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Abstract. This paper presents a novel method to carry out monitoring of transport infrastructure 

such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is 

developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle 

response. Moving force identification theory is applied to a vehicle model in order to identify these 

dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge 

interaction model is used in theoretical simulations to test the effectiveness of the approach in 

identifying the forces. The potential of the method to identify the global bending stiffness of the bridge 

and to predict the pavement roughness is presented. The method is tested for a range of bridge spans 

using theoretical simulations and the influences of road roughness and signal noise on the accuracy of 

the results are investigated.   

 

Keywords: acceleration; bridge; global stiffness; inverse dynamics; road profiles; vehicle-bridge 

interaction; vehicle forces. 

 

1. Introduction 

 

The axle forces applied by a vehicle through its wheels are a critical part of the interaction 

between vehicles, pavements and bridges. It has been found that dynamic axle forces can 

increase the average road surface damage by up to four times compared to that caused by 

mailto:eugene.obrien@ucd.ie
mailto:mcgetrick.patrickjohn.5x@
mailto:arturo.gonzalez@ucd.ie


static axle forces alone (Cebon 1987, Cole and Cebon, 1992). Therefore, the minimisation of 

dynamic axle forces is important in order to promote long pavement life spans and ensure that 

bridge loads are small (Gillespie et al. 1992, Green and Cebon 1994, DIVINE 1997). Also, as 

the road surface roughness affects the vehicle dynamic forces (Cole et al. 1996, Kitching et 

al. 2000), it is generally accepted that the maintenance of road profiles for highways and 

bridges plays a major role. Sayers and Karamihas (1998) discuss several existing methods for 

the measurement of road profiles such as static manual methods (dipstick walking 

profilometers, rod and level) and more efficient dynamic approaches, such as inertial 

profilometers, which can measure profile tracks at highway speeds. The typical inertial 

profilometer consists of a vehicle equipped with a height sensing device, such as a laser, 

which measures pavement elevations at regular intervals (Sayers and Karamihas 1996, 1998) 

with the effects of vehicle dynamics removed from the elevation measurements via 

accelerometer(s). The method provides accurate, high resolution profile measurements but a 

drawback is the expense associated with laser-based technology. 

 

For short to medium span bridges, the dynamic axle forces are of particular importance. In 

recent years there has been a significant amount of research carried out on the use of the 

moving force identification (MFI) technique to identify the vehicle-bridge interaction forces 

indirectly via measurements on the bridge. Yu and Chan (2007) provide a comprehensive 

literature review of this research. Methods which utilise the MFI technique can typically be 

categorised into one of two groups: (a) those which use discrete bridge models and the finite 

element (FE) method (Chan and Yung 2000, Law et al. 2004, Pinkaew 2006, Pinkaew and 

Asnachinda 2007) and (b) those which are based on an exact solution method including a 

form of system identification (Law et al. 1997, Chan et al. 1999, Yu and Chan 2003a, 2003b). 

The results from the latter group are sensitive to noise and exhibit fluctuations in the 



identified forces at the beginning and end of the time history which are the result of the ill-

conditioned inverse problem. To provide smoother solutions and a bound to the identified 

forces, the Tikhonov regularisation method (Tikhonov and Arsenin 1977) is included in the 

solution (Zhu and Law 1999, 2000, 2001a, 2001b, 2002, 2003a, 2003b, 2006, Law and Zhu 

2000, Law et al. 2001, Nordström 2006, Law et al. 2007, Gonzalez et al. 2008b, Deng and 

Cai 2010b, 2011). Recently, optimisation techniques have been developed for moving force 

identification which has led to methods which are based on genetic algorithms (Jiang et al. 

2004, Au et al. 2004) (whereby interaction forces are calculated after estimating vehicle 

parameters) and simulated annealing genetic algorithms (Qu et al. 2011, Wang and Qu 2011). 

Also, Wu and Law (2011) investigate a stochastic vehicular axle load identification method, 

based on the Karhunen–Loève Expansion in which both the system parameters and excitation 

forces are assumed as Gaussian random processes. However, all of these approaches require 

instrumentation of the bridge to measure responses such as strains, displacements, 

accelerations and bending moments in order to identify the interaction forces. Also, usually it 

is necessary to obtain measurements at a number of locations and the installation of the 

equipment and data acquisition electronics can be time consuming and costly, limiting the 

implementation of this type of approach (Nagayama et al. 2007). 

 

This paper proposes an alternative way to identify the dynamic interaction forces between the 

vehicle, pavement and bridge which involves direct instrumentation of a vehicle. The vehicle 

is fitted with accelerometers on each axle and MFI theory is applied to the vehicle equations 

of motion to obtain the interaction forces using the measured accelerations. The approach 

eliminates the need for any equipment to be installed on the bridge. To the authors’ 

knowledge, this is the first investigation which applies MFI theory to the equations of a 

vehicle. Davis and Bunker (2007) provide a comprehensive review of existing methods which 



use on-vehicle instrumentation and measurements to obtain the wheel-force history. Such 

methods include wheel hub transducers, air spring pressure transducer systems, tyre pressure 

transducer systems, laser detectors, infrared sensors and combinations of strain gauges and 

accelerometers. These methods can be accurate but are also expensive and in some cases 

difficult to install. The low-cost approach presented in this paper has the benefit of only 

requiring the vehicle to be instrumented with accelerometers. It also has the potential to be 

developed for implementation as part of a drive-by inspection system (Kim and Kawatani 

2009) for pavements and bridges. 

 

For this theoretical investigation, the inverse problem is formulated as a non-linear least 

squares minimisation of the difference between measured and theoretical vehicle 

accelerations. First order Tikhonov regularisation is used to decrease errors due to ill-

conditioning and the recursive least-squares problem is solved using the Dynamic 

Programming technique (Trujillo 1978) which has been utilised previously in force 

identification problems (Law and Fang 2001, Nordström 2006, González et al. 2008b).  A 

coupled vehicle-bridge interaction (VBI) model is created in MATLAB (2005) to simulate 

‘measured’ accelerations. The simulations are carried out for simply supported bridge spans 

of 15, 25 and 35 metres and a vehicle speed of 80 km/h (22 m/s). The influence of road 

roughness and noise on the force identification algorithm is investigated. The potential 

application of this method to predict road profile heights and monitor bridge stiffness is also 

investigated. Favourable conditions are identified in which this method can be used with a 

good degree of accuracy. 

 

 

 



2. Coupled vehicle-bridge interaction model 

 

The coupling of the vehicle and bridge has been taken into account in many studies (Yang and 

Yau 1997, Henchi et al. 1998, Yang et al. 2004a, Kim et al. 2005, Deng and Cai 2010a). 

However it has been considered in only a small proportion of moving force identification 

problems (Chan et al. 1999, Law et al. 2004, Pinkaew 2006, Deng and Cai 2010b, Wu and 

Law 2011). In this paper, the vehicle-bridge interaction is modelled as a coupled system as 

the solution is given at each time step and no iteration is required in the computational 

process. The vehicle and bridge models are outlined in the following sections. 

