
EXPLORING BEHAVIORAL PATTERNS IN

COMPLEX ADAPTIVE SYSTEMS

by

Andrii Cherniak

B.S. in applied physics 2004,

M.S. in radio physics and electronics 2006,

Taras Shevchenko National University of Kyiv,

Kyiv, Ukraine

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2014

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This thesis was presented

by

Andrii Cherniak

It was defended on

April 22nd, 2014

and approved by

Vladimir I. Zadorozhny, PhD, Associate Professor

Marek J. Druzdzel, PhD, Associate Professor

Konstantinos Pelechrinis, PhD, Assistant Professor

Paul Munro, PhD, Associate Professor

Jesse Bridgewater, PhD, Principal Data Scientist / Director of Data Science, eBay Inc

Thesis Director: Vladimir I. Zadorozhny, PhD, Associate Professor

ii

Copyright c© by Andrii Cherniak

2014

iii

EXPLORING BEHAVIORAL PATTERNS IN COMPLEX ADAPTIVE

SYSTEMS

Andrii Cherniak, PhD

University of Pittsburgh, 2014

Many phenomenons in real world can be characterized as complex adaptive systems (CAS).

We are surrounded with a huge number of communicating and interacting agents. Some of

those agents may be capable of learning and adapting to new situation, trying to achieve their

goals. E-commerce, social media, cloud computing, transportation network and real-time

ride sharing, supply chain are a few examples of CAS. These are the systems which surround

us in every days life, and naturally we want to make sense of those systems and optimize

systems behavior or optimize our behavior around those systems. Given the complexity

of these systems, we want to find a set of simplified patterns out of the seeming chaos of

interactions in a CAS, and provide more manageable means of analysis for such systems.

In my thesis I consider a few example problems from different domains: modeling human

behavior during fire evacuation, detection of notable transitions in data streams, modeling

finite resource sharing on a computational cluster with many clients, and predicting buyer be-

havior on the marketplace. These (and other) seemingly different problems demonstrate one

important similarity: complex semi-repetitive or semi-similar behavior. This semi-repetitive

behavior poses a challenge to model such processes. This challenge comes for two major

reasons: 1) state-space explosion and sparsity of data 2) critical transitions and precision

of process modeling

I show, that the analysis of smilingly different CAS coming from different domains, can

be performed by following the same recipe.

iv

TABLE OF CONTENTS

PREFACE . xiv

1.0 INTRODUCTION . 1

1.1 Definition of a complex adaptive system 1

1.2 CAS analysis: reality vs. ideal world . 3

1.2.1 CAS optimization and analysis procedures can resemble a search for

a solution for an NP-hard problem 5

1.2.2 Agent-based models vs. systems of differential equations for CAS

analysis . 6

1.3 Relaxed optimization in CAS (ROCAS) 8

1.4 Research questions . 11

1.5 Thesis outline . 12

2.0 ADAPTIVE SENSOR DATA MANAGEMENT FOR DISTRIBUTED

FIRE EVACUATION INFRASTRUCTURE 15

2.1 Applying ROCAS schema to the problem 16

2.2 Background and System Model . 19

2.3 Using WSN for EmergencyEvacuation . 22

2.3.1 Information diffusion . 22

2.3.2 Adaptive State/Action Strategy . 24

2.4 Experimental Results . 27

2.4.1 Reduced information updates . 27

2.4.2 Emergent behavior and multi-factor systems 30

2.5 Related Work . 31

v

2.6 Lessons learned . 33

3.0 DETECTING NOTABLE TRANSITIONS IN NUMERICAL DATA

STREAMS . 37

3.1 Introduction . 37

3.2 Applying ROCAS schema to the problem 40

3.3 Related work . 42

3.4 Method Description . 46

3.4.1 Frequency signature invariant . 47

3.4.2 Pattern discovery . 50

3.4.2.1 Score function . 52

3.4.2.2 Epsilon-interval selection 53

3.4.2.3 Signature detection method 54

3.4.2.4 Complexity analysis . 55

3.4.2.5 Comparison of complexity 57

3.5 Experiments . 58

3.5.1 Experimental Setup . 59

3.5.2 Likelihood ratio test . 60

3.5.3 AR, KDE vs signature based comparison (incremental updates) . . 61

3.5.4 Glimpse analysis . 64

3.5.5 Real data: signatures of hurricane season 65

3.6 Signature-based detection of bifurcations in system dynamics 67

3.7 Lessons learned . 71

4.0 COMPLEX PATTERNS IN RESOURCE SHARING 73

4.1 Applying ROCAS schema to the problem 75

4.2 background . 77

4.2.1 MapReduce data flow . 78

4.2.2 Concurrent MapReduce optimization 78

4.2.3 Current approaches for Hadoop / MapReduce optimization 81

4.2.3.1 Hadoop scheduler optimization 81

4.2.3.2 Hadoop/MapReduce system parameter optimization 82

vi

4.2.3.3 MapReduce cost model . 83

4.2.3.4 Applicability limits of the existing solutions towards large-

scale analytics tasks . 84

4.3 Updated Map-Reduce Cost model . 84

4.3.1 Probabilistic resource allocation . 87

4.3.2 Functional dependencies for resource allocation 89

4.4 case study: migrating A/B test from Teradata to Hadoop 91

4.4.1 Teradata . 92

4.4.2 Test schema . 93

4.4.3 A/B test without explicit resource control 94

4.4.4 Applying stochastic optimization for A/B test 97

4.4.4.1 Resource sensitivity . 97

4.4.4.2 Algorithm description . 98

4.5 Acknowledgments . 102

4.6 Lessons learned . 103

5.0 SESSION MODELING TO PREDICT ONLINE BUYER BEHAVIOR 104

5.1 Applying ROCAS schema to the problem 105

5.2 Related work . 107

5.3 Context-based behavior prediction . 107

5.4 Buyer behavior prediction assuming no hidden structure of behavior 109

5.4.1 Summary of the results for prediction of ”raw” session events . . . 111

5.5 Buyer Session model . 112

5.6 Lower-dimension patterns . 114

5.6.1 Session components hypothesis . 114

5.6.2 Experiment design . 114

5.6.2.1 Regression on entropy . 116

5.6.2.2 Entropy alteration . 117

5.6.2.3 Brier Score regression . 117

5.6.2.4 Brier Score alteration . 117

5.6.3 Regression results explained . 118

vii

5.7 Conclusion . 119

6.0 FEATURE ENGINEERING FOR LARGE-SCALE BUYER BEHAV-

IOR MODELING . 120

6.1 Visualization study of buyer sessions . 122

6.1.1 The speaker guy . 122

6.1.2 Account sharing . 124

6.1.3 Opportunistic mobile usage . 125

6.1.4 Relatively ”heavy” users and their missions 126

6.1.5 Important lessons from multi-screen usage, and combining that knowl-

edge with the previous observations 127

6.2 Applying ROCAS schema to the problem 128

6.3 Related work . 128

6.4 Model description . 129

6.4.1 Dataset description . 130

6.4.2 Feature generation . 130

6.5 Experiment results . 132

6.6 Conclusion . 136

7.0 THESIS CONCLUSION . 137

APPENDIX A. COHERENCY PORTRAIT ANALYSIS 138

A.1 Zero-phase bandpass filter . 139

A.2 Existence of V-shape . 139

A.3 Stability of coherency portraits around the transition point 141

A.4 Stability of coherency portraits outside the transition point 143

A.5 Stability of coherency portraits for different frequencies 144

APPENDIX B. LIKELIHOOD RATIO TEST AND KL-DIVERGENCE . 145

BIBLIOGRAPHY . 147

viii

LIST OF TABLES

2.1 States definitions and transitions . 25

3.1 Complexity comparison . 58

4.1 A/B test schema . 92

4.2 Data set size . 92

4.3 A/B test data loading: extraction, pruning, and aggregation 94

4.4 MapReduce job size . 99

5.1 Example buyer actions . 109

6.1 Statistics for feature generation, computed for a time window
[
start, end

]
,

where start and end - week number . 132

ix

LIST OF FIGURES

1.1 Decision making for a CAS in ideal world . 4

1.2 A proposed schema to find approximate solution to CAS 9

2.1 2Dspace . 20

2.2 Simulation dynamics . 21

2.3 Critical points . 24

2.4 State-action visualized . 25

2.5 Effect of suboptimal decisions . 26

2.6 The effect of the reduced information updates 28

2.7 Micro crowd formation . 31

2.8 Browser usage popularity over time from Google Trends 34

2.9 Stock market trends: Google vs Apple. From http://finance.yahoo.com . . . 35

2.10 Stock market trends: Google vs Apple (rivalry) 36

3.1 Process dynamics with transitions . 39

3.2 Energy-based vs signature transition detection 43

3.3 Data stream representation . 46

3.4 Data stream coherency portrait . 48

3.5 Coherency portraitfor pure noise and a noisy transition 49

3.6 Coherency portrait for noisy step function and noisy incline 50

3.7 Frequency pattern and its score . 51

3.8 Signature metric explained . 54

3.9 Scores for signature transition detection . 56

3.10 Stream generation pattern . 59

x

3.11 KDE, AR and signature methods on training dataset 62

3.12 KDE, AR and signature methods on test dataset 64

3.13 Stability of signature-based method performance as a function of the sample

size (sliding window size) . 65

3.14 Signature-based hurricane tracking . 66

3.15 Bifurcation detection with signature for logistic equation: parameter r dynam-

ics; data stream; corresponding coherency portrait; scores for the coherency

portrait . 68

3.16 Fold bifurcation analysis . 70

4.1 A/B test execution monitoring. Top plot: map slot usage in the entire cluster.

Bottom plot: map slot usage by the A/B test jobs 75

4.2 MapReduce execution schema . 77

4.3 Examples of execution schedule for MapReduce jobs 79

4.4 Upper plot: Map slots’ usage for MR jobs. Lower plot: indicates boundaries

for each MR job . 85

4.5 Reduce slots’ usage as a function of Hadoop cluster load and speculative execution 86

4.6 CDF plot for map slots’ allocation to a MR job as a function of requested

reducers . 87

4.7 CDF plot for reduce slots’ allocation to a MR job as a function of requested

reducers . 88

4.8 MapReduce job completion time as a function of requested reduce slots: (av-

erage time, upper and lower bounds for 95% interval) 89

4.9 Map slot usage in a queue as a function of total cluster load 90

4.10 Reduce slot usage in a queue as a function of total cluster load and number of

requested reducers . 91

4.11 Teradata . 93

4.12 Data extraction, pruning, and aggregation schema 94

4.13 Timing for data extraction, pruning, and aggregation on Teradata 95

4.14 Timing for data extraction, pruning, and aggregation on Hadoop 95

xi

4.15 Timing for cart A/B test. top: time comparison of data loading routines,

executed on Hadoop and Teradata; bottom: time comparison for execution

of the whole A/B test on Hadoop vs Teradata+SAS 96

4.16 A/B test analysis . 97

4.17 CDF plots for comparison of MR job optimization 99

4.18 Optimization effect for a modified A/B test schema as a function of total

Hadoop map slots usage . 101

4.19 Optimization effect for a modified A/B test schema as a function of total

Hadoop reduce slots usage . 102

5.1 An example context tree structure. Here S corresponds to START 108

5.2 Mean absolute error (MAE) for path prediction: for all buyer paths, and for

paths, longer than 20 events . 109

5.3 Visualizing context tree properties, as they change when we learn higher-order

(longer history) MC . 110

5.4 Probability to correctly predict Bid/BIN events as a function of the proximity

to the target events . 111

5.5 A set of ROC curves for paths built from session models. All paths consist of

least 20 sessions. Here, history corresponds to the order of VLMC 113

5.6 Memory usage by two approaches: when we assume no session structure, and

when we build a session model . 113

5.7 Regression coefficients together with their 95% confidence intervals for session

features . 115

5.8 Entropy and brier score alteration explained 116

6.1 ”The speaker guy” shopping case . 122

6.2 Family account sharing . 124

6.3 Opportunistic mobile usage . 125

6.4 Heavy user without a particular shopping goal 126

6.5 Heavy user on a mission . 126

6.6 Computing features from behavioral data . 129

6.7 Results obtained on feature set 1 and set 2 using LR, RF, and J48 133

xii

6.8 Results obtained on feature set 2 using L2-LR, RF, J48 134

6.9 Results obtained on feature set 2 using L2-LR, RF, J48, L1-LR, SVM and

kSVM (used only 10 % of data due to time issue) 135

A1 Coherency portrait applied to data streams with and without transition . . . 138

A2 Filtering Heaviside step function: (a)B-vectors for band-pass filters; (b):filtered

bands for Heaviside function; (c): coherency portraits 140

A3 Filtering a noisy signal . 142

xiii

PREFACE

I still cannot believe I am finishing writing my thesis. It seems like it was a week ago when

I started the program, and now I have a bit over 160 pages document, summarizing what I

have done in the last five and a half years.

This work was not possible without many great people, who came into my life, who

helped me to undertake this endeavor. Those are people I would like to take a moment to

thank them.

First of all, I would like to say thank you to my adviser, who helped me in making sense

of where my dissertation is going, helped to summarize the results and finally helped to

crystalize ROCAS model, which is the central part of my thesis.

Secondly, many thanks go to eBay Inc for supporting my research via a number of

internships. I thank Huma Zaidi and Tony Thrall for the support during my first internship.

I thank Jesse Bridgewater for his support and ideas during my second internship. And finally

I thank Andy Edmonds for ”adopting” me into his team and Sudha Jamthe for financial

support during my third internship.

Thirdly, I thank my roommate, Vicente Ordonez Roman, for all those all night long

discussions on different aspects of machine learning and computer vision : it helped me to

complete the last chapter of my thesis.

And last, but not least, I say thank you to the members of my committee for actually

taking time and being on my committee, and providing me with valuable feedback.

xiv

1.0 INTRODUCTION

Many phenomenons in real world can be characterized as complex adaptive systems (CAS)

Bullock and Cliff [2004], Miller and Page [2007]. We are surrounded with a huge number

of communicating and interacting agents. Some of those agents may be capable of learning

and adapting to new situation, trying to achieve their goals. E-commerce Hao et al. [2010],

social media Kanter [2009], cloud computing Jhawar and Piuri [2013], transportation network

Hulsmann et al. [2009] and real-time ride sharing Amey [2010], supply chain Choi et al. [2001]

are a few examples of CAS. These are the systems which surround us in every day’s life,

and naturally we want to make sense of those systems and optimize systems’ behavior (e.

g. more efficient supply chain) or optimize our behavior around those systems (e.g. avoid

price surge Berkovici [2014]). Given the complexity of these systems, we want to find a set

of simplified patterns out of the seeming chaos of interactions in a CAS, and provide more

manageable means of analysis for such systems.

1.1 DEFINITION OF A COMPLEX ADAPTIVE SYSTEM

Literature sources differ in the exact wording of what to consider as a complex adaptive

system (CAS) Bullock and Cliff [2004], Miller and Page [2007]. Often, the definition for

a CAS is provided through examples of some real-life systems followed by a set of rules or

properties, defining what a CAS is Miller and Page [2007]. Other sources define a CAS as

a complex, self-similar collection of interacting adaptive agents MacLennan [2007], Faucher

et al. [2008], Holland [2006].

This definition of a CAS, which I am using in my thesis, is similar to the definition of

1

a multi-agent system (MAS). What distinguishes a CAS from a MAS is the focus on the

top-level properties of the system, including:

• self-similarity: when an object is exactly or approximately similar to a part of itself

Mandelbrot [1965]

• emergent behavior can be observed when a number of simple entities (agents) operate

in an environment, forming more complex behaviors as a collective. The common char-

acteristics are: radical novelty; coherence or correlation; a global or macro ”level”; it is

the product of a dynamical process Goldstein [1999]

• self-organization Bak [1999] is a process where some form of global order or coordination

arises out of the local interactions between the components of an initially disordered

system. This process is spontaneous: it is not directed or controlled by any agent or

subsystem inside or outside of the system. It is often triggered by random fluctuations

that are amplified by positive feedback. The resulting organization is completely decen-

tralized or distributed over all the components of the system. It is typically very robust

and able to survive and self-repair substantial damage or perturbations.

Instead of trying to analyze the behavior of every individual agent in a multi-agent system, we

are looking for a more simplified analysis of complex, emergent and macroscopic properties

of the system.

Emergence is the way complex systems and patterns arise out of relatively simple interac-

tions between interacting agents. The concept of ”emergence” may generally be subdivided

into ”weak emergence” and ”strong emergence” Clayton and Davies [2008].

We can say that a high-level phenomenon is weakly emergent with respect to a low-level

domain when the high-level phenomenon arises from the low-level domain. It is a type of

emergence in which the emergent property is reducible to its individual constituents.

Strong emergence implies that if systems can have qualities not directly traceable to the

system’s components, but rather to how those components interact. These new qualities are

irreducible to the system’s constituent parts. The whole is greater than the sum of its parts.

The systems can have qualities not directly traceable to the system’s components, but rather

to how those components interact. These system properties are important for CAS analysis.

2

1.2 CAS ANALYSIS: REALITY VS. IDEAL WORLD

In my thesis I consider four example problems from different domains: modeling human

behavior during fire evacuation, detection of notable transitions in data streams, modeling

finite resource sharing on a computational cluster with many clients, and predicting buyer be-

havior on the marketplace. These (and other) seemingly different problems demonstrate one

important similarity: complex semi-repetitive or semi-similar behavior. This semi-repetitive

behavior poses challenges to model and analysis of such processes. These challenges comes

for two major reasons:

• state-space explosion and sparsity of data: when we analyze buyer activity on

the marketplace or resource sharing on a computational cluster between many users, we

are dealing with data, coming from multiple users. Humans do not repeat themselves

precisely. Moreover, they react and adapt to the change in the environment. Thus their

actions may be very similar to what they have been doing before, yet a tiny bit different.

If we want to build a model for a CAS which captures every nuance in their behavior,

we may need to build a very large state-space representation for these problems.

However, as state-space grows, we may experience data sparsity problem, that we do

not have enough data to train the obtained model. From the state-space perspective, we

want to reduce the size of state-space Chen et al. [2008] as much as we can.

• critical transition detection : at the same time, complex dynamic systems demon-

strate transitions between completely different types of the behavior, known as phase

transitions Saitta et al. [2011]. To detect such transitions as soon as possible or to model

these characteristic changes, we want to have very detailed state-space model. Moreover,

CAS tend to be open systems, which allow external factors to play an important role (e.g.

if we model buyer behavior, ideally we want to know how deep a buyer’s pocket is). From

this perspective, we want to gather and put in a model as much information as

possible, and ultimately increase the state-space.

These are contradicting requirements for the analysis. However we want to utilize both of

these properties in a standard methodology for CAS analysis.

3

In	 an	 ideal	 world…	 	

Complete	
observa4ons	

Detailed	
System	 model	

Complex	 	
Decision	 Making	

real-‐world	
CAS	 is	 an	
open	
system	
with	 too	
many	

parameters	

too	 many	 parameters,	
some	 are	 more	
important	 than	
others,	 some	 are	
irrelevant.	 Need	 to	
keep	 the	 model	
reasonably	 simple	

exact	 output,	 based	
on	 all	 input	

informa4on,	 is	 difficult	
to	 make	 –	 subject	 to	

external	 input	
informa4on	 (no	
control	 over	 that)	

Figure 1.1: Decision making for a CAS in ideal world

Probably one of the most obvious methodological schemas for CAS analysis can be

shown as Figure 1.1. In this ideal world we would rely on being able to collect complete

observations from the system, build a pretty detailed system model, and use some sort of

complex decision making (which takes into consideration all system parameters) to come

up with the best result or strategy for system optimization. However, this is an idealized

schema, and in real life we face some of the fundamental problems associated with this

schema:

• CAS quite often is an open system: the system is influenced with a number of factors,

which we cannot observe and / or control. Consider a an example of online shopping.

Each buyer has his own agenda and requirements: budget, item delivery time range, item

selection diversity and quality, etc. We have no means to collect this extra information,

and cannot explicitly include in the model

• Quite often we cannot build a detailed system model. we may have too many system

parameters and not enough training data to learn the model. Thus we have to make

certain assumptions about parameter relationships which we cannot learn and essentially

simplify the model

• Often complex decision making process is not feasible either. This happens because CAS

4

are often a subject to stability issues, when even small changes in one parameter may

have a dominant influence

It seemed at first, that each CAS analysis is a unique task and methods, developed to

analyze one system cannot be applied to analyze another one. However, at the end of my

thesis, when I considered for different examples of CAS, I noticed, that the analysis of these

different systems follows the same methodology, which I present in Section 1.3.

1.2.1 CAS optimization and analysis procedures can resemble a search for a

solution for an NP-hard problem

It is worth mentioning, that some examples of CAS resemble NP-hard problems Arora and

Barak [2009]. However, this similarity was not obvious at the beginning of my research study,

and this was not the premise on what I started my research. For instance, the task of fire

evacuation, which I talk about in Chapter 2, looks very similar to supply-chain optimization

problem Arthur F. Veinott [2005]. It does not resemble one-to-one similarity, of course. We

do not see dedicated producers and consumers, and the routing graphs. However, because

the building has limited capacity, when we try to move people in this environment, we need

to free enough space for them to be able to move. Thus the whole environment resembles

a distributed producer-consumer relationship, with a central consumer (exit). Another

example is the task of resource distribution in a computational cluster between multiple

processes. This task is quite similar to flow shop scheduling problem Varadharajan and

Rajendran [2005]. Again, there are some differences here as well. For instance, the task I

was trying to solve possesses an element of uncertainty, when at completely arbitrary time

we can expect to receive yet another set of interdependent jobs to be executed.

While I mention that some CAS resemble NP-hard problems, my goal is not to provide

a formal proof that these problems are indeed NP-hard, or can be reduced to one of

NP-complete problems. However, there are two implications, emerging from this similarity.

The first implication is that we should not always expect an easy (exact) solution

to the problem of CAS analysis. And instead we might want to consider other alternatives,

like methods to obtain approximate solutions.

5

The second implication is that we can re-use some of the techniques from the NP-

hard problems solutions toolbox. However, it became clear only at the end of my thesis that

I indeed use methods, similar to those used for NP-hard problems solutions. Particularly,

I use relaxation techniques and constraint programming to build simplified patterns or

simplified features. Since we do not need to re-invent the terminology, it is easier just to

refer to the established names.

1.2.2 Agent-based models vs. systems of differential equations for CAS analysis

Before proceeding to the description of the proposed methodology for CAS analysis in Sec-

tion 1.3, it is important to mention agent-based modeling ABM, which can be used for

the same purpose. ABM is a class of computational models for simulating the actions and

interactions of autonomous agents with a view to assessing their effects on the system as a

whole. The goal of ABM is to find explanations and insights about the collective behavior

of a system (emergent properties) which consists of agents following simple rules. The mod-

els simulate the simultaneous operations and interactions of multiple agents, in an attempt

to re-create and predict the appearance of complex phenomenaEpstein and Axtell [1996].

Successful applications of such modeling can be found in different domains, like: economics

Tesfatsion [2002], Axtell [2005], Axelrod [1997], electric power grid analysis Sueyoshi and

Tadiparthi [2008], Macal et al. [2005], Wu et al. [1998], Wehinger [2010], Lamparter et al.

[2010], diseases spread predictionLaroum and Tighiouart [2011] and others.

Interactions between agents form very complex patterns and dynamics. Changing dy-

namics Epstein and Axtell [1996] is a phenomenon which is very difficult to model. And

it requires to capture very complex interactions between agents. This interactions can be

spotted while performing multi-agent simulations.

Alternative methods, based on systems of differential equations, were used to simulate

the development of social systems. For instance, predator-prey model Mehlum et al. [2003]

and Bellman equationMiranda and Fackler [2002] are widely used in economics for a wast va-

riety of purposes, including pricing models, future income, capital gains, taxation, economic

policies and many others. As opposed to multi-agent simulation, systems of differential equa-

6

tions rely on predicting a particular objective assuming known interactions between other

factors.

A natural question is: which method is better? And how can we determine that? The

beauty of agent-based simulation is the simplicity. We assign some basic behavioral param-

eters to each agent (often - the same behavioral model), and let the system run, and we

collect the required observations from the system, as it develops. Even by using simple rules,

multi-agent simulation produces results, very close to real-world observations Epstein and

Axtell [1996]. Sometimes simulation is capable to produce more accurate results Laroum

and Tighiouart [2011] about the dynamics in the system, than the system of differential

equations. Also, simulation can predict very complicated events, like California electricity

crisis in 2000 - 2001 Sueyoshi and Tadiparthi [2008]. From this point, simulation may be

seen as the ultimate solution to the analysis of CAS and multi-agent societies.

However, agent-based simulation produces good results under one condition: the behav-

ior of the agents is correctly modeled. If during the design of agent behavior we do not

capture all important aspects, the multi-agent simulation may produce wrong results. For

instance, Macal et al. [2005] mentions verification procedure as a mandatory step in multi-

agent system design. This assures that the simulated development of a multi-agent system

actually reflects the real system dynamics. Agent behavior model selection actually can be as

complicated as establishing relationship between system parameters for the differential equa-

tions equivalent. For instance, Sueyoshi and Tadiparthi [2008] presents numerical results to

explain fluctuations and spikes in electricity wholesale prices during California crisis in 2001.

Despite the fact, that this approach operates under multi-agent model, individual agent be-

havioral model takes into consideration a long list of equations to modify and parametrize

agent behavior. Wehinger [2010] uses a regression-based approach to tune agents’ behavior,

which implies that we establish the relationship between environmental factors and agent

behavior via the help of equations, very similar to the systems of differential equations.

The corollary of this comparison is: agent-based simulation approach may seem easier

than establishing a system of differential equations to describe the dynamics of the system.

Often we can describe complex phenomenons via simulation using simple agent behavioral

models. Yet, if we care to calibrate and validate a multi-agent model on extreme cases or to

7

use it to model previously unseen behavior, this process requires complex model tuning and

essentially incorporating some external knowledge. This process closely resembles writing

differential equations for agent behavior. Moreover, we cannot always learn every aspect of

agent behavior, just because we are dealing with a huge mix of agents pursuing different

goals. I consider an example of such CAS in Chapter 4.

We cannot advocate that the system of differential equations is better or worse than the

agent-based simulation: it all depends on the application, and the accuracy of the results

which we expect. Differential equations are often used to find equilibrium conditions in the

system development. However, usually this analysis does not include time component: the

assumption is that the system will reach its equilibrium before its major parameters change.

That this is not always true, however: if it takes too long for the system to reach the

equilibrium, and a system parameter change happens before that, we may never observe our

expected result. In Chapter 3 I start with the example, which demonstrates such scenario.

When we use differential equations to describe system dynamics, we may need to establish

the applicability limits, and possibly to augment those equations with additional conditions.

Moreover, for equations we need to define system parameters upfront, and make sure that we

have captured all important behavioral features, which may not always be true. Especially if

we are dealing with a new problem, and there is not much prior research done on the topic.

In this comparison, there is no clear winner. I utilize both approaches in my proposed

method, which I present in the following section.

1.3 RELAXED OPTIMIZATION IN CAS (ROCAS)

Given all the complexity of interactions in CAS, as I mentioned in the previous sections, we

do not want to chase every single trend Chen et al. [2008] in CAS development. Instead, we

would want to utilize the concept of emergence to reduce the complexity of the analysis, and

derive a new set of features, which can better capture the complex behavior and utilized for

optimization of varies processes within the system.

In my thesis I consider examples from four different CAS. After the analysis of these

8

CAS, it was quite surprising to arrive to the conclusion, that the analysis of these systems

can be performed by following exactly the same steps. A visual schema of the approach is

shown in Figure 1.2. I will go over each of the components to provide more details, as well

Local	 sta)s)cs	

Traces	 of	 CAS	
observa)ons	

simple	
	 cost	
model	

Features	
	 +	 	

constraints	
	 +	

relaxa)ons	

Decision	
making	

score	

Figure 1.2: A proposed schema to find approximate solution to CAS

as some common sense reasoning behind them. Since two out of four CAS scenarios resemble

NP-hard problems, I will also provide the equivalence between some of the steps with the

equivalent techniques from the NP-hard problem solution toolbox.

• Local system observations. There are many parameters, which we can measured

from CAS. However, quite often CAS are open systems. If we want to analyze buyer

behavior on the marketplace, we understand that there many input signals, which come

into play, many of which are external ones. In no way we can record every external event

which may be relevant to a buyer’s decision right at this moment: we need to rely on a

smaller observable piece of information. The same is true if we are trying to conclude

if a data stream is experiencing a significant change. We do not really need to record

every data sample from it: it is enough to periodically to record small samples from it,

make summaries from it, and compare, if local stream summaries deviate from other

summaries much.

• Statistics from raw data streams. We want to use the notion of emergence, men-

tioned in the previous section, that certain properties of CAS emerge from the local

9

interactions of its components. Thus, we need to introduce new (derived) features,

which capture the cumulative effect of individual contributions. For this purpose, we

add all sorts of summarization statistics over the raw data streams, together with the

gradients of those statistics. This approach helps to capture stationary properties of

CAS, and properties, which emphasize the change in stationary conditions. This is very

similar to the concept of ”emergent leveling” Wilensky and Resnick [1999] and hierarchy

of patterns Kurzweil [2012].

• System constraints. This component of the analysis comes directly from constraint

programming Arora and Barak [2009] paradigm, and resembles the finite resources inside

of a CAS. For instance, when we consider a scenario of fire evacuation in Chapter 2,

we understand that the building has limited throughput and occupational capacity, and

we can move only finite number of people at any given time. Thus, the evacuation

strategy must take this aspect into account, if we want to move a big group of people

away from the source of fire. When we try to solve the task of optimal resource sharing

on a computational cluster in Chapter 4, we need to understand that when a cluster

is not in use, we can request almost all its resources. However, if the cluster is heavily

used, the amount of the resources provided is a fraction of the requested amount. The

model must incorporate the notion of constraints: we cannot get more than physically

possible.

• Reasonably simple cost model. It is clear, that we can introduce a large number

of derived features, which can help us to analyze and describe different aspects of CAS

behavior. But the challenge we face is to combine all these different signals into one, to

answer certain questions. For instance, in Chapter 3 I show that i need to combine two

different properties of stream components, because only a proper combination of those

two defines a transition. We do care about one event: transition, and we need one score,

which would say, how likely it is to detect a transition. Thus, we can compute statistics

on the input stream separately, and then make a weighted sum of those statistics, to get

a score.

• Detecting notable changes and relaxation. It was shown, for instance, in Miller

and Page [2007], that predicting the exact trajectory of CAS development, is the most

10

difficult task in CAS analysis. And often, we do not need and do not care about the

exact development of the processes in a CAS, and we relax Arora and Barak [2009] the

need for exact process development, and instead pay attention to upper or lower bounds

of the problem. For instance, with the fire evacuation we care only to maximize rescuing

performance, but not to achieve the best possible optimization for the equivalent of

”supply chain” condition inside the building. When we perform optimization of resource

sharing between concurrent jobs on a computational cluster, we do not really care, how

many resources ”shadow jobs” receive, as long as they do not extent the total execution

time. More in detail I describe this issue in Chapter 4. When we analyze online buyer

behavior, we do not care about exact sequence of buyer actions. But we do care, whether

a buyer made a purchase or not, or whether he resumed his item search activity within

the items, he visited in the nearest past.

In Section 1 I mentioned, that we have two conflicting requirements on how detail state-

space we should consider. The list of simplifications techniques, presented in this section,

is targeted to mitigate this conflict. For instance, by applying relaxation principle, we

equivalently reduce the complexity of the state-space model. Yet, by adding a set of system

constraints, we still keep in place the requirement for early detection of critical transitions

in CAS, or to build a better cost model.

1.4 RESEARCH QUESTIONS

The question, which I am trying to answer in my thesis, can be formulated close to ”Where

do we start, and what do we do when we analyze a CAS?”. I am looking for a recipe, which

will be general enough, to be applicable to a variety of CAS analysis scenarios. In Section

1.3 I presented a method, based on relaxed optimization. The applicability of this method

relies on the following questions:

• Question 1: Can we analyze global system properties based on observable local inter-

actions?

11

• Question 2: How to capture behavioral patterns that correspond to notable transitions

in system dynamics?

• Question 3: How to use CAS behavioral patterns to perform relaxed large-scale opti-

mization?

By the end of this thesis I will provide the answers to those questions.

1.5 THESIS OUTLINE

This thesis consists of five chapters, and the results, presented here, were published in Cher-

niak and Zadorozhny [2010] and Cherniak and Zadorozhny [2013], Cherniak et al. [2013] and

Cherniak and Bridgewater [2013]. The first two chapters started as a proof of concept that

indeed using the notion of emergence we can derive features, which can capture the complex

dynamics of a CAS, and reduce the complexity of the state-space. Also I demonstrate a way

how to build a simple cost model, which is sufficient to capture the nature of the processes

inside a CAS. The next two chapters is the extension of these ideas, applied to domains with

very high number of dimensions. Here the concepts of constrained satisfaction and relaxation

are the most articulated. And finally, in the last chapter I present the obtained results from

my proposed work, with the strongest point towards automated feature generation, based on

the concepts of relaxation. Despite the fact, that certain techniques from the optimization

list in Section 1.3 are most clearly demonstrated for specific domain examples, all of those

techniques can be applied to other domains.

The first chapter (Chapter 2) is a case study on how to design an application to assist

people with fire evacuation from the enclosed spaces. Obviously, human dynamics is very

complex during a life-threatening event like fire evacuation, and we cannot model all its

aspects. Yet, it appears, that the complexity of the dynamics can be greatly reduced to

the task of modeling the most critical parts of the evacuation process, like human behavior

very close to fire and very close to the exit. Thus local interactions between people in

those critical ares have the highest impact on the fire evacuation process, and the global

properties in such CAS can be expressed via the individual interactions between the system

12

agents in the critical points. In this example scenario we demonstrate, how we use principles

of locality and relaxation to perform the analysis of a dynamic system. I also show the deign

of a simplified cost model, which helps in decision making.

In the first case study we were able to identify those critical points in the functioning of a

CAS by collecting and analyzing the logs of the interactions between agents. However, what

if we do not have a way to collect the information about local interactions? For instance,

we can measure how flu spreads in the population, but we do not really know precisely

how human interactions lead to the virus spread. So can we detect the change in the flu

spread dynamics only from the total count of causes of flue? Note, that we are looking for

transitions in a CAS which happen very rarely, so we cannot have a substantial history of

those transitions. I explore this problem in the second part of my thesis (Chapter 3). This

problem can also be characterized as ”black swan detection” Taleb [2010]. Like in biology,

we can suspect that black swans exist, but until we get one, we do not really know if it

is true and how exactly it looks like. Similarly, if the transitions happen rarely, this does

not leave much room for statistical learning of these phenomenons. I propose a solution

based on deriving a signature of a transition in a data stream. I obtain this signature by

using the principles of locality, when we decompose the time series into a set of individual

components, and build statistics from these individual components. Then I show, how I

apply a cost function with the tuning parameters to combine different statistics from stream

components into a single score, which helps to identify a transition.

In the third part of my thesis in Chapter 4, I consider a scenario for CAS optimization,

when the number of the optimization parameters is huge. I consider a hadoop cluster with

its resources shared between many users. The major objective for every user is to have his

task to be computed as fast as possible. This typically implies that each user would want to

obtain as many resources as possible for his job(s). Yet, given that many users compete for

finite resources, I discovered that task computation acceleration has a saturation point. A

hadoop cluster has hundreds of tuning parameters and system settings. However, a cluster

is not a deterministic system. Since users submit their tasks, which differ in the input size,

at arbitrary time, it is virtually impossible to capture every single aspect of their behavior.

Here I propose to use the approach based on the notion of strong emergence in a CAS.

13

Strong emergence implies that we observe properties in a CAS, which cannot be attributed

to the individual properties of the components. Instead of concentrating on low-level system

parameters, like CPU load, memory usage, etc, I propose to use higher-order properties

of the cluster as a whole. In this example scenario, I show how locality principle (queue

scheduling, whole cluster resource allocation) and constraint satisfaction (we cannot obtain

more resources than a fixed limit) help to simplify this multi-criterion optimization task. This

approach also provides a substantial performance improvement exactly when its needed the

most: when cluster reaches its maximum resource usage capacity.

