism: truth claims are independent to their protagonist

• communalism: scientific findings need to be communicated in public

• disinterestedness: science is pursued for the sake of itself and not for acquiring

individual benefit

17



• organized scepticism: scientific findings need to be questioned and the shortcom-

ings acknowledged

In addition to these normative principles, also political aspects have become increas-

ingly important in many scientific disciplines (von Storch et al., 2011). Good science

alone is often not enough nowadays as it is equally important to recognize who will

benefit from science and why it is being done (Jasanoff, 2010). The policy-relevance

is particularly true for climate science, with endless supply of applications affected by

climate (Swart and Avelar, 2011) and deeply-held personal worldviews being entangled

with views on the severity of climate change (Kahan et al., 2012; Nickerson, 1998). All

scientists are involved in policy decision-making somehow (PielkeJr, 2007) and in cli-

mate change this is reflected for example in the involvement of scientists through the

provision of information products and advice. Claims of universalism (see section 3.3),

communalism (adaptation measures are applied also by the private sector, that keeps

some of their assessments out of the public domain) and disinterestedness (climate

change as a social phenomenon has enough plasticity to serve several interests, see also

Hulme, 2009) might fail to be fulfilled. Without the organized scepticism and sufficient

expertise of the scientist, the information from the climate models can be transferred

in several ways to users and have very different outcomes.

PielkeJr (2007) categorizes political engagement of scientists into four distinct cate-

gories, the first two of which are not engaged with the policy process whereas the

latter two are. Traditional natural scientific worldview, attempting to follow the four

norms of Merton (1973), corresponds with ”Pure scientist”: research results are pub-

lished in the literature and not transferred to policy-makers by any other means. A

”Science arbiter” might be willing to provide answers to some politically-relevant and

scientifically testable narrow questions if he is asked, but also avoids giving preference

over policy choices. An ”Issue advocate” seeks to convince the policy makers to take

on a particular policy choice through using scientific knowledge as a method for this,

whereas an ”Honest broker” seeks to expand the range of choices the policy makers

have through advising them about the science behind the issues. PielkeJr (2007) argues

honest brokers as having the key responsibility in well-functioning democracies, where

science alone is not able to resolve all policy questions. Whenever Mertonian norms of

scientific practice (in particular universalism or disinterestedness) are violated, truth

claims can pronouncedly be influenced by the scientist transferring this information.
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Understanding these different alternatives to policy engagement is essential for the pro-

vision of climate change information, as the selection of appropriate engagement type

depends on the application and the data user group. Pure scientists and science ar-

biters mostly communicate their research in as general manner as possible. They do not

necessarily have a clearly-defined user group, but they might easily engage with impact

modellers who mostly have well defined data needs and can interpret the model results

themselves. In together with increasing number of data sources needed for the appli-

cation, also the need for interpretation of climate data is increased. For policy-makers,

climate consists one factor among others and a more active engagement is typically

required. Essentially needed information might not be known beforehand and it might

not be readily available from literature. Many political decision-makers necessarily

need guidance from the scientific community and need to rely on the scientific opinion.

This creates the possibility for scientific opinion to have higher importance for policy

processes than ”objective” scientific information as derived from climate model data

(Javeline and Shufeldt, 2013). In addition to natural science -related issues (Chapter

3.3), also the selection of the used communication method can influence the content

and eventual interpretation of the climate data.

The ”significance” related to climate projections can be seen at two opposing feedback

mechanisms which can both sustain the use of ”predict-and-adapt” paradigm (Fig. 2)

in applications with considerable political aspects. It might create ”excess of objectiv-

ity” (Sarewitz, 2004), where the scientist is unwilling to explicitly express the political

dimension of his/her scientific findings simply because of the difficulties in translating

the information (e.g. Carvalho and Burgess, 2005; von Storch, 2009). On the other

hand, prevailing uncertainty on climate simulations makes ”stealth issue advocacy”

(PielkeJr, 2007) easier as it places even more weight for subjective interpretation of

the expert. Here, the aim is to make politics even though the discussion is about sci-

ence. In other words, an ”issue advocate” climate scientist promoting specific policy

outcomes might be able to use climate data as a leverage for this purpose. Placing

supremacy to ”objective” scientific information implies politics and science become

inseparable from each other, resulting in a decrease of quality both in scientific prac-

tice and political debate (Sarewitz, 2011). A paradox is that science thus becomes

politicized and politics become depoliticized (Beck, 2011)! Politicians might consider

the considerable uncertainty in climate projections as an excuse for policy inaction on

adaptation decisions (Dessai et al., 2009b; Sarewitz, 2004). As summarized by Lackey

(2007): ”Debates of questions of science often end up serving as a surrogate polemic for
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the inability (or unwillingness) of decision makers to adjudicate unpleasant value and

preference trade-offs.” Scientists engaging politicians with honest scientific information

is important, as strongly skewed subjective provision of information politicizes science,

reduces scientific credibility and might even promote inaction (Foust and Murphy,

2009).

3.2.3 Climate services

In part to help meet the United Nations Millennium Development Goals, the concept

of climate services was launched in 2009 in The World Climate Conference-3 by WMO

(WMO, 2011) to improve the use of climate information in various societal needs

(Hewitt et al., 2012). The importance of communicating scientific information in an

actionable way for several societal applications has only increased ever since (Asrar

et al., 2013). Forecasting environmental changes and improving the usefulness of these

forecasts for people has also been addressed as one of the five grand challenges by the

International Council for Science (ICSU, Reid et al., 2010). Even though this covers

a wide range of disciplines, climate services have a crucial role in this process in the

interface between climate science and user communities, promoting scientific knowledge

as a part of actionable products and applications. In other words, societal value of the

climate model development is largely defined by the performance of climate services.

