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Abstract 31 

 32 

Biodiversity continues to decline at a range of spatial scales and there is an urgent requirement to understand 33 

how multiple drivers interact in causing such declines. Further, we require methodologies that can facilitate 34 

predictions of the effects of such drivers in the future. Habitat degradation and biological invasions are two of 35 

the most important threats to biodiversity and here we investigate their combined effects, both in terms of 36 

understanding and predicting impacts on native species. The predatory largemouth bass Micropterus salmoides 37 

is one of the World’s Worst Invaders, causing declines in native prey species, and its introduction often 38 

coincides with habitat simplification. We investigated the predatory functional response, as a measure of 39 

ecological impact, of juvenile largemouth bass in artificial vegetation over a range of habitat complexities (high, 40 

intermediate, low and zero). Prey, the guppy Poecilia reticulata, were representative of native fish. As habitats 41 

became less complex, significantly more prey were consumed, since, even although attack rates declined, 42 

reduced handling times resulted in higher maximum feeding rates by bass. At all levels of habitat complexity, 43 

bass exhibited potentially population de-stabilising Type II functional responses, with no emergence of more 44 

stabilising Type III functional responses as often occurs in predator-prey relationships in complex habitats. 45 

Thus, habitat degradation and simplification potentially exacerbate the impact of this invasive species, but even 46 

highly complex habitats may ultimately not protect native species. The utilisation of functional responses under 47 

varying environmental contexts provides a method for the understanding and prediction of invasive species 48 

impacts. 49 

 50 

Keywords: Habitat complexity; invasive species; functional response; impact; global change; freshwater fish 51 

 52 

 53 

Introduction 54 

 55 

Biodiversity at global, regional and local scales is declining and the conservation of natural resources is 56 

under threat from a number of drivers of global change (Sala et al. 2000; Thomas et al. 2004; Mokany et al. 57 

2012). Such processes are of particular concern in freshwater systems, with drivers such as habitat alteration and 58 

invasions by non-native species identified as significant stressors (Saunders et al. 2002; Dudgeon et al. 2006). 59 

The modification of freshwater habitats results from a range of human-mediated processes including changes to 60 
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flow regimens (Bunn and Arthington 2002), dam construction (Nilsson and Berggen 2000), and destruction of 61 

vegetation (Radomski and Goeman 2001). Similarly, biological invasions are increasing due to a wide range of 62 

human-mediated vectors and pathways (Levine and D’Antonio 2003). In freshwaters, invasive species modify 63 

ecosystems through a range of processes including competitive exclusion (Rowles and O’Dowd 2006) and 64 

predation (Griffen and Delaney 2007), which may result in dramatic changes to native communities (Crooks 65 

1998).  66 

One of the main challenges in ecology is the ability to predict how drivers of global change, such as 67 

biological invasions, may impact ecosystems (Parker et al. 1999;; Ricciardi et al. 2013; Dick et al. 2014. These 68 

drivers are commonly considered as independent, single entities (Fazey et al. 2005), however, there is an 69 

emerging realisation that biodiversity loss will be better understood and predicted when the relative roles of the 70 

major drivers are considered in combination (Facon et al. 2006). It is also recognised that drivers may act 71 

synergistically through a variety of pathways (Didham et al. 2007). For example, changes in the traits of an 72 

invasive species with habitat alterations, such as predatory efficiency, might result in changes in per capita 73 

effects with potential wide-ranging consequences for native species population dynamics (Parker et al. 1999). 74 

In aquatic systems, the role of habitat structure, such as that provided by algae and macrophytic plants, 75 

is well documented in inter- and intraspecific interactions from a wide range of taxa (Boström et al. 1999; Saha 76 

et al. 2009; Gosnell et al. 2012). For a number of fish species in particular, habitat structure has been shown to 77 

mediate impacts of fish predation by, for example, providing refuge space for prey (Persson and Eklöv 1995; 78 

Beukers and Jones 1997; Anderson 2001; Almany 2004a). Therefore the loss of structural complexity resulting 79 

from habitat degradation may reduce prey survival due to increased predation vulnerability (Nelson and 80 