In the last part of my proposal, I consider the task of analysis of buyer behavior on eBay

marketplace. This task differs from the previous ones in two ways. At first, it has many

more tuning parameters, than any other task considered in the previous chapters. And at

second, online shoppers have multiple goals. The social component in this task makes us

operate with less defined or less formalized parameters, than what we had in the case of

cluster resource optimization. In Chapter 5 I present the first approach to address the

issue of modeling online buyer behavior. The results of this attempt clearly demonstrate

the importance on relaxation techniques for this task, when we relax the need for precise

modeling. In Chapter 6, I present my second approach to the task of buyer behavior

modeling. This approach utilizes locality of the data stream decomposition, and automated

feature generation with the help of statistics over the local stream components. I show the

benefits of automated feature generation, and show the improvements in the obtained results.

In the next chapter, I start with the first example CAS, maybe a bit of a toy example or

proof-of-concept scenario. I describe the problem domain, and show how some of the CAS

analysis steps from Section 1.3 emerge in this problem, and can be applied to help in the

solution.

14

2.0 ADAPTIVE SENSOR DATA MANAGEMENT FOR DISTRIBUTED

FIRE EVACUATION INFRASTRUCTURE

Aviation industry was probably the first one, which paid attention to the whole complexity

of passenger behavior during an emergency evacuation procedure from a commercial plane.

Partially this happens because we have a mixture of passengers, who differ in age, body

shape, physical and emotional fit. If a less fit person blocks the exit, some people may try to

climb over seats, or be pushed away by others. Often in the most narrow parts of the path,

they would experience extra competition, when physically stronger people pass over weaker

passengers.

We can expect similar competitive behavior in other fire evacuation setups. For instance,

when people leave a subway station or a skyscraper on fire. If we would like to help those

people with evacuation, how should we handle this very complex mixture of behavior? The

solution has to be capable of recognizing different types of behavior and react accordingly in

real time. Otherwise, people would simply ignore it and would rely on their own judgement.

Another challenge is how to make this solution robust. This system has to function even if

being partially damaged by fire, thus it should be fully distributed, and without a central

point of information processing. We also need an algorithm, capable to adapt to the change in

environment. And this change may come not only from the fire spread and human dynamics,

but also from the damages to the system, caused by fire.

CAS description: To address the issue of system survivability, we explored the feasibil-

ity of using wireless sensor networks (WSNs) as the building block to address this problem.

This architecture does not have a central point of failure. Each wireless node was using

the same algorithm, capable of identifying its neighbors, making sense of the environment

from its own measurements combined with the measurements, obtained from the neighbor-

15

ing nodes. Our approach is based on considering the WSN as a complex adaptive system

where decisions made locally by individual sensors can efficiently converge into desirable

information processing patterns. Thus even if the network gets partitioned in the very small

pieces, each of those pieces will perform its functionality.

A problem of fire evacuation optimization is similar to supply-chain optimization. This

happens, because we have physical constraints, one of which is limited space capacity. We

cannot pack unlimited number of people in a limited location. If we want to move people

from one place to another (assuming they follow our suggestions), we need to free enough

space for them prior to make such move. Supply-chain optimization is an NP-hard problem

Arora and Barak [2009], thus we should not expect an easy solution for this problem either.

What we are trying to optimize: There are two major optimization objectives in

this problem:

• evacuate as many people as possible, while causing as minimum health damage as possible

• for those people, who cannot be evacuated (due to limited exit throughput, building

partitioning or others), direct them to the safest area within the building

The distributed nature of a WSN poses a challenge in the form of communication updates and

memory limits. We cannot store the information about the entire network in each wireless

node - it will not fit in tiny sensor memory. Also, we cannot send too many network updates,

because we risk to overload the network, which can lead to delays in communications, buffer

overflow and (potentially critical) message dropping, and premature battery depletion Some

sort of approximation is required to address these problems, which I will be talking in the

next section.

2.1 APPLYING ROCAS SCHEMA TO THE PROBLEM

Some of the solution steps, discussed in Section 1.3 can be applied to the task of fire

evacuation to make it more tractable. And more importantly, some of the bullet points from

that list emerge from this task. Let us go over those points one by one.

16

• Statistics from raw observations. When we look at the problem, the first question

which we get is : what are the features here, how should we describe the process? In

Section 2.3 we start with the exact solution, which assumes that all information is

known about the environment. We show, that this solution is simply not scalable. After

a substantial number of simulations, we observed that only two types of locations inside

the building have the strongest influence on the number of the survivors: very close

to the fire and very close to the exit. Sub-optimality in decision making for people

close to the fire, will cost lives. Less-than-optimal decisions around the exit will slow

down evacuation performance. The rest of the building can tolerate sub-optimalities.

Thus, instead of keeping precise information about the location of fire, exit, and human

density, and perform complex optimization using that information, we can operate with

more simple statistics: (distance to fire ≤ threshold or not; distance to exit ≤ threshold

or not?).

• System constraints one of the constraints in the setup is the throughput: we cannot

evacuate more people, than it is physically possible through the exit for the time, while

the exit is still functioning. This allows us to assess the quality of the evacuation perfor-

mance not as the absolute number of people evacuated through the exit, but as the ratio

of those people we rescued to the theoretical maximum of what we could have possibly

done. The same reasoning goes towards assessing the performance of life time saving for

people who are trapped inside the building. Theoretically you can prolong their lives

only till the moment while the last piece of building is not in fire.

• Relaxation techniques As I mentioned, one of the challenges in distributed fire evac-

uation is the need to maintain updates about the environment and human motion in

this environment. One of the possible solutions to this issue is to spread regular updates

from every sensor in the network. However, this process is very costly: we can flood the

network with messages. Moreover, we do not always need to have the latest updates from

each sensor. As I mentioned before, we have different tolerance to sub-optimal decisions

depending on the distance to fire and exit. Thus, we can divide the environment into

different states, and reason about decision making in all those states. The process of

evacuation becomes more simple: each sensor can detect which state it belongs to using

17

some local observations, and adjust the optimality of its actions, based on pre-assigned

optimality parameters.

Since we can be sub-optimal in states, where we are far from the source of fire, and

from the exit, we can reduce the frequency of network updates in those states, as long as

the total performance does not degrade much. Thus we relax the need for the optimal

decision making, as long as the total performance does not suffer.

• Cost model in a relaxed state-space, mentioned in the previous bullet point, we can

also simplify decision making. Let us consider a couple of constraints, which help to

cover corner cases. If a human is very close to the source of fire, the best decision for this

person is to go as far as he can from the fire. If the person is very close to the exit, then

the best decision is to go right straight to the exit, without any other considerations. For

cases in between, some sort of weighted decision making is expected. We can propose a

pareto-like cost function, which is a weighted sum of combining of two actions: go away

from fire and move towards the exit. And since we can partition the whole space into

different states, we can adjust the weights appropriately for each state

The rest of the chapter is organized as follows. Section 2.2 provides an e-WSN system

model for emergency evacuation. Section 2.3 elaborates on our proposed e-WSN evacuation

strategies. Section 2.4 reports on experimental analysis, demonstrating the efficiency of

our approach. Section 2.5 considers related works, followed by our conclusions in Section

2.6.

18

2.2 BACKGROUND AND SYSTEM MODEL

Each sensor in an e-WSN maintains a system model that supports decision-making for

emergency evacuation. According to this model, the evacuation space is represented as a 2D

space, split into square cells of equal sizes Figure 2.1. In a real situation, those cells can

correspond to actual locations in a building, or simply zones of responsibilities controlled

by sensors. This space is populated with people, and there is at least one source of fire and

at least one exit. People are allowed to move from a current cell to its four non-diagonal

neighboring cells. Every cell has a wireless sensor S in it that monitors condition and controls

evacuation in that cell (denoted cell-S). System time is discreet: one unit is denoted as one

tick. Every sensor S maintains the information required to make evacuation decisions. Part

of this information is received via communications with other sensors in the e-WSN. This

information includes the following items:

• Occupancy – an estimated maximum number of people, which the cell controlled by

sensor S (i.e., cell-S) can accommodate.

• Throughput – an estimated number of people who will be allowed to move from cell-S

within one tick.

• Time to ignite - time required for the cell-S to catch on fire, assuming that one

non-diagonal neighboring cell is completely on fire.

• Hazard time – estimated time before fire reaches cell-S .

• Delay – estimated time which a person needs to leave the building, starting from cell-S ,

or to reach another specific point inside the building.

• Waiting – estimated amount of time a person needs to cross one virtual cell.

It is assumed in the model that each person possesses life level variable. The value of

this variable is initialized with 1. Health impact is caused to people in the vicinity of fire.

Thus every time tick life level is being reduced on delta, which is equal to health impact.

We assume health reduction to be an exponentially decreasing function of hazard time :

fhealth reduction = e−hazard time (2.1)

19

fire

exit

pe
op
le

Figure 2.1: 2Dspace

A person dies, when life level reaches zero. A major objective of the e-WSN is to avoid

reducing life levels as much as possible while evacuating the maximal number of people.

To illustrate this, consider Figure 2(b) which shows a snapshot from simulated fire

evacuation scenario in a building with one source of fire, one exit, 441 cells, and 2205 people

inside. We deliberately set the parameters in a way, that not every person can escape the

building. Details of our simulation environment are explained in Section 2.3. At the

beginning, all people go towards the exit, which is located in the middle of the top border

of the 2D space Figure 2(b). The dynamics of evacuation performance is shown in Figure

2(a). When the exit is available, people can leave the building. At time tick 33, fire reaches

the exit, and no more people can be evacuated. A snapshot of the environment at time tick

#33 is given on Figure 2(b). Red cells correspond to fire; white cells show the location

of people. Starting from that point, the only available option for people is to go away from

fire to the safest place. There are no more exits left in the system. After time tick # 33,

the number of rescued people remains constant and the number of victims increases Figure

2(a).

We use several metrics to estimate the performance of the e-WSN. They include nor-

malized rescuing (NR), life time (LT), and data cost (DC).

Normalized rescuing is the ratio of the number of successfully evacuated people to

the maximum number of people who could have been evacuated before fire reaches the exit,

given in Equation 2.2. The maximum number of people, who could have been evacuated,

20

(a) (b)

Figure 2.2: Simulation dynamics: (a)rescued and dead people over time; (b)[aaaa]a snapshot

of the environment

is equal to the throughput of the exit multiplied by the time before the fire reaches the exit

hazard timeexit. This ratio shows how fast the e-WSN drives people to the exit, avoiding

suboptimal decisions on their way.

NR =
people evaluated

throughputexit ∗ hazard timeexit
(2.2)

Life time shows how well the algorithm helped people who were not able to leave the

building, to stay alive. Life time is the ratio of how long a person stayed alive to the

maximum possible time, which is the time when the last cell caught on fire hazard timemax.

If D is a set of victims, |D| the number of victims, and hazard timei - time, when the i-th

person died, then we express the ratio as Equation 2.3:

LT =

∑
i∈D hazard timei

|D| ∗ hazard timemax
(2.3)

Finally, data cost shows how much information (messages) is exchanged between sensors in

the e-WSN during the evacuation procedure. Higher data cost means higher data processing

overhead, network load and congestion, as well as depleting the sensor’s battery. In Section

2.4, we will provide formal definition of data cost.

Our major objective in this thesis is to show how to minimize data cost while maintaining

the highest possible values of NR and LT. In the next section, we will introduce our adaptive

approach to solve this problem. As a comparison baseline, we also implemented a non-

adaptive technique called information diffusion, which we also consider in the next section.

21

2.3 USING WSN FOR EMERGENCYEVACUATION

2.3.1 Information diffusion

The main idea of the information diffusion InD approach is to lay out the fastest route to

the exit, where the health impact value is below the given threshold. This method assumes

that for the best assessment performance, information about the whole route, or a significant

portion of it, should be available to a sensor for decision-making. This information is a part

of the global knowledge that should be maintained by the e-WSN. The InD method uses

health reduction function as defined in Equation 2.1, which shows how the proximity to the

fire impacts life level. It is obvious that keeping complete information about each possible

evacuation route for each sensor in an e-WSN does not scale. This is why InD maintains

the information about the limited number points, which have the most significant impact

on human life over a chosen route – so-called critical points. It defines health reduction in a

critical point as defined in Equation 2.4:

health reduction = fthreat(hazard time− delay − waiting) (2.4)

It means that, in light of current knowledge, fire will reach a critical point in hazard time

ticks; from a person’s current location, it will take delay ticks to reach that critical point.

A person will spend waiting ticks in the cell, crossing it; thus, he will stay in a cell until

t = hazard time − delay − waiting ticks remain before fire reaches the cell. Algorithm

1 outlines the InD algorithm with line-by-line explanations. The explanations refer to

an example of a fire evacuation route with three critical points as shown in Figure 2.3.

Because of the brevity of the algorithm schema, here we add some explanations to it:

• for the exit node, we set delay = 0, because if someone is in exit cell, he does not need

any extra time to reach this cell. Send this tuple to all neighbor sensors (in our case to

S1)

• when we generate own tuple {hazard time, delay, waiting}, we start with the updates

from the neighboring nodes, and add local information. Whatever time was needed to

reach a particular critical point, a person will need more time, because he needs to cross

22

input : sensor neighbors,

output: (hazard time, delay, waiting) tuple for each sensor

begin

1: for exit node: set (hazard timeexit, 0, waitingexit)

foreach sensor ← network do

1: receive {hazard time, delay, waiting} from neighbors

2: set delaynew = delayold + waitingown.

if the number of tuples in the message is less than the maximal then
1: add own tuple to the message

else
1: compute health reduction value for all the tuples in the message

2: find the lowest health reduction value

if found value bigger than own health reduction then
do nothing

else
replace the tuple, which corresponds to this lowest value, with the local

tuple.

end

end

end

end

Algorithm 1: Information diffusion procedure

the current cell. Following the example, S1 after modification of the received tuple, will

obtain: {hazard timeexit, waitingS1, waitingexit}

• In the example, S1 will add its own tuple, and this is what will be in the result:

{{hazard timeexit, waitingS1, waitingexit},{hazardtimeS1, 0, waitingS1}}

• This is what will happen on S2, when it receives a message from S1. Having assumed,

that there may be maximum 2 tuples in a message, S2 has to verify, which health

reduction (hr) is the lowest: hr(Sexit), hr(S1), hr(S 2) . In our example, hr(Sexit)is

the lowest, because Sexit is much further away from fire, that S1, S2, S3. Then, S2 will

23

Figure 2.3: Critical points

replace that tuple with its own record. After modification, the message on S2 will be

{{hazard timeS1, waitingS2, waitingS1}, {hazard timeS2, 0, waitingS2}}

For the best route selection, a sensor computes the health reduction value for all of its

neighboring cells, and sorts out those with total health reduction >=1. If the resulting set

is not empty, it selects the fastest route from the elements in that set. Otherwise, it selects a

sensor with the highest value of hazard time as the successor and navigates people towards

that cell. This sensor will not send any message to its neighbors, because there is no safe

route to the exit, according to the current status.

2.3.2 Adaptive State/Action Strategy

In contrast to the information diffusion approach, the state/action method does not require

any global information: all of the actions will be taken based on the local state of a sensor

and its direct neighbors. In a state-action algorithm, the whole set of sensors is partitioned

into a finite number of states as in Figure 2.4 and Table 2.1.

A sensor takes those actions, which were assigned to execute in its current state. To

justify the state selection in Figure 2.4, consider how the influence of the fire depends on

the distance between a person and fire. Fire tends to behave stochastically with spikes in

spreading. Assuming that spread of the fire follows a log-normal distribution, Figure 2.5

shows the probability for a person to be caught by the fire in the next time tick as a function

of distance to fire.

24

Figure 2.4: State-action visualized

Table 2.1: States definitions and transitions

State Definition Transitions

S1 0 ≤ hazardtime ≤ HT, delayexit ≥ DT S1→ S2, S3, S5

S2 hazardtime ≥ HT, delayexit ≥ DT S2→ S1, S3

S3 delayexit ≤ DT S3→ S1, S2, S4

S4 hazardtime ≤ 0 S4→ x

S5 delayexit = 0 S5→ x

The plot can be separated into two parts: one with steep slopes and one with more

graceful slopes. A suboptimal decision in the steep-slope zone may result in a notable

increase of the probability to be captured by the fire. Meanwhile, the graceful-slope zone is

much less sensitive to suboptimal decisions. Thus, in the vicinity of the fire, it seems to be a

good strategy to go further from the fire and then head towards the exit. In terms of the state

diagram in Figure 2.4, such behavior would be desirable in state S1. The density of people

near the exit is expected to be one of the highest in the building. Thus, any suboptimal

decisions such as overreacting to fire dynamics when the fire is far away will severely reduce

the evacuation performance. A good strategy here would be to be more persistent in the

decision to go to the exit. In Figure 2.4, this corresponds to state S3. People who are far

from both the fire and the exit would be willing to consider both the distance to the exit

and to the fire in their decision-making. During the evacuation process, sensors may change

25

Figure 2.5: Effect of suboptimal decisions

their states, as defined formally in Table 2.1. Here HT stands for hazard time threshold,

and DT for distance to exit threshold.

Thus, if a sensor assigns itself to a specific state, this state may change; however, because

of the environmental constraints, not every state transition is possible. For example, the

system can only transit from S2 to S5 via S1, not directly. Feasible state transitions are

shown in Table 2.1.

Every sensor uses local information to assess its state and to perform a set of actions.

In general, the primary task of a successful evacuation is to take action in order to simul-

taneously increase hazard time and decrease delay to exit. However, in many cases it is

impossible to choose a neighboring cell which satisfies both conditions. This is why each

sensor uses Pareto-optimality criteria by weighting both the change in hazard time and de-

lay values, while choosing the neighboring cell to direct the evacuation. Namely, each sensor

estimates a successor cell as follows:

successor = argmaxSi[α ∗∆hazard time+ β ∗∆delay] (2.5)

where ∆hazard time = hazard timeown − hazard timeSi, ∆delay = delaySi − delayown

and Si - direct neighboring sensors. A Pareto-optimal policy for individual sensor decision-

making would correspond to a pair of coefficients {α, β} for each state.

26

2.4 EXPERIMENTAL RESULTS

We performed experiments using the Netlogo simulator for complex adaptive systems Netl-

ogo. The evacuation space is set as in 2: it is a square area with 21*21 cells and 2205 people

inside. We set one source of fire in the middle of the left edge, and the exit is in the middle

of the top edge. All measurements are averaged over 10 different ignition time setups per

fire pattern. Time to ignite parameters are initialized with values taken from the log-normal

distribution LogN(µ, σ).

2.4.1 Reduced information updates

Reductions in the number of updates in different states may change rescuing performance,

life time, and data cost. Our intention is to reduce the number of update messages, while

keeping NR and LT performance at, or above those information diffusion characteristics.

With the reduction in update frequency, sensors will use obsolete information for decision

making, thus providing people with suboptimal routes. As we discussed earlier, suboptimal

decisions in sensors, which are remote from the fire and the exit (state S2), are expected

to hurt little the system performance. Meanwhile, reduced update frequency for sensors in

the vicinity of the fire (state S1) and the exit area (state S3) is expected to severely reduce

the scores of NR and LT. Figure 2.6 shows how performance depends on different update

strategies: when update reduction is applied only to state S2, or to all states (S1, S2, and

S3). Setup parameters for this set of tests were taken as the Pareto optimal values for

rescuing and life time performance plots in Figure ??, while weighting NR and LT equally

important.

For deterministic fire scenario, rescuing performance does not change with a decrease

in frequency of updates in only S2. However, it decreases when the interval between updates

increases for states S1, S2 and S3. This means, that even if update reduction makes people

go in suboptimal way from the area of state S2 to state S3, there are still enough people

near the exit area. Frequent updates in state S3 help to navigate enough people to the exit,

regardless of the supply from S2.

27

0 20 40 60 80
0.94

0.96

0.98

1

update interval

NR(2)

NR(1,2,3)

NR(InD)

(a)

0 20 40 60 80
0.65

0.7

0.75

0.8

0.85

update interval

NR(2)

NR(1,2,3)

NR(InD)

(b)

0 20 40 60 80
0.65

0.675

0.7

0.725

0.75

update interval

NR(2)

NR(1,2,3)

NR(InD)

(c)

0 20 40 60 80
0.7

0.75

0.8

0.85

update interval

LT(2)

LT(1,2,3)

LT(InD)

(d)

0 20 40 60 80
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

update interval

LT(2)

LT(1,2,3)

LT(InD)

(e)

0 20 40 60 80
0.14

0.15

0.16

0.17

0.18

0.19

update interval

LT(2)

LT(1,2,3)

LT(InD)

(f)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

update interval

DC(2)

DC(1,2,3)

DC(InD)

(g)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

update interval

DC(2)

DC(1,2,3)

DC(InD)

(h)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

update interval

DC(2)

DC(1,2,3)

DC(InD)

(i)

Figure 2.6: The effect of the reduced information updates: in state S2, all states S1, S2, S3,

and global knowledge scenario, InD. As a reminder, NR - normalized rescuing performance,

LT - life expectancy of the population, DC - network communication cost. Deterministic

fire (DF), moderately stochastic (MSF)- , highly stochastic (HSF) (a) NR for DF (b) NR

for MSF (c) NR for HSF (d) LT for DF (e) LT for MSF (f) LT for HSF (g) DC for DF (h)

DC for MSF (i) DC for HSF

The situation changes when the fire is moderately stochastic and highly stochas-

tic. With the reduction in the number of updates, rescuing performance even increases for

28

certain update frequencies for both strategies. We may conclude that frequent updates are

not always beneficial for rescuing performance. When the update interval keeps increasing,

the performance decreases. However, rescuing performance is higher when the update re-

duction applies only to state S2. This confirms our hypothesis about the lack of tolerance of

suboptimal decisions in the areas with the highest density of people. The algorithm, in order

to provide the best rescuing performance, should react quickly to the changing environment.

Update reduction influences life time performance as well. For a deterministic fire, life

time achieves its local maximum at interval = 3 ticks, and gradually decreases for update

reduction in S2. For update reduction in all states: S1, S2 and S3, it sharply goes down even

for slight decrease in frequency of updates. The same tendency is observed for moderately

and highly stochastic fires. Life time performance records for update reduction in all three

states are significantly below the corresponding records for update reductions for state S2

only.

There are two major reasons for this type of behavior. First, the data dissemination

process is rather simple. It assumes that the time required for a fire to reach a certain place

is proportional to the distance between fire and the cell. Meanwhile, that is not always true.

If a cell has n neighbors on fire, the resulting time for this cell to become on fire will be less

than the average speed of fire. That is why frequent updates help to adjust the difference

between what was assumed and what is actually happening in the system. The second reason

is the stochastic behavior of fire. If a fire spike happens while there are no updates in the

system, the information about hazard time becomes obsolete. Thus, there are sensors which

still believe that they should remain in state S2 ; however, they should have changed their

state to S1 and adjust their strategy for decision-making. This lack of information reduces

life time. This also confirms the higher importance of information updates in the vicinity to

fire.

For reduced information updates in S2 only, data cost falls below what the information

diffusion has for deterministic and moderately stochastic fire. Meanwhile, rescuing and life

time performance are maintained at the same or better level. This is not true for a highly

stochastic fire. Here, the total number of message exchanges is slightly higher than for

information diffusion, and life time has a 0.5 % higher value, which could be treated as

29

roughly equal. Information cost for updates in all three states is significantly below the

needs for information diffusion and updates in S2 only.

The explanation for this result lies in the communication schema. When the update

interval is big enough, the only information being sent in the reduced number of updates

in states S1, S2, and S3, are the measurements for the average speed calculation in the

fire front area. If updates are reduced in state S2 only, then in states S1 and S3 updates

are performed at every time tick, which requires sending more data. As shown in 13, for

deterministic and moderately stochastic fires, the total area of states S1 and S3 remain the

same. For highly stochastic fires, the total area of S1 and S3 increases, and this results in

an increase in the number of communications.

2.4.2 Emergent behavior and multi-factor systems

The pattern of behavior during fire evacuation is formed by multiple factors: local and global.

The main global factor is impacted by a producer-consumer paradigm, while the main local

one is a micro-crowd formation. Global behavior emerges from the local patterns. In the

building, sensors lay out routes to common destinations, such as the exit or the safest place.

The form of the route depends on multiple factors; among them, the location of hazards and

crowdedness of the environment. Following the local optimality criteria for route formation,

the resulting route from a specific part of the building may be narrow or wide. When the

route is wide, the interactions between humans are minimal on the way to the destination;

thus, they do not obscure the route from each other. On the contrary, when the optimal

route is narrow, then people have to compete for it because, in most cases, we can expect that

every cell of the route will be totally occupied. This is the mechanism of micro-crowd

formation.

Frequent updates about current cell delays perform a sort of load balancing by sending

people via a wider route, and mitigating the effect of local crowds, as shown in Figure 2.7.

Thus, frequency of updates changes the speed of human flow in the system.

Frequent updates, re-routing, and micro-crowd formation pose a challenge for state-space

model, when we have transitions between very similar states. As a result, when we aggregate

30

a b

Figure 2.7: Micro crowd formation

state-space in a way, that same type of the behavior corresponds to the same state (our 5-

state model), we reduce the complexity of the model.

2.5 RELATED WORK

Researchers have been developing intelligent cost-based strategies for optimizing the data

delivery in sensor networks Zheng et al. [2003], Schurgers et al. [2002], Ye et al. [2002], Chen

et al. [2002]. In Zheng and Kravets [2003], the authors proposed a cross-layer design for

power management that utilized knowledge about the route set-up and packet forwarding.

In-network aggregation has also been proposed to save energy by reducing the amount of

communications at the expense of extra computation Madden et al. [2002], Younis et al.

[2002]. TAG Madden et al. [2002] and Cougar Yao and Gehrke [2002] generate query routing

trees similar to relevant work in DTA Zadorozhny et al. [2004]. TiNA Sharaf et al. [2003] is a

middleware layer sitting on top of either TAG or Cougar. TiNA employs query semantics (in

particular, Quality of Data) and can reduce energy consumption significantly by eliminating

redundant transmissions. Prior work in the area of fire evacuation is considerable. The

following references are those closely related to the current work.

The FIREGRID project Berry et al. [2005] and Lim et al. [2007] uses real-time data on

hazard spread, obtained from a wireless sensor network (WSN), to generate an emergency

response scenario. One important weakness of these methods is centralization: data is being

31

processed on a computer directly connected to the WSN. In case of network partitioning,

these solutions will not be able to do their job.

The next group of algorithms: Tseng et al. [2006], Pan et al. [2006], Gosalia et al. [2004],

Tsunemine et al. [2008], Barnes et al. [2007], and Christakos [2006] establish the core of

distributed algorithms for WSNs to assist in disaster evacuation. They lay routes towards

evacuation exits, taking into consideration actual fire spread. In addition, Barnes et al.

[2007] proposes to predict the dynamics of fire by gathering information from detectors and

substituting measured data into the fire spread model. On the contrary, Tsunemine et al.

[2008] proposes to monitor the behavior of people to map evacuation routes as safe ones.

Mentioned algorithms provide a strategy for evacuation from a building, valid for a single

person. Lu et al. [2005] was the first attempt to construct a bridge between computationally

expensive optimal methods and naive heuristics by introducing capacity constraints on the

routes. It aimed to efficiently generate evacuation scenarios which consider the mutual

influence of people. At its heart is the principle of deterministic evacuation: people who

are closer to the exit will leave the building earlier; thus, they will introduce delays which

other people will face. The main argument against this approach is determinism in behavior:

usually people behave non-deterministically, which may be critical at some point and which

will require constant route recalculation. The second important point is the absence of fire

or any other source of hazard in the model: it does not predict how the optimal schedule

should be modified in the presence of a threat.

To the best of our knowledge, none of these algorithms address the issue of having none

of exits available for evacuation: every method assumes that people will successfully leave

the building. Also proposed are data dissemination schemes such as SPIN Heinzelman et al.

[1999] which uses flooding; gradient-based Directed Diffusion Estrin et al. [1999]; clustering-

based LEACH Heinzelman et al. [2000], and GAF Xu et al. [2001]. Wave scheduling Trigoni

et al. [2004] minimizes packet collisions by carefully scheduling the sensor nodes. It results

in energy savings at the expense of increased message latency. Synopsis Diffusion Nath et al.

[2004] proposes a multi-path routing scheme, which is more robust than tree-based TAG and

avoids message double-counting.

32

2.6 LESSONS LEARNED

In this chapter we demonstrated how our method efficiently applies to improve the utility

of WSNs for fire evacuation. We showed that ROCAS Section 1.3 approach considerably

reduces the amount of delivered sensor data without compromising the stringent application

requirements.

However, can we apply this method to other problems? For instance, what if we want

to design an algorithm to detect a notable transition in a CAS, when we do not know how

exactly this transition will look like? And the only piece of information we know is that

this change will separate two distinct system behaviors, and that transitions do not repeat

themselves in their exact shape. Let us consider an example time series in Figure 2.8,

referenced in Beutel et al. [2012]. This plot shows the relative popularity of Web browsers’

usage over the course of nine years. We observe, that typically this popularity does not

change dramatically, except of two: Firefox and Chrome.

The competition between those two started in 2008, when Chrome was introduced. We

observe the dramatic change, when Google Chrome, from being the least popular (and the

newest) browser, and gradually suppressed its rival Firefox. As we look back in history,

there is not much which we can learn to predict this sort of mutual dynamics. From the

available data, we know that this process can happen, like it happen for Firefox in from April

2004 to Jan 2005, Figure 2.8, but the dynamics of this process was completely different

then for Firefox vs Chrome. Back in 2004, browsers used different versions of DOM model

W3C, and the same browser would appear differently in different browsers. Because of this

problem, Firefox became a solution, because it started to fully support and follow the W3C

standard. In 2009, the change was initiated not with the browser ability to display a web

page, but design issues, speed, extra capabilities, and just loyalty to google products. Thus

this transition is not repeatable, and cannot be learned from the data. We known changes

like this can happen, but we do not know how exactly they will happen.

Another example of this non-repeatability can be observed on the stock market trends,

e.g. in Figure 2.9 for Google and Apple. From the beginning, the business models of

those two companies were different, and there stock market price per share had different

33

Apr−2004 Jan−2006 Nov−2007 Sep−2009 Jul−2011 May−2013
0

10

20

30

40

50

60

70

80

90

100

time

re
qu

es
ts

, %

firefox
chrome
explorer
opera
safari

Figure 2.8: Browser usage popularity over time from Google Trends

dynamics. We obviously can see the impact of the global crisis of 2008 on both companies.

But beyond that, not much can be said about their mutual evolution. Except, if we zoom in

the last six-month period, as shown in Figure 2.10, we observe something, which has never

happened before. Different analysts use different terms to describe the effect: Google’s rise

is a mirror to Apple’s decline BBC or ”Apple and Google stock prices in 2013

look like a zero sum game” Bloomberg. This happened because two companies became

competitors in the same segments, which was not the case before.

To generalize the objective, we would like to design an algorithm to recognize a practically

non-repeatable changes in a CAS behavior (aka a black swan Taleb [2010]). Non-repeatability

and rareness of the events of our interest makes it difficult to apply statistical learning of

these phenomenons. One of the difficulties is that we are looking for extrapolation of the

34

1984 1987 1990 1993 1996 1999 2001 2004 2007 2010 2013
0

100

200

300

400

500

600

700

800

900

time

st
oc

k
pr

ic
e,

 $

Google
Apple

Figure 2.9: Stock market trends: Google vs Apple. From http://finance.yahoo.com

process: we do not know for how long the same type of trend will persist. We know that

at some point the trend will change, but when? Moreover, we are not interested to detect

an event, which has already happened (epidemics reached its maximum AND went down).

We want to be able to say that the trend will go down a few steps BEFORE it went down.

We need to derive a sort of locality property of the change in the dynamics of the process.

Is it possible to say, that a notable transition will happen, as we get closer to the transition

but before it actually happens? Is there a system coherence before a transition, and can

we detect this coherence? Thus, instead of predicting the transition we can detect it on the

early stage, before it becomes obvious.

In the next section I derive a signature behavior of a transition in a process. I derive

this signature using the principles of ”emergent leveling” and hierarchy of patterns, when

35

Aug−2012 Oct−2012 Dec−2012 Jan−2013 Mar−2013 May−2013
300

400

500

600

700

800

900

time

st
oc

k
pr

ice
, $

Google
Apple

Figure 2.10: Stock market trends: Google vs Apple (rivalry)

we decompose the time series into a set of patterns of different level of hierarchy and look

at the properties of the obtained hierarchy. As we do not know how a transition should look

in general, it is not clear how pattern hierarchy should look for a transition. Essentially

we will find it when we see it. Thus, I employ the principle of emergence into the pattern

detection. Since a transition in a process is a coherent behavior, I introduce the coherency

measure into the transition detection, and compute the coherency in behavior in the pattern

hierarchy. Thus, using the principles of emergent behavior and hierarchy of patterns, i derive

a simplified set of rules of how to detect a transition, when we do not know a-priori what

kind of transition to expect.

36

3.0 DETECTING NOTABLE TRANSITIONS IN NUMERICAL DATA

STREAMS

A major challenge in large-scale process monitoring is to recognize significant transitions

in the process conditions and to distinguish them from random fluctuations that do not

produce a notable change in the process dynamics. Such transitions should be recognized at

the early stages of their development using a minimal “snapshot” of the observable process

log. We developed a novel approach to detect notable transitions based on analysis of

coherent behavior of frequency components in the process log (coherency portraits). We

have found that notable transitions in the process dynamics are characterized by unique

coherency portraits, which are also invariant with respect to random process fluctuations.

Our experimental study demonstrates significant efficiency of our approach as compared to

traditional change detection techniques.

3.1 INTRODUCTION

Large-scale process monitoring requires continuous assessment of the stability of that process.

Examples vary from detection of developing epidemics in disease dynamics to real-time

structural health monitoring. The ultimate goal here is to recognize major transitions in the

process conditions and to distinguish them from random fluctuations that do not produce a

notable change in the process dynamics. It is desirable to recognize such transitions at early

stages of their development using a minimal “snapshot” of the observable process log.

If there is a system model of the process, then the task of detecting notable transitions

becomes relatively straightforward. However, in many real-life scenarios, obtaining an ade-

37

quate process model is not realistic due to the complexity of the observable phenomena. In

such cases, the process log itself could be used to identify notable process transitions. At

their initial stages, such transitions can be obscured by the massive amount of noisy mea-

surements and often become obvious only when it is too late. In many cases, post-fact-um

transition detection of notable changes in process dynamics is straightforward. However, it

is not a trivial task to detect such changes in real-time when only a small part of the process

log is available.

Our major contribution in this work is a novel approach to notable transition detection

based on analysis of coherent behavior of frequency components in the process log (coherency

portraits). We assume that the process log consists of various numeric parameters recorded

periodically according to a process monitoring policy. We formalize our task as a problem

of transition detection in time series. We have found that notable transitions in the process

dynamics are characterized by unique coherency portraits, which are also invariant with

respect to the random process fluctuations. In this work, we consider data streams consisting

of a mixture of stable zones and transitions. We are especially interested in those data

streams for which the process behavior at the initial stage of the transition is similar to

a process fluctuation in a stable zone. As an example, consider the sample time series in

Figure 1(a) and Figure 1(b) that were generated using a virus propagation model from

Prakash et al. [2010], which we briefly explain below.

Assume that there is a network of randomly-connected computers; some of those nodes

are infected with a virus. If two nodes are connected and one of them is infected, the virus

will spread to the other computer with a probability of β. Each infected computer will be

disinfected with the probability of δ. If we initially infect a few computers and leave the

network unattended, at some point in time the number of infected computers will stabilize.

For our example, we will distinguish between two states: epidemy, when the majority of nodes

become infected, and healthy state, when the number of infected nodes drops exponentially

over time.

We generated Figure 1(a) and Figure 1(b) by counting the number of infected com-

puters over time with “days” followed by “nights” (separated with vertical red lines). We

tuned the model parameters in such a way that epidemy develops during the “day” time,

38

✵ ✺✵✵ ✶✵✵✵ ✶✺✵✵ ✷✵✵✵
✵

✶✵

✷✵

✸✵

✹✵

✺✵

(a)

✵ ✺✵✵ ✶✵✵✵ ✶✺✵✵ ✷✵✵✵
✵

✶✵

✷✵

✸✵

✹✵

✺✵

(b)

Figure 3.1: Process dynamics with transitions: (a) rapid transition; (b) slow transition

while healing occurs at night. We considered two distinct scenarios reflected in Figure 1(b)

and in Figure 1(a). In time series shown in Figure 1(b) transitions do not develop as

rapidly as in Figure 1(a). They can also halt at early stages and do not result in notable

changes.