The concept of climate services is currently ambiguous, but the five goals of the Global

Framework for Climate Services (GFCS) are listed by WMO (2012):

1. reduce the vulnerability of society to climate-related hazards through better pro-

vision of climate information

2. advance the key global development goals through better provision of climate

information

3. mainstream the use of climate information in decision making

4. strengthen the engagement of providers and users of climate services

5. maximize the utility of existing climate service infrastructure
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Fulfilling these requirements demands multi-disciplinary skills from the people working

in this user interface, such as expertise related to model interpretation (science-point-of-

view), use of well-documented and plausible statistical methods (technical capabilities)

and insight on what information actually is useful for the users (user-point-of-view).

These skills extend far beyond natural sciences as climate data is applied in many

multi-disciplinary applications (Papers I and III). What climate data is useful and

where is it needed?

Figure 3: 11-year smoothed annual mean global mean temperature changes in CMIP3

(dashed) and CMIP5 models (solid), under several emission scenarios. The thick lines

show the MMM temperature evolution, the thin lines the temperatures in individual

models (shown only for rcp26 and rcp85). Figure from Paper IV.

Many scientifically interesting metrics have little or no use for the climate services. For

example, the relevance of Figure 3 is widely acknowledged within the climate mod-

elling community, both for comparing the behaviour of different models and assessing

the sensitivity of the climate system to different emission scenarios (Moss et al., 2010).

However, it only has a limited relevance for most of the local end-users (chapter 3.2.1)
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at a specific geographical location (Mitchell, 2003), potentially applying adaptation

measures. Figure 3 also demonstrates different alternatives to policy engagement: As

consensus on how to attach weights to different thin lines (individual climate models)

has not been reached, uniform weighting is most commoly used. The thick lines rep-

resenting different emissions scenarios, on the other hand, do not have quantitavite

probabilities attached to them. Deliberate subselection within these groups can be

used to influence decisions (issue advocate), whereas the reality could turn out to fol-

low anything within this uncertainty range (or even exceed it). Individual scientists

might have preference for selecting scenario or model groups, but these can be highly

subjective. Through these subjective selections, climate data providers can influence

the actual information content.

The needs of the climate data users are poorly known at the moment, but these ques-

tions are somewhat addressed by Swart and Avelar (2011), Kattenberg (2010), Themeßl

(2011) and the ongoing COST-VALUE project

(http://www.cost.eu/domains actions/essem/Actions/ES1102). These studies, al-

though highly limited in their extent, summarize the extremely diverse needs of the

users:

• There remains a fundamental gap between the end-users and the climate model

products, as available information is often not sufficient to cover all user require-

ments.

• Data is needed for several different seasons and not just for summer and winter

months. All parts of the distribution are important. Data needs regards to

temporal (highest demand for hourly and daily data, but also monthly data is

needed) and spatial (from point data to 100 x 100 km resolution) resolution are

very diverse.

• Information on present-day and near-future climate has the largest importance.

With longer time horizon, the need for the information decreases at almost all

societal sectors. Long timescales are interesting for educational and scientific pur-

poses, but not for most real-world applications. For example, climatic timescales

at which the response approaches ECS (Equilibrium Climate Sensitivity, corre-

sponding to equilibrium response of the climate system to a forcing caused by

the doubling of CO2) are considerably longer and scientifically interesting, but

have no relevance for the user community. See also Paper IV for discussion.
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• Most of the climate data users are impact researchers (constituting one step

down in the linear supply chain), whereas the number of users in other user

groups (climate modellers themselves, adaptation experts, research managers,

policy makers) is considerably smaller.

• Almost all respondents use temperature and precipitation data. Other variables,

such as those related to marine and coastal conditions (temperatures, waves,

local sea level rise), to air quality, or wind patterns are required for more specific

applications. The interest in snow depth and glacier data, as well as groundwater

and runoff data, has been smaller but is increasing.

These diverse data needs imply that any analysis done on climate model data is po-

tentially useful for some user groups even without establishing a direct connection to

them. The provision of climate data in this manner works under the ”pure scien-

tist” paradigm: Previously poorly-known aspects of model output are analyzed using

as general a focus as possible. The results are published in a journal, in the hope

of maximizing the number of users exploiting the findings (Paper II). Most likely

the worldwide ”climate data market” is able to somehow exploit these findings, even

though this would not be known at the time of the publishing. However, tailor-made

data is needed by several adaptation applications which have highly specific climate

data requirements (Kattenberg, 2010; Haanpää et al., 2009, also Papers I and III).

One goal of climate services is to promote the use of climate information in adaptation

problems. As end-user types have different needs, not all goals of the GFCS can be

achieved by just providing objective climate information (Krauss and von Storch, 2012;

von Storch et al., 2011). A part of climate services can be classified as ”post-normal

science” (Funtowicz and Ravetz, 1993; Hulme, 2009; von Storch et al., 2011): science

is primarily applied to public issues, facts are uncertain yet central to decision-making,

”values in dispute, stakes high and decisions urgent” (Funtowicz and Ravetz, 1993).

This problem framing involves a subjective extension: either related to interpretation of

the significance of the results, personal preferences on seeing how science can be applied

to the system or some other consultancy activity necessitating subjective opinions on

the severity of the results. For example, estimates of global mean sea level rise in IPCC

AR5 for the end of the 21st century lie between 0.26 and 0.82 m. Societal decision-

making applications (e.g. building new infrastructure near the coastline today) cannot

wait for the reduction of this uncertainty range. In the communication of climate
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science results, the community exploiting the research results is extended beyond the

experts. Decision stakes and system uncertainties (covering also ethics) are accordingly

often raised, as in the case of using climate model output in adaptation problems.

These ”extended peer communities” are manifold to those of merely applied science

and personal judgments become commonly entangled with ”objective” information.