Bonsdorff 1990). Mediatory effects may also occur in such interactions due to the physical barrier to predator 81 

movement provided by habitat (Savino and Stein 1982). Conversely, however, predators that adopt a sit-and-82 

wait strategy of prey capture may perform less efficiently, with degradation of habitat reducing predation 83 

success (Flynn and Ritz 1999). 84 

A promising methodology that not only provides an understanding of predator-prey interactions but 85 

allows predictions of invasive species impact is to examine the functional response (Dick et al. 2013a; Dick et 86 

al. 2013b; Alexander et al. 2014), that is, the relationship between prey density and predator consumption rate 87 

(Solomon 1949; Holling 1959). Such a focus allows important density-dependent effects of predation on 88 

population stability to be examined owing to the different contributions of response Types (I, II or III) to 89 

population dynamics (Murdoch and Oaten 1975). In a Type I response, predator consumption increases linearly 90 
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with prey number until a threshold density plateau is reached. However, under certain ranges of prey density, a 91 

Type II inversely density-dependent response can result in an increase in morality risk to prey with decreasing 92 

density (Hassell 1978). This is in contrast to reduction in mortality risk when prey density declines in a Type III 93 

response (Hassell 1978). This is particularly important in habitat complexity studies, where changes in structure 94 

can result in alterations to the functional response Type and hence prey population viability (Lipcius and Hines 95 

1986; Buckel and Stoner 2000; Alexander et al. 2012). Furthermore, the application of functional responses in 96 

invasion biology has been demonstrated to be effective, with higher functional responses of invasive species 97 

compared to natives in laboratory studies corroborated by results from field studies (Bollache et al. 2008; Dick 98 

et al. 2013). Here, we use functional responses to predict the impact that changes in habitat complexity, 99 

representative of those resulting from habitat destruction, may have on the predator-prey dynamics of an 100 

invasive fish predator, one of the “World’s Worst Invaders” (ISSG 2013), on a prey species that serves as a 101 

proxy for endangered native prey species. 102 

As a result of their popularity as an angling species, the largemouth bass Micropterus salmoides is one 103 

of the five globally most introduced fish species (Welcomme 1992) and, where such introductions have 104 

occurred, predation by this species has a major impact on fish communities (Godinho and Ferreira 2000; 105 

Ellender et al. 2011; Almeida et al. 2012). In South Africa and in the Iberian Peninsula in southern Europe, for 106 

example, largemouth bass are a well-established invasive species that have subsequently invaded a number of 107 

headwater streams, where many native fish species are now endangered or absent (Ellender et al. 2011; Almeida 108 

et al. 2012). In addition to this, such systems are also facing a double threat of habitat degradation due to 109 

destruction of natural vegetation (Saunders et al. 2002). As ambush predators, largemouth bass typically use 110 

structural littoral habitats including aquatic vegetation (Savino and Stein 1989a) , and juveniles in particular 111 

predominantly select such environments (Olson et al. 2003). We therefore manipulated simulated habitat 112 

complexity along a prey density gradient in order to ask questions regarding the density-dependence of impact 113 

of this invasive predator on a prey population in the context of habitat degradation.  114 

The aim of this study was thus to describe and quantify the functional responses, and hence impacts, of 115 

juvenile largemouth bass on a prey species, the guppy Poecilia reticulata, that served as a commercially 116 

available surrogate for endangered fish found in headwater systems, with respect to varying levels of habitat 117 

complexity. The aims were to establish whether: (1) juvenile largemouth bass exhibit predatory functional 118 

responses towards small fish prey; (2) the functional response Type is habitat dependent; and (3) varying habitat 119 

complexity alters the strength of the functional response. 120 
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 122 

Materials & Methods 123 

 124 

Collection and maintenance of experimental animals 125 

 126 

Juvenile largemouth bass Micropterus salmoides were collected in June 2013 by electrofishing from 127 

Douglas Dam (33°19'16"S; 26°31'15"E) and Grey Dam (33°19'29."S; 26°31'39"E), Grahamstown, South Africa. 128 

All fish were transported to the Department of Ichthyology and Fisheries Science (DIFS), Rhodes University, 129 