Both data streams in Figure 1(a) and Figure 1(b) demonstrate volatile behavior with

notable transitions between different stable states and outliers. Since in this example we

generated the data stream using an a priori process model, we can easily distinguish notable

transitions from outliers. Meanwhile, recognizing this difference in observable data stream

is challenging. As the process switches between epidemy and healing, the data stream does

not immediately reflect that change. For example, in Figure 1(b) a transition started at

time x = 200; however, the waveform does not show clear visual signs of the transition until

approximately x = 300. A piece of the time series in x ∈ [200..300] can be treated as local

outliers. Meanwhile, the process dynamics changed significantly at time x = 200.

In this chapter, we propose an approach to detect notable transitions at early stages of

their development. We show, that we can detect the onset of the transition earlier than

the traditional techniques. At the heart of this approach, is the assumption that the mutual

39

alignment of the stream components are more informative in predicting a transition than the

shape of the stream itself. For instance, a transition can happen, when stream components,

without changing in their amplitudes, come out of phase synchronization.

CAS description: we apply a bunch of band-pass filters to the data stream and obtain

series of harmonic signals, and trying to understand the order from the chaos of mutual

alignment of those components.

What we are trying to optimize: our working hypothesis is that the mutual align-

ment of the components is the key to detect the onset of the transitions. However, we do

understand that this alignment can be arbitrary complex. We are looking to derive a model,

which will allow us to reduce the dimensionality of the problem (mutual alignment), and

tune the parameters in the way, that we can detect the transition at the earliest stage.

We begin the description with how ROCAS techniques from Section 1.3 can be applied

for the task of notable transition detection.

3.2 APPLYING ROCAS SCHEMA TO THE PROBLEM

In this section, I will show how ROCAS schema from Chapter 1.3 can be applied for this

task.

• Statistics from raw data stream: we work under the assumption, that mutual com-

ponent alignment can help detect transitions. Thus, we apply bandpass filtering to the

input data stream to single out individual harmonic components. Then we locate local

extrema on these components, and draw epsilon-areas around those extrema locations.

This input transformation helps with the following analysis.

• Local observations: following the assumption, we are looking for the mutual align-

ment of stream components. After the stream transformation into epsilon-areas, we are

looking at the mutual coverage of those areas, or coherency portrait, as we call it later

in the chapter. If this epsilon-area is very small, we may not see any overlap between

components. If we keep epsilon-area too wide, we will observe arbitrary complex cov-

erage between different components. More importantly, as we increase the epsilon-area,

40

we may loose the locality information: we may start combining alignment of extrema,

which are not related. Running a bit ahead of time, Figure 3(a) shows that exterma

overlap resembles curves. We want to keep epsilon-interval big enough to have mean-

ingful overlap, but small enough, to make sure obtained curves do not branch into more

complex structures. In Figure 3(a), extrema overlap resembles smooth curves around

the transition, and noise-like structures outside the transition. We have to make sure

that we preserve locality when combine stream components, and do not mix unrelated

component coverage together.

• System constraints : we do understand, that the shape of the component alignment

can be very complex, and we want to derive some simplified model to deal with this

complexity. At the core idea, that if we are to detect a transition, our method surely has

to detect the abrupt change. Thus, we present a few abrupt transitions to the method,

and record the most distinct features in the coherency portrait around the transition and

away from the transition. And then present less abrupt transitions, and record, which

features have changed the least, and use those as the signature.

• Reasonably simple cost model: As we observed in Figure 3(a), and later proved

in Appendix A, coherency portrait around transitions resemble smooth curves. To

combine ”smooth” and ”curvy” properties of the portrait, we proposed a score function,

which is a weighted sum of two components, which individually describe both attributes.

We showed, that such score function is sufficient to perform detection of a transition.

41

3.3 RELATED WORK

The ideal method for change / transition detection should notice the transition as early as

possible (having as few data points sampled from the transition area as possible). At the

same time, it should demonstrate high efficiency: if the method indicates that the transition

has started it should be confident about it. We will analyze existing methods from the point

of view of those requirements, comparing them to our proposed method.

It is a well-known fact that frequency components of a signal posses higher energy at steep

signal transitions. In general, Parseval’s theorem Weisstein [d] establishes energy equivalence

calculated for a data stream x(t) and its Fourier Transform X(f) Oppenheim and Schafer

[2009]. Specific dynamics near sharp transitions in a signal is reflected in ringing artifacts and

Gibbs phenomenon as an ”overshoot” in the convergence of the partial sums of certain Fourier

series in the neighborhood of a a signal discontinuity Weisstein [b]. In principle, we could

use a frequency energy diagram to recognize abrupt transitions in a time-series. In order

to obtain such diagram, we could use either Discrete Fourier Transform (DFT) Oppenheim

and Schafer [2009] or the family of wavelet transforms Chui [1992]. An implementation of

the latter approach, though in a different context, is reported in Prakash et al. [2009]. The

authors used Haar wavelet transform to develop an automated Border Gateway Protocol

(BGP) update analysis tool based on scalograms. The scalograms plot the absolute values

of the wavelet coefficients in the scale-space domain. The high-energy areas on a scalogram

are reported as dark ”funnel” (or inverted ”tornado”) shapes corresponding to spikes in the

original time-series (e.g., BGP updates). Figure 2(c) shows a scalogram corresponding to

a time-series with a steep transition Figure 2(a). The vertical axis is scale, with coarser

scales corresponding to higher frequencies at the top. We observe two dark tornadoes on the

scalogram that correspond to the transition area. The figure also reveals a cumulative energy

plot Figure 2(e) corresponding to the scalogram with two distinct energy spikes reflecting

the signal transition. In general, this approach does not work well for smoother transitions

(e.g. Figure 2(b). The corresponding scalogram in Figure 2(d) becomes fuzzier and the

cumulative energy plot Figure 2(f) cannot be used as a transition pattern anymore.

Another group of methods employs machine-learning techniques to build a process

42

✵ ✶✵✵✵ ✷✵✵✵ ✸✵✵✵ ✹✵✵✵
✲✹✵

✲✷✵

✵

✷✵

✹✵

t�✁✂

②
✄☎
✆

(a)

✵ ✶✵✵✵ ✷✵✵✵ ✸✵✵✵ ✹✵✵✵
✲✷✵

✵

✷✵

✹✵

t�✁✂

②
✄②
☎

(b)

t�✁✂

✈
✄
☎
✆
✝✆
✞
✝✆
✈
✆
✝

✶✟✟✟ ✷✟✟✟ ✸✟✟✟ ✹✟✟✟

✷

✹

✻

(c)

t�✁✂

✇
✄
☎
✆
✝✆
✞
✝✆
☎
✆
✝

✶✟✟✟ ✷✟✟✟ ✸✟✟✟ ✹✟✟✟

✷

✹

✻

(d)

✵ ✶✵✵✵ ✷✵✵✵ ✸✵✵✵ ✹✵✵✵
✵

✵�✁

✶

✶�✁

✷

t✂✄☎

❛
✆
✆
✝
✞
✝
✟❛
✠✡
☛
✡
☞
✡
✌✍
✎

(e)

✵ ✶✵✵✵ ✷✵✵✵ ✸✵✵✵ ✹✵✵✵
✵

✵�✷

✵�✹

✵�✁

✵�✂

t✄☎✆

❛
✝
✝
✞
✟
✞
✠❛
✡☛
☞
☛
✌
☛
✍✎
✏

(f)

Figure 3.2: Energy-based vs signature transition detection (a) steep signal (b) smooth signal

(c) scalogram for steep signal (d) scalogram for smooth signal (e) steep signal energy plot

(f) smooth signal energy plot

model from the observed data streams. We can group them in the following categories:

Global models : Gu and Wang [2009], Chen et al. [2008], Wang et al. [2011], Borges and

Levene [2007]. Global models are trained on data samples large enough to be representatives

for the whole process. Assuming that new streams are generated from the same process, the

43

obtained model can be used to detect or predict a transition. However, these methods fails

when the model is not trained on all possible observations Xiang et al. [2010], which reduce

their applicability. For instance, while building a model for a D.O.S. attack on a production

computational clusters, like in Chen et al. [2008], we cannot guarantee that all possible

scenarios have been observed.

Pattern mining. Pattern mining methods utilize sequential patterns in data streams

Bayardo [1998], Han et al. [2000], Chiu et al. [2003], Chandramouli et al. [2010], Agrawal

et al. [2008], Floratou et al. [2011] associated with a transition. We can index time series

with and without transitions and store them in a database. Detecting a transition in a data

stream becomes a task to find similar time series in the database Faloutsos et al. [1997],

Fu et al. [2008], Perng et al. [2000], Keogh [2002]. Thus, transition detection applies event

stream processing methods Wu et al. [2006] to find a particular sequence of events associated

with a transition (transition signature).

Short-term or local models Wang et al. [2003], Yang et al. [2005], Severo and Gama

[2010], Krishnamurthy et al. [2003], Bifet and Gavalda [2007]. These methods sample se-

quential blocks of data from the stream to build process models and use the obtained models

to predict the process behavior. Prediction error is used to recognize a transition Brewer

et al. [2008] Anderssen and Bloomfield [1972]. When the transition occurs, the old model can

no longer predict the new data and therefore the error will be high. While these methods

are easy to implement, they have considerable performance issues. It may be difficult to

extrapolate an adequate model and large prediction error may reflect the model inaccuracy.

Anomaly and novelty detection. These methods aim to build a steady-state process

model to find transition points using anomaly detection procedures Chandola et al. [2009],

Neil and Wong [2009], Moore et al. [2002], Noble and Cook [2003], Neill [2009]. A sub-class of

anomaly detection methods - novelty detection Hoffmann [2007], Markou and Singh [2003],

Dasgupta and Forrest [1996], Spinosa et al. [2009], Fujimaki et al. [2005], Gazen et al. [2005],

- assume that a transition or a switching point indicates something new. Thus, the novelties

in the data streams can be interpreted as transitions.

Change detection. This group of methods explore change in local properties of the

time series. A significant change indicates a transition. This change can be measured using

44

distance between clusters in the feature space Ponte and Croft [1997], Allan et al. [1998] and

other types of non-parametric statistical tests, such as density ratio estimation Kawahara

and Sugiyama [2012], Kawahara and Sugiyama [2009], Yamanishi et al. [2004], KL-divergence

Steinert and Gillblad [2010], Dasu et al. [2009]. Hypothesis testing Muthukrishnan et al.

[2007] can be used to verify whether previously observed data is statistically different from

the current measurements Kifer et al. [2004] Takeuchi and Yamanishi [2006]. Later we

will show that methods based on KL-divergence are essentially equivalent to log-likelihood

ratio test. While these methods perform well with multiple numerical streams, they do not

perform well for transition detection in data streams with complex waveform. In this case,

the onset of the transition remains indistinguishable from the stream lacking a transition

until a later point in time.

Several approaches, e.g., Dasu et al. [2009], Bifet and Gavalda [2007], Krishnamurthy

et al. [2003], Muthukrishnan et al. [2007] explore optimization strategies to speed up com-

putations or reduce memory usage for transition detection. All of those methods are based

on techniques considered above, such as KL-divergence, hypothesis testing and short-term

modeling.

Two other solutions related to our work are reported in Aggarwal [2003] and Li et al.

[2010]. Both of those methods transform original time series into a set of features and

apply transition detection techniques in the feature space. Aggarwal [2003] uses velocity

density estimation to transform the original stream and to locate areas of global data shift,

which are essentially notable diffusions in measurements density. Li et al. [2010] decomposes

original time series into a set of harmonics and detects areas with different harmonics mix.

In contrast to Li et al. [2010], we explore coherent behavior of frequency components (mutual

alignment), not just the strength of presence of particular harmonics. Li et al. [2010] was

shown to detect transitions on periodic-like time series. Li et al. [2010] was used to cluster

burst-like time series (BGP updates); it was not reported its effectivenes to detect transitions

in burst-like time series.

We propose a novel approach to transform the raw time series into its feature space

and to look for the characteristic pattern (signature) of a notable transition. Our method is

based on analysis of coherent behavior of frequency components in the process log (coherency

45

✵

✵�✁

✶

s
✂✄
☎
✆
✝

✲✵�✶

✵

✵�✶

❝
✞
✝
✟
✞
✠
☎
✠
✂s

✵ ✁✵✵ ✶✵✵✵ ✶✁✵✵ ✷✵✵✵
✵

✶✵✵

✷✵✵

❝
✞
✡
☎
✄☎
✠
❝
☛

t☞✌✍

(a)

f

f3

f2

f1

t

t1

t1- t1+

t2

t3

t2- t2+

t3- t3+

(b)

Figure 3.3: Data stream representation: (a) coherency portrait (b) frequency voting

portrait). Notable process transitions can be characterized by unique coherency portraits.

Such portraits are invariant with respect to the random process fluctuations. We consider

our method in the next section.

3.4 METHOD DESCRIPTION

The central idea of our approach is to recognize a transition in a noisy numerical stream

by decomposing the initial stream into adjacent frequency bands and analyzing mutual

alignment of the obtained components (we will also refer to them as stream components).

Note, that we do not use binary presence / absence of a particular harmonic as a fingerprint

for the stream (e.g., as in Li et al. [2010]). Instead, we explore the mutual alignments of

stream components at specific time points in order to recognize patterns of transitions. The

alignment of the stream components at different frequency bands makes mutual maximum

and minimum co-occurrence amplify or re-compensate each other.

Consider a few adjacent frequency bands from a step function with Gaussian noise,

as shown in Figure 3(a) upper plot. We use a zero-phase digital filter of order N to

46

cut frequency bands from the original stream. As we see in Figure 3(a) middle plot,

frequency components are aligned quite arbitrarily everywhere except for the area where the

transition occurs. We observe that stream components form a specific alignment pattern at

the transition segment, which is different from the surrounding area. To explore the mutual

alignment of the stream components we perform the following feature selection procedure.

First, we filter the stream with a set of narrow-frequency adjacent band-pass filters. Then,

we locate maxima of the resulting stream components and build ε-intervals around each

maximum, as shown in Figure 3(b). In this example, we select 3 adjacent frequency bands,

locate maxima on all of the bands, and mark ε-area around each maximum. In the example,

for 3 different maxima: t1, t2, t3, we obtained intervals: [t1−ε, t1+ε], [t2−ε, t2+ε], [t3−ε, t3+ε].

In this way, we changed the representation of the numerical stream from its wave form into

extrema alignment – what we call a coherency portrait. If we apply the same procedure to

the numerical stream shown in Figure 3(a) upper plot, we obtain its coherency portrait

in Figure 3(a) lower plot. A coherency portrait helps to visualize the fact that stream

components are aligned rather sporadically at a distance from the transition, while they form

a more coherent structure around the transition point. Our working hypothesis is that there

exists a correspondence between frequency alignment and the process dynamics. Detecting

a notable transition is equivalent to finding a specific pattern in the coherency portrait: a

signature of a notable transition in the process dynamics.

3.4.1 Frequency signature invariant

To detect the transition, we have to define an invariant signature pattern in the coherency

portrait that occurs every time the transition occurs. Ideally, this signature should remain

stable for

1. random noisy fluctuations in the numerical data streams

2. partially available information around the transition time.

3. different shapes of the transition (i.e., steep vs smooth transitions)

We generate a number of different time series, generate their corresponding coherency por-

traits and try to visually identify the invariant signature. We start with a simple step

47

✽

✾

✶�

✶✶

✶✁

②
✂✄
☎

✁�� ✹�� ✻�� ✽�� ✶��� ✶✁�� ✶✹��
�

✶��

✁��

✸��

t✆✝✞

❝
✟
✠
✡
☛✡
☞
❝
②

(a)

✼

✽

✾

✶�

✶✶

✶✁

②
✂✄
☎

✁�� ✹�� ✻�� ✽�� ✶��� ✶✁�� ✶✹��

✺�

✶��

✶✺�

✁��

✁✺�

✸��

t✆✝✞

❝
✟
✠
✡
☛✡
☞
❝
②

(b)

✼

✽

✾

✶�

✶✶

✶✁

②
✂✄
☎

✁�� ✹�� ✻�� ✽�� ✶��� ✶✁�� ✶✹��
�

✶��

✁��

✸��

t✆✝✞

❝
✟
✠
✡
☛✡
☞
❝
②

(c)

Figure 3.4: Data stream coherency portrait : (a) without noise (b) with noise (c) partial

information

function and its coherency portrait as shown in Figure 4(a). For a step function around

the transition point, its coherency portrait will consist of a set of rather smooth curves and

will resemble a group of inverted letters V. Then, we add a small amount of exponential

noise to it, and build a coherency portrait for that data stream as shown in Figure 4(b).

Exponential noise makes the task of transition detection more challenging: a rare large fluc-

tuation may be confused with the beginning of a transition. We observe that the inverted

V shape remains around the transition area, and the actual curves that form that V-shaped

pattern remain rather smooth.

To ensure that an inverted V-shape on a coherency portrait (caused by a transition) is

preserved in a partial process log, we separate a segment from the original time series around

the transition point in Figure 4(b) and build a frequency portrait for this partial log as

48

✲�✁

✁

�✁

②
✂✄
☎

�✁✁ ✹✁✁ ✻✁✁ ✽✁✁ ✶✁✁✁ ✶�✁✁ ✶✹✁✁ ✶✻✁✁ ✶✽✁✁

✺✁

✶✁✁

✶✺✁

�✁✁

�✺✁

✸✁✁

t✆✝✞

❝
✟
✠
✡
☛✡
☞
❝
②

(a)

✵

✷✵

✹✵

②
�✁
✂

✷✵✵ ✹✵✵ ✻✵✵ ✽✵✵ ✶✵✵✵ ✶✷✵✵ ✶✹✵✵ ✶✻✵✵ ✶✽✵✵
✵

✶✵✵

✷✵✵

✸✵✵

t✄☎✆

❝
✝
✞
✟
✠✟
✡
❝
②

(b)

Figure 3.5: Coherency portrait for: (a) noise only (b) transition and noise

shown in Figure 4(c). We can observe that the pattern around the transition point still

preserves the smooth inverted V-shaped curves.

In the next set of experiments, we build frequency patterns for those times series with

smoother transitions. We generate two noisy data streams: one without the transition in

Figure 5(a) and one with the transition in Figure 5(b). When we compare the obtained

coherency portraits, we see that coherency portraits for stable areas on these time series are

identical (circled with green). However, the coherency portraits are considerably different in

the areas around transition points (circled with red).

In order to use coherency portraits to detect transitions, we have to define features which

will indicate the transition. We increase the number of frequency bands (in comparison with

Figure 5(b) and Figure 4(b)) to provide more information about the data stream. We

increased the number of bands for data streams with both abrupt Figure 6(a) and smooth

Figure 6(b) transitions. For our streams in Figure 6(a) and Figure 6(b), we observe that

higher frequency components (circled in black) show quite complex noisy-like behavior which

is difficult to interpret and analyze. Meanwhile, lower-frequency components appear to be

sensitive to the transition and they can be used as a signature for a transition. Considering

patterns circled in red in Figure 6(a) and Figure 6(b) together with Figure 4(c) and

Figure 4(b), we conclude that a particular V-shape can be observed in all cases: in the

presence of noise, at different stages of the transition and when only partial information

49

about the transition is available. Another observation is that for noisy data streams near

the transition area, the curves appear to be smoother than those far from the transition.

Thus, our proposed method for transition detection is to look for a smooth inverted

V-shape pattern on the frequency diagram in the lower frequency range. In

Appendix A we present a more formal justification of the V-shape transition signature

invariant.

3.4.2 Pattern discovery

Next we consider an approach to discover those smooth V-shape patterns in a coherency

portrait which correspond to the signature of a transition in the actual time series. In the

classical approach to pattern recognition, we have to select a set of features from our pattern

which will maximize the distance between normal (areas without transition) and abnormal

(transition) clusters in the feature space Duda et al. [2000]. If clusters are not linearly

separable, a common remedy is to use features of features Scholkopf and Smola [2001] to

perform non-linear feature space transformation to make clusters linearly separable in the

new space. While this is a common method for pattern classification, it may be problematic

to apply this approach to our task. First, space transformation requires learning to find the

optimal kernel function. Given that we cannot generate all possible shapes of transitions

✺

✶�

✶✺

②
✁✂
✄

✷�� ✹�� ✻�� ✽�� ✶��� ✶✷�� ✶✹��

✶��

✷��

✸��

✹��

✺��

t☎✆✝

❝
✞
✟
✠
✡✠
☛
❝
②

(a)

✲�✁

✁

�✁

✷✁

✸✁

✹✁

✺✁

②
✂✄
☎

✷✁✁ ✹✁✁ ✻✁✁ ✽✁✁ �✁✁✁ �✷✁✁ �✹✁✁ �✻✁✁ �✽✁✁

�✁✁

✷✁✁

✸✁✁

✹✁✁

✺✁✁

t✆✝✞

❝
✟
✠
✡
☛✡
☞
❝
②

(b)

Figure 3.6: Coherency portrait for: (a) noisy step function (b) noisy incline transition

50

Figure 3.7: Frequency pattern and its score

and their corresponding coherency portraits, we cannot apply it in our case. Second, the

kernel trick Scholkopf and Smola [2001] does not allow us to explain the interactions between

features of our pattern; nor does it allow us to understand the meaning of the pattern and

hopefully provide feature space reduction and pattern simplification. Therefore, we decided

to approach the problem of pattern recognition from the perspective of Complex Adaptive

Systems Miller and Page [2007]. We define the global pattern we want to detect, and derive

a set of simple conditions which, if applied, would manifest our desired pattern. We split

the pattern detection into three parts: 1) for each curve, estimate how well it resembles a

part of a V-shape; 2) calculate how smooth a particular curve is; and 3) make a decision

based on those two parameters.

From Figure 6(a) and Figure 6(b) we visually separate two types of alignment of

frequency components: “curved up” and “curved down”. To detect these patterns, we

utilize an agent climbing the ”stairs” of the coherency portrait. Figure 3.7 illustrates our

approach. As the agent moves, it reports a score as a measure of how well the frequency

pattern exhibits the properties of the desired V-shape. Assume that every ε-interval around

each maximum is an individual step. Initially, an agent starts from the lowest available step

at a current location with a zero score. In our example in Figure 3.7, the initial starting

point would be x11. If an agent remains at the same level it does not accumulate any score.

An agent climbs one step up if there is an overlapping step on the higher adjacent frequency,

51

and thus increases its score. In our example on Figure 3.7, that situation occurs when an

agent reaches coordinate x21. Then, it will climb up to the second step and increase its score.

The same happens when an agent reaches x31 and x41. An agent “falls” to the ground level

and loses all of its score if the current “step” ends and there is no other higher adjacent

steps. In our example on Figure 3.7, this will happen when an agent reaches coordinate

x42.

For “steps down,” the procedure is reversed. An agent starts from the highest available

step, say at x51, and remains on the same level or climbs down to the lower adjacent frequency

while accumulating a score. In our example, an agent steps down when it reaches x61, x71, x81.

It falls to the ground level and loses its score when there is no step on the adjacent lower

frequency.

3.4.2.1 Score function Now we introduce a score function used by the agents to explore

the alignment patterns. We calculate the score between “steps” on adjacent frequencies,

without looking at the global shape of the curve. In Figure 3.7, let us denote ∆i,i+1 =

x(i+1)1 − xi1 and ∆i+1,i = xi1 − x(i+1)1. The score function should award mutual shift of ε-

steps on adjacent frequencies to enable agent movements, and to penalize it otherwise. The

function is non-linear: a big shift in the right direction can outperform the negative score

obtained from a few smaller shifts in the wrong direction, i.e., ∀x1, x2 ≥ 0 : f(x1 + x2) >

f(x1) + f(x2). The function has to be monotonic: ∀∆1 < ∆2 : f(∆1) < f(∆2). Exponential

function satisfies these requirements, and we use it to calculate the score. We also use

weights assigning more importance to scores obtained at lower frequencies. For the “curved

up” pattern, the score function is defined as follows:

sUi =

if ∆i,i+1 ≥ 0 : maxF−i+1
maxF

(
e

∆i,i+1
2ε

)
if ∆i,i+1 < 0 : maxF−i+1

maxF

(
1− e

∆i,i+1
2ε

) (3.1)

Thus, the corresponding score for “ curved down” patterns is

sDi =

if ∆i+1,i ≥ 0 : maxF−i+1
maxF

(
e

∆i+1,i
2ε

)
if ∆i+1,i < 0 : maxF−i+1

maxF

(
1− e

∆i+1,i
2ε

)
,

(3.2)

52

where maxF is the number of frequency bands. Additionally, we are looking for smooth

curves. Smoothness is a measure of how gracefully the curve changes its shape. We use a

second derivative to actually measure smoothness of each curve. Since we work with discrete

data, the smoothness is defined as follows:

smooth =
1

n− 2

n−2∑
i=1

(
x(i+2)1 − 2x(i+1)1 + xi1

)2
, (3.3)

where n is a number of overlapping ε-intervals which form a particular curve. The total score

is a liner combination of individual scores and smoothness:

scoreU =
∑n−1

i=1 sUi + C ∗ smooth

scoreD =
∑n−1

i=1 sDi + C ∗ smooth,
(3.4)

where C is a smoothing coefficient. The smoothing coefficient balances the score. The

bigger the C value, the higher the score obtained for smoother V-shapes.

3.4.2.2 Epsilon-interval selection To obtain coherency portraits, we use ε-intervals

around each maximum on each frequency band. Clearly, distance between maxima for higher

frequency bands is smaller than for lower-frequency ones. Thus, if we keep the ε-interval

relatively small, on the coherency portrait we will see all maxima at all frequencies. However,

if these intervals are very small, we will have limited interval overlap on adjacent frequencies

resulting in smaller V-shapes. If we keep increasing the ε-intervals, then separate intervals

on higher frequencies will overlap and will form longer lines. These longer lines may cover a

wider region causing V-shapes from transition areas overlap with the same line on the upper

frequencies. This will decrease the ability of the algorithm to generate a proper transition

signature. We used heuristics to select the size for the ε increasing it until we observe that

intervals on higher frequencies start forming lines covering non-transition areas.

53

B B

T1 T2 T3

w1

B B
w2

1
2

3
4 5

6
7

8

9 10

11
12

13

14

15

1617

x1

x2

Figure 3.8: Signature metric explained

3.4.2.3 Signature detection method Our signature detection method periodically

slices a segment of time series, builds coherency portraits and calculates score for every

V-shape. We use a sliding window approach and the central issue with our method is infor-

mation fusion: for overlapping windows we need to define how to work with redundant and

conflicting information. Consider an example shown in Figure 3.8. Let us assume the initial

position of a sliding window is w1. In the next time step, the window has been shifted to the

position w2. Scores obtained from window w1 are plotted on axis x1, and scores obtained

from w2 are plotted on axis x2 correspondingly. Scores on x1 and x2 have common and

unique parts. We use two approaches to resolve the conflicts due to overlapping windows:

incremental updates and glimpses. In the incremental updates, we would scan the

whole data stream with an overlapping sliding window, and would consider only those scores

which were obtained for the non-overlapping portion of the sliding windows. In our example

for window w1, we take scores 1, 2, 3. For window w2 we take only score 6. We ignore scores

4,and 5 since they were obtained for time interval covered by the previous window w1. The

idea behind glimpse analysis is not to scan the entire data stream. Instead, we periodically

sample from the stream and determine whether or not we are in the transition area. The

decision making procedure considers either an incremental window or a full glimpse window.

We will use an example in Figure 3.8 to help us explain the performance metrics. We

have three transition points: at times T1, T2 and T3. A sliding window is moving through

54

the data stream with its step tstep. For each window wi, we denote a starting point wi1

and ending point wi2. If a window covers the information about the transition, it should

be recognized. However, if the window covers only a fraction of a transition, the data may

not be sufficient to recognize it. We specify a buffer B at both ends of a window as a

no-detection zone. We expect that a transition point will be detected if it is covered by a

window and it is not within a no- zone. In our example, window w1 should detect transition

T2, while window w2 should detect transitions T2 and T3. In total, we should expect three

true detections (TD) . Assume that, after sliding a window over a data stream, we obtained

a set of scores plotted on the x axis in Figure 3.8. When we set a threshold, every score

above the threshold is a detection (D) of a transition. In our example, we would consider

scores 1,3,6,7,11,12,14,15 to be detections. If a detection dj occurs within an ε - area of a

transition, i.e.,

di ∈ [Tk − ε..Tk + ε] (3.5)

then this is a correct detection (CD). Referring to our example, we have the following correct

detections: 6,7,11,12,14,15. A particular transition point Tk may be detected under multiple

windows. All correct detections will contribute to the true positive (TP) measure. All

detections that do not satisfy eq. 3.5 contribute to false positives (FP). In our example,

the only false positive is 3. For incremental update, the additional condition is that the

transition is detected in the area which was not covered by the previous window.

To illustrate our approach, in Figure 9(a) we show time-series with transitions and

corresponding score dynamics Figure 9(b). We observe that despite that transition is

rather smooth, the scores clearly manifest the transitions. In section 3.5 we provide a

comprehensive experimental study of our method and demonstrate its efficiency comparing

it with other popular change detection techniques. Next, we provide a complexity analysis

of our method.

3.4.2.4 Complexity analysis Our transition detection procedure consists of the follow-

ing steps: obtaining a segment of a data stream, applying a filter to extract frequency bands,

and calculating coherency portrait and scores. We will estimate computational complexity

for each of these steps and the complexity of the algorithm in total. We denote n as the

55

✵ ✶✵✵✵ ✷✵✵✵ ✸✵✵✵ ✹✵✵✵
✲✷✵

✲✶✵

✵

✶✵

✷✵

✸✵

t�✁✂

②
✄☎
✆

(a)

✵ ✶✵✵✵ ✷✵✵✵ ✸✵✵✵ ✹✵✵✵
✲✷✵✵

✵

✷✵✵

✹✵✵

✻✵✵

t�✁✂

s
✄
☎
✆✝
s

(b)

Figure 3.9: Scores for signature transition detection (a) smooth signal (b) scores for coherency

portrait

length of the data stream, w - as the length of a sliding window, step - shift for a sliding

window along the data stream, N - order of a filter, k - number of frequency bands. In our

method, we use w = 3 ∗ N . We will have to analyze n−3∗N
step

sliding windows, thus the com-

plexity of shifting a window is O(n). For each sliding window, we apply k filters to obtain k

frequency bands. Each filter is of order N . We allocate every maximum on every band and

draw an ε-area around each one of them. For data stream filtering, we used a zero-phase

FIR filter with the following output sequence:

y[n] =
N∑
i=1

bix[n− i] (3.6)

Coefficients bi are parameters for a particular filter and should be precomputed only once.

The complexity to calculate one single element in the filter output is N + N − 1 ≈ N .

There are 3N points in each sliding window, so filtering a single window requires ≈ N2

operations. We use the zero-phase filter and the resulting harmonics have 0-degree shift

from the original signal. However, processing the signal with a zero-phase filter implies that

the effective order of the filter is doubled. Still, the total complexity to filter one window

remains CN2. Filtering k frequency bands would require kCN2 steps. The number of

56

shifts of a sliding window required to process an incoming data stream is n. Thus the total

complexity of filtering operations is CN2n.

It is more difficult to analyze the exact complexity of building V-shapes inside a sliding

window. The maximum number of ε-intervals in a sliding window of length 3∗N is Nε = 3∗N
ε+1

,

assuming that the distance between ε-intervals is minimal and equals 1. For each ε-interval,

the procedure to find overlapping ε-intervals on an adjacent upper-frequency band would

require ε operations. To find all overlapping intervals between two frequency bands would

require ε∗Nε=
ε∗3∗N
ε+1
≈ N operations. To find overlapping intervals on all k frequency bands

would require ≈ N ∗ k operations. For all sliding windows, it would require ≈ N ∗ k ∗ n

operations.

Once the overlapping intervals are found, there may be Nε curves at most. Thus, cal-

culating scores may require ≈ Nε ∗ k operations. To calculate scores for all sliding windows

would require ≈ 3∗N∗n
ε+1

operations. To calculate scores for the whole data stream of length

n, we would need n + N2n + Nkn + Nn
ε+1
≈ nN(N + k) operations. Thus we achieve linear

complexity in terms of the size of the input data stream.

In terms of memory usage, we perform data analysis for each sliding window. For a

window length 3 ∗N , we store k frequency bands which would require us to store 3 ∗N ∗ k

stream elements. To find overlapping intervals, we need to store an additional 3 ∗ N ∗ k

elements. The total data needs are ≈ N ∗ k stream elements.

3.4.2.5 Comparison of complexity In table table 3.1 we compare complexity of our

approach with several related techniques. Here n is the size of the input data stream, and

N, k,m, h, d, δ, ε are the parameters of the corresponding methods. We observe that our

signature-based method has higher CPU cost compared to the methods based on statistical

change detection (such as Dasu et al. [2009] and Muthukrishnan et al. [2007]). However, it is

less expensive computationally than methods utilizing fingerprints in the process dynamics

(Li et al. [2010]). Our method requires only a limited amount of memory and it does not

depend on the size of the data stream.

57

Table 3.1: Complexity comparison

Method CPU Memory

coherency portraits (current work) O(nN(N + k)) O(N ∗ k)

Parsimonious linear fingerprinting

Li et al. [2010] n(m2h+ h3) +mh2 no data

distributional shifts in data streams

Dasu et al. [2009] O(nd log(1
δ
)) O(dn log(1

δ
))

sequential change detection

Muthukrishnan et al. [2007] O(n logn
ε

log logn
δ

) O(logn
ε

log logn
δ

)

3.5 EXPERIMENTS

We compare our method with two widely used off-the-shelf methods: auto-regression (AR)

Box et al. [2008] and kernel density estimation (KDE) Botev et al. [2010]. The AR model

can be defined as

Xt = c+

p∑
i=1

aiXt−i + εt (3.7)

where ai describes the parameters of the model, Xt describes the measurement at time t

which we want to predict based on a set of predecessor measurements Xt−i and εt is the

normal noise pdf(εt) = N(0, σ2). Thus, the AR method learns the parameters of the model

and noise, and uses previous data points to predict data stream dynamics. We will use two

adjacent sliding windows of the same size for M data points. The first one allows us to learn

all of the parameters for the AR model. We then use the obtained model to predict the

following M data points in the adjacent window. Transition detection occurs when the error

between what AR predicted and the actual measurements go beyond to what noise in the

model can account for. The KDE model, or kernel density estimator, is defined as

ĥh(x) =
1

n

n∑
i=1

Kh(x− xi) (3.8)

where kernel K(•) is a symmetric function that integrates to 1. Kernel functions help to

approximate the probability of density function in the observed numerical measurements. To

58

y

x

②✶

②✷

❧①

(a)

✵ ✷✵✵✵ ✹✵✵✵ ✻✵✵✵ ✽✵✵✵ ✶✵✵✵✵
✲�✵

✵

�✵

✶✵✵

t✁✂✄

②
☎✆
✝

(b)

Figure 3.10: Stream generation: (a) stream base shape (b) example data stream

sum up, KDE transition detection method learns the probability model of the data stream

(the probability to observe each particular measurement) by observing a data segment (M

data points) and calculating the probability to observe new data (M data points). It

assumes that the data stream model does not change. If the probability to observe the new

data points is very low, we interpret this as a transition. Later, we explain our hypothesis

testing procedure in more detail.

3.5.1 Experimental Setup

The data stream that we use for the comparison consists of a base shape shown on Figure

10(a), repeated N times with added exponential noise. Values lx and y2 are i.i.d. uniform

from [lmin . . . lmax] and [ymin . . . ymax] accordingly. We used ymin = 0, ymax = 50, lmin = 25,

lmax = 300, α = π
18

, λ = 5. We generate two data streams: one for training/calibration, and

another one for testing. For the training stream, we repeated the base shape Figure 10(a)

N = 60 times. For the testing stream, we repeated the base shape N = 120 times. Example

of the obtained time series is shown on on Figure 10(b).

To compare our signature method to KDE and AR we, use ROC, precision and recall

curves Duda et al. [2000]. We will also use the area under the curve (AUC) for each ROC

curve. For the KDE and AR methods, training means selecting the optimal window size to-

59

gether with the corresponding parameters for each method. For the signature-based method,

training would involve determining the number of frequency components to use, the order

of the filter and what the smoothing coefficient C in eq. 3.4 should be.

