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PARTITIONED METHODS FOR COUPLED FLUID FLOW AND

TURBULENCE FLOW PROBLEMS

Xin Xiong, PhD

University of Pittsburgh, 2014

Numerical simulation of different physical processes in different regions is one of the wide

variety of real world applications. Many important applications such as coupled surface water

groundwater flows require the accurate solution of multi-domain, multi-physics coupling

of unobstructed flows with filtration or porous media flows. There are large advantages

in efficiency, storage, accuracy and programmer effort in using partitioned methods build

from components optimized for the individual sub-processes. On the other hand, the multi-

domain or multi-physical process describes different natures of the physical processes of each

subproblem. They may require different meshes, time steps and methods. There is a natural

desire to uncouple and solve such systems by solving each sub physics problem, to reduce the

technical complexity and allow the use of optimized, legacy sub-problems’ codes in fluid flow.

Stabilization using filters is intended to model and extract the energy lost to resolved scales

due to nonlinearity breaking down resolved scales to unresolved scales. This process is highly

nonlinear. Including a particular form of the nonlinear filter allows for easy incorporation

of more knowledge into the filter process and its computational complexity is comparable to

many of the current models which use linear filters to select the eddies for damping.

The objective of the first part of this work is the development, analysis and validation

of new partitioned algorithms for some coupled flow models, addressing some of the above

problems. Particularly, this thesis studies: i) long time stability of four methods for splitting

the evolutionary Stokes-Darcy problem into Stokes and Darcy sub problems, ii) analysis of

a multi-rate splitting method for uncoupling evolutionary groundwater-surface water flows,
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and iii) a connection between filter stabilization and eddy viscosity models. For each problem,

we give comprehensive analysis of stability and derive optimal error estimates of our proposed

methods. Numerical experiments are performed to verify the theoretical results.
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1.0 INTRODUCTION

The flow of liquids occurs in many processes in nature and plays an important role in science

and industry. Obtaining accurate, efficient and reliable prediction of quantities in fluid flows

is crucial to understand and predict the related real-world phenomena. Many fluid flows

in engineering and technology are solved by complex codes or coupled to other physical

effects. The ability of fast refining these models when understanding is improved and using

the legacy and best codes for subprocesses poses an important modeling problem. This

thesis involves the development and testing of new numerical methods which help address

the above difficulty in the modeling and simulation of some complex flows. In particular, we

have studied

• partitioned methods for groundwater -surface water models.

• extension of the unified time step partitioned method to multi-rate time step method for

groundwater -surface water models.

• nonlinear filtered projection method for higher reynolds number flows.

The following sections will describe each of the topics in details.

1.1 PARTITIONED TIME STEPPING METHODS FOR THE

EVOLUTIONARY STOKES-DARCY PROBLEMS

Groundwater, forming two-thirds of the world’s fresh water, is vital to human activities.

One serious global problem nowadays is groundwater contamination, which occurs when

man-made pollutants are dissolved in lakes and rivers and get into the groundwater, making
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it unsafe and unfit for human use. To predict and control the spread of such contamination

requires the accurate solution of coupling of groundwater flows with surface water flows

(the Stokes-Darcy problem). The essential problems of estimation of the propagation of

pollutants into groundwater are that (i) the different physical processes suggest that codes

optimized for each sub-process need to be used for solution of the coupled problem, (ii) the

large domains plus the need to compute for several turn-over times for reliable statistics

require calculations over long time intervals and (iii) values of some system parameters,

e.g., hydraulic conductivity and specific storage, are frequently very small. To address these

issues, we study the stability and errors over long time intervals of uncoupled methods for

the fully time dependent Stokes-Darcy problem. We are particularly interested in analyzing

and comparing the performance of the studied methods for small parameters.

In this work, we propose several implicit-explicit based and splitting based partitioned

methods for uncoupling the evolutionary Stokes-Darcy problem. The Stokes-Darcy equation

is as follows:

Let the two domains be Ωf ,Ωp lie across an interface I from each other. The fluid velocity

and porous media piezometric head (related to the Darcy pressure) satisfy

ρut − µ4u = ff , and ∇ · u = 0, in Ωf , (1.1)

S0φt −∇ · (K∇φ) = fp, in Ωp,

φ(x, 0) = φ0, in Ωp and u(x, 0) = u0, in Ωf ,

φ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I,

+ coupling conditions across I.

Let n̂f/p denote the indicated, outward pointing, unit normal vector on I. The coupling

conditions are conservation of mass and balance of forces on I

u · n̂f −K∇φ · n̂p = 0, on I,

p− µ n̂f · ∇u · n̂f = ρgφ on I.

The last condition needed is the Beavers-Joseph-Saffman (-Jones) condition

−µ ∇u · n̂f = α

√
µρg

τ̂i · K · τ̂i
u · τ̂i ≡ χu · τ̂i, on I for any τ̂i tangent vector on I,

2



General experience with partitioned methods suggests that some price is inevitably paid.

Our proposed methods with explicit coupling terms inherit restrictions on time step size ∆t

∆t ≤ C∗p min {k, S0} (1.2)

where S0 is specific storage, k is hydraulic conductivity and C∗p is a generic positive constant

independent of mesh size, time step and final time. The values of S0 and k are frequently

very small, see [7], [33], and in those cases, the dependence indicated in (1.2) becomes

too pessimistic. To overcome this problem, we propose and analyze four novel uncoupling

methods for Stokes-Darcy equations, which have stronger stability properties, using ideas

from splitting methods. These methods include ones stable uniformly in S0 for moderate k

and uniformly in k for moderate S0. They are thus good options when one of the parameters

is small.

The literature on numerical analysis of methods for the Stokes-Darcy coupled problem

has grown extensively since [30], [67]. See [35] for a recent survey and [8], [18], [95], [97], [101],

[114] and [67] for theory of the continuum model. There is less work on the fully evolutionary

Stokes-Darcy problem. One approach is monolithic discretization by an implicit method

followed by iterative solution of the non-symmetric system where subregion uncoupling is

attained by using a domain decomposition preconditioner; see, e.g., [18], [19], [82], [87],

[15], [28], [79], [81], [80], [60], [85], [112]. Partitioned methods allow parallel, non-iterative

uncoupling into one (SPD) Stokes and one (SPD) Darcy system per time step. The first

such partitioned method was studied in 2010 by Mu and Zhu [88]. This has been followed

by an asynchronous (allow different time steps in the two subregions) partitioned method

in [105] and higher order partitioned methods in [20], [69]. In most of these works, stability

and convergence were studied over bounded time intervals 0 ≤ t ≤ T <∞ and the estimates

included eαT multipliers.

Understanding of the equilibrium Stokes-Darcy problem is now advanced, e.g., [57], [67],

[29], [97], [95]. For the evolutionary problem, the monolithic approach (discretize the prob-

lem implicitly, assemble the fully coupled system at each time step, solve by an iterative

method where uncoupling is attained by using a domain decomposition preconditioner) is an

important complement to partitioned methods; it is developed in, e.g., [29], [20], [28], [32],
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[31], [51], [14], [87], [60], [85], [87], and [112]. Partitioned methods require neither access to

a fully coupled system nor iteration at each time step, e.g., [69], [68], [104], [88] (the first

paper on partitioned methods for Stokes-Darcy), and [18], [19] (a interesting new approach

and the first papers studying the Beavers-Joseph interface coupling). There is a very strong

connection between application-specific partitioned methods and more general IMEX and

splitting methods; see, e.g., [113], [110], [3], [27], [37], [53], [113], [75], [76], [116]. The idea

used in CNsplit below to compute in parallel two approximations and then average occurs

in the Dyakunov splitting method, e.g., [75], [76], [116], [50].

1.2 EXTENSION OF THE UNIFIED TIME STEP PARTITIONED

METHOD TO MULTI-RATE TIME STEP METHOD FOR

GROUNDWATER -SURFACE WATER MODELS

There are a rich number of studies on the mathematical analysis, numerical methods and

applications for the Stokes-Darcy model, see, e.g., [2], [28], [30], [32], [44], [57], [58], [67], [85],

[100]. The mathematical model consists of the evolutionary Stokes equations in the fluid

region coupled with the evolutionary Darcy model in the porous medium, [18], [25], [88].

Important features of estimating transport of pollution between surface water and ground

water include the different physical processes and models in the two regions, the availability

of optimized codes for subdomain physics and the wide difference in the rates at which the

flows progress in the unobstructed, free flowing region and in the porous media. With these

issues in mind, we herein present, analyze and test an asynchronous or multi-rate(allowing

different time steps in the sub regions), partitioned method for the fully evolutionary Stokes-

Darcy problem. The essential features of the method we present in this work are that it allows

different time steps in the fluid region and the porous region, requires only one, uncoupled

Stokes solve per small time step and one Darcy solve per large time step without reference

to the globally coupled problem and is stable over long time intervals.

Partitioned methods have great advantages for multi-physics, multi-domain problems,

e.g., [68], [70], [88], [104]. Splitting methods, one approach for partitioning, have been widely
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used in applications [55], [50]. For first steps in partitioned method for Stokes-Darcy, see

Mu and Zhu [88], extended to a multi-rate method in [105]. For the Stokes-Darcy problem,

typical velocities are greater in the fluid region than in the porous media region. Therefore,

there are significant advantages in accuracy and efficiency in using a small time step size

in the fluid region and a large time step size in the porous media region. However, both

partitioning and asynchronous time steps require interpolation of unknow values for the

solves and this manufacturing of required value can introduce instabilities.

Our work herein is motivated by the search for more partitioned methods, which can

accurately capture the features of the physical process while making it easy to calculate

numerically. The interface coupling conditions are conservation of mass across the inter-

face, balance of forces and the Beavers-Joseph-Saffman condition, [8], [57], [58], [97], [101].

More general application-oriented partitioned methods and more general IMEX and splitting

methods have been widely studied, see, e.g., [113], [110], [3], [27], [37], [53], [113], [75], [116].

In comparison with the multirate method in [105], the mehod herein starts from a Darcy

solve, from which an intermediate velocity in porous media is derived, and then has r Stokes

solves in sequence and ends with a Darcy solve at the following time level, while the multistep

method in [105] has a different sequence of Stokes and Darcy solves, resulting in different

conditions of stability and convergence.

1.2.1 Algorithm

To streamline notations, choose a uniform time step 4t in Ωf ,

P =
{

0 = t0, t1, t2, · · · , tN = T
}
, tj = j4t

The large time step in Ωp is given by a separate notations hereafter, 4s = r4t. Denote by

S = {0 = tm0 , tm1 , tm2 , · · · , tmM = T} ⊂ P ,

a subset satisfying tmk = rtk such that the positive constant r is fixed and Mr = N .

