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EXPLORING THE DISTANT UNIVERSE WITH CROSS-CORRELATION

STATISTICS

Daniel J. Matthews, PhD

University of Pittsburgh, 2014

Future cosmological surveys will require distance information for an extremely large number

of galaxies in order to gain insight into the structure and history of our Universe. Cur-

rent methods of obtaining accurate distance information such as measuring the redshifts of

galaxies via spectroscopy are not feasible for such enormous datasets, mainly due to the long

exposure times required. Photometric redshifts, where the redshift is measured using broad-

band imaging through only a few filters, are a promising avenue of study, although there

are inherent limitations to this method making them less understood than spectroscopic

redshifts. Understanding these limitations and improving the calibration of photometric

redshifts will be very important for future cosmological measurements. This thesis presents

tests of a new technique for calibrating photometric redshifts that exploits the clustering of

galaxies due to gravitational interaction. This cross-correlation technique uses the measured

spatial clustering on the sky of a photometric sample that has only imaging information,

with a spectroscopic sample that has secure and accurate redshifts. These tests shows that

measurements of this clustering as a function of redshift can be used to accurately recon-

struct the true redshift distribution of the photometric sample. In addition, this thesis shows

how similar clustering measurements can be used to constrain the contamination of a high

redshift candidate sample by low redshift interlopers. Finally it describes a new catalog that

combines spectroscopic redshifts and deep photometry that can be used as a testbed for

future photo-z studies.
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1.0 INTRODUCTION

Nearly a century ago it was first established that the Universe is expanding by noting that the

spectra of almost all galaxies in all directions are redshifted to longer wavelengths, implying

that they are all receding away from us at some velocity (Hubble, 1929). For decades

after this discovery it was predicted that this expansion should be slowing, because if the

Universe had only consisted of matter and radiation with no other agent acting to influence

the expansion, then the gravitational attraction of matter should work to decrease its rate.

Surprisingly, measurements of the distances to Type Ia supernovae and other observations

have shown that the expansion rate is in fact accelerating (Riess et al., 1998; Perlmutter

et al., 1999). This accelerating expansion is generally attributed to an unknown component

of the energy density of the universe commonly referred to as “dark energy.” Although the

observational evidence for the existence of dark energy is conclusive, its properties are not

well known. The nature of dark energy has become one of the most important unanswered

questions in cosmology.

There have been many theoretical explanations for dark energy put forward over the

last several years. For example, this unknown contribution to the energy density of the

universe could be explained by Einstein’s cosmological constant, introduced into his General

Theory of Relativity to counteract the attractive force of gravity and thought to represent an

intrinsic energy associated with the empty vacuum of space. It has also been proposed that

the accelerated expansion may be driven by a smooth dynamical scalar field usually referred

to as quintessence. There is also the possibility that dark energy does not exist and what

we are interpreting as an accelerated expansion actually points to a breakdown of General

Relativity at large scales.

Dark energy is generally characterized by its equation of state w ≡ P/ρ, where P is the

1



pressure and ρ is its mass density. By allowing for the evolution of w with time we can define

wa ≡ dw/da, where a(t) is the scale factor describing the relative expansion of the universe

(normalized to be 1 today) (Johri & Rath, 2007). Determining constraints on these dark

energy parameters has become the goal of many current and future cosmological probes (e.g.

DES, LSST, WFIRST, and Euclid) (The Dark Energy Survey Collaboration, 2005; Tyson

& Angel, 2001; Green et al., 2012; Albrecht et al., 2009; Beaulieu et al., 2010). For example,

the cosmological constant model of dark energy predicts an equation of state where w = −1

with the time derivative wa = 0, and significant deviations from this would rule out that

model.

In addition to supernovae surveys, other techniques are being employed to explore the

expansion history of the Universe and probe the parameters of dark energy, whether it is

through its effect on distance as a function of redshift, the time evolution of the expansion

rate or the growth rate of structure. For instance, in the hot dense phase of the early

Universe temperatures were high enough to ionize all of the baryonic matter, and so the

Universe consisted of an electron-baryon plasma permeated by photons. The interplay of the

photons with this plasma generated sound waves that propagated throughout the Universe,

and these pressure waves are referred to as Baryon Acoustic Oscillations (BAO) (Peebles

& Yu, 1970). As the Universe expanded and cooled the electrons and baryons combined to

form neutral atoms, making the Universe essentially transparent to photons. This phase of

the Universe occurred approximately 400,000 years after the Big Bang and is referred to as

“recombination”. At this time the baryonic matter decoupled from the photons, and it is

expected that the slight under- and over-densities of baryons due to BAO were frozen into

place at the moment of recombination and should be imprinted on the galaxy distribution

today. Their existence has been verified through studying the clustering of galaxies on

large scales (Eisenstein et al., 2005; Percival et al., 2010). The scale of the BAO acts as a

“standard ruler”, and so by measuring its size as a function of redshift it is possible to map

the expansion history of the Universe.

The growth of cosmic structure will also be influenced by the presence of dark energy and

can be used to study its properties. Since recombination the galaxies and clusters of galaxies

we observe, along with the distribution of dark matter halos, have formed over time under the

2



influence of gravity, and the characteristics of this growth can be used to probe dark energy.

This evolution of the galaxy and dark matter density fields can be characterized in various

ways. One example is from measuring the matter power spectrum and the resulting RMS

amplitude of mass fluctuations on a given scale. The evolution of this amplitude over time can

be used to constrain dark energy parameters in a way that is complementary to supernovae

measurements (Duran et al., 2012). Another possibility is using weak gravitational lensing

measurements. The images of distant galaxies become slightly distorted due to the bending

of light as it passes through the gravitational potentials of intervening large-scale structure.

These distortions can be used to characterize the density field, with the advantage that it

is sensitive to the dark matter distribution rather than galaxies (Bartelmann & Schneider,

2001).

In order to measure how cosmological parameters evolve with redshift, it will be neces-

sary to determine redshifts of many objects with widely varying properties. There are two

predominant methods for measuring galaxy redshifts. They can be determined using spec-

troscopy to finely measure the flux from a galaxy as a function of wavelength, where the shift

in wavelength of sharp spectral features such as absorption and emission lines can tell you

the redshift. Alternatively, redshifts can be measured using photometry where the galaxy’s

light is measured through only a few filters. Since the sharp features become washed out

using broadband photometry, the latter method must use broader features such as spectral

breaks to determine redshifts. These photometric redshifts, or photo-z’s, are inherently less

precise and more prone to systematic errors than redshifts measured spectroscopically due

mainly to the information that is lost by measuring a galaxy’s light through only a few filters.

However an advantage of photo-z’s is that it is possible to obtain redshifts for a much larger

number of galaxies over a given time period, primarily due to the longer integration time

required to obtain galaxy spectra with significant signal-to-noise. In addition, with photo-z’s

it is possible to obtain redshifts for objects that are too faint for spectroscopy.

Because of the difficulties in obtaining high precision photometric redshifts, many dark

energy experiments are unlikely to treat the redshifts of individual objects as known. Instead,

the objects will often be divided into bins in photo-z (e.g. Ma et al. 2006). In the simple case

of a photo-z distribution with Gaussian scatter, the photo-z bin is characterized by the mean,

3



〈z〉, and width of the bin, σz. However if the objects are binned using photometric redshifts,

the true redshift distribution of objects in a given bin will be different from the photo-z

distribution even if there are only random uncertainties in the photo-z’s. Understanding

this true distribution of objects placed into a photo-z bin by some algorithm, i.e. calibrating

photometric redshifts, will be very important for obtaining accurate measurements of dark

energy parameters.

Many of the cosmological measurements to be performed with future photometric surveys

will require extremely well-characterized redshift distributions of the galaxy samples used

for the measurements (Albrecht et al., 2006; Huterer et al., 2006; Ma et al., 2006). These

surveys will be imaging a large number of objects (∼ 108 − 109) to very faint magnitudes

(∼ 28), making spectroscopic redshifts impractical. We can measure the redshifts of these

objects using photometric information, e.g. by using a large set of spectroscopic redshifts to

create templates of how color varies with redshift (Connolly et al., 1995). However current

and future spectroscopic surveys will be highly incomplete due to selection biases dependent

on redshift and galaxy properties (Cooper et al., 2006). Because of this, along with the

catastrophic photometric errors1 that can occur at a significant (∼ 1%) rate (Sun et al., 2009;

Bernstein & Huterer, 2010), photometric redshifts are not as well understood as redshifts

determined spectroscopically.

If future dark energy experiments are to reach their goals, it is necessary to develop

a method of calibrating photometric redshifts with high precision (Albrecht et al., 2006;

Huterer et al., 2006; Ma et al., 2006). Current projections for LSST cosmic shear measure-

ments estimate that the true mean redshift of objects in each photo-z bin, 〈z〉, must be

known to better than ∼ 0.002(1 + z) (Zhan & Knox, 2006; Zhan, 2006; Knox et al., 2006;

Tyson, 2006) with stringent requirements on the fraction of unconstrained catastrophic out-

liers (Hearin et al., 2010), while the width of the bin, σz, must be known to ∼ 0.003(1 + z)

(LSST Science Collaborations: Paul A. Abell et al., 2009).

Systematic uncertainties in redshifts are expected to be dominant for many of the planned

dark energy experiments, and it is therefore essential to develop a method of calibrating

1such as contamination from overlapping or unresolved objects; this is a frequent problem in deep surveys,
particularly at high redshifts, cf. Newman et al. (2013b)
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photometric redshifts with high precision that will also minimize the impact of systematic

errors. In this thesis I present a new technique for calibrating photometric redshifts that

combines information from both photometric and spectroscopic surveys. The spectroscopic

sample provides us with secure and accurate redshift information for a sample of galaxies,

and by measuring the clustering of these objects with the photometric sample as a function

of redshift we can obtain redshift information about the photometric objects. This tech-

nique exploits the fact that objects at similar redshifts will cluster with each other due to

gravitational interactions. The benefit of this cross-correlation technique is two-fold: 1) it

can be used to obtain redshift information for a much larger sample size which will improve

the precision of cosmological parameter measurements, and 2) it gives the true distribution

of the photometric sample which will improve the accuracy.

In chapter 2 I present a test of this cross-correlation technique for calibrating photometric

redshifts, as well as discuss the effect of weak gravitational lensing on the method. The

analysis presented in sections 2.1 and 2.2 have also been published in The Astrophysical

Journal (Matthews & Newman, 2010, 2012). In chapter 3 I present a technique where

similar clustering measurements can be used to constrain the contamination level of a high

redshift (z ∼ 4 − 8) candidate sample by low redshift (z ∼ 2) “interlopers”. In chapter

4 I describe a new data catalog I constructed combining spectroscopic redshifts and deep

photometry that can be used as a testbed for future photo-z studies. The description of this

catalog has also been published in The Astrophysical Journal Supplement (Matthews et al.,

2013). Finally, in chapter 5 I conclude.
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2.0 CROSS-CORRELATION TECHNIQUE APPLIED TO CALIBRATING

PHOTOMETRIC REDSHIFTS

In this chapter I present a new technique for calibrating photometric redshifts measured by

other algorithms, which exploits the fact that objects at similar redshifts tend to cluster with

each other. If there are two galaxy samples in the same region of sky, one with only photo-

metric information and the other consisting of objects with known spectroscopic redshifts,

we can measure the angular cross-correlation between objects in the photometric sample

and the spectroscopic sample as a function of spectroscopic z. This clustering will depend

on both the intrinsic clustering of the samples with each other and the degree to which the

samples overlap in redshift. Autocorrelation measurements for each sample give information

about their intrinsic clustering, which can be used to break the degeneracy between these

two contributions. The principal advantage of this technique is that, while the two sets of

objects should overlap in redshift and on the sky, it is not necessary for the spectroscopic

sample to be complete at any given redshift. Therefore it is possible to use only the brightest

objects at a given z, from which it is much easier to obtain secure redshift measurements,

to calibrate photometric redshifts. Even systematic incompleteness (e.g. failing to obtain

redshifts for galaxies of specific types) in the spectroscopic sample is not a problem, so long

as the full redshift range is sampled. This method is effective even when the two samples do

not have similar properties (e.g. differing luminosity and bias).
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2.1 INITIAL TEST

To begin I describe a complete end-to-end implementation of cross-correlation methods for

calibrating photometric redshifts and present the results of applying these algorithms to

realistic mock catalogs. For all calculations in this chapter I assume a flat ΛCDM cosmology

with Ωm=0.3, ΩΛ=0.7, and Hubble parameter H0 = 100h km s−1 Mpc−1, where we have

assumed h=0.72, matching the Millennium simulations, where it is not explicitly included

in formulae. In §2.1.1 we describe the catalog and data sets used to test cross-correlation

methods. In §2.1.2 we provide a description of the reconstruction techniques used in detail,

and in §2.1.3 we provide the results of the calculation. In §2.1.4 we conclude, as well as

give a more concise description of the steps taken, providing a recipe for cross-correlation

photometric redshift calibration.

2.1.1 Data Sets

To test this method, it is necessary to construct two samples of galaxies, one with known

redshift (“spectroscopic”) and the other unknown (“photometric”). We have done this using

mock DEEP2 Redshift Survey light cones produced by Darren Croton. A total of 24 light

cones were constructed by taking lines-of-sight through the Millennium Simulation halo

catalog (Lemson & Virgo Consortium, 2006) with the redshift of the simulation cube used

increasing with distance from the observer (Kitzbichler & White, 2007). The light cones were

then populated with galaxies using a semi-analytic model whose parameters were chosen to

reproduce local galaxy properties (Croton et al., 2006). Each light cone covers the range

0.10 < z < 1.5 and corresponds to a 0.5 × 2.0 degree region of sky. The galaxies in this

mock catalog will have properties (including color, luminosity, and large-scale structure bias)

which vary with redshift due to the same factors believed to affect real galaxy evolution. The

semi-analytic model used is certainly imperfect, but yields samples of galaxies that pose the

same difficulties (e.g. bias evolution and differences in clustering between bright and faint

objects) as real surveys will exhibit; they therefore provide a realistic test of our ability

to reconstruct redshift distributions of faint samples using spectroscopy of only a brighter
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subset.

The spectroscopic sample is generated by selecting 60% of objects with observed R-band

magnitude R < 24.1, which gives a sample whose characteristics resemble the DEEP2 Galaxy

Redshift survey (Newman et al., 2013b). The mean number of spectroscopic objects over

the 24 light cones is 35, 574. The size of this sample is comparable to the number of objects

predicted to be needed for calibration using template-based methods (∼ 105 (LSST Science

Collaborations: Paul A. Abell et al., 2009; Ma & Bernstein, 2008)). However, this sample

differs greatly in what it contains: it consists only of relatively bright objects, rather than

having to be a statistically complete sample extending as faint as the objects to which pho-

tometric redshifts will be applied (a necessity for accurate training or template development,

as the spectral energy distributions of faint galaxies are observed to lie outside the range

luminous galaxies cover, both at z ∼ 0 and z ∼ 1 (Willmer et al., 2006; MacDonald & Bern-

stein, 2010). Studies such as Bernstein & Huterer (2010) have assumed for such projections

that 99.9% redshift success can be achieved for faint galaxy samples (e.g. of photometric-

redshift outliers); however, that is a failure rate more than two orders of magnitude lower

than that actually achieved by current large surveys on 10-meter class telescopes such as

VVDS (Le Fèvre et al., 2005), ZCOSMOS (Lilly et al., 2007), or DEEP2 (Newman et al.,

2013b), surveys which are 1.5-5 magnitudes shallower than the limits of Stage III and Stage

IV surveys such as DES and LSST. In contrast, the cross-correlation techniques we focus on

here do not require a complete spectroscopic sample, and hence do not require improvements

in redshift success over existing projects to provide an accurate calibration.

The other sample, referred to hereafter as the photometric sample, is constructed by

selecting objects in the mock catalog down to the faintest magnitudes available, with the

probability of inclusion a Gaussian with 〈z〉 = 0.75 and σz = 0.20. This emulates choosing a

set of objects which have been placed in a single photometric redshift bin by some algorithm

with Gaussian errors. It should be noted that, since the redshift distribution of the mock

catalog we select from is not uniform, the resulting redshift distribution of the photometric

sample is not a pure Gaussian. The overall redshift distribution of all objects in the catalog

is fit well using a 5th degree polynomial, so the net distribution of the photometric sample

can be well represented by the product of this polynomial and a Gaussian. After applying
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this Gaussian selection to the mock catalog, we then randomly throw out half of the selected

objects in order to cut down on calculation time. The mean number of objects in the final

photometric sample over the 24 light cones is 44, 053.

The mock catalog includes both the cosmological redshift as well as the observed red-

shift for each object. The observed redshift shows the effects of redshift-space distortions

(Hamilton, 1998), and is the redshift value used for objects in the spectroscopic sample.

When plotting the redshift distribution of the photometric sample we use the cosmological

redshifts for each object (differences are small). Fig. 2.1 shows the number of galaxies as a

function of redshift for each sample, as well as the entire catalog. While there is complete

information on the actual redshift distributions for both samples in the catalog, only the

distribution of the spectroscopic sample is assumed to be known in our calculations. We

assume no information is known about the redshift distribution of the photometric sample,

and attempt to recover it using only correlation measurements.

2.1.2 Method

After constructing the two samples of objects from each mock catalog, we can use standard

correlation measurements and exploit the clustering of galaxies to recover the redshift dis-

tribution of the photometric sample. From here on, the spectroscopic sample, with known

observed redshifts, will be labeled “s”, and the photometric sample, with redshifts assumed

unknown, will be labelled “p”.

The most fundamental correlation measurements we use are the real space two-point

correlation function and the angular two-point correlation function. The real space two-

point correlation function ξ(r) is a measure of the excess probability dP (above that for a

random distribution) of finding a galaxy in a volume dV , at a separation r from another

galaxy(Peebles, 1980):

dP = n[1 + ξ(r)]dV, (2.1)

where n is the mean number density of the sample. The angular two-point correlation

function w(θ) is a measure of the excess probability dP of finding a galaxy in a solid angle

9



0.2 0.4 0.6 0.8 1.0 1.2 1.4

z

0

1•10
5

2•10
5

3•10
5

4•10
5

N

Figure 2.1 The total number of galaxies in each sample as a function of redshift, summed

over the 24 fields, binned with ∆z = 0.04. The solid line is the overall redshift distribution

for all galaxies in the mock catalogs, the dashed line is the distribution for our photometric

sample (selected from the overall sample via a Gaussian in z, emulating objects placed in

a single photometric redshift bin), while the dot-dashed line is the redshift distribution for

our spectroscopic sample, selected to have magnitude R < 24.1.
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dΩ, at a separation θ on the sky from another galaxy (Peebles, 1980) :

dP = Σ[1 + w(θ)]dΩ, (2.2)

where Σ is the mean number of galaxies per steradian (i.e., the surface density). From the

spectroscopic sample we measure the real space two-point autocorrelation function, ξss(r, z),

and from the photometric sample we measure the angular two-point autocorrelation func-

tion, wpp(θ). These measurements give information about the intrinsic clustering of the

samples. We also measure the angular cross-correlation function between the spectroscopic

and photometric sample, wsp(θ, z), as a function of redshift. This is a measure of the excess

probability of finding a photometric object at an angular separation θ from a spectroscopic

object, completely analogous to wpp.

Modeling ξ(r) as a power law, ξ(r) = (r/r0)−γ, which is an accurate assumption from

∼ 0.5 to ∼ 20h−1 comoving Mpc for both observed samples and those in the mock catalogs,

we can determine a relation between the angular cross-correlation function wsp(θ, z) and the

redshift distribution. Following the derivation in Newman (2008) (cf. eq. 4),

wsp(θ, z) =
φp(z)H(γsp)r

γsp
0,spθ

1−γspD(z)1−γsp

dl/dz
, (2.3)

where H(γ) = Γ(1/2)Γ((γ − 1)/2)/Γ(γ/2) (where Γ(x) is the standard Gamma function),

φp(z) is the probability distribution function of the redshift of an object in the photometric

sample, D(z) is the angular size distance, and l(z) is the comoving distance to redshift z.

Hence, to recover φp(z) from wsp, we also must know the basic cosmology (to determine

D(z) and dl/dz), as well as the cross-correlation parameters, r0,sp and γsp. It has been

shown that uncertainties in cosmological parameters have minimal effect on the recovery of

φp(z)(Newman, 2008). To determine the cross-correlation parameters, we use the assumption

of linear biasing, under which the cross-correlation is given by the geometric mean of the

autocorrelations of the two samples, ξsp(r) = (ξssξpp)
1/2. Thus we need to measure the

autocorrelation functions for each sample and determine their parameters, r0 and γ. The

derivation of equation 2.3 is shown in more detail in Appendix A.
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2.1.2.1 Autocorrelation of the Spectroscopic Sample We first need to determine

how the real space autocorrelation function of the spectroscopic sample, ξss, evolves with

redshift. To do this we bin the spectroscopic objects in redshift and measure the two-point

correlation function as a function of projected separation, rp, and line-of-sight separation,

π, for the objects in each bin. However, since it is affected by redshift-space distortions in

the line of sight direction, it is difficult to measure the evolution of ξss(r) accurately directly

from the observed ξ(rp, π). However, as we describe later, we can use ξ(rp, π) to derive the

projected correlation function, wp(rp), which is not significantly affected by redshift-space

distortions. The evolution of the projected correlation function with redshift can be related

to the evolution of ξ(r).

To begin we measure ξss in bins of rp and π, using the Landy & Szalay estimator (Landy

& Szalay, 1993):

ξ =
1

RR

[
DD

(
NR

ND

)2

− 2DR

(
NR

ND

)
+RR

]
, (2.4)

where DD, DR, and RR are the number of object pairs in each bin of rp and π – i.e., the

number of cases where an object of type B is located a separation of rp and π away from an

object of type A – considering pairs between objects in the data catalog and other objects

in the data catalog, between the data catalog and a random catalog, or within the random

catalog, respectively; we will describe these catalogs in more detail shortly. Here ND and

NR are the total numbers of objects in the data and random catalogs. For each object pair,

we calculated the projected separation, rp, and the line-of-sight separation, π, using the

equations:

rp = D(zmean)∆θ (2.5)

and π = |z1 − z2|
dl

dz

∣∣∣∣
zmean

, (2.6)

where z1 and z2 are the redshifts of the two objects in a pair, ∆θ is their angular separation

on the sky, and zmean = (z1 + z2)/2.