 

2.1 Vehicle model 

 

The vehicle is represented here by a 4 degree-of-freedom half-car model, i.e. nv = 4, travelling 

at constant speed c over a simply supported Finite Element (FE) beam (Fig. 1). While it is a 

simplified version of a vehicle, its response still illustrates many of the important 

characteristics of dynamic tyre forces (Cebon 1999). It is suitable for the approach presented 

in this paper as it provides measurements for two axles which enables the prediction of forces 

at each axle and displacements under each wheel. The four independent degrees of freedom 

correspond to sprung mass bounce displacement, 𝑦𝑠, sprung mass pitch rotation, 𝜃𝑠 and axle 

hop displacements of the unsprung masses at axle 1 and axle 2, 𝑦𝑢,1 and 𝑦𝑢,2 respectively. 

The vehicle body mass is represented by the sprung mass, 𝑚𝑠 and the axle components are 

represented by unsprung masses,   𝑚𝑢,1  and   𝑚𝑢,2 . The sprung mass connects to the axle 

masses via a combination of springs of linear stiffness 𝐾𝑠,𝑖  and viscous dampers with damping 

coefficients, 𝐶𝑠,𝑖  which represent the suspension components for the front and rear axles (𝑖 = 



1, 2). The axle masses then connect to the road surface via springs with linear stiffnesses, 𝐾𝑡,𝑖  

which represent the tyre components for the front and rear axles (𝑖 = 1, 2).  

 

 

Fig. 1 Coupled vehicle-bridge interaction model 

 

Other parameters of note are the sprung mass moment of inertia, 𝐼𝑠, and the distance of each 

axle to the vehicle’s centre of gravity (o), i.e., 𝐷1 and 𝐷2 in Fig. 1. All the property values of 

the half-car are listed in Table 1 and are based on values gathered from the literature (Cebon 

1999, Harris et al. 2007, González et al. 2010). The geometry is obtained from a manufacturer 

specification for an 18 t two-axle truck (DAF 2011). The natural frequencies of vibration of 

the vehicle are given also; fv,1, fv,2, fv,3 and fv,4 which correspond to body bounce, body pitch 

and axle hop of the first and second axles respectively. It follows from Table 1 that the static 

axle loads of the vehicle are 𝑃1 = 86 293 N and 𝑃2 = 90 215 N for axles 1 and 2 respectively.  

 

It is assumed that, for the purposes of force identification, all of the vehicle properties are 

known. In reality, the calibration of the vehicle model would be required before implementing 

the algorithm in order to obtain these properties. This involves the determination of the model 

properties based on measurements of the vehicle response to an excitation source, i.e., a 



known road profile or a bump using combinatorial optimisation (Harris et al. 2010), or a 

vibration test using modal analysis (Friswell and Mottershead 1995). In order to maintain a 

reasonable level of accuracy, the same calibrated vehicle would be used every time for 

implementation of the algorithm. Furthermore, in the study of a similar approach for the 

purpose of bridge damping identification, González et al. (2012) show that errors up to 5% in 

the assumed vehicle properties do not significantly affect the accuracy of this type of 

algorithm. 

 

Table 1 Vehicle model properties 

Property 
 

Unit  Symbol  Value 

Body mass  kg  ms  16 200 

Axle mass 
 

kg 
 mu,1  700 

  mu,2  1100 

Suspension Stiffness 
 

N m
-1

 
 Ks,1  0.4 × 10

6
 

  Ks,2  1 × 10
6
 

Suspension Damping 
 

Ns m
-1

 
 Cs,1  10 × 10

3
 

  Cs,2  20 × 10
3
 

Tyre Stiffness 
 

N m
-1

 
 Kt,1  1.75 × 10

6
 

  Kt,2  3.5 × 10
6
 

Pitch Moment of Inertia  kg m
2
  Is  93 457 

Distance of axle to centre of 

gravity 

 
m 

 D1  2.375 

  D2  2.375 

Body mass frequency of 

vibration 

 
Hz 

 fv,1  1.00 

  fv,2  1.55 

Axle mass frequency of 

vibration 

 
Hz 

 fv,3  8.83 

  fv,4  10.21 

 

The equations of motion of the vehicle are obtained by imposing equilibrium of all forces and 

moments acting on the vehicle and expressing them in terms of the degrees of freedom. They 

are given by: 

 

𝐌𝐯�̈�𝐯 + 𝐂𝐯�̇�𝐯 + 𝐊𝐯𝐲𝐯 = 𝐟𝐯 (1) 



where 𝐌𝐯 , 𝐂𝐯 , and 𝐊𝐯  are, respectively, the mass, damping and stiffness matrices of the 

vehicle which are given in Appendix A. The displacement vector of the vehicle is, 𝐲𝐯  = 

{𝑦𝑠, 𝜃𝑠, 𝑦𝑢,1, 𝑦𝑢,2}
T
. The vector, 𝐟𝐯 contains the time varying interaction forces applied by the 

vehicle.  

 𝐟𝐯 = {0 0 −𝐹𝑡,1 −𝐹𝑡,2}T (2) 

 

The term 𝐹𝑡,𝑖 represents the dynamic interaction force at wheel 𝑖:  

 

 𝐹𝑡,𝑖 = 𝐾𝑡,𝑖(𝑦𝑢,𝑖  −  𝑤𝑣,𝑖) ;  𝑖 = 1,2 (3) 

 

where 𝑤𝑣,𝑖 is the total displacement under wheel 𝑖. This parameter can be defined in terms of 

the road profile displacement and bridge displacement under wheel i: 𝑟𝑖 and 𝑤𝑏,𝑖 respectively:

  

 𝑤𝑣,𝑖 = 𝑤𝑏,𝑖 + 𝑟𝑖;    𝑖 = 1,2 (4) 

  

2.2 Road profile generation and filtering 

 

A road profile is included in simulations for the coupled VBI model and the irregularities of 

this profile are randomly generated according to the ISO standard (ISO 8608 1995). Two road 

profile types are considered; a class ‘A’ road (very good profile, as expected in a well 

maintained highway) and a class ‘C’ road (average profile), having geometric spatial means 

of 8 × 10
-6

 and 128 × 10
-6

 m
3
/cycle respectively. A 100 m approach length is included in the 

road profile prior to the bridge. A moving average filter is applied to the generated road 

profile heights, 𝑟𝑖, over a distance of 0.24 m  to simulate the attenuation of short wavelength 

disturbances by the tyre contact patch (Harris et al. 2007).  