To streamline our notation further, we shall suppress the subscript ”h” and replace umh ,

φmh , pmh by um, φm, pm, respectively. For tm, tmk ∈ [0, T ], (um, φm, pm) will denote the
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discrete approximation to (u(tm), φ(tm), p(tm)). In practice only the data at time t0 would

be provided. One important feature of the algorithm given bellow is that (um, pm) can be

calculated for m = mk,mk + 1, · · · mk+1 − 1 in parallel with φmk+1 .

• Given umk , φmk , do one step with the large time step 4s to obtain φm
∗
k ∈ Hph, such that

∀ ψ ∈ Hph

gS0

(
φm
∗
k − φmk

4s
, ψ

)
+

1

2
ap
(
φm
∗
k , ψ
)

=
1

2
g
(
f
m∗k
2 , ψ

)
+

1

2
g

∫
Γ

ψumk · nf . (1.3)

• Obtaining φm
∗
k from the first step, do r step in fluid region with small time step4t = 4s/r

to find (um+1, pm+1) for m = mk,mk + 1, · · · ,mk+1 − 1, such that ∀ (v, q) ∈ (Hfh, Qh)

(
um+1 − um

4t
, v

)
+ af

(
um+1, v

)
+ b
(
v, pm+1

)
=

(
fm+1

1 , v
)
− g

∫
Γ

φm
∗
kv · nf ,

b
(
um+1, q

)
= 0. (1.4)

• With φm
∗
k , umk+1 obtained from Step 1 and Step 2, do one step in porous region with the

large step 4s to find φmk+1 ∈ Hph, such that ∀ ψ ∈ Hph

gS0

(
φmk+1 − φm∗k
4s

, ψ

)
+

1

2
ap (φmk+1 , ψ) =

1

2
g
(
f
mk+1

2 , ψ
)

+
1

2
g

∫
Γ

ψumk+1 · nf . (1.5)

• Set k = k + 1 and repeat until k = M − 1.

The method treats the subphysics terms implicitly and the coupling terms on the fluid-

porous interface explicitly thereby uncoupling the system at each time step into subdomain

problems. It also allows smaller time steps in the unobstructed fluid region than in the

porous region. One fundamental question of both partitioned and multirate methods is

stability over long time intervals 0 ≤ t < ∞. We resolve the stability issue here, give a

complete error analysis and computational tests.
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1.3 NONLINEAR FILTERED PROJECTION METHOD FOR HIGHER

REYNOLDS NUMBER FLOWS

Recently, a new approach for the stabilization of the incompressible Navier-Stokes equations

for higher Reynolds numbers was introduced based on the filtering of solution on every

time step of a discrete scheme. In this work, the stabilization is shown to be equivalent to a

certain closure model in LES. This allows a refined analysis, further understanding of desired

filter properties and clearer interpretation of the results of numerical experiments. We also

consider the application of the post-filtering in a projection (pressure correction) method,

the standard splitting algorithm for time integration of the incompressible fluid equations.

A stabilization of a numerical time-integration algorithm for the incompressible Navier-

Stokes equations

ut + (u · ∇)u− ν∆u+∇p = f

div u = 0
in Ω× (0, T ] , (1.6)

for large Reynolds numbers with the help of an additional filtering step was recently in-

troduced in [65]. Denote by wn or un approximations to the Navier-Stokes system velocity

solution at time tn, similarly pn approximates pressure p(tn). Let 4t = tn+1 − tn. The

algorithm reads: For n = 0, 1, . . . and u0 = u(t0) compute

1. intermediate velocity wn+1 from


1

4t
(wn+1 − un) + (wn+1 · ∇)wn+1 +∇pn+1 − ν∆wn+1 = fn+1,

divwn+1 = 0,

subject to appropriate boundary conditions;

2. filter the intermediate velocity, wn+1 := F wn+1;

3. relax un+1 := (1− χ)wn+1 + χwn+1, with a relaxation parameter χ ∈ [0, 1].
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Here F is a generic nonlinear filter acting from L2(Ω)3 to H1(Ω)3. The convergence of

the finite element solutions of 1.–3. to the smooth Navier-Stokes solutions has been analyzed

in [65], where the step 2. is called the post-filtering. One advantage of the approach is the

implementation convenience within an existing CFD code for laminar flows and flexibility in

the choice of a filter. Numerical results with the approach from [13,36,65,66] with composite

nonlinear deferential (post)-filters, as defined in Section 4.2, consistently show more precise

localization of model viscosity and its more precise correlation with the action of nonlinearity

on the smallest resolved scales than plain Smagorinski type LES or VMS methods. Thus we

deem the approach deserves further studies, should be put into perspective and related to

developing LES models.

In this work, we show that introducing the post-filtering is closely related (and even

equivalent in a sense which is made precise further in the paper) to adapting a certain

closure model for LES. The connection to a LES model allows us to quantify the model

dissipation introduced by the post-filtering, formulate a stability criteria, and have an in-

sight into the choice of the filter and the relaxation parameter. In particular, it provides

an explanation, why the stabilization by the post-filtering avoids adding excessive model

viscosity to a regions of larger velocity gradients unlike some other eddy viscosity models.

Since the entire approach is specifically designed for treating higher Reynolds number flows,

it is natural to extend it to the Chorin-Temam-Yanenko type splitting algorithms, which are

the prevailing method for the time-integration of the incompressible Navier-Stokes equations

for fast unsteady flows. Such (rather natural) extension is presented in the paper together

with the relevant error analysis. We note right away that the analysis demonstrates the con-

vergence of numerical solutions to the Navier-Stokes smooth solution, while it would be also

interesting to analyze the error of the numerical solutions to a (presumably smoother) solu-

tion of the corresponding LES model. However, the specific difficulty we faced in the latter

case is the lacking of the monotone property by most of eddy viscosity indicator functionals,

which were numerically proved to be useful if defining the filter F .

Though practically attractive, introducing such functionals makes the mathematical well-

poshness of the LES model and accordingly the error analysis hard to accomplish and we

are unaware of relevant results in this direction.
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1.4 ANALYSIS TOOLS

In this section, we state some well-known results and assumptions which will be utilized in

the analysis throughout this thesis. Let Ω be an open, regular domain in Rd (d = 2 or 3).

We denote the L2(Ω) norm and inner product by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms

and the Sobolev W k
p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk

p
, respectively. For the

semi-norm in W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 (Ω), and

‖ · ‖k denotes the norm in Hk. The space H−k denotes the dual space of Hk
0 .

Theorem 1.4.1. (the trace theorem) Let ∂Ω be a graph of a Lipschitz continuous function.

If u ∈ L2(Ω) and ∇u ∈ L2(Ω), then u|∂Ω ∈ L2(∂Ω) and

|u|L2(∂Ω) ≤ C‖u‖1/2
(
‖u‖2 + ‖∇u‖2

)1/4
.

Theorem 1.4.2. (the Poincaré inequality) There is a constant C = C(Ω) such that

‖u‖ ≤ C‖∇u‖

for every u ∈ H1
0 (Ω).

Theorem 1.4.3. For any u, v, w ∈ H1
0 (Ω), there is C = C(Ω) such that∣∣∣∣∫

Ω

u · ∇v · wdx
∣∣∣∣ ≤ C

√
‖u‖‖∇u‖‖∇v‖‖∇w‖. (1.7)

For the proof, see [83].

Lemma 1.4.4. (discrete Grönwall inequality) Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for any

integer n ≥ 0 and satisfy

AN + ∆t
N∑
n=0

Bn ≤ ∆t
N∑
n=0

κnAn + ∆t
N∑
n=0

Cn +D for N ≥ 0.

Suppose that for all n, ∆tκn < 1, and set gn = (1−∆tκn)−1. Then,

AN + ∆t
N∑
n=0

Bn ≤ exp

(
∆t

N∑
n=0

gnκn

)[
∆t

N∑
n=0

Cn +D

]
for N ≥ 0.

For the details, see, e.g., [78].
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1.5 THESIS OUTLINE

This thesis begins in Chapter 2 with a study of four splitting based partitioned algorithm

for uncoupling groundwater - surface water coupling system. We show that they are more

stable in motivating applications involving small physical parameters. A complete long time

stability, the associated time step restrictions are given in Section 2.4. The convergence

analysis of BEsplit2 and SDsplit methods are presented in Section 2.5. In Section 2.6 we

give computational experiments to verify the accuracy and stability of our methods. .

In Chapter 3, we discuss the extension of the unified time step splitting methods to multi-

rate splitting method which uncouple the Stokes-Darcy coupling system into two separate

problems in the two subdomains. We show in Section 3.2 that these formulations have a

stable solution for long time periods and its time step restriction for it to be stable. The main

convergence results are presented in Theorem 3.3. The numerical experiments in Section 3.4

support these theoretical results.

Chapter 4 will be devoted for the analysis of a nonlinear filtered projection method for

NSE. Section 4.1 presents the background of nonlinear differential filters and its connections

to LES models. In Theorem 4.5.2, we present the numerical scheme and prove that the

method is long time and uniformly in time stable. Section 4.6 gives a comprehensive error

analysis and Section 4.7 follows with numerical tests which confirm the theory.
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2.0 SPLITTING BASED PARTITIONED METHODS FOR THE

EVOLUTIONARY STOKES-DARCY PROBLEMS

2.1 METHOD DESCRIPTIONS

Many important applications such as coupled surfacewater groundwater flows require the ac-

curate solution of multi-domain, multi-physics coupling of unobstructed flows with filtration

or porous media flows (the Stokes-Darcy problem). There are large advantages in efficiency,

storage, accuracy and programmer effort in using partitioned methods built from compo-

nents optimized for the individual sub-processes. Partitioned methods for the evolutionary

Stokes-Darcy problem confront several intrinsic difficulties which include:

• Values of the hydraulic conductivity k can be small, for example 10−12 for sands to 10−15

for clay, [7].

• Values for the storativity coefficient S0 range from 10−2 in unconfined aquifers to 10−5

in confined aquifers, [61].

• The scale of the problem varies from large L = diam(Ω) for geophysics and small L for

biomedical applications.

• Turnover times in aquifers can be large due to small hydraulic conductivity values and

large domains. Thus accurate calculations are needed over long time intervals.

• Differences in flow rates in the Stokes and the Darcy regions can require different time

steps in the two domains for efficiency and accuracy.