We calculate DD by measuring the transverse and line-of-sight distance between every

pair of objects in the data sample and binning those distances to find the number of pairs

as a function of rp and π. In this case the data sample is all of the objects in the chosen
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spectroscopic z-bin. In turn, RR is the pair count amongst objects in a “random” catalog,

and DR is the cross pair count calculated using pairs between data objects and random

catalog objects. We construct the random catalog to have the same shape on the sky as the

data catalog, but its objects are randomly distributed with constant number of objects per

solid angle (taking into account the spherical geometry).

To measure the real space correlation function, the random catalog must also have the

same redshift distribution as the data catalog. To produce this, we first determine a smooth

function that fits the overall redshift distribution of the spectroscopic sample and construct

the random catalog to match. We had difficulty finding a single function that fit the entire

distribution of R < 24.1 galaxies in the Millennium mock from z = 0.1 to z = 1.5, so we

used different functional forms over different redshift ranges. The best fit resulted from using

φs(z) ∼ z2 exp(−z/zo) for 0 < z < 1.03 and φs(z) ∼ A(1 + z)β for z > 1.03. We bin the

objects in each field into bins of ∆z = 0.04. Combining the distributions of all 24 fields

and fitting via least-squares gave values of zo = 0.232 ± 0.003 and β = −2.74 ± 0.18. We

then used these values, choosing a value of A to force continuity at z = 1.03, to define the

redshift distribution used to generate the random catalogs. The random catalog for each

field contained ∼ 10 times the number of objects as its corresponding data catalog.

After constructing the random catalogs, we calculate the pair counts in each redshift bin.

For each field, both the data and random catalogs are divided into subsamples (“z-bins”)

according to their redshift, and DD, DR, and RR are calculated for each bin of rp and π using

only objects within a given z-bin. In the rp direction we binned the separations in log(rp) over

the range −3 < log(rp) < 2.5 with ∆ log(rp) = 0.1, where rp is in h−1Mpc. In the π direction

we binned the separations over the range 0 < π < 30 h−1Mpc, with ∆π = 1.0 h−1Mpc. We

calculated the pair counts in 10 z-bins covering the range 0.11 < z < 1.4, where the size

and location of each z-bin was selected so that there were approximately the same number

of objects in each one.

When interpreting correlation measurements for the spectroscopic sample, we must take

into account the effects of redshift-space distortions (Hamilton, 1998). Since these only affect

distance measurements along the line of sight, we integrate ξ(rp, π) in the π direction, which

gives the projected correlation function, wp(rp). Modeling ξ(rp, π) as a power law and solving
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for wp(rp) analytically gives

wp(rp) = 2

∫ ∞
0

ξ[(r2
p + π2)1/2]dπ (2.7)

= rp

(
r0

rp

)γ
H(γ), (2.8)

where H(γ) is defined following equation 2.3. We thus can recover γss(z) and r0,ss(z) by

fitting a power-law model to wp(rp) in each z-bin, allowing us to measure how the correlation

function evolves with redshift. Because for our field geometry, signal-to-noise is poor at large

scales, we fit for wp(rp) up to rp = 10 h−1Mpc. The lower limit of rp used for the fit varied

with redshift. We found in the highest redshift bins the behavior of wp(rp) diverged from

a power law, likely due to the semi-analytic model not populating group-mass halos with

enough blue galaxies compared to DEEP2 data (Coil et al., 2008). Hence, for z < 0.8 we fit

over the range 0.1 < rp < 10 h−1Mpc, while for z > 0.8 we fit over 1.0 < rp < 10 h−1Mpc.

We cannot measure ξ(rp, π) to infinite line-of-sight separations, so to calculate wp(rp) we

must integrate ξ(rp, π) out to πmax = 30 h−1Mpc and then apply a correction for the fraction

of the integral missed. In fact, in measuring wp(rp), instead of evaluating ξ(rp, π) and then

integrating, we simply summed the paircounts in the π direction so DD, DR, and RR are

functions of rp only; this method yielded more robust results. From equation 2.7 (integrating

to πmax instead of infinity) we find

wp(rp) = 2

(
1

RR

[
DD

(
NR

ND

)2

− 2DR

(
NR

ND

)
+RR

])
πmax, (2.9)

where DD, DR, and RR are the paircounts summed over the π direction. For the correction,

we first calculate wp(rp) by summing the pair counts out to πmax, and then fit for r0 and

γ using the analytic solution given in equation 2.8. Using those parameters, we calculate∫ πmax

0
ξ(rp, π)dπ/

∫∞
0
ξ(rp, π)dπ. We divide the observed wp(rp) by this quantity and refit for

r0 and γ. This process is repeated until convergence is reached.

14



2.1.2.2 Autocorrelation of the Photometric Sample Since we assume the photo-

metric sample contains no redshift information (or, more realistically, that any available

redshift information was already exploited by placing objects into a redshift bin), we de-

termine its autocorrelation parameters by measuring the angular autocorrelation function,

wpp(θ), and relating it to r0,pp using Limber’s equation (Peebles, 1980):

wpp(θ) = H(γpp)θ
1−γpp

∫ ∞
0

φ2
p(z)r

γpp
0,pp

D(z)1−γpp

dl/dz
dz, (2.10)

where γpp may be measured directly from the shape of wpp(θ). We again measure the angular

autocorrelation of the photometric sample using a Landy & Szalay estimator:

wpp(θ) =
1

RR

[
DD

(
NR

ND

)2

− 2DR

(
NR

ND

)
+RR

]
, (2.11)

where DD, DR, and RR are the paircounts as a function of separation, θ, and ND and NR are

the number of objects in the data and random catalogs for the field. For angular correlation

measurements the random catalog consists of objects randomly distributed on the sky in

the same shape as the data catalog. Again, the random catalog is ∼ 10 times larger than

the data catalog. For each sample, we calculated the θ separation of every pair and binned

them in log(θ) over the range −3 < log(θ) < 0.4 with ∆ log(θ) = 0.1, where θ is measured

in degrees.

The angular correlation function can be related to the spatial correlation function:

wpp(θ) = Appθ
1−γpp , where App ∼ r

γpp
0,pp (Peebles, 1980). However, since the observed mean

galaxy density in a field is not necessarily representative of the global mean density, our

measurements of wpp(θ) need to be corrected by an additive factor known as the inte-

gral constraint. To estimate this, we fit wpp(θ) using a power law minus a constant, e.g.

wpp(θ) = Appθ
1−γpp − Cpp, where Cpp is the integral constraint. For measuring the param-

eters we fit over the range 0.001◦ < θ < 0.1◦. We found that fitting over this smaller

range reduced the error in the amplitude measurements, although the error in the integral

constraint (which is essentially a nuisance parameter) increases. For autocorrelation mea-

surements this has little impact. We use the measured γpp, along with the parameters of the

spectroscopic sample (γss(z) and r0,ss(z)) and an initial guess of r0,pp to determine an initial

guess of r
γsp
0,sp, employing the linear biasing assumption that r

γsp
0,sp = (rγss0,ssr

γpp
0,pp)

1/2.
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We expect the correlation length of the photometric sample, r0,pp, to be a function of

redshift, as both the underlying dark matter correlation function and the large-scale structure

bias of the sample will evolve with z, both in the real universe and in our mock catalogs. To

account for this, we assume the redshift dependence of the scale length, r0, will be similar

for both the photometric and spectroscopic samples (we considered several alternatives, but

this yielded the best results); for our calculations we set r0,pp(z) ∝ r0,ss(z), with an initial

guess of r0,pp(z) = r0,ss(z). We then refine our initial guess for r
γsp
0,sp by measuring the angular

cross-correlation function in each redshift bin.

2.1.2.3 Cross-correlation and the Redshift Distribution To find wsp(θ, z), we mea-

sure the cross-correlation between objects in spectroscopic z-bins with all objects in the pho-

tometric sample. We bin the spectroscopic sample over the range 0.19 < z < 1.39 with a

bin size of ∆z = 0.04 and measure wsp(θ) for each bin using the estimator

wsp(θ) =
1

RsRp

[
DsDp

(
NRsNRp

NDsNDp

)
−DsRp

(
NRs

NDs

)
−RsDp

(
NRp

NDp

)
+RsRp

]
, (2.12)

where DsDp, DsRp, RsDp, and RsRp are the cross pair counts between samples as a function

of θ separation, and N is the number of objects in each sample. The cross pair counts are

calculated by measuring the observed number of objects from one sample around each object

in another sample. For example, DsDp is the number of objects in the photometric sample

around each spectroscopic object as a function of separation. For this measurement, each

sample (the objects in the spec-z bin and the photometric sample) has their own random

catalog that is ∼ 10 times bigger than their corresponding data catalog. These are once

again constructed by randomly distributing objects on the sky in the same shape as the data

catalog.

For each z-bin we measured wsp(θ) in logarithmic bins of 0.1 in log(θ) over the range

−3 < log(θ) < 0.4, with θ measured in degrees. As with the autocorrelation function, we

fit wsp(θ) = Aspθ
1−γsp − Csp; the integral constraint is nonnegligible in these measurements.

Again we fit over the range 0.001◦ < θ < 0.1◦ to reduce the error in the amplitude measure-

ments. In some z-bins, particularly where the amplitude, Asp, is small, we found a significant

degeneracy between Asp and γsp when fitting. One can understand this as there being a pivot
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scale at which clustering is best constrained; one can simultaneously vary Asp and γsp and

still match wsp at that scale. To remove this degeneracy, we fixed γsp in each bin, and only

fit for the amplitude and integral constraint. Since the clustering of the samples with each

other is expected to be intermediate to the intrinsic clustering of each sample, we estimated

γsp with the arithmetic mean of γpp and γss. Using Asp and γsp, as well as the initial guess

for r
γsp
0,sp, we determine an initial guess of the redshift distribution φp(z). Rewriting equation

2.3 gives

φp(z) =
dl/dz

D(z)1−γspH(γsp)r
γsp
0,sp

Asp(z). (2.13)

We then use the resulting φp(z), along with App and γpp, to redetermine r0,pp using Equation

2.10, which we use to redetermine r
γsp
0,sp and thus φp(z). This process is repeated until

convergence is reached.

2.1.3 Results

For the remainder of this chapter, we will frequently refer to making a “measurement” of

the correlation functions and φp(z). Each measurement is done by selecting four fields at

random out of the 24 mock catalogs, summing their pair counts, and calculating all necessary

quantities; no information on “universal” mean values of any measured quantity is used, but

rather only that available from the chosen four fields. We select four fields in order to emulate

redshift surveys like DEEP2 and VVDS, in which data is typically obtained from of order

four separate fields; hence a “measurement” in our parlance is roughly equivalent to utilizing

the information coming from a single survey. To obtain the following results, we made 104

measurements; we used the median values to evaluate statistical biases in a given quantity

and the standard deviation to evaluate random uncertainties. In each plot following the

points are the median values and the error bars are the standard deviations, which gives the

error on a single measurement. Because (given the large number of measurements) these

medians should closely match the mean of the 24 fields, the standard error in a plotted point

should be smaller than the plotted error bars by a factor of
√

6.

It should be noted that we are ignoring the weak cross correlation that should result from

gravitational lensing by large-scale structure (Newman, 2008; Bernstein & Huterer, 2010).
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These correlations can be predicted directly from galaxy number counts (Scranton et al.,

2005); planned surveys such as LSST will extend fainter than their nominal depth over limited

regions of sky (LSST Science Collaborations: Paul A. Abell et al., 2009), so no extrapolation

will be required. It should also be possible to use the initial estimate of φp(z) to predict the

lensing induced cross-correlation signal at a given redshift, and therefore iteratively remove

its contribution. Because these correlation effects are weak, straightforward to deal with,

and not present in the mock catalogs available to us, we do not consider them further for

this test of the technique. However a more detailed analysis of this contribution to the

cross-correlation signal is presented in §2.3.

To determine the evolution of the autocorrelation parameters of the spectroscopic sample

we measured wp(rp) in z-bins of varying widths. Fig. 2.2 shows the median and standard

deviation of wp(rp) for 104 measurements in each spectroscopic z-bin, with the correction

for finite πmax applied as described above. We then fit each measurement of wp(rp) for

the autocorrelation parameters. The solid lines in Fig. 2.2 show the results of equation

2.8 corresponding to the median r0,ss and γss for all measurements in a given z-bin, while

Fig. 2.3 shows the accuracy with which we can measure the evolution of r0,ss and γss with

redshift. Both parameters decreasing with redshift is consistent with measurements in real

samples which show bluer galaxy samples have smaller r0 and γ (Coil et al., 2008); a constant

observed magnitude limit will correspond to a selection at a bluer and bluer rest frame band

as redshift goes up, increasingly favoring bluer objects for selection.

The autocorrelation parameters for the photometric sample are determined from the

shape of wpp(θ). Fig. 2.4 shows the median and standard deviation of 104 measurements

of wpp(θ), corrected for the integral constraint. A fit to each measurement gives estimates

of autocorrelation parameters. Taking the median values and standard deviations gives

App = 5.48×10−4±2.73×10−4 and γpp = 1.55±0.045. The solid line in Fig. 2.4 corresponds

to these median values. The scale length of the photometric sample, r0,pp(z), was assumed

to be proportional to r0,ss(z); this yielded superior results to other simple assumptions. The

proportionality constant may then be found using an initial guess of r0,pp = r0,ss to calculate

φp(z) using cross-correlation techniques, leading to a refined estimate of r0,pp using Limber’s

equation (eqn. 2.10). That refined r0,pp is then used to make an improved measurement of
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Figure 2.2 The median value of 104 measurements of the projected two-point correlation

function of the spectroscopic sample, wp(rp), in each redshift bin. Each measurement is

made by averaging the paircounts of four fields selected at random from the 24 total fields.

Error bars show the standard deviation of the measurements; i.e., they indicate the expected

errors from a spectroscopic survey of four 1 square degree fields. The standard error in the

plotted points is smaller than these error bars by a factor of
√

6 (2.45). At high redshift wp(rp)

deviates from a power law, whereas observed samples do not, due to the semi-analytic model

not containing enough blue galaxies in group-mass halos. The solid line depicts a power-law

model for wp(rp), using the median values of the fit parameters r0,ss and γss across the 104

measurements. The dashed line is the same in all panels; it is included to help make changes

in the slope (i.e., γss) and the amplitude (i.e., r0,ss) with redshift clearer. We can see that

changes in the amplitude with redshift are much more significant than changes in the slope.

19



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

3

4

5

6

r 0
,s

s 
(h

−
1
 M

p
c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

1.0

1.2

1.4

1.6

1.8

2.0

γ
ss

Figure 2.3 The correlation function parameters resulting from power-law fits to wp(rp), r0,ss

and γss, as a function of redshift. The points are the median values of 104 measurements,

and hence correspond to the parameters used to generate the lines in Fig. 2.2; the error bars

are the standard deviation of each parameter amongst the measurements. The standard

error in the plotted points is smaller than these error bars by a factor of
√

6 (2.45). Each

measurement is made by averaging the paircounts of four fields selected at random from the

24 total fields. While both parameters decrease with redshift, we see that changes in r0,ss

are substantially greater than changes in γss.
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Figure 2.4 The median value of 104 measurements of the two-point correlation function of

the photometric sample, wpp(θ), corrected for the integral constraint. Each measurement

is made by averaging the paircounts of four fields selected at random from the 24 mock

catalogs. Error bars show the standard deviation of the measurements. The standard error

in the plotted points is smaller than these error bars by a factor of
√

6 (2.45). The solid line

is the fit to wpp(θ) using the median values of the fit parameters App and γpp; a power-law

model provides an excellent fit to the data.
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φp(z), which is used to obtain a yet-improved measure of r0,pp, etc. After convergence was

reached, we found that on average r0,pp/r0,ss = 1.068.

To determine the evolution of the cross-correlation parameters, we measure the angu-

lar cross-correlation, wsp(θ, z), between objects in successive spectroscopic z-bins and the

photometric sample. Fig. 2.5 shows the median and standard deviation of wsp(θ) for 104

measurements in each z-bin, corrected for the integral constraint. Fitting each measurement

for the cross-correlation parameters with fixed γsp as described above and taking the median

gives the amplitude, Asp(z), shown in Fig. 2.6. The solid lines in Fig. 2.5 correspond to the

median of the best-fit parameters from each measurement.

Combining the intrinsic clustering information from the autocorrelation parameters of

each sample with the amplitude of the cross-correlation, Asp(z), together with the basic

cosmology, gives the recovered redshift distribution. We found that a linear fit of r0,ss and

γss versus z resulted in a better recovery of φp(z) than using each bin’s value directly, resulting

in a ∼ 32% reduction in the χ2 of the final reconstruction as compared to the true redshift

distribution. Fitting the correlation function over a limited θ range, as described in § 2.1.2.3,

reduced the measured error in φp(z) for each z-bin by ∼ 25% on average, reducing the χ2

in comparing the reconstructed and true redshift distributions by ∼ 30%. We also tried

modeling γsp as constant with z using the arithmetic mean of γss(z = 0.77) and γpp. This

resulted in a ∼ 20% increase in the χ2 of the final fit.

Fig. 2.7 shows the median and standard deviation of 104 measurements of φp(z) compared

to the actual distribution. To determine the actual distribution, we found the mean true

distribution of the four fields corresponding to each measurement and took the median

across the 104 measurements; this should accurately match the true mean of the redshift

distributions over the 24 fields. Each measurement was normalized so that integrating φp(z)

over the measured redshift range gives unity before the median was taken. It is important

to note that the reconstruction techniques we have implemented thus far will recover the

actual redshift distribution of objects in the photometric sample. This will in general deviate

from the true, universal redshift distribution of objects of that type due to sample/cosmic

variance. We describe and test methods for recovering the underlying universal distribution

in §2.1.3.2.
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Figure 2.5 The median value of 104 measurements of the cross-correlation between the pho-

tometric and spectroscopic samples, wsp(θ), in each redshift bin, corrected for the integral

constraint. Each measurement is made by averaging the paircounts of four fields selected

at random from the 24 total fields. Error bars show the standard deviation of the measure-

ments. The standard error in the plotted points is smaller than these error bars by a factor

of
√

6 (2.45). The solid line is the fit to wsp(θ) using the median values of the fit parameters

Asp and γsp. The dashed line is to help make changes in the amplitude, Asp(z), with redshift

clearer; in the fits shown the slope, γsp(z), is forced to be constant with z. It is clear that

the amplitude of the correlation is much greater in the central region of the redshift range

where there are more photometric objects.
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Figure 2.6 The median value of 104 measurements of Asp, the amplitude of wsp, in each

redshift bin. Each plotted point corresponds to the amplitude of one of the model lines

shown in Fig. 2.5. Each measurement is made by averaging the paircounts of four fields

selected at random from the 24 mock catalogs. Error bars show the standard deviation of

the measurements. The standard error in the plotted points is smaller than these error bars

by a factor of
√

6 (2.45). The amplitude is larger in the central region of the redshift range

where there are more photometric objects, which is expected since the degree to which the

two samples overlap in redshift contributes to the strength of the cross-correlation function.
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Figure 2.7 Plot of the redshift distribution recovered using cross-correlation techniques. The

solid line is the actual distribution of the photometric sample (combining all 24 fields),

while the points are the median reconstructed values from 104 measurements. Error bars

show the standard deviation of the recovered distribution when performing cross-correlation

reconstruction in 4 0.5×2 deg fields, emulating the data available from existing deep redshift

surveys. The standard error in the plotted points is smaller than these error bars by a factor

of
√

6 (2.45). Each measurement is made by averaging the paircounts of four fields selected at

random from the 24 mock catalogs. The recovered distribution follows the true distribution

closely, even picking up the irregular dip due to sample variance (also known as cosmic

variance) at the peak.
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We also looked at how well redshift distributions may be recovered in a single, 1 square

degree field. For each field, the correlation functions were calculated using only the informa-

tion from that field. To weight each bin when fitting for correlation-function parameters, the

fit was calculated using errors given by the standard deviation of the correlation function in

each θ bin over the 24 fields. This mimics the common situation where we have few fields

with data and errors are determined from simulations. For a single field, a linear fit for

the evolution of the spectroscopic-sample correlation function parameters was not a good

model, so we used the calculated parameters in each z-bin. Fig. 2.8 shows the recovered

distribution, φp(z), in each of the 24 fields, compared to the true redshift distribution of the

photometric sample in that field.

2.1.3.1 Correlation Measurement Errors In the course of our calculation of the red-

shift distribution, we found that the error in φp(z) for each redshift bin was larger than

expected from the error model used in Newman (2008), which uses the standard, classical

weak-clustering formalism. This formalism predicts that Poisson uncertainties should domi-

nate when the clustering strength (e.g. the value of wsp) is small compared to unity (Peebles,

1980). Upon further investigation we determined that the error in all correlation function

measurements were larger than expected according to this model, which led to the excess

error in φp(z). This additional error is associated with extra variance terms identified by

Bernstein (1994), which contribute significantly even in the weak-clustering limit, contrary

to the classical assumption. These extra terms are dominated by the variance in the integral

constraint, which has a significant impact if spectroscopic samples cover only a few square

degrees of sky.