We move two adjacent sliding windows of length ∆t with a step tstep: t2 − t1 = tstep,

t3 − t3 = tstep through a time series. We use data points from both preceding and following

window to train KDE and AR models. We use likelihood ratio test to confirm a hypothesis

that at time ti a transition in a time series occurred. The details about likelihood ratio

test are in the following subsection. For a given threshold, if likelihood ratio (LR) at

t1 < threshold and at t2 >= threshold, then we assume that a transition was detected

at time t1 + LR(t2)−threshold
LR(t2)−LR(t1)

t2. We assume that a transition can be correctly detected only

if an actual transition has happened within the sliding window. The sliding window has

to have enough information about the transition to be sure that it detects it. We use a

buffer zone B from both ends of sliding windows. If a transition happened at time Tk,

and this transition falls into [(ti − ∆t + B) . . . ti + ∆t − B], and KDE or AR detected it

within the interval [Tk − ε . . . Tk + ε], we consider this to be true positive (TP) detection.

Otherwise we consider this detection as a false positive (FP). If a transition is detected at

t1 and t1 ∈ [T1− ε . . . T1 + ε] it will be a true positive. If a sliding window (together with its

buffer zones) is not positioned over a transition, then this event is labeled as negative. This

gives us the total number of negatives (N). If we do not detect a transition when it is not

present, this event is labeled as a true negative (TN). The equations for precision, recall,

true positive rate (TPR), false positive rate (FPR) are shown in eq. 3.9:

precision =
TP

TP + FP
recall =

TP

K
, TPR =

TP

K
FPR =

FP

N
(3.9)

3.5.2 Likelihood ratio test

For both AR and KDE methods, we operate on windows located on top of the data stream.

We compare data points in two adjacent windows wt0 and wt0+∆t, with starting points at

t0 and t0 + ∆t, respectively. Here ∆t is the size of each window. Our goal is to determine

60

whether the new section of the data (in window wt0+∆t) is generated by the same process

as data in the preceding window wt0 or if those data are substantially different. We use the

likelihood ratio test Casella and Berger [2001] to make the determination. We assume data

points are i.i.d. Thus, x0 - is a vector of data points in wt0 , and x - is a vector of data points

in wt0+∆t. Using the likelihood ratio test, we obtain:

λ(x) =
L(θ̂0|x)

L(θ̂|x)
(3.10)

where L(θ|x) = L(θ|x1, . . . , xn) =
∏n

i=1 f(xi|θ) is the likelihood function, f(x|θ) is pdf,

θ̂0 = θ̂0(x0) is the estimate of the parameter θ0 which maximizes the L(θ0|x0) on window

wt0 , and θ̂ = θ̂(x) - the estimate of the parameter θ which maximizes the L(θ|x) on window

wt0+∆t. We test two rival hypothesis: H0 : θ = θ0 and H1 : θ 6= θ0. The decision criterion is:

λ(x) ≤ c : reject H0

λ(x) > c : do not reject H0

(3.11)

where c - is a chosen threshold. In Appendix B we provide the proof that log-likelihood

ratio test is essentially KL-divergence for big enough data sample size.

3.5.3 AR, KDE vs signature based comparison (incremental updates)

First, we apply our signature-based method to detect transitions and calculate all the re-

quired metrics. We vary the value of threshold over a wide range, thus collecting a set of

results for the same data stream. Later, we plot precision and recall curves as a function of

the threshold. For every value of the threshold, we calculate the true positive rate and false

positive rate. Then we order the result according to the false positive rate and plot a ROC

curve.

We perform calibration of AR, KDE, and signature-based methods on the training

dataset to obtain the best parameter values. We calibrate these methods for smaller values

of ε in eq. 3.5, tuning these methods for precise transition detection. We will also compare

the performance of all methods for larger ε values.

61

✶��

✷��

✸��

✶��✷��✸��✹��✺��✻��

�

�✵✶

�✵✷

�✵✸

�✵✹

�✵✺

◆
★ ✁✂ ✄☎✆✝

❆
✞
✟

(a)

✶��

✷��

✸��

�
✷��

✹��
✻��
�

�✵✷

�✵✹

�✵✻

�✵✁

✶

◆★ ✂✄ ☎✆✝✞

❆
✟
✠

(b)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

❋✝✞

❚
✟
✠

s✡☛☞✌✍✎✏✑

❑✒✓

❆✞

(c)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

t✝✞✟✠✝✡☛☞

P
✌
✍
✎
✏✑
✏✒
✓

✠s✔✕✖t✗✞✟

❑✘✙

❆✚

(d)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

t✝✞✟✠✝✡☛☞

❘
✌
✍
✎
✏
✏

✠s✑✒✓t✔✞✟

❑✕✖

❆✗

(e)

Figure 3.11: KDE, AR and signature methods on training dataset: (a) ROC plot for signature

method, ε = 10 (b) ROC plot for signature method, ε = 100 (c) ROC curves comparison,

ε = 10 (d) PRECISION curves comparison, ε = 10 (e) RECALL curves comparison, ε = 10

In our performance comparison, withing the signature-based method, we were shifting

the sliding window with a step tstep = 100 points. For the signature-based method, the

calibration procedure helps to determine (1) number of frequency components to include

into a coherence portrait, (2) smoothing coefficient value, and (3) size of the data sample

(sliding window). As a reminder: we use a digital filter to obtain frequency components

from the original signal. This digital filter has a parameter N - order of the filter. We

always keep the size of the sliding window equal to 3 ∗ N . For KDE and AR, the window

size was in the interval [10..100]. For the signature-based method, the resulting AUC plot

on the training data set Figure 10(b) was calculated for the small values of ε = 10 and

62

is shown on Figure 11(a). The overall conclusion from this plot is that lower frequency

components play much more important roles in the performance of the method. We can see

that the increase in performance (AUC value) is more significant when we change from 200

to 250 components than from 400 to 600. Figure Figure 11(b) shows an AUC plot that

reflects what happens if we increase the value for ε to 100. This plot supports the claim that

lower frequency components play more important roles in the transition detection. Another

conclusion, based on these plots, is that the order of the filter (and correspondingly, size of

the sliding window) plays less important roles in signature-based transition detection than

the number of frequency components. We will use this property later when we analyze the

results from our glimpse method. We omit AUC calibration plots for KDE and AR because of

space limitations. The comparison with transition-detection methods on the training dataset

is shown on Figure 11(c), Figure 11(d) and Figure 11(e). While the precision curves

look similar for all three methods, the recall and ROC curves for the signature-based method

are almost twice as high when compared to the KDE and AR methods. The performance

of KDE and AR are similar. On the precision and recall plots, we normalized values for the

threshold to be able to compare performance curves from different methods on one plot.

We used the same parameters, which we obtained for the optimal performance on the

training data set, to analyze the test data set. The comparison of methods’ performance

for small ε = 10 is shown on Figure 12(a), Figure 12(b) and Figure 12(c). The result

is the same as for the training data set: the signature-based method demonstrates superior

performance on recall and ROC curves in comparison with KDE and AR methods, while

the performances of the KDE and AR are similar. However, if we make a comparison while

keeping high ε = 100, the situation becomes different. The precision is higher for KDE

and AR methods. ROC and recall plots for the signature-based method are still better

than for KDE and AR. The conclusion is that AR and KDE methods for big ε = 100 can

recognize obvious transitions quite accurately. However, they will not recognize less obvious

transitions, which the signature-based method detects successfully. Also, AR demonstrates

better performance over KDE on all three comparison plots.

63

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

❋✝✞

❚
✟
✠

s✡☛☞✌✍✎✏✑

❑✒✓

❆✞

(a)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

t✝✞✟✠✝✡☛☞

P
✌
✍
✎
✏✑
✏✒
✓

✠s✔✕✖t✗✞✟

❑✘✙

❆✚

(b)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

❘
✝
✞
✟
✠
✠

t✡☛☞✌✡✍✎✏

✌s✑✒✓t✔☛☞

❑✕✖

❆✗

(c)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

❋✝✞

❚
✟
✠

s✡☛☞✌✍✎✏✑

❑✒✓

❆✞

(d)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

P
✝
✞
✟
✠✡
✠☛
☞

t✌✍✎✏✌✑✒✓

✏s✔✕✖t✗✍✎

❑✘✙

❆✚

(e)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

t✝✞✟✠✝✡☛☞

❘
✌
✍
✎
✏
✏

✠s✑✒✓t✔✞✟

❑✕✖

❆✗

(f)

Figure 3.12: KDE, AR and signature methods on test dataset: (a) ROC curves comparison,

ε = 10 (b) PRECISION curves comparison, ε = 10 (c) RECALL curves comparison, ε = 10

(d) ROC curves comparison, ε = 100 (e) PRECISION curves comparison, ε = 100 (f)

RECALL curves comparison, ε = 100

3.5.4 Glimpse analysis

In this subsection, we explore the performance for signature-based method in glimpse analy-

sis, when we analyze separate segments of data stream. Thus our decision about whether or

not we detect a transition is based only on the limited information. The results are shown

in Figure 13(a), Figure 13(b) and Figure 13(c). We zoomed in on the ROC plot Fig-

ure 13(a) to show that all of the curves, except for very small windows (sizes 15 and 30

), demonstrate approximately the same behavior. On the recall plot Figure 13(c), we ob-

serve that all the curves (except for small window of sizes 15 and 30) reach similar maximal

values. Precision plot Figure 13(b) shows that for small windows (sizes 15 and 30) those

64

✵ ✵�✵✁ ✵�✵✂ ✵�✵✄
✵

✵�✁

✵�✂

✵�✄

✵�☎

✶

❋✆✝

❚
✞
✟

✶✠

✸✵

✄✵

✶✁✵

✁✂✵

✸✵✵

✂✠✵

(a)

✵ ✵�✁ ✶
✵

✵�✂

✵�✄

✵�☎

✵�✆

✶

P
✝
✞
✟
✠✡
✠☛
☞

t✌✍✎✏✌✑✒✓

✶✁

✸✵

☎✵

✶✂✵

✂✄✵

✸✵✵

✄✁✵

(b)

✵ ✵�✵✁ ✵�✂
✵

✵�✄

✵�☎

✵�✆

✵�✝

✂

t✞✟✠✡✞☛☞✌

❘
✍
✎
✏
✑
✑

✂✁

✸✵

✆✵

✂✄✵

✄☎✵

✸✵✵

☎✁✵

(c)

Figure 3.13: Stability of signature-based method performance as a function of the sample

size (sliding window size) (a) ROC curves (b) PRECISION curves (c) RECALL curves

curves can reach values close to 1. This observation, together with the recall performance,

allows us to conclude that for relatively small data windows the signature-based method

can distinguish only quite obvious transitions. However, to detect less obvious or smooth

transitions, signature-based method needs more data. The obtained results proves that we

do not need to scan the whole data stream to look for transitions: we can periodically sample

from the data stream and make a decision about the presence of a transition based on that

discrete segment from a data stream. That confirms that using our method, we are able to

observe invariant properties of transitions even with a small amount of available data.

3.5.5 Real data: signatures of hurricane season

We applied our method to track hurricanes in proximity of the US Atlantic coast in 2010. The

original time series was collected near ICON Reef, Little Cayman, Cayman Islands (sensor

id LCIY2). These measurements were obtained from the National Oceanic and Atmospheric

Administration web site ecoforecast.coral.noaa.gov. We used sea surface temperature

time series with an hourly sampling rate, taken from Jun 5th 2010 through Nov 10th 2010.

The lower part of Figure 14(a) is a diagram that shows the duration of storms in hours

within that time interval (0 on the x-axis corresponds to Jun 5th, 12 am). Higher intensity

on the diagram indicates overlapping storms.

65

s
�
✁
✂✄

t☎✆✝

❤
✞
✂✂
✟�
✠
✡
✄
s

✵ ✺✵✵ ✶✵✵✵ ✶✺✵✵ ✷✵✵✵ ✷✺✵✵ ✸✵✵✵ ✸✺✵✵

(a)

✵ ✵�✁ ✶
✵

✵�✁

✶

❋✂✄

❚
☎
✆

❞✝✞✟✠ ✡ ✵

❞✝✞✟✠ ✡ ✶

❞✝✞✟✠ ✡ ☛

(b)

Figure 3.14: Signature-based hurricane tracking (a) top plot: scores for ocean surface

temperature; bottom plot: hurricanes; time unit is hours (starting June 5th, 12 am) (b)

ROC plot for hurricane detection; here delta is specified in days

The upper part of Figure 14(a) shows the coherence portrait scores obtained from the

time series. Red and blue lines correspond to the ”up” and ”down” curves in the coherency

portrait. We observe that the score spikes are tracking hurricane dynamics quite accurately.

Figure 14(b) shows ROC curves reflecting the performance of the signature-based detection.

Since hurricanes develop and dissipate gradually, we allowed for a certain time delta interval

66

around the detection point to compensate for the inertia of the ocean surface temperature.

We used one day as a time unit and the days without hurricanes were used to compute false

positive rate. We observe that as we increase the time delta interval (compensating for the

ocean inertia), the hurricane detection performance improves. We found that the detection

accuracy depends on the proximity of a sensor on the Cayman Islands to the hurricane/storm

as well as on its strength. While the sensor remains stationary, the trajectory of a storm is

changing. The further the storm from the sensor, the weaker its impact on the ocean surface

temperature around the sensor. The tracking is less accurate in the area with the higher

concentration of storms, especially when it is a chain of weaker storms(e.g., a tropical storm

not developing to hurricane). Note, that we did not use any predefined model for storm

dynamics and the results are obtained entirely from the coherency portrait of the observed

time series. This illustrates the high potential of our approach in the large-scale monitoring

of highly dynamic processes.

3.6 SIGNATURE-BASED DETECTION OF BIFURCATIONS IN SYSTEM

DYNAMICS

At the end we will explore applicability of our signature-based approach to complex system

dynamics involving phase transition Saitta et al. [2011]. Phase transition reflects a dramatic

change in system behavior. Complex dynamics involving phase transition manifests itself in

various fields and is studied in diverse topics. Some common examples include: stock markets

where buyers, sellers and the market adapt to economic conditions and each other’s actions,

or harvester-ant colonies, which show the emergence of colonies from relatively simple tasks

performed by the ants. Commonly phase transition is associated with a bifurcation event

Weisstein [a], - when a dynamic system demonstrates sudden appearance of qualitatively

new type of behavior.

In this section we consider bifurcation detection using our signature-based method. We

will generate two data streams: one using logistic equation Weisstein [c] and another one

containing fold bifurcation Weisstein [a]. For these data streams we know theoretical results

67

✸�✁✁

✸�✂

r

✵�✄

✵�✂

✵�☎

✶

s
✆r
✝
✞
✟

✵

✶✵✵

✷✵✵

❝
✠
✡
✝
r✝
☛
❝
☞

✷✵✵ ✸✵✵ ✄✵✵ ✁✵✵ ✂✵✵ ✼✵✵ ☎✵✵
✲✶✵✵

✵

✶✵✵

✷✵✵

s
❝
✠
r✝

t✌✍✎

Figure 3.15: Bifurcation detection with signature for logistic equation: parameter r dynam-

ics; data stream; corresponding coherency portrait; scores for the coherency portrait

on where a bifurcation happens, and we will build corresponding coherency portraits to show

how our scores detect a bifurcation event.

Logistic equation can be defined as dx
dt

= rx(1 − x), where x is a number between zero

and one. The logistic equation can be used to model population growth of animal species,

where x represents the ratio of existing population to the maximum possible population.

Parameter represents a combined rate for reproduction and starvation. Logistic equation

implies a change in population dynamics depending on its parameter r. For r ≈ 3.57 the

system enters the onset of chaos. For our experiment we generated a data stream from

logistic equation by setting two values for the parameters r = {3.56, 3.59}. For r = 3.56 we

observe periodic oscillations. For r = 3.59 we enter into the zone with chaotic behavior. The

shift from r = 3.56 to r = 3.59 happens at time = 500. In Figure 3.15 we show parameter

r value, the data stream, coherency portrait and the corresponding score. In Figure 3.15

we presented the central part of the data stream and the corresponding coherency portrait

(and scores) to skip additional coherency alignment which we observe closer to the start and

the end of the data stream. This coherency alignment is not associated with any transition

but with the fact that the data stream is finite.

68

For time ≤ 500 we observe periodic oscillations. For time > 500 chaotic behavior is

observed. The coherency of the data stream experiences a substantial change. This change is

clearly seen on the coherency portrait Figure 3.15 middle plot and on the corresponding

signature diagram Figure 3.15 bottom plot. Thus signature-based method proves its

ability to detect notable phase transitions.

Next we consider fold bifurcation. Fold bifurcation is a type of bifurcation in which

two fixed equilibrium points of a dynamical system collide and annihilate each other. The

normal expression of a fold bifurcation dx
dt

= µ− x2. Data stream with fold bifurcation was

obtained by recording oscillations of a material point in a potential field. The potential

field is expressed as equation y(x) = x3 + ax, where a < 0. The profile of this potential

is shown in Figure 16(a). The material point oscillates around the equilibrium x0 with

no frictions. The profile of the surface is almost symmetrical around x0. The symmetry

of the profiled gets broken as we approach x1. While the point oscillates around x0 due

to profile symmetry we observe sinusoid-like oscillations. As the material point obtains

more energy, the amplitude of the oscillations increases. Once the the point approaches x1,

the oscillations no longer resemble a sinusoid. We stop increasing energy when the point

reaches x1 − ε where ε - is a very small number. The obtained data stream together with

the corresponding coherency portrait and the scores are shown in Figure 16(b). Again we

show only the central part of the data stream and the corresponding coherency portrait (and

scores) to eliminate coherency alignment related to the start and the end of the data stream.

Vertical black line on Figure 16(b), top plot partitions the data stream. On the left

side of the black line (for time ≤ 1950) the amplitude increases. On the right side (for

time > 1950) the amplitude remains constant. The coherency portrait indicates a shift

around time = 1950. The corresponding scores in Figure 16(b) show that a coherent

behavior before the transition (time = 1950) is replaced with another mode of a coherent

behavior after the transition point. Once the material point approaches x1 in Figure 16(a),

the total period of oscillations increases and the velocity of the point decreases around x1.

In Figure 16(b) we observe that the coherency portrait captured the nature of evolution in

oscillating behavior. This red line follows a characteristic pattern on the coherency portrait.

69

(a)

✲�

✲✁

✵

✁

�

✻

s
✂✄
☎
✆
✝

✵

✶✵✵

✁✵✵

✸✵✵

❝
✞
✟
☎
✄☎
✠
❝
✡

✺✵✵ ✶✵✵✵ ✶✺✵✵ ✁✵✵✵ ✁✺✵✵ ✸✵✵✵ ✸✺✵✵

✲✺✵

✵

✺✵

s
❝
✞
✄☎

t☛☞✌

(b)

Figure 3.16: Fold bifurcation analysis: (a) oscillation surface for fold bifurcation (b) (top

plot): data stream; (middle plot): corresponding coherency portrait; (bottom plot):

scores

This pattern is moving towards lower frequencies for time ≤ 1950. This line shows that a

specific shape on the coherency portrait evolves towards lower frequencies, which corresponds

to increase in period of oscillations and to decrease in the frequency of oscillation. After

time = 1950 the amplitude became constant and this evolution on the coherency portrait

ends. The coherency portrait not only captures the notable phase transition in the stream,

but also reflects the data stream evolution

70

3.7 LESSONS LEARNED

In this chapter, I presented a novel signature-based method for notable transition detection

in numeric data streams. I validated that this method performs excellently in recognizing

notable transitions from random fluctuations in the process dynamics. The proposed sig-

nature based method is also capable of analyzing glimpses - short pieces of data streams,

to identify whether or not they reflect a notable transition. I have also demonstrated the

efficiency of this approach for the task of storm tracking during hurricane season in the US,

as well as for detecting phase transition in complex system behavior.

I demonstrated so far that we can find simplified behavioral patterns in a multi-agent

system, when we can observe every interaction between agents (zoomed-in view). I also

showed, that using the approach from CAS, we can also find a set of behavioral patterns

even for a process, where we cannot observe the interval process directly.

However, what if we have a system where we can observe all the system parameters, and

all the interactions. But what if the number of the factors which influence those interactions,

is enormous? We can try to apply relaxed optimization or just relaxation, to replace a difficult

task (exact optimization) with an easier (relaxed) task, which still represents the general

properties of the original task. However, how should we design this relaxed optimization?

How do we choose which parameters to use? And should we available parameters only, os

should we come up with a set of new (derived) parameters?

For instance, we have a hadoop cluster, which resources are shared between many users.

The major objective for every user is to have his task to be computed as fast as possible. And

typically that would imply that each user would want to obtain as much resources as possible

for his job. Yet, this may not be the best strategy, given that users need to compete for

finite resources and the task computation acceleration is sub-linear as a function of resources

and has a saturation point. A hadoop cluster has hundreds of tune parameters and system

settings. However, a cluster is not exactly a deterministic system. Since users login almost

at arbitrary time, and submit tasks which differ in the size of the input, it is virtually

impossible to capture every single aspect of their behavior. In this case study I propose

to use the approach based on the notion of strong emergence in a CAS. Strong emergence

71

implies that we observe properties in a CAS, which cannot be attributed to the individual

properties. Instead of concentrating on low-level system parameters, like CPU load, memory

usage, etc I propose to use higher-order properties of the cluster as a whole. In this way we

can still detect simple patterns, which will precisely enough describe the processes happening

in this CAS. In the next session I show, that this approach not only simplifies the model,

but also provides a substantial performance improvement exactly when its needed the most:

when cluster reaches its maximum load.

72

4.0 COMPLEX PATTERNS IN RESOURCE SHARING 1

Big Data challenges involve various aspects of large-scale data utilization. A common way

to deal with big data analytics is to set up a pipeline of a high-performance data warehouse

(e.g., Teradata Teradata or Vertica Vertica), an efficient analytics engine (e.g., SAS SAS

or SPSS SPSS) and an advanced visualization tool (e.g., MicroStrategy MICROSTRAT-

EGY or Tableau Tableau). However, the cost of such infrastructure may be considerable

TeradataPricing.

Meanwhile, not every data analytics task is time-critical or requires the full functionality

of a high-performance data analysis infrastructure. Often for non-time-critical applications,

it makes sense to use other computational architectures, such as Hadoop/MapReduce. One

might name Amazon Amazon, Google Tang et al. [2010], Yahoo Baldeschwieler [2009], Net-

flix Sabah [2012], Facebook Thusoo et al. [2010], Twitter Lin and Kolcz [2012], which use

MapReduce computing paradigm for big data analytics and large-scale machine learning.

A/B testing Kohavi et al. [2009b] is a mantra at eBay to verify the performance of each

new feature introduced on the web site. We may need to run hundreds of concurrent A/B

tests analyzing billions of records in each test. Since A/B tests are typically scheduled on a

weekly basis and are not required to provide results in real-time, they are good candidates

for migration from the expensive conventional platform to a more affordable architecture,

such as Hadoop HADOOP.

CAS description: A corporate Hadoop cluster has impressive, but still finite com-

putational capabilities. The total amount of the resources in the cluster is fixed once the

cluster setup is complete. Each job submitted to a Hadoop cluster needs to be optimized to

be able to effectively use those limited resources. One way is to use as many resources as

1THIS WORK WAS PARTIALLY ACCOMPLISHED WHILE BEING AT EBAY INC

73

possible in the expectation to decrease the time for execution of a job. However, hundreds

of A/B tests need to be run concurrently, and Hadoop resources need to be shared between

those jobs. Even a single A/B test may require as many as 10-20 MapReduce jobs to be

executed at once. Each of these jobs may need to process terabytes of data, and thus even

a single A/B test can introduce substantial cluster load. Some jobs may be dependent on

other jobs. Thus for optimization purposes, we need to consider all jobs which belong to

the same A/B test as a whole, not as independent processes. In addition, each job has to

co-exist with other jobs on the cluster and not compete for unnecessary resources.

What we are trying to optimize:

• minimize the execution time of a typical A/B test on Hadoop;

• optimize resource usage for each job, thus our A/B test can co-exist with other tasks;

The results reported in this paper were obtained in a pilot project to assess the feasi-

bility of migrating A/B testing from Teradata + SAS analytics infrastructure to Hadoop.

Preliminary work was conducted at eBay in the Fall 2011. A month-long A/B test exper-

iment execution and cluster resource monitoring was completed in the Fall 2012. All our

experiments were executed on Ares Hadoop cluster at eBay, which in spring 2012 had 1008

nodes, 4000+ CPU cores, 24000 vCPUs, 18 PB disk storage Parikh [2012]. The cluster uses

capacity scheduler. All our analytics jobs were implemented using Apache Hive.

Consider an example Hive job, repetitively executed on Hadoop, as shown in Figure

4.1. We monitored the amount of resources (here - the number of map slots) used by the job

together with total map slot usage in the entire Hadoop cluster. The upper plot shows how

many map slots were in use in the entire Hadoop cluster during the experiment. The bottom

plot shows how many map slots our sample MapReduce job received during the execution.

We observe that when the cluster is becoming busy, MapReduce jobs have difficulty accessing

desired amount of resources.

There are three major contributions we provide:

1. empirical evidence that each MapReduce job execution is impacted with the load on the

Hadoop cluster, and this load has to be taken into consideration for job optimization

purposes

74

0

1

2

3

4
x 10

4

to
ta

l
m

a
p

 s
lo

ts

1.47 1.48 1.49 1.5 1.51 1.52 1.53 1.54

x 10
5

0

500

1000

1500

2000

2500

3000

time, s

jo
b

 m
a

p
 s

lo
ts

Figure 4.1: A/B test execution monitoring. Top plot: map slot usage in the entire cluster.

Bottom plot: map slot usage by the A/B test jobs

2. based on our observations, we propose a probabilistic extension for MapReduce cost

model

3. we provide an algorithm for optimization of concurrent Hive/MapReduce jobs using this

probabilistic cost model

4.1 APPLYING ROCAS SCHEMA TO THE PROBLEM

When we get access to a very powerful computational resource, we want to use all its ca-

pabilities to obtain more accurate results (use more data, or more variety of data), and to

get them faster (usually, to use more computational resources). It is obvious, that at some

point the users may use all its capacity. Moreover, many jobs are scheduled ad-hoc, which

may cause abrupt spikes in capacity usage. This poses a challenge for efficient scheduling of

jobs on a cluster, because certain parameters for MapReduce jobs have to be set before the

job gets executed, and those parameters cannot be adjusted as the the job is being executed.

Moreover, some jobs depend on the completion of other jobs, and this piece of information

75

was not possible to add to the scheduler at the time, when this work was performed.

Thus being said, we need to address those challenges in order to provide more efficient

execution pipeline. And here are the steps which we apply to this problem.

• features from raw data stream: there are a lot of parameters, which influence job

execution. But ultimately it boils down to how many resource slots a job can receive.

Which is a subject to dynamic resource allocation. We need to align time series of

resource usage with the job execution, and compute a derived value, which corresponds

to how much data can be processed on this particular cluster in a unit time.

• system constraints: we understand, that cluster has limited capacity. This comes for

two reasons : queue capacity limits and whole cluster capacity limits. When a cluster

has spare resources, a queue may borrow extra resources from those unused resources

(soft limit). When a cluster is in heavy use, a queue provides a portion of the resources,

specified at cluster configuration time (hard limit). And the more jobs we submit, the

more those resources being re-distributed between jobs, which affects job execution time

• cost model: there are many hadoop / mapreduce cost models out there, trying to

capture in very detail cluster performance. However, since everything boils down to

resource allocation for each job, and the data size for each job, we can use an approximate,

however significantly more simple formula, which capture those relations

• relaxation: given that there are dependencies between jobs, some jobs need to compute

their results as early as possible, while the results from other jobs are needed much later

in the process. Thus, we can run these jobs as lower priority ones, in the shadow of the

execution of the main jobs. These ”shadow” jobs become resource scavengers, because

they use only those resources, which are not used by other, higher-priority jobs. Thus we

revoke resources from the ”shadow” jobs. We care only that they get completed before

the time, when we need their results. Yet, we do not care much about how long exactly

it will take for those jobs to get completed.

76

H
D

FS

1 2

1

2

3

4

buffer
memory

input
split

H
D

FS
spills merged

spills

ot
he

r
m

ap
pe

rs

input
split

map 2

input
split

map 1 reduce 1

reduce 2

mergeshuffle

Figure 4.2: MapReduce execution schema

4.2 BACKGROUND

Apache Hadoop is a general-purpose framework for distributed processing of large data

sets across clusters of computers using a simple programming model. It is designed to

scale up from a single server to thousands of machines, each offering local computation and

storage. Hadoop provides the tools for distributed data storage (HDFS: Hadoop distributed

file system Shvachko et al. [2010]) and data processing (MapReduce). Each task submitted

to a Hadoop cluster is executed in the form of a MapReduce job Dean and Ghemawat [2008],

as shown in Figure 4.2. JobTracker HADOOP is the service within Hadoop that farms out

MapReduce tasks to specific nodes in the cluster. The JobTracker submits the work to the

chosen TaskTracker nodes. TaskTracker is a node in the cluster that accepts tasks - Map,

Reduce and Shuffle operations - from a JobTracker. A TaskTracker is configured with a

set of slots (map and reduce), which indicate the number of tasks that it can accept White

[2010] at a time. It is up to the scheduler to distribute those resources between MapReduce

jobs.

There are several ways to write MapReduce jobs. The most straight-forward one is

to write a Java program using MapReduce API. While this method provides the highest

data manipulation flexibility, it is the most difficult and error-prone. Other tools, such as

functional languages (Scala Scala), data processing workflow (Cascading Cascading),

77

and data analysis languages (Pig Pig, Hive HIVE) help to cover the underlying details

of MapReduce programming, which can speed up development and eliminate typical errors.

Apache Hive was chosen as a tool for these experiments because of its similarity with SQL,

and to eliminate the need for low-level programming of MapReduce jobs.

4.2.1 MapReduce data flow

Every MapReduce job takes a set of files on HDFS as its input and, by default, generates

another set of files as the output. Hadoop framework divides the input to a MapReduce job

into fixed-size pieces called splits. Hadoop creates one map task for each split HowManyMap-

sAndReduces. Hadoop takes care of scheduling, monitoring and rescheduling MapReduce

jobs. It will try to execute map processes as close as possible Shvachko et al. [2010] to the

data nodes, which hold the data blocks for the input files. We cannot explicitly control the

number of map tasks HowManyMapsAndReduces. The actual number of map tasks will be

proportional to the number of HDFS blocks of the input files. It is up to the scheduler to

determine how many map and reduce slots are needed for each job.

Our Hadoop cluster was configured to use capacity scheduler CapacityScheduler. The

whole cluster was divided into a set of queues with their configured map and reduce slots

capacities. Hard capacity hard limits specify the minimum number of slots each queue will

provide to the jobs. Soft limits specify how much extra capacity this queue can take from

the cluster provided so that the cluster resources are under-utilized. When the cluster gets

fully loaded, those extra resources will be reclaimed for the appropriate queues. In Figure

4.1, we observe the effect of this reclamation: when the total load on the cluster reached its

maximum: MapReduce jobs in our queue were not able to obtain as many resources as they

had before. A similar effect happens when we submit yet another job to a queue: each job

from that queue will receive less resources compared to what they had before.

4.2.2 Concurrent MapReduce optimization

Let us assume that we submit MapReduce jobs to a Hadoop cluster with a queue Q, which

has limits: M - max. number of map slots and R - max. number of reduce slots. At first, let

78

m
a

p
re

d
u

c
e

t1 t2

M

R
t11 t21

(a)

m
ap

re
d
u
ce

t1 t2

M

R
t11 t21

(b)

m
a

p
re

d
u

c
e

t1 t2

M

R
t21t11

(c)

A B C

D

(d)

Figure 4.3: Examples of execution schedule for MapReduce jobs: (a) Completely sequential

schedule (b) Interleaving schedule (c) Concurrent schedule for independent jobs (d) Concur-

rent schedule for jobs with dependencies

us have 2 independent MapReduce jobs (colored in red and blue). We will look at different

scenarios for those jobs to execute. If we submit them sequentially, as shown in Figure

3(a), then the cluster resources will remain idle for much of the time. When the map part

for the red job is over, map slots will remain idle while Hadoop is processing the reduce part

for the job. From 3(a):t11 to 3(a):t1 map slots are idle.

The most obvious solution to improve resource utilization is to monitor the progress of

running jobs and launch new jobs when the cluster is idle. Figure 3(b) demonstrates this

principle. At time 3(b):t11, when the map part of the red job is complete, the blue job gets

launched. Thus, from 3(b):t11 to 3(b):t1 the Hadoop cluster has its map and reduce slots

utilized. This schedule will reduce the total execution time: 3(b):t2 < 3(a):t2, as shown

in Zhang et al. [2012a]. In Verma et al. [2011a], they report a map slot utilization diagram

when running a simulation for MapReduce job execution. Map task execution may have long

tails where most of the tasks have been completed, however the whole job is waiting for the

last few map tasks. This situation is a variation of resource starvation problem Tan et al.

[2012]. Another possible improvement to the scheduling scenario shown in Figure 3(c), is

79

when we submit all independent jobs simultaneously. This approach will maximize map and

reduce slot usage. However, if some of the jobs are interdependent, this approach may lead

to a very interesting problem.

Consider an example scenario from Figure 3(d). Here, task D consumes the output from

tasks B and C. Task A is completely independent of tasks B,C, and D. The optimization in

this scenario is difficult because it depends on all 4 tasks and how many resources provided

by Hadoop. In a typical setup for an A/B test, each of those four tasks is big enough

that, on its own, it can occupy all map and reduce slots in the queue. If we apply

the optimization logic from Figure 3(c), then task A will consume a portion of the map

and reduce slots, thus for tasks B and C will take longer to finish their work and task D

will start (and finish) later. If task A is relatively quick, then we would want to implement

optimization from Figure 3(b) when task A launches its map jobs after tasks B and C

finished their map part and then execute the reducer jobs. If task A is relatively long,

then we would like to use a scheduling scenario from Figure 3(c) when task A is launched

together with B and C, but receives a lower priority and uses only spare map slots and does

not slow down B and C. There are many possible scenarios in this 4-task problem, and the

solution to those are often non-trivial. We need to consider that:

1. other users submit their MapReduce jobs to the cluster and each job which we submit

receives less resources than it is asking for

2. there is no way to explicitly control the amount of resources for each MapReduce job

when using Capacity Scheduler

Launching concurrent MapReduce jobs helps to utilize Hadoop resources more effectively.

Yet each of those jobs may influence other jobs running on the cluster. The scenario pre-

sented in Figure 3(d) is a very typical one for analytics jobs. We will return to concurrent

MapReduce job optimization with data dependencies later in the thesis. In the next sub-

section, we will explore existing approaches to deal with MapReduce optimization together

with the applicability limits of those solutions for our analytics task.

80

4.2.3 Current approaches for Hadoop / MapReduce optimization

We can group existing efforts in MapReduce jobs optimization into the following categories:

scheduler efficiency, Hadoop and MapReduce (MR) system parameters optimization, and

MR execution modeling.

4.2.3.1 Hadoop scheduler optimization The default Hadoop scheduler is FIFO White

[2010]. However, this may not be the best scheduler for certain tasks. The existing work

in scheduling optimization addresses some of the most typical issues with execution opti-

mization of MR jobs. One sample issue is resource sharing between MR jobs (Capacity

scheduler CapacityScheduler, Fair Scheduler Zaharia et al. [2009]), so one job does not sup-

press the execution of other jobs or does not occupy too many of the resources. Rao and

Reddy [2012] provides a summary of some of the existing schedulers for Hadoop. Here we

provide a summary of the existing approaches to improve scheduling for Hadoop and how

their optimization is applicable to our task of A/B testing.

Resource-aware scheduler Yong et al. [2009] suggests using fine-granularity scheduling

through monitoring resources usage (CPU, disk, or network) by each MR job. Delay schedul-

ing Zaharia et al. [2010] is trying to address the issue of data locality for MR job execution.

Coupling Scheduler Tan et al. approach is aimed at reducing the burstiness of MR jobs by

gradually launching Reduce tasks as the data from the map part of a MR job becomes avail-

able. These schedulers treat each MR job as completely independent of one another, which

is not true for our case. In addition, these schedulers say nothing about how to re-distribute

Hadoop resources between multiple concurrent MR jobs.