These features mean that stability is a primary issue for partitioned methods for the Stokes-

Darcy problem. Uncoupling / partitioning necessarily induces a time step restriction for long

time stability. The severity of the restriction depends on the method chosen, the relaxation
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times of the individual subdomain problems and the strength of coupling of the underlying

problem. We study herein stability vs the severity of the induced time step restriction

for small kmin, S0 and long time intervals for uncoupling by splitting methods. Since the

Stokes-Darcy problem and the methods we consider are linear, their error satisfies the same

equations as the approximate solution with the body force replaced by a consistency error.

Thus, for errors also, stability over long time intervals for small S0, k is the key to a method

with good error behavior.

The four methods we analyze methods uncouple each time step into a separate Stokes flow

problem and Darcy flow problem. The strength of the coupling between the two subdomains

varies with different ranges of physical parameters and is reflected in restrictions on time

steps required for long time stability. Our estimates and tests suggest that these methods

are stable for larger time steps that the IMEX based partitioned methods in [88], [69], [68],

[104]. In particular, stability analysis and numerical tests herein indicate that splitting

based partitioned methods are a very good option when either kmin or S0 is small. Finding

partitioned methods stable for large time step when both kmin, S0 are small is an open

problem. Further, while the first order methods gave acceptable error levels, more accuracy

is always desirable. Stable higher order partitioned methods for large time steps and small

parameters are also not yet known.

Let the two domains be Ωf ,Ωp lie across an interface I from each other. The fluid velocity

and porous media piezometric head (related to the Darcy pressure) satisfy

ρut − µ4u = ff , and ∇ · u = 0, in Ωf , (2.1)

S0φt −∇ · (K∇φ) = fp, in Ωp,

φ(x, 0) = φ0, in Ωp and u(x, 0) = u0, in Ωf ,

φ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I,

+ coupling conditions across I.
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Let n̂f/p denote the indicated, outward pointing, unit normal vector on I. The coupling

conditions are conservation of mass and balance of forces on I

u · n̂f −K∇φ · n̂p = 0, on I,

p− µ n̂f · ∇u · n̂f = ρgφ on I.

The last condition needed is the Beavers-Joseph-Saffman (-Jones) condition

−µ ∇u · n̂f = α

√
µρg

τ̂i · K · τ̂i
u · τ̂i ≡ χu · τ̂i, on I for any τ̂i tangent vector on I,

see [8], [101], [57]. This is a simplification of the original and more physically realistic

Beavers-Joseph conditions, in which u · τ̂i is replaced by (u − up) · τ̂i, e.g., [18], [19]. Here

ρ, g are the fluid density and gravitational acceleration constant and

φ = Darcy pressure + elevation induced pressure = piezometric head,

up = −K∇φ = velocity in porous media region, Ωp,

u = velocity in Stokes region, Ωf ,

ff , fp = body forces in fluid region and source in porous media region,

K = hydraulic conductivity tensor with minΩpλmin(K) =: kmin > 0,

µ = viscosity of fluid,

S0 = specific mass storativity coefficient.

We assume that all material and fluid parameters are positive and the boundary conditions

are simple Dirichlet conditions on the exterior boundaries (not including the interface I).

While this is only one of several important boundary conditions, [7], [98], the algorithms

herein and their numerical analysis can easily be extended to different combinations of exte-

rior boundary conditions.

13



2.2 NOTATIONS AND PRELIMINARIES

We denote the L2(I) norm by || · ||I and the L2(Ωf/p) norms by || · ||f/p, respectively; the

corresponding inner products are denoted by (·, ·)f/p. Let

Xf : = {v ∈
(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Xp : = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},

Qf : = L2
0(Ωf ).

To discretize the Stokes-Darcy problem in space by the finite element method, we select

conforming finite element spaces

Velocity: Xh
f ⊂ Xf = {v ∈

(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Darcy pressure: Xh
p ⊂ Xp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},

Stokes pressure: Qh
f ⊂ Qf = L2

0(Ωf ).

based on a conforming FEM triangulations in Ωf ,Ωp with maximum triangle diameter ”h”.

No mesh compatibility at or continuity across the interface I between the FEM meshes in

the two subdomains is assumed. It is known that provided a minimum angle condition holds

functions in piecewise polynomial finite element spaces including Xh
f , X

h
p and even Qh

f (for

the elementwise gradient) satisfy an inverse inequality1:

||∇vh|| ≤ CINV h
−1||vh||, h = minimum meshwidth. (2.2)

The Stokes velocity-pressure FEM spaces (Xh
f , Q

h
f ) are assumed to satisfy the usual discrete

inf-sup / LBBh condition for stability of the discrete pressure, e.g., [45], [43], [64]. We denote

the discretely divergence free velocities by

V h := Xh
f ∩ {vh : (qh,∇ · vh)f = 0, for all qh ∈ Qh

f}
1The constant CINV depends upon the angles in the finite element mesh but not on the domain size. The

analysis must either use hmin in stability restrictions and hmax in the interpolation inequalities or assume a
quasi-uniform mesh. For notational simplicity we do the latter.
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The HDIV (Ωf ) norm is given by

||u||DIV :=
√
||u||2f + ||∇ · u||2f .

Note that if d = dim(Ωf ), ||∇·u||f ≤
√
d||∇u||f and that the Poincaré - Friedrichs inequality

holds in both domains:

||v||f/p ≤ CPF (Ωf/p)||∇v||f/p,∀v ∈ Xf/p. (2.3)

We use versions of the trace theorem on the interface I:

||φ||I ≤ C∗p ||φ||1/2p ||∇φ||1/2p and ||u||I ≤ C∗f ||u||
1/2
f ||∇u||

1/2
f (2.4)

We shall assume that the domains Ωf/p are such that the second trace inequality holds:

∣∣∣∣∫
I

φu · n̂ds
∣∣∣∣ ≤ C||u||DIV ||φ||H1(Ωp), for all u ∈ Xf , φ ∈ Xp. (HDIV trace)

This inequality is standard if Ωp = Ωf and I = ∂Ωp and holds with C = 1 in that case,

e.g., [43]. It also holds if Ωp is contained in Ωf and I = ∂Ωp and visa versa. The most general

domains and shared boundaries I which satisfy this inequality do not seem to be known.

However, Moraiti [86] shows that it holds in many cases directly (without extra assumptions

like φ ∈ H1/2
00 (I)) such as when one domain is an image under a smooth map of the other.

For example, we have the following special case of Moraiti [86].

Lemma 2.2.1. Suppose Ωf/p are open connected, regular sets in Rd sharing a boundary

portion I which is an open connected set with I ⊂ {x = (x1, · · ·, xd) : xd = 0}. Suppose Ωp

is the reflection of Ωf across I, i.e., (x1, · · ·, xd) ∈ Ωp if and only if (x1, · · ·,−xd) ∈ Ωf . Then

(HDIV trace) holds with C = 1.
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Proof. We have that φ(x1, · · ·, xd) ∈ Xp means φ∗ := φ(x1, · · ·,−xd) is a well defined function

on Ωf with the same regularity, norms and boundary conditions. Since φ∗ = φ on I we have∫
I

φu · n̂ds =

∫
I

φ∗u · n̂ds =

∫
Ωf

∇ · (uφ∗) dx =

=

∫
Ωf

(∇ · u)φ∗dx+

∫
Ωf

u · ∇φ∗dx.

Thus, by the Cauchy-Schwarz inequality∣∣∣∣∫
I

φu · n̂ds
∣∣∣∣ ≤ ||u||DIV ||φ∗||H1(Ωf ) = ||u||DIV ||φ||H1(Ωp).

To present a convenient2 variational formulation we first multiply the porous media

equation through by ρg. Define the associated bilinear forms

af (u, v) = (µ∇u,∇v)f + (∇ · u,∇ · v)f +
∑
i

∫
I

χ(u · τ̂i)(v · τ̂i)ds,

ap(φ, ψ) = ρg(K∇φ,∇ψ)p, and

cI(u, φ) = ρg

∫
I

φu · n̂fds.

A (monolithic) variational formulation of the coupled problem is to find (u, p, φ) : [0,∞)→

Xf ×Qf ×Xp satisfying the given initial conditions and, for all v ∈ Xf , q ∈ Qf , ψ ∈ Xp

ρ(ut, v)f + af (u, v)− (p,∇ · v)f + cI(v, φ) = (ff , v)f ,

(q,∇ · u)f = 0, (2.5)

ρgS0(φt, ψ)p + ap(φ, ψ)− cI(u, ψ) = ρg(fp, ψ)p.

The bilinear forms af/p(·, ·) are symmetric, continuous and coercive. We include grad-div

stabilization (the term (∇ · u,∇ · v)f ), an idea developed by [72], [91], [90], with coefficient

(normally O(1)) chosen to be 1.

The key to the problem is the coupling term. The effect of the above pre-multiplications

by ρg is to make the coupling exactly skew symmetric.

2Other variational formulations are possible. In (2.3) the volumetric porosity is implicit rather than
explicit.
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Lemma 2.2.2. If (HDIV trace) holds we have for u, φ ∈ Xf , Xp

|cI(u, φ)| ≤ µ

2
||∇u||2f +

ρgkmin

2
||∇φ||2p +

(C∗fC
∗
p)2 (ρg)3/2

4
√
µkmin

||u||f ||φ||p,

|cI(u, φ)| ≤ µ

2
||∇u||2f +

ρgkmin

2
||∇φ||2p +

ρ

2
||u||2f +

(C∗fC
∗
p)4 (ρg)3

32ρµkmin

||φ||2p,

and

|cI(u, φ)| ≤ ρgkmin

2
||∇φ||2p +

ρg(1 + C2
PF (Ωp))

2kmin

(
||u||2j + ||∇ · u||2f

)
.

In the discrete case, if the inverse estimate (2.2) holds we have for all uh, φh ∈ Xh
f , X

h
p

|cI(uh, φh)| ≤ ρgC∗fC
∗
pCINV h

−1

(
1

2
||uh||2f +

1

2
||φh||2p

)
.

Proof. Using (2.2) and the arithmetic geometric mean inequality twice we obtain

cI(u, φ) = ρg

∫
I

φu · n̂ds ≤ ρg||u||I ||φ||I

≤ ρgC∗fC
∗
p ||φ||1/2p ||∇φ||1/2p ||u||

1/2
f ||∇u||

1/2
f

≤ µ

2
||∇u||2f +

ρgkmin

2
||∇φ||2p +

(C∗fC
∗
p)2 (ρg)3/2

4
√
µkmin

||u||f ||φ||p.