Fig. 2.9 compares the four terms of the predicted error from Bernstein’s error model

to our measured error for wpp(θ). Bernstein’s error model assumes the separation is much

smaller than the field size, so we see for small θ the predicted variance does follow our

measured variance closely, and then deviates as the separation becomes comparable to the

field size. The integral constraint term dominates at large θ values. In order to calculate

some of the variance terms of Bernstein’s model we required values for q3 and q4, which

are used to relate the three- and four-point correlation functions to the two-point correlation
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Figure 2.8 Plot of the recovered redshift distribution for each of the 24 fields, using only

pair counts from a single field in the reconstruction. The error bars in the first plot are the

standard deviation of φp,rec(z)−φp,act(z) amongst the 24 fields; they should be representative

of the expected error for each panel. For each field, all errors used in fitting are based on

standard deviations across the 24 fields. This mimics a common situation where we have

only one field, but use errors determined from simulations to weight points for fitting. The

reconstruction generally captures the variation amongst fields due to sample/cosmic variance.
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Figure 2.9 The variance of 104 measurements of the autocorrelation of the photometric

sample, wpp(θ) (thick solid line), compared to predicted error terms from Bernstein 1994. The

thick dashed line shows the sum of all the variance terms; it corresponds well to the observed

variance save at the largest scales, where the Bernstein 1994 model is overly conservative (a

consequence of the assumption made in that work that the angular separations considered

are significantly smaller than the size of the field). From equation 38 in Bernstein (1994),

the thin solid black line is the term that scales as w2, corresponding to the variance in the

integral constraint, which dominates at large θ. The thin three-dot-dash line is the term that

scales at w3, and the thin dot-dash line is the term that scales as 1/N. The thin dashed black

line is the term that scales as 1/N2 and is comparable to the Poisson error, which dominates

in the weak clustering formalism used by Newman (2008). The “observed” variance in wpp(θ)

is much larger than the weak clustering prediction; the same is true of wsp(θ), although to a

lesser degree.
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function assuming hierarchical clustering. For this we used the values measured by Bernstein

in simulation catalogs, q3 = 0.32 and q4 = 0.1 (Bernstein, 1994). This gave a better fit to

our results than the values observed in local galaxy samples (Meiksin et al., 1992; Szapudi

et al., 1992).

From Fig. 2.9 we see that the measured variance can be orders of magnitude larger than

errors predicted using the weak-clustering assumption (though the difference is a smaller

factor for wsp, whose errors dominate in reconstructing φp(z)). This excess variance will

have a significant impact on the error budgets of planned dark energy experiments (see

the next section for quantitative estimates); it is dominated by the variance in the integral

constraint, whose effect increases with decreasing field size, so errors may be greatly reduced

by surveying galaxies over a larger area (>∼ 100 square degrees instead of ∼ 4). For instance,

the proposed BigBOSS survey (Schlegel et al., 2011) would provide a near-ideal sample for

cross-correlation measurements (using both galaxies and Lyman α absorption systems at

redshifts up to ∼ 3). We may also reduce this effect by using better correlation function

estimators which reduce the effect of the integral constraint.

2.1.3.2 Error Estimates In this subsection, we investigate the impact of these excess

correlation function measurement errors on our ability to recover the parameters (i.e. the

mean and σ) of the true redshift distribution for the photometric sample, and compare the

results to Monte Carlo tests done in Newman (2008). For each measurement we have a

recovered distribution and an associated true distribution for that set of four fields. We

will test the recovery both of the underlying, universal distribution used to construct the

photometric sample (i.e. 〈z〉 = 0.75, σz = 0.20) and of the actual redshift distribution of the

objects selected in a given set of fields (which will differ due to sample/cosmic variance; cf.

§2.1.3).

Before we can fit for Gaussian parameters, we must account for the fact that our pho-

tometric sample has a redshift distribution which differs from a true Gaussian because the

total sample we drew from (with Gaussian probability as a function of z) was not uniformly

distributed in redshift. One can think of the actual distribution of the photometric sample

in a given bin as a product of three factors: the overall redshift distribution of all objects
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in the Universe (essentially, the rising curve in 2.1); the fractional deviation from the Uni-

versal mean of the number of objects in a given field at a given redshift, i.e. sample/cosmic

variance; and the Gaussian function used to select objects for the photometric redshift bin.

The first two factors need to be removed from both the true and recovered distributions

if we are to test the recovery of the third; this is implemented differently for each case. For

the true distribution, we divide each measurement by the overall dN/dz of all of the objects

in the four fields used in that measurement. This removes the overall distribution shape as

well as the fluctuations due to sample variance, and gives a true distribution that closely

matches the Gaussian selection function applied to construct the sample.

In principle we could do the same for the recovered distribution, but that would not be

practical in real applications, as we can determine the overall shape of the redshift distribu-

tion of the overall photometric sample using photometric redshifts, but photo-z errors will

prevent measuring fluctuations in the number of objects within bins of small ∆z. Hence,

we correct the recovered φp(z) using a low-order polynomial fit to the shape of the overall

sample’s dN/dz, but use the fluctuations (compared to a smooth fit) in the observed red-

shift distribution of the spectroscopic sample dNs/dz, which will be known from the same

observations used to perform cross-correlation measurements, to correct for sample variance.

This correction assumes that deviations from the mean in both samples behave similarly

with redshift; we might expect their amplitude to scale with the large-scale-structure bias of

a given sample, but we do not apply any correction for that here. In tests, we have found

that a correction using fluctuations in dNs/dz was as effective in constraining parameters

as one based on fluctuations in the dN/dz of the overall sample our photometric subsample

was selected from, and so we focus on the former, more realistic technique.

In more detail, we first divided the recovered distribution by a smooth fit (using a 5th-

degree polynomial function) to the overall dN/dz of the entire simulation averaged over

all 24 fields. This eliminates gradients associated with the shape of the parent sample’s

overall redshift distribution without removing deviations due to sample variance. To correct

for the latter, we need to quantify the fluctuations in the spectroscopic sample relative to

a mean distribution. For this smooth, mean distribution, 〈dNs/dz〉, we used the same fit

to the redshift distribution of the spectroscopic sample averaged over all 24 fields which
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was employed to construct the random catalogs for autocorrelation measurements (§2.1.2.1).

Using a fit to a given set of four fields would make little difference, as the deviation from the

smooth fit at a given redshift bin due to sample variance are much larger than the deviations

between the smooth fit to 4 or 24 fields. We then calculate the ratio dNs/dz/〈dNs/dz〉, where

dNs/dz is the redshift distribution of the spectroscopic sample averaged over the four fields

used in that measurement, and correct for sample variance by dividing each measurement of

φp(z) by this quantity.

After applying these corrections to each distribution, each measurement is normalized so

that their integral is unity, and then fit for 〈z〉 and σz using a normalized Gaussian fitting

function. Fig. 2.10 shows the median and standard deviation of 104 measurements of the

recovered φp(z) before and after correcting for sample variance. In both plots the fit to the

overall dN/dz is divided out. It is clear to the eye that the distribution corrected for sample

variance is a better fit to the underlying selection function; more quantitatively, it reduces

errors in determining the parameters of the Gaussian selection function by ∼ 10%.

We assess the reconstruction of the photometric sample in two ways. First, we compare

the reconstructed parameters, 〈z〉 and σz, of the Gaussian selection function to the true

values, known by construction. Second, we compare the reconstructed parameters of the

selection function to the parameters of a Gaussian fit to the actual normalized distribution

of each set of four fields used. The latter method should be more robust to systematic errors

in the “true” dN/dz we divide each measurement by.

For the first test, where 〈z〉true = 0.75 and σz,true = 0.20, we find 〈〈z〉rec − 〈z〉true〉 =

7.796×10−4±7.415×10−3 and 〈σz,rec−σz,true〉 = 8.140×10−4±8.545×10−3, where as usual

the values given are the median and standard deviation of all measurements, respectively.

The second test, where 〈z〉true and σz,true are determined by a Gaussian fit to the true

distribution of each measurement, we find 〈〈z〉rec − 〈z〉true〉 = 7.259 × 10−4 ± 7.465 × 10−3

and 〈σz,rec − σz,true〉 = 4.724× 10−4 ± 8.546× 10−3. In all cases, the bias is not statistically

significant (the standard error against which each bias estimate must be compared is smaller

than the quoted standard deviations by a factor of
√

6), but in any event the overall bias of

both parameters is considerably smaller than the associated random errors, and will therefore

have little effect when added in quadrature. These errors are still larger than the estimated
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Figure 2.10 Plots of the recovered and mean true redshift distribution of the 24 fields, after

the overall redshift distribution of all galaxies in the mock catalogs, dN/dz, is divided out,

as described in §2.1.3.2. On the left is the reconstruction before applying a correction for

sample/cosmic variance based on fluctuations in the spectroscopic redshift distribution in

the fields observed, and on the right is the reconstruction after that correction. There is

a significant improvement in the reconstruction. The plot on the right corresponds to the

reconstruction of the probability an object falls in the photometric redshift bin as a function

of its true z (or, equivalently, the reconstruction of the photometric redshift error distribu-

tion), rather than reconstructing the actual redshift distribution (affected by sample/cosmic

variance) of galaxies in a particular set of fields, as was depicted in Fig. 2.7. The solid line

in each panel is the true normalized distribution of the photometric sample and the points

are the median values of 104 measurements. Error bars show the standard deviation of the

recovered distribution. The standard error in the plotted points is smaller than these error

bars by a factor of
√

6 (2.45). As shown here, if we know the amplitude of fluctuations from

cosmic variance at a given redshift (using the variance in the distribution of spectroscopic

galaxies), as well as the overall distribution of the parent sample (e.g. from combining red-

shift distributions from all photometric redshift bins), we can accurately reconstruct the true

selection probability distribution.
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requirements for future surveys (i.e. σ ∼ 2− 4× 10−3). For cross-correlation techniques to

meet these requirements, this excess error will need to be reduced. We discuss a few options

for this in §2.1.3.1.

A number of choices we have made on how to model and measure correlation function

parameters (e.g. using a fit for the dependence of the spectroscopic sample’s autocorrelation

parameters on z vs. using the values for a given z-bin directly; assuming r0,pp ∝ r0,ss vs.

a constant r0,pp; or allowing γsp(z) to decrease with redshift vs. forcing a constant γsp)

can affect both the bias and error in these measurements. We have tested reconstruction

with alternate methods to those described here and found that the random errors in 〈z〉
and σz are much more robust to these changes than the bias. When varying the three

correlation parameters as described previously, the standard deviation of the measurements

never varied by more than ∼ 10%, but the bias in some cases increased significantly. For

measurements of 〈z〉, the alternative parameter models yielded biases of 0.006−0.009, making

them statistically significant compared to the random errors. For σz, the biases under the

different scenarios were of similar order of magnitude as our standard method, except for the

case of using the measured values for the spectroscopic correlation function parameters (r0

and γ) in each z-bin instead of a fit. This yielded a bias in σz of ∼ −0.009. From this we see

that the methods used to measure correlation parameters need to be considered carefully,

since inferior methods can cause the bias to become comparable to random errors.

From equation 13 in Newman (2008), the predicted errors in 〈z〉 using the weak clustering

formalism are essentially identical to the errors in σz; that is true to ∼ 20% in our results.

This error is a function of σz, as well as the surface density of photometric objects on the

sky, Σp, the number of objects per unit redshift of the spectroscopic sample, dNs/dz, and

the cross correlation parameters, γsp and r0,sp. We use the mean values of these parameters

from our catalogs and find that the predicted error on both parameters is σ = 1.064× 10−3.

This is considerably smaller than our measured error, which is not surprising given the extra

error terms in the correlation function discussed in §2.1.3.1.

Our analysis throughout this paper has considered the case of a single-peaked, Gaussian

selection function for placing objects in a photometric bin. However, different distributions

would yield similar results, as the error in the recovery of φp(z) at a given redshift depends
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Figure 2.11 Results of cross-correlation reconstruction of a selection function consisting of

two equal-amplitude Gaussian peaks centered at z = 0.5 and z = 1.0, each with σz = 0.1.

The solid line is the true distribution of the photometric sample (combining all 24 fields),

while the points are the median reconstructed values from 104 measurements. Error bars

show the standard deviation. The standard error in the plotted points is smaller than these

error bars by a factor of
√

6 (2.45). Each measurement is made by averaging the paircounts

of four fields selected at random from the 24 mock catalogs. This plot is analogous to the

right panel of Fig. 2.10; as in that case, we are reconstructing the selection function of the

sample rather than its redshift distribution. The effects of bias evolution should be greater

in this case, however, as the sample is less concentrated in redshift. The recovery remains

accurate here, despite the larger bias evolution and very different φp(z).
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primarily on the characteristics of the spectroscopic sample and the overall size of the pho-

tometric sample, but not φp(z) itself (Newman, 2008). We illustrate this in Fig. 2.11, where

we have applied the same analysis techniques described above (and laid out in the recipe in

§2.1.4) for a selection function that consists of two equal-amplitude Gaussian peaks centered

at z = 0.5 and z = 1.0, each with σz = 0.1; this figure can be compared to the right panel of

Fig. 2.10. We note that, since in this scenario the objects selected are less concentrated in

redshift, the effects of bias evolution (as predicted by the semi-analytic models used) should

be greater here than in our standard case, but our recovery remains accurate.

2.1.4 Summary

In this section we have shown that by exploiting the clustering of galaxies at similar red-

shifts we can accurately recover the redshift distribution of a photometric sample using its

angular cross-correlation with a spectroscopic sample of known redshift distribution, using

mock catalogs designed to match the DEEP2 Galaxy Redshift Survey. This test includes the

impact of realistic bias evolution and cosmic variance. The error estimates for the recovered

mean and standard deviation of the distribution are larger than those predicted previously,

but improvements could be obtained either by using more optimal correlation function esti-

mators or by surveying the same number of galaxies distributed over a wider area of sky. In

the next section (§2.2) we describe improvements to this technique by incorporating the full

covariance information of the correlation function measurements into the power-law fitting

procedures.

Section 2.1.2 has described in detail the steps we took to recover the redshift distribution,

φp(z), of a photometric sample by cross-correlating with a spectroscopic sample of known

redshift distribution. We will now summarize the procedure used to make this calculation,

to facilitate its application to actual data sets.

• Obtain the necessary information for each sample; RA, dec and redshift for

the spectroscopic sample, and RA and dec for the photometric sample.

• Create the random catalogs for each sample. (§2.1.2.1-2.1.2.3)
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• Calculate the data-data, data-random, and random-random paircounts for each

correlation function.

• For wp(rp): bin the spectroscopic sample and its corresponding random catalog in red-

shift. In each spectroscopic z-bin, calculate ∆rp and ∆π for each pair and bin the pair

separations into a grid of log(rp) and π. Then sum the paircounts in the π direction.

(§2.1.2.1)

• For wpp(θ): using the “p” sample and its random catalog, calculate ∆θ for each pair

and bin the pair separations into log(θ) bins. (§2.1.2.2)

• For wsp(θ, z): bin the spectroscopic sample and its corresponding random catalog in

redshift. For each spectroscopic z-bin, calculate the pair separations, ∆θ, for pairs

between the “s” and “p” samples and their random catalogs and bin them into log(θ)

bins. (§2.1.2.3)

• Use the paircounts to calculate the correlation functions using standard esti-

mators (e.g. Landy & Szalay). (§2.1.2.1-2.1.2.3)

• Calculate the parameters of wp(rp) (r0,ss(z), γss(z)) and wpp(θ) (App, γpp) by

fitting as described above. (§2.1.2.1-2.1.2.2)

• Use the autocorrelation parameters along with an initial guess of r0,pp (e.g.

r0,pp ∼ r0,ss) to calculate r
γsp
0,sp(z) = (rγss0,ssr

γpp
0,pp)

1/2. (§2.1.2.2) This gave a more

accurate reconstruction of φp(z) (reducing χ2 by 33%) than the assumption r0,pp = con-

stant; in fact, a calculation of ξpp(r) from the simulation sample directly showed r0,pp to

have similar behavior to r0,ss. Using a linear fit of r0,ss(z) and γss(z) reduced χ2 by ∼ 32%

compared to utilizing the noisier reconstructed values in each z-bin.

• Estimate γsp = (γss + γpp)/2. Using this γsp, calculate the amplitude, Asp(z),

of wsp(θ, z) by fitting as described above. (§2.1.2.3) We fit over the range 0.001◦ <

θ < 0.1◦. We found that fitting over this smaller θ range resulted in smaller errors in the

amplitude, Asp(z), which reduced the error in φp(z) for each z-bin by ∼ 25% on average.

We fix γsp because of degeneracies between γsp and Asp when fitting them simultaneously.

This degeneracy is especially strong in regions where φp(z) is small. We also tried modeling

γsp as constant with z using the arithmetic mean of γss(z = 0.77) and γpp; however, that

method increased the χ2 of the final fit by ∼ 20%.
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• Combining the results of the last two steps and the assumed cosmology, calcu-

late φp(z) using equation 2.13. (§2.1.2.3) We also tried calculating φp(z) using the

integrated cross-correlation function, w̃(z), integrating to an angle equivalent to a comov-

ing distance rmax = 10h−1 Mpc (Newman, 2008); however, that method produced inferior

results.

• Using φp(z), along with the calculated App and γpp, in equation 2.10 gives

a new r0,pp, which is then used to recalculate r
γsp
0,sp(z). Putting this back into

equation 2.13 gives a new φp(z). This is repeated until convergence is reached.

(§2.1.2.3)

• To recover the underlying/universal distribution of objects of the type selected

for the photometric sample, rather than the distribution within the specific

fields chosen for observation, correct for sample/cosmic variance using the

fluctuations in the redshift distribution of the spectroscopic; i.e., construct

a smooth function describing the overall redshift distribution of the spectro-

scopic sample, 〈dNs/dz〉, and divide φp(z) by the ratio dNs/dz/〈dNs/dz〉.

(§2.1.3.2)
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2.2 INCORPORATING FULL COVARIANCE INFORMATION

Newman (2008) described a new technique for calibrating photometric redshifts (commonly

referred to as photo-z’s) using cross-correlations which exploits the fact that galaxies at

similar redshifts tend to cluster with each other, and in §2.1 we tested this technique using

realistic mock catalogs which include the impact of bias evolution and cosmic variance. We

showed that for objects in a photometric redshift bin (e.g., selected using some photo-z-based

algorithm), we can recover its true redshift distribution, φp(z), by measuring the two-point

angular cross-correlation between objects in that bin with a bright spectroscopic sample in

the same region of the sky, as a function of spectroscopic z.

In §2.1, we assumed for convenience that correlation function measurements in different

angular/radial bins were completely independent. However, analytical models as well as

simulations have shown that the covariance between bins is significant (Bernstein, 1994;

Zehavi et al., 2005; Crocce et al., 2011). Incorporating all available information about this

covariance should provide better constraints on the correlation function parameters used in

reconstructing φp(z). In this section we improve on the methods of §2.1 by accounting for

this covariance.

However, the inversion of covariance matrices calculated from relatively small sample

sizes (e.g. a modest number of mock catalogs or jackknife regions) is not well behaved:

modest noise in a covariance matrix can yield large variations in its inverse. We therefore also

incorporate ridge regression, a method of conditioning covariance matrices (i.e., stabilizing

the calculation of their inverse) which is common in the statistics literature but novel to

correlation function analyses, into our methods. We will then optimize the reconstruction of

φp(z) by varying the level of this conditioning.

We have implemented an additional step in the reconstruction of φp(z) for this section

that was not employed in §2.1. For each measurement, after fixing γsp and fitting for Asp

and Csp in each z-bin, we performed a smooth fit to the measured values of Csp(z) as a

function of redshift. Using the same γsp but fixing Csp at the predicted values for each bin,

we then fit for Asp. We obtained the best results from a Gaussian fit to Csp, although simply

smoothing the measured Csp(z) values with a boxcar average also resulted in significant
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gains in reconstruction accuracy. We initially tested these techniques during our work on

the methods presented in §2.1, but they did not improve the reconstruction, and in some

z-bins made the reconstruction worse. However, after incorporating covariance information

into our analyses, this additional step significantly reduced errors in the reconstruction of

φp(z), likely because the determination of Csp for each redshift bin is now more accurate.

We have also made a change in the methods used to calculate average correlation mea-

surements from multiple light cones. In §2.1 this was done by summing the pair counts over

all of the fields and using the total pair counts in the Landy & Szalay estimator. However, in

the course of this work we found that this method overestimates the mean correlation by more

heavily weighting those light cones which are overdense at a particular redshift: they will

both contain more pairs and, generally, exhibit stronger clustering than a randomly-selected

region of the universe. For this calculation, we instead determine the average correlation

by calculating the correlation function in each field individually and then performing an

unweighted average of those measurements. This change had little effect on the autocorrela-

tion function of the photometric sample, wpp(θ), mainly because the larger volume sampled

meant that the density varies less from field to field. The projected autocorrelation of the

spectroscopic sample, wp(rp), and the cross-correlation measurements, wsp(θ, z), were signif-

icantly affected by this change, however, with average decreases in the correlation strength

of ∼ 10− 20%.

2.2.1 Fitting Parameters Using Full Covariance Information

In §2.1 we fit for the various correlation function parameters (r0,ss, γss, etc.) assuming that

there is no covariance between measurements in different angular/rp bins. We determined

best-fit parameters by performing a χ2 minimization where the errors used were given by

the standard deviation of the correlation function measurements in each of the 24 mock

light-cones; i.e. the fitting assumed that the relevant covariance matrices were all diagonal.

However, analytical models as well as simulations have shown that the off-diagonal elements

of the covariance matrix are non-negligible (Bernstein, 1994; Zehavi et al., 2005; Crocce et al.,

2011). We have confirmed this to be the case by calculating the full covariance matrices of
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correlation function measurements in the 24 fields. Therefore, in §2.1 we were not exploiting

the full covariance information when fitting for the correlation function parameters. By

incorporating this information into our fitting process, we should expect to obtain more

accurate results.

In order to calculate the parameters using the full covariance matrix we used χ2 mini-

mization as in §2.1, but in this case we calculate χ2 values taking into account the covariance:

χ2 = (y − ỹ)TC−1(y − ỹ) (2.14)

where C is the covariance matrix, y is the observed correlation function data in each bin,

and ỹ is the expected value according to a given model. As an example, for w(θ) equation

2.14 becomes:

χ2 =
[
w(θ)− (Aθ1−γ − C)

]T
C−1

[
w(θ)− (Aθ1−γ − C)

]
. (2.15)

We start by minimizing equation 2.15 for the case of fixed γ. In that case, this minimiza-

tion is simply linear regression where θ1−γ is the independent variable, and A and −C are

the standard “slope” and “intercept”. Minimizing χ2 analytically to obtain the parameters

for a linear fit is straightforward; thus for fixed γ we can readily determine the best-fit A

and C via standard formulae. Alternatively, to fit for all three parameters simultaneously

we can repeat the linear fit process for different values of γ, and then determine the value

of γ which minimizes χ2. We use this fitting method to determine the parameters of the

angular autocorrelation of the photometric sample, wpp(θ), and of each z-bin of the angular

cross-correlation, wsp(θ, z). For the projected real-space autocorrelation function, we see

from equation 2.8 that wp(rp) ∼ r1−γ
p (i.e. the same as the relation between w(θ) and θ),

so the fitting method is the same except that we force the intercept to be equal to zero and

only fit for γ and A. We then find r0 using the conversion A = rγ0H(γ) from equation 2.8.