3.3 Climate modelling

3.3.1 Behaviour of the climate system

Climate system as a whole can be divided into several components (Fig. 4). Each

of these components can be investigated separately, but they constantly interact with

each other. Because of this interaction, altered conditions in one component of the

system quickly propagate to the other components. Thus, the outcome of those surface

variables that are important for climate model users (see section 3.2.1) is the end result

of all the interactions between the relevant processes represented in a climate model.

The behaviour of surface variables cannot always be attributed to a specific set of

processes, because of the mutual interaction of the components (Paper V).

The myriad interactions in the climate system have consequences for climate modelling.

Evaluation of a GCM can be done either using physical (e.g. Schaller et al., 2011) or

statistical criteria (e.g. Gleckler et al., 2008, Papers III and V). Physical evaluation of

model performance attributes causal relationships between different processes, whereas

statistical model evaluation does not attempt to relate model improvement into any

single physical process. Rather, the model performance is estimated by comparing

model simulations with the observations. For some variables and areas, statistical

performance can be attributed to some specific set of processes, but often this is very

difficult. For obvious reasons, many users prefer using the model as a ”black box”, using

model output only from the needed variables and leaving in-depth model validation for

the model developers. This allows physical model evaluation only in those cases when

the model user is aware of the most important processes affecting the surface variables

at a specific geographical location. Many users simply do not have the capacity to

make detailed evaluation of the model results (Swart and Avelar, 2011). Statistical

model evaluation has substantial limitations, because agreement with observations can

result from counteracting errors (e.g. Stainforth et al., 2007a; Knutti, 2008).
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Figure 4: Components of the climate system relevant for climate change adaptation

(modified from Lunkka, 2008).

The uncertainty in 21st century climate change projections can be divided to three

main components (Figure 5). Due to chaotic interactions between and within different

components of the climate system, a part of the climate evolution is unpredictable

(”internal variability”). Even if the observational state of the climate is assimilated in

the models (i.e. decadal simulations, e.g. Smith et al., 2007), this component of uncer-

tainty only appears to be reducible for relatively short-term projections (Kirtman and

Power, 2013). Over longer time scales, the failure of climate models to accurately sim-

ulate the forced response of the climate system to changes in external conditions causes

increasing ”modelling uncertainty”. The third component, ”scenario uncertainty” (Ro-

gelj et al., 2012, Paper IV), is related to the evolution of the anthropogenic climate

forcing and only tends to become important on relatively long time scales, because of

the inertia in both the human societies and the physical climate system.

From these three uncertainty components, only modelling uncertainty can be poten-

tially reduced (epistemic uncertainty) in long-term (>10 years) climate projections.

The other uncertainty components are considered as non-reducible (aleatory uncer-

tainty, Paper IV). Reduction of modelling uncertainty needs to take place through

the development of climate models, but the degree of this epistemic uncertainty is not
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Figure 5: Variance in projections of 11-year smoothed values of annual mean

temperature in the Nordic area in the CMIP5 ensemble, as divided into the

contributions of scenarios, models and internal variability. The methodology and the

data set used are described in Paper IV.

known because of the limited knowledge from the climate system and the intrinsic

behaviour of it. Several independent lines of evidence indicate the ECS to have high

uncertainty related to it (Knutti and Hegerl, 2008). For the more adaptation-relevant

metric of TCR (Transient Climate Response, corresponding to global mean temper-

ature increase in the time of doubling of CO2 concentration in the idealized climate

simulations where atmospheric CO2 concentration is gradually increased 1 % / year),

uncertainty estimates have remained very similar for the last 10 years despite the in-

tensive climate model development that has taken place during this time (1 ◦C−2.5 ◦C

in Collins et al., 2013, see also Paper V).
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3.3.2 Interpretation of climate model data

To characterize the uncertainty in climate change, de facto methods of deriving possible

future outcomes are multi-model ensembles (hereafter MMEs, see IPCC, 2010) and

perturbed-physics ensembles (Stainforth et al., 2005). MMEs, especially those collected

for different phases of the Coupled Model Intercomparison Project (CMIP), are in

considerably more widespread use, with hundreds of publications using the output

data from these models (Sanderson and Knutti, 2012). Regardless of the widespread

use of MMEs, their interpretation is complicated for a number of reasons, and they are

therefore often quoted as ”ensemble of opportunity” (e.g. Tebaldi and Knutti, 2007):

• Models are not independent from each other (Knutti, 2010; Masson and Knutti,

2011a)

• MME is not designed to optimally sample the modelling uncertainty (uncertainty

range is likely to be an underestimate, see van Oldenborgh et al., 2013)

• model performance on present-day climate only has a weak connection to the

climate change estimates (Räisänen et al., 2010)

• non-uniform weighting of the models in the ensemble cannot be deemed as being

superior over the equal weighting in many cases (DelSole et al., 2013; Räisänen

et al., 2010; Weigel et al., 2010; Giorgi and Coppola, 2010)

• the number of simulations from a single modelling centre typically is not in any

way limited (Knutti, 2010)

• different participating models have mutually differing levels of sophistication be-

tween them

• datasets used in model evaluation may not be independent to those that have

been used to tune the models (Flato et al., 2013; Knutti, 2008)

Regardless, one common purpose of MMEs is to sample modelling uncertainty by using

the inter-model spread as an approximate estimate for this. Inter-model spread can

be used as such (Papers I, II, IV, V) or assumed to be an underestimate of ”true”

uncertainty (Schneider and Kuntz-Duriseti, 2002). The number of models contributing

to MMEs has been argued to be too small (Räisänen et al., 2010; Knutti, 2010), so
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that they merely provide a minimum range of irreducible uncertainty (Stainforth et al.,

2007b). CMIP ensembles simulate substantially smaller range of climate sensitivities

compared for example to the climateprediction.net (CPDN) ensemble (Stainforth et al.,

2005), which has a substantially larger sample size (Rowlands et al., 2012). However,

observational data indicates the largest climate sensitivity values (>5.6 K) in CPDN

as being implausible (Tett et al., 2013).