The second follows from the first by another application of the arithmetic-geometric mean

inequality. For the third estimate we use (HDIV trace) and the Poincaré- Friedrichs inequal-

ity

|cI(u, φ)| ≤ ρg||u||DIV ||φ||H1(Ωp) ≤ ρg||u||DIV
√

1 + C2
PF (Ωp)||∇φ||p

≤ ρgkmin

2
||∇φ||2p +

ρg(1 + C2
PF (Ωp))

2kmin

||u||2DIV .

The fourth follows similarly using the inverse estimate:

|cI(uh, φh)| ≤ ρg||uh||I ||φh||I ≤ ρgC∗f ||u||
1/2
f ||∇u||

1/2
f C∗p ||φh||1/2p ||∇φh||1/2p

≤ ρgC∗fC
∗
pCINV h

−1||uh||f ||φh||p ≤ ρgC∗fC
∗
pCINV h

−1

(
1

2
||uh||2f +

1

2
||φh||2p

)
.
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Let W = Xf × Xp, Wh = Xh
f × Xh

p ⊂ W and Qh ⊂ Q denote the conforming finite

element subspaces.

Define the equilibrium projection operator:

Ph : (w(t), p(t)) ∈ (W, Q)→ (wh(t), ph(t)) ∈ (Wh, Q
h), ∀t ∈ [0, T ]

by

a(wh(t),vh) + b(vh, ph(t)) = a(w(t),vh) + b(vh, p(t)) ∀vh ∈Wh

b(wh(t), qh) = 0, ∀qh ∈ Qh

where

a(w,v) = af (u, v) + ap(φ, ψ) + cI(u, φ)

2.3 DISCRETE FORMULATION

We consider four uncoupling methods. BEsplit1 and 2 methods have superior stability

properties in different cases of small physical parameters. The fourth method is second order

accurate. The first method is a translation of the method from [113] to the Stokes-Darcy

problem.

Method 1: SDsplit = a Stokes-Darcy time-split method. SDsplit is a first order

accurate, three sub-step method adapted from [113]. The SDsplit approximations are: given

(unh, p
n
h, φ

n
h), find (un+1

h , pn+1
h , φ

n+1/2
h ) ∈ Xh

f × Qh
f × Xh

p and φn+1
h ∈ Xh

p satisfying, for all

vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p :

ρgS0(
φ
n+1/2
h − φnh
4t

, ψh)p +
1

2
ap(φ

n+1/2
h , ψh)−

1

2
cI(u

n
h, ψh) =

1

2
ρg(fn+1/2

p , ψh)p.

ρ(
un+1
h − unh
4t

, vh)f + af (u
n+1
h , vh)− (pn+1

h ,∇ · vh)f

+cI(vh, φ
n+1/2
h ) = (fn+1

f , vh)f , and (qh,∇ · un+1
h )f = 0, (SDsplit)

ρgS0(
φn+1
h − φn+1/2

h

4t
, ψh)p +

1

2
ap(φ

n+1
h , ψh)−

1

2
cI(u

n+1
h , ψh) =

1

2
ρg(fn+1

f , ψh)p.
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SDsplit is uncoupled but sequential: unh → φ
n+1/2
h → un+1

h → φn+1
h .

Method 2: BEsplit1 = a Backward Euler time-split method. The BEsplit

approximations are: given (unh, p
n
h, φ

n
h) find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f × Qh

f × Xh
p satisfying,

for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p ,

ρ(
un+1
h − unh
4t

, vh)f + af (u
n+1
h , vh)− (pn+1

h ,∇ · vh)f + cI(vh, φ
n
h) = (fn+1

f , vh)f ,

(qh,∇ · un+1
h )f = 0, (BEsplit1)

ρgS0(
φn+1
h − φnh
4t

, ψh)p + ap(φ
n+1
h , ψh)− cI(un+1

h , ψh) = ρg(fn+1
p , ψh)p.

The coupling term in the φ equation is evaluated at the newly computed value un+1
h so we

compute φnh → un+1
h → φn+1

h .

Method 3: BEsplit2. The order of cycling through the equations alters the computed

results. BEsplit2 is the previous method in the opposite order. It is given by: given

(unh, p
n
h, φ

n
h) find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f × Qh

f × Xh
p satisfying, for all vh ∈ Xh

f , qh ∈ Qh
f ,

ψh ∈ Xh
p ,

ρgS0(
φn+1
h − φnh
4t

, ψh)p + ap(φ
n+1
h , ψh)− cI(unh, ψh) = ρg(fn+1

p , ψh)p

ρ(
un+1
h − unh
4t

, vh)f + ρ(∇ · u
n+1
h − unh
4t

,∇ · vh)f + af (u
n+1
h , vh) (BEsplit2)

−(pn+1
h ,∇ · vh)f + cI(vh, φ

n+1
h ) = (fn+1

f , vh)f ,

(qh,∇ · un+1
h )f = 0.

Our initial analysis revealed that control was needed for a term ||un+1
h − unh||DIV . This led

to the idea of inserting the grad-div stabilization term (∇ ·
(
un+1
h − unh

)
/4t,∇ · vh)f acting

on the time discretization of ut. This term is exactly zero for the continuous problem so it

does not increase the method’s consistency error.

Method 4: CNsplit= a Crank-Nicolson time-split method. CNsplit is second

order accurate. It computes in parallel3 two partitioned approximations (ûn+1
h , p̂n+1

h , φ̂n+1
h )

3Two processors can be working simultaneously with waiting only due to the different speeds of solving
the subdomain problems.

19



and (ũn+1
h , p̃n+1

h , φ̃n+1
h ) ∈ Xh

f ×Qh
f ×Xh

p whereupon the new approximation to each variable

is the average of the two computed approximations :

(un+1
h , pn+1

h , φn+1
h ) =

1

2
[(ûn+1

h , p̂n+1
h , φ̂n+1

h ) + (ũn+1
h , p̃n+1

h , φ̃n+1
h )]. (CNsplit)

The two individual approximations satisfy, for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p

ρ(
ûn+1
h − ûnh
4t

, vh)f + af (
ûn+1
h + ûnh

2
, vh)− (

p̂n+1
h + p̂nh

2
,∇ · vh)f

+cI(vh, φ̂
n
h) = (f

n+1/2
f , vh)f , and (qh,∇ · ûn+1

h )f = 0, (CNsplit-a)

ρgS0(
φ̂n+1
h − φ̂nh
4t

, ψh)p + ap(
φ̂n+1
h + φ̂nh

2
, ψh)− cI(ûn+1

h , ψh) = ρg(fn+1/2
p , ψh)p

and

ρgS0(
φ̃n+1
h − φ̃nh
4t

, ψh)p + ap(
φ̃n+1
h + φ̃nh

2
, ψh)− cI(ũnh, ψh) = ρg(fn+1/2

p , ψh)p.

ρ(
ũn+1
h − ũnh
4t

, vh)f + af (
ũn+1
h + ũnh

2
, vh)− (

p̃n+1
h + p̃nh

2
,∇ · vh)f (CNsplit-b)

+cI(vh, φ̃
n+1
h ) = (f

n+1/2
f , vh)f , and (qh,∇ · ũn+1

h )f = 0.

The calculation can proceed as follows

Step 1: Pass previous values across the interface to the other domains

solve, in parallel for ûn+1
h , φ̃n+1

h

Step 2: Pass each of ûn+1
h , φ̃n+1

h across the interface to the other domains

solve, in parallel, for ũn+1
h , φ̂n+1

h .

Step 3: Average the two approximations on each domain

Averaging the equations of the two approximations shows that the averages unh and φnh

satisfy

ρ(
un+1
h − unh
4t

, vh)f + af (
un+1
h + unh

2
, vh)− (

pn+1
h + pnh

2
,∇ · vh)f+ (2.6)

+cI(vh,
φ̃n+1
h + φ̂nh

2
) = (f

n+1/2
f , vh)f , and (qh,∇ · un+1

h )f = 0,

ρgS0(
φn+1
h − φnh
4t

, ψh)p + ap(
φn+1
h + φnh

2
, ψh)− cI(

ûn+1
h + ũnh

2
, ψh) = ρg(fn+1/2

p , ψh)p
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To assess consistency errors, the residual is estimated when the true solution u(t), φ(t) is

inserted for all variables u, ũ, û, φ, φ̃ and φ̂ in (2.6). As this eliminates the differences

between the ”hat” and the ”tilde” variables, it shows that CNsplit has the same consistency

error as the (monolithic / fully coupled) Crank-Nicolson time discretization.

2.4 ANALYSIS OF STABILITY OF THE FOUR SPLITTING BASED

PARTITIONED METHOD: SDSPLIT, BESPLIT1/2, CNSPLIT

Since the partitioned methods considered treat some variables in some steps explicitly, a time

step restriction for stability in unavoidable. This section gives a stability proof by energy

methods in the form that implies stability over long time intervals and elucidates the time

step restriction required for the four methods.

2.4.1 SDsplit Stability

We prove conditional stability (with a time step restriction linked to the spacial meshwidth)

of SDsplit in this subsection. The time step restriction is of the form

4t < C min {S0, kmin}h.

To be precise, define

4T0 :=
2

ρg(C∗fC
∗
p)2CINV

min

{
S0µ

CPF (Ωf )
,
ρkmin

CPF (Ωp)

}
h.

Theorem 2.4.1. Suppose that for some α, 0 < α < 1,

4t ≤ (1− α)4T0. (2.7)
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Then SDsplit is stable:

1

2

[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+4t

N−1∑
n=0

4tρgS0

2
||φ

n+1/2
h − φnh
4t

||2p

+
αρgS0

2
4t

N−1∑
n=0

4t||φ
n+1/2
h − φn+1

h

4t
||2p +

αρ

2
4t

N−1∑
n=0

4t||u
n+1
h − unh
4t

||2f (2.8)

≤ 1

2

[
ρ||u0

h||2f + ρgS0||φ0
h||2p
]

+
ρgC2

PF (Ωp)

2kmin
4t

N−1∑
n=0

||fn+1/2
p ||2p

+
C2
PF (Ωf )

2µ
4t

N−1∑
n=0

||fn+1
f ||2f +

ρgC2
PF (Ωp)

4kmin
4t

N−1∑
n=0

||fn+1
p ||2p.

Proof. In the first 1/3 step of SDsplit, take ψ = 4tφn+1/2
h . This gives

1

2
ρgS0(||φn+1/2

h ||2p − ||φnh||2p + ||φn+1/2
h − φnh||2p) +

4t
2
ap(φ

n+1/2
h , φ

n+1/2
h )

=
4t
2
ρg(fn+1/2

p , φ
n+1/2
h )p +

4t
2
cI(u

n
h, φ

n+1/2
h ).