Figure 2.12 compares the fit assuming no covariance for one measurement of wpp(θ) from

the simulation (averaging wpp from 4 of the 24 mock fields) to a fit using the full covariance

matrix.

The covariance matrices we use for fitting are calculated using correlation measurements

from the 24 mock light-cones, and is therefore a sample covariance matrix and not the “true”,
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Figure 2.12 An example of fitting a power law-integral constraint model to a measurement

of the angular autocorrelation of the photometric sample, wpp(θ), from Millennium catalog

mock light cones. The solid line is a fit assuming no covariance between angular bins, while

the dashed line is a fit using the full covariance matrix, where both are fit over the range

0.001◦ < θ < 1.584◦.
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underlying C. It can be shown that while the sample covariance matrix is an unbiased

estimator of C, the inverse of the sample covariance matrix is in fact a biased estimator for

the inverse of the true covariance matrix (Hartlap et al., 2007). The amount of bias depends

on the size of the sample used to calculate the covariance matrix; in our case, this is the

number of mock catalogs (24). However, this bias can be corrected for (assuming Gaussian

statistics and statistically independent measurements) simply by rescaling the inverse sample

covariance matrix by a constant factor; this will not, therefore, affect the location of any χ2

minimum. We apply a bias correction where relevant in our analysis below.

2.2.2 Conditioning the Covariance Matrix

Since we are using a covariance matrix calculated from a modest number of light cones–in

effect a “measured” covariance matrix with only a limited number of samples–noise and

numerical instabilities cause difficulties when calculating C−1. We found the inversion of

C to be much more well behaved when using coarser bins in θ and rp than employed in

§2.1. For both wp(rp) and w(θ) we doubled the bin size in log space, i.e. we use bins with

∆ log(rp) = 0.2 and ∆ log(θ) = 0.2. Increasing the bin size further did not yield significant

improvements.

To reduce the impact of noise in our measured covariance matrix further, we investi-

gated several methods of conditioning the matrix (i.e., modifying the covariance matrix to

improve the robustness of its inversion), and looked at how varying the conditioning im-

proved the reconstruction. One commonly-applied method involves performing a singular

value decomposition (SVD) of the covariance matrix and setting the singular values below

some threshold (and their inverse) equal to zero (Jackson, 1972; Wiggins, 1972). This is

equivalent to performing an eigenmode analysis and trimming any unresolved modes, as is

done, for instance, in McBride et al. (2011).

We also tried conditioning the covariance matrix using a technique commonly known as

ridge regression (Hoerl & Kennard, 1970). This involves adding a small value to all of the

diagonal elements of the covariance matrix before inverting, which reduces the impact of

noise in the off-diagonal elements and makes the inversion more stable. We parameterized
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this conditioning by calculating the median of the diagonal elements of the covariance matrix

and adding a fraction f of that median value to the diagonal. We obtained better results

from ridge regression than from zeroing out singular values (see §2.2.3.1 below), and it is

therefore the primary method used throughout the rest of this section.

At first glance it may seem that applying ridge regression to the covariance matrix should

be detrimental to determining the actual values of correlation function parameters: we are

effectively assuming by fiat that the effective covariance matrix to be used in calculating χ2

differs from what was measured. Since ridge regression yields larger values for the diagonal

elements of the covariance matrix than the data themselves would suggest, the results are

equivalent to a situation with larger nominal measurement uncertainties (and hence broader

χ2 minima) than implied by the original covariance matrix.

However, when C is determined from a limited set of measurements, C−1 tends to differ

significantly from the true inverse. Hence, using the standard covariance matrix in fitting

should lead to measurements with nominally tighter errors than ridge regression techniques,

but those measurements may in fact be significantly offset from the true value of the param-

eter we are attempting to determine. This can cause the parameter results to have larger

spread about the true value than optimal. When we add some degree of ridge regression,

the inverse of the covariance matrix is better behaved, and hence is less likely to yield a dis-

crepant result. By varying the strength of the ridge regression conditioning, we can choose

different tradeoffs between the bias and variance of parameter estimates. In general, we want

both of these contributions to be small; in the next section we investigate what degree of

conditioning minimizes their sum.

2.2.3 Risk Optimization

In this section we will evaluate how the conditioning of the covariance matrix affects the

determination of correlation function parameters and ultimately the reconstruction of φp(z).

By doing so, we will be able to optimize the reconstruction of the true redshift distribution

of the photometric sample. We assess this by measuring the integrated mean squared error,

i.e. the variance plus the bias squared. This is commonly referred to in statistics literature
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as the “risk”. By focusing on the risk in some quantity we are optimizing for the minimum

combined effect of variance and bias: either large random errors or large bias would lead to

a large risk. We hence define the risk to be R(X) = 〈(X− Xtrue)
2〉, where X− Xtrue is the

difference between the measured parameter value and its true value . At times we will also

refer to the fractional risk of a parameter, which we define as R̃(X) = 〈(X− Xtrue)
2〉/X2

true.

Since we utilize three different types of correlation measurements in the reconstruction of

φp(z), we look at how changing the level of conditioning of the covariance matrix affects each

one individually.

2.2.3.1 Optimizing Fits To wpp(θ) We optimized the conditioning of the covariance

matrix for the autocorrelation of the photometric sample using a Monte Carlo simulation

where we use the covariance matrix of wpp calculated from the 24 fields (i.e., the 24 different

light cones) as our “true” covariance matrix, and then use it to generate realizations of corre-

lated noise about a selected model. To do this we first find the eigenvalues and eigenvectors

of the covariance matrix. We create uncorrelated Gaussian noise with variances equal to the

eigenvalues, and then apply the transformation matrix constructed from the eigenvectors

to this noise. This technique yields mock data with correlated noise corresponding exactly

to the “true” covariance matrix (here, the covariance matrix of the 24 mock fields). For

the true model we use Atrue = 4.0 × 10−4, γtrue = 1.58, and Ctrue = 6.5 × 10−3, which are

approximately the mean parameters measured from the simulation.

In §2.1 we used the 24 mock light-cones to generate 104 “measurements” by randomly

selecting four fields at a time and finding the average w(θ) for those fields. In order to

simulate this we used the method for generating correlated noise described above to create

24 realizations of single-field w(θ) measurements, and then generated 104 randomly selected

“pick-4 measurements” from those 24 realizations; we will refer to each set of 24 new re-

alizations (and its derived products) as a “run” below. For each run we use the set of 24

realizations to calculate a measured covariance matrix, which will differ from the true co-

variance matrix used to generate the noise. The uncertainty in an estimate of the covariance

matrix from the 24 realizations should be worse than the errors in realistic applications,

making this treatment conservative. This is because the area covered by photometric sur-
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veys will in general be much larger than for the spectroscopic sample, which will result in

a better constrained covariance matrix for the autocorrelation of the photometric sample;

however, for the mock catalogs used here the spectroscopic and photometric areas are iden-

tical. The resulting “measured” covariance matrix for a given run is then used to fit for

the parameters of a power-law fit in each of that run’s pick-4 measurements by minimizing

χ2 (cf. equation 2.14). For this and all other correlation function fits described herein we

used the IDL code POWERFIT, which I have developed and has been publicly released at

http://www.phyast.pitt.edu/~janewman/powerfit. A more detailed description of the

code is given in Appendix B.

We begin by evaluating how the reconstruction of the amplitude, A, changes as we vary

the conditioning. The integral constraint exhibits similar behavior to the amplitude since it

is proportional to the correlation strength; we are in any event not as concerned with the

behavior of C since it is essentially a nuisance parameter. For simplicity, we fix γ at the true

value for each run and only fit for A and C. We calculate the risk on A by performing 104

runs, where for each run we:

1. Created 24 realizations of w(θ) as described above

2. Generated 104 pick-4 measurements, randomly selecting four realizations at a time from

the 24 and calculating their mean w(θ)

3. Fit each pick-4 measurement for A and C using the covariance matrix calculated from

the 24 realizations created in step 1

4. Calculated the mean fractional risk on A over the 104 pick-4 measurements, R̃(A) =

〈(A− Atrue)
2〉/A2

true.

We can perform the fits and calculate the fractional risk on A while applying varying levels

of conditioning on the covariance matrix. We parameterize the ridge regression conditioning

using a variable f , which we define as the fraction of the median value amongst diagonal

elements of the covariance matrix which is added to the diagonal elements; i.e., we replace

the i, i element of the covariance matrix, Cii, by Cii + f × median(Cii). For comparison,

we also calculate the fractional risk on A while varying the singular value threshold for the

SVD conditioning described in §2.2.2, where all singular values below the threshold and their
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inverses are set to zero.

Figure 2.13 shows the square root of the median and maximum fractional risk amongst

the 104 runs as a function of both f and the singular value threshold. In both cases we

see that the conditioning has a much stronger effect on the maximum risk than it does on

the median. We therefore perform a minimax optimization; i.e., we choose the conditioning

that minimizes the maximum risk. Looking at the level of conditioning corresponding to

this minimax optimization for each method, we see that the median and maximum risk are

both smaller for the ridge regression conditioning. In addition, with the SVD method the

maximum risk is much more sensitive to changes in the threshold around its optimized value.

Small changes from the optimized threshold value in either direction can have a significant

effect on the maximum risk, while the maximum risk curve for the ridge regression method

is relatively flat in the vicinity of the optimized value. We therefore use ridge regression

conditioning for the remainder of the calculations. By adding a few percent conditioning to

our covariance matrix with the ridge regression method, we can significantly decrease the

maximum risk without significantly worsening the median risk. The optimized value for f

strikes a balance between the need for conditioning to stabilize inversion and the desire not

to distort the relative impact of diagonal and off-diagonal covariance matrix elements, which

would lead to inappropriate weighting of different data points in calculating χ2.

Figure 2.14 shows a contour plot of the median values of A−Atrue vs. C−Ctrue amongst

all pick-4 measurements for each of the 104 runs using the optimized conditioning (f = 3%).

In §2.1, although we had measured the correlation function out to a separation θ ∼ 1.584◦, we

only fit over the range 0.001◦ < θ < 0.1◦. In that case, fitting over this smaller range reduced

the error in A, and thus improved the reconstruction. When using the full covariance matrix

for the fit we found that fitting over the full range of θ yielded even smaller parameter

errors, as seen in Figure 2.14. By utilizing covariance information in our fitting, we can

robustly incorporate correlation measurements from larger scales which were useless (or

even detrimental) when ignoring the covariance.

2.2.3.2 Optimizing Fits To wp(rp) We used a different method to optimize the con-

ditioning for the projected correlation function of the spectroscopic sample. As described
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Figure 2.13 A test of the impact of the conditioning of the covariance matrix on the results

from fitting the amplitude of the correlation function, A. We plot the square root of the

fractional median risk (solid line) and of the maximum risk (dashed line) on A as a function

of the degree of conditioning. We define the risk as the total mean squared error; i.e., the

variance plus bias squared. (Left panel) We condition using ridge regression; we add a

fraction f of the median of the diagonal covariance matrix elements to all diagonal elements

in order to stabilize the inversion of the covariance matrix. (Right panel) We condition by

inverting using singular value decomposition (SVD), setting all singular values below some

threshold to zero. The median values are from a single set of 104 runs, but the maximum

risk line is the mean of the results from 10 sets of 104 runs, as the maximum risk varied

significantly from run to run. Errors on the median are plotted, but are very small and not

visible. The conditioning has a much larger effect on the maximum risk, and we therefore

use a minimax optimization: i.e., choose the parameter values which make the maximum

risk as small as possible. Using ridge regression, both the median and maximum optimized

risk are smaller than for the SVD method. We therefore use ridge regression as our primary

conditioning technique; the optimum results in fitting wpp(θ) are achieved for f ∼ 3%.
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Figure 2.14 Contour plot showing the distribution of the median values of A − Atrue and

C−Ctrue from each of 104 runs as described in §2.2.3.1, where A and C are the fit parameters

for w(θ) = Aθ1−γ − C. For our model we used Atrue = 4.0 × 10−4 and Ctrue = 6.5 × 10−3.

For each distribution we show the 1σ and 2σ contours. The solid lines are the fit parameters

when using the full covariance matrix with the optimized conditioning (f = 3%). The dashed

lines show the distribution resulting from fits with the same techniques as §2.1, where we

assume no covariance and fit over a smaller θ range. We are most concerned with errors

in the amplitude; it is clear there is a significant improvement in the recovery of the actual

value of A when the full covariance information is exploited.
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in §2.1.1, this sample was constructed by selecting 60% of the objects with R < 24.1. We

calculated the risk for the autocorrelation parameters by creating multiple samples where

a different 60% of the objects are chosen each time, and comparing these to the results for

a sample containing 100% of the objects. This differs from the method used in §2.2.3.1 in

that we are actually performing the correlation measurements using the simulations rather

than generating model noise based on a covariance matrix calculated from the simulation.

In the case of wpp(θ) it was more difficult to determine the true values of w(θ) (required

for calculating the risk) to significantly greater accuracy than individual measurements, and

therefore we relied on synthetic techniques for that analysis. Here, we have a “truth” mea-

surement which is much better than the fits resulting from any set of 60% of the bright

objects in only four fields, so we can measure the risk robustly without relying on simulated

measurements. When calculating the reconstruction of φp(z) we measure the parameters of

a fit to wp(rp) in multiple redshift bins. For simplicity, in this section we focus on a single

z-bin in the middle of the redshift range, 0.613 < z < 0.704; we expect similar results for

the other redshift bins.

To begin we generate 104 pick-4 measurements of wp(rp) from the full sample and fit

each measurement to the functional form given in equation 2.8, employing the full covariance

matrix calculated from the 24 fields to determine r0 and γ. As in §2.1, we fit over the range

0.1 < rp < 10 h−1Mpc. Since the covariance matrix calculated from the full sample should

be more stable than for the 60% subsets due to its smaller noise, we initially performed the

fits with zero conditioning and used that as our “truth”. The median values of the parameter

measurements for the full sample amongst the 24 different fields were used as estimates of

the true parameter values. We then calculate the risk on r0 and γ by performing 100 runs,

where for each run we:

1. Constructed samples from each of the 24 mock fields by randomly selecting 60% of the

objects with R < 24.1

2. Generated 104 pick-4 measurements, randomly selecting four fields at a time from the 24

and calculating their mean wp(rp)

3. Fit each pick-4 measurement for r0 and γ using the covariance matrix calculated from
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the wp(rp) values measured using the 24 samples constructed in step 11

4. Calculated the mean fractional risk on both parameters, R̃(r0) = 〈(r0 − r0,true)
2〉/r2

0,true

and R̃(γ) = 〈(γ − γtrue)
2〉/γ2

true, over the 104 pick-4 measurements.

In step 3 we calculate the covariance matrix from 24 fields, which is more fields than we would

actually have if we were to do cross-correlation reconstruction with current datasets at z ∼ 1.

However, it is likely comparable to the level to which we should be able to determine the

covariance matrix using current-generation deep mock catalogs, particularly since fit results

will be sensitive to the relative values of covariance matrix elements, but not their absolute

normalization. For each run we calculate the fractional risk on both parameters for varying

levels of conditioning. Figure 2.15 shows the square root of the median and maximum

fractional risk on r0 and γ amongst the 100 runs as a function of the conditioning. For

both parameters we see a slight dip in the median risk over the 100 runs at f ∼ 0.5%,

but this represents only a minimal improvement. Once again we see the conditioning has a

much more significant impact on the maximum risk. We optimize our fits by choosing the

conditioning value that minimizes the maximum risk (f ∼ 3.5%).

2.2.3.3 Optimizing φp(z) Reconstruction After optimizing the fits for the autocor-

relation measurements, we then looked at how conditioning the cross-correlation covariance

matrices affects the overall reconstruction of φp(z). Since the uncertainty in φp(z) is domi-

nated by the uncertainty in wsp(θ, z), this conditioning should have the greatest impact on

the reconstruction. We generate 104 pick-4 measurements by averaging the correlation mea-

surements from four randomly selected fields out of the 24, which we then use to calculate

φp(z). For calculating the risk, we know the true redshift distribution in each field perfectly

from the simulation, so we do not need to rely on synthetic techniques as in §2.2.3.1. Since

the fits for both wpp(θ) and wp(rp) were best with a few percent ridge regression condition-

ing (§2.2.3.1, §2.2.3.2), for simplicity we adopt f=3.5% as the optimal conditioning in both

cases.

1In §2.1, we corrected wp(rp) for the fact that ξss(rp, π) is not in actuality measured to infinite line-of-sight
separation. This was not done for this test, as the correction will affect the parameters of the full sample
and its subsets in a similar way, so any trends in the risk should not be affected. This saved significant
calculation time.
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Figure 2.15 The square root of the fractional median risk (error bars) and maximum risk

(dashed line) on r0,ss (upper curves) and γss (lower curves) as a function of the degree

of conditioning used for 100 runs, where 60% of objects with R < 24.1 were selected at

random for each run, as described in §2.2.3.2. The conditioning has a much larger effect on

the maximum risk for both parameters, and we therefore use a minimax optimization, i.e.

f=3.5%.
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For each pick-4 measurement, we determine the autocorrelation parameters of the photo-

metric sample by fitting the wpp(θ) from the selected 4 fields using the optimally conditioned

covariance matrix calculated from the 24 fields. All three parameters (App, γpp, and Cpp)

are left free and fit simultaneously. To measure the evolution of the correlation function

parameters of the spectroscopic sample, we calculated wp(rp) in 10 z-bins covering the range

0.11 < z < 1.4, where the size and location of each z-bin was selected such that there

were approximately the same number of objects in each one. In each z-bin we calculate

the covariance matrix from the 24 fields and fit each pick-4 measurement using the optimal

conditioning to determine r0,ss(z) and γss(z).

In one redshift bin (0.11 < z < 0.268), the values of r0,ss and γss obtained with these

methods were significantly different from the values determined when assuming no covari-

ance. We investigated the likelihood contours in detail and found they were not well behaved;

not only were the median parameter values different from the result with no covariance, the

standard deviation of the 104 pick-4 measurements proved to be an underestimate of the

uncertainty in that bin, which had significant effects when performing an error-weighted

linear fit to r0,ss(z) and γss(z). We attempted a variety of methods for estimating the er-

rors in that bin with poor results. However, we found that fitting over the shorter range

0.25 < rp < 10 h−1Mpc, rather than 0.1 < rp < 10 h−1Mpc, gave more well behaved val-

ues (more consistent with the values in other redshift bins or those obtained when ignoring

covariance) and improved the reconstruction. For consistency we fit over this range for all

bins where z < 0.8. As in §2.1 we continue to fit over the range 1.0 < rp < 10 h−1Mpc for

z > 0.8, as in the Millennium simulations (though less so in real datasets) wp(rp) diverges

significantly from a power law at 0.1 < rp < 1 h−1Mpc.

While the conditioning of the fits for the autocorrelation parameters was kept the same

for each measurement, we varied the conditioning of the cross-correlation fits to see how it

affects the reconstruction. We bin the spectroscopic sample over the range 0.19 < z < 1.39

with a bin size of ∆z = 0.04 and measure wsp(θ) in each bin. At each level of conditioning

we:

1. Calculated the covariance matrix of wsp(θ) in each redshift bin from the 24 fields and

apply the ridge regression conditioning to each matrix
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2. Generated 104 pick-4 measurements, randomly selecting four fields at a time from the 24

and calculating their mean wsp(θ, z)

3. In each z-bin, fit the pick-4 measurements for Asp and Csp, fixing γsp as described in

§2.2.1, using the covariance matrices calculated in step 1

4. Combined Asp(z) and the optimized autocorrelation parameters for each pick-4 measure-

ment to calculate the probability distribution function, φp(z), applying equation 2.3

5. For each pick-4 measurement, we calculated the mean risk on φp(z), R(φp(z)) = 〈(φp(z)−
φp,true(z))2〉, over the range 0.4 < z < 1.2. This was done in two ways:

a. Using the overall mean φp(z) of the 24 fields as φp,true(z)

b. Using the mean φp(z) from the particular 4 fields used in a given measurement as

φp,true(z)

6. Calculated the mean R(φp(z)) over the 104 pick-4 measurements for both types of risk

In step 5, we calculate the risk over a slightly limited redshift range to eliminate bins where

noise dominates the measurements, which diluted our ability to assess the impact of ridge

regression.

Figure 2.16 shows both mean risks as a function of the conditioning, compared to the

risk using methods identical to §2.1. We optimized for the mean risk over the redshift range

rather than the maximum risk as the latter was dominated by random outliers (due to the

smaller number of objects in the redshift bins used, errors in wsp(θ, z) are much larger, and

hence random excursions extend further, than for the autocorrelations). Both techniques

indicate that the minimum risk is obtained at around a few percent conditioning. There

is a substantial improvement in both measures, but particularly in the risk comparing the

redshift distribution for the four chosen fields to the overall (e.g. universal) mean. Figure

2.17 shows the reconstruction for 3.5% conditioning (i.e. the same for all three fits) as well as

the variance and bias, and compares to the reconstruction using methods identical to §2.1.