Grahamstown and were housed in 600L tanks in a closed recirculating system. Fish were allowed to acclimate 130 

for at least one week prior to use in predation trials and were maintained on a diet of earthworms. As this was 131 

not the focal prey species used in the experiment, this diet ensured that no prior prey learning occurred in 132 

holding tanks. Prey used were females of the guppy Poecilia reticulata (15-20mm total length), sourced from a 133 

breeding stock at DIFS. Female guppies were selected over males owing to their inconspicuous coloration. 134 

Guppies were housed in two 600L tanks and were fed daily on commercially available fish food.  135 

 136 

Experimental set up 137 

 138 

Functional response experiments were conducted in 15 square 300L fibreglass tanks that were part of 139 

the same flow-through system as the holding tanks described above (water flow 1 L/min-1; 23.01± 0.17ºC, mean 140 

temperature ± SE). In the centre of each tank there was an outlet for water overflow that was covered with mesh 141 

and secured with cable ties to prevent predators and/or prey escaping. To reduce potential stress on the fish, 142 

each tank was half covered with a dark screen to provide a darkened refuge. An airline provided further aeration 143 

of water in the tank in addition to the aerated inflowing water from the recirculating system during predation 144 

trials.  145 

To simulate habitat structure, strips of green polyethylene (40cm long and 1.5cm wide) were tied in a 146 

uniform arrangement to green plastic mesh, cut to fit the bottom of the aquarium. The mesh was then weighted 147 

to the bottom of the tanks. This allowed the artificial vegetation to float upwards and occupy the entire water 148 

column in the same way that natural vegetation occurs in freshwater systems (personal observation). A plant 149 

mimic was used here to allow for standardisation of cover. Densities of vegetation represented high (2700 150 
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blades m-2), medium (1800 blades m-2), low (900 blades m-2) and zero habitat complexities. To control for the 151 

presence of mesh contributing a further element of habitat complexity, mesh without artificial plants was added 152 

in zero complexity.  153 

Bass (n=18) were selected from a common size class to reduce the influence of size-related differences 154 

in prey consumption (86.86 ± 2.49mm, mean total length ± SE; 14.0 ± 0.38mm, mean gape height ± SE), and 155 

were reused in the four habitat treatments (detailed below). We ensured, however, that each individual predator 156 

was used a maximum of four times and only once within each prey density in each habitat complexity. At least 157 

two days recovery time was allowed between uses.  158 

 159 

 160 

Functional response trials 161 

   162 

Bass were randomly selected from their holding tanks 24 hours prior to a trial and transferred to an 163 

experimental tank, where they were held without food to allow for acclimatisation and standardisation of hunger 164 

levels. Individual fish were then presented with guppies at six prey densities (2, 4, 8, 16, 32, 64), with at least 165 

three replicates per density. Feeding trials were initiated at 10:00h and prey consumption was examined after 4 166 

hours. Controls were three replicates of each prey density in the absence of predators at each of the habitat 167 

complexities.  168 

 169 

 170 

Statistical analysis 171 

 172 

All analysis was carried out in R v. 2.15.1 (R Development Core Team 2012). Differences in overall 173 

prey consumption among habitat complexities and prey densities were assessed using a generalised linear model 174 

(GLM) with binomial error distribution. As no interaction was found between habitat complexity and prey 175 

density, the interaction term was removed to identify the minimum adequate model (Crawley 2007). Significant 176 

effects in the model were analysed with Tukey’s contrast post hoc tests, performed using the package Multcomp 177 

1.2-8 (Hothorn et al. 2008). 178 

In the assessment of a predator’s functional response, there is a range of models and choice is based on 179 

whether a particular study takes a mechanistic or phenomenological approach (Jeschke et al. 2002). Although 180 
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mechanistic application of parameters such as attack rate and handling time should be supported with empirical 181 

measurements of such estimates (Caldow and Furness 2001; Jeschke and Hohberg 2008), the phenomenological 182 

use of these parameters provides a tool to examine differences in functional response Types and magnitudes in 183 

comparative experiments, as is the approach taken here (Alexander et al. 2013; Dick et al. 2013a; MacNeil et al. 184 

