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Abstract—Heterogeneous MPSoCs where different types of
cores share a baseline ISA but implement different operational
accelerators combine programmability with flexible customiza-
tion. They hold promise for high performance under power
and area limitations. However, transparent binary execution
and dynamic scheduling is hard on those platforms. The state-
of-the-art approach for transparent accelerated execution is
fault-and-migrate (FAM): when a thread executes an accelerating
instruction unavailable on the host core, it is forcibly migrated
to an accelerating core which implements the instruction na-
tively. Unfortunately, this approach prohibits dynamic scheduling
through flexible thread migration, which is essential to any
asymmetric platform for efficient utilization of heterogeneous
resources.

We present two distinct binary-level techniques – Dynamic
Binary Rewriting (DBR) and Dynamic Binary Translation (DBT)
– which enable selective acceleration, while preserving transpar-
ent thread execution and migration, to any core in the system,
at any point in time. DBR rewrites binary code to exploit
any accelerating instructions available in the host core. DBT
implements a fault-and-rewrite scheme, which sets up trampolines
to emulation routines for these accelerating instructions which are
not available on the host core. Both methods customize binary
code on demand, enabling flexible migration.

We evaluate the overhead of DBR and DBT against FAM
on a real hardware shared-ISA MPSoC prototype. Experiments
with single-thread programs show flexible migration is possible
with manageable overhead. We measure the performance of our
binary-level techniques by artificially triggering periodic thread
migration between a Base and an accelerating (ACC) core.
Periodic migration, without aiming for optimized scheduling,
results in an average slowdown of about 40% under DBR or
about 10% under DBT, compared to FAM driven scheduling. We
also show results for a speedup proportional dynamic scheduler,
enabled by our techniques, using multi-program workloads. In
this case, up to 50% faster execution times can be achieved by
leveraging flexible thread migration.

I. INTRODUCTION

Asymmetric multi-core architectures have shown to provide
higher performance and better power optimization opportuni-
ties than symmetric ones. Asymmetric disjoint-ISA systems,
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such as the STHORM platform [1] and ARM Tegra fam-
ily MPSoCs, have high performance potential but are hard
to program, as they require intimate understanding of the
functional heterogeneity between cores. On the other hand,
asymmetric single-ISA architectures, such as ARM’s BigLittle
platforms [2] have performance asymmetry that is completely
transparent to software. They are easier to program than
disjoint-ISA multi-cores due to full binary compatibility be-
tween cores. However, single-ISA multi-cores offer no options
for functional acceleration to applications that can leverage
such acceleration for their critical kernels.

Recently proposed shared-ISA architectures [3], [4] bridge
the dichotomy between disjoint-ISA and single-ISA multi-
cores. On shared-ISA architectures all cores provide a com-
mon, baseline ISA, which preserves binary compatibility and
improves programmability. At the same time, selected cores
provide functional specialization, which is visible to software
through ISA extensions. Software can exploit the acceleration
potential of accelerating (ACC) cores, through code special-
ization. However, this instruction-based asymmetry renders
execution non-transparent at the binary level. Binaries must
forgo acceleration and implement only the baseline ISA to
execute on all cores for full system utilization. If binaries
include accelerating instructions they can execute only on ACC
cores.

The state-of-the-art technique for transparent execution on
shared-ISA systems is fault-and-migrate (FAM) [4], [5]. In
this case, binaries include accelerating instructions but a thread
can execute in any core in the system. If a thread executes
an accelerating instruction on a core lacking it, FAM forcibly
migrates the thread to an ACC core which implements this
instruction. To alleviate congestion on ACC cores, FAM moves
back a thread to its originator core after a migrate-back timeout
expires. This approach has severe limitations: (i) FAM forced
migration sets dynamically core affinities on a per-thread basis,
precluding any other dynamic scheduling from implementing
global optimization policies, (ii) it may over-subscribe ACC
cores with threads and limit acceleration of those threads due
to time-sharing the ACC core, (iii) FAM may suffer from
an excessive number of unavoidable thread migrations and
the associated loss of performance. Most importantly, FAM
forced migration prohibits any dynamic scheduling approach to
improve performance or power consumption through efficient
utilization of heterogeneous resources.