2.3 Bridge model 

 

The bridge is represented by a simply supported FE beam model (Fig. 1) of total span length 

L. It consists of 20 discretised beam elements with 21 nodes; the elements have constant mass 

per unit length, µ, modulus of elasticity E and second moment of area J. There are 2 degrees 

of freedom per node to allow for a vertical translation and rotation at each node. Therefore, 

each element has 4 degrees of freedom and the beam model has a total of n = 42 (2 × 21) 

degrees of freedom. The response of a discretised beam model to a series of moving time-

varying forces is given by the system of equations: 

 

 𝐌𝐛�̈�𝐛 + 𝐂𝐛�̇�𝐛 + 𝐊𝐛𝐰𝐛 = 𝐍𝐛 𝐟𝐢𝐧𝐭 (5) 

 

where 𝐌𝐛, 𝐂𝐛 and 𝐊𝐛 are (n × n) global mass, damping and stiffness matrices of the beam 

model respectively,  𝐰𝐛  ,  �̇�𝐛  and  �̈�𝐛  are the (n × 1) global vectors of nodal bridge 

displacements and rotations, their velocities and accelerations respectively, and the product, 

𝐍𝐛 𝐟𝐢𝐧𝐭 is the (n × 1) global vector of forces applied to the bridge nodes. The vector, 𝐟int 

contains the interaction forces between the vehicle and the bridge and is described using the 

following (nf   × 1) vector: 

 

 𝐟𝐢𝐧𝐭 = {
𝑃1 + 𝐹𝑡,1
𝑃2 + 𝐹𝑡,2

} (6) 

 

The matrix, 𝐍𝐛 is an (n × nf) location matrix that distributes the nf applied interaction forces 

on beam elements to equivalent forces acting on the nodes; for the half-car model, nf  = 2. The 

details of this matrix are given in Appendix A. This location matrix can be used to calculate 

the bridge displacement under each wheel, 𝑤𝑏,𝑖, in Eq. (4) using: 



 {
𝑤𝑏,1
𝑤𝑏,2

} = 𝐍𝐛
T𝐰𝐛 (7) 

 

Rayleigh damping is adopted here to model viscous damping (Adhikari 2006) and it is given 

by: 

 

 𝐂𝐛 =   𝐌𝐛 +  𝐊𝐛 (8) 

 

where  and  are constants. The damping ratio ξ is assumed to be the same for the first two 

modes and  and  are obtained from  = 2 ξ12/(1+2) and  = 2 ξ/(1+2) where 1 and 

2 are the first two natural frequencies of the bridge (Yang et al. 2004a). The properties of the 

three bridge spans used in this investigation are given in Table 2 and are based on typical 

concrete bridge cross-sections consisting of T beams, Y beams or Super-Y beams depending 

on the bridge span (BS5400-4 1990, Li 2006, Li et al. 2006, González et al. 2011). The 

Young’s Modulus, E, for all spans is 3.5 × 10
10

 N/m
2
. 

 

Table 2 Finite element beam properties 

Span 

Length, 

L (m) 

Type 
Stiffness, EJ 

(N m
2
) 

Mass per unit 

length, µ 

(kg/m) 

Damping,  

ξ (%) 

1st natural 

frequency of 

vibration, 

fb,1(Hz) 

15 T beam 1.846 × 10
10

 28 125 3 5.66 

25 Y beam 4.865 × 10
10

 18 358 3 4.09 

35 
Super Y 

beam 
1.196 × 10

11
 21 752 3 3.01 

 

The bridge properties are not required for the force identification algorithm. However, for 

purposes of the bridge stiffness identification algorithm presented in Section 5.2, it is assumed 



that the bridge span length, L, mass per unit length, µ, and damping, ξ, are known in advance. 

In practice, if these properties are unavailable or unknown, L can be easily measured while µ 

can be estimated considering the bridge material and dimensions. The damping can be 

estimated from acceleration measurement(s) on the bridge using existing techniques such as 

the Random Decrement Technique (Ibrahim 1977, Asmussen et al. 1998, Liu et al. 2011) or 

Logarithmic Decrement (Clough and Penzien 1993, Tedesco et al. 1999, Gutenbrunner et al. 

2007). It would only be necessary to carry out these procedures once for any particular bridge 

in order to establish an initial benchmark model for that bridge. 

 

2.4 Coupling of the vehicle-bridge system 

 

The dynamic interaction between the vehicle and the bridge is implemented in Matlab using 

the models described in this section. The vehicle and bridge are coupled at the tyre contact 

points via the interaction force  𝐟𝐢𝐧𝐭 given in Eq. (6). Combining Eqs. (1) and (5), the coupled 

equation of motion is formed as:  

 

 𝐌𝐠�̈� + 𝐂𝐠�̇� + 𝐊𝐠𝐮 = 𝐟 (9) 

 

where 𝐌𝐠 and 𝐂𝐠 are the combined system mass and damping matrices respectively, 𝐊𝐠 is the 

coupled time-varying system stiffness matrix and 𝐟 is the system force vector (see Appendix 

A). The vector, 𝐮 = {𝐲𝐯, 𝐰𝐛}
𝐓  is the displacement vector of the system. The equations of 

motion for the coupled system are solved using the Wilson-Theta integration scheme (Bathe 

and Wilson 1976, Tedesco et al. 1999). The optimal value of the parameter θ = 1.420815 is 

used for unconditional stability in the integration scheme (Weaver and Johnston 1987). 

 



In simulations, it is assumed that there are two measurement sources obtained as input for the 

algorithm. These are sprung mass accelerations above the suspension of each axle (Fig. 1) and 

are described using the following equation: 

 

 �̈�𝑠,𝑖 = �̈�𝑠 − (−1)
𝑖𝐷𝑖�̈�𝑠 ;  𝑖 = 1,2 (10) 

 

In practice it is expected that the accuracy of measurements will be lower than in theoretical 

simulations due to errors such as random noise. Therefore the measured accelerations are 

contaminated with noise using an additive noise model based on signal-to-noise ratios (SNRs) 

of 20, 10 and 5 (i.e., relative error in the measurements of 5%, 10% and 20% respectively). 

Noise is randomly added to the true accelerations by sampling a Normal distribution of zero 

mean with standard deviation equal to the standard deviation of the true acceleration data 

divided by the SNR (Harris et al. 2010). 

 

3. Identification of dynamic axle forces 

 

The vehicle force identification (VFI) algorithm presented in this paper involves two main 

steps: 1) state space formulation of the vehicle equations of motion for the Dynamic 

Programming (DP) technique and 2) Tikhonov regularisation and the L-curve method. It has 

been adapted from the MFI algorithm described in detail by González et al. (2008b) and only 

the features which are unique to this paper are presented. 

 

The (DP) technique is effectively a recurrence algorithm that may be used to solve large least 

squares problems. It was first formulated by Trujillo (1978) and it has been implemented for 

moving force identification problems which include zeroth order regularisation with the 



optimal state estimation approach (Law and Fang 2001), and in generalised solutions to 

moving force identification which use higher order Tikhonov regularisation (Nordström 2006, 

González et al. 2008b). Lourens et al. (2012) propose an augmented Kalman filter (AKF) 

technique as an alternative to the DP technique. However, it was found that the AKF 

technique only outperforms the DP technique when the measurements are close to the applied 

force.  