Verma et al. [2011a] introduced the ”earliest-deadline-first” approach for scheduling MR

jobs. The proposed approach (SLO-based scheduler) provides sufficient resources to a pro-

cess, thus, it can be finished by the specified deadline. The authors report in the thesis that

when the cluster runs out of resources, then the scheduler cannot provide any guarantees

regardless of process execution time. This happens because SLO-based scheduler is backed

by FIFO scheduler Zhang et al. [2012b]. Thus, first, we still need to perform off-line calcu-

lations about the optimal timing for each MR task. Verma et al. [2011a] says nothing about

81

how to undertake this optimization, when there are many inter-dependent MR jobs, each of

which is big enough to use all of the cluster resources available. Second, this approach is

based on FIFO scheduler, therefore it provides the capability to control resources for each

process, but this is not available for capacity scheduler which is running on our Hadoop

cluster. And third, this approach does not consider the background Hadoop load caused by

other processes, which can be launched at any arbitrary time.

Verma et al. [2012] considers optimization of a group of independent concurrent MR

jobs, using FIFO scheduler with no background MR jobs running (from other users) on the

cluster. We use capacity scheduler instead of FIFO scheduler on our cluster, and we cannot

explicitly control resources assignment for each MR job. Typically A/B testing jobs show

strong dependency between each other, and this dependence impacts the performance.

Wolf et al. [2010] presented a scheduler which tries to optimize multiple independent MR

jobs with given priorities. It functions by providing requested amount of resources for jobs

with higher priority, and redistributes the remaining ”slack” resources to jobs with lower

priorities. Wolf et al. [2010] provides batch optimization for a set of MR jobs where each job

is assigned its priority. This is not true for our case: other users submit their jobs whenever

they want and can take a significant portion of the available resources. Thus, the approach

has to take on-line load into consideration.

4.2.3.2 Hadoop/MapReduce system parameter optimization There were several

approaches to model Hadoop performance with different levels of granularity. For instance,

Wang et al. [2009] considers a detailed simulation of the Hadoop cluster functionality. It

requires the definition of a large number of system parameters; many of them may be not

available to a data analyst. Similarly, Herodotou [2011] is based on quite detailed knowledge

of the cluster set up. Herodotou et al. [2011] and Herodotou and Babu [2011] approaches

relax the need for up-front knowledge of your cluster system parameters and provide a visual

approach to investigate bottlenecks in system performance and to tune the parameters.

While these approaches address very important issues of MR job and Hadoop cluster

parameter tuning, they do not address a more subtle issue: concurrent job optimization for

a cluster which is shared between many users, executing all sorts of MapReduce jobs. These

82

approaches do not consider how to adjust Hadoop/MR parameters so that many MR jobs

can effectively co-exist.

4.2.3.3 MapReduce cost model While MR job profiling Herodotou and Babu [2011]

can help to optimize a single job, it is much more practical to have a simplified generative

model which would establish the relationship between the MR job execution time, the size

of the input dataset and the amount of resources which a MR job receives. Thus, we can

calibrate this model once by executing a few sample MR jobs, measure their execution time,

and use the obtained model for a quick approximate prediction of a MR job completion time.

Verma et al. [2012], Tian and Chen [2011], Verma et al. [2011b], Yang and Sun [2011],

Herodotou [2011], Wang et al. [2009] attempt to derive an analytical cost model to approx-

imate MR execution timing. Each of these approaches specifies an elementary cost model

for data processing steps in MR and then combine elementary cost estimates in an overall

performance assessment. It is interesting to mention, that different approaches have differ-

ences even with this simplified model. For instance, Verma et al. [2011b] and Verma et al.

[2012] do not account for sorting-associated costs and the overhead required to launch map

and reduce jobs as in Tian and Chen [2011]. These differences are associated with the fact

that MR framework can launch in-memory or external sorting White [2010]. And thus, cost

models obtained for different sizes of the data set will differ.

The Hadoop/MR framework has a substantial number of tuning parameters. Tuning

some of those parameters may have a dramatic influence on the job performance, while

tuning others may have a less significant effect. Moreover, some of the tuning may have a

non-deterministic impact, if we optimize the usage of a shared resource. For instance, assume

that after the job profiling from Herodotou et al. [2011] we decided to increase the sort buffer

size for a MR job. Let us do the same for every MR job. If, after this buffer tuning, we

launch too many MR jobs at once, some nodes may run out of RAM and will start using

the disk space for swapping to provide the requested buffer size. Thus, from time to time,

instead of speeding up, we will slow down concurrent job execution. This non-deterministic

collective behavior has to be reflected in the cost model.

We based our cost model on the approaches proposed in Tian and Chen [2011] and Yang

83

and Sun [2011], to reflect the deterministic characteristics of MR execution. We extend

those models by adding the probabilistic component of MR execution. In Section 4.3, we

elaborate on the MapReduce cost model and describe how we use it to estimate our Hadoop

cluster performance.

4.2.3.4 Applicability limits of the existing solutions towards large-scale ana-

lytics tasks While the Hadoop community has made great strides towards Hadoop/MR

optimization, those results are not exactly plug-and-play for our A/B testing problem. Our

production cluster has capacity scheduler running and we cannot change that. Approaches

assuming any other scheduler cannot be directly applied here. We cannot explicitly con-

trol the amount of resources for each MR job, because capacity scheduler controls resource

sharing dynamically. We can only explicitly set the number of reduce tasks for a MR job.

Our results were obtained for Hive using speculative execution modelWhite [2010], thus

Hadoop can launch more reduce tasks than we specified. Production analytics jobs need to

be executed on a real cluster which is shared between many people who submit their jobs at

arbitrary times. Thus, any optimization strategy disregarding this external random factor

is not directly applicable.

4.3 UPDATED MAP-REDUCE COST MODEL

Assume that we have a MR job, which takes M blocks of data as its input and a user specified

R reduce tasks to be executed. We have m slots available to run map tasks and r slots to

run reduce tasks. Using the notation from Tian and Chen [2011], to complete the map phase

we need dM
m
e rounds to process it, since in one cycle Hadoop can execute only m map tasks.

Following the same reasoning, it takes dR
r
e cycles to complete the reduce part and the total

MR execution time becomes Equation 4.1:

T = dM
m
eFm + dR

r
eFr + Θ(M,R) (4.1)

84

0

500

1000

1500

2000

2500

3000

m
ap

 s
lo

ts

1.4 1.6 1.8 2 2.2 2.4 2.6
x 104time,s

Figure 4.4: Upper plot: Map slots’ usage for MR jobs. Lower plot: indicates boundaries for

each MR job

where Fm is the time required for one map task to complete, Fr is the time required for one

reduce task to complete, and Θ(M,R) -is the cost associated with the overhead of launching

map and reduce tasks. We are interested in processing a significant amount of data, thus

M >> m. For practical purposes, we can replace

dM
m
e ≈ M

m
(4.2)

Figure 4.4 shows how many map slots were assigned to the same MR job over time when

it was recursively executed. During a MR job execution, resource usage is not constant and

depends on how many resources are available. Thus, we should replace parameter m with

its effective value, shown in Equation 4.3

dM
m
e ≈ M

1
N

∑
mi∈m+

mi

=
M

Im
; ||m+|| = N (4.3)

where m+ is a set of measurements during a single MR job when map slot usage by this

MR job was > 0. Similar reasoning goes for dR
r
e. Consider Figure 4.5 which shows a part

of the experiment on reduce slots’ usage. In this experiment, we sequentially executed the

same Hive job, asking for different numbers of reduce tasks to be executed: [50, 100, 200,

300, 500, 700, 900]. The red line on Figure 4.5 shows the number of reducers we would

expect to be executed for the job. The black line shows the actual number of reducers which

85

1.4 1.6 1.8 2 2.2 2.4 2.6
x 104

0

200

400

600

800

1000

1200

time,s

re
du

ce
 s

lo
ts

observed
expected

Figure 4.5: Reduce slots’ usage as a function of Hadoop cluster load and speculative execution

were executed. We see that the number of reducers is not constant: it changes during the

reduce part. One of the reasons is that the cluster may be busy during the job execution

and some of the reducers will be reclaimed back to the pool.

We observe examples when we aimed to use 900 reducers but received only about 100.

It also happens that Hadoop launches more reduce tasks than we asked for. This happens

because Hadoop detects that some of the reducers made less progress than the majority, and

launches copies of slow running reducers.

Based on this reasoning, we transform dR
r
e into Equation 4.4. Here the denominator is

the area under the reduce slots usage curve. To eliminate counting of extra reducers (from

speculative execution), we limit the maximum number of reduce slots to R. For example, if

we requested 300 slots but at some point we got 350 slots, we would count only 300.

dR
r
e ≈ R

1
N

∑
ri∈r+

min(ri, R)
=
R

Ir
; ||r+|| = N (4.4)

where r+ is a set of measurements during a single MR job where reduce slot usage by this

MR job was > 0. Combining Equations 4.1,4.2, and 4.4, we obtain Equation 4.5

T = β0 + β1
M

Im
+
R

Ir

(
β2
kM

R
+ β3

kM

R
log(

kM

R
)

)
+ β4M + β5R (4.5)

In Equation 4.5 β0 is only a constant; β1Mm is the time required to read the MR job input;

kM is the size of the output of the map part of the MR job, k ≥ 0; β2
kM
R

is the time needed

86

to copy the data by each reducer; β3
kM
R
log(kM

R
) is the time required to merge-sort data in

each reducer; β4M + β5R is the cost associated with the overhead of launching map and

reduce tasks, as suggested in Tian and Chen [2011]. However, from the dynamics of map

and reduce tasks shown in Figure 4.4 and Figure 4.5, it is not clear which number should

be put in the calculation. We will assume that this extra cost is relatively small compared

to the timing caused by the actual data processing, and will omit this overhead part, like,

for instance, in Verma et al. [2011a]. We obtain Equation 4.6.

T = β0 + β1
M

Im
+ β2

kM

Ir
+ β3

kM

Ir
log(

kM

R
) (4.6)

4.3.1 Probabilistic resource allocation

Job completion time in Equation 4.6 depends on how many resources a MR will receive.

We conducted 150 iterations of the same cycle of MR jobs, each cycle consists of 7 sequential

MR jobs, asking for [50, 100, 200, 300, 500, 700, 900] reducers, totaling in 1050 jobs

execution and 9-day duration.

Resource allocation for MR jobs are shown in: Figure 4.6 for map slots allocation and

Figure 4.7 for reduce slots allocation. From Figure 4.6, we observe that in probability,

each MR job received the same number of map slots. This happens because we cannot

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

map slots

C
D

F

50
100
200
300
500
700
900

Figure 4.6: CDF plot for map slots’ allocation to a MR job as a function of requested reducers

87

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reduce slots

C
D

F

50
100
200
300
500
700
900

Figure 4.7: CDF plot for reduce slots’ allocation to a MR job as a function of requested

reducers

explicitly control map slot assignment and must rely on the scheduler to obtain resources.

The situation is completely different with the reduce slots: we can explicitly ask for a specific

amount of the resources. However, even if we ask for more slots, it does not mean that we

will receive them. If we ask for fewer resources, most likely the scheduler will be able to

provide those to a MR job. In Figure 4.7, when we ask for 50 reduce slots, in 90% of cases

we will receive those 50 slots. However, when we ask for 900 reducers, in 90% of cases we will

receive less than 550 reducers. From Equation 4.6, the volatility of the MR job completion

time will increase when we ask for more reduce slots.

Figure 4.8 provides another perspective on the volatility of the MR execution. We have

plotted the average completion time of a MR job as a function of the number of requested

reduce slots together with 95% interval of the observed measurements. We observe that for

jobs requesting 300 reducers or more, the average completion time remains almost constant.

However the 95% upper bound of the execution time is increasing. This time increase is

connected to the dynamic nature of Hadoop cluster load: some of the nodes which execute our

MR job reduce tasks may arbitrarily receive extra load (other users submit their MR jobs).

Speculative execution White [2010] was introduced to Hadoop to mitigate this problem,

however it does not solve the issue completely. The higher the number of the reducers

requested, the higher the chances are that at least one reducer will get stuck on a busy node.

88

To reflect this effect we propose to alter the MapReduce cost model for Equation 4.6 into

Equation 4.7.

T = β0 + β1
M

Im
+

(
β2
kM

Ir
+ β3

kM

Ir
log(

kM

R
)

)
∗ (1 +DR(R)) (4.7)

where DR(R) is probabilistic extra delay, associated with the chance that a reducer gets stuck

on a busy node. For each R, DR(R) is a set, containing pairs (delay, p) - shows possible

extra delay together with the probability to observe this extra delay. At first, we assume that

DR(R) = 0 and obtain the coefficients β for Equation 4.7. Then we add [70..95] interval

of all measurements and learn that DR(R).

4.3.2 Functional dependencies for resource allocation

Figure 4.9 shows how map resources were assigned to a local queue as a function of the total

cluster map slot usage. We observe that the distribution of the measurements does not change

significantly until the total cluster load reaches approximately 3 ∗ 104 map slots. Below that

threshold, queue load and total cluster load seem to be uncorrelated, e.g.: p(Q|HC) = p(Q),

where p(Q) is the probability to observe certain queue load, and p(HC) is the probability

to observe certain total Hadoop cluster load. When the cluster load becomes higher than

100 200 300 400 500 600 700 800 900

400

600

800

1000

1200

1400

1600

1800

requested reducers

tim
e,

 s

avg time
lower boud
upper bound

Figure 4.8: MapReduce job completion time as a function of requested reduce slots: (average

time, upper and lower bounds for 95% interval)

89

to
ta

l c
lu

st
er

 lo
ad

0.5

1

1.5

2

2.5

3

3.5

x 104

queue load
500 1000 1500 2000 2500 3000 3500

Figure 4.9: Map slot usage in a queue as a function of total cluster load

3 ∗ 104 in Figure 4.9, we can clearly see that the total cluster load influences the number

of slots which a queue will get: Q← HC, and p(Q|HC) 6= p(Q).

Obviously, the amount of the resources which a MR job obtains depends on how many

resources in a queue are used by other jobs, and whether map slots can be borrowed from

the rest of the cluster. If we denote rJ to be the amount of resources for a job J, then

rj ← HC,Q. For given values of hci - particular Hadoop load, and qi - particular queue

resource usage, p(rJ) = p(rJ |qi, hci).

Figure 4.9 is intrinsically 3D, where the 3rd dimension - the number of map slots which

a MR job obtained, is collapsed. Hadoop load analysis provides us with (Hadoop load,

queue load, MR resources) tuples, which allow us to build a probabilistic model to

describe how many resources we would receive given what we know about the total cluster

load and other jobs in the queue, as shown in Equation 4.8.

p(rJ) =
∑

hci∈HC

∑
qi∈Q

p(rJ |qi, hci) ∗ p(qi|hci) ∗ p(hci) (4.8)

Figure 10(a) and Figure 10(b) show how reduce resources are being distributed in

a queue as a function of the total reduce usage in a cluster. What we conclude is that the

nature of the distribution changes depending how many reducers we are seeking. Thus, we

90

to
ta

l c
lu

st
er

 lo
ad

1000

2000

3000

4000

5000

6000

7000

8000

9000

queue load
100 200 300 400 500 600 700 800 900

(a)

to
ta

l c
lu

st
er

 lo
ad

2000

4000

6000

8000

10000

12000

queue load
200 400 600 800 1000

(b)

Figure 4.10: Reduce slot usage in a queue as a function of total cluster load and number of

requested reducers: (a) here 50 reducers were requested (b) here 900 reducers were requested

can derive Equation 4.9 for probabilistic reduce resource allocation, similar to Equation

4.8:

p(rJ , R) =
∑

hci∈HC

∑
qi∈Q

p(rJ |qi, hci, R) ∗ p(qi|hci, R) ∗ p(hci) (4.9)

where parameter R - specifies how many reducers we actually asked for.

4.4 CASE STUDY: MIGRATING A/B TEST FROM TERADATA TO

HADOOP

In this thesis, we focus on one particular example of Big Data analytics: large-scale A/B

testing. We performed an A/B test for eBay Shopping Cart dataset. An outline of the

test is shown in Table 4.1. Originally this test was executed using both Teradata and

SAS. Teradata would pre-process data and send the result to a SAS server, which would

finalize the computations. We start with an overview of Teradata - a high-performance data

warehousing infrastructure, and then move to the discussion of the A/B test schema.

91

Table 4.1: A/B test schema

procedure equivalent SQL query engine

extraction A = t1 1 · · · 1 t5
Tera-

data
pruning A1 = select A.c1, . . . where . . .

aggregation A2 = select stddev(A1.c1), . . . group by . . .

capping Update A1 set A1.c1 = = min(A1.c1, k ∗ A2.stdc1), . . .

SASaggregation A3 = select stddev(A1.c1), . . . group by . . .

lifs, CIs computed using SAS

Table 4.2: Data set size

table Original number Number of tuples

of tuples after pruning

t1 9,125 48

t2 429,926 215,000

t3 2,152,362,400 533,812,569

t4 4,580,836,258 263,214,093

t5 6,934,101,343 3,250,605,119

4.4.1 Teradata

Teradata Teradata is an example of a shared-nothing Stonebraker [1986] massive parallel pro-

cessing (MPP) relational database management system (RDBMS) Teradata [2002], Pfeffer.

A simplified view of its architecture is shown in Figure 4.11. The key architecture compo-

nents of Teradata are: PE - parsing engine; AMP - Access Module Processor; BYNET -

communication between VPROCs.

AMP and PE are VPROCs - virtual processors, self-contained instances of the processor

software. They are the basic units of parallelism DeWitt et al. [1992]. VROCs run as multi-

threaded processes to enable Teradata’s parallel execution of tasks without using specialized

physical processors. They are labeled as ”Virtual Processors” because they perform the

92

A
M

P
1

A
M

P
2

A
M

P
3

P
E

AMP1
AMP2
AMP3

A
M

P
4

A
M

P
5

A
M

P
6

P
E

AMP4
AMP5
AMP6

VPROCS VPROCS

BYNET

Figure 4.11: Teradata

similar processing functions as physical processors (CPU). In Teradata architecture, each

parallel unit (AMP) owns and manages its own portion of the database Pfeffer, DeWitt and

Gray [1992]. Tuples are hash-partitioned and evenly distributed between AMPs. And the

workload for joining, aggregates calculation and sorting can be achieved in a way that the

load redistributes equally between AMPs. As with any RDBMS, Teradata uses indexing

Teradata [2002] on tables, which allows speeding up data access.

4.4.2 Test schema

While select, join and aggregate computations are the routine RDBMS operations, the real

challenge is the size of data in tables t1, . . . t5, which is shown in Table 4.2 as the original

number of tuples. In our sample A/B test, all the heavy data processing was executed on

Teradata, and a much smaller data set would be sent to SAS. Thus, it is more important to

compare the Teradata part of the A/B test with its Hadoop equivalent.

The Teradata part of the A/B test from Table 4.1 can be translated 1-to-1 into Hive

queries. The SAS part of the A/B test cannot be translated completely into Hive. We use

PHP scripting language to finalize the computations which cannot be translated in Hive.

However, PHP scripts would perform only a very small portion of final data assembly.

93

B	 A	 C	

G	

F	

D	 E	

I	

J	

H	

K	

Figure 4.12: Data extraction, pruning, and aggregation schema

The schema in Table 4.1 possesses strong dependencies between different execution

steps. For instance, we cannot proceed with capping unless we computed the aggregates of

the dataset. Or, we cannot compute lifts and confidence intervals unless we capped the data.

After data dependency analysis, we transform the Teradata part from Table 4.1 into the

diagram, shown in Figure 4.12. Letters A through K denote the data processing operations,

as shown in Table 4.3. So now we can proceed with the comparison.

Table 4.3: A/B test data loading: extraction, pruning, and aggregation

A = t4 1 σ(t1) B = σ(t5) C = σ(t2) D = σt3.c=v3(t3) E = σt3.c 6=v3(t3)

F = A 1 B, G = F 1 C, H = G 1 D, I = G 1 E

J = sum(. . .), count(. . .) from H,

K = sum(. . .), count(. . .) from I

4.4.3 A/B test without explicit resource control

This part of the work was completed in the Fall, 2011. We run sequential and parallel

versions of data loading routines from Table 4.3 on Hadoop and compare the obtained

results with Teradata timing. In these experiments, we do not control the amount of

resources (number of reduce tasks per Hive job). We let Hive to infer this based

on the data size for each job. However, all of the experiments were performed during

the weekends, when the queue to which we were submitting MR jobs, was completely free.

94

1 39 1 22 1 39 1320
50 80 50 29 50 80 1740

100 105 100 29 100 105 1740

1 1.591065 3.120574
14 70 50 1.90309 3.240549

100 2.021189 3.240549

14 3.623249

0

20

40

60

80

100

120

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 s

% of data in table t3

0

20

40

60

80

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 m

% of data in table t3

optimized

sequential

Figure 4.13: Timing for data extraction, pruning, and aggregation on Teradata

Each result was averaged over 10 executions.

In the first experiment, we execute data loading routines completely sequentially. In

the second experiment, we schedule those routines concurrently, preserving the data depen-

dencies between them, as shown in Figure 4.12. We launch jobs A, B, C, D, and E

simultaneously, and proceed with other jobs as the data becomes available.

We conducted experiments with different sizes of table t3 for data loading on both Hadoop

and Teradata. Data load timing for Hadoop is shown in Figure 4.14, and for Teradata is

1 39 1 22 1 39 1320
50 80 50 29 50 80 1740

100 105 100 29 100 105 1740

1 1.591065 3.120574
14 70 50 1.90309 3.240549

100 2.021189 3.240549

14 3.623249

0

20

40

60

80

100

120

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 s

% of data in table t3

0

20

40

60

80

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 m

% of data in table t3

optimized

sequential

Figure 4.14: Timing for data extraction, pruning, and aggregation on Hadoop

95

Data	 loading	 rou-nes	 	

Total	 A/B	 test	 -ming	 	

0	 50	 100	 150	 200	 250	

hadoop	

teradata+SAS	

!me,	 minutes	

0	 5	 10	 15	 20	 25	

hadoop	

teradata	

!me,	 minutes	

Figure 4.15: Timing for cart A/B test. top: time comparison of data loading routines,

executed on Hadoop and Teradata; bottom: time comparison for execution of the whole

A/B test on Hadoop vs Teradata+SAS

revealed in Figure 4.13. At first, we observe that sequential data loading on Hadoop takes

approximately 70 minutes (Figure 4.14) when table t3 contains 14 % of data. For concurrent

Hadoop loading routines, it takes approximately 20 minutes to execute the routines having

100% of data in table t3.

For Teradata, it takes only 2 minutes to load the data having 100% of the size of table

t3. However, the slope of the plot for Teradata in Figure 4.13 is much steeper than for

Hadoop in Figure 4.13. When the amount of the data in table t3 increases, execution

time for Teradata increases almost linearly. The reason is that data selection from the table

happens in the background of running other processes. Processes D and E in Figure 4.12

select data from the table and their results are required only in later stages of job execution.

In Figure 4.15, we compare the total timing to compute an A/B test using Hadoop

only with a combination of Teradata + SAS. While Teradata is about 10 times faster

than Hadoop to load the data, Teradata + SAS appears to be about 5 times

slower to compute the whole A/B test, than to do it on Hadoop.

96

B	 A	 C	

G	

F	

D	 E	 L	

(a)

C	

D	
E	

ΔtD	

ΔtE	

ΔtC	

T=0	

T=t	

T=t+Δt	

(b)

Figure 4.16: A/B test analysis: (a) Modified data loading routines for the A/B test (b)

Resources sensitivity explained

4.4.4 Applying stochastic optimization for A/B test

This part of the work was completed in the Fall, 2012. In this section, we will present our

combined optimization strategy. We will use all of the obtained knowledge about the job

dependencies, MR performance model and Hadoop cluster load. For evaluation purposes, we

will modify the data loading schema for the A/B test from Figure 4.12 into the one shown

in Figure 16(a). In this scenario, we added an extra job L which processes a substantial

amount of data, but the results of which are needed only at the later stages of the A/B test.

We would like to investigate how this extra job impacts the performance. To be able to use

stochastic optimization, we need the corresponding data sizes for each of these jobs. Those

numbers are shown in Table 4.4.

4.4.4.1 Resource sensitivity Before we proceed to the algorithm description, we need

to introduce the notion of resource sensitivity for a MR job. Assume that our task consists of

a few MR jobs with certain data dependencies between them, e.g. Figure 16(b). Resource

sensitivity shows how the task execution time changes if we reduce the amount of resources

for a particular job J. From the example in Figure 16(b): the task starts at T = 0 and

finishes at T = t. Now lets assume that we decrease the number of map or reduce slots for

97

a particular job J on ∆R, which may lead to the increase of the task execution time from

T = t to T = t+ ∆t. We use Equation 4.7 to predict a job completion time. Task resource

sensitivity for a particular job J is shown in Equation 4.10.

RS(J) =
∆t

∆R
(4.10)

In the example shown in Figure 16(b), RS(D) = RS(E) = 0 because the increase in the

execution time for jobs D and E does not influence the total timing: job C finishes its

execution later than jobs D and E (even after we reduce the amount of resources for jobs

D and E). However RS(C) > 0, because job C finishes its execution last, and any resource

reduction to job C increases the task total execution time.

4.4.4.2 Algorithm description The central idea for our stochastic optimization is to

find those MR jobs, in which results are needed much later during the A/B test execution and

which require fewer resources or can be assigned a lower execution priority. This idea comes

as a result of the discussion about the scalability of the A/B test data loading on Hadoop

in Figure 4.14. In capacity scheduler we cannot explicitly control map slot assignment to

a job. However, when we set a lower priority to a MR job, we force this job to use map

and reduce slots only when they are not used by other processes in the same queue from the

same user. When there are many users submitting their jobs to a queue, capacity scheduler

provides a share of a queue resources to each user. Thus, even the lowest priority Hive job

will obtain a portion of the resources.

All these considerations help us to derive Algorithm 2 for MR job optimization strate-

gies. When we apply Algorithm 2 to our modified A/B test as shown in Figure 16(a),

we note that jobs D, E, and L receive lower priority of execution. Also job L receives 150

reducer slots instead of 800 slots, originally determined by Hive based on the size of the data

input.

The result of this stochastic optimization is shown in Figure 17(a). The un-optimized

A/B test was executed 100 times; the optimized version of A/B test was executed 120

times. The first 50 iterations of both the un-optimized and optimized tests were executed

from Saturday night through Sunday. The remaining iterations were executed from Monday

98

Table 4.4: MapReduce job size

Job name Input size (TB) Output size (TB)

A 1.909100 0.002200

B 1.194800 0.201700

C 0.000014 0.000008

D 0.810000 0.004000

E 0.810000 0.006000

F 0.204000 0.002600

G 0.002600 0.002600

L 0.814800 0.002300

through Tuesday. In this way, we tried to measure the effect of stochastic optimization for

an A/B test on variation in Hadoop cluster load.

We observe that the optimized version of data loading may take take approximately 16%

less time to complete the task execution. Here, we count the optimization effect as the biggest

difference between two cumulative distribution functions CDF for both optimized and un-

optimized results. We divide this difference on the corresponding timing for un-optimized

1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

time,s

C
D

F

un−optimized
optimized

(a)

400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

C
D

F

time,s

un−optimized
optimized

(b)

Figure 4.17: CDF plots for: (a) Modified A/B test completion time (b) Job F start time for

the modified A/B test schema

99

input : job details; MR performance model Equation 4.8, 4.9, 4.7

output: reducer allocation per MR job in the task, priorities for each MR job

begin

1: (ri; pi)← Equation 4.8, 4.9 - resource probability

2: instantiate each MR job with resources rij ∼ size(MRj),
∑

j rij = ri

repeat

repeat

1: compute reducer resources sensitivity (RRS) ← Equation 4.10

2: add ∆R of reducers to those jobs with highest RRS

if total timing does not increase then
1: subtract ∆R reducers for those jobs with the lowest RRS

2: use Equation 4.7 to compute task total timing

end

until no improvement ;

foreach job ← test do

using Equation 4.10, compute map resources sensitivity (MRS), as if the

job was assigned lower priority

end

1: choose the job J with the lowest MRS

2: recalculate rij, timing as if job J lowered priority

if total timing did not increase then
lower priority for job J; recalculate rij, timing

end

until no improvement ;

1: repeat for each pair (Resourcesi, pi)

2: report resources assignment

end

Algorithm 2: Stochastic optimization for A/B test

schedule. This optimization effect happens because jobs D, E, and L from Figure 16(a) do

not interfere with the main execution line. And therefore jobs A, B, F, and G receive as many

100

0 0.5 1 1.5 2 2.5
x 104

0

10

20

30

40

hadoop map slots usage
op

tim
iz

at
io

n
ef

fe
ct

, %

Figure 4.18: Optimization effect for a modified A/B test schema as a function of total

Hadoop map slots usage

resources as available or they possibly can utilize and speed up the execution. Consider the

result from Figure 17(b), which shows how the start time for job F changes for optimized

and un-optimized scenarios. When jobs D, E, and L do not compete for resources with jobs

A and B, then A and B finish earlier and job F can start earlier. Meanwhile, jobs D, E, and

L obtain their resources when these are not in use by the higher-priority jobs.

Figure 17(a) displays a cumulative optimization effect. We would like to know the

effect of this optimization, depending on the load on a Hadoop cluster, for both map and

reduce slots usage. Figure 4.18 shows the effect of optimization strategies as a function of

map slot usage on the entire Hadoop cluster. Here Hadoop map slot usage was calculated

only during times when the A/B test jobs were using map slots. The experimental results

show the biggest optimization effect for higher levels of cluster load, which is a very

valuable contribution of this optimization. The reported value of 2.5 ∗ 104 was the highest

integral map slot usage on the cluster during our experiments.

A different optimization effect is observed regarding reduce slot usage on the cluster.

The improvement is at least 15% for higher reduce loads, but does not have a particular

pattern. The map part of the A/B test is doing most of the heavy data pre-processing for

each MR job, and the reduce part of a MR job receives a much smaller portion of the data.

Thus, it is more difficult to spot the exact optimization pattern.

101

0 1000 2000 3000 4000
5

10

15

20

25

30

hadoop reduce slots usage
op

tim
iz

at
io

n
ef

fe
ct

, %

Figure 4.19: Optimization effect for a modified A/B test schema as a function of total

Hadoop reduce slots usage

4.5 ACKNOWLEDGMENTS

We thank Kiran Patlolla and Jesse Bridgewater from eBay Inc, Christos Faloutsos from

Carnegie Mellon University, and Martijn de Jongh from the University of Pittsburgh for

valuable feedback on this work. We thank Tony Thrall, manager of the EDA team at eBay

Inc. for permission to publish the results of this study.

102

4.6 LESSONS LEARNED

In this chapter, we report on optimization strategies which can be applied to a broad class

of analytical tasks on Hadoop. We developed those strategies based on our experience of

migrating large-scale analytical tasks (e.g. A/B testing) from a traditional data-warehousing

infrastructure, like Teradata + SAS to an open-source Hadoop. Our optimization strate-

gies benefit from exploring data dependencies within the analytical jobs, together with the

probabilistic model of Hadoop cluster load. The effectiveness of our methods for a group of

independent MapReduce tasks requires further investigation.

In our experiments, we implemented MapReduce jobs using Apache Hive. However, the

obtained results are portable to any other implementation language.

In order to apply our strategies, a user must have enough privileges to perform Hadoop

load monitoring to calculate performance coefficients for Equation 4.7 and the probabilistic

Hadoop cluster load. As an option, those results can be optioned by the system administra-

tor, and provided upon request. However, Hadoop load time series are crucial to derive the

optimization strategies.

Our results are obtained for a Hadoop cluster using capacity scheduler. Optimization

results provided in this thesis may not be 1-to-1 applicable to those clusters running different

scheduling mechanisms. While the performance Equation 4.7 would remain valid, the

validity of the Algorithm 2 is yet to be confirmed for other schedulers.

However, what if we go even further in the task of CAS optimization? For instance, what

if we have a social multi-agent system, e.g. eBay marketplace. And the task is to improve

the this system. Where would we start? How would we decide what needs to be optimized

? This task is similar to cluster resource optimization, but there are some differences. At

first, there is very big social component and less defined optimization parameters. The social

component leads to even higher number of the parameters. Moreover, this also leads to a

question of how to define the state-space in this task, and how to define the optimization

goals.

103

5.0 SESSION MODELING TO PREDICT ONLINE BUYER BEHAVIOR 1

All major internet companies use controlled experiments (randomized experiments, A/B

testing) Kohavi et al. [2009b] to learn about how well their new products / features /

algorithm updates perform before making them available to all users Kohavi et al. [2009a].

However, despite its benefits, A/B testing is not a perfect tool, and does not solve every

problem Kohavi et al. [2007]. For instance, A/B tests do not directly show the root

causes of the problem. A new feature may result in poor visual formatting or an error

in the page functionality in certain web browsers. These errors may drive buyers away from

purchasing. A/B test may reveal negative outcome, but it will not identify the root cause of

it. Also A/B tests show only what is taking place at the current moment for the

particular selected population sample. It cannot predict the effect on a market place

in the long run. And we also have to limit the duration of an A/B test: there are always

more tests waiting to be scheduled.

In this chapter, I explore the feasibility of augmenting experimentation by predicting the

behavior of buyers in the eBay marketplace. This prediction would allow us to address one

of key business questions: how a certain feature will influence the whole marketplace in a

few weeks or months from its launch time 2.

CAS description: an online marketplace, where users buy, sell, check items, and con-

tact sellers to verify item details and shipment policies.

What we are trying to optimize: the accuracy of predicting buyer purchase activity

1THIS WORK WAS PARTIALLY ACCOMPLISHED WHILE BEING AT EBAY INC
2This work summarizes our exploration towards the possibility of long-term marketplace prediction, and

does not reflect current production practices at eBay Inc.

104

5.1 APPLYING ROCAS SCHEMA TO THE PROBLEM

Following the same rule as the previous sections, I will show how the steps from Section

1.3 can be applied to help address this problem.

• statistics from raw data streams. This bullet point is definitely running ahead of

time, before the formal introduction of this technique in Session 5.5. However, this is

one of the corner stones of the principle, which finally allowed us to make buyer prediction

a feasible task. In Section 5.4 I showed, that without session summarization we hit the

problem of data sparsity: people use slightly different sequences of actions to accomplish

the same goal. We need to account for this variability. We do this by working with

session summaries instead of raw sequence of observed events. One assumption, which

we rely on, is that actions in a single session are related to each other, and represent one

intent. We will question the correctness of this assumption in Chapter 6.

• system constraints. It is not a trivial task for the problem of buyer behavior analysis

to understand what those constraints might be. In Section 5.6.2 a regression analysis

was performed to determine how different features influence prediction accuracy. While

it is very difficult to provide much details on the complex interplay between all of the

features, we showed, that certain features work as ”reset states” for short-term behavior

prediction: these features reset the memory of the process about what has happened

earlier. Once a buyer executed that type of action, he or she is almost equally likely to

execute any other action afterwards, regardless of what he / she was doing before. We

call this phenomenon as ”mission completion”. If a buyer made a purchase, he might

be done with his intent (ran out of money if the purchased item is costly, or he is just not

a frequent online shopper), and we need to capture this fact in the model. Similarly to

time series predictions, where we cannot extrapolate time series beyond physical limits

of the system. Here, we cannot extrapolate purchasing activity past the fact of actual

purchase. In Section 5.6.3 we discovered a phenomenon, which we call ”behavior

indicator”, where certain actions demonstrate long-term effect on buyer activity. For

instance, if a user is only a ”window shopper”, we should not expect any purchase. On

the contrary, if a buyer is trying to negotiate the price, this indicates that he is interested

105

in buying. These system constraints were discovered and described at the end of this

chapter this chapter, after the model was built. Features, built around these constraints

were not put in the model in this chapter. However, I put them in use in Section 6,

when I discuss a follow-up method to model buyer behavior and new ways to generate

behavioral features.

• relaxation techniques. At the beginning of this work, the objective was to predict

the exact sequence of actions in buyer activity. The preliminary results of this attempt

in Section 5.4 showed, that this is, unfortunately, a mission impossible. We had to

incorporate a couple of relaxations in the problem definition, to make it tractable. At

first, we decided to predict only financial events, like Bid and BIN. We do not really care

about the precise sequence of actions before those financial events: we want to understand

whether a particular user is a buyer or not. Another relaxation we introduce to the session

model itself. In Section 5.6.3 we conclude, that certain actions significantly reduce the

uncertainty about short-term history, and Bid and BIN activity is among those. We use

this fact for session summarization: whenever we see that there was Bid or BIN activity

within this session, we leave only BidBin action as a session summary, as those actions

dominate everything else in this session.