In this paper we propose two different techniques to
support transparent accelerated execution and enable flexible,
cross-core migration in shared-ISA systems. Through our tech-
niques, a binary can execute on any core in the system, using
accelerating instructions when possible. Also, any thread can
migrate to any core type, at any point in time allowing dynamic
schedulers to leverage flexible migration for implementing
global optimizing policies. Specifically our contributions are:

• A lightweight Dynamic Binary Rewriting (DBR) method
which rewrites binary code implemented in the baseline
ISA, depending on the host core accelerating instruction
extensions. DBR discovers code execution paths at run-
time and replaces baseline instructions with accelerating
instructions when executing on an ACC core or reverses
previous code changes to execute on a Base core.

• A fast Dynamic Binary Translation (DBT) technique
which implements fault-and-rewrite: when an accelerat-
ing instruction execution faults, DBT sets up a trampoline
to an emulation routine translating this instruction to
the baseline ISA. DBT reverts trampoline jumps to the
original accelerating instruction for native execution on
an ACC core.

• We evaluate our techniques against FAM on a hardware
prototype of a shared-ISA MPSoC using single-program
workloads from the SPEC CPU2006 [6] and Rodinia [7]
suites. We measure the performance of DBR and DBT by
triggering migration periodically between a Base and an
ACC core. Periodic migration under DBR has an average
slowdown of about 40% while DBT average slowdown
is around 10% compared to FAM driven scheduling. This
slowdown can be readily recovered through informed dy-
namic scheduling instead of arbitrary periodic migrations.

• We show results for a Speedup Proportional Dynamic
Scheduler (SPDS) leveraging flexible migration as en-
abled by our binary-level techniques. SPDS dynamically
migrates threads between Base and ACC cores according
to their speedup. We compare it against FAM scheduling
by running speedup heterogeneous, multi-program work-
loads on a hexa-core MPSoC consisting of 2 ACC and 4
Base cores. SPDS, employing our binary-level techniques,
out-performs FAM scheduling by as much as 50%.

The rest of this paper is organized as follows: Section
2 briefly discusses fault-and-migrate and other transparent
executions schemes. Section 3 presents our dynamic binary
rewriting method and section 4 describes dynamic binary
translation. Section 5 presents the evaluation of our work,
including the experimental methodology and implementation
details. Section 6 reviews related work. Section 7 concludes
the paper.

II. BACKGROUND ON TRANSPARENT EXECUTION

DBR and DBT are alternatives to two known methods
that also enable software transparent execution on shared-
ISA, asymmetric multi-core processors: Fault-and-Migrate [4],
[5], [8] and universal binaries. For the sake of simplicity and
without loss of generality, we will assume systems with two
types of cores, Base and ACC, for the rest of the discussion.

The fundamental difference of our binary-level techniques
compared to these methods is that they enable flexible migra-

tion which can be leveraged by dynamic schedulers to imple-
ment global optimizing policies. By contrast, FAM enforces
thread migrations by the necessity to execute accelerating
instructions only on ACC cores. FAM implicitly assumes that
forced migration will opportunistically accelerate execution
to offset the migration cost. However, this approach disrupts
load balancing by oversubscribing ACC cores and hinders
any global dynamic scheduling due to forcing core affinities.
Universal binaries on the other hand forbid thread migration
and enforce static, application-level scheduling decisions that
may compromise system performance during the execution of
multi-program workloads.

Universal (also known as “fat”) binaries bundle together
different versions of binary images for every ISA available
on an asymmetric multi-core. At deployment time, the host
assigned to execute the binary selects a compatible image
for execution. However, universal binaries are designed for
static allocation of binary images to cores with a matching
ISA. They lack inherent support for thread migration: code
deployed on a specific ISA must execute only on cores with
the same ISA. Cross-architectural migration between distinct
ISAs requires dynamic transformation of the binary code itself
or the runtime state, such as the call stack. Such migrations,
however, can be too costly or even infeasible, if there is not
enough state information to resume a thread on a core with a
different ISA [9].

FAM dynamically enables transparent binary execution at
the cost of forced migrations. Under a FAM execution regime,
code is compiled to target the full set of ACC instructions, as
if the binary will always execute on an ACC core. However,
a thread can still be placed to any core in the system. During
execution, if a thread causes an illegal instruction exception
on a Base core, it is forcibly migrated to an ACC core.
Because of the necessity of FAM migrations, ACC cores may
become over-subscribed and system performance may suffer
from load imbalance. Furthermore, a scheduler that uses FAM
has no option to select which thread(s) to accelerate using ACC
instructions, when such a choice would affect application or
overall system performance.