The decrease in the variance is significant in each redshift bin while the bias is relatively

unchanged in all but a few z-bins. By incorporating full covariance information and ridge

regression methods, the square root of the fractional risk is < 40% smaller than that resulting

from our prior methods.
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Figure 2.16 The square root of the mean risk over the range 0.4 < z < 1.2 for the reconstruc-

tion as a function of the degree of conditioning applied to the covariance matrix of wsp(θ) in

each redshift bin. The solid line is the risk compared to the overall mean of the 24 fields, and

the star symbol is the corresponding risk using the methods of §2.1. The dashed red(gray)

line is the risk defined from comparing each measurement to the mean redshift distribution

of the particular 4 fields used, and the red(gray) diamond symbol is the corresponding risk

using the previous method. Both are at or near their minimum value at a conditioning of a

few percent. The decrease in the risk when comparing to the overall mean is much greater,

though improvements are significant regardless of the measure used.
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Figure 2.17 The reconstruction of φp(z) using 3.5% conditioning for fits to all three correlation

measurements, (i.e. wpp(θ), wp(rp), wsp(θ, z)). In the top panel, the solid line is the mean

true distribution of the 24 fields, the star symbols are the median values of the 104 pick-4

measurements obtained using the methods of §2.1, and the diamonds are the median values

for the optimized reconstruction using the full covariance matrix for the fits (with error bars).

The middle panel compares the standard deviation of the 104 pick-4 measurements in each

bin using the methods from §2.1 (solid line) to the improved reconstruction (dashed line),

while the bottom panel compares the bias. The errors are significantly smaller in each bin,

while the bias is comparable when full covariance information is used. These results are not

significantly changed for moderate changes in f .
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2.2.4 Summary

In this section we have improved on the cross-correlation techniques presented in §2.1 by

incorporating full covariance information. In addition, we have demonstrated the improve-

ments that result from incorporating ridge regression in fitting for correlation function pa-

rameters. Conditioning using ridge regression allowed us to obtain a more stable inversion of

the covariance matrix by reducing the impact of noise in the off diagonal elements, resulting

in better estimates of the correlation function parameter values; results were significantly

better than with other commonly-used methods such as zeroing out small singular values in

a singular value decomposition of the covariance matrix. We analyzed how this conditioning

affected the integrated mean squared error, i.e. the risk, for these parameter measurements,

and in doing so optimized the cross-correlation technique for recovering the redshift distribu-

tion of a photometric sample with unknown redshifts. We also found that we gain significant

improvement in the reconstruction by adding a step to the recipe described in §2.1.4: we

now perform a smooth fit for the amplitude of the integral constraint of the cross-correlation

measurements as a function of redshift, Csp(z). We then refit for the amplitude of the

cross-correlation, Asp, with Csp fixed at the smooth fit value in each z-bin.

We tested the effect of the ridge regression technique on the calculation of parameter

values for both w(θ) and wp(rp) and found that it had a much more significant impact on

the maximum risk found over multiple runs than on the median risk. In other words, it yields

a great improvement in the worst-case errors, but smaller improvements in more typical cases.

For w(θ) the square root of the maximum fractional risk in the amplitude, A, for fixed γ

decreased by ∼ 35% on average at a few percent conditioning. For wp(rp) we found a similar

decrease for r0,ss (∼ 29%), while the decrease for γss was somewhat smaller (∼ 20%)–although

still significant. After implementing the changes described above to the recipe described in

§2.1.4 we found that adding just a few percent of the ridge regression conditioning to each

covariance matrix used in the calculation resulted in a significant improvement in the cross-

correlation reconstruction. When conditioning all covariance matrices at the level of 3.5%

there was ∼ 42% decrease in the mean of the square root of the risk on the recovered φp(z)

compared to the overall (i.e. universal) mean φp(z), and ∼ 16% decrease when comparing
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the recovered φp(z) to the mean of the actual φp(z) for the particular four fields used in the

measurement.

2.3 INDUCED CORRELATION FROM WEAK LENSING

When measuring the cross-correlation between two galaxy samples in real data sets, there

is a contribution to the signal from weak gravitational lensing by the large scale structure

along the line of sight, even if the two samples are widely separated in redshift. If one

sample is at a higher redshift, the objects at higher redshift can be lensed by the objects

in the lower redshift sample, which causes a magnification bias that induces a correlation

signal (Broadhurst et al., 1995; Bartelmann & Schneider, 2001). This effect is not included

in the simulation used in the previous tests described in this chapter, but it will need to be

accounted for in real galaxy samples.

Magnification bias occurs when gravitational lensing changes the observed number den-

sity of galaxies, and its contribution is determined by two competing effects. First, scattering

of light rays by the intervening large scale structure increases the observed area on the sky.

In addition, galaxies that would have been too faint to be included in a magnitude limited

sample are magnified by gravitational lensing and are therefore included. The combination

of these two effects can change the number density of galaxies in a given patch of sky which

can induce a correlation. The effect of magnification bias on the angular correlation func-

tion is well known (Moessner & Jain, 1998; Ménard & Bartelmann, 2002; Jain et al., 2003;

Scranton et al., 2005; Loverde et al., 2008).

2.3.1 Calculating the weak lensing signals

To calculate the induced correlation from lensing we follow the derivation in Moessner &

Jain (1998), but write the final result in terms of the galaxy correlation function instead of

the dark matter power spectrum. This simplifies the calculation by avoiding the calculation

of the power spectrum, and we can readily get the parameters for the power-law form of
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the correlation function from the simulation. In general, for two distributions of galaxies

the lensing correlation signal due to sample 2 (described by a probability distribution φ2(z))

being lensed by sample 1 (described by a probability distribution φ1(z)) may be written as

w[1,l]2(θ, z) = 3Ωm

(
Ho

c

)2
2.5s2 − 1

b2

∫ ∞
0

φ1(z)
g2(z)

a
dz

∫ +∞

−∞
ξ12

(√
π2 +D(z)2θ2

)
dπ,

(2.16)

where a is the scale factor, ξ12(r) is the real-space cross-correlation of the two samples, b2 is

the linear bias factor of sample 2 and s2 is the slope of the number counts of galaxies with

limiting magnitude m, where

s2 =
d logN2(m)

dm
. (2.17)

The notation [1, l] simply denotes that sample 1 is acting as the lens. The lensing kernel of

sample 2, g2(z), is defined by

g2(z) = D(z)

∫ ∞
z

D(z′)−D(z)

D(z′)
φ2(z′)dz′. (2.18)

The lensing kernel is a radial weight function that describes the strength of the lensing

effect on objects in φ2(z) by perturbations at redshift z. It is a maximum at around midway

between between the observer and the typical redshift of φ2(z) (e.g. 〈z〉 if φ2(z) is Gaussian).

If we assume a power-law for the cross-correlation signal, ξ12 = (r/r0,12)−γ12 , it can be shown

that

w[1,l]2(θ, z) = 3Ωm

(
Ho

c

)2
2.5s2 − 1

b2

H(γ12)θ1−γ12
∫ ∞

0

rγ120,12 φ1(z)
g2(z)

a
D(z)1−γ12dz. (2.19)

2.3.2 Induced correlation when applying the cross-correlation technique

In the case of the cross-correlation technique there are two significant contributions to the

lensing signal. The first, w[s,l]p(θ), is the signal induced by the photometric sample being

lensed by objects in the narrow spec-z bin used in calculating wsp(θ), where again the [s, l]

indicates the spectroscopic objects are acting as the lens. This signal is strongest when the

spec-z bin is at lower redshift than the majority of the photometric objects (i.e. less than the

mean of the photometric distribution). The second, ws[p,l](θ), is the signal induced by objects

in the spec-z sample being lensed by the photometric sample. This signal is strongest when

58



the spec-z bin is at higher redshift than the photometric sample. There is also a signal due

to the spectroscopic and photometric objects being lensed by dark matter in the foreground

of both samples, but this is negligible compared to the other two terms.

Next we calculate the induced correlation from weak lensing for the same configuration

used to test the cross-correlation technique in §2.1 and §2.2, where we determined the cross-

correlation of a narrow spectroscopic redshift bin with a Gaussian photometric sample. We

approximate the distribution of each narrow spectroscopic z-bin as a delta function located

at z = zs. This simplifies the calculation significantly, and the difference between using a

bin of finite width (e.g. ∆z = 0.04 as used previously) and a delta function was small. So

for each distribution we have

φs(z, zs) = δ(z − zs) (2.20)

φp(z) =
1√

2πσ2
z

exp

[
−(z − 〈z〉)2

2σ2
z

]
, (2.21)

and using equation 2.18 we calculate their corresponding lensing kernels:

gs(z, zs) =


D(z)

D(zs)−D(z)

D(zs)
, z ≤ zs

0, z > zs

, (2.22)

gp(z) =
D(z)√
2πσ2

z

∫ ∞
z

D(z′)−D(z)

D(z′)
exp

[
−(z′ − 〈z〉)2

2σ2
z

]
dz′. (2.23)

Using equation 2.19 we can determine the signal due to the photometric sample being lensed

by a spectroscopic bin at z = zs:

w[s,l]p(θ, zs) = 3Ωm

(
Ho

c

)2
2.5sp − 1

bp
H(γsp)θ

1−γsp
∫ ∞

0

r
γsp
0,sp φs(z, zs)

gp(z)

a(z)
D(z)1−γspdz

=

[
3Ωm

(
Ho

c

)2
2.5sp − 1

bp
H(γsp)r

γsp
0,sp

gp(zs)

a(zs)
D(zs)

1−γsp

]
θ1−γsp . (2.24)

The signal due to the spectroscopic bin being lensed by the photometric sample is written

as

ws[p,l](θ, zs) = 3Ωm

(
Ho

c

)2
2.5ss − 1

bs
H(γsp)θ

1−γsp
∫ ∞

0

r
γsp
0,sp

gs(z, zs)

a(z)
φp(z)D(z)1−γspdz (2.25)

=

[
3Ωm

(
Ho

c

)2
2.5ss − 1

bs
H(γsp)

∫ zs

0

r
γsp
0,sp φp(z)

D(zs)−D(z)

a(z)D(zs)
D(z)2−γspdz

]
θ1−γsp .
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To determine the slopes of the number counts of galaxies we assume the Schechter func-

tion for describing the number density of galaxies in the luminosity interval from L to L+dL

(Schechter, 1976),

N(L)dL = V ∗φ∗
(
L

L∗

)α
exp

[
− L

L∗

]
dL, (2.26)

where V ∗, φ∗ and L∗ are fit parameters. This has been shown to be a reasonable approxima-

tion to the luminosity functions of typical galaxy samples (Johnston, 2011). Using equation

2.26 to calculate s = d(logN)/dm we obtain

s =
d logN

dm
=
d logN

dL

dL

dm
= −0.4

(
α− L

L∗

)
. (2.27)

For the case of the photometric sample being lensed by objects in the spec-z bin,

w[s,l]p(θ, zs), the typical luminosity will be much less than L∗, as the photometric sample

will go much fainter. Because of this we use the approximation sp ≈ −0.4α in equation 2.24.

In practice sp can be calculated from the sample, but for the purposes of this analysis we are

just looking for an approximation of how the lensing signal compares to the cross-correlation

due to physical clustering. For the case of objects in the spec-z sample being lensed by the

photometric objects, ws[p,l](θ, zs), typical luminosities of galaxies observed in spectroscopic

surveys are ∼ L∗ so we use the approximation ss ≈ −0.4(α− 1).

Recent literature has found typical values of the faint-end slope to be−1.5 . α . −0.5 for

various galaxy samples, with α differing for red (∼ −0.5) and blue (∼ −1.5) samples (Faber

et al., 2007; Ryan et al., 2007; Loveday et al., 2012). For galaxy samples not separated by

color α ∼ −1.3. For the linear bias factors, bp and bs, we expect them to be of order unity

and so we set them both equal to 1 for baseline calculations. As seen in equations 2.24 and

2.26, both signals scale as b−1. For the parameters of the power-law correlation function we

use γ = 1.6 and r0 = 5h−1Mpc, which are typical values from the simulation used in the

previous sections. Changing the power-law parameters had no effect on the strength of the

lensing signal relative to the cross-correlation signal from physical clustering as described in

the next section.
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2.3.3 Comparison to the cross-correlation from physical clustering

Next we compare the induced correlation signal from lensing to the cross-correlation due to

the physical overlap of the two distributions for the reconstruction technique. Using Limber’s

approximation for the distributions in equations 2.20 and 2.21 and a power-law assumption

for ξsp, we calculate the cross-correlation signal due to the physical overlap of the samples:

wsp(θ, zs) =

∫ ∞
0

φs(z, zs)φp(z)
1

dl/dz
dz

∫ +∞

−∞
ξsp

(√
π2 +D(z)2θ2

)
dπ

= H(γsp)θ
1−γsp

∫ ∞
0

r
γsp
0,sp φs(z, zs)φp(z)

D(z)1−γsp

dl/dz
dz

=

[
H(γsp)r

γsp
0,sp φp(zs)

D(zs)
1−γsp

dl/dz|z=zs

]
θ1−γsp . (2.28)

This cross-correlation due to physical clustering as a function of a spec-z bin at z = zs can

be compared to the induced correlation from weak lensing using equations 2.24 and 2.26, for

a given θ separation on the sky.

Figure 2.18 shows the induced correlation due to weak lensing for each of the terms

described above compared to the cross-correlation signal from physical clustering for α =

−1.3. We have also included the signal due to the samples being lensed by dark matter

in the foreground to show that this signal is many orders of magnitude weaker and can be

ignored. Figure 2.19 shows each of the weak lensing signals compared to the cross-correlation

signal for three values of α over the range found in real galaxy samples, −1.5 . α . −0.5.

Both lensing signals vary significantly over this range in α, making it important to constrain

the slope of the number counts of galaxies when predicting the induced correlation due to

lensing in real galaxy samples.

The signal from the photometric sample being lensed by the spec-z bin is the weaker of

the two dominant contributions due to our assumption that the typical luminosity in the

photometric sample is much smaller than L∗, making the pre-factor of w[s,l]p (eqn. 2.24)

smaller compared to ws[p,l] (eqn. 2.26) for the same value of α (i.e. sp < ss from equation

2.27). It is still significant enough to bias the parameters of the reconstructed redshift

distribution determined from the cross-correlation signal, but it should be possible to remove

this signal iteratively by using the initial reconstruction to predict the lensing signal and

subtract it out.
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Figure 2.18 The top panel shows the cross-correlation, wsp, of a spec-z bin at z = zs with a

Gaussian photometric sample as a function of zs (black line), compared to the signal from

the photometric sample being lensed by objects in the spec-z bin, w[s,l]p (blue dash line), as

well as the signal from the spec-z bin being lensed by the photometric objects, ws[p,l] (red

dot-dash line), for α = −1.3, a typical value for real galaxy samples. The bottom panel

shows the ratio of each lensing signal to the cross-correlation. Both signals are significantly

smaller than wsp, but they are large enough to affect the recovery of φp(z) and will need to

be accounted for when using real datasets. We also show the signal due to the lensing of

spectroscopic and photometric objects by dark matter in the foreground of both samples to

show that it is negligible compared to the other two lensing signals (green 3-dot-dash line).
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Figure 2.19 The cross-correlation, wsp, of a spec-z bin at z = zs with a Gaussian photometric

sample as a function of zs (black line), compared to the signal from the photometric sample

being lensed by objects in the spec-z bin, w[s,l]p (blue lines), as well as the signal from the

spec-z bin being lensed by the photometric objects, ws[p,l] (red lines), for a range of values of

α found in real galaxy samples. Changing α does have a significant effect on the strength of

the induced correlation due to lensing, and so constraining the slope of the number counts

of galaxies will be important in predicting the lensing signal in real samples.
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The lensing signal from the objects in the spec-z bin being lensed by the photometric

sample is stronger so it may need to be mitigated in other ways. One possibility is using

a volume limited sample rather than a magnitude limited sample as this will eliminate the

possibility of objects that are normally below the magnitude limit being included in the

sample due to lensing magnification. Another possibility is to select a subsample of the

spectroscopic objects that are evenly distributed on the sky for just the cross-correlation

measurement. This will make it so the density of spec-z objects in a given region will not

be allowed to increase due lensing effects.

This is only a rough calculation of the lensing signals and more refined calculations will

need to be done which could vary depending on the properties of a particular dataset. But

we can see from this that both of the lensing signals described above are significantly smaller

than wsp(θ), but they are large enough to affect the recovery of the parameters of φp(z) (e.g.

〈z〉 and σz). These signals will need to be accounted for and mitigated when applying the

cross-correlation technique to real datasets in the future.

2.4 CONCLUSION

In this chapter we tested a technique for calibrating photometric redshifts that exploits the

clustering of galaxies at similar redshifts using mock catalogs designed to match the DEEP2

Galaxy Redshift Survey. We found that by measuring the angular cross-correlation of a

sample of galaxies that has secure and accurate spectroscopic redshifts with a sample of

galaxies that only has photometric information in the same region of sky, we can obtain an

accurate reconstruction of the redshift distribution of the photometric sample. We showed

that the reconstruction can be improved by incorporating the full covariance information of

the correlation measurements when fitting for the correlation function power-law parameters.

We also found that the inversion of covariance matrices calculated from a small sample size

can be unstable, and this instability can be mitigated by conditioning the covariance matrix

using a “ridge regression” technique. We also estimated the impact of lensing magnification

on the cross-correlation signal and discussed possibilities for reducing its effect.
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There has been considerable other work done with reconstructing redshift distributions

using the cross-correlation technique as well as its effect on the constraints of cosmological

parameters. In Schulz (2010), cross-correlation techniques were applied to mock data gener-

ated by populating a single time slice of an N-body dark matter simulation using various halo

models. They develop a pipeline for calculating the redshift distribution of a photometric

sample using cross-correlation measurements and the autocorrelation of a spectroscopic sam-

ple, ξss(r, z). They do not attempt to model the bias although they do examine how varying

the bias of the two samples affects the reconstruction (i.e. using radically different halo mod-

els). The catalogs constructed to test their method are significantly larger in volume than

our individual mock catalogs, and while the number of objects in their photometric sample

is comparable to ours, their spectroscopic sample is much smaller, which would be expected

to lead to larger errors (Newman, 2008), as observed. Another major difference is the use of

a smoothness prior in reconstruction, which was not done here. While Schulz (2010) found

that cross-correlation techniques were generally successful in reconstructing redshift distri-

butions, these conclusions were primarily qualitative due to the limited sample sizes and

source densities of the mock samples used, along with less-optimal correlation measurement

techniques. In this chapter, we have used simulations which include much less massive halos,

allowing us to perform quantitative tests of cross-correlation techniques using sample sizes

and source densities comparable to those which will be used in realistic applications.

Several techniques for calibrating photometric redshifts using only photometric data have

also been developed (Schneider et al., 2006; Zhang et al., 2010; Benjamin et al., 2010; Quadri

& Williams, 2010); in general, such techniques require priors or assumptions on biasing

which can be relaxed or tested in spectroscopic cross-correlation measurements. In Quadri

& Williams (2010), spectroscopic/photometric cross-correlation techniques have now been

applied to real data using the COSMOS dataset. Using data from a single field, they are

able to determine typical photo-z uncertainties well, even when ignoring the effects of bias

evolution. However, when constraining catastrophic photo-z errors, methods which ignore

these effects should break down, as bias evolution should be a much greater problem over

broad redshift intervals than in the core of the photo-z error distribution.
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3.0 CONSTRAINING THE INTERLOPER FRACTION USING

CROSS-CORRELATION

The study of high redshift galaxies is important for our understanding of the Universe as it

gives insight into the early stages of galaxy evolution. Advances in telescope technology and

observational techniques in the last decade have made the study of the first billion years of

the history of galaxy evolution possible, including the clustering of high redshift galaxies (e.g.

Ouchi et al. 2001, 2004, 2010; Jose et al. 2013), the evolution of their luminosity function

and star formation rates (e.g Ouchi et al. 2008; Bouwens et al. 2007, 2008, 2012), as well as

the epoch of reionization when early galaxies ionized the surrounding neutral hydrogen (e.g.

Ouchi et al. 2010; Bunker et al. 2010; Yan et al. 2010). One of the key challenges in observa-

tional cosmology is identifying these high redshift objects from photometric measurements

so they may be selected out from larger datasets for further study. Various techniques have

been developed for distinguishing high redshift objects in photometric datasets. A common

approach is to look for photometric “drop-out”, or objects with significant decreases in flux

in adjacent bands, indicating a spectral break (Bouwens et al., 2006, 2007; Yan et al., 2010,

2012). For example, in some high redshift galaxies there is a spectral feature at 1216 Å due to

Lyman-α absorption, where there is a significant drop in flux shortward of this wavelength.

At a redshift of 6 this feature is seen in the infrared at ∼ 8500 Å. For the common ugriz

photometric system consisting of 5 passbands covering wavelengths from the visible to the

near-infrared, the z-band is centered around 8500 Å and the i-band is centered at a shorter

wavelength ∼ 7750 Å, and so for a given galaxy if there is a significant decrease in flux in

the i-band compared to the z-band, it is likely due to this spectral break and the galaxy

becomes a high redshift candidate. Work has also been done with selecting high-z objects

using template fitting photometric redshift measurements (McLure et al., 2011; Finkelstein
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et al., 2012).

One potential issue with selecting high redshift objects using these techniques is contam-

ination of the sample from lower redshift objects whose photometry resembles that of the

high-z objects, e.g. confusing the 4000 Å break in low-z galaxies with the Lyman break.

In the past, these interlopers have generally been identified via extremely deep imaging at

other bands or via spectroscopy (Shimasaku et al., 2003; Kovač et al., 2007). However, due

to long exposure times required for deep imaging and spectroscopy, both of these avenues

become less practical for faint dropout samples. A powerful alternative is to exploit the clus-

tering of galaxies to determine the interloper fraction. Low-z interlopers will cluster with

easier-to-identify, bright low redshift objects, whereas true high-z galaxies will not. Hence,

by measuring the two-point angular cross-correlation between objects in a sample of high-z

candidates and objects with known spectroscopic redshifts, we can constrain the interloper

fraction even if it includes objects too faint for spectroscopy.

In this chapter we describe how to calculate the interloper fraction from the cross-

correlation of a high-z candidate sample with a low-z spectroscopic sample. In §3.1.1 we

derive the relation between the interloper fraction and the observables along with the other

unknown quantities that will need to be modeled in order to constrain the interloper fraction.

In §3.1.2 we describe the calculation of the uncertainty in the interloper fraction as a function

of the modeled parameters, and in §3.1.3 we present the results of this error analysis. In

§3.2 we conclude.