 

3.1 State-space formulation of vehicle model 

 

Using a state space formulation for the vehicle model, Eq. (1) is converted into a vector 

matrix differential equation:  

 
�̇� = 𝐀𝐗 + 𝐟�̅� (11) 

 

with the (8 × 1) state variable vector  𝐗 defined by, 

 

 
𝐗 = {

𝐲𝐯
�̇�𝐯
} (12) 

 

and where 

 
𝐀 = [

0 𝐈
−𝐌𝐯

−1𝐊𝐯 −𝐌𝐯
−1𝐂𝐯

],         𝐟�̅� = [
𝟎

𝐌𝐯
−1𝐟𝐯

] (13) 

 

The differential equation is rewritten in standard exponential matrix representation which is 

often referred to as a zeroth order system (Trujillo and Busby 1997): 

 

 
𝐗𝑗+1 = 𝐌𝐗𝑗 + 𝐆𝐠𝑗 ;  𝑗 = 1,… ,𝑁   (14) 

 



where 𝐌 = 𝑒𝐀ℎ for time step h and 𝐠𝑗 = {−𝐹𝑡,1, −𝐹𝑡,2}
T
 contains the forces to be predicted. 

The scalar, 𝑁 is the total number of discrete measurements. The matrix, 𝐆 relates the forces 

𝐠𝑗 to the system and is defined by, 

 

 
𝐆 = (𝐀−𝟏(𝐌 − 𝐈)) [

𝟎
−𝐌𝐯

−1𝐋𝐯
]   (15) 

 

with the (4 × 2) location sub-matrix 𝐋𝐯 = [𝟎 𝐈]𝐓. 

 

In first order regularisation, the derivative of the forces is regularised which reduces the error 

and provides a smoother solution than the zeroth order system (Busby and Trujillo 1997, 

González et al. 2008b). To facilitate this, Eq. (14) is now converted into a first order system 

with the forces to predict included in a new state variable vector, �̂�𝑗 = [𝐗𝑗   𝐠𝑗 ] 
𝐓 , with the 

vector 𝐫 containing the derivative of the forces: 

 

 
�̂�𝑗+1 = [

𝐌 𝐆
0 𝐈

] �̂�𝑗 + [
0
𝐈
] 𝐫𝑗;      𝑗 = 1,… ,𝑁  (16) 

 

Measurements 

 

The acceleration measurements taken on the vehicle are represented by the (m × 1) vector 𝐝𝑗. 

In this case, with two acceleration measurements, m = 2. They must be related to the state 

variables to allow the least squares formulation of the problem. Using a selection matrix 𝐐, 

the relationship between measurements and the state variables �̂�𝑗, is given by: 

 

 
𝐝𝑗 = 𝐐�̂�𝑗  (17) 

 



As �̂�𝑗 is a ((2 nv + nf) × 1) vector, it follows that 𝐐 is of size (m × (2 nv + nf)), i.e., it is a (2 × 

10) matrix. 

 

3.2 Tikhonov regularisation and the L-curve method 

 

The second step of this approach involves the use of a regularisation parameter to improve the 

conditioning of the system. Tikhonov regularization (Tikhonov and Arsenin 1977) adds an 

optimum regularization parameter, λ, to the equations of the ill-conditioned least squares 

problem to control smoothness of the solution and provide bounds to the error. The optimal 

value for λ is obtained using Hansen’s L-Curve (Hansen 1992, Busby and Trujillo 1997). The 

method is described in detail by González et al. (2008b). For this approach the L-curve is 

plotted on a log-log scale using the following norms: 

 

 
𝐸𝑛𝑜𝑟𝑚 = √∑( 𝐝𝑘 − 𝐐�̂�𝑘 ,𝐖(𝐝𝑘 − 𝐐�̂�𝑘) )

𝑚

𝑘=1

 (18) 

 

 
𝐹𝑛𝑜𝑟𝑚 = √∑( 𝐫𝑘 , 𝐫𝑘 )

𝑚

𝑘=1

 (19) 

 

where 𝐖 is an (m × m) identity matrix and (𝐱 , 𝐲) denotes the vector product of 𝐱 and 𝐲, i.e., 

in this case, for terms corresponding to measurement 𝑘, (𝐱𝑘, 𝐲𝑘) =  ∑ 𝐱𝑘,𝑗𝐲𝑘,𝑗
𝑁
𝑗=1  . The 

optimal value for λ corresponds to the point of maximum positive curvature on the L-curve 

plot. If λ approaches zero, the least squares problem tends toward that of standard least 

squares minimisation; conversely, if λ is very large the solution norm is small but provides a 



large residual norm hence the least squares error is large. Therefore, the optimal value of λ 

provides a trade-off between the residual norm and the solution norm. 

 

4. Simulation results and discussion 

 

In this section, the results of the dynamic force identification algorithm outlined in Section 3 

are presented.  

 

4.1 Simulated Acceleration Measurements 

 

The method proposed in this paper requires only the measurement of vehicle accelerations to 

identify the vehicle dynamic interaction forces. For the purposes of this theoretical 

investigation, ‘measured’ accelerations (Eq. (10)) are simulated artificially at a sampling 

frequency of 1000 Hz for bridge spans of 15, 25 and 35 metres, very good and average road 

profiles and a vehicle speed of 22 m/s (80 km/h). Fig. 2 shows an example of the simulated 

and noise-contaminated accelerations generated by the VBI model for the 15 m bridge span. 

Given the axle spacing of 4.75 m, the 2
nd

 axle enters the bridge at 0.214 seconds and the 1
st
 

axle exits at 0.675 seconds. 

 



 

Fig. 2 ‘Measured’ vehicle accelerations for vehicle travelling at 22 m/s
 
across a 15 m bridge 

on a very good road profile; (a) true (---- ) and corrupted  (---) accelerations over axle 

1, (b) true (---- ) and corrupted  (---) accelerations over axle 2 with SNR = 5. 

 

4.2 L-curve and optimal regularisation parameter 

 

Fig. 3 shows the L-curve obtained for the vehicle travelling at 22 m/s across the 15 m bridge 

span on the very good road profile. The optimal regularisation parameter λ is obtained as 2.2 

× 10
-8

 and it is indicated in the figure at the point of maximum positive curvature at the corner 

of the L-curve.  

 



 

Fig. 3 L-curve due to vehicle travelling across 15 m bridge at 22 m/s
 
for λ values between 1.5 

× 10
-8

 and 1 × 10
-3

 and SNR = 10 on very good road profile. 

 

4.3 Identified forces for very good road profile 

 

Fig. 4 shows the identified dynamic axle forces corresponding to the L-curve shown in Fig. 3. 

It can be seen that the algorithm identifies the true forces accurately, which are dominated 

here by the axle hop frequencies. However, due to the smoothing of the solution by the 

regularisation parameter, the identified forces do not predict some of the higher frequency 

components of the true forces accurately. Nevertheless, the larger amplitude components of 

the true forces are predicted very well. These large amplitude peaks are an important factor in 

relation to pavement and bridge damage as they can indicate specific locations in pavements 

where damage will be concentrated (Cole et al. 1996, Kitching et al. 2000), a phenomenon 

known as spatial repeatability (Cole and Cebon 1992). 