Another important and related feature is the difference between ”truth-plus-error”

(model mean is assumed to represent ”true” value) and ”indistinguishable” (true value

belongs to the same statistical distribution with the models) paradigms (Sanderson and

Knutti, 2012). The ”truth-plus-error” paradigm undoubtely is to a large extent applied

in model development (see Fig. 6), as new model versions tend to agree better with

observations than the previous ones. However, climate projections might be improved

under both paradigms in parallel. The larger number of models in MME results in

a reduction of the multi-model mean (MMM) error, which makes MMM projections

more accurate under the ”truth-plus-error” paradigm. In a similar manner to weather

forecasts, the ”indistinguishable” paradigm might, however, be more appropriate to

apply for long-term future climate projections (Sanderson and Knutti, 2012; Annan

and Hargreaves, 2010).

Figure 6: Absolute mean temperature bias in CMIP5 MMM minus absolute mean

temperature bias in CMIP3 MMM, compared to ERA-Interim. The numbers above

the figure panels show globally averaged mean values (land areas / sea areas). The

same models are used as in Paper V, except for HadGEM-models being omitted.

The averaging of the results from several models is in line with the ”truth-plus-error”

paradigm and is found, in part due to statistical reasons (Sanderson and Knutti, 2012),

to provide better agreement with observations than most individual models (e.g. Lam-

bert and Boer, 2001; Gleckler et al., 2008; Meehl et al., 2007). When combining the
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model output by using MMM, physical consistency of individual model simulations

might be lost. Averaging can only be done to certain metrics and not to the time

series as such (Knutti et al., 2010). Expert judgment plays an important role when

combining model results.

Problems in interpreting climate model output are also associated with the climate

model biases, as model simulations never correspond perfectly to the observations.

In order to be able to use climate model output to estimate the range of possible

impacts, this bias often needs to be eliminated from the model projections. The bias

in present-day climate is typically assumed to remain constant also in the climate

change projections (Maraun, 2013; Maurer et al., 2013).

The body of literature cited in this section demonstrates that climate model projections

are also constrained by issues beyond physical process understanding. Post-processing

of climate model data also consists an important component in deriving estimates of

future climate. This might be further emphasized if statistical (e.g. Wilks, 1992) or

empirical-statistical (e.g. Rahmstorf et al., 2012; Benestad et al., 2012) methods are

used for deriving local future climate conditions. These methods typically apply large-

scale climate change projections from global climate models.

Regardless of the controversial issues related to climate model data interpretation, the

resulting estimates of future climate change and its’ impacts are quantitative and of-

ten treated as ”semi-objective” in many impact studies. Reliable climate data serves

as a necessary starting point in impact studies, but does not alone guarantee reliable

estimates of impacts (which themselves might constitute more relevant information for

adaptation). Typically, the relative importance of climate model data becomes smaller

further down the modelling chain. For example, Bosshard et al. (2013) show that

climate models only can explain less than half of the variance in future estimates of

runoff, as the used climate model post-processing method and hydrological model have

equally important contributions. Furthermore, post-processing variance is likely to be

even larger if multiple methods are taken into account (Räty et al., 2014). Compre-

hensive assessment of these different uncertainty components would require all of the

used methods and models to be assessed simultaneously. As this is not often possible,

expert elicitation on the sensitivities of the impact model output to various factors

becomes important. Assessment of climate impacts requires expanded focus compared

to climate modelling. Uncertainty does not always ”explode” in the causal chain, but

needs to be assessed case by case.
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4 Key findings and their relevance

4.1 Summary of the papers

The different studies included in this thesis are not obviously connected (except for

Papers IV and V), but they have a unifying theme of interpreting climate model

projections and using them in applications. Different sets of climate models are used

in each study, based on data availability and suitability for the corresponding research

question. This data, comprising future climate simulations run both with GCMs and

RCMs, is summarized in Table 1.

Table 1: Climate model data used in different papers. See the papers for references

and detailed lists of used models.

Paper data set (no. of simulations) resolution emission scenarios

I ENSEMBLES (13) monthly SRES A1B

II CMIP3 (15) daily SRES A1B

III GCM-forced RCAO (2) 6-hourly SRES A2 and B2

IV CMIP3 (14), CMIP5 (13) monthly three SRESs, four RCPs

V CMIP2, CMIP3, CMIP5 (13) monthly pre-industrial, 1% CO2 / year

Papers can be classified into two groups, which differ between their end users, policy

engagement and on whether the information provided is focused enough to support

adaptation. In this dissertation, the majority of the results (Papers II, IV and V)

are analysed using as broad a perspective as possible (Chapter 4.2). These papers

all focus to analysis of climate model results without extending the focus to impacts

(Fig. 2), to which they rather constitute some of the boundary conditions. Chapter

4.3 studies Papers I and III that both focus to a specific impact application. This

focus on a specific impact needs information also from other sources (Fig. 1, discussion

on this is provided also in Paper IV).

The four scientific norms (Chapter 3.2.2) in each of these papers are preserved as well as

possible. Following traditional scientific practice, the used methods and the sensitivity

of the results to them are documented in detail, except (for the need of conciseness)

in Paper III. Despite the aim to maintain this general perspective, a subjective com-

ponent is also evident in each paper which needs to be interpreted together with the
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findings. The choice of using very conservative methods in all papers (models are

uniformly weighted and 95 % confidence intervals are used to assess statistical signifi-

cance) does not umambiguously provide superiority compared to alternative methods,

but rather corresponds with the majority of the existing literature (e.g. Collins et al.,

2013) where they are being used. The results of the Papers I, II and III are con-

ditional on the emissions scenarios used, the selection of which is based mostly on the

data availability. The sensitivity of the results to this is not speculated in the papers.