3.1 METHOD

There are two samples of galaxies used in this calculation. The high redshift candidate sample

consisting of objects identified as being at high redshift via some method, e.g. photometric

dropout techniques, and a low redshift spectroscopic sample that has secure and accurate

redshifts. For the purposes of this calculation we assume that the high-z candidate sample

has a redshift distribution described by two top hat distributions widely separated in redshift,

with a low-z spectroscopic sample, also a top hat distribution, overlapping the interlopers in
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z. Figure 3.1 shows an example of the two distributions. The observables used are the two

point angular autocorrelation of the high-z sample, wpp(θ), and the two point angular cross-

correlation of the spectroscopic sample with the high-z sample, wsp(θ), where the angular

correlation function is defined in §2.1.2.
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Figure 3.1 An toy model example of a high redshift sample contaminated with interlopers

(solid blue line), along with a low redshift spectroscopic sample that only overlaps the in-

terlopers (dashed red line). For the calculation we assume top hat distributions for both

samples.

3.1.1 Observables and the Interloper Fraction

Writing the angular autocorrelation function for an angular separation θ in terms of the

density contrast, δ(θ) = (ρ(θ) − 〈ρ〉)/〈ρ〉, which describes the 2-D dimensionless density
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perturbation field gives

wpp(θ) = 〈δp(θo)δp(θo + θ)〉, (3.1)

(Peebles, 1980) where the angle brackets indicate an average over a solid angle Ω. The 2-D

perturbation field will have contributions from both low and high redshift perturbations,

and writing it in terms of these components gives

δp = fiδi + (1− fi)δh, (3.2)

where fi is the interloper fraction, and δi and δh are the density contrasts associated with

the low-z interlopers and the objects truly at high redshift, respectively. Putting this into

equation 3.1 and expanding gives

wpp(θ) = f 2
i 〈δiδ′i〉+ (1− fi)2〈δhδ′h〉+ fi(1− fi) [〈δiδ′h〉+ 〈δhδ′i〉] (3.3)

where the “ ′ ” indicates the density contrast at θo+θ (equation 3.1). By comparing to

equation 3.1 we see that the two quantities 〈δiδ′h〉 and 〈δhδ′i〉 are simply the angular cross-

correlation of the low redshift interlopers with the objects truly at high redshift, and thus

are zero since the interlopers and high-z objects are widely separated in redshift and not

physically associated with each other. Also analogous to equation 3.1, the quantity 〈δiδ′i〉
is the autocorrelation of only the low-z interlopers, wii, and 〈δhδ′h〉 is the autocorrelation

of the objects truly at high redshift, whh. So for the angular autocorrelation of the high-z

candidate sample we can write

wpp(θ) = f 2
i wii + (1− fi)2whh. (3.4)

Similarly, for the cross-correlation of the low-z spectroscopic sample with the high-z

candidate sample we can write

wsp(θ) = 〈δs(θo)δp(θo + θ)〉. (3.5)

Using equation 3.2 it can be shown that

wsp(θ) = fi〈δsδ′i〉+ (1− fi)〈δsδ′h〉. (3.6)
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Again comparing to equation 3.1 we see that 〈δsδ′i〉 is the angular cross-correlation of the

low-z spectroscopic sample with just the interlopers, wsi, and 〈δsδ′h〉 is the cross-correlation

of the spectroscopic sample with the objects truly at high redshift, wsh. The second term

will be zero, again because the spec-z sample and objects at high-z in the candidate sample

are widely separated in redshift. So for the cross-correlation of the spectroscopic sample

with the high-z candidate sample we can write:

wsp(θ) = fiwsi. (3.7)

There will also be a contribution to the measured cross-correlation from weak gravi-

tational lensing where the high-z objects are lensed by the low-z spectroscopic sample, as

described in §2.3. In general this induced correlation will be small compared to the true

wsp, although as the interloper fraction gets smaller its relative contribution will increase.

However, the lensing signal will mainly contribute to uncertainty in wsp, and as we describe

in §3.1.2.1 this uncertainty is not the dominant factor in the error in fi.

By modeling the real-space two-point correlation function, ξ(r), as a power law (i.e.

ξ(r) = (r/r0)−γ), it is possible to determine an analytic solution to the relation between

wsi and the redshift distribution of the interlopers. Using Limber’s approximation with the

power law assumption we can write

wsi = H(γsi)θ
1−γsi

∫ ∞
0

φs(z)φi(z)rγsi0,si

D(z)1−γsi

dl/dz
dz (3.8)

(Peebles, 1980), where H(γ) = Γ(1/2)Γ((γ − 1)/2)/Γ(γ/2) (Γ(x) is the standard Gamma

function), and φs(z) and φi(z) is the probability distribution function for the redshifts of

the spectroscopic sample and interlopers respectively. The angular size distance, D(z), and

the comoving distance to redshift z, l(z), can be determined from the basic cosmology, but

as we see later, these quantities are not present in our final expression used for determining

fi. The parameters r0,si and γsi are the power-law parameters that characterize the intrinsic

clustering of the interlopers with the low-z spectroscopic sample.

The redshift distribution of the interlopers can also be related to the angular autocorre-

lation of the interlopers, wii, through Limber’s equation as

wii = H(γii)θ
1−γii

∫ ∞
0

φ2
i (z)rγii0,ii

D(z)1−γii

dl/dz
dz, (3.9)
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where r0,ii and γii are the power-law parameters for the autocorrelation of the interlopers.

Combining equations 3.8 and 3.9 and using top-hat redshift distributions for φi and φs, with

widths ∆zi and ∆zs and assuming ∆zs ≥ ∆zi (as seen in figure 3.1), it can be shown that

wii ≈
rγii0,ii

rγsi0,si

[ ∫∞
0
φ2
i (z)dz∫∞

0
φs(z)φi(z)dz

]
wsi =

rγii0,ii

rγsi0,si

∆zs
∆zi

wsp
fi

(3.10)

where we have used equation 3.7 to relate wsi to the observable wsp. For the following

calculations we set ∆zs = ∆zi, but in principle the quantity in brackets would need to be

calculated for each particular case to obtain an accurate value for fi. The quantity rγii0,ii/r
γsi
0,si

is essentially the ratio of the bias of the interlopers to the spec-z sample bias, where the bias

is the proportionality relating the spatial distribution of galaxies and the underlying dark

matter density field. If we define the quantity br = rγii0,ii/r
γsi
0,si, and combine equations 3.4 and

3.10 we obtain

wpp = fibrwsp + (1− fi)2whh (3.11)

This gives a relation between the interloper fraction, fi, and our observables wpp and wsp. If

we can accurately model the bias ratio, br, and the angular autocorrelation of a pure high-z

sample with no interlopers, whh, we can determine the fraction of interlopers in the sample.

3.1.2 Uncertainty in fi

We looked at how the uncertainty in the interloper fraction, fi, scales with the uncertainty

in the two parameters that must be modeled, br and whh. For all calculations we assume the

uncertainty in the observables, wpp and wsp, are small compared to the uncertainty in the

modeled parameters. We employ two separate approaches for calculating the uncertainty

in fi: first we determine an analytical solution by applying simple propagation of errors to

equation 3.11 and then compare the results to a Monte Carlo simulation.

3.1.2.1 Analytical Solution Applying propagation of errors to equation 3.11 assuming

that all uncertainties are in the two parameters that must be modeled gives

σ2
fi

=
f 2
h

4
(

1− 1
2
fi
fh

wii
whh

)2

[
σ2
whh

w2
hh

+

(
wii
whh

)2(
fi
fh

)4 σ2
br

b2
r

]
(3.12)
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where fh is just 1− fi. For small fi we see that the second term within the brackets is small

compared to the first, so in this regime the uncertainty in the modeled autocorrelation of a

pure high-z sample is going to dominate the uncertainty in fi, with σfi approximately half of

the fractional error in whh. We must also characterize the quantity wii/whh, but this factor

also becomes less important in the limit of small fi. This ratio of the clustering strength

at low and high redshift is expected to be of order unity, in part because the comoving

clustering scale length (i.e. r0) for galaxy populations does not vary strongly with redshift,

as has been observed in galaxy samples at various redshifts (e.g. Coil et al. 2008; Ouchi et al.

2004). In addition, the comoving separations used in calculating the correlation function at

the low and high redshifts of interest only differ by at most a factor of a few. Because of

this we set this ratio of the correlation functions equal to 1 for all calculations in this paper.

We note that if we apply propagation of errors on all quantities in equation 3.12, the

uncertainty in wsp will not significantly contribute to the uncertainty in fi, as it will have

similar dependence as the bias ratio br (i.e. it will have a factor of (fi/fh)
4 in front of the

fractional error in wsp). As we described in §3.1.1, this reduces the impact of the uncertainty

in wsp due to the induced correlation from weak lensing.

3.1.2.2 Monte Carlo simulations For the Monte Carlo simulation the inputs are the

true value of fi we are trying to recover, as well as nominal values for the mean br and whh.

We then use equations 3.4 and 3.11 to calculate mean values of wpp and wsp, where we set

wii/whh = 1. The results of our analysis are insensitive to changes in the mean values of br

and whh. By fixing wpp and wsp at their mean values and adding random Gaussian noise

to 〈br〉 and 〈whh〉, we can then apply equation 3.11 to calculate the resulting fi for a large

number of simulations.

In the MC simulation, for each value of σwhh/whh and σbr/br we generate 107 realizations

and solve equation 3.11 for each. Since equation 3.11 is quadratic in fi, for large uncertainties

the random noise can cause some of the realizations to give non-real solutions for fi, and

ignoring these realizations would highly bias our results. For this reason we treated br and

whh as lognormal variables where we instead added random noise to lnx with σlnx = σx/〈x〉.
For small fi, this gave stable results with no non-real solutions even for large uncertainties.
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For larger values of fi (& 0.5) we ran into other issues which we describe later.

For each set of 107 realizations, we make robust measurements of the bias and uncertainty

in fi. To determine the recovered fi from the MC simulation we take the median of the 107

realizations. We use the median to reduce the impact of outliers, and also because for random

variables with lognormal distributions the median is an unbiased estimator of the mean

of an equivalent random Gaussian distribution. To calculate the bias we simply subtract

this median from fi,true, the true value of the interloper fraction we initially input into the

simulation. We determined the uncertainty using the IDL function DJSIG1 that can occur

at a significant (∼ 1%) rate (Sun et al., 2009; Bernstein & Huterer, 2010), which calculates

the standard deviation with iterative sigma clipping, reducing the impact of outliers.

3.1.3 Results

Since the error in whh will be the dominant factor in the error in fi, for the following analysis

we fix the fractional error of the bias ratio, σbr/br, and look at how varying the fractional

error in the modeling of the autocorrelation of a pure high-z sample, σwhh/whh, affected the

uncertainty in fi.

Figure 3.2 shows the bias and uncertainty in fi as a function of the fractional error in whh,

for fi=0.1 and 0.4, where we have set σbr/br = 0.10. For fi=0.1 we see that the recovered

interloper fraction is unbiased, even out to large fractional error in whh. As the interloper

fraction gets larger we start to see a very small systematic bias. This is likely due to the

bias that results when adding variables with lognormal distributions, as is necessary when

solving equation 3.11 for fi. The sum of lognormal variables is not exactly lognormal, and

the recovered median of the sum is biased compared to the sum of the individual medians.

The magnitude of this bias depends on the properties of each distribution, particularly the

uncertainty σlnx. However, for the values of interest in this analysis, the bias on the median

of the sum is generally at the sub-percent level, much smaller than the expected uncertainties

in the modeled parameters. This bias is not apparent for the case of fi=0.10, because for

small fi, i.e. a weak cross-correlation signal, the terms in the solution for fi that contain br

1Part of the IDLUTILS package available at http://www.astro.princeton.edu/~schlegel/code.html.
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Figure 3.2 The top panel shows the bias of the interloper fraction, fi, recovered from the

Monte Carlo simulation described in §3.1.2.2 as a function of the fractional error in whh

for two values of fi. As fi gets larger there is a systematic bias in the recovered fi from

summing lognormal variables as described in §3.1.3, although this bias is much smaller than

the uncertainty in fi. The bottom panel shows the uncertainty in fi as a function of the

fractional error in whh for both the analytic solutions (solid and dashed lines), and the Monte

Carlo simulation results (points), for the same two values of fi. Especially for small values

of fi, the uncertainty does not strongly depend on the value of fi.
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are small compared to the term that contains only whh, and so this bias is negligible. As

fi becomes larger, the br terms become significant, which leads to the bias from summing

lognormal variables. In any case, for reasonable values of the fractional uncertainty in br

this bias is small compared to the expected uncertainty in fi.

From the plot of the uncertainty in fi we see that for σwhh/whh . 0.6 the analytical

solution closely follows the results of the Monte Carlo simulation, and above that they

diverge slightly. We also see in this same range that the uncertainty is not strongly sensitive

to changes in fi. This shows that if we can determine the modeled autocorrelation of a

pure high-z sample to 10 − 30%, then the uncertainty in the interloper fraction will be

σfi ∼ 0.05−0.15 over a wide range in fi. As the interloper fraction increases above ∼ 0.5 we

again run into issues with non-real solutions in the MC simulation, as well as the coefficient

in front of equation 3.12 blowing up in this range due to the denominator going to zero.

We found this calculation to be reliable up to fi ∼ 0.5, which is well above the expected

interloper fraction in a given high-z candidate sample.

3.2 CONCLUSION

In this chapter we have shown that the level of contamination of a high redshift candidate

sample by low redshift interlopers can be constrained by cross-correlating the high-z sam-

ple with galaxies at low redshift that have secure and accurate redshifts. We found that in

addition to measuring the angular cross-correlation of the two samples and the angular auto-

correlation of the high-z candidate sample, it will also be necessary to model the ratio of the

bias of the interlopers to the bias of the spectroscopic sample, as well as the autocorrelation

of a pure high-z sample with no contaminants.

We also found that the uncertainty in the modeled autocorrelation of the pure high-z

sample will be the dominant source of error when determining the interloper fraction. Some

work has previously been done to model the the clustering of high redshift galaxies. In Jose

et al. (2013) they use a physically motivated semi-analytic model to predict the clustering

of high redshift Lyman-α emitters. They predict the 2-D autocorrelation function, w(θ),
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for Ly-α emitters at z = 6.6 and find and are able to reproduce the observations in Ouchi

et al. (2010), although as we discuss later, the sample used in Ouchi et al. (2010) is not

necessarily a pure high-z sample. Constraining the interloper fraction more tightly should

lead to a better comparison to the models, with the possibility of iteratively removing the

contribution of the interlopers using a first estimation of whh=wpp.

A related method was applied in Morrison et al. (2012) as a null test where they cross-

correlated a z ∼ 4 sample of Lyman break galaxies from the Deep Lens Survey with lower

redshift (z ∼ 0.2−1) spectroscopic objects from the PRIMUS survey (Coil et al., 2011). They

had removed possible contaminants of the high-z sample by other means and were simply

testing for interlopers via cross-correlation and measured no signal, indicating that there was

not significant contamination of the high-z sample. This just showed that the contamination

was either nonexistent or was too small to detect given their measurements. With improved

measurements and modeling of clustering parameters, the technique described in this chapter

will be able to constrain the value of fi to greater accuracy.

Previous attempts to constrain the interloper fraction have generally not been successful

or have been subject to large uncertainties. For example in Ouchi et al. (2010) they measured

the properties of 207 Lyman-α emitters at z = 6.6 which were selected by looking for excess

flux in a narrow band filter centered at 9192 Å, compared to deep broadband imaging.

They selected 30 of the objects for follow-up spectroscopy and were able to obtain secure

spectroscopic redshifts for 19 of them. None of the 19 were determined to be interlopers, and

by reasoning that any of the objects that they were unable to obtain spectroscopic redshifts

for could possibly be low-z interlopers they estimated the interloper fraction as ranging

anywhere from 0-30%. However, a measured interloper fraction of 11/30 is consistent at 2σ

significance with an interloper fraction as large as 55%. As high-z candidate samples go

fainter obtaining spectroscopy becomes even more difficult, and so being able to constrain

the interloper fraction to ±0.10-0.15 would be a significant improvement.
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4.0 EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT

SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS

Future wide-area photometric surveys will obtain imaging for a very large number of galaxies

(∼ 108 − 109), and many of the cosmological measurements to be performed with this data

will require redshift information for these objects. It is not feasible to measure spectroscopic

redshifts for this many objects, mainly due to the integration time required to obtain spectra,

and in addition, many of the galaxies are too faint for spectroscopy. As an example, to follow

up the 3× 109 i < 25.3 mag galaxies from LSST with a 10-m telescope that could take 5,000

spectra at once would take ∼ 35, 000 years (Newman et al., 2013a). This is clearly not a

practical human endeavor. To meet this challenge, many techniques have been developed

for estimating redshifts from photometric information, where the flux from the galaxy is

measured in a few broadband filters. Because our knowledge of the true spectral energy

distributions of the full range of galaxies is limited, a training set of objects with accurate

spectroscopic redshifts is generally used to determine or refine relations between photometric

observables and z (e.g., Connolly et al. 1995; Gerdes et al. 2010; Ilbert et al. 2006). However,

the combination of deep photometry in many bands with deep spectroscopy for calibration

purposes is available in only a few fields.

The DEEP2 (Deep Extragalactic Evolutionary Probe 2) Galaxy Redshift Survey (New-

man et al., 2013b) obtained secure and accurate redshifts for more than 38,000 objects in

four widely separated fields. However, the photometry used for DEEP2 targeting was ob-

tained in the B, R, and I filters, while the deepest datasets to date utilize measurements

in ugriz. We have now constructed a catalog combining DEEP2 spectroscopic redshifts

with data from two ugriz photometric surveys which have covered the same fields: the

Canada-France-Hawaii Legacy Survey (CFHTLS) (Gwyn, 2012) and the Sloan Digital Sky
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Survey (SDSS) (Ahn et al., 2012; Abazajian et al., 2009). In this chapter, we present

the details of this catalog and make it publicly available as a testbed for algorithm de-

velopment for future photometric redshift studies. These catalogs can be downloaded at

http://deep.ps.uci.edu/DR4/photo.extended.html.

In §4.1 we describe the three different data sets used to construct this catalog. This new

catalog also provides astrometry tied to SDSS DR9 (rather than USNO-A2.0) as a reference;

the corrections required are described in §4.2. In §4.3.1 we describe how we constructed the

catalog for DEEP2 Field 1, commonly known as the Extended Groth Strip (EGS). In the

course of this we derive improved photometric calibrations for CFHTLS photometry in all

pointings that overlap DEEP2 Field 1 (§4.3.1.1). We also determine color transformations

between the DEEP2 BRI and the CFHTLS ugriz photometric systems for this field, allowing

us to use CFHTLS data to predict BRI magnitudes for a subset of DEEP2 objects which

had poorer measurements originally (§4.3.1.2). In §4.3.2 we describe how we constructed the

combined ugriz/redshift catalog for DEEP2 Fields 2, 3, and 4. In §4.4 we provide details

of the parameters that are included in the resulting catalogs, and in §4.5 we conclude and

provide summary statistics for this new sample.

4.1 DATA SETS

The DEEP2 Galaxy Redshift Survey is a magnitude-limited spectroscopic survey of objects

with RAB < 24.1 (Newman et al., 2013b). Data was taken in four separate fields, with

photometry in each field from CFHT 12K BRI imaging (the “pcat” catalogs). Subsets of each

pcat catalog were targeted for spectroscopy in order to obtain redshifts (the “zcat” catalogs).

DEEP2 Field 1 is part of the Extended Groth Strip (EGS), where the pcat photometry was

measured in four overlapping 0.5◦ × 0.7◦ pointings of the 12K camera (labeled as pointings

11-14). For the DEEP2 spectroscopic survey in this field (zcat catalog), objects were targeted

in a 0.25◦ × 2.0◦ window which spans all four pointings. In DEEP2 Fields 2, 3, and 4, the

pcat and zcat catalogs cover the same area on the sky, where data was taken in 0.5◦ × 2.0◦

rectangular fields, with each field divided up into three separate pointings (labeled as 21-23,

78

http://deep.ps.uci.edu/DR4/photo.extended.html


etc.). In Field 2, pointing 23 is not included in this catalog since it was not observed with

the DEIMOS spectrograph in DEEP2 and also has inferior BRI photometry. We include

all of pointing 43 in Field 4 in this catalog although only part of this pointing was actually

observed with DEIMOS and have redshifts. See Coil et al. (2004) and Newman et al. (2013b)

for details of both the pcat and zcat catalogs.

To provide ugriz photometry for objects in DEEP2 Field 1, we used the publicly-available

CFHTLS Wide Field i-band selected unified catalog, as well as the CFHTLS Deep Field i-

band selected catalog (Gwyn, 2012) where it overlaps the DEEP2 pointings. Photometry

was obtained using the wide field optical imaging camera MegaCam. We selected objects

in the Wide catalog from the seven pointings that overlap DEEP2 Field 1 (each pointing

∼ 0.9◦×0.9◦), where each ugriz band reaches depths of u = 24.6−25.8, g = 26.0−26.4, r =

25.2 − 26.2, i = 24.7 − 25.2, and z = 23.8 − 24.8 (span shows the range of depths over all

seven pointings). Here we have defined the depth in each pointing as the magnitude at

which the errors in each band correspond to a 5σ flux measurement. The CFHTLS Deep

Field D3 (∼ 1.0◦ × 1.0◦) partially overlaps DEEP2 pointings 11-13 and reaches depths of

u = 27.1, g = 27.7, r = 27.5, i = 27.2, and z = 25.7. For the ugriz magnitudes we used

the Kron-like elliptical aperture magnitudes designated by MAG AUTO in the catalog.