 



 

Fig. 4 Identified dynamic axle forces for vehicle travelling across 15 m bridge at 22 m/s
 
with λ 

= 2.2 × 10
-8

 and SNR = 10 for very good road profile. (a) True (---- ) and identified 

forces (---) at axle 1, (b) True (----  ) and identified forces at axle 2 (---). 

 

Table 3 presents the Root Mean Square Error (RMSE) of the identified forces expressed as a 

percentage of the maximum absolute true force magnitude. The percentage RMSEs are given 

for each bridge span and SNR investigated. The RMSE for each identified axle force is 

calculated using the equation, 

 

 
RMSE =  √

1

𝑁
∑(𝐹𝑒𝑠𝑡,𝑗 − 𝐹𝑡𝑟𝑢𝑒,𝑗)

2
 

𝑁

𝑗=1

 (20) 

 

where 𝐹𝑒𝑠𝑡,𝑗 and 𝐹𝑡𝑟𝑢𝑒,𝑗 are the predicted and true forces respectively at each point in time, 𝑗. 

The errors observed here are primarily consequences of the presence of high frequency 



components in the dynamic axle force history. However, the errors are less than 10% except 

for the identified forces at axle 1 for the lowest SNR of 5, which gives an error of 10.5%.  

 

In general, the results for the second axle are slightly more accurate. This is due to the 

properties of the second axle; its mass, damping and stiffness are on average twice as large as 

the corresponding properties of the first axle (Table 1). In particular, Eq. (3) shows that a 

larger stiffness value for 𝐾𝑡,𝑖 will result in a larger dynamic axle force as 𝑦𝑢,𝑖 and 𝑤𝑣,𝑖 will be 

of similar magnitude for 𝑖 = 1,2. This can be seen by examining Fig. 4 and comparing the 

dynamic force magnitudes of axle 1 and axle 2; axle 2 forces are larger. Furthermore, the 

absolute errors in the dynamic forces obtained for each axle from the algorithm are, in 

general, relatively closer in magnitude than their respective maximum absolute true dynamic 

force magnitudes, i.e., the absolute errors are less dependent than the maximum forces on the 

axle properties. Hence, as percentage RMSE is tabulated in Table 3, the percentage errors for 

axle 2 are typically lower. 

 

Nevertheless, similar accuracy is obtained for each bridge span and axle force although the 25 

m bridge span displays the least error overall for forces of the second axle. Finally, the values 

in this table suggest that the identified forces are not very sensitive to the measurement noise 

level as there are only slight increases in error as the SNR decreases.  

 

 

 

 

 

 



Table 3 Percentage RMSE of identified dynamic axle forces on very good road profile 

 
RMSE (%) 

 
15 m Span 25 m Span 35 m Span 

SNR Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 

20 9.89 8.28 6.91 5.51 7.01 7.65 

10 9.94 8.37 7.20 5.55 7.22 7.86 

5 10.50 8.66 8.23 5.83 7.99 8.45 

 

4.4 Identified forces for average road profile 

 

This section presents the identified dynamic axle forces with the average road profile included 

in simulations. An example of the identified forces for the vehicle crossing the 15 m bridge 

span with this road profile is given in Fig. 5. The scale of the y-axis in this figure compared to 

that of Fig. 4 indicates the effect of increasing the road roughness. Despite the poorer road 

surface, the algorithm again predicts the dynamic axle forces very well. Also, similar to the 

results for the very good profile, it can be seen that the algorithm does not predict some of the 

higher frequency components. The percentage RMS errors of the identified forces, calculated 

using Eq. (20), are given in Table 4 for all bridge spans and noise levels investigated. Once 

again, the errors observed here can be attributed to high frequency components of the 

dynamic axle forces and the second axle is found to be more accurate. As this is observed for 

both road profiles investigated, it suggests that in general, a vehicle axle of greater stiffness 

may provide an improvement in identification accuracy. Aside from the forces of the first axle 

on the 35 m span, all of the errors are less than 10% once again which indicates that the 

identification procedure is not very sensitive to the road profile roughness.  

 



 

Fig. 5 Identified dynamic axle forces for vehicle travelling across 15 m bridge at 22 m/s
 
with λ 

= 2.4 × 10
-8

 and SNR = 10 for average road profile. (a) True (---- ) and identified 

forces (---) at axle 1, (b) True (----  ) and identified forces at axle 2 (---). 

 

For the poorer road surface and the 15 m bridge span, the algorithm identifies the forces more 

accurately than for the very good road profile. This can be explained by inspecting Fig. 5. For 

both axles there is a large amplitude low frequency element in the force history which the 

algorithm can identify very well; it is clearest in Fig. 5(b) between 0.2 and 0.8 seconds, while 

the magnitude of the higher frequency components is relatively small in comparison. This low 

frequency corresponds to the body bounce and pitch of the vehicle and was not excited as 

much by the very good road profile on the 15 m bridge (Fig. 4). Although there is a small 

decrease in accuracy with increasing noise level, overall the algorithm is not very sensitive to 

noise, as was found from simulations with the very good road profile. 

 

 



Table 4 Percentage RMSE of identified dynamic axle forces on average road profile 

 
RMSE (%) 

 
15 m Span 25 m Span 35 m Span 

SNR Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 

20 7.74 6.30 8.86 5.91 12.06 6.62 

10 7.96 6.38 9.08 5.87 12.13 6.78 

5 8.70 6.68 9.81 5.92 12.71 7.20 

 

5. Implementation of a drive-by inspection algorithm 

 

It has been shown that the force identification algorithm presented in Sections 3 and 4 can 

accurately predict the dynamic axle forces of a vehicle as it crosses a bridge with a road 

surface roughness. These forces define the interaction between the vehicle, pavement and 

bridge and consequently will be affected by any change in the properties of the system. 

Therefore, in this paper it is proposed to develop the force identification approach further by 

implementing it as a tool for the condition monitoring of pavements and bridges.  

 

In recent years, a body of research has been carried out on the use of instrumented vehicles 

for the monitoring of infrastructure such as pavements and bridges, including investigations 

of low-cost approaches utilising vehicle acceleration measurements. For example, a frequency 

domain road classification method is proposed by González et al. (2008a) which is based on 

the relationship between the power spectral densities of vehicle accelerations and road profile 

via a transfer function. Harris et al. (2010) investigate a method which employs a 

combinatorial optimisation technique to identify road profile heights from the vehicle 

acceleration response, with only a priori knowledge of the vehicle dynamic properties 

required. 



The feasibility of extracting bridge dynamic parameters, such as damping and frequency, 

from the vehicle response has been verified theoretically (Yang et al. 2004b, McGetrick et al. 