With our binary-level techniques, a binary can execute
transparently to any core in the system, without forcing
migration or any other disruption in scheduling. Also DBR
and DBT differ from other frameworks that aim at binary
portability, including interpreted execution, virtual machines
and heavyweight binary rewriters, in that they do not necessi-
tate continuous execution monitoring, costly binary analysis
or prior code instrumentation. In particular, DBR operates
on stripped binaries, and discovers live execution paths and
rewriting opportunities for accelerating instructions only once,
storing metadata to enable rewriting on demand. Likewise,
DBT needs no binary instrumentation and incurs significantly
lower overhead because it is invoked on demand and rewrites
only in the scope of a single faulted instruction.

III. DYNAMIC BINARY REWRITING

A. Overview

Dynamic Binary Rewriting (DBR) requires code to be
compiled statically for targeting baseline instructions, to be
specialized later with accelerating instructions depending on



the host core ISA. DBR is an OS service aware of the host
core ISA type, while being transparent to application-level
software. The OS bootstraps DBR on thread creation to do
binary analysis and perform code specialization if the host core
implements the ACC ISA. DBR is invoked again on thread
migration to specialize code for the target core ISA.

DBR dynamically discovers execution flow paths by instru-
menting branch instructions. It identifies rewriting targets on
discovered basic blocks using peephole analysis. Depending on
the host core ACC ISA, DBR patches binary code, replacing
baseline instructions with accelerating instructions. In case a
thread migrates to a Base core, the OS invokes DBR to revert
previously rewritten code to the original baseline instruction
implementation. Hence, unrestricted cross-core migration is
possible at any point in time, with accelerated execution when
the host core implements the ACC ISA. DBR operates on
stripped binaries without prior instrumentation. It is designed
to be lightweight by minimizing time spent during managed
execution and aiming for native execution whenever possible.

B. Dynamic control flow discovery

The OS bootstraps DBR control flow analysis by providing
the thread’s start function, passed on from a pthread create
call. DBR dynamically discovers the execution path by fol-
lowing control flow instructions and discovering basic blocks.
Discovered basic block info is stored in a list, in the OS thread
descriptor structure, to be checked later for avoiding analysis
on already discovered blocks. DBR disassembles instructions
to find the branch instruction exiting the block. The target
address of a direct branch can be resolved statically during
binary analysis. We discuss indirect branches later. Control
flow analysis creates a new basic block datum for the target and
inserts it in the thread list. The datum stores the block starting
address, which is the branch target, and the original instruction
at this address. DBR replaces this instruction with a software
break to a DBR entry routine and resumes native execution. If
the break does execute, the entry routine saves thread context
to restore it upon resuming native execution and invokes
DBR control flow analysis. The analysis routine replaces the
break with the original instruction and repeats the basic block
discovery process. Branch targets within already discovered
basic blocks are not followed, since code has been already
examined. By setting break instructions on target addresses,
DBR discovers only live code to save analysis overhead. For
example this applies to conditional branches which may or
may not be taken.

Indirect branches Although the target address of direct
branches can be calculated statically, indirect branch targets
can be only resolved at runtime. When control flow analysis
encounters an indirect branch instruction, DBR replaces this
instruction with a software break and inserts a helper basic
block datum to save the original instruction. When the indirect
branch software break executes, DBR resolves the branch
target by consulting the saved thread context. DBR proceeds
as with direct branch targets, inserting another basic block
datum for the target and replacing the target address instruction
with a software break. Indirect branch analysis is a signifi-
cant source of overhead for traditional binary instrumentation
frameworks [10]. Each execution of an indirect branch would
need to break into DBR. However, indirect branches have

1 ...
2 imm 0xc000
3 brlid r15, divsi3
4 addik r5, r5, 6
5 ...

(a) Original code

...
nop
addik r5, r5, 6
idiv r3, r6, r5
...

(b) Patching an accelerating
integer division instruction

Fig. 1. Rewriting an accelerating instruction instead of a software emulation
routine

good target locality [11] and most of the time DBR resolves
the same target for consecutive executions. DBR mitigates
indirect branch analysis overhead by following a sampling ap-
proach for processing indirect branches. The original indirect
branch instruction is restored to replace the software break
instruction, immediately after the branch target is resolved.
At each scheduling interval, the OS invokes DBR to reset
indirect branch instructions to software breaks for re-probing
the target address if needed. In other words, indirect branches
are sampled once every scheduling interval. This sampling
strategy allows hotspot code targeted by indirect branches to
be discovered without the overhead of continuous analysis.