This conditionality also affects the results of Paper V, which is more severely affected

by data availability.

All papers apply a statistical viewpoint to the analysis of climate model results. In

Papers II and V, implications for extending this interpretation to cover physical

cause-effect relationships are presented as well.

4.2 Climate papers

The conceptual approach in Papers II, IV and V largely corresponds with the idea

of a pure scientist and science arbiter, as no specific end user group (chapter 3.2.1) was

attached in these papers. The analysis done in Papers II and IV can be exploited

by any end user group whereas the relevance of Paper V is smaller for most end users

and higher for climate modelling community. At best, the potential of these studies

to affect adaptation is limited to the climate component in Fig. 1. A special theme in

Papers IV and V was to estimate the effect of climate model development to this

climate component. This was assessed both for multi-model mean (Paper V) and

probabilistic climate projections (Paper IV). For those end users or climate modellers

still fostering the ”predict-and-adapt” -paradigm (e.g. Füssel and Klein, 2006), these

papers have actual implications for adaptation.

The key results of Paper II are shown in Figures 7 and 8. Figure 7 shows the projected

changes in the width of the daily mean temperature distribution. This width is defined

as the difference between the 5th and 95th percentiles of the distribution after the

removal of annual cycle. The first row suggests that the temperature distribution will

become narrower in the future climate over the Northern Hemisphere high latitudes in

all seasons except local summer, when it is projected to become wider over the land

regions. However, as the model responses vary considerably (inter-model std in the

second row), the signal-to-noise ratio (defined as the MMM divided by std, third row)
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Figure 7: Projected changes (for the years 2081-2100 as compared to 1981-2000) in

the width of the daily mean temperature distribution, as simulated by 15 CMIP3

GCMs under the SRES A1B emissions scenario. The first row shows the MMM, the

second row the inter-model std and the third row the signal-to-noise ratio (SNR,

MMM divided by std). The values above each panel show the global mean (land area

mean / sea area mean). Figure from Paper II.

is small over most world regions. Assuming a Gaussian distribution, absolute SNR of

1 (2) corresponds to ca. 84 % (98 %) confidence level of daily temperature distribution

increasing / decreasing in width over these areas. Risk levels for any values of change

(the value of interest is application-dependent) could be derived using MMM and std.

The 5-95 percentile interval covers only 90 % of all days, but the result of decreasing

variability can be extended to cover the whole distribution, including the most extreme

simulated values during these time periods.

Figure 8 in part explains the physical connection behind the relatively high SNR values

over the high latitudes in Fig. 7. This is related to the migration of the 0 ◦C borderline

and is visible in particular over the oceans where sea ice is projected to melt due to

climate change (first row). The high temperature variability near and slightly poleward

of the mean sea ice edge is attributable to both the interannual variability of the sea

ice conditions and the strong sensitivity of the local temperature to advection (mild

air from the open ocean / cold air from the ice-covered area) when ice isolates the
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Figure 8: Grid-point-wise inter-model correlation between the changes in different

statistical moments of the distribution of daily mean temperatures from 1981-2000 to

2081-2100, as simulated by 15 CMIP3 GCMs under the SRES A1B emissions

scenario. Correlations are shown between the changes in mean temperature and

distribution width (first row), mean temperature and distribution skewness (second

row), and distribution width and distribution skewness (third row). Statistically

significant correlations (95 % level) are shown in blue (negative) and red (positive).

Values above each panel show the global fractions of the areas with significant

correlations (positive/negative). Figure from Paper II.

air from the open water. Those models projecting a higher daily mean temperature

change in the local winter also also tend to project a larger decrease in temperature

variability, most likely due to a larger reduction in sea ice cover. The results look

considerably more scattered for the relationship between the changes in mean temper-

ature and distribution skewness, the areas of significant correlations being located at

higher latitudes and appearing as less systematic. Nevertheless, physical attribution is

also possible for the changes in skewness: over ice- and snow-covered areas, 0 ◦C can

act as an upper limit for the daily mean temperatures, making distribution skewness

more negative if the mean temperature is slightly below this threshold. Over many

regions, future changes in the range of daily mean temperature variability can be more

plausibly estimated than changes in its distribution skewness. A similar connection has
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been found between mean and extremes of daily precipitation (Benestad et al., 2012).

Weighting the model results based on this physical connection and the corresponding

temperature bias might, in principle result in higher SNR values in Fig. 7 for some

regions at mid-to-high latitudes (Räisänen et al., 2010).

Figure 9: Globally averaged variance components (as in Fig. 5) in the 21st century

DJF climate projections as derived from 14 CMIP3 (dashed lines) and 13 CMIP5

models (solid lines), for mean temperature (left) and total precipitation (right).

Absolute variances are shown on the top row, relative variances on the bottom row.

Figure from Paper IV.

The most important generally applicable results of this thesis are based on Papers

IV and V and are shown in Figs. 9 - 11. Figure 9 shows the three variance compo-

nents (see also Fig. 5) in the 21st century climate simulations as derived from CMIP3

and CMIP5 ensembles. An increase is seen in each of these variance components,

both for mean temperature and precipitation. The relative importance of the different

uncertainty components is affected by both the time scale and the climate variable

considered. On all time scales, internal component is relatively more important for
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precipitation than for temperature. With the longer time scales, the differences be-

tween different socio-economic scenarios become important as the scenario variance

non-linearly increases after mid-century (green lines). Modelling uncertainty as de-

fined here, to a first-order approximation, is quadratically dependent on the global

mean temperature change (Mitchell, 2003) and increases throughout the 21st century.