In the next section I provide the overview of existing approaches, which can be applied to the

task of online buyer behavior analysis, and the detailed description of the proposed method.

106

5.2 RELATED WORK

In this section, we review the research in the area of modeling online user behavior, together

with potential applicability limitations for our work. We divide the approaches into different

groups:

• markov models Chierichetti et al. [2012] and Borges and Levene [2007], Bühlmann

and Wyner [1999], Chierichetti et al. [2012], Begleiter et al. [2004], Borges and Levene

[2010],Cao et al. [2009b], Cao et al. [2008], Ron et al. [1996], Xiang et al. [2010] and

Borges and Levene [2010] share the results on the effectiveness of variable-length markov

models to predict online buyer behavior. however, these methods do not address the

issue of long-term behavior prediction

• understand the user’s browsing intent. Hassan et al. [2010],Shen et al. [2011], Cao

et al. [2009a], Shen et al. [2011] , Sadikov et al. [2010], Hu et al. [2011], and Lin et al.

[2012] discuss mainly how to model online browsing goals. Major applicability limit of

these methods is the fact that we have thousands of different intents, and we do not

necessarily know how quantitatively to distinguish between those intents.

Our work is most closely related to the usage of higher-order markov methods provided

in, for instance Chierichetti et al. [2012], to model the context and the prediction procedure.

We also utilize the buyer intent assumption from Hu et al. [2011], in that we assume one

intent per buyer session. We investigate the validity of those methods. In Section 5.3, we

start with the description of how we use higher-order markov models for our prediction task.

In Section 5.5, we extend our approach by modeling buyer intents.

5.3 CONTEXT-BASED BEHAVIOR PREDICTION

At the heart of our approach is the assumption that we can predict future buyer activity

through context-based simulation. We build this model from the behavioral logs collected

from all the buyers. The obtained model would predict a buyer’s future actions, given what

107

we have learned from all other buyers. We assume that there is a finite set A of possible

actions a buyer can take, e.g. Equation 5.1

A = {a1 . . . aN} (5.1)

We are interested in predicting the future action of a particular buyer given the last few

actions we have observed from this person, as shown in Equation 5.2:

p(at+1) = p(at+1|at . . . at−k+1) (5.2)

where at+1 is the action, which we would like to predict, and at . . . at−k+1 is the history

(sequence of actions) of up to k actions, which we have observed from a buyer behavioral log.

Each action can be one from the set of actions A : at+1 . . . at−k+1 ∈ A, and
∑N

i=1 p(a
t+1
i) = 1.

To store this probabilistic model, we use a context tree, shown in Figure 5.1, similar to

Cao et al. [2008].

S	 a1	 a2	 a7	

a1	 a2	 a7	 a1	 a7	

a5	 a6	 a5	 a6	
Terminal	
node	

Branch	 Branch	
root	

Figure 5.1: An example context tree structure. Here S corresponds to START

108

Table 5.1: Example buyer actions

Asq - ask seller a question; Watch - add to watch list; Srp - search request page;

Vi(cat).dt[...] - viewing an item; Bid - bidding on an item; BIN - buy it now;

Selling - Selling an item; Offer - Buyer offers a different price for a fixed price item;

Feedback - leave a feedback on the item;

Sign-in - signing in with login and password

5.4 BUYER BEHAVIOR PREDICTION ASSUMING NO HIDDEN

STRUCTURE OF BEHAVIOR

In this section, we assume that we can effectively predict all buyer future activity by looking

only at the last few actions of a buyer. Our data set contains logs from all eBay buyers,

collected during 24 hours of observations. Each line contains sequences of all the actions in

their chronological order, executed by a distinct buyer. We will call it DATASET 1. Some

of the events we record, are shown in Table 5.1.

We use MAE (mean absolute error) score, as suggested in Borges and Levene [2010]:

MAE =
1

n

n∑
i=1

|1− pnorm(ai)| (5.3)

here n is the length of a path, pnorm is the normalized probability to observe action ai after

observing a certain sequence of actions.

1 2 3 4
0.4

0.5

0.6

0.7

VLMC order

M
AE

path length >= 1
path length >=20

Figure 5.2: Mean absolute error (MAE) for path prediction: for all buyer paths, and for

paths, longer than 20 events

109

From Figure 5.2, we observe that MAE is lower for longer paths. We observe that, in

general, MAE score does not decrease dramatically as we increase the order of the VLMC:

higher-order VLMC out-performs first-order MC, but not significantly. In order to under-

stand, why this is happening, we have a closer look at the data itself in the next subsection.

For this purpose, we will collect two statistics from the learned context tree: the combined

distribution of entropy for each terminal node and the node out-degree for each terminal

node.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Entropy

C
D

F

hist=1
hist=2
hist=3

(a)

0 25 50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

Out−degree
CD

F

hist=1
hist=2
hist=3

(b)

Figure 5.3: Visualizing context tree properties, as they change when we learn higher-order

(longer history) MC (a) CDF plot for context tree entropy (b) CDF plot for context tree

out-degree

From Figure 3(b) we observe that, for VLMC model of order 3, about 50% of the nodes

have only one possible action for future transition in the terminal node. From the out-degree

distribution in Figure 3(b), we hypothesize that the reason for this is the sparsity of the

behavioral patterns: many patterns can be found in the training data set only once.

From Figure 3(b), nodes with out-degree of 2 and 3 have the highest-possible entropy

for future transition. Which is equivalent to the fact that nodes with out-degree 2 and 3

have further transitions ofalmost equal probability.

We also measure how the proximity to Bid or BIN event influences the accuracy of

prediction for those events. We step back a few events from the location of the target event,

and generate a set of predictions. The result of this exercise is shown in Figure 5.4.

We observe quite interesting dynamics in the prediction of Bid or BIN events. The

accuracy of the prediction is very sensitive to the proximity to the targeted event. Yet, the

accuracy of the prediction is almost not sensitive to the distance, if we are far from the target

110

2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

Step back

p

hist=1
hist=2
hist=3
hist=5
hist=8

Figure 5.4: Probability to correctly predict Bid/BIN events as a function of the proximity

to the target events

event. At this time we hypothesize that there exists a buyer context around a Bid or

BIN event. It would appear that buyer actions form correlated clusters.

5.4.1 Summary of the results for prediction of ”raw” session events

In this session we began our discussion with the assumption that we can predict a buyer’s

future activity by looking only at his last few actions. We discovered, that:

1. the training data set is sparse. As we increase the order of the VLMC, most of the

terminal nodes in the context tree start to have an out-degree of 1.

2. for a VLMC of order 3 approximately 20% of terminal nodes have out-degrees of 2 and 3

(possible actions). And the probability to choose one of those actions is almost identical.

This happens because there are certain actions within buyer paths which work like ”reset

states”, after which a buyer can take almost any action.

3. we discovered that within the buyer path, there are sequences of highly correlated events,

which correspond to buyer goals. We need to introduce the notion of a goal in our

behavioral model in order to increase the prediction accuracy.

111

5.5 BUYER SESSION MODEL

In this section, we explore the idea that a session as a whole may represent a single intent or

goal, and that is why certain events are highly correlated, because buyers are on a mission.

We assume that within a session, all the actions correspond to a single intent. And a session

summary will be able to represent a buyer intent.

For the experiments in this section, we collected more than 7 days of observations of

buyer activity in the eBay marketplace. We separate buyer actions into different sessions,

when there was more than a 30 minute break between the actions. We will call this log

DATASET 2.

We model each session as a ”bag of actions”: we assume that all of the actions are

independent from each other, conditional upon the buyer’s intent or goal. Thus, a session

is represented with the help of tuples (action, number of occurrences), alphabetically

ordered by the action name. If a Bid or BIN event happens within a session, we consider

this event to be much more important than other events, and replace the whole session with

a BidBin event An example of a session model is shown in Equation 5.4:

Asq(> 1), Srp(> 1), V i.dt[0− 10)(> 1); BidBin; (5.4)

where ; is the separator between two sessions. The summary of the session provides us with

session features. From Equation 5.4, example features can be identified as Asq(> 1),

BidBin etc.

For session prediction, we use DATASET 2, which we collected during a week of ob-

serving buyer activity. When we deal with session models, the distribution of the length of

each path is more predictable. We divide actions into two different sessions when we observe

at least a 30 minute break in buyer activity. Thus, on a weekly basis, we know the maximum

number of sessions a buyer can possibly have. We also know the typical frequency of buyers

visiting the web site, thus we can assess the typical number of sessions.

According to typical experimental protocols, we use 80% of the data set for training,

and 20% for testing. We observe a monotonic increase in prediction accuracy for a higher

order of VLMC in Figure 5.5. This result suggests that modeling session as a whole is the

112

right feature generation step. Within the session, a buyer may have a very sophisticated

pattern navigating through items, and it is impossible to predict. Moreover, we do not

need to predict it. On the other side, a higher-level session summary tells us about buyer

engagement, and his goal.

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

FPR

TP
R

x=y
hist=2
hist=3
hist=4
hist=5
hist=6

Figure 5.5: A set of ROC curves for paths built from session models. All paths consist of

least 20 sessions. Here, history corresponds to the order of VLMC

Buyer prediction is a very data-intensive task. When we learn probabilistic models, we

artificially inflate the state-space. The measurements of memory usage are shown in Figure

5.6.

1 2 3 4 5 6 7
0

50
100
150
200
250
300
350

VLMC order

m
em

or
y,

 G
 B

no structure
session

Figure 5.6: Memory usage by two approaches: when we assume no session structure, and

when we build a session model

DATASET 1 and DATASET 2 occupy ∼ 9GB on disk. When we learn the context

tree, the size of this tree is much larger than the actual data set. We observe that the context

tree, which we learned from the session model (for DATASET 2) consumes ∼ 120GB for

the VLMC of order 6. The context tree, learned from the buyer action log without the

session model (DATASET 1), consumes ∼ 300GB of RAM. It appears that the session

model provides more accurate results. The context tree for the session model

consumes less memory than the non-session model. Our experiments were conducted

113

on a corporate server with 80-core Intel(R) Xeon(R) E7- 4870 Processor @ 2.40GHz, 1TB

of RAM, and running under CentOS Linux 6.0. All of the data structures were able to fit

entirely in RAM.

5.6 LOWER-DIMENSION PATTERNS

5.6.1 Session components hypothesis

In Section 5.3, we started with the assumption that we only need to know the last few

actions of a buyer to predict this buyer’s future activity. In Section 5.5 we questioned this

simple assumption and proved, that it is more beneficial to build a session model to predict

buyer behavior. In this section we question the premise that a longer history (or higher order

of VLMC) improves the prediction accuracy of buyer activity. In particular, we determine

branches in the context tree for which the increase in history length is beneficial, and for

which it is not. We outline three hypothesis regarding behavioral models.

The first hypothesis is that the usage of a higher-order VLMC (the length of the

history we consider) provides more accurate predictions for the next buyer action, compared

to lower-order VLMC. Essentially, we seek to determine, if the increase in VLMC order

decreases the uncertainty (entropy) about the predicted action (session). Our belief is that

buyer behavior prediction using a VLMC of order 3 should have a smaller error than the

prediction using a VLMC of order 2. Or in general, if we uniformly (for each branch) increase

the history length, the prediction accuracy for the next action should increase.

Our second hypothesis is that some of the actions may work as ”reset events”. All

of the buyer activity before a ”reset event” is completely disconnected from what this buyer

will do after the ”reset event”.

5.6.2 Experiment design

The common sense suggests that some of the session features (which were introduced in

Section 5.5) are more useful than others in predicting buyer behavior. Also, some of the

114

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

feature #

co
ef

fic
ie

nt

(a)

0 5 10 15 20 25
−0.6

−0.4

−0.2

0

0.2

0.4

feature #

co
ef

fic
ie

nt

(b)

0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

feature #

co
ef

fic
ie

nt

(c)

0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1

feature #

co
ef

fic
ie

nt

(d)

Figure 5.7: Regression coefficients together with their 95% confidence intervals for session

features. (a) features’ contribution to uncertainty (b) features altering uncertainty

(c) features’ contribution to brier score (d) features altering brier score

session features may introduce noise, and make the prediction task harder. In this section, we

will outline the procedure to investigate how different session features influence the prediction

performance. In particular, we seek to learn, which features help to reduce the uncertainty

in predicting the buyer’s next session (short-term prediction), and which features influence

the prediction outcome in the next few sessions (long-term prediction). We will use two

metrics to provide the answer: entropy Bishop [2006] and brier score Borges and Levene

[2010]. Brier scorer is defined in Equation 5.5 as

BS =
1

N

N∑
t=1

(ft − ot)2 (5.5)

in which ft is the probability to forecast feature t, and ot is the probability to observe feature

t in the actual data set.

115

We assume that all session features are independent, and that we can represent the

entropy for a certain terminal node, or the brier score for a path prediction, as a simple sum

of the individual effects contributed by each feature. This simplified assumption allows us

to use linear regression Bishop [2006] to measure the strength of influence of each feature on

the prediction, as seen in Equation 5.6:

Mj = β0 +
N∑
i=1

βi ∗ δ(fij) (5.6)

where Mj is the j-th observation for one of the metrics, δ(fij) is equal to 1 if the feature

i is present in the j-th measurement; otherwise, it is equal to 0, and βi is the regression

coefficient for a particular feature i, which shows the strength of the influence of this feature

on the outcome.

S1	 S2	

E(S1)	

E(S2,	 S1)	

S1	 S2	

BS(S1)	

BS(S2,	 S1)	

Figure 5.8: Metrics dynamics as we increase the order of a VLMC: (a) entropy alteration

(b) brier score alteration

As we mentioned, not every session feature may be of equal importance: some features

may show dominant influence within the session, some may not. We also hypothesize, that

some features may have influence not only for the single session where they appear, but also

on the following sessions. Using regression analysis, we will investigate whichever is true.

5.6.2.1 Regression on entropy For this exercise, we will learn a first-order VLMC.

For each node Sj in the first-order VLMC, we compute the entropy ESj , and then combine

this value with the list of session features into Equation 5.6. The obtained regression

coefficients are shown in Figure 7(a).

116

5.6.2.2 Entropy alteration In this section, we explore how the increase in order for

VLMC changes the uncertainty about predicting the next session. We learn a second-order

VLMC, and will re-use the first-order VLMC from Section 5.6.2.1. We describe the pro-

cedure with the help of Figure 8(a). For a VLMC of order 2, each branch would consist

of 2 nodes (sessions). In the example, those are: (S2, S1), where session S1 occurred right

after session S2. For a VLMC of order 1, we know the entropy for session S1 is E(S1).

Now, for a VLMC of order 2, we know the entropy for a branch (S2, S1) is E(S2, S1).

Features from session S2, which happens before S1, alter the uncertainty about which

session to observe after session S1. Combining VLMCs of order 1 and 2, we obtain tu-

ples S2− > (E(S2,S1)− E(S1)). We plug-in features from session S2 and entropy values

(E(S2, S1)−E(S1)) into Equation 5.6 and then perform linear regression. The regression

coefficients show how features fi, if they occured before session Sj contribute to the change

in the uncertainty about which session to observe after session Sj. The regression coefficients

for session features are shown in Figure 7(b).

5.6.2.3 Brier Score regression Brier score in Equation 5.5 shows how close our pre-

diction is to the ground truth. Here, we investigate how the session features influence the

correctness of the prediction of Bid and BIN events many steps in the future, and if there is

such influence. The results of the regression are shown in Figure 7(c).

5.6.2.4 Brier Score alteration We would like to know, how the accuracy of long-

term buyer path prediction changes, if we increase the order of a VLMC, and how different

session features influence this change. The procedure is very similar to uncertainty alteration,

shown in Section 5.6.2.2. From Section 5.6.2.3, for each session S1 we calculate the

corresponding brier score BS(S1), using VLMC of order 1. Now we learn a VLMC of order

2, compute the brier score, and combine the results, as shown in Figure 8(b), to obtain a

set of pairs

S2− > (BS(S2,S1)−BS(S1)). Finally, we perform linear regression on the obtained pairs.

The results of the regression are shown in Figure 7(d).

117

5.6.3 Regression results explained

In Figures 7(a) - 7(d) I show the regression coefficients and their 95% confidence intervals

around those values. These confidence intervals help us to make some conclusions about the

effect each of the features brings. For instance, if the confidence interval crosses y = 0 line,

it is a strong indicator, that this feature is inconclusive on its own, and the effect of this

feature may dependent on presence or absence of other features. However, if a particular

feature is an outlier in either way, that provides us with some qualitative conclusion.

Consider Figure 7(a), which shows how certain features influence the uncertainty about

the following session. Features 19-22 are outliers, relative to other features. And the biggest

outlier is feature 22, which corresponds to Bid and BIN activity. This provides us some

insight, that once we observe one of these financial events within a given session, these events

pretty much summarize the essence of a session. This provides us with some confidence, that

we can perform session summarization, described in Section 5.5.

On the other hand, when we consider Figure 7(b), one obvious outlier is feature 2,

which corresponds to adding an item to a shopping cart. In terms of semantics of actions,

we can think of this action as ”the buyer found what he wanted”. This feature works as a

reset state - if this feature was observed in a certain session, then it dramatically increases

our uncertainty about what to expect from the following session.

From Figure 7(c) we observe, that feature 18 is an outlier in reducing brier score (

increases the most the accuracy of long-term prediction), which corresponds to offering a

new price for an item. This action semantically means that a buyer is really interested in

this item or a similar item, and we should not be too much surprised to see a purchasing

event soon down the line from this user.

And finally in Figure 7(d) we observe yet another outlier - feature 8, which says that

the user is not very interested in items he is checking, because he is not spending much time

carefully checking those items. This lack of interest works almost as an indicator that we

should not expect any purchase-related from this user soon.

118

5.7 CONCLUSION

We started this work with the assumption that we can predict buyer behavior by studying

only a buyer’s last few actions from the log. In Section 5.4, we tested our ability to predict

every individual action from a buyer path, and we showed that it is a very difficult task.

We cannot predict every event from the buyer path, and we should not. Instead, it is

much more beneficial to concentrate on predicting most important (financial) events: Bid

and BIN. Another important lesson learned concerning the purchasing context: it appears

that a few actions right before Bid or BIN actions help to reveal the purchasing intent.

We learned another important lesson from Section 5.5. We assumed that each buyer

session represents a single buyer intent. Following this assumption, we learned a session

model of buyer activity. The prediction accuracy increased by 300%, compared to the ac-

curacy from the individual event model. These results suggest that we do need to consider

buyer actions with regard to buyer intents.

In the next chapter, I will present my final approach to address the problem of long-term

buyer behavior prediction. I will focus on the issues of how to model intent continuation

between sessions, as well as how to incorporate some of important conclusions I derived

in this chapter, such as: mission completion, multiple intents per session, and some more

complex buyer behavior patterns.

119

6.0 FEATURE ENGINEERING FOR LARGE-SCALE BUYER BEHAVIOR

MODELING 1

When we are trying to model either human behavior or a notable transition is a multi-agent

system, we are facing over and over the same fundamental problem: feature engineering

and feature selection. I showed, that careful feature selection helps to understand complex

dynamics in multi-agent systems (e.g. fire evacuation or resource sharing for cluster compu-

tations), and to detect the fundamental changes in system behavior (notable transitions in

data streams). However, the process of designing those features can be very tedious, (and

yes, it is).

In this last chapter of my dissertation, I am building on top of my previous experience

with eBay marketplace modeling, introduced in Chapter 5. I showed that markov models

are suitable for long-term buyer prediction. However, this result was not obtained by apply-

ing out of the shelf learning method. If fact, the first results questioned the entire feasibility

of such endeavor. Only after we have applied meaningful session summarization, markov

chain model approach showed promising results.

While performing this summarization, we relied very heavily on the assumption, that

each session has only one mission or one intent. Also, in our consideration we completely

omitted the aspect of time. Empirically, we observed, that some of the buyers visit the web

site very frequently, while others do not. This irregularity poses a tremendous challenge for

behavior prediction: we do not have a solid idea what the prediction horizon should be for

VLMC model. I showed, that the accuracy of the prediction increases when we consider

longer prediction horizons. Thus knowing the exact horizon is paramount for the accuracy

purposes, and we should use a better estimate than just a random guess.

1THIS WORK WAS PARTIALLY ACCOMPLISHED WHILE BEING AT EBAY INC

120

Moreover, buyers often use more than one physical device for their online shopping. We

observed, that buyers can be put into a few different shopping categories based on their

device usage. This is an informal classification, used to qualitatively describe predominant

usage pattern.

• desktop-only: these are the users, who perform most (or all) their actions using a

desktop or laptop computers.

• mobile-only: uses, which predominantly use a mobile device, like a smartphone or a

tablet

• multi-screen: users, who use both : laptop and mobile devices

All these different categories have certain unique aspects in their behavior. Before the

modeling process, we performed an extensive visualization study of distinct buyer sessions

to get a flavor of how complex indeed their behavior is, and what are the key aspects in their

behavior. I continue with the visualization in the next section.

121

6.1 VISUALIZATION STUDY OF BUYER SESSIONS

This chapter will predominantly contain visualizations of some of the distinct shopping

scenarios we have stumbled upon, and which helped us to shape the understanding about

some of the key behavior.

6.1.1 The speaker guy

The first shopping case, which we call ”the speaker guy”, is shown in Figure 6.1. This

Figure 6.1: ”The speaker guy” shopping case

is a typical example of a multi-screen shopping activity. This buyer actively uses both: a

laptop and a mobile device to complete the purchase cycle. We can hypothesize, that he

is interested to buy speakers. At first, the buyer does not know which exactly speakers he

looking for. And then finally he spotted a pair, which he ended up buying. However, he did

not purchase them right away. Before that happened, he spent four days deciding whether

122

this is something what he needs, and in good price range. We can derive a bunch of insights

about his behavior.

• revisitation: speakers are not, say, pair of scissors: they are more expensive, and there

are more parameters which you need to check, before you make a purchase, if you do

not want to regret about your action. Revisitation happens on both laptop and mobile.

What is really interesting is the time. The buyer uses a laptop when he has a bit of time

(in the morning, when he is still at home, at work at the end of the day). During the

day he uses a mobile device to check on an item, when he gets a few minutes.

• device usage pattern: we observe, that on average buyer sessions are longer on a

laptop, than on mobile. By length we assume the number of different actions executed

(here: the number of items visited). Thus we conclude, that a buyer wants to achieve

some meaningful outcome, but does not want to spend much effort. And there might be

good reasons for that. A buyer might be waiting on a bus stop, or between meetings, or

enjoying a short walk after lunch, and he has a few minutes, so he goes to the mobile

app, checks a few items, maybe something more. For instance, if a buyer engaged in an

auction, he wants to check, whether he was outbid by someone else.

• preferred device: finally the buyer purchases the speakers. However, he prefers to do

it on his laptop, not mobile. Despite the fact, that he checked those speakers a minute

earlier on his mobile app. This signifies, that some buyers want to use familiar interface,

to make sure an important transaction goes through.

This scenario demonstrates an opportunistic behavior: the buyer engages with the site when

he has an opportunity, either with a laptop, or mobile. And there might be many sessions

during the day, because of the mobile component, which varies throughout the day. We

have no means to predict how many times he will come back to the site or the mobile app.

Thus the old model, when we use the prediction horizon, is fundamentally flawed, because

we assumed that we know how many sessions we should expect.

We also observed, that a buyer revisits the item many times before the final decision.

Moreover, the list of items he is comparing is getting shorter, as he is getting closer to the

final decision.

123

Figure 6.2: Family account sharing

6.1.2 Account sharing

We have discovered, that the same account can be used by multiple people. Figure 6.2

demonstrates one such case. We observe that the mobile app is open on two devices at the

same time, and actions on those devices being executed almost at the same time. More

importantly, the types of items being checked on those devices, are completely different.

Which supports our belief that these are indeed two different people sharing the account.

However, this observation poses another major obstruction on our goal. Particularly, how

to model a session ? And what exactly a session is? If we use our previous definition of a

session from Chapter 5 that two sessions are sequences of activities, with a break between

those activities for more than 30 minutes, we are facing a problem of modeling sessions

with multiple intents in a session, which goes against the assumption, which we had in the

previous chapter.

124

Figure 6.3: Opportunistic mobile usage

6.1.3 Opportunistic mobile usage

Figure 6.3 shows one more interesting case of mobile usage. The buyer discovers an item of

interest on his mobile at 5 am. It happens because of the simplicity of action - he does not

engage in heavy search activity. Just a habit to switch on the phone (almost instantaneous),

and clicking on an app, and checking the updates. Something similar happens during the

day - this buyer gets engaged in bidding on an item, when he was outbid. Again, this is a

simple action, and does not require much effort. However, it demonstrates a very important

issue - mobile provides more opportunity to engage. When you get outbid, sending a push

notification is simple and effective, and provides an easy way to react back.

125

6.1.4 Relatively ”heavy” users and their missions

Figure 6.4: Heavy user without a particular shopping goal

Figure 6.5: Heavy user on a mission

Figures 6.4 and 6.5 visualize shopping activity of the same buyer, but at different

times. They reveal a few more interesting aspects of buyer behavior. First of all, this

126

particular buyer uses six different devices to shop on eBay. And he engages with the mobile

app very obsessively, some of the intervals between his sessions are only a few minutes apart.

Secondly, this buyer does not always have a clue what exactly he is looking for. Figure

6.4 shows, that he is very diverse in product categories: vinyl records player, cars, clothing,

accessories. However, visiting pattern in Figure 6.5 shows a specific search target, related

to finding parts for music equipment. These shopping patterns emphasizes the need to model

the diversity, focus and intensity of buyer activity.

6.1.5 Important lessons from multi-screen usage, and combining that knowl-

edge with the previous observations

In this section I showed only a few examples from multi-screen usage pattern. By no means

these are all the possible cases. In fact, I have investigated many more, however for brevity

I include only a limited number. But even these cases tell a lot about some of the important

patterns.

We learned, that the same account may be shared between many people, and at the

same time. These can be family accounts or big seller accounts. This observation prevents

us from using session summarization technique, described in the previous chapter. We also

discovered, that mobile app usually drives opportunistic behavior - people tent to have many

short bursts of simple activity on mobile, versus longer and more complicated sessions on

laptop. We do not know how many opportunistic sessions each buyer will execute, and thus

cannot apply previously used notion of prediction horizon. However, some buyers or sellers

may be mobile-only, and have long sessions on their mobile apps. And finally, we learned

that buyers tend to revisit items before they make their purchasing decision.

These new observations shift the priorities for marketplace optimization tasks. Item re-

visitation and mobile app opportunistic usage are very important aspects of online shopping

on eBay marketplace. And shopping experience optimization task can be viewed as engage-

ment optimization: if we know that the buyer will revisit items in to finalize his decision, we

need to assist him with this mission. If the buyer needs to spent a lot of effort on his mobile

device to revisit previously seen items and search for related ones, he may loose the interest

127

in purchase. But we also do not want to show him items he has lost interest (unrelated items,

or he has bought what he wanted, and now). If his session on mobile lasts a few minutes,

we do not want a buyer to retype his search queries, or show unrelated suggested items.

What we are trying to optimize: to predict whether the buyer will resume his

browsing session or not, so we can optimize the user interface.

6.2 APPLYING ROCAS SCHEMA TO THE PROBLEM

From the steps, described in ROCAS model, here we utilize notable change detection

principle the most. Via visual explorations, and the results of the discussions, presented in

Section 5.7, we discovered different behavioral scenarios, which are present on the market-

place. We use the most typical scenarios as a test bed to derive the feature patterns, which

can capture typical behavior.

6.3 RELATED WORK

To the best of our effort, we were not able to locate a piece of work, directly related to

predicting online buyer behavior. However, we found a group of papers, related to modeling

online search continuation. For instance, Aiello et al. [2011] touches the problem of topic

mining in search queries. This approach is not directly applicable to our task, since we do not

know what our ”behavioral words” are. Shen et al. [2012] is concerned with personalized click

model and talks about collaborative filtering approach. However, this model does not utilize

time at all. Another group of research, presented in White and Dumais [2009], Wang et al.

[2013], Savenkov et al. [2013], Agichtein et al. [2012], and Kotov et al. [2011] concentrated

on deriving all sorts of possible statistics from the browsing behavior as a set of features to

predict search query resumption. These results are most closely related to the task we are

trying to address, but they do not claim what sort of statistics are the best to use to describe

the dynamics of online behavior.

128

6.4 MODEL DESCRIPTION

Example session visualizations, performed in Section 6.1 demonstrate that different buyers

have different intensity, diversity, and focus of their activity. We have shown in previous

chapters, that we can derive good features by hand, which capture complex dynamics hap-

pening in the system. However, our ability to derive features by hand is limited. The problem

is very complex, as we showed in exploratory visualization analysis in Section 6.1. We will

try another approach: generate candidate features and then let the learning method choose

which features or combinations of features are more important.

We observed in Section 6.1 that we need to capture not just the stationary statistics,

like average or sum / count of the events, but also the dynamics of the process. Our method

for feature generation was inspired by Histograms of Oriented Gradients approach Dalal and

Triggs [2005], Chandrasekhar et al. [2009] - one of the feature generation techniques used in

computer vision.

Feature generation process conceptually is shown in Figure 6.6. For different positions

of time window we compute different statistics. For adjacent time widows, we compute the

gradients of the obtained statistics. And combine the results into one feature vector.

w1	 w2	 w3	 w4	 w5	 w6	

S1	 S2	 Sn	 …	 sessions	

Vi:…	 Asq:…	 Offer:..	 Bid:…	 ac)ons	

se
ss
io
n	
da
ta
	

Stats(w4)	 Stats(w3)	

Stats(w4)-‐stats(w3)	

Stats(w2,w3)	 Stats(w4,w5)	

Stats(w4,w5)-‐stats(w2,w3)	

st
a)

s)
cs
	 a
nd

	 g
ra
di
en

ts
	

Figure 6.6: Computing features from behavioral data

129

6.4.1 Dataset description

We have collected a data set from 120000 buyers during their 6 weeks of activity, coming from

eBay web site and eBay mobile app. Each week of observations may contain zero or more

sessions. Users in this data set had to show reasonable activity in weeks 4 and 5 (at least

two sessions in each week). We did not have an exact sequence of actions, which the user

executed in a session. Instead, each session was provided a summary of the activities, which

happened in this session. For instance, we had an information, which items user viewed

(Vi) and for how long, for which items he asked seller a question (Asq), on which items

he was bidding (Bid), or bought them right away (BIN), offered new price (Offer), and to

which categories those items belong. We use the sessions from weeks 1-5 to build behavioral

features, and the data in week 6 to compute, whether the buyer resumed his activity or not.

If S6 = {id61 , id62 , . . . , id6n6} - is a set of item IDs, for which a buyer applied Bid, BIN, Asq,

Offer actions in week 6. And S1−5 = {id11 , . . . , id1n1, . . . , id51 , . . . , id5n5} is a set of item IDs

for which a buyer applied Vi, Bid, BIN, Asq, Offer actions in weeks 1-5. Then we say, that

a buyer resumed a meaningful activity in week 6, if S1−5 ∩ S6 6= ∅. Otherwise he did not.

6.4.2 Feature generation

The most related approaches in terms of feature engineering, are Agichtein et al. [2012], Wang

et al. [2013] and Savenkov et al. [2013]. While the prediction accuracy results, reported in

these papers are impressive, the feature engineering process is tedious: authors report on

designing a number of hand-crafted features, which were of all sorts of statistics from the

event stream. These authors do not claim any feature optimality, and to the best of our

knowledge, we have not seen a single paper, which provides a reasoning what is the best way

to generate features for behavioral data. We adopt the same strategy, described in Agichtein

et al. [2012],Wang et al. [2013] and Savenkov et al. [2013] for our feature generation process,

with two differences:

• in our task there is no prior information about how time factor impacts features. Thus,

we use variable-length and variable position sliding window, as shown in Figure 6.6 and

Algorithm 3 to generate statistics from the session sequence

130

• we also compute changes (gradients) in statistics for different adjacent intervals, as shown

in Figure 6.6 and Algorithm 4

features = [];

for start← 1 to 5 do

for end← start to 5 do

features.append(statistics(start, end));

end

end

Algorithm 3: Computing features via basic statistics

features = [];

for start← 1 to 5 do

for end← start to 5 do

for middle← start to end do

if start < end then

features.append(statistics(start, middle)-statistics(middle+1,end));

end

end

end

end

Algorithm 4: Computing features via gradients of basic statistics

Table 6.1 summarizes what kind of statistics we compute.

For each feature type FTi from Table 6.1, we generate a series of features for different

time widows
[
start, end

]
where start and end combinations are generated using Algorithm

3. We also add gradients of the same features, applying Algorithm 4. For each feature

type FTi the combined feature sets we call FSi. Each feature set is then pruned using

correlation-based feature selection routine in Weka Hall et al. [2009], and we obtain PFTi

feature sets. Which then put together into a set PFT = ∪iPFTi. Set PFT contains 167

features. Then we prune PFT set again using correlation-based feature selection routine in

Weka, and obtain another set PPFT , which contains 53 features.

131

Table 6.1: Statistics for feature generation, computed for a time window
[
start, end

]
, where

start and end - week number

feature type explanation

session entropy extract all ItemIDs = IDS, output entropy(IDS)

auction/FP ratio extract all unique items, and compute the ratio

determined extract all ItemIDs = IDS, obtain corresponding item

categories for IDS = CIDS and categories for de-duplicated

(IDS) = CDIDS, and finally compute

entropy(CIDS)-entropy(CDIDS)

purchase count compute the number of bought items

purchase effort extract ItemIDs in all weeks 1-5 = IDS. for each

completion ItemID ItemID which was bought: ItemID ∈ IDB, compute

cIDB = ∀ItemID ∈ IDS → 1if(ItemID == ItemIDB),

compute : B =
∑

ItemID∈IDB cIDB, output : B/count(IDS)

same for category same as for ItemID

item revisits for a given threshold, consider item was frequent, if number

of times it was touched ≥ threshold. IDF = frequent items.

for each item in IDF, compute how many sessions contained this

item output the largest number

category revisits same as for items

6.5 EXPERIMENT RESULTS

Experimental results were obtained for two feature sets, mentioned in Section 6.4: PPFT

or Set 1, containing 53 features, which is a reduced set of features from Set 2, and PFT or

Set 2, containing 167 features. We have applied the following learning techniques: logistic

regression (LR), random forest (RF), decision trees (J48) using Weka Hall et al. [2009], L1-

regularized logisitic regression (L1-LR), linear SVM (SVM) using liblinear Fan et al. [2008],

132

68	 69	 70	 71	 72	 73	 74	 75	 76	

LR	

RF	

J48	

accuracy	 	
set	 2	

set	 1	

0.52	 0.54	 0.56	 0.58	 0.6	 0.62	

LR	

RF	

J48	

TPR	 	
set	 2	

set	 1	

0.75	 0.77	 0.79	 0.81	 0.83	 0.85	 0.87	

LR	

RF	

J48	

TNR	 	
set	 2	

set	 1	

Figure 6.7: Results obtained on feature set 1 and set 2 using LR, RF, and J48

kernel SVM (gaussian kernel) (kSVM) using libsvm Chang and Lin [2011].

At first we investigated how feature selection mechanism impacts the performance. For

this purpose, we applied the same learning mechanisms: RF, LR, and J48 to two feature

sets: set 1 and set 2, where set 1 obtained from set 2 by applying correlation-based feature

selection mechanism. The resulting performance is shown in Figure 6.7. These results are

not surprising. Random forest demonstrates the most robust result: the performance almost

does not change (RF finds the best feature subsets). Decision tree usually demonstrates

moderate to high variance, and benefits the most from feature pruning. Logistic regression

suffers from feature pruning, which is also not very surprising: attributes may have complex

interactions Jakulin and Bratko [2004], and removing even correlated attributes may impact

the performance.

133

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

TP
R	

FPR	

ROC	

LR	

RF	

J48	

VLMC	

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

pr
ec
is
io
n	

recall	

precision	 recall	

LR	

RF	

J48	

Figure 6.8: Results obtained on feature set 2 using L2-LR, RF, J48

For better analysis, we build ROC curve and precision/recall curves for LR, RF, and J48

learning methods, computed on feature set 2. The results are shown in Figure 6.8.