C. Binary rewriting

At the same time with execution path discovery, DBR iden-
tifies rewriting targets through peephole analysis. Rewriting
targets are saved in a list within the OS thread descriptor for fu-
ture reference. The rewriting list is updated as new basic blocks
are discovered. In the current implementation, DBR identifies
calls to routines emulating unavailable ACC instructions with
baseline instructions. If the host core implements the ACC
ISA, DBR patches the binary code replacing the routine call
with the actual accelerating instruction. DBR patching follows
the routine call ABI to correctly setup the register operands
for the accelerating instruction.

The OS invokes DBR before a thread migrates to a different
core type in order to apply or undo patches on identified
rewriting targets. If a previously rewritten thread running on an
ACC core is migrated to a Base core, DBR reads the rewriting
list and undoes changes in the binary code. Conversely, if a
thread migrates from a Base core to an ACC core, DBR patches
accelerating instructions for the discovered rewriting targets.

Rewriting happens in-place, on the application binary code
itself. DBR may need to remove, reorder instructions, or
amend the machine state because of rewriting. Figure 1 shows
an indicative example. A routine call implementing integer
division can be replaced with an accelerating idiv instruction
in the ACC ISA. The call is implemented as a delay-slotted,
branch-and-link instruction, preceded by an imm instruction
for extending the branch operand address. DBR writes a nop
in place of the imm instruction. Furthermore, it swaps places
between the patched, accelerating idiv instruction and the
instruction in the delay slot to preserve execution order.

DBR may need to update the thread’s machine state due to
rewriting. For example, assume a thread executes the rewritten
code snippet in Figure 1(b) on an ACC core. If the thread is
set to migrate to a Base core, DBR will undo the patch and
inspect the context-switch resume register (CSRR). The CSRR



Fig. 2. An PE instruction fault triggers DBT which sets up a trampoline to
an emulation routine

points to the application code address saved before entering
the OS. This is the address the thread will resume execution
after migration. If CSRR points to the instruction at line (3),
DBR will move CSRR to the preceding instruction at line (2)
to correctly resume at the restored routine call. In a more
challenging case, if CSRR points to the previously patched
accelerating instruction at line (4), the originally delay-slotted
instruction has been already executed. Thus DBR cannot
backtrack CSRR in the original code for correct execution
after migration. In this case, DBR executes the accelerating
instruction in its own context, updates the thread machine
context as if the instruction has executed normally. CSRR is set
to point to the subsequent instruction at which the application
thread will resume after migration. DBR detects such cases
and performs any necessary amendments.

IV. DYNAMIC BINARY TRANSLATION

Dynamic Binary Translation (DBT) enables transparent
execution and flexible migration by assuming binary code
has been statically compiled for the ACC ISA. DBT is
implemented as an OS service too, being transparent to the
application layer. DBT operates by replacing ACC instructions
with equivalent, lightweight emulation routines, or vice versa.
Rewriting is triggered either when a thread executes an ACC
instruction on a Base core causing a fault, or by a scheduling
decision to migrate a thread from a Base core to an ACC core,
for policy reasons. DBT replaces the faulted ACC instruction
on a Base core with a trampoline to an equivalent emulation
routine implemented with baseline instructions. Conversely,
DBT restores trampolines to the original ACC instructions
when a thread migrates from a Base core to an ACC core
which is able to execute ACC instructions natively.

A. DBT operation

Figure 2 depicts DBT operation triggered by an instruction
fault. In more detail, ACC instructions execute at full speed,
without DBT intervening, when they are implemented in

TABLE I. TABLE SHOWING PE EXTENSION INSTRUCTIONS

Instruction Function Hardware unit Clock cycles

mul INT multiplication Integer Multiplier 1

idiv signed INT division Integer Divider 32

idivu unsigned INT division Integer Divider 32

fadd FP addition FPU 4

frsub FP subtraction FPU 4

fmul FP multiplication FPU 4

fdiv FP division FPU 4

fcmp FP comparison FPU 4

hardware. If a thread executes an ACC instruction on a Base
core, an illegal instruction exception triggers the OS exception
handler which invokes the DBT management routine. Firstly,
DBT sets up an emulation handler for the faulted ACC
instruction, translating it to an equivalent implementation in
the baseline ISA. Secondly, it patches the faulting address with
a trampoline jump to the emulation handler. Specifically, the
emulation handler code performs the following sequence of
operations:

(1) saves part of the execution context to avoid altering it when
emulating

(2) sets up the call to the emulation routine, loading registers
with input

(3) calls the emulation routine which is functionally equivalent
to the ACC instruction

(4) stores back emulation results, saving them to output reg-
isters

(5) restores the unmodified execution context and finally,
(6) jumps back to the instruction following the trampoline

branch.