The relatively linear behaviour of the modelling uncertainty component in Fig. 9 is

due to averaging across all of the forcing scenarios. In the long-term, modelling un-

certainty for precipitation is relatively larger compared to that of temperature for two

reasons: Precipitation simulations are affected by several microphysical processes for

which the level of scientific understanding is worse, in addition to which they are more

sensitive to changes in atmospheric circulation patterns. Caused by this modelling un-

certainty and internal variability of the climate, different models disagree even on the

signs of the projected changes over several regions of the world (Knutti and Sedlacek,

2013). Also the assumption of linearly scalability of local precipitation with the global

mean temperature or precipitation is considerably worse as compared to temperature

(Frieler et al., 2012). These effects are more important than the choice of the emission

scenario. Besides future lead time, both the temporal and spatial scales affect the

total uncertainty in the climate projections (Masson and Knutti, 2011b; Räisänen and

Ylhäisi, 2011). This should be remembered in any adaptation problem. Even though

the results in Paper IV are generally applicable, they depend on the used climate

variable (and its statistical parameter) of interest which is application-specific.

The results are somewhat unsurprising for scenario uncertainty, as one of the four

RCP scenarios (Moss et al., 2010) used in CMIP5 assumes much smaller greenhouse

gas emissions than any of the three SRES scenarios (Nakicenovic et al., 2000) used to

force the CMIP3 models. For model variance, the result is somewhat less intuitive,

but was also anticipated well before CMIP5 data became available (Hannart et al.,

2013; Trenberth, 2010; Dessai et al., 2009b; Hallegatte, 2009): More complex climate

models are able to simulate more complex interactions taking place in the Earth system

(Fig 4), which corresponds to increased variance in climate projections. This finding

suggests that a large fraction of the modelling uncertainty component can be assumed

to be irreducible through the model development process. Further investments in

climate model development will not necessarily help to reduce the model spread, as the

epistemic component of it is not known. It will help even less to increase the policy

relevance of the models.
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Figure 10: TCR estimates from three CMIP ensembles and their corresponding

multi-ensemble mean (MEM) as provided by the models of 13 climate modelling

centre and their MMM (last column). Figure from Paper V.

The challenges in climate modelling are illustrated in Figure 10, which shows TCR

estimates from three model generations and their corresponding MMM. The estimates

from the three model generations are statistically indistinguishable. Strictly statistical

interpretation of climate model output indicates no apparent benefit from using the

latest generation of climate models over the older ones as the differences between the

samples might be due to random effects. In-depth assessment of the three CMIP en-

sembles is given in Fig. 11, which shows the fraction of total variance in those idealized

simulations with gradually increasing CO2 as divided into three components: typical

inter-model differences (the systematic differences which exist between climate models

from different modelling centres regardless of their model version, i.e. the variance
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Figure 11: Maps for three variance components (one for each column, see text and

Paper V for details) as calculated from three CMIP ensembles (as in Fig. 10) for

years 61-80 in idealized climate change simulations with gradually increasing CO2.

Annual mean surface temperature in the first row, total precipitation in the second

row and sea level pressure in the third row. Areas where the variances are

significantly larger (smaller) than expected for random data (95 % confidence level

with a two-sided test) are contoured in black (grey). Figure from Paper V.

between the 13 MEMs in Fig. 10, in column 1), differences between the three MMM

estimates (the systematic part of the variance which is induced by the model develop-

ment and is shared by each of the models, in column 2) and the model-dependent part

of model development (the unsystematic part of the variance which the climate model

development and the implementation of new model versions cause for climate change

projections – residual term, in column 3). Most importantly, the systematic part of

model development shared by each model (middle column) is very small compared to

the unsystematic part (right column). This indicates that using an ensemble compris-

ing of single simulations from each individual climate model is subject to considerable

amount of randomness in a statistical sense. As the ensemble variance component is

very small, each of the three MMM estimates differ very little from each other. The
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mutual ordering of these three uncertainty components depends on the sample size, but

appears to the users of CMIP data as in Fig. 11. By comparing the relative variance

components to those that could have been achieved by using purely random, normally

distributed data, the obtained inter-ensemble differences in temperature change (mid-

dle panel) are statistically significant only in limited regions near the sea ice edge,

where the change in model behaviour may be attributable to sea ice processes which

have been improved in the new model versions. For precipitation, the effects of model

development have been very unsystematic and model-dependent, and the differences

between the three MMM estimates allow no physically based attribution. For sea level

pressure, significant effects of systematic model development are seen over relatively

wide areas, but physical attribution of them is unclear. The model (institute) variance

component is statistically significant over many land areas for temperature and over

ocean areas for sea level pressure. As these systematic differences between the models

from different institutions cannot be explained by internal variability alone, physical

constraints could be used to rank and possibly weight model outputs in ensembles. Do-

ing this prior to combining the information from multiple models could have prospects

in providing more reliable climate change projections (Knutti, 2010).

The results of Papers IV and V are somewhat disappointing, as further climate

research does not seem to either reduce the uncertainty in the model projections or

alter the projected MMM estimates. This may result both from the experiment design

and the applied methodology. The interpretation of the MMM estimates is difficult as

it being physically inconsistent. If all climate models contributing to renewed CMIP

would have been similarly improved from their previous version regards to some locally

important process description, the simulations would likely share a larger common

component and allow the new MMM estimate to be statistically different from to

previous one. However, these improvements are unlikely to be similar across various

models and the resulting ”benefit” in climate projections might be smoothed out under

a purely statistical interpretation of the projections.