2009, González et al. 2010) and it has also been tested in field trials (Lin and Yang 2005, 

Oshima et al. 2008, Yang and Chang 2009a). Parametric studies have been carried out which 

indicate favourable conditions for its implementation (Yang and Chang 2009b). In addition, 

experimental investigations have been conducted to check the feasibility of the approach as 

part of a drive-by inspection system for bridge monitoring (Oshima et al. 2008, Kim and 

Kawatani 2009, Toshinami et al. 2009). In this section, the drive-by approach is developed for 

both the characterisation of road profiles and bridge condition monitoring. An algorithm is 

developed for the purpose of monitoring bridge condition which aims to detect any change in 

behaviour of the structure which might be an indicator of some form of damage, e.g., 

corrosion or cracking. 

 

5.1 Prediction of road profile heights 

 

In the force identification algorithm, the predicted force vector 𝐠𝑗 provides the dynamic forces 

applied to the vehicle, 𝐹𝑡,1 and 𝐹𝑡,2 (Eq. (3)). The axle displacements 𝑦𝑢,𝑖 are also predicted as 

part of the state variable vector, �̂�. As the tyre stiffness 𝐾𝑡,𝑖  is known for each tyre 𝑖, the 

predicted displacement under wheel 𝑖, 𝑤𝑣,𝑖, can be obtained from Eq. (3). For the scenario 

where the vehicle forces are predicted as the vehicle travels over a road pavement only (i.e., 

𝑤𝑏,𝑖 = 0 in Eq. (4)), 𝑤𝑣,𝑖 is effectively a prediction of the road profile heights experienced by 

wheel 𝑖. The IRI ratings and the Power Spectral Densities (PSDs) of true and predicted road 

profiles are compared and this analysis is carried out using ProVAL (Profile Viewing and 

AnaLysis; Chang et al. 2006). 



The results of a pavement profile prediction for the very good profile are presented in Fig. 6. 

The length of the predicted profile is 100 m and the measured acceleration data is obtained 

from the approach prior to the bridge. For this result, accelerations were contaminated with 

noise having an SNR of 10. The prediction is very good overall. However, similar to the 

identified forces in Section 4, it can be seen that there are low frequency discrepancies at the 

beginning and end of the profile and some of the very small higher frequency irregularities 

are not identified. 

 

The results of a pavement profile prediction for the average-quality profile are presented in 

Fig. 7. The results are similar to those for the very good profile. Here, the low frequency, long 

wavelength error has manifested itself as a shifted estimate for the road profile under the first 

wheel. This type of error can be attributed to the acceleration measurements’ poor sensitivity 

to lower frequency responses approaching the static frequency at 0 Hz. 

 

Fig. 6 Identified profile heights for very good road with SNR = 10. (a) True (---) and 

predicted (---) profiles at axle 1, (b) True (----  ) and predicted ( ---) profiles at axle 

2. 



 

Fig. 7 Identified profile heights for average road with SNR = 10. (a) True (---- )  and predicted 

(---) profiles at axle 1, (b) True (----  ) and predicted (---) profiles at axle 2. 

 

In order to assess the profile characterisation accuracy of the algorithm, the PSDs of the road 

profile heights under each wheel for the very good and average profiles are plotted on log-log 

scales in Fig. 8 and Fig. 9 respectively. The larger magnitude, low frequency discrepancies 

observed in Fig. 6 and Fig. 7 occur here as relatively small errors in terms of profile 

characterisation on the log-log scale. However, it is clear from these figures that the errors in 

characterising the true road profile heights are primarily caused by the short wavelength, high 

frequency errors. As has already been highlighted, these are a result of the regularisation in 

the algorithm which smoothes the solution. It can be inferred from the spectra that the 

predicted profiles characterise the true profiles with high accuracy for the frequency band 

between 0.03 cycles/m and 0.8 cycles/m approximately. 

 



 

Fig. 8 PSD of very good road profile heights under (a) wheel 1 and (b) wheel 2 for SNR = 10. 

True profile PSD (---- ) ; predicted profile PSD (○). 

 

 

Fig. 9 PSD of average road profile heights under (a) wheel 1 and (b) wheel 2 for SNR = 10. 

True profile PSD (---- ) ; predicted profile PSD (○). 

 



The IRI values of the predicted profiles are presented in Table 5. The percentage errors are 

also tabulated. As before, results for the profile under wheel 2 are more accurate. The errors 

are all less than 10% and underestimate the IRI values. This relates to the poor estimation of 

higher frequency components of the road profile. 

 

Table 5 Predicted IRI values and percentage error for very good and average profiles 

Profile SNR 
IRI1st profile (m/km) IRI2nd profile (m/km) 

Predicted % Error Predicted % Error 

A 

20 0.97 -8.49 0.99 -6.60 

10 0.97 -8.49 0.99 -6.60 

5 0.99 -6.60 0.99 -6.60 

C 

20 4.20 -7.28 4.25 -6.18 

10 4.20 -7.28 4.25 -6.18 

5 4.24 -6.40 4.26 -5.96 

 

5.2 Identification of global bridge stiffness 

 

Using the forces obtained from the algorithm outlined in Section 3, a new algorithm is 

developed which aims to identify a damage sensitive bridge parameter. In particular, the 

global bridge stiffness, EJ, is the focus of this algorithm as a reduction in stiffness would 

result from a loss of cross-section or cracking; with increased loading this decrease can 

worsen (MacGregor and Wight 2006, Lee and Yun 2008). It has been the focus of many 

damage assessment techniques which take direct measurements on the structure (Sohn et al. 

2003, Carden and Fanning 2004), in part due to its relationship with cracking (Dimarogonas 

1996). This algorithm aims to provide an alternative low-cost, efficient tool for widespread 

monitoring of overall structural changes that could warn a bridge operator if the bridge is 

becoming unsafe and highlight those bridges in a network where more detailed inspection is 



required e.g., via specialised installations on the bridge.  Therefore, this approach is aimed at 

achieving a preliminary assessment of bridge condition through identification of the global 

stiffness of the bridge.  

 

Stiffness Identification algorithm 

 

The stiffness identification algorithm involves an iterative procedure comprising of five main 

steps. A similar algorithm has been employed by González et al. (2012) for the purpose of 

bridge damping identification. In this study, the algorithm requires that the dynamic forces, 

𝐹𝑡,𝑖 and the total displacements under each wheel, 𝑤𝑣,𝑖, have been calculated previously using 

the VFI algorithm from Section 3. The target bridge stiffness values to be identified are given 

in Table 2. An overview of the adapted algorithm is presented in Fig. 10. 

 

The first step involves calculating the vector of total contact forces ( 𝐟𝐢𝐧𝐭 ) using Eq. (6). In the 

second step, a linear correction is applied to the displacements 𝑤𝑣,𝑖  to ensure that the 

condition stated in Eq. (21) is maintained. The correction is a linear function which varies 

with distance along the bridge and it is based on the true bridge displacement being zero at the 

entrance and the exit to the bridge, i.e., the only displacement a wheel experiences at these 

locations is the road profile height. This means that the (true) total displacement under wheel 

1 when it is located over a support should be equal to the total displacement under wheel 2 

when it is located over the same support.  