Finally, DBT gives control back to the application to
resume at the faulted address where the trampoline has been
written. Execution resumes natively and jumps for the first time
to the emulation handler code. Subsequent executions of the
rewritten instruction address take the trampoline jump, without
DBT intervening.

DBT stores info about rewriting, that is a data triplet
containing the faulted address, the binary encoding of the
faulted instruction and the emulation handler’s address. This
triplet is inserted in a per-thread rewriting list, saved within
the OS thread descriptor. If a previously DBT-rewritten thread
migrates to an ACC core, the OS invokes DBT to revert
any patches made. DBT reads the thread’s rewriting list and
replaces trampoline jumps with the original ACC instructions
for native execution after migration.

V. EVALUATION

A. HW platform and SW support

We implemented a shared-ISA multi-core architecture on
real hardware, an FPGA prototype that consists of ISA asym-
metric Microblaze cores. This platform choice is motivated by
the FPGA’s extensibility for architectural exploration. Microb-
laze implements a 32-bit RISC ISA which can be extended
with accelerating instructions, by optionally implementing ad-
ditional hardware units. In our platform, ISA asymmetry comes



from enabling hardware implementation of computation accel-
erating components, i.e., the FPU and fast integer multiplier/-
divider units, similar to previously proposed approaches [4].
Table I lists the respective accelerating instructions which can
be offered as an extension of the baseline ISA.

Other than ISA based asymmetry, cores have the same
micro-architectural characteristics: 100 MHz clock frequency,
single issue in-order 5-stage pipeline, separate 32KB L1 in-
struction and data caches, a common, unified 512KB L2 cache,
a 512-entry branch target cache, and a dedicated connection
to the external memory controller.

The platform runs the Xilkernel OS with extensions that
we introduced for multi-core support. The platform has no
hardware support for cache coherence and cache consistency
is implemented only for shared OS data, through software-
controlled cache invalidations.

B. Implementation details

We extend the OS to implement DBR and DBT as system-
level services transparent to the application level. The OS boot-
straps DBR’s code discovery with the thread’s start routine for
initializing dynamic binary analysis and instruction patching.
On thread migration to a different ISA core, the OS invokes
DBR to specialize code for the target core. DBR patches
accelerating instructions if the target core implements the ACC
ISA, or reverts previous patches to baseline instructions if the
target is a Base core. DBR stores a total of 36 bytes of metadata
per rewriting target, including the target’s rewriting type, the
target instruction address, the instruction itself, a flag for
delay-slotted execution and other data structure variables. Also,
DBR stores 68 bytes per basic-block discovered, including the
instruction at the block start address, the block’s start and end
addresses and other data for fast searching in the basic block
list.

Regarding DBT, the OS invokes it when a thread triggers
an illegal instruction fault by executing an unavailable acceler-
ating instruction on a Base core. Also, DBT is invoked in case
a thread migrates from a Base core to an ACC core, to rewrite
any patched trampoline jumps to the original accelerating
instructions. DBT stores emulation handlers in core-private,
low-latency scratchpad memories which are 32KB in size
for our implementation. Scratchpads function as emulation
handling buffers with fast, cache-like access times (1 cycle)
and are addressable with a single branch instruction from the
trampoline. DBT saves rewriting management data in per-
thread OS descriptors for later reference, when managing
the handler buffer or reverting back rewritten instructions.
Specifically, DBT stores a total of 28 bytes per rewriting target
including the target instruction’s address, the instruction itself,
and the emulation handler’s address. On migration from a Base
to an ACC core, DBT flushes any thread emulation handlers
resident in the local scratchpad buffer and restores previously
emulated ACC instructions to execute natively at the target
core.

C. Experimental methodology

For the evaluation we use single-program or multi-program
workloads where each program runs in single-threaded mode.
Specifically, we port benchmarks from the SPEC CPU2006 [6]

and Rodinia [7] suites to our platform. Table II lists the
ported benchmarks. The table shows the executed instruction
breakdown per-benchmark and the end-to-end speedup when
the benchmark executes alone on a Base core using only
baseline instructions versus executing on an ACC core using
ACC instructions.