From a probabilistic standpoint, a larger uncertainty interval is unlikely to be desired

by anybody. In general, larger modelling uncertainty component in CMIP5 simulations

makes optimization of adaptation assessments harder, as applied measures need to be

compatible with a wider range of future outcomes. The results do not encourage use

of ”predict-and-adapt” paradigm: From the perspective of any end user involved in

adaptation this would further politicize climate science and shift focus away from the
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effective application of climate projections. As reminded by Dessai et al. (2009b), our

abilities to predict several socio-economic variables are considerably worse compared to

our ability to predict future climate change. The lack of accurate predictability of the

climate is not a valid reason to postpone adaptation decisions and would be very short-

sighted as a considerable part of the uncertainty is a fundamental characteristic of the

climate system itself and might largely be irreducible. This conclusion is supported by

the large interaction component in Fig. 11.

These results in together with the existing adaptation literature suggest that also other

steps in the knowledge cycle in addition to climate modelling require close attention,

if the overarching goal is to contribute in improved adaptation. Currently prevailing

statistical methodologies used to compose climate projections could be accompanied

with physical constraints and parallel runs whenever possible. Implications for cli-

mate modelling community are twofold as affected by the scenario uncertainty (see

Fig. 5): In the long-term (short-term) climate projections, modelling uncertainty is

relatively higher for precipitation (temperature) and model development efforts should

be invested to processes affecting this variable as the potential to constrain uncertainty

through better process understanding remains higher.

The effects of climate model development to model projections can also be seen in

the key findings of AR5 (IPCC, 2013, Table SPM.1). In the Table, confidence state-

ments are assessed both for occurred changes and the likelihood of further changes

for specific extreme events. Even though extreme events are more impact-relevant

quantities compared to those in Papers I, IV and V, the findings are partly in line

with this dissertation: Confidence levels for the projected future to incorporate fur-

ther changes in the water cycle have been revised, whereas confidence on changes of

temperature-related climate events have remained similar. Due to the relatively larger

role of internal variability in the early 21st, the confidence levels for the related changes

are lower compared to the late 21st century changes. Even though the revised confi-

dence levels in general are higher, the statement alone does not allow an assessment

of the uncertainty which is related to the projections. Improved climate models un-

doubtely have had an important role in the attribution of the human contribution to

observed changes, as all the condifence levels of all the quantities have been revised.

The implications of improved attribution, however, remain controversial for adaptation

(Hulme et al., 2011).
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4.3 Impact papers

The focus in Papers I and III is narrower, both in relation to their spatial domain and

the types of applications motivating the analysis. However, this does not necessarily

limit the number of potential end user groups (as defined in Chapter 3.2.1) of Paper I,

as the climate information in these papers is still somewhat general and can be used in

any application which is sensitive to them. The implications of climate projections for

the specific applications in the papers are also presented. Although publishing these

results in the literature alone does not correspond to being an ”honest broker”, this

information could be promoted in such a way in other contexts as they have some

implications for adaptation over these sectors. This is possible because vulnerability

and exposure components (Fig. 1) are also, to some extent, taken into account in these

papers by including a process-based point-of-view for the impacts. These impacts,

rather than climate change alone, serve as the primary reason for adaptation in these

studies. Climate models in these studies are applied using both top-down (Paper I)

and bottom-up oriented (Paper III) approaches.

Table 2 (from Paper I) shows the growing season precipitation climatology in two

regions of Finland for three observational products and ENSEMBLES climate models

in present-day climate. The maximum of the growing season precipitation occurs in

August for both study regions, whereas the crop productivity of most Finnish cultivars

can suffer from water shortages during the early part of the growing season (May-

June). Sufficient water availability during these months is crucial for crop yields.

Climate models typically simulate too much precipitation, as MMM values are larger

than observations in almost all cases. Removing this bias from the simulations prior

to calculating future precipitation was done here using the delta change method (Räty

et al., 2014). Also the choice of the precipitation product which is used to correct the

bias has a marked influence. The FMI grid product has the highest information content

out of the three products, both regards to the number of precipitation stations over both

areas and the used resolution. For CRU, the information content is the lowest. Here,

this translates to higher estimates of precipitation over the study area for FMI grid, and

lower for CRU. Figure 12 presents the projected changes in growing season precipitation

climatology as simulated by the climate models. Except for August, projected mean

precipitation increase is statistically significant on a 2,5 % risk level. Precipitation

shortage during the critical months of May and June is expected to become less severe

on average.
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Table 2: Growing season mean precipitation values (units in mm) for the years

1961-2000 over two study regions over Finland. FMI grid, E-OBS and CRU are

gridded precipitation products, MMM the multi-model mean and std the inter-model

standard deviation. Table from Paper I.

Month FMI grid E-OBS CRU MMM std

NE region

May 43.7 39.4 35.7 64.6 15.9

June 64.7 58.7 56.5 77.3 16.5

July 72.7 67.7 63.5 89.7 22.2

August 87.3 79.3 72.6 94.6 23.2

September 66.2 59.8 54.6 87.8 18.6

MJJAS 334.5 304.8 282.8 414.0 86.0

SW region

May 34.9 33.3 33.5 59.8 11.3

June 52.5 50.2 46.8 66.8 15.5

July 74.5 74.5 71.4 74.2 17.6

August 78.1 77.5 75.8 78.4 18.7

September 61.3 61.0 61.3 75.7 13.9

MJJAS 301.4 296.6 288.6 354.9 67.1

The conclusions of Paper I alone, however, are inadequate in providing all the needed

information even for the climate component of adaptation. The increase in average

precipitation conditions does not take into account the inter-annual variability (see Fig.

3 in the Paper) and also evaporative losses affecting total water budget are expected

to increase in warmer climate conditions. These processes affecting the vulnerability

of agricultural applications were not analysed in depth, as the primary purpose of

the paper was to analyse different observational precipitation data sets and projected

precipitation changes of the different RCMs. As projected precipitation estimates

provided in the paper are generally applicable and well documented, they could also

be used for other purposes as, for example, to estimate flood conditions. For flood

applications and many others as well, several other information sources are likely to be

needed in parallel to the results presented in the paper. The findings of the paper do,

however, have the potential to influence further crop breeding, which is a long-term

excercise (Forsius et al., 2013).
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Figure 12: Growing season MMM precipitation changes from 1961-2000 (FMI grid

observations, blue) to 2061-2100 (climate projections, red) over two regions in

Finland, as simulated by 13 ENSEMBLES RCMs. The error bars around the MMM

line show the standard deviation of inter-model spread for each individual month.