2013; Dick et al. 2013b).  185 

We first determined the functional response Type using logistic regression, testing for a negative linear 186 

coefficient (fitted using maximum likelihood) in the relationship between the proportion of prey eaten and prey 187 

density that indicates a Type II response (Trexler et al. 1988; Juliano 2001). Further, we estimated values of ‘a’ 188 

(attack rate), ‘h’ (handling time) and maximum feeding rate (1/hT, where T = experimental period) using the 189 

‘random predator equation’ (Rogers 1972), which is appropriate where prey are not replaced as they are 190 

consumed (Juliano 2001); 191 

 192 

Ne = N0 {1 - exp [a(Neh –T)]} 193 

where Ne is the number of prey eaten, N0 is the initial density of prey, a is the attack constant, h is the handling 194 

time and T is the experimental period. Due to the implicit nature of the random predator equation, the Lambert 195 

W function was implemented to fit the model to the data (Bolker 2008). Bootstrapping was used to generate 196 

multiple estimates (n = 30) of the response parameters of attack rate a, handling time h and maximum feeding 197 

rate (1/hT), which were then compared between habitat complexities in a GLM with Tukey’s contrast post hoc 198 

tests. 199 

 200 

Results 201 

 202 

In control groups with no predators, prey survival was always >98% in each of the habitat treatments. 203 

Experimental deaths were therefore attributed to predation by juvenile largemouth bass. As habitat became less 204 

complex, significantly more prey were eaten (F3, 68 = 8.41, p < 0.001; Figure 1), and bass in the highest habitat 205 

complexity consumed significantly less prey compared to all other complexities (Tukey’s contrasts, p < 0.01; 206 

Figure 1). There were no differences in prey consumed between intermediate, low and zero habitat complexities. 207 

Significantly more prey were consumed at higher as compared to lower densities (F5, 68 = 76.88, p < 0.001). 208 

Logistic regression indicated that, in each of the habitat complexities, largemouth bass exhibited a 209 
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Type II functional response towards prey, as revealed by significantly negative linear coefficients (Table 1; 210 

Figure 2a-d). As habitat became less complex, attack rate a significantly declined (F3, 116 = 26.28, p < 0.001; 211 

Figure 3a). In comparison to low and intermediate habitats, which did not differ from each other, attack rate was 212 

significantly reduced in zero habitat treatments, and significantly greater in high complexity treatments (Tukeys 213 

contrasts, all p<0.01; Figure 3a). Again as habitat became less complex, handling time h declined (F3, 116 = 214 

151.12, p < 0.001), and was greatest in high complexity in comparison to the other treatments (Tukeys contrasts, 215 

all p<0.01; Figure 3b). This was also reflected in an increase in maximum feeding rate (F3, 116 = 99.09, p < 216 

0.001), that was greatest for zero and low habitat complexities, and lowest in high complexity treatments 217 

(Tukeys contrasts, all p<0.01; Figure 3c). 218 

 219 

 220 

 221 

Discussion 222 

 223 

Freshwater systems are threatened by a number of drivers of global change (Sala et al. 2000; Buisson et 224 

al. 2013) and, around the world, formerly pristine headwater stream environments are impacted by both habitat 225 

destruction and biological invasions by non-native species (Impson et al. 2002; Ellender et al. 2011). Such 226 

drivers have important consequences when considered individually, however, they may also act in combination 227 

to result in greater, synergistic impacts to native populations (Didham et al. 2007). Furthermore, there is a 228 

pressing requirement to predict such impacts of both established and emerging invasive species under a range of 229 

environmental conditions such that appropriate mitigation and control measures may be implemented (Byers et 230 

al. 2002; Dick et al. 2013a; Simberloff et al. 2013).  231 

Reduction in habitat complexity significantly increased consumption rates by invasive juvenile 232 

largemouth bass Micropterus salmoides of a prey species, the female guppy Poecilia reticulata. We have thus 233 

demonstrated that the impact by juvenile largemouth bass, one of the “100 world’s worst” invaders (ISSG 234 