We categorize benchmarks based on their speedup as High-
speedup, Medium-speedup and Low-speedup. High-speedup
benchmarks achieve more than 10× acceleration from ACC
instructions. This class includes streamcluster, cfd, and lud,
which are computational kernels from the Rodinia suite mak-
ing frequent use of FP operations. Medium-speedup bench-
marks achieve speedup between 10× and 2×. These are: milc,
bfs, namd, srad, backprop, hmmer. Medium-speedup bench-
marks have most their speedup achieved due to accelerating
integer instructions and to a lesser extend from infrequent
use of FP operations. Interestingly, compiling milc and namd,
which are part of SPEC FP benchmarks, produces a binary
which does not use hardware, single-precision FPU instruc-
tions because of double-precision FP arithmetic in the code.
Nevertheless, hardware integer instructions accelerate double-
precision compiled code, providing more than 3× speedup
over baseline instructions. Benchmarks that achieve less than
2× speedup from ACC instructions are categorized as low-
speedup ones and include: sjeng, h264ref, hotspot, astar,
libquantum and bzip2. Those benchmarks execute mostly base-
line instructions and very few accelerating ones.

For evaluating the overhead of our binary-level techniques
compared to FAM we use a platform configuration with one
ACC core and one Base core. Each benchmark runs alone in
single-threaded mode. When evaluating FAM the benchmark
thread is initially placed on the Base core. FAM induces forced
migration to the ACC core based on instruction faults while the
OS moves back the thread to the Base core when the migrate-
back timeout expires. We perform experiments with various
values for the migrate-back timeout.

DBR and DBT enable flexible migration at any point in
time, hence ideally, migration decisions should be driven by an
optimizing dynamic scheduler. However, we experiment with
a periodic migration approach to help quantify overhead and
show an informed dynamic scheduler later. Specifically, the OS
artificially triggers migration between the Base and the ACC
core, or vice versa, at periodic intervals, and invokes DBR or
DBT as needed.

We measure the benchmark turnaround time in quantum
scheduling intervals for both FAM and our binary-level tech-
niques. The migrate-back timeout for FAM and the migration
period for DBR and DBT range from 1 to 16 scheduling inter-
vals. Note that in our implementation, the quantum scheduling
interval is 10ms.

D. Results

We discuss the performance results of induced periodic
migration under our binary-level techniques and FAM oppor-
tunistic acceleration. Figure 3 shows the turnaround time of
each benchmark executing under FAM, DBR or DBT for var-
ious migration periods. Periodic migration under DBR has an
average slowdown of around 40% across all benchmarks and
migration periods while DBT slowdown is less, about 10%,



TABLE II. BENCHMARKS FROM SPEC CPU2006 AND RODINIA SUITES

Benchmark Executed instructions breakdown (% of total) SP =
TTBase
TTACC

SP class

mul idiv idivu fadd frsub fmul fdiv fcmp base

streamcluster 0.11 - - 4.33 4.46 4.47 - 0.13 86.50 24.27 High

cfd 0.29 - - 4.81 0.66 5.34 0.59 0.40 87.91 14.4 High

lud 3.79 - - - 3.78 3.78 0.01 - 88.64 14.25 High

milc 3.53 - - - - - - - 96.47 4.7 Medium

bfs 2.25 - 0.53 - - - - - 97.22 3.9 Medium

namd 3.06 - - - - - - - 96.94 3.59 Medium

srad 1.90 - - 0.09 0.05 0.12 0.04 0.02 97.78 3.4 Medium

backprop 0.55 - - 0.16 - 0.17 - - 99.12 2.63 Medium

hmmer 0.62 0.04 - 0.20 - - - 0.20 98.94 2.08 Medium

sjeng 0.68 - 0.05 - - - - - 99.27 1.53 Low

h264ref 0.61 0.04 0.02 - - - - - 99.33 1.37 Low

hotspot 0.15 - - - - - - - 99.85 1.14 Low

astar 0.08 - - 0.02 - 0.03 - - 99.87 1.13 Low

libquantum 0.08 - - 0.01 - 0.02 0.01 - 99.88 1.05 Low

bzip2 0.01 - - - - - - - 99.99 1.01 Low
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Fig. 3. Comparing performance of DBR, DBT periodic migration vs.
FAM. The horizontal axis denotes migration periods for DBR, DBT and
migration-back timeout values for FAM.

compared to FAM. The reason for DBR greater slowdown
is that it operates on code statically targeted for the baseline
instructions. Statically targeted code for the ACC ISA, used by
FAM (and DBT), may emit additional accelerating instructions
during code generation which might not be identifiable in
baseline code through fast peephole analysis. Furthermore,
the compiler statically targeting the ACC ISA may do extra,
ISA-neutral, compile-time code optimizations exposed by code
generation for the ACC ISA. Nevertheless, DBR can be
extended with more sophisticated binary analysis which we
leave as future work.