Figure from Paper I.

The results of Paper III are considerably less general, as the key climate variables

affecting road conditions are application-specific and might have little relevance for

users in other societal sectors. The main focus of the paper was to apply a bottom-up

approach by using a process-based road model and to assess the sensitivity of it to cli-

matic variations of temperature and precipitation. This was complemented by using a

top-down approach and providing estimated impacts of road network to the projected

conditions of other key climate variables. As was found out in the numerical analyses,

condition of the road surface layer seems to be a considerably more important factor

in defining proper water runoff treatment as compared to the actual distribution of

precipitation events. Typical high-traffic roads are very effective in draining the sur-

face runoff water even from the most severe precipitation events, whereas those roads

with heavy cracks in them are unable to drain runoff water fast enough. As a result,

water is able to penetrate into the road sub-base layer and may thus deteriorate the

road structure. As the maintenance life time of most roads (in the order of 20 years) is

42



considerably smaller compared to climatic time scales, bottom-up process understand-

ing of the road structure and properties constitutes a much more important factor for

efficient adaptation as compared to being able to accurately estimate the projected

climatic changes within this time period. This conclusion outweighs the sensitivity of

the projected climate model results to various factors and emphasizes concentrating on

the vulnerability component of adaptation in this specific application. Climate change

was estimated as also being able to indirectly affect the exposure component, as the

movement of people will alter the road traffic volumes and maintenance strategies in

different geographical areas. In the conclusions of the paper, iterative risk management

and application of existing practices from areas with current climate conditions similar

to those projected, were also highlighted as suitable adaptation strategies. In all, the

prospect for facilitating adaptation problems in Papers I and III by focusing solely

on the reduction of epistemic uncertainty in climate change projections seems unlikely.
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5 Discussion and conclusions

In this thesis, widely used climate model data were both applied in impact studies and

analysed focusing on previously unstudied aspects. Both best-estimate and probabilis-

tic future climate projections were analysed. The findings of this dissertation give rise

to two main conclusions:

1. If multi-model ensembles are assessed from a purely statistical viewpoint using

traditional analysis methods (”one model - one vote”), the derived climate pro-

jections are unlikely to be substantially changed through the development of the

climate models themselves. This is caused both by structural differences between

climate models and by chaotic behaviour of the climate system.

(a) For most parts of the world, multi-model mean projections are statistically

indistinguishable across several model generations. The user is able to see

hardly any significant differences between them as the mutual ordering of

individual model projections inside the uncertainty cloud varies between

consecutive model generations. Model-dependent component of model de-

velopment is considerably larger than the collective component shared by

each of the models.

(b) By using in-sample variance as a measure of uncertainty, probabilistic RCP-

projections acquired from CMIP5 have a larger uncertainty compared to the

SRES-projections of CMIP3, both for modelling and scenario components.

If these simulations are used for adaptation, optimization of different appli-

cations to climate correspondingly becomes harder. In case the application

is highly sensitive to climate, postponing adaptation decisions in the hope of

having more narrow uncertainty intervals at disposal in the future is judged

as a highly unwise strategy. This, however, might depend on the scale of

the application and the climate variable of interest.

Due to persistent model-specific differences, physical model evaluation should be

incorporated whenever physically understandable and statistically robust cause-

effect relationships are identified. At local scale there might remain more poten-

tial to improve projections through process understanding. Finding universally

applicable constraints, however, is harder if the model simulations are analysed
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in a general manner without a spefic application in mind. Physical model in-

terpretation can possibly allow more confidence to be attached to multi-model

results, as purely statistical approaches suffer from several limitations.

2. Subjective interpretation of the climate projections is often necessary, as the used

data set and applied methods might be ambiguous. This, together with the spe-

cific information demands of several applications, encourages climate services to

act as ”honest brokers” whenever tailor-made estimates from future climate are

needed. Adaptation requires interplay between the user and climate communities

as the prior knowledge on the importance of the vulnerability (climate) compo-

nent might be unknown for climate modellers (application users). Comprehensive

adaptation assessments for specific application typically require information from

both components, the relative importance of which can vary substantially. Top-

down and bottom-up approaches can be used in parallel in many assessments.

Adaptation to climate change seems unavoidable, because of the long time scales related

to any mitigation efforts. The utility of future climate simulations depends on the time

scale of the application and whether it is sufficiently long to be affected by climate

change. The information provided by the climate models can be accommodated to

adaptation assessments using several approaches, either using generally applicable and

conservative methods (Papers I and II) or by using application-specific quantities

and incorporating these with detailed process understanding of the application (Paper

III). A generally applicable approach allows the data to be easily used in several societal

applications, but is unlikely able alone to provide sufficient information for any of them.

On the other hand, directly engaging with applications allows the provision of sufficient

and contextually relevant climate information.

Emphasis on the scientific uncertainties alone is unlikely to encourage people to make

adaptation assessments, but their proper acknowledgement is necessary to guide the

available resources in an efficient manner. In adaptation problems, natural scientific

part typically needs to be incorporated with the sensitivity assessment of the system

for climatic constraints (Paper III). The gap between end-user needs and the ability of

climate models to provide the required information will remain fundamental for several

years to come, which allows subjective interpretation of the results. Climate modelling

community should not advocate specific policy, but on the contrary: it needs to actively

engage with the user interface and promote good application-specific communication

approaches.
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