• Conclusion 1: RF performs better than LR, however not by much. However, it takes

only a small fraction of time to train a LR vs RF.

• Conclusion 2: histograms of gradients applied for feature generation, helps to produce

better prediction, than the approach based on VLMC, obtained in Chapter 5.

In the next comparison we used feature set 2 with all features, to investigate how the

accuracy of the prediction depends on the choice of a machine learning method. Figure 6.9

summarizes the results. J48 decision trees show the worst performance (because of high

variance). We observe that L1-regularized LR demonstrates slightly better performance,

than L2-regularized LR. This suggests, that the input space is in fact sparse. Kernel SVM

approach showed worse performance than even L2-LR. Given the size of the data set, we

134

67	 68	 69	 70	 71	 72	 73	 74	 75	 76	

LR-‐L2	

RF	

J48	

LR-‐L1	

SVM	

kSVM*	

accuracy	

Figure 6.9: Results obtained on feature set 2 using L2-LR, RF, J48, L1-LR, SVM and kSVM

(used only 10 % of data due to time issue)

were not able to train it on 100% of data: we handled only about 10%, which can explain

why the results are worse.

135

6.6 CONCLUSION

In this chapter I proposed a new approach to address the issue of buyer behavior prediction

on eBay marketplace. The need for a new prediction method was dictated by the reality that

becomes virtually impossible to design high-quality features by hand. This method utilizes

automatic feature generation using feature patterns, which in turn are based on a principle,

very close to histograms of gradients approach. I showed, that the obtained accuracy is

better, compared with the results, obtained in Chapter 5.

Moreover, I investigated whether the choice of a machine learning method has a signif-

icant impact on the accuracy of the prediction. The results suggest, that (except of the

obvious outliers: decision trees (high variance) and kernel SVM (very slow, does not scale

to our data set)) methods produce very similar results. We did not have a chance to train

any deep neural networks, thus cannot make a conclusion regarding deep learning. However,

based on applied learning techniques we observe, that feature engineering plays more impor-

tant role than the choice of a machine learning method. And histograms of gradients (HOG)

approach can be applied to the task of feature generation to capture different aspects of the

dynamics in buyer behavior.

Yet we do not claim that HOG is the only way to generate features, neither that it is the

optimal one. A substantial effort has to be put to address the issue of optimality of feature

generation.

136

7.0 THESIS CONCLUSION

The validity of ROCAS model is tightly connected to the answers to the research questions,

presented in Section 1.4. Now is the time to answer to those questions.

• Question 1: Can we analyze global system properties based on observable local inter-

actions?

• Answer: Yes, we can. For instance, in Chapter 4 I show that we can derive CAS

properties based on agent interactions and system constraints in a highly-dynamic en-

vironment, like cluster computing. I also show that these properties can be used to

optimize resource sharing between different processes and obtain a significant (about

40%) improvement in execution speed.

• Question 2: How to capture behavioral patterns that correspond to notable transitions

in system dynamics?

• Answer: Feature engineering is a very tedious task: it takes a lot of time and effort to

design good features. Alternatively, by applying ROCAS model, first we concentrate on

the corner cases and require the proposed method to perform on those cases, as discussed

in Chapter 3. To deal with the complexity of the patterns, we define a relatively simple

cost function, which can combine different patterns into a single number (score). And

that score can be used to detect notable transitions.

• Question 3: How to use CAS behavioral patterns to perform relaxed large-scale opti-

mization?

• Answer: By applying ROCAS method, we can design a set of features, which are good

enough to capture complex processes in a CAS, as I show in Chapter 6.

137

APPENDIX A

COHERENCY PORTRAIT ANALYSIS

Consider two data streams with identical additive normal noise. One stream reflects a

transition (Figure 1(a)), another one does not (Figure 1(b)). Away from the transition

point the corresponding coherency portraits for both streams look similar. However, the

coherency portrait around the transition (between vertical lines) in Figure 1(a) is different

from the corresponding portrait in Figure 1(b). For a signal with a transition we observe

a set of smooth V-shapes. This pattern can be used as a signature for a transition.

s
�✁
✂
✄
☎

✵ ✺✵✵ ✶✵✵✵ ✶✺✵✵ ✷✵✵✵

❝
✆
✝
✂
✁✂
✞
❝
✟

t✠✡☛

(a)

s
�✁
✂
✄
☎

✵ ✺✵✵ ✶✵✵✵ ✶✺✵✵ ✷✵✵✵

❝
✆
✝
✂
✁✂
✞
❝
✟

t✠✡☛

(b)

Figure A1: Coherency portrait for: (a) stream with a transition; (b) stream without a

transition

In this appendix we will show that:

138

1. coherency portraits for an abrupt transition will produce a set of smooth V-shapes around

the transitions;

2. coherency portraits are more volatile further away from a transition point;

3. coherency portraits at lower frequencies are more stable and better candidates for tran-

sition detection.

First, we introduce some properties of a bandpass filter.

A.1 ZERO-PHASE BANDPASS FILTER

The essential tool for harmonic alignment is a digital filter. A digital filter (DF) reduces

or enhances certain components of a sampled, discrete-time signal. For an input signal

x DF produces an output y by applying delay, multiply and add operations. The filter

can be described using a difference equation by mapping multiply and add operations to

mathematical expressions as follows:

yn = b1 ∗ xn + b2 ∗ xn−1 + · · ·+ bnb+1 ∗ xn−nb

− a2 ∗ yn−1 − · · · − ana+1 ∗ yn−na (A.1)

When there is no feedback loop (i.e., ai = 0) we say that the filter is non-recursive and has a

finite impulse response. Our method utilizes a non-recursive band-pass filter (i.e., it passes

frequencies within a certain range and rejects frequencies outside that range).

A.2 EXISTENCE OF V-SHAPE

Let us consider a simple example of filtering Heaviside step function:

y(x) =

 0 : x < 0

1 : x ≥ 0
(A.2)

139

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵

❛

❢✶

❢✷

❢✸

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵

❜

❢✶

❢✷

❢✸

✸✸✵ ✸✹✵ ✸✺✵ ✸�✵ ✸✁✵ ✸✂✵

✶

✷

✸

❝

Figure A2: Filtering Heaviside step function: (a)B-vectors for band-pass filters; (b):filtered

bands for Heaviside function; (c): coherency portraits

using a bandpass filter eq. A.1. Let us assume that the order of a band-pass filter is N (i.e.,

the number of coefficients bi|i ∈ [1 . . . N]). When the filter is positioned far to the left from

the transition (x=0), the output of the filter is constant y− = 0, since xi = 0,∀i ∈ [1 . . . N].

If the filter is positioned far to the right from the transition, the output of the filter is also

constant y+ =
∑N

i=1 bi, since xi = 1, ∀i ∈ [1 . . . N]. Thus, perturbations in filtered signal

occur around the transition point x = 0 and the output of the filtered signal is a partial sum

of the filter coefficients y0 =
∑n

i=1 (bi|xi = 1) , n ≤ N . As we move a band-pass filter through

the transition point more signal components are getting equal to one (xi = 1), causing the

output y to change until it reaches saturation of y+. To demonstrate the behavior of the

filtered signal, we built a set of bandpass filters adjacent in frequency bands (order N = 500,

sampling frequency SF = 1000 Hz and frequency band dF = 0.1 HZ). We have picked 3

lower frequency filters to illustrate the concept. The corresponding B coefficients are shown

in Figure A2 (a). Here f1 < f2 < f3 represent frequency bands; f1 corresponds to the

lowest frequency. The output of the filtered function for all 3 filters is shown in Figure A2

(b). Red squares on Figure A2 (b) correspond to local maxima of functions. We plot

140

those maxima on Figure A2 (c), keeping the same x-coordinate as in Figure A2 (b), but

assigning y=1,2,3 to the output of filter f1, f2, f3 correspondingly. The output appears to

be a concave function. Band-pass filters for higher frequencies have more extrema. After

filtering a step function the obtained extrema will form a set of concave functions. Thus a

transition in the input stream corresponds to a set of concave functions on the

coherency portrait.

A.3 STABILITY OF COHERENCY PORTRAITS AROUND THE

TRANSITION POINT

When we try to build a coherency portrait for a noisy signal which contains a transition,

it is important to know how noise influences coherency portrait. To answer this question

we explore the volatility of the locations of maxima on the filtered bands. We assume that

after applying a bandpass filter to a signal we will obtain at least one local maximum for a

band. Without the loss of generality, we assume Gaussian noise N(0, σ2). We will consider

two data streams. The first one is simply a normal noise eq. A.3

y(x) = N(0, σ2), x ∈ (−∞,∞) (A.3)

y(x) =

 N(0, σ2) : x < 0

N(1, σ2) : x ≥ 0
(A.4)

The second one is heaviside function with the same normal noise: eq. A.4. Both streams

are plotted on Figure A3, (right). We will filter them with a band-pass filter with B vector

coefficients shown in Figure A3, (left). Vertical lines partition filter coefficients into four

groups: F1, F2, F3, F4. In F1 and F2 all bi ≤ 0. In F3 all bi ≥ 0, in F4 all bi ≤ 0. Let

us position a filter around the transiton Figure A3, (right) so that it produces a local

maximum at the output. The position of the filter should be as follows: groups F4,F3 and

F2 should be to the right from the transition point (jump in Heaviside step function), while

group F1 to the left from the transition. The output of the filter positioned in the mentioned

141

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵
✲✹

✲✷

✵

✷

✹

✻

✽
① ✶✵

�✁

✲✶✵✵✵ ✲✺✵✵ ✵ ✺✵✵ ✶✵✵✵
✲✵✂✺

✵

✵✂✺

✶

✶✂✺

❋✶

❋✷

❋✸

❋✹

Figure A3: Filtering a noisy signal

way is:

y =
∑
i∈F1

biN(0, σ2) +
∑
i∈F2

bi(1 +N(0, σ2))+

∑
i∈F3

bi(1 +N(0, σ2)) +
∑
i∈F4

bi(1 +N(0, σ2)) (A.5)

Performing equivalent transformations obtain

y =
∑

i∈F2∪F3∪F4

bi +
∑

i∈F1∪F2∪F3∪F4

biN(0, σ2) =

− AF2 + AF3 − AF4 + AN = D + AN (A.6)

where

AF2 =
∑
i∈F2

‖bi‖, AF3 =
∑
i∈F3

‖bi‖, AF4 =
∑
i∈F4

‖bi‖

D = −AF2 + AF3 − AF4

AN =
∑

i∈F1∪F2∪F3∪F4

biN(0, σ2) (A.7)

AF2 , AF3 , AF4 depend on the characteristics of the filter and do not depend on the input

stream. If we apply a band-pass filter to a stream without a transition (e.g. eq. A.3), eq.

A.6 becomes

y = AN , (A.8)

142

which is essentially eq. A.6 with D = 0. AN is the sum of random values and thus a

random value itself. We explore how a random fluctuation in AN influences the output of

the filter. Assuming that AN = AN0 +∆, where ∆ is a small fluctuation on top of AN0, from

eq. A.6, A.8, relative variation becomes

Vh =
D + AN0 + ∆

D + AN0

; Vpn =
AN0 + ∆

AN0

(A.9)

where Vh and Vpn are relative variations for streams with transition (noisy Heaviside) and

without a transition (pure noise). Assuming that ∆ << AN0 << D, we obtain

Vh = 1 +
∆

D
; Vpn = 1 +

∆

AN0

(A.10)

From eq. A.10: since AN0 << D, relative variation for the output of a bandpass filter is

much smaller when we filter a signal with transition than when we filter just pure noise. Thus

around the transition point we expect to observe smoother coherency portrait

A.4 STABILITY OF COHERENCY PORTRAITS OUTSIDE THE

TRANSITION POINT

Let us position our band-pass filter outside of the transition: (e.g. Figure A3 (right)).

When the filter is positioned far to the left from the transition, then the equation for filter

output eq. A.6 becomes essentially eq. A.6. Thus, in terms of relative variation eq.

A.10, coherency portrait father to the left of the transition shows the same volatility as a

coherency portrait built for a stream without a transition. Now let us position our band-pass

filter far to the right from th transition. Then eq. A.6 parameter D becomes D′ = D−AF1

where AF1 =
∑

i∈F1
‖bi‖. Thus D′ < D. From eq. A.10, relative variation is higher

when the output of the filter depends on a smaller value of D. this means that far to the

right the coherency portrait is more volatile that around the transition. Thus, around

the transition point we expect coherency portrait to be smooth; far from the

transition it does not have this property.

143

A.5 STABILITY OF COHERENCY PORTRAITS FOR DIFFERENT

FREQUENCIES

From eq. A.10, relative variation is inverse proportional to parameter D. Parameter D

from eq. A.7, D = −AF2 + AF3 − AF4 . While AF2 << AF3 , AF4 , D ≈ AF3 − AF4 . For

higher frequencies (compare filters f1, f3 on Figure A2) the corresponding AF3 decreases

while AF4 increases, thus D decreases parameters AF3 , AF4 defined in eq. A.7, Figure

A3 (left)). Thus for higher frequencies coherency portrait demonstrates more

volatile behavior than for lower ones.

144

APPENDIX B

LIKELIHOOD RATIO TEST AND KL-DIVERGENCE

Likelihood ratio test statistic can be written as:

λ(x) =
L(θ̂0|x)

L(θ̂|x)
(B.1)

Suppose x1, x2, . . . xn ∼ i.i.d.q(x). From eq. B.1, the log-likelihood ratio, normalized by

dividing by n is

λ̂n =
1

n

n∑
i=1

log
p0(xi)

p1(xi)
(B.2)

Then, computing the expectation of eq. B.2, we obtain:

E[λ̂n] =
1

n

n∑
i=1

E[λ̂i] =
1

n
nE[λ̂1] = E[λ̂1]

=

∫
log

p0(x)

p1(x)
q(x)dx =

∫
log

p0(x)q(x)

p1(x)q(x)
q(x)dx

=

∫ [
log

q(x)

p1(x)
− log

q(x)

p0(x)

]
q(x)dx

= D(q||p1)−D(q||p0) (B.3)

where D(q||p1) and D(q||p0) are KL-divergence between distributions q and p1 and q and p0

respectively. Because x1 . . . xn were sampled from the new window, q = p1. Thus, plugging

q = p1 in eq. B.3 obtain

E[λ̂n] = 1−D(p1||p0) (B.4)

145

From the law of large numbers, we know that

E[λ̂n]
a.s.−→ λ̂n (B.5)

Combining eq. B.2, eq. B.3 and eq. B.5, obtain

λ̂n
a.s.−→ 1−D(p1||p0) (B.6)

that for large sample likelihood ratio test is essentially KL-divergence

146

BIBLIOGRAPHY

C. C. Aggarwal. A framework for diagnosing changes in evolving data streams. In Proceedings
of the 2003 ACM SIGMOD international conference on Management of data, SIGMOD
’03, pages 575–586, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi: 10.1145/
872757.872826. URL http://doi.acm.org/10.1145/872757.872826.

E. Agichtein, R. W. White, S. T. Dumais, and P. N. Bennet. Search, interrupted: Under-
standing and predicting search task continuation. In Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’12, pages 315–324, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1472-5. doi:
10.1145/2348283.2348328. URL http://doi.acm.org/10.1145/2348283.2348328.

J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over
event streams. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, SIGMOD ’08, pages 147–160, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376634. URL http://doi.acm.org/10.

1145/1376616.1376634.

L. M. Aiello, D. Donato, U. Ozertem, and F. Menczer. Behavior-driven clustering of queries
into topics. In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, pages 1373–1382, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.2063775. URL http://doi.acm.org/10.

1145/2063576.2063775.

J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and tracking
pilot study: Final report. In Proceedings of the DARPA Broadcast News Transcription and
Understanding Workshop, pages 194–218, Lansdowne, VA, USA, Feb. 1998. 007.

Amazon. http://aws.amazon.com/elasticmapreduce/.

A. M. Amey. Real-time ridesharing : exploring the opportunities and challenges of designing
a technology-based rideshare trial for the MIT community. PhD thesis, Massachusetts
Institute of Technology, http://hdl.handle.net/1721.1/61563, 2010.

R. S. Anderssen and P. Bloomfield. Numerical differentiation procedures for non-exact data.
Numerische Mathematik, 22:157–182, 1972. doi: 10.1007/BF01436965. URL http://dx.

doi.org/10.1007/BF01436965.

147

http://doi.acm.org/10.1145/872757.872826
http://doi.acm.org/10.1145/2348283.2348328
http://doi.acm.org/10.1145/1376616.1376634
http://doi.acm.org/10.1145/1376616.1376634
http://doi.acm.org/10.1145/2063576.2063775
http://doi.acm.org/10.1145/2063576.2063775
http://dx.doi.org/10.1007/BF01436965
http://dx.doi.org/10.1007/BF01436965

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Number
0521424267. Cambridge University Press, 1st edition, April 2009.

J. Arthur F. Veinott. Lectures in Supply-Chain Optimization. Department of Management
Science and Engineering, Stanford University, Stanford, California 94305, 2005.

R. Axelrod. The Complexity of Cooperation: Agent-Based Models of Competition and Col-
laboration. Number 0691015678. Princeton University Press, August 1997.

R. Axtell. The complexity of exchange. The Economic Journal, 115(504):F119–F210, June
2005.

P. Bak. how nature works: the science of self-organized criticality. Copernicus, 1999.

E. Baldeschwieler. Hadoop @ yahoo! - internet scale data processing. In Cloud Computing
Expo, Santa Clara, CA, USA, Nov 2009.

M. Barnes, H. Leather, and D. K. Arvind. Emergency evacuation using wireless sensor
networks. In Proceedings of the 32nd IEEE Conference on Local Computer Networks, LCN
’07, pages 851–857, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
3000-1. doi: 10.1109/LCN.2007.63. URL http://dx.doi.org/10.1109/LCN.2007.63.

R. J. Bayardo, Jr. Efficiently mining long patterns from databases. In Proceedings of the 1998
ACM SIGMOD international conference on Management of data, SIGMOD ’98, pages 85–
93, New York, NY, USA, 1998. ACM. ISBN 0-89791-995-5. doi: 10.1145/276304.276313.
URL http://doi.acm.org/10.1145/276304.276313.

BBC. http://www.bbc.co.uk/news/business-21759259.

R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order markov models.
J. Artif. Int. Res., 22(1), Dec 2004.

J. Berkovici. Uber director defends surge pricing as sxsw riders lament it.
http://www.forbes.com/sites/jeffbercovici/2014/03/11/uber-director-defends-surge-
pricing-as-sxsw-riders-lament-it/, March 2014.

D. Berry, A. Usmani, J. L. Torero, A. Tate, S. McLaughlin, S. Potter, A. Trew, R. Bax-
ter, M. Bull, and M. Atkinson. Firegrid: Integrated emergency response and fire safety
engineering for the future built environment. In Workshop on Ubiquitous Computing and
e-Research. UK e-Science Programme All Hands Meeting, 2005.

A. Beutel, B. A. Prakash, R. Rosenfeld, and C. Faloutsos. Interacting viruses in networks:
can both survive? In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’12, pages 426–434, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1462-6. doi: 10.1145/2339530.2339601. URL http://doi.

acm.org/10.1145/2339530.2339601.

148

http://dx.doi.org/10.1109/LCN.2007.63
http://doi.acm.org/10.1145/276304.276313
http://doi.acm.org/10.1145/2339530.2339601
http://doi.acm.org/10.1145/2339530.2339601

A. Bifet and R. Gavalda. Learning from time-changing data with adaptive windowing. In
Proceedings of the Seventh SIAM International Conference on Data Mining, April 26-28,
2007, Minneapolis, Minnesota, USA. SIAM, 2007. doi: http://www.siam.org/meetings/
proceedings/2007/datamining/papers/042Bifet.pdf.

C. M. Bishop. Pattern Recognition and Machine Learning. Number 978-0-387-31073-2.
Springer, 2006.

Bloomberg. http://www.bloomberg.com/news/2013-03-06/google-apple-valuation-gap-
widest-since-2005-on-ads.html.

J. Borges and M. Levene. Evaluating variable-length markov chain models for analysis of
user web navigation sessions. IEEE Trans. on Knowl. and Data Eng., 19(4):441–452, 2007.

J. Borges and M. Levene. A comparison of scoring metrics for predicting the next navigation
step with markov model-based systems. International Journal of Information Technology
and Decision Making, 9(4):547–573, 2010.

Z. Botev, J. Grotowski, and D. Kroese. Kernel density estimation via diffusion. The Annals
of Statistics, 38:2916–2957, 2010.

G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control.
Wiley Series in Probability and Statistics. Wiley, 2008.

D. Brewer, M. Barenco, R. Callard, M. Hubank, and J. Stark. Fitting ordinary differential
equations to short time course data. Philos Trans A Math Phys Eng Sci., 366(1865):
519–544, February 2008.

P. Bühlmann and A. J. Wyner. Variable length markov chains. Annals of Statistics, 27(2):
480–513, 1999.

S. Bullock and D. Cliff. Complexity and emergent behaviour in ict systems. Technical report,
HP Labs, 2004.

H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query suggestion
by mining click-through and session data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’08, pages 875–
883, New York, NY, USA, 2008. ACM.

H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun, E. Chen, and Q. Yang. Context-aware
query classification. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’09, pages 3–10, Boston, MA,
USA, 2009a. ACM.

H. Cao, D. Jiang, J. Pei, E. Chen, and H. Li. Towards context-aware search by learning a
very large variable length hidden markov model from search logs. In Proceedings of the
18th international conference on World wide web, WWW ’09, pages 191–200, New York,
NY, USA, 2009b. ACM.

149

CapacityScheduler. http://developer.yahoo.com/ blogs/hadoop/posts/ 2011/02/capacity-
scheduler/.

Cascading. http://www.cascading.org.

G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 2001.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41(3):15:1–15:58, July 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882. URL
http://doi.acm.org/10.1145/1541880.1541882.

B. Chandramouli, J. Goldstein, and D. Maier. High-performance dynamic pattern matching
over disordered streams. Proc. VLDB Endow., 3(1-2):220–231, Sept. 2010. ISSN 2150-8097.
URL http://dl.acm.org/citation.cfm?id=1920841.1920873.

V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and B. Girod. Chog:
Compressed histogram of gradients a low bit-rate feature descriptor. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2504–2511, June
2009. doi: 10.1109/CVPR.2009.5206733.

C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, May 2011. ISSN 2157-6904. doi: 10.1145/1961189.
1961199. URL http://doi.acm.org/10.1145/1961189.1961199.

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an energy-efficient co-
ordination algorithm for topology maintenance in ad hoc wireless networks. Wirel.
Netw., 8(5):481–494, Sept. 2002. ISSN 1022-0038. doi: 10.1023/A:1016542229220. URL
http://dx.doi.org/10.1023/A:1016542229220.

S. Chen, H. Wang, S. Zhou, and P. S. Yu. Stop chasing trends: Discovering high order models
in evolving data. In Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, ICDE ’08, pages 923–932, Washington, DC, USA, 2008. IEEE Computer
Society. ISBN 978-1-4244-1836-7. doi: 10.1109/ICDE.2008.4497501. URL http://dx.

doi.org/10.1109/ICDE.2008.4497501.

A. Cherniak and J. Bridgewater. Session modeling to predict online buyer behavior. In
Proceedings of the 2013 Workshop on Data-driven User Behavioral Modelling and Mining
from Social Media, DUBMOD ’13, pages 1–4, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2417-5. doi: 10.1145/2513577.2513583. URL http://doi.acm.org/10.1145/

2513577.2513583.

A. Cherniak and V. Zadorozhny. Towards adaptive sensor data management for distributed
fire evacuation infrastructure. In Mobile Data Management (MDM), 2010 Eleventh Inter-
national Conference on, pages 151–156, 2010. doi: 10.1109/MDM.2010.53.

150

http://doi.acm.org/10.1145/1541880.1541882
http://dl.acm.org/citation.cfm?id=1920841.1920873
http://doi.acm.org/10.1145/1961189.1961199
http://dx.doi.org/10.1023/A:1016542229220
http://dx.doi.org/10.1109/ICDE.2008.4497501
http://dx.doi.org/10.1109/ICDE.2008.4497501
http://doi.acm.org/10.1145/2513577.2513583
http://doi.acm.org/10.1145/2513577.2513583

A. Cherniak and V. Zadorozhny. Signature-based detection of notable transitions in numeric
data streams. Knowledge and Data Engineering, IEEE Transactions on, 25(12):2867–2879,
Dec 2013. ISSN 1041-4347. doi: 10.1109/TKDE.2012.241.

A. Cherniak, H. Zaidi, and V. Zadorozhny. Optimization strategies for a/b testing on hadoop.
Proc. VLDB Endow., 6(11):973–984, Aug. 2013. ISSN 2150-8097. URL http://dl.acm.

org/citation.cfm?id=2536222.2536224.

F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlos. Are web users really markovian? In
Proceedings of the 21st international conference on World Wide Web, WWW ’12, pages
609–618, New York, NY, USA, 2012. ACM.

B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’03, pages 493–498, New York, NY, USA, 2003. ACM. ISBN 1-58113-737-0.
doi: 10.1145/956750.956808. URL http://doi.acm.org/10.1145/956750.956808.

T. Y. Choi, K. J. Dooley, and M. Rungtusanatham. Supply networks and complex adap-
tive systems: control versus emergence. Journal of Operations Management, 19(3):351 –
366, 2001. ISSN 0272-6963. doi: http://dx.doi.org/10.1016/S0272-6963(00)00068-1. URL
http://www.sciencedirect.com/science/article/pii/S0272696300000681.

C. Christakos. Sensor networks applied to the problem of building evacuation: An evaluation
in simulation. In Proceedings of the 15th IST Mobile and Wireless Summit, Mykonos,
Greece, June 2006.

C. K. Chui. An Introduction to Wavelets, volume 1. Academic Press, 1 edition, 1992.

P. Clayton and P. Davies. The Re-Emergence of Emergence: The Emergentist Hypothesis
from Science to Religion. Oxford University Press, 2008.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages 886–893, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2372-2. doi: 10.1109/CVPR.2005.177.
URL http://dx.doi.org/10.1109/CVPR.2005.177.

D. Dasgupta and S. Forrest. Novelty detection in time series data using ideas from immunol-
ogy. In the International Conference on Intelligence Systems, 1996.

T. Dasu, S. Krishnan, D. Lin, S. Venkatasubramanian, and K. Yi. Change (detection)
you can believe in: Finding distributional shifts in data streams. In Proceedings of the
8th International Symposium on Intelligent Data Analysis: Advances in Intelligent Data
Analysis VIII, IDA ’09, pages 21–34, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-
3-642-03914-0. doi: 10.1007/978-3-642-03915-7 3. URL http://dx.doi.org/10.1007/

978-3-642-03915-7_3.

151

http://dl.acm.org/citation.cfm?id=2536222.2536224
http://dl.acm.org/citation.cfm?id=2536222.2536224
http://doi.acm.org/10.1145/956750.956808
http://www.sciencedirect.com/science/article/pii/S0272696300000681
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1007/978-3-642-03915-7_3
http://dx.doi.org/10.1007/978-3-642-03915-7_3

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, Jan. 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492.
URL http://doi.acm.org/10.1145/1327452.1327492.

D. DeWitt and J. Gray. Parallel database systems: the future of high performance database
systems. Commun. ACM, 35(6):85–98, June 1992. ISSN 0001-0782. doi: 10.1145/129888.
129894. URL http://doi.acm.org/10.1145/129888.129894.

D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew handling
in parallel joins. In Proceedings of the 18th International Conference on Very Large Data
Bases, VLDB ’92, pages 27–40, San Francisco, CA, USA, 1992. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-151-1. URL http://dl.acm.org/citation.cfm?id=645918.

672512.

R. O. Duda, P. E. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, 2000.

J. Epstein and R. Axtell. Growing artificial societies: social science from the bottom up.
Number 978-0-262-55025-3. Brookings Institution Press, 1996.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: scalable
coordination in sensor networks. In Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, MobiCom ’99, pages 263–270, New York,
NY, USA, 1999. ACM. ISBN 1-58113-142-9. doi: 10.1145/313451.313556. URL http:

//doi.acm.org/10.1145/313451.313556.

C. Faloutsos, H. Jagadish, A. Mendelzon, and T. Milo. A signature technique for similarity-
based queries. In Proceedings of the Compression and Complexity of Sequences 1997,
SEQUENCES ’97, pages 2–, Washington, DC, USA, 1997. IEEE Computer Society. ISBN
0-8186-8132-2. URL http://dl.acm.org/citation.cfm?id=829502.830045.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for
large linear classification. J. Mach. Learn. Res., 9:1871–1874, June 2008. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1390681.1442794.

J.-B. P. Faucher, A. M. Everett, and R. Lawson. A complex adaptive organization under the
lens of the life model: The case of wikipedia. In The Fourth Organization Studies Summer
Workshop: ”Embracing Complexity: Advancing Ecological Understanding in Organization
Studies”, Pissouri, Cyprus, 2008.

A. Floratou, S. Tata, and J. Patel. Efficient and accurate discovery of patterns in sequence
data sets. Knowledge and Data Engineering, IEEE Transactions on, 23(8):1154–1168,
2011. ISSN 1041-4347. doi: 10.1109/TKDE.2011.69.

A. W.-C. Fu, E. Keogh, L. Y. Lau, C. A. Ratanamahatana, and R. C.-W. Wong. Scaling
and time warping in time series querying. The VLDB Journal, 17(4):899–921, July 2008.
ISSN 1066-8888. doi: 10.1007/s00778-006-0040-z. URL http://dx.doi.org/10.1007/

s00778-006-0040-z.

152

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/129888.129894
http://dl.acm.org/citation.cfm?id=645918.672512
http://dl.acm.org/citation.cfm?id=645918.672512
http://doi.acm.org/10.1145/313451.313556
http://doi.acm.org/10.1145/313451.313556
http://dl.acm.org/citation.cfm?id=829502.830045
http://dl.acm.org/citation.cfm?id=1390681.1442794
http://dx.doi.org/10.1007/s00778-006-0040-z
http://dx.doi.org/10.1007/s00778-006-0040-z

R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection problem
using kernel feature space. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, KDD ’05, pages 401–410, New York,
NY, USA, 2005. ACM. ISBN 1-59593-135-X. doi: 10.1145/1081870.1081917. URL http:

//doi.acm.org/10.1145/1081870.1081917.

C. Gazen, J. Carbonell, and P. Hayes. Novelty detection in data streams: A small step
towards anticipating strategic surprise. In Novel Intelligence from Massive Data (NIMD)
PI Meeting, 2005.

J. Goldstein. Emergence as a construct: History and issues. Emergence, 1:49–72, 1999.

M. Gosalia, K. Lin, A. Redfern, S. Romanovsky, N. Shah, D. Steingart, S.-H. Teh, N. Turner,
W. Watts, X. Yang, and P. Levis. Smoke: Mote powered fire evacuation, Fall 2004. URL
http://cents.cs.berkeley.edu/.

X. Gu and H. Wang. Online anomaly prediction for robust cluster systems. In Proceedings
of the 2009 IEEE International Conference on Data Engineering, ICDE ’09, pages 1000–
1011, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3545-6. doi:
10.1109/ICDE.2009.128. URL http://dx.doi.org/10.1109/ICDE.2009.128.

HADOOP. http://wiki.apache.org/hadoop/.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka
data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.
ISSN 1931-0145. doi: 10.1145/1656274.1656278. URL http://doi.acm.org/10.1145/

1656274.1656278.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of the 2000 ACM SIGMOD international conference on Management of data,
SIGMOD ’00, pages 1–12, New York, NY, USA, 2000. ACM. ISBN 1-58113-217-4. doi:
10.1145/342009.335372. URL http://doi.acm.org/10.1145/342009.335372.

X. Hao, L. Duo-lin, and L. Zhi-jie. The building of e-commerce transaction network based on
multi-agent and cas theory. In Wearable Computing Systems (APWCS), 2010 Asia-Pacific
Conference on, pages 295–298, April 2010. doi: 10.1109/APWCS.2010.81.

A. Hassan, R. Jones, and K. L. Klinkner. Beyond dcg: user behavior as a predictor of a
successful search. In Proceedings of the third ACM international conference on Web search
and data mining, WSDM ’10, pages 221–230, New York, NY, USA, 2010. ACM.

W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information
dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, MobiCom ’99, pages 174–
185, New York, NY, USA, 1999. ACM. ISBN 1-58113-142-9. doi: 10.1145/313451.313529.
URL http://doi.acm.org/10.1145/313451.313529.

153

http://doi.acm.org/10.1145/1081870.1081917
http://doi.acm.org/10.1145/1081870.1081917
http://cents.cs.berkeley.edu/
http://dx.doi.org/10.1109/ICDE.2009.128
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/342009.335372
http://doi.acm.org/10.1145/313451.313529

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-
cation protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volume 8 - Volume 8, HICSS ’00, pages
8020–, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0493-0. URL
http://dl.acm.org/citation.cfm?id=820264.820485.

H. Herodotou. Hadoop performance models. Technical Report CS-2011-05, Computer Sci-
ence Department, Duke University, June 2011.

H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization of mapre-
duce programs. PVLDB, 4(11):1111–1122, 2011.

H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Starfish: A
self-tuning system for big data analytics. In CIDR, pages 261–272, 2011.

HIVE. http://hive.apache.org.

H. Hoffmann. Kernel pca for novelty detection. Pattern Recogn., 40(3):863–874, Mar. 2007.
ISSN 0031-3203. doi: 10.1016/j.patcog.2006.07.009. URL http://dx.doi.org/10.1016/

j.patcog.2006.07.009.

J. H. Holland. Studying complex adaptive systems. Journal of Systems Science and Com-
plexity, 19:1–8, 2006.

HowManyMapsAndReduces. http://wiki.apache.org/hadoop/ HowManyMapsAndReduces.

B. Hu, Y. Zhang, W. Chen, G. Wang, and Q. Yang. Characterizing search intent diversity
into click models. In Proceedings of the 20th international conference on World wide web,
WWW ’11, pages 17–26, New York, NY, USA, 2011. ACM.

M. Hulsmann, H. Kopfer, P. Cordes, and M. Bloos. Collaborative transportation plan-
ning in complex adaptive logistics systems: A complexity science-based analysis of
decision-making problems of ”groupage systems”. In J. Zhou, editor, Complex Sci-
ences, volume 4 of Lecture Notes of the Institute for Computer Sciences, Social In-
formatics and Telecommunications Engineering, pages 1160–1166. Springer Berlin Hei-
delberg, 2009. ISBN 978-3-642-02465-8. doi: 10.1007/978-3-642-02466-5 116. URL
http://dx.doi.org/10.1007/978-3-642-02466-5_116.

A. Jakulin and I. Bratko. Testing the significance of attribute interactions. In Proceedings
of the Twenty-first International Conference on Machine Learning, ICML ’04, pages 52–,
New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015377.
URL http://doi.acm.org/10.1145/1015330.1015377.

R. Jhawar and V. Piuri. Fault Tolerance and Resilience in Cloud Computing Environments,
volume abs/1106.5457. Morgan Kaufmann, 2nd edition, 2013.

R. M. Kanter. On twitter and in the workplace, it’s power to the connectors. Harvard
Business Review, 2009.

154

http://dl.acm.org/citation.cfm?id=820264.820485
http://dx.doi.org/10.1016/j.patcog.2006.07.009
http://dx.doi.org/10.1016/j.patcog.2006.07.009
http://dx.doi.org/10.1007/978-3-642-02466-5_116
http://doi.acm.org/10.1145/1015330.1015377

Y. Kawahara and M. Sugiyama. Change-point detection in time-series data by direct density-
ratio estimation. In Proceedings of the SIAM International Conference on Data Mining,
SDM, pages 389–400, 2009.

Y. Kawahara and M. Sugiyama. Sequential change-point detection based on direct density-
ratio estimation. Stat. Anal. Data Min., 5(2):114–127, Apr. 2012. ISSN 1932-1864. doi:
10.1002/sam.10124. URL http://dx.doi.org/10.1002/sam.10124.

E. Keogh. Exact indexing of dynamic time warping. In Proceedings of the 28th international
conference on Very Large Data Bases, VLDB ’02, pages 406–417. VLDB Endowment, 2002.
URL http://dl.acm.org/citation.cfm?id=1287369.1287405.