2013), may be heightened with degradation of habitat. In addition, we found that between zero to intermediate 235 

structural complexities, there was no significant difference in the numbers of prey consumed. This suggests the 236 

occurrence of a threshold in complexity between the intermediate and high-complexity experimental habitats 237 

that can reduce the efficiency of the predator (Coull and Wells 1983; Gotceitas and Colgan 1989; Manatunge et 238 

al. 2000). This may in turn have important consequences for predatory behaviours in instances where predators 239 
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alter their foraging modes in response to changes in their surrounding environment (Scharf et al. 2006). There 240 

may also be additional consequences for predator-prey dynamics due to effects on predator-predator 241 

interactions, potentially influencing facilitation or interference outcomes (Sih et al. 1998; Warfe and Barmuta 242 

2004). 243 

In each of the four levels of habitat complexity, juvenile bass exhibited a Type II functional response 244 

towards the fish prey. This is counter to a number of studies demonstrating how variations in environment, such 245 

as habitat complexity, light levels and temperature (Eggleston 1990; Koski and Johnson 2002; Alexander et al. 246 

2012), may result in changes towards Type III responses. Generally changes in responses occur when factors, 247 

such as environmental conditions, affect the searching ability of a predator. These are generally most influential 248 

at low prey densities (Crowder and Cooper 1982; Heck and Crowder 1991) and habitat complexity is often an 249 

important determinant of such outcomes (Buckel and Stoner 2000; Kushner and Hovel 2006; Alexander et al. 250 

2012). Such a change in functional response can be significant when considering population stability and 251 

viability, as Type II responses can drive prey populations to local extinction if prey are unable to match predator 252 

consumption rate, with, for example, reproductive output (Twardochleb et al. 2012; MacNeil et al. 2013). 253 

Although Type II responses were observed in each habitat, there were differences recorded in model 254 

parameters. Attack rates were greatest in the most complex habitat treatment and lowest when no habitat was 255 

present. As the scaling parameter of the curve, the attack rate describes the slope of the line at the lowest prey 256 

densities and therefore provides an indication of predator efficiency at these densities (Hassell and May 1973; 257 

Jeschke et al. 2002). The observed attack rates thus reflect the behaviour of a species that is predominantly an 258 

ambush predator that seeks out structure (Savino and Stein 1982; Savino and Stein 1989b) . Juvenile bass in 259 

particular may be efficient predators in dense vegetation, with smaller body size permitting comparably easier 260 

access to prey than older, larger individuals (Almany 2004b). Thus, the reduction in attack parameter in less 261 

complex habitats in comparison to the denser structure in the present study therefore suggests that at low 262 

densities, degradation of habitat may in fact provide prey with a reduced mortality risk in comparison to more 263 

complex habitats.  264 

As a further reflection of the greater predatory efficiency of juvenile bass at higher prey densities, 265 

differences in mean handling times, and thus maximum feeding rates, indicated greater predation at higher prey 266 

densities when habitat complexity was reduced. In comparison, high complexity structure reduced maximum 267 

feeding rates, suggesting that, although efficient predators at lower densities in these habitats, juvenile bass are 268 

impeded overall by such structure. At zero and low habitat complexities, bass were comparably more efficient 269 
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as indicated by significantly greater feeding rates, therefore with reductions in habitat cover, certain densities of 270 

prey are more vulnerable to predation by this species. This may result from the reduction in the physical barrier 271 

the habitat complexity provides with simplification in structure (Warfe and Barmuta 2004), or indeed be a 272 

consequence of reduced refuge space for prey whereby safe areas become saturated and prey are pushed out into 273 

the open where they are more vulnerable to predation (Forrester and Steele 2004).  274 

Type II functional responses can, under certain conditions, be de-stabilising to prey populations and 275 

reduce their viability, and indeed at low prey densities in high habitat complexity areas prey populations may be 276 

driven to local extinction by juvenile bass as suggested by the elevated attack rates. Prey populations under such 277 

circumstances may, however, be stabilised with the presence of alternative prey whereby as one species 278 

becomes rare, the predator switches to feed on another, resulting in a Type III functional response (Akre and 279 