Take v = 4tun+1
h , q = pn+1

h in the 2/3 step and add. This gives

1

2
ρ(||un+1

h ||2f − ||unh||2f + ||un+1
h − unh||2f ) +4taf (un+1

h , un+1
h )

= 4t(fn+1
f , un+1

h )f −4tcI(un+1
h , φ

n+1/2
h ).

In the 3/3 step, take ψ = 4tφn+1
h :

1

2
ρgS0(||φn+1

h ||2p − ||φ
n+1/2
h ||2p + ||φn+1

h − φn+1/2
h ||2p) +

4t
2
ap(φ

n+1
h , φn+1

h )

=
4t
2
ρg(fn+1

p , φn+1
h )p +

4t
2
cI(u

n+1
h , φn+1

h ).

22



Adding, we obtain:

1

2
ρgS0(||φn+1

h ||2p − ||φnh||2p) +
1

2
ρ(||un+1

h ||2f − ||unh||2f )

+
1

2
ρgS0(||φn+1/2

h − φnh||2p + ||φn+1
h − φn+1/2

h ||2p) +
1

2
ρ||un+1

h − unh||2f

+
4t
2
ap(φ

n+1/2
h , φ

n+1/2
h ) +

4t
2
ap(φ

n+1
h , φn+1

h ) +4taf (un+1
h , un+1

h )

=
4t
2
ρg(fn+1/2

p , φ
n+1/2
h )p +4t(fn+1

f , un+1
h )f +

4t
2
ρg(fn+1

p , φn+1
h )p

+
4t
2
cI(u

n
h, φ

n+1/2
h )−4tcI(un+1

h , φ
n+1/2
h ) +

4t
2
cI(u

n+1
h , φn+1

h ).

Consider the interface terms (the last line):

Interface Terms =
4t
2
cI(u

n
h, φ

n+1/2
h )−4tcI(un+1

h , φ
n+1/2
h ) +

4t
2
cI(u

n+1
h , φn+1

h ).

Rewrite the interface term as a difference by splitting the middle term. This gives

Interface Terms =
4t
2
cI(u

n
h, φ

n+1/2
h )− 4t

2
cI(u

n+1
h , φ

n+1/2
h )

−4t
2
cI(u

n+1
h , φ

n+1/2
h ) +

4t
2
cI(u

n+1
h , φn+1

h )

=
4t
2
cI(u

n
h − un+1

h , φ
n+1/2
h )− 4t

2
cI(u

n+1
h , φ

n+1/2
h − φn+1

h ).

Lemma 2, the Poincaré-Friedrichs and inverse inequalities give the two bounds

4t
2
|cI(un − un+1, φn+1/2)| ≤

≤ ρg4t
4
||K1/2∇φn+1/2

h ||2p +
ρg(C∗fC

∗
p)2CINVCPF (Ωp)h

−14t
4kmin

||unh − un+1
h ||2f .

4t
2
|cI(un+1

h , φ
n+1/2
h − φn+1

h )| ≤

≤ µ4t
4
||∇un+1

h ||2f +
ρ2g2(C∗fC

∗
p)2CINVCPF (Ωf )h

−14t
4µ

||φn+1/2
h − φn+1

h ||2p.
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Next, we bound the right-hand side in a standard way:

4t
2
ρg(fn+1/2

p , φ
n+1/2
h ) ≤ ρg4t

8
||K1/2∇φn+1/2

h ||2p +
ρgC2

PF (Ωp)4t
2kmin

||fn+1/2
p ||2p,

4t(fn+1
f , un+1

h ) ≤ C2
PF (Ωf )4t

2µ
||fn+1

f ||2f +
µ4t

2
||∇un+1

h ||2f ,

4t
2
ρg(fn+1

p , φn+1
h ) ≤ ρg4t

4
||K1/2∇φn+1

h ||2p +
ρgC2

PF (Ωp)4t
4kmin

||fn+1
p ||2p.

For the left side. apply coercivity:

4t
2
ap(φ

n+1/2
h , φ

n+1/2
h ) ≥ ρg4t

2
||K1/2∇φn+1/2

h ||2p,

4taf (un+1
h , un+1

h ) ≥ µ4t||∇un+1
h ||2f ,

4t
2
ap(φ

n+1
h , φn+1

h ) ≥ ρg4t
2
||K1/2∇φn+1

h ||2p.

Combine, we arrive at:

1

2
ρgS0(||φn+1

h ||2p − ||φnh||2p) +
1

2
ρ(||un+1

h ||2f − ||unh||2f ) +
1

2
ρgS0||φn+1/2

h − φnh||2p

+(
1

2
ρgS0 −

ρ2g2(C∗fC
∗
p)2CINVCPF (Ωf )h

−14t
4µ

)||φn+1/2
h − φn+1

h ||2p

+(
1

2
ρ−

ρg(C∗fC
∗
p)2CINVCPF (Ωp)h

−14t
4kmin

)||un+1
h − unh||2f

≤ ρgC2
PF (Ωp)4t
2kmin

||fn+1/2
p ||2p +

C2
PF (Ωf )4t

2µ
||fn+1

f ||2f +
ρgC2

PF (Ωp)4t
4kmin

||fn+1
p ||2p.
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Sum this over n = 0, 1, · · · , N − 1 . We have:

1

2

[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+

1

2
ρgS0

N−1∑
n=0

||φn+1/2
h − φnh||2p

+(
1

2
ρgS0 −

ρ2g2(C∗fC
∗
p)2CINVCPF (Ωf )h

−14t
4µ

)
N−1∑
n=0

||φn+1/2
h − φn+1

h ||2p

+(
1

2
ρ−

ρg(C∗fC
∗
p)2CINVCPF (Ωp)h

−14t
4kmin

)
N−1∑
n=0

||un+1
h − unh||2f

≤ 1

2

[
ρ||u0

h||2f + ρgS0||φ0
h||2p
]

+
ρgC2

PF (Ωp)4t
2kmin

N−1∑
n=0

||fn+1/2
p ||2p+

+
C2
PF (Ωf )4t

2µ

N−1∑
n=0

||fn+1
f ||2f +

ρgC2
PF (Ωp)4t
4kmin

N−1∑
n=0

||fn+1
p ||2p.

Stability follows under the two conditions below, which are equivalent to the time step

restriction 4t ≤ (1− α)4T0:

1

2
ρgS0 −

ρ2g2(C∗fC
∗
p)2CINVCPF (Ωf )h

−14t
4µ

≥ α
ρgS0

2
,

1

2
ρ−

ρg(C∗fC
∗
p)2CINVCPF (ΩP )h−14t

4kmin
≤ α

ρ

2
.

2.4.2 BEsplit1 Stability

Define

4T1 := 2 min{µkminS0
16ρ

(C∗fC
∗
p)4 (ρg)2 , 1},

4T2 :=
2 min{1, gS0}
gC∗fC

∗
pCINV

h,

4T3 = 2ρgS0µh
(
ρgC∗fC

∗
p

)−2
(CINVCPF (Ωf ))

−1

4T4 =
2 min{1, ρ}

ρg(1 + C2
PF (Ωp))

kmin,

Parameters := (1 + C2
PF (Ωp))(C

2
PF (Ωf ) + d)

ρg

kminµ
.
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Note that4T1 and4T4 are independent of h but depend on kmin and S0 as4T1 ' S0kmin and

4T4 ' kmin. 4T2 and 4T3 are independent of kmin but depend on h and S0 as 4T2/3 ' S0h.

The combination of physical parameters Parameters is independent of h and S0 but depends

on all the other physical parameters. When µ = O(1), the meshwidth h in the porous medium

is moderate and kmin, S0 are small the above restrictions mean

either 4t ≤ C max{kmin, S0kmin, S0h} or C
√
µkmin ≥ 1.

Theorem 2.4.2 (Uniform in time stability of BEsplit1). Suppose either the problem param-

eters satisfy

Parameters ≤ 1,

or there is an 0 < α < 1 such that 4t satisfies the time step restriction

4t ≤ (1− α) max{4T1,4T2,4T3,4T4}

Then, (BEsplit1) is stable uniformly in time. Specifically, if the time step restriction with

4T3 is active then:

1

2

[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+

+4t
N−1∑
n=0

[
4t
2
ρ||u

n+1
h − unh
4t

||2f

+αaf (u
n+1
h , un+1

h ) + ap(φ
n+1
h , φn+1

h )] ≤ 1

2

[
ρ||u0

h||2f + ρgS0||φ0
h||2p
]

+4t
N−1∑
n=0

[
(fn+1
f , un+1

h )f + ρg(fn+1
p , φn+1

h )p
]
.

If any of the other time step restrictions are active then for any N > 0, there holds

α
[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+

+
4t
2

N−1∑
n=0

[af (u
n+1
h + unh, u

n+1
h + unh) + ap(φ

n+1
h + φnh, φ

n+1
h + φnh)]

≤ α
[
ρ||u0

h||2f + ρgS0||φ0
h||2p
]

+

+4t
N−1∑
n=0

[
(fn+1
f , un+1

h + unh)f + ρg(fn+1
p , φn+1

h + φnh)p
]
.
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Proof. In (BEsplit1) set vh = un+1
h + unh, qh = pn+1

h , average the incompressibility condition

at successive time levels and add. We use

af (u
n+1
h , un+1

h + unh) =
1

2
af (u

n+1
h , un+1

h )− 1

2
af (u

n
h, u

n
h)+

+
1

2
af (u

n+1
h + unh, u

n+1
h + unh). (2.9)

This gives:

1

2

[
2ρ||un+1

h ||2f +4taf (un+1
h , un+1

h )
]
− 1

2

[
2ρ||unh||2f +4taf (unh, unh)

]
+ (2.10)

+
4t
2
af (u

n+1
h + unh, u

n+1
h + unh) +4tcI(φnh, un+1

h + unh) = 4t(fn+1
f , un+1

h + unh)f .

Similarly, in the porous media equation, set ψh = φn+1
h + φnh . We use here

ap(φ
n+1
h , φn+1

h + φnh) =
1

2
ap(φ

n+1
h , φn+1

h )− 1

2
ap(φ

n
h, φ

n
h)+

+
1

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh).