D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In Proceedings of
the Thirtieth international conference on Very large data bases - Volume 30, VLDB ’04,
pages 180–191. VLDB Endowment, 2004. ISBN 0-12-088469-0. URL http://dl.acm.

org/citation.cfm?id=1316689.1316707.

R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to controlled experiments
on the web: listen to your customers not to the hippo. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD ’07,
pages 959–967, New York, NY, USA, 2007. ACM.

R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres, and T. Melamed.
Online experimentation at microsoft, 2009a. URL http://www.exp-platform.com/

Pages/expMicrosoft.aspx.

R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on
the web: survey and practical guide. Data Min. Knowl. Discov., 18(1):140–181, feb 2009b.

A. Kotov, P. N. Bennett, R. W. White, S. T. Dumais, and J. Teevan. Modeling and analysis of
cross-session search tasks. In Proceedings of the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’11, pages 5–14, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0757-4. doi: 10.1145/2009916.2009922. URL
http://doi.acm.org/10.1145/2009916.2009922.

B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection: methods,
evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, IMC ’03, pages 234–247, New York, NY, USA, 2003. ACM. ISBN 1-
58113-773-7. doi: 10.1145/948205.948236. URL http://doi.acm.org/10.1145/948205.

948236.

R. Kurzweil. How to Create a Mind: The Secret of Human Thought Revealed. Viking Adult,
2012.

S. Lamparter, S. Becher, and J.-G. Fischer. An agent-based market platform for smart grids.
In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: Industry Track, AAMAS ’10, pages 1689–1696, Richland, SC, 2010. International

155

http://dx.doi.org/10.1002/sam.10124
http://dl.acm.org/citation.cfm?id=1287369.1287405
http://dl.acm.org/citation.cfm?id=1316689.1316707
http://dl.acm.org/citation.cfm?id=1316689.1316707
http://www.exp-platform.com/Pages/expMicrosoft.aspx
http://www.exp-platform.com/Pages/expMicrosoft.aspx
http://doi.acm.org/10.1145/2009916.2009922
http://doi.acm.org/10.1145/948205.948236
http://doi.acm.org/10.1145/948205.948236

Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-0-9826571-4-0.
URL http://dl.acm.org/citation.cfm?id=1838194.1838197.

T. Laroum and B. Tighiouart. A multi-agent system for the modelling of the hiv infec-
tion. In J. O’Shea, N. Nguyen, K. Crockett, R. Howlett, and L. Jain, editors, Agent
and Multi-Agent Systems: Technologies and Applications, volume 6682 of Lecture Notes
in Computer Science, pages 94–102. Springer Berlin Heidelberg, 2011. ISBN 978-3-
642-21999-3. doi: 10.1007/978-3-642-22000-5 11. URL http://dx.doi.org/10.1007/

978-3-642-22000-5_11.

L. Li, B. A. Prakash, and C. Faloutsos. Parsimonious linear fingerprinting for time series.
Proc. VLDB Endow., 3(1-2):385–396, Sept. 2010. ISSN 2150-8097. URL http://dl.acm.

org/citation.cfm?id=1920841.1920893.

Y.-s. Lim, S. Lim, J. Choi, S. Cho, C.-k. Kim, Y.-W. L. H. Hu, H. Zhang, H. Hu, B. Xu, J. Li,
and A. Ma. A fire detection and rescue support framework with wireless sensor networks. In
Proceedings of the 2007 International Conference on Convergence Information Technology,
ICCIT ’07, pages 135–139, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-3038-9. doi: 10.1109/ICCIT.2007.28. URL http://dx.doi.org/10.1109/ICCIT.

2007.28.

J. Lin and A. Kolcz. Large-scale machine learning at twitter. In SIGMOD ’12 Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, pages 793–
804, New York, NY, USA, 2012. ACM.

T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman. Active objects: actions for
entity-centric search. In Proceedings of the 21st international conference on World Wide
Web, WWW ’12, pages 589–598, 2012.

Q. Lu, B. George, and S. Shekhar. Capacity constrained routing algorithms for evacuation
planning: a summary of results. In Proceedings of the 9th international conference on
Advances in Spatial and Temporal Databases, SSTD’05, pages 291–307, Berlin, Heidelberg,
2005. Springer-Verlag. ISBN 3-540-28127-4, 978-3-540-28127-6. doi: 10.1007/11535331 17.
URL http://dx.doi.org/10.1007/11535331_17.

C. M. Macal, C. M. Macal, C. M. Macal, M. J. North, and M. J. North. Validation of an
agent-based model of deregulated electric power markets. In Proc. North American Com-
putational Social and Organization Science (NAACSOS) 2005 Conference, South, 2005.

B. MacLennan. Evolutionary psychology, complex systems, and social theory. Soundings:
An Interdisciplinary Journal, 90(3/4):169–189, 2007.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation service
for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146, Dec. 2002. ISSN
0163-5980. doi: 10.1145/844128.844142. URL http://doi.acm.org/10.1145/844128.

844142.

156

http://dl.acm.org/citation.cfm?id=1838194.1838197
http://dx.doi.org/10.1007/978-3-642-22000-5_11
http://dx.doi.org/10.1007/978-3-642-22000-5_11
http://dl.acm.org/citation.cfm?id=1920841.1920893
http://dl.acm.org/citation.cfm?id=1920841.1920893
http://dx.doi.org/10.1109/ICCIT.2007.28
http://dx.doi.org/10.1109/ICCIT.2007.28
http://dx.doi.org/10.1007/11535331_17
http://doi.acm.org/10.1145/844128.844142
http://doi.acm.org/10.1145/844128.844142

B. Mandelbrot. How long is the coast of britain? statistical self-similarity and fractional
dimension. Science, 156(3775):636–638, 1965.

M. Markou and S. Singh. Novelty detection: a review - part 1: statistical approaches. Signal
Process., 83(12):2481–2497, Dec. 2003. ISSN 0165-1684. doi: 10.1016/j.sigpro.2003.07.018.
URL http://dx.doi.org/10.1016/j.sigpro.2003.07.018.

H. Mehlum, K. Moene, and R. Torvik. Predator or prey?: Parasitic enterprises in economic
development. European Economic Review, 47(2):275–294, April 2003. URL http://ideas.

repec.org/a/eee/eecrev/v47y2003i2p275-294.html.

MICROSTRATEGY. http://www.microstrategy.com.

J. H. Miller and S. E. Page. Complex Adaptive Systems: An Introduction to Computational
Models of Social Life. Princeton Studies in Complexity. Princeton University Press, 2007.

M. J. Miranda and P. L. Fackler. Applied Computational Economics and Finance. Number
0262633094. The MIT Press, 2002.

A. Moore, G. Cooper, R. Tsui, and M. Wagner. Summary of biosurveillance-relevant statis-
tical and data mining technologies. February 2002.

S. Muthukrishnan, E. van den Berg, and Y. Wu. Sequential change detection on data streams.
In Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International
Conference on, pages 551–550, 2007. doi: 10.1109/ICDMW.2007.89.

S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust
aggregation in sensor networks. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, SenSys ’04, pages 250–262, New York, NY, USA,
2004. ACM. ISBN 1-58113-879-2. doi: 10.1145/1031495.1031525. URL http://doi.acm.

org/10.1145/1031495.1031525.

D. B. Neil and W.-K. Wong. Tutorial on event detection. In KDD, 2009.

D. B. Neill. Expectation-based scan statistics for monitoring spatial time series data. Inter-
national Journal of Forecasting, 25(3):498–517, 2009. URL http://EconPapers.repec.

org/RePEc:eee:intfor:v:25:y:2009:i:3:p:498-517.

Netlogo. http://ccl.northwestern.edu/netlogo/.

C. C. Noble and D. J. Cook. Graph-based anomaly detection. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining, KDD
’03, pages 631–636, New York, NY, USA, 2003. ACM. ISBN 1-58113-737-0. doi: 10.1145/
956750.956831. URL http://doi.acm.org/10.1145/956750.956831.

A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice Hall, 3rd
edition, August 2009.

157

http://dx.doi.org/10.1016/j.sigpro.2003.07.018
http://ideas.repec.org/a/eee/eecrev/v47y2003i2p275-294.html
http://ideas.repec.org/a/eee/eecrev/v47y2003i2p275-294.html
http://doi.acm.org/10.1145/1031495.1031525
http://doi.acm.org/10.1145/1031495.1031525
http://EconPapers.repec.org/RePEc:eee:intfor:v:25:y:2009:i:3:p:498-517
http://EconPapers.repec.org/RePEc:eee:intfor:v:25:y:2009:i:3:p:498-517
http://doi.acm.org/10.1145/956750.956831

M. Pan, C. Tsai, and Y. Tseng. Emergency guiding and monitoring applications in indoor
3d environments by wireless sensor networks. Int. J. Sen. Netw., 1(1/2):2–10, Sept. 2006.
ISSN 1748-1279. doi: 10.1504/IJSNET.2006.010829. URL http://dx.doi.org/10.1504/

IJSNET.2006.010829.

N. Parikh. Mining large-scale temporal dynamics with hadoop. In Hadoop Summit, San
Jose, CA, Jun 20 2012.

C.-S. Perng, H. Wang, S. Zhang, and D. Parker. Landmarks: a new model for similarity-
based pattern querying in time series databases. In Data Engineering, 2000. Proceedings.
16th International Conference on, pages 33–42, 2000. doi: 10.1109/ICDE.2000.839385.

R. Pfeffer. Teradata RDBMS. NCR, Teradata Division.

Pig. http://pig.apache.org.

J. M. Ponte and W. B. Croft. Text segmentation by topic. In In Proceedings of the First
European Conference on Research and Advanced Technology for Digital Libraries, pages
120–129, 1997.

B. A. Prakash, N. Valler, D. Andersen, M. Faloutsos, and C. Faloutsos. Bgp-lens: patterns
and anomalies in internet routing updates. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’09, pages 1315–
1324, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-495-9. doi: 10.1145/1557019.
1557160. URL http://doi.acm.org/10.1145/1557019.1557160.

B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos. Virus propagation on
time-varying networks: theory and immunization algorithms. In Proceedings of the 2010
European conference on Machine learning and knowledge discovery in databases: Part
III, ECML PKDD’10, pages 99–114, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-
642-15938-9, 978-3-642-15938-1. URL http://dl.acm.org/citation.cfm?id=1889788.

1889796.

B. T. Rao and L. S. S. Reddy. Survey on improved scheduling in hadoop mapreduce in cloud
environments. CoRR, abs/1207.0780, 2012.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic automata
with variable memory length. Machine Learning, 25(2-3):117–149, 1996.

M. Sabah. Hadoop and cloud and netflix: Taming the social data. In Hadoop Summit, San
Jose, CA, June 13-14 2012.

E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Clustering query refinements by user
intent. In Proceedings of the 19th international conference on World wide web, WWW ’10,
pages 841–850, New York, NY, USA, 2010. ACM.

L. Saitta, A. Giordana, and A. Cornuejols. Phase Transitions in Machine Learning. Cam-
bridge University Press, 1st edition, 2011.

158

http://dx.doi.org/10.1504/IJSNET.2006.010829
http://dx.doi.org/10.1504/IJSNET.2006.010829
http://doi.acm.org/10.1145/1557019.1557160
http://dl.acm.org/citation.cfm?id=1889788.1889796
http://dl.acm.org/citation.cfm?id=1889788.1889796

SAS. http://www.sas.com.

D. Savenkov, D. Lagun, and Q. Liu. Search engine switching detection based on user personal
preferences and behavior patterns. In Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’13, pages 33–
42, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2034-4. doi: 10.1145/2484028.
2484099. URL http://doi.acm.org/10.1145/2484028.2484099.

Scala. http://www.scala-lang.org.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN
0262194759.

C. Schurgers, V. Tsiatsis, and M. Srivastava. Stem: Topology management for energy
efficient sensor networks. In Aerospace Conference Proceedings, 2002. IEEE, volume 3,
pages 3–1099–3–1108 vol.3, 2002. doi: 10.1109/AERO.2002.1035239.

M. Severo and J. Gama. Ubiquitous knowledge discovery. In M. May and L. Saitta, editors,
Change detection with Kalman filter and CUSUM, chapter Change detection with Kalman
filter and CUSUM, pages 148–162. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN 3-
642-16391-2, 978-3-642-16391-3. URL http://dl.acm.org/citation.cfm?id=1986531.

1986542.

M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. Tina: a scheme for temporal
coherency-aware in-network aggregation. In Proceedings of the 3rd ACM international
workshop on Data engineering for wireless and mobile access, MobiDe ’03, pages 69–76,
New York, NY, USA, 2003. ACM. ISBN 1-58113-767-2. doi: 10.1145/940923.940937. URL
http://doi.acm.org/10.1145/940923.940937.

S. Shen, B. Hu, W. Chen, and Q. Yang. Personalized click model through collaborative fil-
tering. In Proceedings of the Fifth ACM International Conference on Web Search and Data
Mining, WSDM ’12, pages 323–332, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
0747-5. doi: 10.1145/2124295.2124336. URL http://doi.acm.org/10.1145/2124295.

2124336.

Y. Shen, J. Yan, S. Yan, L. Ji, N. Liu, and Z. Chen. Sparse hidden-dynamics conditional
random fields for user intent understanding. In Proceedings of the 20th international con-
ference on World wide web, WWW ’11, pages 7–16, New York, NY, USA, 2011. ACM.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. a. Gama. Novelty detection with
application to data streams. Intell. Data Anal., 13(3):405–422, Aug. 2009. ISSN 1088-
467X. URL http://dl.acm.org/citation.cfm?id=1551768.1551770.

159

http://doi.acm.org/10.1145/2484028.2484099
http://dl.acm.org/citation.cfm?id=1986531.1986542
http://dl.acm.org/citation.cfm?id=1986531.1986542
http://doi.acm.org/10.1145/940923.940937
http://doi.acm.org/10.1145/2124295.2124336
http://doi.acm.org/10.1145/2124295.2124336
http://dl.acm.org/citation.cfm?id=1551768.1551770

SPSS. http://www.ibm.com/software/analytics/spss.

R. Steinert and D. Gillblad. Long-term adaptation and distributed detection of local network
changes. In Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE,
pages 1–5, 2010. doi: 10.1109/GLOCOM.2010.5684137.

M. Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9(1):4–9, 1986.

T. Sueyoshi and G. Tadiparthi. Why did the california electricity crisis occur?: A numerical
analysis using a multiagent intelligent simulator. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 38(6):779–790, Nov 2008. ISSN 1094-
6977. doi: 10.1109/TSMCC.2008.2001691.

Tableau. http://www.tableausoftware.com.

J. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and change
points from time series. Knowledge and Data Engineering, IEEE Transactions on, 18(4):
482–492, 2006. ISSN 1041-4347. doi: 10.1109/TKDE.2006.1599387.

N. N. Taleb. The Black Swan: Second Edition: The Impact of the Highly Improbable. Random
House Trade Paperbacks, 2010.

J. Tan, X. Meng, and L. Zhang. Delay tails in mapreduce scheduling. In SIGMETRICS
’12 Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, pages 5–16.

J. Tan, X. Meng, and L. Zhang. Delay tails in mapreduce scheduling delay tails in
mapreduce scheduling. In SIGMETRICS ’12 Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement and Modeling of
Computer Systems, pages 5–16. ACM, 2012.

D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping experiment infrastructure:
more, better, faster experimentation. In Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, KDD ’10, pages 17–26, New
York, NY, USA, 2010. ACM.

Teradata. http://www.teradata.com.

Teradata. Introduction to Teradata R© RDBMS. B035-1091-122A. NCR Corporation, Dec
2002.

TeradataPricing. http://www.teradata.com/brochures/teradata-purpose-built-
platform-pricing-eb5496/. URL http://www.teradata.com/brochures/

Teradata-Purpose-Built-Platform-Pricing-eb5496/.

L. Tesfatsion. Agent-based computational economics: Growing economies from the bottom
up. Artif. Life, 8(1):55–82, Mar. 2002. ISSN 1064-5462. doi: 10.1162/106454602753694765.
URL http://dx.doi.org/10.1162/106454602753694765.

160

http://www.teradata.com/brochures/Teradata-Purpose-Built-Platform-Pricing-eb5496/
http://www.teradata.com/brochures/Teradata-Purpose-Built-Platform-Pricing-eb5496/
http://dx.doi.org/10.1162/106454602753694765

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and
R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In ICDE, pages 996–1005,
2010.

F. Tian and K. Chen. Towards optimal resource provisioning for running mapreduce
programs in public clouds. In Proceedings of the 2011 IEEE 4th International Confer-
ence on Cloud Computing, CLOUD ’11, pages 155–162, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-0-7695-4460-1. doi: 10.1109/CLOUD.2011.14. URL
http://dx.doi.org/10.1109/CLOUD.2011.14.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Wavescheduling: energy-
efficient data dissemination for sensor networks. In Proceeedings of the 1st international
workshop on Data management for sensor networks: in conjunction with VLDB 2004,
DMSN ’04, pages 48–57, New York, NY, USA, 2004. ACM. doi: 10.1145/1052199.1052209.
URL http://doi.acm.org/10.1145/1052199.1052209.

Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai. Wireless sensor networks for emergency navigation.
Computer, 39(7):55–62, 2006. ISSN 0018-9162. doi: 10.1109/MC.2006.248.

T. Tsunemine, E. Kadokawa, Y. Ueda, J. Fukumoto, T. Wada, K. Ohtsuki, and H. Okada.
Emergency urgent communications for searching evacuation route in a local disaster. In
Consumer Communications and Networking Conference, 2008. CCNC 2008. 5th IEEE,
pages 1196–1200, 2008. doi: 10.1109/ccnc08.2007.267.

T. Varadharajan and C. Rajendran. A multi-objective simulated-annealing algorithm for
scheduling in flowshops to minimize the makespan and total flowtime of jobs. European
Journal of Operational Research, 167(3):772–795, December 2005. URL http://ideas.

repec.org/a/eee/ejores/v167y2005i3p772-795.html.

A. Verma, L. Cherkasova, and R. H. Campbell. Aria: automatic resource inference and
allocation for mapreduce environments. In ICAC ’11 Proceedings of the 8th ACM interna-
tional conference on Autonomic computing, pages 235–244, New York, NY, USA, 2011a.
ACM.

A. Verma, L. Cherkasova, and R. H. Campbell. Slo-driven right-sizing and resource provision-
ing of mapreduce jobs. In Workshop on Large Scale Distributed Systems and Middleware
(LADIS) in conjunction with VLDB, Seattle, Washington, 09/2011 2011b.

A. Verma, L. Cherkasova, and R. Campbell. Two sides of a coin: Optimizing the schedule of
mapreduce jobs to minimize their makespan and improve cluster performance. In Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2012
IEEE 20th International Symposium on, pages 11–18, 2012.

Vertica. http://www.vertica.com.

W3C. http://www.w3.org/tr/dom-level-3-core/.

161

http://dx.doi.org/10.1109/CLOUD.2011.14
http://doi.acm.org/10.1145/1052199.1052209
http://ideas.repec.org/a/eee/ejores/v167y2005i3p772-795.html
http://ideas.repec.org/a/eee/ejores/v167y2005i3p772-795.html

G. Wang, A. Butt, P. Pandey, and K. Gupta. A simulation approach to evaluating design
decisions in mapreduce setups. In MASCOTS, pages 1–11, 2009.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using
ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, KDD ’03, pages 226–235, New York,
NY, USA, 2003. ACM. ISBN 1-58113-737-0. doi: 10.1145/956750.956778. URL http:

//doi.acm.org/10.1145/956750.956778.

P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data, SIGMOD
’11, pages 385–396, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0661-4. doi:
10.1145/1989323.1989364. URL http://doi.acm.org/10.1145/1989323.1989364.

Y. Wang, X. Huang, and R. W. White. Characterizing and supporting cross-device search
tasks. In Proceedings of the Sixth ACM International Conference on Web Search and Data
Mining, WSDM ’13, pages 707–716, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1869-3. doi: 10.1145/2433396.2433484. URL http://doi.acm.org/10.1145/2433396.

2433484.

L. A. Wehinger. Agent-based modeling in electricity markets: Introducing a new predictive
agent learning approach. PhD thesis, Eidgeoessische Technische Hochschule Zurich and
Carnegie Mellon university, 2010.

E. Weisstein. Fold bifurcation. from mathworld - a wolfram web resource.
http://mathworld.wolfram.com/foldbifurcation.html, a.

E. Weisstein. Gibbs phenomenon. from mathworld - a wolfram web resource.
http://http://mathworld.wolfram.com/gibbsphenomenon.html., b.

E. Weisstein. Logistic equation. from mathworld - a wolfram web resource.
http://mathworld.wolfram.com/logisticequation.html., c.

E. Weisstein. Parseval’s theorem. from mathworld - a wolfram web resource.
http://mathworld.wolfram.com/parsevalstheorem.html., d.

R. W. White and S. T. Dumais. Characterizing and predicting search engine switching behav-
ior. In Proceedings of the 18th ACM Conference on Information and Knowledge Manage-
ment, CIKM ’09, pages 87–96, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-512-3.
doi: 10.1145/1645953.1645967. URL http://doi.acm.org/10.1145/1645953.1645967.

T. White. Hadoop: The Definitive Guide. O’Reilly Media, 2nd edition, Sep 2010. ISBN
0596521979.

U. Wilensky and M. Resnick. Thinking in levels: A dynamic systems approach to making
sense of the world. Journal of Science Education and Technology, 8(1):N/A, 1999.

162

http://doi.acm.org/10.1145/956750.956778
http://doi.acm.org/10.1145/956750.956778
http://doi.acm.org/10.1145/1989323.1989364
http://doi.acm.org/10.1145/2433396.2433484
http://doi.acm.org/10.1145/2433396.2433484
http://doi.acm.org/10.1145/1645953.1645967

J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-L. Wu, and
A. balmin. Flex: A slot allocation scheduling optimizer for mapreduce workloads. In
I. Gupta and C. Mascolo, editors, Middleware 2010, LNCS 6452, pages 1–20, 2010.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In
Proceedings of the 2006 ACM SIGMOD international conference on Management of data,
SIGMOD ’06, pages 407–418, New York, NY, USA, 2006. ACM. ISBN 1-59593-434-0. doi:
10.1145/1142473.1142520. URL http://doi.acm.org/10.1145/1142473.1142520.

F. Wu, C. Yeung, A. Poon, and J. Yen. A multi-agent approach to the deregulation and
restructuring of power industry. In System Sciences, 1998., Proceedings of the Thirty-
First Hawaii International Conference on, volume 3, pages 122–131 vol.3, 1998. doi:
10.1109/HICSS.1998.656079.

B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, and H. Li. Context-aware ranking in web
search. In Proceedings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’10, pages 451–458, New York, NY, USA,
2010. ACM.

Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad hoc
routing. In Proceedings of the 7th annual international conference on Mobile computing and
networking, MobiCom ’01, pages 70–84, New York, NY, USA, 2001. ACM. ISBN 1-58113-
422-3. doi: 10.1145/381677.381685. URL http://doi.acm.org/10.1145/381677.381685.

K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. On-line unsupervised outlier
detection using finite mixtures with discounting learning algorithms. Data Min. Knowl.
Discov., 8(3):275–300, May 2004. ISSN 1384-5810. doi: 10.1023/B:DAMI.0000023676.
72185.7c. URL http://dx.doi.org/10.1023/B:DAMI.0000023676.72185.7c.

X. Yang and J. Sun. An analytical performance model of mapreduce. In Cloud Computing
and Intelligence Systems (CCIS), 2011 IEEE International Conference on, pages 306–310,
2011.

Y. Yang, X. Wu, and X. Zhu. Combining proactive and reactive predictions for data streams.
In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge dis-
covery in data mining, KDD ’05, pages 710–715, New York, NY, USA, 2005. ACM. ISBN
1-59593-135-X. doi: 10.1145/1081870.1081961. URL http://doi.acm.org/10.1145/

1081870.1081961.

Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec., 31(3):9–18, Sept. 2002. ISSN 0163-5808. doi: 10.1145/601858.
601861. URL http://doi.acm.org/10.1145/601858.601861.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor
networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 3, pages 1567–1576 vol.3,
2002. doi: 10.1109/INFCOM.2002.1019408.

163

http://doi.acm.org/10.1145/1142473.1142520
http://doi.acm.org/10.1145/381677.381685
http://dx.doi.org/10.1023/B:DAMI.0000023676.72185.7c
http://doi.acm.org/10.1145/1081870.1081961
http://doi.acm.org/10.1145/1081870.1081961
http://doi.acm.org/10.1145/601858.601861

M. Yong, N. Garegrat, and M. Shiwali. Towards a resource aware scheduler in hadoop. In
ICWS, 2009.

M. Younis, M. Youssef, and K. Arisha. Energy-aware routing in cluster-based sensor net-
works. In Proceedings of the 10th IEEE International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunications Systems, MASCOTS ’02, pages
129–, Washington, DC, USA, 2002. IEEE Computer Society. URL http://dl.acm.org/

citation.cfm?id=882460.882620.

V. I. Zadorozhny, P. K. Chrysanthis, and P. Krishnamurthy. A framework for extending the
synergy between mac layer and query optimization in sensor networks. In Proceeedings of
the 1st international workshop on Data management for sensor networks: in conjunction
with VLDB 2004, DMSN ’04, pages 68–77, New York, NY, USA, 2004. ACM. doi: 10.
1145/1052199.1052211. URL http://doi.acm.org/10.1145/1052199.1052211.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Job
scheduling for multi-user mapreduce clusters. Technical Report UCBEECS200955, EECS
Department University of California Berkeley, 2009.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling.
In EuroSys ’10 Proceedings of the 5th European conference on Computer systems, pages
265–278, New York, NY, USA, 2010. ACM.

Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo. Optimizing completion time and resource
provisioning of pig programs. In CCGRID ’12 Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages
811–816, Washington, DC, USA, 2012a. IEEE Computer Society.

Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo. Automated profiling and resource
management of pig programs for meeting service level objectives. In Proceedings of the
9th international conference on Autonomic computing, pages 53–62, New York, NY, USA,
Sept. 14-18 2012b. ACM.

R. Zheng and R. Kravets. On-demand power management for ad hoc networks. In INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communica-
tions. IEEE Societies, volume 1, pages 481–491 vol.1, 2003. doi: 10.1109/INFCOM.2003.
1208699.

R. Zheng, J. C. Hou, and L. Sha. Asynchronous wakeup for ad hoc networks. In Proceedings of
the 4th ACM international symposium on Mobile ad hoc networking & computing, MobiHoc
’03, pages 35–45, New York, NY, USA, 2003. ACM. ISBN 1-58113-684-6. doi: 10.1145/
778415.778420. URL http://doi.acm.org/10.1145/778415.778420.

164

http://dl.acm.org/citation.cfm?id=882460.882620
http://dl.acm.org/citation.cfm?id=882460.882620
http://doi.acm.org/10.1145/1052199.1052211
http://doi.acm.org/10.1145/778415.778420

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. States definitions and transitions
	3.1. Complexity comparison
	4.1. A/B test schema
	4.2. Data set size
	4.3. A/B test data loading: extraction, pruning, and aggregation
	4.4. MapReduce job size
	5.1. Example buyer actions
	6.1. Statistics for feature generation, computed for a time window [to.start,end]to., where start and end - week number

	LIST OF FIGURES
	1.1. Decision making for a CAS in ideal world
	1.2. A proposed schema to find approximate solution to CAS
	2.1. 2Dspace
	2.2. Simulation dynamics
	2.3. Critical points
	2.4. State-action visualized
	2.5. Effect of suboptimal decisions
	2.6. The effect of the reduced information updates
	2.7. Micro crowd formation
	2.8. Browser usage popularity over time from Google Trends
	2.9. Stock market trends: Google vs Apple. From http://finance.yahoo.com
	2.10. Stock market trends: Google vs Apple (rivalry)
	3.1. Process dynamics with transitions
	3.2. Energy-based vs signature transition detection
	3.3. Data stream representation
	3.4. Data stream coherency portrait
	3.5. Coherency portraitfor pure noise and a noisy transition
	3.6. Coherency portrait for noisy step function and noisy incline
	3.7. Frequency pattern and its score
	3.8. Signature metric explained
	3.9. Scores for signature transition detection
	3.10. Stream generation pattern
	3.11. KDE, AR and signature methods on training dataset
	3.12. KDE, AR and signature methods on test dataset
	3.13. Stability of signature-based method performance as a function of the sample size (sliding window size)
	3.14. Signature-based hurricane tracking
	3.15. Bifurcation detection with signature for logistic equation: parameter r dynamics; data stream; corresponding coherency portrait; scores for the coherency portrait
	3.16. Fold bifurcation analysis
	4.1. A/B test execution monitoring. Top plot: map slot usage in the entire cluster. Bottom plot: map slot usage by the A/B test jobs
	4.2. MapReduce execution schema
	4.3. Examples of execution schedule for MapReduce jobs
	4.4. Upper plot: Map slots' usage for MR jobs. Lower plot: indicates boundaries for each MR job
	4.5. Reduce slots' usage as a function of Hadoop cluster load and speculative execution
	4.6. CDF plot for map slots' allocation to a MR job as a function of requested reducers
	4.7. CDF plot for reduce slots' allocation to a MR job as a function of requested reducers
	4.8. MapReduce job completion time as a function of requested reduce slots: (average time, upper and lower bounds for 95% interval)
	4.9. Map slot usage in a queue as a function of total cluster load
	4.10. Reduce slot usage in a queue as a function of total cluster load and number of requested reducers
	4.11. Teradata
	4.12. Data extraction, pruning, and aggregation schema
	4.13. Timing for data extraction, pruning, and aggregation on Teradata
	4.14. Timing for data extraction, pruning, and aggregation on Hadoop
	4.15. Timing for cart A/B test. top: time comparison of data loading routines, executed on Hadoop and Teradata; bottom: time comparison for execution of the whole A/B test on Hadoop vs Teradata+SAS
	4.16. A/B test analysis
	4.17. CDF plots for comparison of MR job optimization
	4.18. Optimization effect for a modified A/B test schema as a function of total Hadoop map slots usage
	4.19. Optimization effect for a modified A/B test schema as a function of total Hadoop reduce slots usage
	5.1. An example context tree structure. Here S corresponds to START
	5.2. Mean absolute error (MAE) for path prediction: for all buyer paths, and for paths, longer than 20 events
	5.3. Visualizing context tree properties, as they change when we learn higher-order (longer history) MC
	5.4. Probability to correctly predict Bid/BIN events as a function of the proximity to the target events
	5.5. A set of ROC curves for paths built from session models. All paths consist of least 20 sessions. Here, history corresponds to the order of VLMC
	5.6. Memory usage by two approaches: when we assume no session structure, and when we build a session model
	5.7. Regression coefficients together with their 95% confidence intervals for session features
	5.8. Entropy and brier score alteration explained
	6.1. "The speaker guy" shopping case
	6.2. Family account sharing
	6.3. Opportunistic mobile usage
	6.4. Heavy user without a particular shopping goal
	6.5. Heavy user on a mission
	6.6. Computing features from behavioral data
	6.7. Results obtained on feature set 1 and set 2 using LR, RF, and J48
	6.8. Results obtained on feature set 2 using L2-LR, RF, J48
	6.9. Results obtained on feature set 2 using L2-LR, RF, J48, L1-LR, SVM and kSVM (used only 10 % of data due to time issue)
	A1. Coherency portrait applied to data streams with and without transition
	A2. Filtering Heaviside step function: (a)B-vectors for band-pass filters; (b):filtered bands for Heaviside function; (c): coherency portraits
	A3. Filtering a noisy signal

	PREFACE
	1.0 INTRODUCTION
	1.1 Definition of a complex adaptive system
	1.2 CAS analysis: reality vs. ideal world
	1.2.1 CAS optimization and analysis procedures can resemble a search for a solution for an NP-hard problem
	1.2.2 Agent-based models vs. systems of differential equations for CAS analysis

	1.3 Relaxed optimization in CAS (ROCAS)
	1.4 Research questions
	1.5 Thesis outline

	2.0 ADAPTIVE SENSOR DATA MANAGEMENT FOR DISTRIBUTED FIRE EVACUATION INFRASTRUCTURE
	2.1 Applying ROCAS schema to the problem
	2.2 Background and System Model
	2.3 Using WSN for EmergencyEvacuation
	2.3.1 Information diffusion
	2.3.2 Adaptive State/Action Strategy

	2.4 Experimental Results
	2.4.1 Reduced information updates
	2.4.2 Emergent behavior and multi-factor systems

	2.5 Related Work
	2.6 Lessons learned

	3.0 DETECTING NOTABLE TRANSITIONS IN NUMERICAL DATA STREAMS
	3.1 Introduction
	3.2 Applying ROCAS schema to the problem
	3.3 Related work
	3.4 Method Description
	3.4.1 Frequency signature invariant
	3.4.2 Pattern discovery
	3.4.2.1 Score function
	3.4.2.2 Epsilon-interval selection
	3.4.2.3 Signature detection method
	3.4.2.4 Complexity analysis
	3.4.2.5 Comparison of complexity

	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Likelihood ratio test
	3.5.3 AR, KDE vs signature based comparison (incremental updates)
	3.5.4 Glimpse analysis
	3.5.5 Real data: signatures of hurricane season

	3.6 Signature-based detection of bifurcations in system dynamics
	3.7 Lessons learned

	4.0 COMPLEX PATTERNS IN RESOURCE SHARING THIS WORK WAS PARTIALLY ACCOMPLISHED WHILE BEING AT EBAY INC
	4.1 Applying ROCAS schema to the problem
	4.2 background
	4.2.1 MapReduce data flow
	4.2.2 Concurrent MapReduce optimization
	4.2.3 Current approaches for Hadoop / MapReduce optimization
	4.2.3.1 Hadoop scheduler optimization
	4.2.3.2 Hadoop/MapReduce system parameter optimization
	4.2.3.3 MapReduce cost model
	4.2.3.4 Applicability limits of the existing solutions towards large-scale analytics tasks

	4.3 Updated Map-Reduce Cost model
	4.3.1 Probabilistic resource allocation
	4.3.2 Functional dependencies for resource allocation

	4.4 case study: migrating A/B test from Teradata to Hadoop
	4.4.1 Teradata
	4.4.2 Test schema
	4.4.3 A/B test without explicit resource control
	4.4.4 Applying stochastic optimization for A/B test
	4.4.4.1 Resource sensitivity
	4.4.4.2 Algorithm description

	4.5 Acknowledgments
	4.6 Lessons learned

	5.0 SESSION MODELING TO PREDICT ONLINE BUYER BEHAVIOR THIS WORK WAS PARTIALLY ACCOMPLISHED WHILE BEING AT EBAY INC
	5.1 Applying ROCAS schema to the problem
	5.2 Related work
	5.3 Context-based behavior prediction
	5.4 Buyer behavior prediction assuming no hidden structure of behavior
	5.4.1 Summary of the results for prediction of "raw" session events

	5.5 Buyer Session model
	5.6 Lower-dimension patterns
	5.6.1 Session components hypothesis
	5.6.2 Experiment design
	5.6.2.1 Regression on entropy
	5.6.2.2 Entropy alteration
	5.6.2.3 Brier Score regression
	5.6.2.4 Brier Score alteration

	5.6.3 Regression results explained

	5.7 Conclusion

	6.0 FEATURE ENGINEERING FOR LARGE-SCALE BUYER BEHAVIOR MODELING THIS WORK WAS PARTIALLY ACCOMPLISHED WHILE BEING AT EBAY INC
	6.1 Visualization study of buyer sessions
	6.1.1 The speaker guy
	6.1.2 Account sharing
	6.1.3 Opportunistic mobile usage
	6.1.4 Relatively "heavy" users and their missions
	6.1.5 Important lessons from multi-screen usage, and combining that knowledge with the previous observations

	6.2 Applying ROCAS schema to the problem
	6.3 Related work
	6.4 Model description
	6.4.1 Dataset description
	6.4.2 Feature generation

	6.5 Experiment results
	6.6 Conclusion

	7.0 THESIS CONCLUSION
	APPENDIX A. COHERENCY PORTRAIT ANALYSIS
	A.1 Zero-phase bandpass filter
	A.2 Existence of V-shape
	A.3 Stability of coherency portraits around the transition point
	A.4 Stability of coherency portraits outside the transition point
	A.5 Stability of coherency portraits for different frequencies

	APPENDIX B. LIKELIHOOD RATIO TEST AND KL-DIVERGENCE
	BIBLIOGRAPHY