For ugriz photometry in DEEP2 Fields 2-4 we used data from the SDSS catalogs. Where

SDSS overlaps DEEP2 Field 2 we select both stars and galaxies that are flagged as having

clean photometry in the DR9 data release (Ahn et al., 2012). Where SDSS overlaps DEEP2

Fields 3 and 4 we select sources flagged as having clean photometry in Stripe 82, which goes

deeper than typical SDSS fields due to co-adding repeated imaging scans (designated by runs

106 and 206 in the Stripe82 database in DR7) (Abazajian et al., 2009). In all three fields

we use model magnitude photometry. The depths reached for DR9 (Stripe 82) objects that

overlap DEEP2 Fields 1 and 2 (3 and 4) are given by u = 21.6 − 22.1 (23.3 − 23.5), g =

23.0 − 23.2 (24.7 − 24.8), r = 22.7 − 23.1 (24.3 − 24.5), i = 22.0 − 22.5 (23.8 − 23.9), and

z = 20.5− 20.9 (22.0− 22.4).
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4.2 CORRECTED ASTROMETRY

The DEEP2 astrometry measurements were determined using stars from the USNO-A2.0

system. The USNO-A2.0 astrometry contained a number of known systematic errors, which

have been propagated into the DEEP2 astrometry. Additionally, the imcat-produced data

reductions (Kaiser et al., 1999; Kaiser, 2011) tend to have larger systematic astrometric

errors at the edges of each pointing, presumably due to a lack of astrometric calibration

stars beyond field edges. The net result is that systematic astrometric errors vary over scales

of 5−10′, and can reach values of ∼ 1′′ in the worst cases. It should be noted that these errors

are referring to the absolute astrometry, and the relative astrometry at small scales (. 1′)

will be much more accurate than this. For objects separated by more than 1′, there will

be systematic offsets in the relative astrometry increasing with separation. In addition, the

public pcat catalogs for field 1 (EGS) that are available do include an astrometric correction

that ties them to SDSS, and so the absolute astrometry is better than this in those catalogs.

For consistency in these catalogs, we perform the same astrometric corrections in all fields,

including field 1.

In order to allow improved comparisons to external catalogs, we have calculated corrected

astrometry for each object in DEEP2 using the superior absolute astrometry from SDSS as

a reference frame rather than USNO-A2.0. The SDSS astrometry is calibrated against the

Second Data Release of USNO CCD Astrograph Catalog (UCAC2), which measured the

positions and proper motions for millions of stars, where the precision of measured positions

are ∼ 15− 70 mas, with systematics estimated to be < 10 mas (Zacharias et al., 2004). For

consistency in the catalog, we also performed corrections on the CFHTLS astrometry. The

size and direction of the deviations from the SDSS astrometry varied significantly across each

DEEP2 pointing; therefore, it was necessary to calculate a correction which is dependent

upon position, rather than a single offset.

In each pointing of each field we first identified matching objects between DEEP2 and

SDSS. This was done by selecting each DEEP2 object and searching for SDSS objects within

a given search radius, and in cases where multiple matches are found, the closest object is

selected as the match. This general matching procedure was used for all catalog matching.
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For most all matching procedures we used a search radius of 0.75′′, as that is approximately

the resolution in the DEEP2 survey. However, for the astrometric corrections, we used a

larger initial search radius of 1′′ to allow for systematic errors. For every matched pair of

DEEP2 and SDSS objects, we calculated RA − RASDSS and dec − decSDSS on a grid by

binning in RA and dec and calculating the median difference between DEEP2 and SDSS

astrometry in each bin. For any bins where these differences are poorly constrained, i.e. too

few objects to compute a median or with the error in the bin & 0.5′′ (of order the typical

correction factor), we instead use values interpolated from adjoining bins. We then smoothed

the gridded offsets to obtain the required corrections to be applied to the original RA and

dec values in each pointing to bring them onto the SDSS reference frame. The correction

factors for each object were calculated by interpolating on the smoothed grid of values; the

results were subtracted from the original positions to yield SDSS-equivalent positions. The

refined astrometry was then used to re-match catalogs using our standard 0.75′′ search radius.

These corrections resulted in a significant increase in the number of matches found between

the two catalogs, ranging from ∼ 40–60 more matches in the shallow SDSS pointings (an

increase of ∼ 150 matches per square degree to a depth of r ≈ 22.8 mag in those fields),

up to thousands of matches in some of the deeper fields (∼ 3000 matches per square degree

to a depth of r ≈ 25.2 mag). We investigated iterative refinement of the corrections using

this closer match radius beyond the first iteration, but the results did not show significant

improvement.

Ideally, we would like to perform corrections which can vary on very small scales, in order

to capture all possible structure in the astrometric offsets. However, that would cause only

a few objects to be used to determine the correction at any given position, yielding noisy

results. We therefore must adopt a grid scale which balances these two needs. In order to

determine how finely we should bin in RA and dec in order to accurately describe the real

deviations at a given position without excessive noise due to using only a small set of objects,

we investigated how varying the number of bins we divided the pointing area into affected

the rms variation in RA − RASDSS −∆RA and dec − decSDSS −∆dec for all matches, where

∆ is the correction factor described above. We repeated the calculation while increasing the

number of bins, and in each case smoothed the grid by performing a boxcar average over a
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width of 5 bins. We started by dividing the pointing area up into 10 bins, and found that

in all pointings, the rms variation decreased significantly until reaching around 40-60 bins,

where it leveled off. For all astrometric corrections we set the number of bins equal to 50

(corresponding to ∼ 35− 50′′ per bin), as this provided the best balance between fidelity of

reconstruction and noise.

As an example, the left panel of Figure 4.1 shows the astrometric corrections determined

for pointing 31 in DEEP2 Field 3. Table 4.1 describes the improvement in astrometry for

both CFHTLS-Wide and DEEP2 catalogs resulting from this process. We list the median

and robust standard deviation of RASDSS − RA and decSDSS − dec, both before and after

corrections are applied. All standard deviations quoted in this table are derived using a

robust estimator, which utilizes the median absolute deviation as an initial estimate and

then weights points using Tukey’s biweight (Hoaglin et al., 1983). In every case, there

are large improvements in the agreement with SDSS astrometry; the standard deviation

of the residuals is dominated by measurement errors, not systematics. This can be seen

in the right panel of Figure 4.1 which shows a plot of the astrometric residuals for each

calibration object in pointing 31, as well as histograms of their projected distributions in

right ascension and declination, both before and after the correction. The improvement is

much greater for DEEP2, but still detectable for the CFHTLS-Wide astrometry. We utilize

the SDSS-reference-frame astrometry for both DEEP2 and CFHTLS in matching objects for

the remainder of this chapter.

4.3 SUPPLEMENTAL PHOTOMETRIC INFORMATION FOR DEEP2

4.3.1 DEEP2 Field 1

In DEEP2 Field 1 we provide catalogs for DEEP2 pointings 11, 12, 13 and 14. The BRI

photometry for pointings 11, 12, and 13 are taken directly from the DEEP2 catalogs described

in §4.1. These measurements are identical to those provided in DEEP2 Data Release 4

(Newman et al., 2013b). The DEEP2 BRI photometry in pointing 14 had both inferior
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Figure 4.1 The left panel is an arrow plot showing the size and directions of the astrometric

corrections applied in pointing 31, where a 0.03◦-long arrow indicates a 1′′ difference. Both

the size and direction vary significantly over the field, making that depend on position

on small scales necessary. The right panel shows the difference between the DEEP2 and

SDSS astrometry for matches in the same pointing, both before (black) and after (red)

the correction, where the contour lines correspond to 32% and 5% of the peak density,

respectively. The projected distributions of each residual are shown on the bottom and right

side of the plot, with all histograms normalized to have the same integral. The points show a

random subset of all matches, while the contour lines and histograms were constructed using

the full set of matches. There is a significant improvement in both the bias and spread after

correction for both RA and declination; these differences are quantified for all pointings in

Table 4.1.
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depth and calibration quality to that obtained in other survey fields due to poor observing

conditions when the data were taken. As a result, a purely R-selected sample was targeted

in that region (Newman et al., 2013b). However, due to the wide range of multiwavelength

data covering that area (Davis et al., 2007), the redshifts obtained there are quite valuable,

and it is desirable to have as uniform a photometric sample as possible. We have therefore

developed improved BRI photometry for the problematic region by using CFHTLS-Wide

ugriz photometry to predict DEEP2 BRI. We do this using transformations determined

from data in DEEP2 pointings 11 and 12, as described below. We did not use pointing 13

because we found for the DEEP2 data the stellar locus in the color-color relation for that

pointing to be not as well determined. In this catalog we also provide the ugriz photometry

for all DEEP2 sources that have a matching object (determined as described in §4.2) within

either CFHTLS-Wide or Deep. More details of how the ugriz photometry is assigned in

described in §4.4.

4.3.1.1 Improved photometric zero point calibration for CFHTLS data The

CFHTLS-Wide photometry overlapping DEEP2 Field 1 proved to have systematic zero point

errors that varied amongst the individual MegaCam pointings. Hence, it was necessary

to recalibrate each CFHTLS-Wide pointing overlapping with DEEP Field 1 in order to

provide a uniform dataset. We found that the zero point errors in each band (assessed by

comparison to SDSS) varied significantly from pointing to pointing. The typical offset for a

pointing ranged in magnitude from ∼ 0.01 − 0.13 with typical scatter within a pointing of

∼ 2− 4× 10−2, except for in the u-band where the scatter was significantly larger (∼ 0.2).

These calculations are described in detail below. There are seven CFHTLS-Wide MegaCam

pointings that overlap the four CFHT 12K pointings in DEEP Field 1: W3-1-2, W3-1-3,

W3+0-1, W3+0-2, W3+0-3, W3+1-1, W3+1-2. We calibrated each pointing using objects

identified as stars in SDSS DR9 data with 18 < r < 20. For each of these stars we determined

if there is a match in CFHTLS-Wide by searching for objects within the normal 0.75′′ search

radius, finding an average of 737 matches per pointing. After finding matches in each catalog
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we then calculated a linear fit to the magnitude difference between the two bands:

uc − us = a0,u + a1,u(us − gs) (4.1)

gc − gs = a0,g + a1,g(gs − rs) (4.2)

rc − rs = a0,r + a1,r(rs − is) (4.3)

ic − is = a0,i + a1,i(is − zs) (4.4)

zc − zs = a0,z + a1,z(is − zs) (4.5)

where the “c” subscript denotes CFHTLS-Wide photometry, the “s” subscript denotes SDSS

DR9 photometry, and a0 and a1 indicate the constant term and slope parameters from the fit.

This regression, as well as all other fits were done using the IDL procedure POLY ITER from

the SDSS idlutils library, which is an iterative fitting procedure that uses outlier rejection.

Adding quadratic color terms did not significantly improve the fits. Figure 4.2 plots the

relations in equations 4.1-4.5 as well as the linear fits for pointing W3-1-3. For the u-band

relation, we used only objects with us < 22 for the fit since u-band measurements in SDSS

are extremely noisy fainter than this limit, as is evident in the first panel of Figure 4.2. On

average this cut eliminated ∼ 57% of the objects from the sample used for fitting. The values

for a0 and a1 from the overall fits for each band are listed in Table 4.2. We estimated the

uncertainties in these parameters by bootstrapping and found for a0 the errors in the griz

bands are ∼ 2− 6× 10−3 and ∼ 1− 3× 10−2 in the u-band. For a1 the uncertainties in the

gri bands are ∼ 2− 6× 10−3 and ∼ 10−2 and the u and z bands.

If both the CFHT and SDSS photometry were on the AB filter system in their native pass-

bands, we would expect there to be no difference between the magnitudes measured in the two

systems for an object with the AB defining spectrum (Fν = 3.631×10−20 erg s−1Hz−1cm−2),

which should have the same magnitude in all bands and hence zero color. Therefore, if a0 is

non-zero, uc and us cannot both be on the AB system. Although SDSS magnitudes are not

quite AB, they are very close (Fukugita et al., 1996; Stoughton et al., 2002), and hence we

can use the a0 values to determine how the zero points of the CFHTLS-Wide photometry

must be changed to place them on a uniform AB system. In principle, we could perform this

fit over small ranges in right ascension and declination to determine the spatial variation in

85



−1 0 1 2 3 4 5 6
us−gs

−3

−2

−1

0

1

2

u
c−

u
s

−0.5 0.0 0.5 1.0 1.5 2.0
gs−rs

−0.4

−0.2

0.0

0.2

0.4

g
c−

g
s

−0.5 0.0 0.5 1.0 1.5 2.0
rs−is

−0.4

−0.2

0.0

0.2

0.4

r c
−

r s

−0.5 0.0 0.5 1.0 1.5
is−zs

−0.4

−0.2

0.0

0.2

0.4

i c
−

i s

−0.5 0.0 0.5 1.0 1.5
is−zs

−0.4

−0.2

0.0

0.2

0.4

z
c−

z
s

Figure 4.2 Plots of the difference between CFHTLS-Wide and SDSS magnitudes difference

as a function of SDSS color term for each ugriz band, utilizing objects identified as stars in

SDSS with 18 < r < 20 that overlap CFHTLS-Wide pointing W3-1-3. The red lines are the

linear fits whose coefficients are listed in Table 4.2. In the top left plot we see that there

are points that scatter along a second diagonal that does not follow the linear fit. This is

due to the large u-band measurement errors for objects faint in u in SDSS. We performed a

magnitude cut (us < 22) for objects used in the linear fit for this band so that the objects

in the second diagonal would not influence the fit, as described in §4.3.1.1. Blue points are

objects that were not used in the fit.
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CFHTLS zero point errors; however, in practice SDSS stars are too sparse to measure a1

robustly in small bins of position on the sky.

Instead, we adopt the strategy of using a fixed a1 value for each pointing and determining

variation only in a0. We use a pointing’s a1 value for a given band (specified by the above

relations) to calculate the quantities

∆u = (uc − us)− a1,u(us − gs) (4.6)

∆g = (gc − gs)− a1,g(gs − rs) (4.7)

∆r = (rc − rs)− a1,r(rs − is) (4.8)

∆i = (ic − is)− a1,i(is − zs) (4.9)

∆z = (zc − zs)− a1,z(is − zs) (4.10)

for each object. By the same argument given above, if mc and ms are AB magnitudes, its

offset ∆m should be zero everywhere (modulo measurement errors). For all bands except

the u-band, we construct a two dimensional map of ∆m in RA and dec for each pointing.

We expect ∆m to vary slowly across the field, and so we determine the map by fitting a 2-D

second order polynomial, i.e.

∆m(RA, dec) = b0,m+b1,m(RA)+b2,m(RA)2 +b3,m(RA)(dec)+b4,m(dec)+b5,m(dec)2. (4.11)

The b coefficients are calculated separately for each CFHTLS-Wide pointing and for each

passband (g/r/i/z). We can then obtain AB-calibrated CFHT photometry in a given band,

m′c, by setting m′c = mc − ∆m(RA, dec). For the u-band, we obtained better results by

calculating a mean ∆u in each pointing to obtain u′c = uc − 〈∆u〉, rather than fitting a 2-D

polynomial over RA and dec. This was most likely due to noise in the u-band measure-

ment affecting the fit. We have used the robust Hodges-Lehmann estimator of the mean to

calculate 〈∆u〉 in each pointing.

We also found it necessary to recalibrate the CFHTLS-Deep photometry in order for it

to have consistent zero points with the refined CFHTLS-Wide photometry. We performed

this calibration by applying the same techniques used for the Wide survey u-band data; i.e.,

we employ a constant zero point offset, m′c = mc − 〈∆m〉. We adopt this method to make it
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simple to transform back to the original CFHTLS-Deep photometry, facilitating the use of our

catalog to calibrate photo-z’s for all of the CFHTLS-Deep fields. We again used the robust

Hodges-Lehmann estimator of the mean to calculate 〈∆m〉. For each band the correction

is 〈∆u〉=-0.01941, 〈∆g〉=0.07374, 〈∆r〉= 0.03056, 〈∆i〉=0.04441, and 〈∆z〉=0.03282. The

values for a0 and a1 (Equations 4.1-4.5) calculated for CFHTLS-Deep photometry are listed

in Table 4.2.

These corrections have been applied to the CFHTLS-Wide and Deep ugriz photometry

for all objects in this catalog. Table 4.3 shows the improvement in the zero-point offset

estimate for each pointing by showing the median and standard deviation of this offset

amongst all SDSS reference stars before and after this calibration, and Figure 4.3 shows the

distribution of these offsets for all ugriz bands in pointing W3-1-3 both before and after

the calibration. All standard deviations quoted in the table are calculated using the robust

estimator described in §4.2. Median offsets become negligible after correction; zero point

errors that in some cases approached 0.2 mag are . 0.01 after correction. The standard

deviation is dominated by random uncertainties, but still is reduced in all but one case,

indicating that our spatially-varying zero point correction has improved the match between

CFHTLS-Wide and SDSS photometry compared to a uniform offset.

The a1 coefficients calculated from the linear fits in Equations 4.1-4.5 can also be used

to transform between the CFHTLS and SDSS photometry systems. For example, due to

how we have defined the zero point offset for our new calibrated CFHTLS photometry,

the transformation for the u-band is defined as u′c = us + 〈a1,u〉(us − gs), where we have

calculated 〈a1,u〉 from the average a1,u values over all seven CFHTLS-Wide pointings and

the single CFHTLS-Deep pointing. The color terms used in the transformations for all other

bands can be determined from Equations 4.1-4.5, and the values of 〈a1〉 for each band are

listed in Table 4.2. This transformation can be applied to bring SDSS photometry into the

same filter system as CFHTLS. In addition, solving for the SDSS magnitude in the above

equation allows for the transformation of the CFHTLS photometry from this catalog into

the same system as SDSS. Either transformation can bring the entire catalog into the same

ugriz system for photo-z tests.
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Figure 4.3 The distributions of the zero-point offsets for the CFHTLS-Wide photometry

in pointing W3-1-3 relative to SDSS DR9 (∆m in equations 4.6-4.10) for the bright stars

(18 < r < 20) in each band before and after the improved calibration. After the corrections

to the ugriz photometry, the systematic offsets in each band are removed. This improvement

is shown quantitatively for all pointings in Table 4.3.
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4.3.1.2 Predicting photometry of DEEP pointing 14 Due to the inferior photom-

etry in DEEP2 pointing 14, we used the CFHTLS-Wide ugriz photometry for objects in

pointings 11 and 12 to predict the BRI photometry in DEEP pointing 14. To determine the

transformation between the two systems, we chose sources identified as stars in the DEEP2

catalog with 18.2 < R < 21. This range was selected in order to obtain a sample of bright

stars which are also above the saturation limit of the DEEP2 survey.

The BRI photometry in the DEEP2 catalogs have been corrected for Galactic dust

extinction (Schlegel et al., 1998). However in the CFHTLS-Wide catalog, magnitudes have

not been adjusted for this. Hence, before determining color transformations, we removed the

extinction correction from the DEEP2 BRI photometry, using the same Schlegel et al. (1998)

reddening estimates (SFD EBV) and R values that were employed to make the original

DEEP2 catalogs.

We matched these sources to CFHTLS-Wide objects again using a 0.75′′ search radius,

and calculated the parameters of the relations

B − g = c0,B + c1,B(g − r) + c2,B(g − r)2 (4.12)

R− r = c0,R + c1,R(r − i) + c2,R(r − i)2 (4.13)

I − i = c0,I + c1,I(i− z) + c2,I(i− z)2. (4.14)

Figure 4.4 plots the relations in equations 4.12-4.14 as well as the quadratic fit for pointings

11 and 12. We then use these parameters to calculate the predicted photometry for all objects

in DEEP pointing 14, including sources identified as galaxies. By plotting the residuals of all

objects as a function of r-band half light radius as determined in the CFHTLS-Wide catalog,

we found there is a contribution from the source size. We represented this contribution with

a linear fit to these residuals, which gives the final predicted photometry as

B = g + c0,B + c1,B(g − r) + c2,B(g − r)2 + d0,B + d1,B(Rr) (4.15)

R = r + c0,R + c1,R(r − i) + c2,R(r − i)2 + d0,R + d1,R(Rr) (4.16)

I = i+ c0,I + c1,I(i− z) + c2,I(i− z)2 + d0,I + d1,I(Rr) (4.17)

where Rr is the r-band half light radius (designated as r flux radius in the catalog). Table

4.4 lists all of these coefficients for pointings 11-13 as well as the coefficients calculated from
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combining pointings 11 and 12. Errors in this predicted photometry were calculated using

simple propagation of errors using the errors in g, r, i, and z from CFHTLS-Wide. In order

to maintain consistency with DEEP2 photometry in other fields, we then apply a correction

for extinction in the same manner as for the other DEEP2 magnitudes.

Figure 4.5 shows color-color plots for the bright stars in pointings 11 and 14 that were used

to determine the griz to BRI transformation described above, both before and after applying

the transformation. We see that the stellar locus in pointing 11 is relatively unaffected by

the transformation compared to pointing 14. We also see the improved calibration of the

pointing 14 photometry in that the locus in 14 is tighter and more consistent with the

locus in 11 after the transformation. We note that although we applied the transformation

to obtain predicted BRI photometry in pointing 11 for this plot, in the final catalog the

transformation is only applied to pointing 14.

4.3.2 DEEP2 Fields 2, 3 and 4

We are also providing catalogs with improved astrometry (cf. §4.2) and ugriz photometry

added for objects from DEEP2 Field 2 (pointings 21 & 22), Field 3 (pointings 31,32, &

33) and DEEP Field 4 (pointings 41, 42, & 43). In each case, the BRI photometry is

taken directly from the DEEP2 catalogs described in §4.1, while the ugriz photometry is

determined from matching sources in SDSS, using the procedure described in §4.2. In Field

2 we use SDSS photometry from the DR9 data release. Since Fields 3 and 4 overlap with

Stripe 82, we use the deeper photometry from the Stripe82 database (cf. §4.1).