 

 𝑤𝑣,1(𝑥𝑏 , 𝑡1) − 𝑤𝑣,2(𝑥𝑏 , 𝑡2) = 0;  𝑥𝑏 = 0, 𝐿 (21) 

 



where 𝑥𝑏 is the distance along the bridge and 𝑡1 and 𝑡2 correspond to the times when axle 1 or 

axle 2 are at support location 𝑥𝑏 respectively. Based on the axle spacing of 4.75 m and a 

speed of 80 km/h, 𝑡1 - 𝑡2 = 0.214 seconds. 

 

In the third step, the total contact forces, 𝐟𝐢𝐧𝐭 , obtained in the first step are applied directly to 

the FE beam model described in Section 2.3. An estimate of the stiffness, EJest, is given to the 

beam to obtain the displacement vector  𝐰𝐛 due to the moving loads in  𝐟𝐢𝐧𝐭  (Eq. (5)). Then, 

the displacement response of the beam, 𝑤𝑏,𝑖, under each wheel is calculated using Eq. (7). 

This process is repeated for stiffness estimates ranging from 10
5
 to 9×10

14
. These estimates 

can be represented by (a × 10
b
) N m

2
 where the coefficient a ranges from 1 to 9 in steps of 

0.1. The power b ranges from 5 to 14 in steps of 1. The true stiffness value is also included as 

an estimate therefore this gives a total of 811 stiffness estimates for the beam, which in turn 

provides 811 estimates of 𝑤𝑏,𝑖 for wheel 𝑖. 

 

In the fourth step, Eq. (4) is rearranged to obtain road profile height estimates, 𝑟𝑒𝑠𝑡,𝑖, under 

each wheel for each stiffness estimate by subtracting each range of 𝑤𝑏,𝑖 (step 3) from the total 

displacements 𝑤𝑣,𝑖 obtained using the VFI algorithm: 

 

 𝑟𝑒𝑠𝑡,𝑖 = 𝑤𝑣,𝑖 − 𝑤𝑏,𝑖;  𝑖 =  1,2 (22) 

 

As it has been shown that the VFI algorithm is most accurate for a particular band of 

frequencies, a band pass filter, with lower and upper cut-off frequencies of 1 and 40 Hz 

respectively, is applied to the profile estimates, 𝑟𝑒𝑠𝑡,𝑖.  

 



In the fifth and final step, the global bridge stiffness is identified. As the wheels follow each 

other along the same wheel path, the profile estimates under each wheel ( 𝑟𝑒𝑠𝑡,1 and 𝑟𝑒𝑠𝑡,2) 

should be very close for the correct stiffness value. A least squares error minimisation process 

is used to identify the optimal stiffness value from the range of estimates investigated. It 

consists of a summation over all measurements in time, t. The optimal solution is identified as 

the stiffness estimate which provides the minimum least squares error between the profile 

estimates under each wheel (Eq. (23)).  

 

  
2

,1 ,2error est est
t

r r r   (23) 

            

The average computational time required for this algorithm is only 30 seconds with a 3GHz 

processor, 6MB cache and 3072MB SDRAM running on Matlab.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 10 Bridge stiffness identification algorithm 

 

Results of simulation 

 

The algorithm is tested for the three bridge spans given in Table 2, very good and average 

road profiles and for SNRs of 20, 10 and 5. An example of the least squares error between the 

profile heights under the first and second wheels (Eq. (23)) is plotted on a log-log scale 

5. Identification of Global Bridge Stiffness 

 Identify stiffness which minimises the error between road profile 

estimations under wheels 1 and 2 using Eq. (23)  

 

4. Calculate Estimated Road Profile Heights 𝒓𝒆𝒔𝒕,𝒊 (m) for all EJest using 

Eq. (22) 

 Apply band pass filter to the profile estimates, 𝑟𝑒𝑠𝑡,𝑖, with cutoff  

frequencies of 1 Hz and 40 Hz 

 

3. Estimate Bridge Displacement under wheel, 𝒘𝒃,𝒊 (m)  

 Apply total contact forces 𝐟𝐢𝐧𝐭 to FE beam for stiffness estimates, 

EJest, ranging from 10
5
 to 9 × 10

14
 in steps of 0.1, and solve Eq. (5) 

 Evaluate Eq. (7) to obtain 𝑤𝑏,𝑖 

2. Apply Linear Correction to Displacements under wheel, 𝒘𝒗,𝒊 (m) 

 Total displacements under each wheel, 𝑤𝑣,𝑖, are obtained using the 

VFI algorithm presented in Section 3 

1. Calculate Vector of Total Contact Forces, 𝐟𝐢𝐧𝐭 (N)  

 Dynamic axle forces, 𝐹𝑡,𝑖, are obtained using the VFI algorithm 

presented in Section 3 

 Evaluate Eq. (6) 



against the stiffness estimates in Fig. 11 for the very good road profile simulation. This 

illustrates that the minimum, as expected, corresponds to the true stiffness value for the 15 m 

bridge span. The percentage errors of the algorithm in estimating the bridge stiffness value for 

each of the three bridge spans investigated are given in Table 6.  

 

 

Fig. 11 (a) Least squares error, 𝑟𝑒𝑟𝑟𝑜𝑟 (▪▪▪▪ ) versus global stiffness estimates (EJest ) for 15 m 

bridge span with SNR = 20, (b) same graph, zoomed in at minimum (). Target 

stiffness value is 1.846 × 10
10

 N m
2
 (▪▪▪). 

 

For the very good (Class A) profile the algorithm is very accurate, especially for lower levels 

of noise. This high accuracy is maintained for all noise levels for the 15 m bridge span while a 

decrease in accuracy occurs with increasing noise level for the 25 m and 35 m spans. This 

suggests that, for a very good road profile, this approach could be very effective. For the 

average (Class C) profile the algorithm accuracy decreases, considerably for the 15 m span, 

which suggests that this approach is sensitive to road roughness. Also, the trend with 

increasing noise is not repeated for this profile, except for the predicted stiffness values of the 

35 m span, which are very good for low and medium noise levels.  

 

 



 

Table 6 Percentage error in identified bridge stiffness values 

 
Span (m) 

 
15 25 35 

SNR 
% Error 

Class A 

% Error 

Class C 

% Error 

Class A 

% Error 

Class C 

% Error 

Class A 

% Error 

Class C 

20 0 -45.8 0.3 -17.8 0 0 

10 0.2 -34.9 -2.4 -17.8 -1.3 0.4 

5 0.2 -13.3 -7.5 -17.8 10 17.1 

 

The sensitivity to road roughness can be explained by the contribution of the bridge 

displacement, 𝑤𝑏,𝑖, to the predicted displacements under each wheel, 𝑤𝑣,𝑖. Referring to Eq. 