This gives

1

2

[
2ρgS0||φn+1

h ||2p +4tap(φn+1
h , φn+1

h )
]
− 1

2

[
2ρgS0||φnh||2p +4tap(φnh, φnh)

]
(2.11)

+
4t
2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh)−4tcI(φn+1

h + φnh, u
n+1
h ) = 4tρg(fn+1

p , φn+1
h + φnh)p.

Add (2.10) and (2.11). Consider the sum of the two coupling terms that results

Coupling = 4t
[
cI(φ

n
h, u

n+1
h + unh)− cI(φn+1

h + φnh, u
n+1
h )

]
=

= 4t
[
cI(φ

n
h, u

n
h)− cI(φn+1

h , un+1
h )

]
.

Let us denote Cn = cI(φ
n
h, u

n
h) and

En =
1

2

[
2ρ||unh||2f + 2ρgS0||φnh||2p +4taf (unh, unh) +4tap(φnh, φnh)

]
,

Dn =
1

2
af (u

n+1
h + unh, u

n+1
h + unh) +

1

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh).
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Adding the two energy estimates and using the above reduction of the coupling term reduces

the total energy estimate to

[
En+1 −4tCn+1

]
− [En −4tCn] +

+4tDn = 4t
(

(fn+1
f , un+1

h + unh)f + ρg(fn+1
p , φn+1

h + φnh)p
)
.

Summing this up from n = 0 to n = N − 1 results in

[
EN −4tCN

]
+4t

N−1∑
n=0

Dn =
[
E0 −4tC0

]
+

+4t
N−1∑
n=0

[
(fn+1
f , un+1

h + unh)f + ρg(fn+1
p , φn+1

h + φnh)p
]
.

Stability and the stated energy inequality thus follows provided

EN −4tCN > 0 for every N .

We have already shown that

Dn ≥ µ

2
||∇
(
un+1
h + unh

)
||2f +

ρgkmin

2
||∇
(
φn+1
h + φnh

)
||2p,

|Cn| ≤ µ

2
||∇unh||2f +

ρgkmin

2
||∇φnh||2p +

ρ

2
||unh||2f +

(C∗fC
∗
p)4 (ρg)3

32ρµkmin

||φnh||2p.

Thus,

En −4tCn ≥ ρ||unh||2f + ρgS0||φnh||2p +
4t
2

(
µ||∇unh||2f + ρgkmin||∇φnh||2p

)
(2.12)

−4t[µ
2
||∇unh||2f +

ρgkmin

2
||∇φnh||2p +

ρ

2
||unh||2f +

(C∗fC
∗
p)4 (ρg)3

32ρµkmin

||φnh||2p].

Thus stability follows provided

4t
(C∗fC

∗
p)4 (ρg)3

32ρµkmin

≤ (1− α)ρgS0, or

4t ≤ (1− α)µkminS0
32ρ

(C∗fC
∗
p)4 (ρg)2 ≡ (1− α)4T1.

Alternate conditions are obtained using different estimates of the coupling / interface

term. Indeed, using Lemma 2
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|Cn| = |cI(unh, φnh)| ≤ ρgC∗fC
∗
pCINV h

−1

(
1

2
||unh||2f +

1

2
||φnh||2p

)
.

Thus stability follows provided

4t
h
ρgC∗fC

∗
pCINV ≤ 2(1− α) min{ρ, ρgS0}, or

4t ≤ (1− α)
2 min{1, gS0}
gC∗fC

∗
pCINV

h ≡ (1− α)4T2,

which is the second condition.

For the condition Parameters ≤ 1, that by Lemma 2

|Cn| ≤ ρgkmin

2
||∇φnh||2p +

ρg(1 + C2
PF (Ωp))

2kmin

||unh||2DIV

≤ ρgkmin

2
||∇φnh||2p +

ρg(1 + C2
PF (Ωp))

2kmin

(||unh||2f + d||∇unh||2f )

≤ ρgkmin

2
||∇φnh||2p +

ρg(1 + C2
PF (Ωp))

2kmin

(C2
PF (Ωf ) + d)||∇unh||2f

Thus the method is also stable if the problem data satisfies

ρg(1 + C2
PF (Ωp))

2kmin

(C2
PF (Ωf ) + d) ≤ µ

2
or

Parameters = (1 + C2
PF (Ωp))(C

2
PF (Ωf ) + d)

ρg

kminµ
≤ 1

The condition involving 4T3 requires a separate stability proof. In (BEsplit1) set vh =

un+1
h , qh = pn+1

h and add. We use

(un+1
h − unh, un+1

h )f =
1

2

[
||un+1

h ||2f − ||unh||2f
]

+
1

2
||un+1

h − unh||2f ,

and similarly for φ. This gives:

ρ

2

[
||un+1

h ||2f − ||unh||2f
]

+
ρ

2
||un+1

h − unh||2f +4taf (un+1
h , un+1

h )+

+4tcI(φnh, un+1
h ) = 4t(fn+1

f , un+1
h )f .

Similarly, in the porous media equation, set ψh = φn+1
h , we get
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1

2

[
ρgS0||φn+1

h ||2p − ρgS0||φnh||2p + ρgS0||φn+1
h − φnh||2p

]
+4tap(φn+1

h , φn+1
h )

−4tcI(φn+1
h , un+1

h ) = 4tρg(fn+1
p , φn+1

h )p.

Add these two equations and consider the sum of the two coupling terms that result:

|Coupling| = 4t|cI(φnh, un+1
h )− cI(φn+1

h , un+1
h )| = 4t|cI(φn+1

h − φnh, un+1
h )|.

The following bound holds by an analogous proof as that of in Lemma 2:

|Coupling| ≤ ρgS0

2
||φn+1

h − φnh||2p+

+4t
[
4t

2ρgS0

(
ρgC∗fC

∗
p

)2
CINV h

−1||un+1
h ||f ||∇un+1

h ||f
]

≤ ρgS0

2
||φn+1

h − φnh||2p+

+4t
[
4t

2ρgS0µ

(
ρgC∗fC

∗
p

)2
CINV h

−1CPF (Ωf )af (u
n+1
h , un+1

h )

]
.

The remainder of the proof follows the above pattern and is complete, provided

4t
2ρgS0µ

(
ρgC∗fC

∗
p

)2
CINV h

−1CPF (Ωf ) ≤ 1− α, or

4t < (1− α)
2ρgS0µ(

ρgC∗fC
∗
p

)2
CINVCPF (Ωf )

h ≡ (1− α)4T3.

For the4T4 condition, we exploit the added grad-div stabilization. By the third inequal-

ity of Lemma 2

|Coupling| ≤ 4tρgkmin

2
||∇φ||2p +4tρg(1 + C2

PF (Ωp))

2kmin

||u||2 +4tρg(1 + C2
PF (Ωp))

2kmin

||∇ · u||2.

The last term can be subsumed into the grad-div stabilization term provided

4tρg(1 + C2
PF (Ωp))

2kmin

≤ 1.

The other two terms are subsumed into the system energy. Stability thus follows provided

ρ||unh||2f + ρgS0||φnh||2p +
4t
2

(
µ||∇unh||2f + ρgkmin||∇φnh||2p

)
−
[
4tρgkmin

2
||∇φ||2p +4tρg(1 + C2

PF (Ωp))

2kmin

||u||2
]
> 0.
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This requires

4tρg(1 + C2
PF (Ωp))

2kmin

≤ ρ

Thus, stability follows under these two conditions, i.e., if

4t ≤ min{1, ρ} 2kmin

ρg(1 + C2
PF (Ωp))

= 4T4.

The rest of the proof follows by summing.

2.4.3 BEsplit2 stability

Due to the similarity of the analysis for BEsplit2 to BEsplit1, we present the aspects of the

proof that differ only. Define

4T5 : =
2kminh

g(C∗fC
∗
p)2CPF (Ωp)CINV

4T6 : =
2

g (1 + C2
PF (Ωp))

kmin.

We prove uniform in time stability under a time step restriction of the form that occurred

in BEsplit1 with 4T3 replaced by 4T5 and 4T4 replaced by 4T6. Thus, for small S0 the

active constraint is expected to be

4t < 4T6 ' Ckmin

which is independent of both h and S0. Thus, BEsplit1/2 are promising for the quasi-static

approximation and for problems with very small S0 and moderate kmin.

Theorem 2.4.3 (Uniform in time and S0 stability). Consider the method (BEsplit2). Sup-

pose that there is an α, 0 < α < 1, such that either the problem parameters satisfy

Parameters ≤ 1− α,

or 4t satisfies the time step restriction

4t ≤ (1− α) max{4T1,4T2,4T5,4T6}.
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Then, BEsplit2 is stable uniformly in time and uniformly in S0. Specifically, for any

N > 0 we have the energy inequality (which also proves stability)

1

2

[
ρ||uNh ||2f + ρ||∇ · uNh ||2f + ρgS0||φNh ||2p

]
+

+4t
N−1∑
n=0

[
4t
2
ρgS0||

φn+1
h − φnh
4t

||2p + af (u
n+1
h , un+1

h ) + αap(φ
n+1
h , φn+1

h )

]

≤ 1

2

[
ρ||u0

h||2f + ρ||∇ · u0
h||2f + ρgS0||φ0

h||2p
]

+4t
N−1∑
n=0

[
(fn+1
f , un+1

h )f + ρg(fn+1
p , φn+1

h )p
]
.

Proof. The derivation of the stability conditions involving Parameters and 4T1, 4T2 is

very similar to the case of BEsplit1. We therefore move to the condition involving 4T5 and

T6.

In (BEsplit2) set ψh = φn+1
h , vh = un+1

h , qh = pn+1
h , and add. We use

−(unh, u
n+1
h )f = −1

2
(unh, u

n
h)f −

1

2
(un+1

h , un+1
h )f +

1

2
(un+1

h − unh, un+1
h − unh)f ,

and similarly for the (∇ · unh,∇ · un+1
h )f terms and the analogous terms in the φ equation.

This gives:

1

2

[
ρ||un+1

h ||2f + ρ||∇ · un+1
h ||2f + ρgS0||φn+1

h ||2p
]
− 1

2

[
ρ||unh||2f + ρ||∇ · unh||2f + ρgS0||φnh||2p

]
+

+
1

2

[
ρ||un+1

h − unh||2f + ρ||∇ · (un+1
h − unh)||2f + ρgS0||φn+1

h − φnh||2p
]

+4t
[
af (u

n+1
h , un+1

h ) + ap(φ
n+1
h , φn+1

h )
]

+4tcI(φn+1
h , un+1

h − unh) = 4t(fn+1
f , un+1

h )f +4tρg(fn+1
p , φn+1

h )p.