4.4 DATA TABLES

Below we describe the columns that are included for each object in our new FITS BINTABLE1

format files, as well as a brief description of each quantity. We have created one set of new

catalogs that are parallel in content to each of the existing pcat photometric catalogs, as

1Part of the IDLUTILS package available at http://www.astro.princeton.edu/~schlegel/code.html.
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Figure 4.4 Plots of the difference between DEEP2 and CFHTLS-Wide magnitudes as a

function of CFHTLS color for each BRI band, using objects identified as stars in DEEP2

pointings 11 and 12 with 18.2 < R < 21. The red lines are the quadratic fits whose

coefficients are listed in Table 4.4.
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Figure 4.5 Color-color plots of the stars with 18.2 < R < 21 that were used to determine

the ugriz (CFHTLS-Wide) to BRI (DEEP2) transformation described in §4.3.1.2. The

top panel shows the stellar locus for pointing 11 and the bottom for pointing 14, and the

dashed lines are the same in each plot. The gray points are the colors straight from the public

DEEP2 catalogs, and the red points are the colors after the transformation. The stellar locus

in pointing 11 is relatively unaffected by the transformation compared to pointing 14. The

improved calibration of the pointing 14 photometry is apparent in the greater consistency

of the stellar locus for pointing 14 after the transformation to that from pointing 11 (most

easily visible by comparing each to the dashed lines).
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well as a single new catalog that parallels the zcat redshift catalog, and hence contains only

objects for which DEEP2 obtained a spectrum. All of these columns appear in both cata-

logs. Further details of those columns that have been taken directly from other catalogs can

be found in Newman et al. (2013b), Gwyn (2012), Abazajian et al. (2009), and Ahn et al.

(2012). For each object, any column where data is not available is given a value of -99. The

object properties included in the catalog are:

• OBJNO - a unique 8-digit object identification number, taken from the pcat photometric

catalog. The first digit of OBJNO indicates the DEEP2 field an object is drawn from,

and the second object indicates pointing number (e.g., objects in DEEP2 pointing 14

will have object numbers beginning with 14).

• RADEEP, decDEEP - Right ascension and declination in degrees from the DEEP2 catalogs,

including the astrometric correction described in §4.2. These positions will therefore differ

from those in the original pcat catalogs.

• RASDSS, decSDSS - Right ascension and declination in degrees from either CFHTLS-Wide

(DEEP2 Field 1) or SDSS (DEEP2 Fields 2-4) for all pcat objects that have a match in

either catalog. The CFHTLS-Wide astrometry in Field 1 has been corrected as described

in §4.2.

• BESTB, BESTR, BESTI - For all pointings except for pointing 14 in Field 1, these are

CFHT 12K BRI magnitudes taken directly from the DEEP2 pcat catalogs. Photometry

in pointing 14 is predicted using the methods described in §4.3.1.2 for objects that have

a match with CFHTLS-Wide. Objects without a match are assigned no BRI values in

pointing 14.

• BESTBERR, BESTRERR, BESTIERR - errors in the BRI photometry taken directly

from the DEEP2 catalogs for all pointings except for pointing 14 in Field 1. Those error

estimates include sky noise only. Errors for pointing 14 were calculated using simple

propagation of errors from the errors in CFHTLS-Wide photometry.

• U, G, R, I, Z - ugriz magnitudes taken either from CFHTLS-Wide (DEEP2 Field 1) or

SDSS (DEEP2 Fields 2-4) for all pcat objects that have a match in either catalog. The

CFHTLS photometry used was the Kron-like elliptical aperture magnitude designated as

MAG AUTO in the unified CFHTLS catalogs. In our new zcat catalog, if photometry is
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available for an object in Field 1 from the CFHTLS-Deep survey, that is used; otherwise

the magnitudes from the CFHTLS-Wide survey are used. In our new pcat catalogs,

CFHTLS-Wide is used for all photometry. SDSS magnitudes in Fields 2-4 are the model

magnitudes taken from either DR9 (Field 2) or the coadded Stripe 82 database (Fields

3 & 4).

• UERR, GERR, RERR, IERR, ZERR - errors in the ugriz magnitudes taken directly

from either CFHTLS-Wide or Deep (for DEEP2 Field 1), or from SDSS (DEEP2 Fields

2-4), for all pcat objects that have a match in either catalog.

• PGAL - probability of the object being a galaxy based on the R-band image and BRI

color. For the calculations in this chapter, any object with pgal < 0.2 was treated as a

star, following the standard in Newman et al. (2013b).

• RG - Gaussian radius of a circular 2-d Gaussian fit to the R-band image, in units of

0.207′′CFHT 12K pixels.

• BADFLAG - quantity describing the quality of the BRI photometry measurement. A

badflag value of zero designates a measurement with no known systematic issues (e.g.

saturation, overlapping with bleed trails, etc.) in any bands (http://deep.berkeley.

edu/DR1/photo.primer.html).

• ZHELIO - heliocentric reference-frame redshift taken from the zcat catalogs.

• ZHELIO ERR - error in the redshift measurement taken from the zcat catalogs.

• ZQUALITY - redshift quality code, Q, where Q = 3 or 4 indicates a reliable galaxy

redshifts, and Q = −1 indicates a reliable star identification.

• SFD EBV - Galactic reddening E(B − V ) from Schlegel et al. (1998). DEEP2 BRI

photometry has been corrected for this amount of reddening.

• SOURCE - string describing the source of the photometry for each object, where the

first catalog listed is the source of the BRI photometry and the second is the source

of the ugriz photometry. For DEEP2 pointings 11-13 the the source tag is either

DEEP-CFHTLSW or DEEP-CFHTLSD (Wide or Deep), and for pointing 14 it is just

CFHTLSW since the BRI is predicted from CFHTLS-Wide. In DEEP2 Field 2 the

source tag is DEEP-SDSS and for Fields 3 and 4 the source tag is DEEP-SDSS82, des-
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ignating that the ugriz photometry comes from the deeper Stripe82 database. For all

objects lacking a match in other catalogs the source tag is just DEEP.

Table 5 shows examples of the catalog data for nine objects in pointing 11; three objects with

no matches between DEEP2 and CFHTLS, three objects with matches but no redshifts, and

three objects with matches and redshifts.

4.5 CONCLUSION

In this chapter we have presented the details of improved photometric catalogs for the DEEP2

Galaxy Redshift Survey constructed by combining data from three different projects: DEEP2

itself, the CFHT Legacy Survey, and SDSS. To further this purpose, we have used positions

from SDSS to improve the astrometry for both DEEP2 and CFHTLS-Wide catalogs, and

photometry for SDSS stars to improve the magnitude zero points in the CFHTLS-Wide data.

We then employed data from CFHTLS and SDSS to assign ugriz photometry to DEEP2

objects by matching sky positions between each catalog. In DEEP2 Field 1 we matched to

the CFHTLS-Wide or Deep, in Field 2 we matched to SDSS DR9, and in Fields 3 and 4

we used the deeper SDSS Stripe 82 database. For objects in DEEP2 pointing 14 that had

a counterpart in CFHTLS-Wide, we replaced the poorer-than-standard BRI photometry

with predicted values calculated using the transformations between the BRI and ugriz

photometry measured in DEEP2 pointings 11 and 12.

In each of the four pointings of DEEP2 Field 1 there are an average of ∼ 40, 000 matches

with CFHTLS. Figure 4.6 shows the relations between various photometric quantities for

bright stars and galaxies (18 < R < 21) that have matches between DEEP2 and CFHTLS

in pointing 11. For pointing 14 where we have predicted the BRI photometry from the

CFHTLS photometry, the equivalent figure looks qualitatively similar with the exception of

any plot that relates DEEP2 color (i.e. B − R or R − I) to the CFHTLS colors used to

calculate the transformations in equations 4.15-4.17. These relations look necessarily tighter

since the BRI photometry was calculated using a fit to these color relations. The r vs R

relation looks significantly tighter as well for similar reasons. The total number of objects
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Figure 4.6 Plots of the relations between various photometric quantities for bright stars (red)

and galaxies (black) with 18 < R < 21 that have photometry in both DEEP2 pointing 11

and in CFHTLS-Wide. Histograms of each quantity are shown on the diagonal.
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over all four pointings that have both ugriz photometry and spectroscopic measurements is

16,584; 11,897 of those have high quality redshift measurements (zquality ≥ 3).

In the two pointings of DEEP2 Field 2 the average number of matches is only ∼ 7, 700

per CFHT 12K pointing, due to the shallowness of the SDSS DR9 dataset which overlaps

the field. The total number of objects with both ugriz photometry and redshifts in Field 2

is 968, with 751 having high quality redshifts. The three pointings of Field 3, where deeper

Stripe 82 photometry is available, average ∼ 19, 600 matches between the pcat catalogs and

SDSS. The total number of objects in Field 3 with ugriz photometry and redshifts is 9691,

with 6947 having high quality redshift measurements. Field 4 also overlaps SDSS Stripe 82;

it includes three CFHT 12K pointings with an average of ∼ 22, 200 matches each, yielding

9445 objects with ugriz photometry and redshifts, 6987 of which have secure redshifts.

For this catalog we have paired the spectroscopic redshift measurements from the DEEP2

Survey with the ugriz photometry of CFHTLS an SDSS, making this catalog a valuable

resource for the future as an excellent testbed for photo-z studies. These catalogs would

be useful to future surveys such as LSST and DES for testing photo-z algorithms as well

as the calibration of photo-z’s. There are few public catalogs available with this number of

objects with full ugriz photometry as well as quality redshifts to this depth (z ∼ 1.4). As a

comparison, the zCOSMOS data release DR2 is one of the larger current datasets with these

characteristics, and it contains ∼ 10, 000 objects with ugriz photometry out to z ∼ 0.8,

∼6000 of which have secure redshifts (Lilly et al., 2009). We caution readers that the SDSS

and CFHTLS ugriz passbands differ, so the combined redshift and photometric catalog

presented here should not be treated as a uniform dataset; however, the SOURCE column

can be used to divide into separate catalogs with consistent photometric passbands, which

can be used separately to test photometric redshift methods. Alternatively, the CFHTLS or

SDSS photometry can be transformed as described in §4.3.1.1, bringing the entire catalog

into the same ugriz system.

The extended DEEP2 catalogs described in this paper are publicly available and can be

downloaded at http://deep.ps.uci.edu/DR4/photo.extended.html.
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Pointing
RASDSS − RADEEP (′′) decSDSS − decDEEP (′′)
median σ median σ

11
−6.20×10-1 3.01×10-1 −6.51×10-2 1.89×10-1

− 8 .17×10 -4 1 .83×10 -1 −6 .68×10 -3 1 .07×10 -1

12
−6.42×10-1 3.24×10-1 −2.46×10-1 2.44×10-1

−3 .77×10 -3 1 .95×10 -1 −3 .47×10 -3 1 .14×10 -1

13
−7.04×10-1 3.55×10-1 −4.02×10-1 1.80×10-1

−5 .41×10 -3 1 .75×10 -1 −5 .19×10 -3 1 .02×10 -1

14
−4.32×10-1 3.43×10-1 −2.70×10-1 1.88×10-1

−1 .86×10 -3 1 .87×10 -1 −2 .60×10 -3 1 .03×10 -1

21
−3.18×10-1 1.39×10-1 −1.97×10-1 9.75×10-2

3 .27×10 -5 9 .38×10 -2 −1 .08×10 -3 7 .67×10 -2

22
−2.65×10-1 1.20×10-1 −1.82×10-1 9.73×10-2

−2 .84×10 -3 9 .04×10 -2 −2 .01×10 -4 7 .29×10 -2

31
−4.61×10-2 1.86×10-1 −3.54×10-1 1.58×10-1

−1 .08×10 -4 1 .15×10 -1 −5 .98×10 -4 1 .03×10 -1

32
−8.83×10-2 2.14×10-1 −3.14×10-1 1.86×10-1

1 .30×10 -3 1 .16×10 -1 −9 .10×10 -4 1 .07×10 -1

33
8.48×10-2 1.87×10-1 −5.67×10-1 1.53×10-1

−5 .99×10 -4 1 .13×10 -1 −4 .95×10 -4 9 .71×10 -2

41
1.27×10-1 1.71×10-1 −3.37×10-1 1.79×10-1

5 .24×10 -4 1 .07×10 -1 −4 .70×10 -4 1 .02×10 -1

42
1.02×10-1 1.70×10-1 −2.92×10-1 1.66×10-1

−3 .72×10 -4 1 .09×10 -1 −3 .69×10 -5 1 .02×10 -1

43
3.15×10-2 1.64×10-1 −3.34×10-1 1.72×10-1

1 .21×10 -3 1 .07×10 -1 −6 .59×10 -4 1 .04×10 -1

Pointing
RASDSS − RACFHT (′′) decSDSS − decCFHT (′′)
median σ median σ

11
1.04×10-3 2.10×10-1 1.42×10-3 1.30×10-1

3 .40×10 -4 1 .99×10 -1 −4 .17×10 -3 1 .16×10 -1

12
−5.57×10-2 2.06×10-1 −2.65×10-2 1.25×10-1

4 .83×10 -4 1 .95×10 -1 −3 .03×10 -3 1 .16×10 -1

13
−2.52×10-2 2.13×10-1 −1.11×10-2 1.20×10-1

5 .21×10 -4 1 .88×10 -1 2 .68×10 -3 1 .12×10 -1

14
3.69×10-2 2.04×10-1 −1.12×10-2 1.17×10-1

−1 .57×10 -3 1 .78×10 -1 1 .05×10 -3 1 .03×10 -1

Table 4.1 This table lists the median and RMS variation in RASDSS − RA and decSDSS −
dec for both CFHTLS-Wide and DEEP2, both before (regular text) and after (italics) the

astrometric correction described in §4.2. The RMS was calculated using a robust estimator

of the standard deviation described in §4.3.1.1. There is significant improvement in both

quantities for all pointings.
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Pointing
u band g band r band i band z band

a0 a1 a0 a1 a0 a1 a0 a1 a0 a1
W3–1–2 0.0195 -0.2309 0.0797 -0.1691 0.0380 -0.0106 0.0627 -0.1538 0.0507 0.0427
W3–1–3 -0.0394 -0.2043 0.0753 -0.1770 0.0791 -0.0210 0.0326 -0.1452 0.0111 0.0985
W3+0–1 -0.0024 -0.2010 0.1247 -0.1877 0.1171 -0.0379 0.0451 -0.1422 0.0522 0.0630
W3+0–2 -0.0152 -0.2334 0.0594 -0.1673 0.0891 -0.0221 0.0421 -0.1480 0.0491 0.0619
W3+0–3 -0.0116 -0.2320 0.0777 -0.1687 0.0516 -0.0107 0.0467 -0.1611 0.0356 0.0832
W3+1–1 0.0830 -0.2149 0.0889 -0.1820 0.0752 -0.0193 0.0378 -0.1394 0.0925 0.0677
W3+1–2 0.0673 -0.2198 0.0666 -0.1756 0.0613 -0.0276 0.0390 -0.1494 0.0493 0.0730

D3 -0.0127 -0.2247 0.0739 -0.1695 0.0325 -0.0194 0.0470 -0.1495 0.0320 0.0893

〈a1〉 -0.2201 -0.1746 -0.0211 -0.1486 0.0724

Table 4.2 Coefficients describing the linear relation between the magnitude difference in

CFHTLS and SDSS (i.e. mc − ms) and the relevant SDSS color term for each CFHTLS-

Wide pointing overlapping DEEP2, as well as for the CFHTLS-Deep pointing in that region.

These were used in the CFHTLS photometric calibrations described in §4.3.1.1. The average

value of a1 is also listed for each band, which can be used to transform between the CFHTLS

and SDSS photometric systems as described in §4.3.1.1.
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5.0 CONCLUSION

Over the next decade and beyond there will be a variety of large cosmological surveys that

will be used to gain insight into the structure and history of our Universe, and in doing so

better understand the nature of dark energy. Many of these surveys will be obtaining data for

an extremely large number of objects on the sky via wide-area imaging with unprecedented

sky coverage. One of the key challenges of these surveys is to determine the ever-important

redshift information for such an enormous number of objects, in some cases billions of objects.

Current methods of obtaining accurate redshifts such as using spectroscopy are just not

feasible for such enormous datasets, and alternatives must be explored.

Measuring galaxy redshifts using broadband imaging through only a few filters, i.e. pho-

tometric redshifts, is a promising avenue of study, although there are inherent limitations to

this method as it relies on determining the location in wavelength of broad spectral features

rather than narrow absorption or emission lines. This, among other things, makes them

less understood than spectroscopic redshifts. Photometric redshifts are generally calculated

using various photo-z algorithms, and understanding how these algorithms assign redshifts,

as well as understanding the underlying true redshift distribution of the objects will be very

important for future dark energy surveys.

This thesis presented a test of the cross-correlation technique for calibrating photometric

redshifts which uses the measured spatial clustering on the sky of a photometric sample with

a spectroscopic sample that has secure and accurate redshifts, as a function of redshift. These

results have shown that the cross-correlation technique can be used to accurately reconstruct

the true redshift distribution of a photometric sample that only has imaging information for

each object. This technique can be used to measure the true redshift distribution of a large

number of galaxies, enabling significant improvement in cosmological parameter measure-
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ments. It also included a discussion of the contribution of weak gravitational lensing to

the cross-correlation signal and how its effects can be mitigated. In addition, it has shown

how similar clustering measurements can be used to constrain the low-z interloper fraction

in high redshift candidate samples. And finally it described a new catalog that combines

spectroscopic redshifts and deep photometry to be used as a testbed for future photo-z

studies.

Combining information from both spectroscopic and photometric surveys will be a very

powerful tool for future cosmological experiments, and there is already considerable work

being done to test and refine the cross-correlation technique, including tests on real data

(Schmidt et al., 2013; McQuinn & White, 2013; Ménard et al., 2013; de Putter et al., 2013).

In addition to tests with data from observation, another possibility will be to test these

techniques using larger, more realistic simulations, as this will more closely mimic the real

datasets of future experiments. The cross-correlation technique for constraining the inter-

loper fraction may also be applied to new surveys of the high-redshift universe such as the

CANDELS Multi-Cycle Treasury Program on the Hubble Space Telescope (Grogin et al.,

2011). Systematic uncertainties in the photometric redshift estimates for galaxies are ex-

pected to be a dominant source of error for many future cosmological measurements, and

characterizing these uncertainties will be extremely important moving forward in our study

of the Universe.
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APPENDIX A

CROSS-CORRELATION DERIVATION

For the derivation of equation 2.3 we begin with the integral relating the angular cross-

correlation of a narrow spectroscopic z-bin with the photometric sample, wsp(θ, z), to the

real-space cross-correlation, ξsp(r(z, z
′), z), and the redshift distribution of the photometric

sample, φp(z
′). The quantity wsp(θ, z) is a measure of the excess probability (above random)

of finding a galaxy at a separation θ on the sky from another galaxy, and ξsp(r(z, z
′), z) is the

analogous quantity except for real-space separations, r(z, z′). These are described in more

detail in section 2.1.2. In the following, z is the redshift of the spectroscopic objects and z′

is the redshift of a photometric object. To determine the angular cross-correlation between

the two samples we convolve the real-space cross-correlation with the redshift distribution

of the photometric sample and integrate over all possible redshifts of photometric objects,

z′, to obtain

wsp(θ, z) =

∫ ∞
0

ξsp(r(z, z
′), z)φp(z

′)dz′. (A.1)

We assume a power law for the real-space cross-correlation, i.e. ξsp = (r/r0)−γ with

r = (r2
p + π2)1/2, where rp and π are the line-of-sight and transverse separation between

two objects as defined in equations 2.5 and 2.6. Since we are cross-correlating a narrow

spectroscopic bin with the photometric sample we make the assumption that φp(z
′) does not

change significantly over this range and can pull it out in front of the integral. To simplify

the integral we perform a change of variable to write it in terms of the line-of-sight separation
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using equation 2.6 to relate π to z′. Substituting rp = D(z)θ (equation 2.5) we obtain

wsp(θ, z) = φp(z)

∫ +∞

−∞

(
((D(z)θ)2 + π2)

1/2

r0,sp

)−γsp
1

dl/dz
dπ, (A.2)

where r0,sp and γsp are the power law parameters for the cross-correlation, D(z) is the angular

size distance and l(z) is the comoving distance to redshift z. The quantity dl/dz will also

not vary significantly over the range which the cross-correlation is non-negligible so it can

be pulled out in front of the integral as well. Evaluating this integral gives

wsp(θ, z) =
φp(z)r

γsp
0,sp

dl/dz

∫ +∞

−∞

(
(D(z)θ)2 + π2

)− γsp
2 dπ (A.3)

=
φp(z)r

γsp
0,spH(γsp)D(z)1−γspθ1−γsp

dl/dz
, (A.4)

where H(γ) = Γ(1/2)Γ((γ − 1)/2)/Γ(γ/2) and Γ(x) is the standard Gamma function. This

gives the result shown in equation 2.3 relating the angular cross-correlation to the redshift

distribution of the photometric sample.
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APPENDIX B

POWERFIT CODE

In the course of the analysis described in chapter 2 I developed a short IDL function designed

to fit for the parameters of a power-law plus constant model using full covariance informa-

tion, with or without conditioning of the covariance matrix. Given arrays containing the

independent variable values x, the dependent variable values y, and the covariance matrix of

the y values, C, it determines the best-fit parameters for a function of the form y = axb + c

via χ2 minimization (cf. Equation 2.14). It outputs the best-fit parameter values in the form

of a three-element array, i.e. [a, b, c]. POWERFIT calculates the fit parameters as described

in §2.2.1. If the exponent, b, is fixed, the best-fit values of a and c are calculated analytically

using standard linear regression formulae. To fit for all three parameters simultaneously,

POWERFIT instead uses the AMOEBA function (distributed with IDL, and based on the

routine amoeba described in Numerical Recipes in C (Press et al., 1992)) to search for the

exponent value that minimizes the χ2 of the fit.

POWERFIT optionally allows the user to fix either the exponent value, b, the constant,

c, or both, at specified values when calculating the fit. It is also possible to condition

the covariance matrix using either of the methods described in §2.2.2. For ridge regression

conditioning, the user must provide a value for f , the fraction of the median of the diagonal

elements of the covariance matrix to add to the diagonal elements before inverting. For

SVD conditioning, the required input is the singular value threshold; any singular values

below that threshold, as well as their inverses, are set equal to zero before calculating the

inversion. The code is suitable for any application where a power law or power law plus
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constant model is fit to data with a known covariance matrix; it can be downloaded at

http://www.phyast.pitt.edu/~janewman/powerfit.
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