Johnson 1979; Elliott 2004) . However, field studies consistently suggest that prey populations are heavily 280 

impacted by largemouth bass (Ellender et al. 2011; Weyl et al. 2013), and we therefore assume that the strength 281 

of the Type II responses observed here drive lack of coexistence between bass and native prey as is congruent 282 

with other functional response studies that link experimental findings with observed field patterns (Bollache et 283 

al. 2008; MacNeil et al. 2013; Dick et al. 2013b). 284 

The use of functional responses in a predictive capacity, as applied here, to investigate what may be 285 

expected with changes to environment when important drivers of global change interact, is a further 286 

demonstration of the utilisation of this methodology (see Dick et al. 2013a). In this study, the combination of 287 

habitat degradation, as simulated with reductions in the density of a plant mimic, and the per capita impact of 288 

predation by invasive largemouth bass as determined by functional responses, indicates that impacts of the 289 

invasive species may potentially be greater with reductions in habitat. Largemouth bass, however, are well 290 

established in a number of systems worldwide (Welcomme 1992), and where their removal is not possible, a 291 

potential mitigation measure is therefore to focus efforts on the protection of natural vegetation and riparian 292 

zones. For further investigation it is suggested that other determinants of invader ecological impacts, such as the 293 

numerical response to examine the reproductive and/or aggregative response to prey, are quantified; however, 294 

the use of functional responses continues to be a rapid, reliable and in particular predictive assessment of the 295 

potential ecological impacts of invasive species in a changing world.  296 

 297 
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Table 1. Parameter estimates (and significance levels) from logistic regression analyses of prey consumed 484 

against initial prey density, in high, intermediate, low and zero habitat complexities. Values for the intercept and 485 

linear (N0) terms are presented with p values. 486 

 487 

Habitat complexity Intercept 

(p value) 

N0 

(p value) 

Functional response 

type 

High 0.21 

(p=0.39) 

-0.04 

(p<0.001) 

II 

Intermediate 2.04 

(p<0.001) 

-0.07 

(p<0.001) 

II 

Low 1.73 

(p<0.001) 

-0.05 

(p<0.001) 

II 

Zero 0.73 

(p<0.01) 

-0.04 

(p<0.001) 

II 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

19 
 



Fig. 1. Mean prey consumed (+SE) by juvenile largemouth bass in high, intermediate, low and zero complexity 504 

simulated habitats. Different letters above bars indicate significant differences (Tukeys contrasts, p < 0.01). 505 

 506 

Fig. 2. Functional responses of juvenile bass towards prey in (a) high, (b) intermediate, (c) low and (d) zero 507 

habitat complexity (as modelled by the Rogers random predator equation for a Type II response). Data are mean 508 

number of prey consumed at each density ± SE. 509 

 510 

Fig. 3. Mean (+SE) (a) attack rate a, (b) handling time h and (c) maximum feeding rate 1/hT derived from 511 

bootstrapping (n=30 each) of juvenile largemouth bass consuming prey in high, intermediate, low and zero 512 

complexity simulated habitats. Different letters indicated significant differences (Tukeys contrasts, p < 0.01) 513 

 514 

 515 

 516 

 517 

20 
 



 518 

Fig.1. 519 

 520 

 521 

 522 

 523 

 524 

 525 

High Intermediate Low Zero

M
ea

n 
pr

ey
 c

on
su

m
ed

 (+
S

E
)

0
2

4
6

8
10

a

b

b

b

21 
 



 526 

Fig. 2. 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

22 
 



 535 

 536 

Fig.3. 537 

 538 

 539 

 540 

High Intermediate Low Zero

M
ea

n 
at

ta
ck

 ra
te

 (+
SE

)

0
5

10
15 a

b b

c

a)

High Intermediate Low Zero

M
ea

n 
ha

nd
lin

g 
tim

e 
(+

S

0.
00

0.
05

0.
10

0.
15

0.
20

a

b
c bc

b)

High Intermediate Low Zero

M
ea

n 
m

ax
 fe

ed
in

g 
ra

te
 

0
1

2
3

4
5

a

b

c
c

c)

23 
 