Moreover, FAM opportunistically migrates threads to ACC
cores on an instruction fault for accelerated execution. In
single-program workloads there is no time sharing of ACC
cores and a thread is accelerated fully with only the penalty
of instruction fault handling and migration, mitigated when
the migrate-back period increases. On the other hand, our
periodic migration approach does not perform any kind of
scheduling optimization. For example, under FAM, High-
speedup benchmarks execute mostly on the ACC core due to
frequent forced migration from instruction faulting on the Base
core. However, under induced periodic migration, a benchmark
thread will execute a full period on the Base core before it is
migrated to the ACC core and vice versa.

These results help quantify the cost of DBR and DBT using
a periodic migration scheme. Notably, the flexibility for cross-
core execution enabled by our binary-level techniques permits
a dynamic scheduler to implement global optimizing policies
instead. We present results for an informed dynamic scheduler
leveraging flexible migration next.

E. Informed dynamic scheduling

We show results for a dynamic scheduler to illustrate the
efficiency of flexible migration enabled by our binary-level
techniques. The dynamic scheduler implements a speedup pro-
portional policy for time sharing ACC cores between executing
threads in proportion to each thread’s speedup.



We briefly discuss the Speedup Proportional Dynamic
Scheduler (SPDS) internals. The scheduler operates in rounds
for time sharing ACC cores. A round is a system-wide
scheduling epoch which consists of a fixed number of quantum
scheduling intervals. During a round, the scheduler monitors
the number of the number of intervals each thread has executed
on an ACC core. It employs a thread swapping mechanism,
migrating threads between Base and ACC cores, so that each
thread executes on an ACC core for a number of intervals
which is proportional to its speedup, compared with the
speedup of the other threads in the system. At the end of
a round, the scheduler resets the ACC interval counters of
all threads to begin a new round. For our implementation we
retrofit each benchmark’s speedup to the scheduler, as shown in
table II, and set the round duration to 100 quantum scheduling
intervals.

TABLE III. SPEEDUP HETEROGENEOUS, MULTI-PROGRAM
WORKLOADS

Workload

3H-3L cfd, streamcluster, lud, sjeng, bzip2, hotspot

3H-3M cfd, lud, streamcluster, milc, backprop, hmmer

3M-3L hmmer, srad, backprop, bzip2, sjeng, hotspot

For the evaluation we configure our MPSoC platform so
that it includes 2 ACC and 4 Base cores. In our experiments
the system is kept fully-subscribed running speedup hetero-
geneous, multi-program workloads. This means that multi-
program workloads contain as many benchmarks as the total
number of cores (irrespective of core type) and that after a
benchmark completes execution, it is restarted to ensure a
fully-subscribed system throughout workload execution. An
experiment is deemed finished when each benchmark in the
workload has completed at least three runs, i.e., the slowest
thread has completed its benchmark for the 3rd time and
other threads are stopped having completed at least three runs
of their respective benchmark. Table III shows the bench-
marks used in each workload. A workload is denoted by
the number of benchmarks from each speedup class (High,
Medium, Low). For example, the workload denoted as 3H-3M
has 3 High-speedup and 3 Medium-speedup benchmarks. We
compute the average turnaround time for each benchmark by
taking the mean of turnaround times of completed runs. Per-
benchmark average turnaround times are aggregated to com-
pute SPDS speedup over FAM scheduling to define workload
speedup. The workload speedup is the geometric mean of per-
benchmark speedup values, which are calculated as the ratio
of the benchmark turnaround time executing under FAM over
SPDS. Formally, workload speedup (WSP) is:

WSPSPDS/FAM =

N√∏
b∈W

AvgTTb,FAM

AvgTTb,SPDS

where N is the total number of benchmarks (6 in our setup)
and the set b ∈W includes each benchmark in the workload.