Consider the sum of the two coupling terms

Coupling = 4tcI(φn+1
h , un+1

h − unh).

For the condition involving 4T5,

|Coupling| ≤ 4tρgC∗fC∗pC
1
2
PF (Ωp)(CINV h

−1)
1
2 ||∇φn+1

h ||p||un+1
h − unh||f

≤ 1

2
ρ||un+1

h − unh||2f +
g(C∗fC

∗
p)2CPF (Ωp)CINV h

−14t2

2kmin
ap(φ

n+1
h , φn+1

h )
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Subsuming the above two terms in the obvious places, the method is stable if

4t ≤ 2kminh

g(C∗fC
∗
p)2CPF (Ωp)CINV

= 4T5.

For the stability condition involving 4T6, we have, using Lemma 2 and ap(φ
n+1
h , φn+1

h ) ≥

ρgkmin||∇φn+1
h ||p,

|Coupling| ≤ 4t (ρg) ||φn+1
h ||H1(Ωp)||un+1

h − unh||DIV

≤ 4t (ρg)
√

1 + C2
PF (Ωp)||∇φn+1

h ||p||un+1
h − unh||DIV

≤ 1

2

[
ρ||un+1

h − unh||2f + ρ||∇ · (un+1
h − unh)||2f

]
+

1

2
4t2 g

kmin

(
1 + C2

PF (Ωp)
)
ap(φ

n+1
h , φn+1

h ).

Thus

1

2

[
ρ||un+1

h ||2f + ρ||∇ · un+1
h ||2f + ρgS0||φn+1

h ||2p
]
− 1

2

[
ρ||unh||2f + ρ||∇ · unh||2f + ρgS0||φnh||2p

]
+

+
1

2
ρgS0||φn+1

h − φnh||2p +4t[af (un+1
h , un+1

h )+

+(1− 1

2
4tg

(
1 + C2

PF (Ωp)
)
k−1

min)ap(φ
n+1
h , φn+1

h )]

≤ 4t(fn+1
f , un+1

h )f +4tρg(fn+1
p , φn+1

h )p.

Stability then follows under the time step restriction

(1− 1

2
4tg

(
1 + C2

PF (Ωp)
)
k−1

min) ≥ α > 0

which is equivalent to

4t ≤ (1− α)
2

g (1 + C2
PF (Ωp))

kmin ≡ (1− α)4T6.
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2.4.4 Stability of CNsplit

CNsplit computes two partitioned approximations (ûnh, p̂
n
h, φ̂

n
h) and (ũnh, p̃

n
h, φ̃

n
h) ∈ Xh

f ×Qh
f×

Xh
p for n ≥ 1 whereupon

(un+1
h , pn+1

h , φn+1
h ) =

1

2
[(ûn+1

h , p̂n+1
h , φ̂n+1

h ) + (ũn+1
h , p̃n+1

h , φ̃n+1
h )], (CNsplit)

that is, the new approximation to each variable is the average of the two computed approx-

imations. Since the unit ball in a Hilbert space is convex, stability of (un+1
h , pn+1

h , φn+1
h )

follows from stability of (ûn+1
h , p̂n+1

h , φ̂n+1
h ) and (ũn+1

h , p̃n+1
h , φ̃n+1

h ). We thus prove stability of

the two individual sub-problems. Define

4T6 :=

√
2S0√

gC∗pC
∗
fCINV

h

We prove long time stability under a time step condition of the form

4t < C
√
S0h.

Theorem 2.4.4 (Stability of one step of CNsplit). Consider (CNsplit-a) one step of the

CNsplit method. Suppose there is an 0 < α < 1/2 such that 4t satisfies the time step

restriction

4t ≤ (1− α)4T6

Then, CNsplit-a is stable uniformly in time over possibly long time intervals. Specifically,

for every N ≥ 1

α
[
ρ||ûNh ||2f + ρgS0||φ̂Nh ||2p

]
+4t

N−1∑
n=0

1

2

[
af (û

n+1
h + ûnh, û

n+1
h + ûnh) + ap(φ̂

n+1
h + φ̂nh, φ̂

n+1
h + φ̂nh)

]
≤ ρ||û0

h||2f + ρgS0||φ̂0
h||2p −4tcI(φ̂0

h, û
0
h)

+4t
N−1∑
n=0

[
(f

n+1/2
f , ûn+1

h + ûnh)f + ρg(fn+1/2
p , φ̂n+1

h + φ̂nh)p

]
.
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Proof. In (CNsplit-a) set vh = ûn+1
h + ûnh, qh = p̂n+1

h , average the incompressibility condition

at successive time levels and add. This gives:

ρ||ûn+1
h ||2f − ρ||ûnh||2f +

4t
2
af (û

n+1
h + ûnh, û

n+1
h + ûnh)+

+4tcI(φ̂nh, ûn+1
h + ûnh) = 4t(fn+1/2

f , ûn+1
h + ûnh)f .

Similarly, in the porous media equation, set ψh = φ̂n+1
h + φ̂nh . This gives

ρgS0||φ̂n+1
h ||2p − ρgS0||φ̂nh||2p +

4t
2
ap(φ̂

n+1
h + φ̂nh, φ̂

n+1
h + φ̂nh)

−4tcI(φ̂n+1
h + φ̂nh, û

n+1
h ) = 4tρg(fn+1/2

p , φ̂n+1
h + φ̂nh).

Add and consider the sum of the two coupling terms

Coupling = 4t
[
cI(φ̂

n
h, û

n+1
h + ûnh)− cI(φ̂n+1

h + φ̂nh, û
n+1
h )

]
= 4t

[
cI(φ̂

n
h, û

n
h)− cI(φ̂n+1

h , ûn+1
h )

]
Let us denote Cn = cI(φ̂

n
h, û

n
h) and

En = ρ||ûnh||2f + ρgS0||φ̂nh||2p,

Dn =
1

2
af (û

n+1
h + ûnh, û

n+1
h + ûnh) +

1

2
ap(φ̂

n+1
h + φ̂nh, φ̂

n+1
h + φ̂nh).

Adding the two energy estimates and using the above reduction of the coupling term reduces

the total energy estimate to

[
En+1 −4tCn+1

]
− [En −4tCn] +

+4tDn = 4t
(

(f
n+1/2
f , ûn+1

h + ûnh)f + ρg(fn+1/2
p , φ̂n+1

h + φ̂nh)p

)
Sum this inequality from n = 0 to N − 1. The energy inequality thus follows provided

EN −4tCN ≥ αEN for every N .
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Consider 4tCN . Dropping super and subscripts and applying Lemma 2 gives

4t|C| ≤ 4tρgC∗pC∗fCINV h−1||u||f |||φ||p

≤ ρgS0

2
||φ||2p +

4t2

2ρgS0

[
ρgC∗pC

∗
fCINV h

−1
]2 ||u||2f .

We thus have stability provided

4t2

2ρgS0

[
ρgC∗pC

∗
fCINV h

−1
]2
< ρ or 4t < 4T6.

Under the time step restriction 4t ≤
√

1− α4T6 which is implied by 4t ≤ (1− α)4T6 we

have

ρ||ûn+1
h ||2f + ρgS0||φ̂n+1

h ||2p −4tcI(φ̂n+1
h , ûn+1

h ) ≥ α
[
ρ||ûn+1

h ||2f + ρgS0||φ̂n+1
h ||2p

]
.

This proves stability of the first half step.

Now we consider the second half step.

Theorem 2.4.5 (Stability of one step of CNsplit). Consider (CNsplit-b). Suppose there is

an α, 0 < α < 1, such that 4t satisfies the time step restriction

4t ≤ (1− α)4T6

Then, it is stable over long time intervals. Specifically, for every N ≥ 1

α
[
ρ||ũNh ||2f + ρgS0||φ̃Nh ||2p

]
+4t

N−1∑
n=0

1

2

[
af (ũ

n+1
h + ũnh, ũ

n+1
h + ũnh) + ap(φ̃

n+1
h + φ̃nh, φ̃

n+1
h + φ̃nh)

]
≤
[
ρ||ũ0

h||2f + ρgS0||φ̃0
h||2p +4tcI(φ̃0

h, ũ
0
h)
]

+4t
N−1∑
n=0

[
(f

n+1/2
f , ũn+1

h + ũnh)f + ρg(fn+1/2
p , φ̃n+1

h + φ̃nh)p

]
.

The proof is essentially the same as for the first half-step and is thus omitted.
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2.5 ERROR ANALYSIS OF BESPLIT2 AND SDSPLIT

2.5.1 ERROR ANALYSIS OF BEsplit2

BESplit 2ρgS0(
φn+1
h − φnh
4t

, ψh)p + ap(φ
n+1
h , ψh)− CI(unh, ψh) = ρg(fn+1

2 , ψh)p (2.13)

ρ(
un+1
h − unh
4t

, vh)f + af (u
n+1
h , vh)− (pn+1

h ,∇ · vh) + CI(vh, φ
n+1
h ) = (fn+1

1 , vh)f (2.14)

(qh,∇ · un+1
h ) = 0 for ∀qh ∈ Qh

Define um = Phu(tm), φm = Phφ(tm), pm = Php(t
m) The true solution satisfy:

ρgS0(φt(t
n+1), ψh)p + ap(φ(tn+1)ψh)− CI(u(tn+1), ψh) = ρg(fn+1

2 , ψh)p

ρ(ut(t
n+1), vh) + af (u(tn+1), vh)f − (p(tn+1),∇ · vh) + CI(vh, φ(tn+1)) = (fn+1

1 , vh)f

Rewrite the equations of the true solution and using the property of the projection:

ρgS0(
φn+1 − φn
4t

, ψh)p + ap(φn+1, ψh)− CI(un+1, ψh)

= ρgS0(
φn+1 − φn
4t

− φt(tn+1), ψh)p + ρg(fn+1
2 , ψh)p (2.15)

ρ(
un+1 − un
4t

, vh)f + af (un+1, vh)− (pn+1,∇ · vh) + CI(vh, φn+1)

= ρ(
un+1 − un
4t

− ut(tn+1), vh) + (fn+1
1 , vh)f (2.16)

Define the error enφ = Phφ(tn+1)−φn+1
h = φn+1−φn+1

h , enu = Phu(tn)−unh = un−unh, we have

the error equations (2.15)-(2.13) and (2.16)-(2.14) :

ρgS0(
en+1
φ − enφ
4t

, ψh)p + ap(e
n+1
φ , ψh)− CI(un+1 − unh, ψh)

= ρgS0(
φn+1 − φn
4t

− φt(tn+1), ψh)p (2.17)