(4), the road profile heights, 𝑟𝑖, form a larger proportion of the total displacement under each 

wheel, relative to the bridge displacements, 𝑤𝑏,𝑖 . As the roughness of the road profile 

increases, the ratio of the road profile heights to the bridge displacements increases. Hence the 

predicted 𝑤𝑣,𝑖 is less sensitive to changes in the bridge response. Therefore, for increased road 

roughness, the algorithm is less sensitive to changes in stiffness. This is confirmed in Table 6 

- bridge displacement increases with bridge span length and for the average road profile, in 

general, the stiffness errors decrease with bridge span length. To improve the accuracy for 

rougher road profiles, a heavier vehicle could be used to increase the bridge displacement 

relative to the road profile heights (the vehicle used for this study is 18 t). 

 

6. Conclusions 

 

This paper first presents a novel method for the identification of dynamic vehicle forces from 

vehicle acceleration measurements. Moving force identification theory is applied to the 

equations of motion of the vehicle in order to obtain the dynamic forces. The method is 



numerically validated for a range of bridge spans, measurement noise levels and road profiles. 

In the case of simulations for very good and average road profiles, the method identifies the 

forces very well. Due to the smoothing of the solution by regularisation, some higher 

frequency components of the forces are not predicted well. Overall, it is found that the vehicle 

force identification method is insensitive to noise which is an advantage of the approach.  

 

The implementation of this approach as a drive-by inspection tool for bridges and pavements 

is also presented. It is found that the method is quite accurate in detecting road profile heights 

and is insensitive to the road roughness. However, as for the identified forces, errors at high 

frequency occur. Some errors at very long wavelength/low frequency occur also so an 

intermediate frequency band within which the approach is very accurate, is established.  

 

An algorithm for the identification of global bridge stiffness using the identified vehicle 

forces from a bridge crossing is presented. It is found to be very accurate for a very good road 

profile; with a signal to noise ratio of 20 the stiffness estimation errors are less than 0.5%. The 

accuracy decreases with increasing noise level but for the highest SNR of 5, estimates are 

within 10% of the true stiffness value. For the average road profile the algorithm is not as 

accurate and it is dependent on the bridge span length and the ratio of the road profile heights 

to the bridge deflection.   

 

In the field it is likely that there are a number of factors that will reduce the accuracy of the 

algorithms presented in this paper (e.g., inaccuracies in the assumed bridge or vehicle model). 

Nevertheless, the positive results in this theoretical investigation suggest that it has the 

potential to be implemented as a sensitive low-cost method of identifying dynamic vehicle 



axle forces. It also has the potential to be used for condition monitoring of pavements and the 

identification of global bridge stiffness in short to medium span bridges.  
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Appendix A 

𝐌𝐯 = [

𝑚𝑠 0 0 0 
0 𝐼𝑠 0 0
0 0 𝑚𝑢,1 0

0 0 0 𝑚𝑢,2

]  

𝐂𝐯 = 

[
 
 
 
 
𝐶𝑠,1 + 𝐶𝑠,2 𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2 −𝐶𝑠,1 −𝐶𝑠,2 

𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2 𝐷1
2𝐶𝑠,1 + 𝐷2

2𝐶𝑠,2 −𝐷1𝐶𝑠,1 𝐷2𝐶𝑠,2
−𝐶𝑠,1 −𝐷1𝐶𝑠,1 𝐶𝑠,1 0

−𝐶𝑠,2 𝐷2𝐶𝑠,2 0 𝐶𝑠,2 ]
 
 
 
 

 

𝐊𝐯 = 

[
 
 
 
 
𝐾𝑠,1 + 𝐾𝑠,2 𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2 −𝐾𝑠,1 −𝐾𝑠,2 

𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2 𝐷1
2𝐾𝑠,1 + 𝐷2

2𝐾𝑠,2 −𝐷1𝐾𝑠,1 𝐷2𝐾𝑠,2
−𝐾𝑠,1 −𝐷1𝐾𝑠,1 𝐾𝑠,1 0

−𝐾𝑠,2 𝐷2𝐾𝑠,2 0 𝐾𝑠,2 ]
 
 
 
 

 

𝐊𝐯𝐯 = 

[
 
 
 
 
𝐾𝑠,1 + 𝐾𝑠,2 𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2 −𝐾𝑠,1 −𝐾𝑠,2 

𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2 𝐷1
2𝐾𝑠,1 + 𝐷2

2𝐾𝑠,2 −𝐷1𝐾𝑠,1 𝐷2𝐾𝑠,2
−𝐾𝑠,1 −𝐷1𝐾𝑠,1 𝐾𝑠,1 + 𝐾𝑡,1 0

−𝐾𝑠,2 𝐷2𝐾𝑠,2 0 𝐾𝑠,2 + 𝐾𝑡,2]
 
 
 
 

 

𝐊𝐛𝐯 = [0 0 −𝐍𝐛 [
𝐾𝑡,1 0

0 𝐾𝑡,2
]]
𝑛 × 4

 , 𝐊𝐯𝐛 = 𝐊𝐛𝐯
T  

𝐊𝐛𝐛 = [𝐍𝐛 [𝐍𝐛 [
𝐾𝑡,1 0

0 𝐾𝑡,2
]]
T

]
𝑛 × 𝑛

 

𝐌𝐠 = [
𝐌𝐯 0
0 𝐌𝐛

], 𝐂𝐠 = [
𝐂𝐯 0
0 𝐂𝐛

], 𝐊𝐠 = [
𝐊𝐯𝐯 𝐊𝐯𝐛
𝐊𝐛𝐯 𝐊𝐛 + 𝐊𝐛𝐛

] 



𝐟 =

{
 
 

 
 

0
0

𝐾𝑡,1𝑟1
𝐾𝑡,2𝑟2

𝐍𝐛 {
𝑃1 − 𝐾𝑡,1𝑟1
𝑃2 − 𝐾𝑡,2𝑟2

}
}
 
 

 
 

 

𝐍𝐛 = [

0 0
𝑁1 0
0 𝑁2
0 0

]

𝑛 × 2

 

 

The location matrix 𝐍𝐛 will contain zero entries everywhere bar the locations of the degrees 

of freedom which correspond to the nodal displacements and rotations of the beam elements 

the vehicle is in contact with. It should be noted that entries corresponding to the boundary 

conditions will also be zero. The Hermitian shape function 𝑁𝑖  for the 𝑖th interaction force 

located on an element 𝑗 can be written in global coordinates as  

 

𝑁𝑖 = 

{
 
 
 
 
 

 
 
 
 
 1 − 3(

𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)
2

+ 2 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)
3

(𝑥𝑖 − (𝑗 − 1)𝑙) −
2(𝑥𝑖 − (𝑗 − 1)𝑙)

2

𝑙
+
(𝑥𝑖 − (𝑗 − 1)𝑙)

3

𝑙2

3 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)
2

− 2 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)
3

 

−
(𝑥𝑖 − (𝑗 − 1)𝑙)

2

𝑙
+
(𝑥𝑖 − (𝑗 − 1)𝑙)

3

𝑙2 }
 
 
 
 
 

 
 
 
 
 

 

where 𝑙 is the length of the beam element and (𝑗 − 1)𝑙 ≤ 𝑥𝑖 ≤ 𝑗𝑙. 
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