For FAM scheduling, the (a priori known) highest speedup
benchmarks threads known are placed on ACC cores at loading
time to reduce the number of faults causing forced migrations.
The FAM migrate-back timeout is set to 10 scheduling in-
tervals which shows good performance based on the single-
program evaluation. Initial thread placement for SPDS, either
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Fig. 4. SPDS-DBR and SPDS-DBT vs. FAM for multi-program workloads

based on DBR (SPDS-DBR) or DBT (SPDS-DBT), is not
important since dynamic scheduling will migrate threads for
sharing ACC cores. In our implementation, SPDS-DBR and
SPDS-DBT perform round balancing, that is thread swaps,
every 10 scheduling intervals to be comparable with FAM’s
migrate-back timeout.

Figure 4 shows the results. SPDS-DBT performs sig-
nificantly better than FAM forced migration scheduling. It
improves performance by about 50% compared to FAM, across
all multi-program workloads. SPDS-DBR improves workload
speedup in comparison to FAM by about 20% and 15% for the
3H-3L and 3M-3L workloads respectively, while it performs on
par with FAM for the 3H-3M workload. This is because DBR
works with code statically targeted for baseline instructions as
we discussed in the previous section.

The results show that dynamic scheduling, enabled by flex-
ible migration, can efficiently leverage our binary-level tech-
niques for implementing optimizing policies to out-perform
FAM forced migration scheduling.

VI. RELATED WORK

Shared-ISA heterogeneous architectures have been recently
proposed [3], [4], [12]. Shared-ISA heterogeneous MPSoCs
enable more flexible customization by breaking the single-
ISA restriction through accelerating instruction extensions on
certain cores in the system. There is previous work on dynamic
scheduling to meet performance and power constraints on
single-ISA heterogeneous MPSoCs [13], [14] assuming ISA
transparent migration. Also, there are studies on static map-
ping techniques for disjoint-ISA systems [15], [16] targeting
improved performance and power consumption.

Regarding shared-ISA MPSoC systems, Shen et. al. [17]
propose several dynamic scheduling algorithms. However in
their work, tasks are allowed to migrate only within a subset
of cores that meet the task’s ISA requirements. This approach
imposes core affinities that limit flexibility. Our binary-level
techniques allow thread migration to any core type in the
system to unlock the full potential of dynamic scheduling
despite software-visible instruction heterogeneity.

Fault-and-migration (FAM) [4], [18] has been proposed
as a method for transparent execution with opportunistic ac-
celeration on shared-ISA architectures. However, FAM forces



thread migrations which congest ACC cores and forbids the
scheduler to implement global optimizing policies. We have
extensively compared our work with FAM to show that flexible
migration, provided by our binary-level techniques, enables dy-
namic scheduling which out-performs FAM’s forced migration
scheduling.

Discussing work on rewriting, existing dynamic binary
rewriters, such as DynamoRIO [19] and Pin [20], execute
a binary in managed mode. They need to manage software
code caches to enable code profiling, security checking and
complex optimizations. This approach permits elaborate code
analysis and fine-grain binary instrumentation but comes with
significant overhead. Instead, DBR and DBT are designed
to be lightweight and fast, aiming for as much unobstructed
execution as possible to be efficient. Also, traditional rewriters
assume that code is immovable, which allows them to do time
consuming optimizations, whereas our binary-level techniques
target flexible, cross-core migration.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented two fast dynamic binary rewrit-
ing techniques, DBR and DBT, for flexible, cross-core thread
migration in shared-ISA MPSoC platforms. DBR adapts binary
code on demand for the host core ISA. DBT employs fault-
and-rewrite in conjunction with a translation scheme to execute
hardware unavailable accelerating instructions. Both methods
achieve software transparent execution despite of ISA hetero-
geneity. Additionally, they enable flexible, cross-core thread
migration in contrast to fault-and-migrate (FAM) which is the
state-of-the-art approach for transparent execution on shared-
ISA platforms. We have also shown a speedup-proportional
dynamic scheduler which leverages flexible migration provided
by our binary-level techniques to out-perform significantly
FAM forced migration scheduling.

For future work we intent to expand our dynamic binary
techniques to more classes of ACC instructions, such as SIMD
extensions, which may require transformation on architectural
state. We are also considering dynamic instruction rewriting
for binary code adaptation affecting functional unit sharing
and power consumption. Moreover, we work on dynamic
scheduling algorithms, enabled by flexible migration, that aim
to perform global performance and power optimization on
shared-ISA asymmetric platforms.
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