ρ(
en+1
u − enu
4t

, vh)f + af (e
n+1
u , vh)− (pn+1 − pn+1

h ,∇ · vh) + CI(vh, e
n+1
φ )

= ρ(
un+1 − un
4t

− ut(tn+1), vh)f (2.18)
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In (2.17), take ψh = 24ten+1
φ and in (2.18), take vh = 24ten+1

u and add up

ρgS0(||en+1
φ ||2p − ||enφ||2p) + ρ(||en+1

u ||2 − ||enu||2f ) + ρgS0||en+1
φ − enφ||2p + ρ||en+1

u − enu||2f

+24tap(en+1
φ , en+1

φ ) + 24taf (en+1
u , en+1

u )

= 2ρgS0(φn+1 − φn −4tφt(tn+1), en+1
φ )p + 2ρ(un+1 − un −4tut(tn+1), vh)f

+24tCI(un+1 − unh, en+1
φ )− 24tCI(en+1

u , en+1
φ ) (2.19)

Rewrite the interface term on the RHS of (2.19)

24tCI(un+1 − unh, en+1
φ )− 24tCI(en+1

u , en+1
φ )

= 24tρg
∫

Γ

(un+1e
n+1
φ − unhen+1

φ − en+1
φ en+1

u ) · nf

= 24tρg
∫

Γ

(une
n+1
φ − unhen+1

φ + (un+1 − un)en+1
φ − en+1

φ en+1
u ) · nf

= 24tρg
∫

Γ

(enue
n+1
φ + (un+1 − un)en+1

φ − en+1
φ en+1

u ) · nf

= 24tρg
∫

Γ

((enu − en+1
u )en+1

φ + (un+1 − un)en+1
φ ) · nf

Bounding the interface term using typical inequalities

||24tCI(un+1 − unh, en+1
φ )− 24tCI(en+1

u , en+1
φ )||2

≤ 24tρgCfCg||enu − en+1
u ||1/2f ||∇(enu − en+1

u )||1/2f ||e
n+1
φ ||1/2p ||∇en+1

φ ||1/2p

+24tρgCfCg||un+1 − un||1/2f ||∇(un+1 − un)||1/2f ||e
n+1
φ ||1/2p ||∇en+1

φ ||1/2p

≤
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin
||enu − en+1

u ||2f +
1

4
ρg4t||K1/2∇en+1

φ ||2p

+
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin
||un+1 − un||2f +

1

4
ρg4t||K1/2∇en+1

φ ||2p (2.20)

In the RHS of (2.19)

φn+1 − φn −4tφt(tn+1) = φn+1 − φn − (φ(tn+1)− φ(tn)) + (φ(tn+1)− φ(tn))−4tφt(tn+1)

= wn+1
p,1 + wn+1

p,2

||wn+1
p,1 ||2p =

∫
Ω

(

∫ tn+1

tn
(Ph − I)φt(t)dt)

2dx ≤ 4t
∫ tn+1

tn
||(Ph − I)φt(t)||2pdt
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And

||wn+1
p,2 ||2p =

∫
Ω

(

∫ tn+1

tn
(t− tn)φtt(t)dt)

2dx ≤ 4t3
∫ tn+1

tn
||φtt(t)||2pdt

Similarly in (2.19)

un+1 − un −4tut(tn+1) = un+1 − un − (u(tn+1)− u(tn)) + (u(tn+1)− u(tn))−4tut(tn+1)

= wn+1
u,1 + wn+1

u,2

And we can show

||wn+1
f,1 ||

2
f ≤ 4t

∫ tn+1

tn
||(Ph − I)ut(t)||2fdt

||wn+1
f,2 ||

2
f ≤ 4t3

∫ tn+1

tn
||utt(t)||2fdt

Thus in (2.19), we can bound the term

2ρgS0(φn+1 − φn −4tφt(tn+1), en+1
φ )p + 2ρ(un+1 − un −4tut(tn+1), vh)f

= 2ρgS0(wn+1
p,1 + wn+1

p,2 , en+1
φ )p + 2ρ(wn+1

f,1 + wn+1
f,2 , vh)f

≤ 4ρgS2
0

4t
||wn+1

p,1 + wn+1
p,2 ||2p +

1

4
ρg4t||K1/2∇en+1

φ ||2p +
4ρ2

4tµ
||wn+1

f,1 + wn+1
f,2 ||

2
f +

µ4t
4
||∇en+1

u ||2f

(2.21)

Combining (2.19), (3.9), (2.21), we have

ρgS0(||en+1
φ ||2p − ||enφ||2p) + ρ(||en+1

u ||2f − ||enu||2f ) + ρgS0||en+1
φ − enφ||2p + ρ||en+1

u − enu||2f

+24tap(en+1
φ , en+1

φ ) + 24taf (en+1
u , en+1

u )

≤ 4ρgS2
0

4t
||wn+1

p,1 + wn+1
p,2 ||2p +

1

4
ρg4t||K1/2∇en+1

φ ||2p +
4ρ2

4tµ
||wn+1

f,1 + wn+1
f,2 ||

2
f +

µ4t
4
||∇en+1

u ||2f

+
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin
||enu − en+1

u ||2f +
1

4
ρg4t||K1/2∇en+1

φ ||2p

+
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin
||un+1 − un||2f +

1

4
ρg4t||K1/2∇en+1

φ ||2p (2.22)
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Adding up the inequality from 1 to N − 1

ρgS0(||eNφ ||2p − ||e0
φ||2p) + ρ(||eNu ||2f − ||e0

u||2f ) + ρgS0

N−1∑
i=0

(||ei+1
φ − eiφ||2p) + ρ

N−1∑
i=0

(||ei+1
u − eiu||2f )

+24t
N−1∑
i=0

ap(e
i+1
φ , ei+1

φ ) + 24t
N−1∑
i=0

af (e
i+1
u , ei+1

u )

≤ 4ρgS2
0

4t

N−1∑
i=0

||wi+1
p,1 + wi+1

p,2 ||2p +
3

4
ρg

N−1∑
i=0

4t||K1/2∇ei+1
φ ||

2
p

+
4ρ2

4tµ

N−1∑
i=0

||wi+1
f,1 + wi+1

f,2 ||
2
f +

µ4t
4

N−1∑
i=0

||∇ei+1
u ||2f

+
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin

N−1∑
i=0

(||eiu − ei+1
u ||2f + ||ui+1 − ui||2f ) (2.23)

From the coercivity of af (·, ·) and ap(·, ·)

24t
N−1∑
i=0

ap(e
i+1
φ , ei+1

φ ) ≥ 2ρg4t
N−1∑
i=0

||K1/2∇ei+1
φ ||

2
p

24t
N−1∑
i=0

af (e
i+1
u , ei+1

u ) ≥ 2µ4t
N−1∑
i=0

||∇ei+1
u ||2f

Simplifying (2.23),

ρgS0||eNφ ||2p + ρ||eNu ||2f + ρgS0

N−1∑
i=0

(||ei+1
φ − eiφ||2p)

+(ρ−
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin
)
N−1∑
i=0

(||eiu − ei+1
u ||2f

≤ 4ρgS2
0

4t

N−1∑
i=0

||wi+1
p,1 + wi+1

p,2 ||2p +
4ρ2

4tµ

N−1∑
i=0

4tµ||wi+1
f,1 + wi+1

f,2 ||
2
f

+
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin

N−1∑
i=0

||ui+1 − ui||2f

≤ 4ρgS2
0

4t
(4t

∫ tN

t0
||(Ph − I)φt(t)||2pdt+4t3

∫ tN

t0
||φtt(t)||2pdt)

+
4ρ2

4tµ
(4t

∫ tN

t0
||(Ph − I)ut(t)||2fdt+4t3

∫ tN

t0
||utt(t)||2fdt)

+
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin

∫ tN

t0
||ut(t)||2fdt ≤ C(4t2 + h4) (2.24)
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provided that

ρ−
44tρgC2

fC
2
gCPF (Ωp)Cinvh

−1

kmin
≥ 0

4t ≤ kminh

4gC2
fC

2
pCPF (Ωp)Cinv

2.5.2 ERROR ANALYSIS OF SDsplit

SDSplitρgS0(
φ
n+1/2
h − φnh
4t

, ψh)p +
1

2
ap(φ

n+1/2
h , ψh)−

1

2
CI(u

n
h, ψh) =

1

2
ρg(f

n+1/2
2 , ψh)p (2.25)

ρ(
un+1
h − unh
4t

, vh)f + af (u
n+1
h , vh)− (pn+1

h ,∇ · vh) + CI(vh, φ
n+1
h ) = (fn+1

1 , vh)f (2.26)

(qh,∇ · un+1
h ) = 0 for ∀qh ∈ Qh

1

2
ρgS0(

φn+1
h − φn+1/2

h

4t
, ψh)p +

1

2
ap(φ

n+1
h , ψh)−

1

2
CI(u

n+1
h , ψh) =

1

2
ρg(fn+1

2 , ψh)p (2.27)

Define un = Phu(tn), φn = Phφ(tn), φn+1/2 = Phφ(tn+1/2), pn = Php(t
n) Rewrite the equations

of the true solution and using the property of the projection:

ρgS0(
φn+1/2 − φn
4t

, ψh)p +
1

2
ap(φn+1/2, ψh)−

1

2
CI(un+1/2, ψh) =

ρgS0(
φn+1/2 − φn
4t

− φt(tn+1/2), ψh)p +
1

2
ρg(f

n+1/2
2 , ψh)p (2.28)

ρ(
un+1 − un
4t

, vh)f + af (un+1, vh)− (pn+1,∇ · vh) + CI(vh, φn+1)

= ρ(
un+1 − un
4t

− ut(tn+1), vh) + (fn+1
1 , vh)f (2.29)

ρgS0(
φn+1 − φn+1/2

4t
, ψh)p +

1

2
ap(φn+1, ψh)−

1

2
CI(un+1, ψh) =

ρgS0(
φn+1 − φn+1/2

4t
− φt(tn+1), ψh)p +

1

2
ρg(fn+1

2 , ψh)p (2.30)
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Define the error enφ = Phφ(tn+1)−φn+1
h = φn+1−φn+1

h , enu = Phu(tn)−unh = un−unh, we have

the error equations (2.28)-(2.25), (2.29)-(2.26) and (2.30)-(2.27) :

ρgS0(
e
n+1/2
φ − enφ
4t

, ψh)p +
1

2
ap(e

n+1/2
φ , ψh)−

1

2
CI(un+1/2 − unh, ψh)

= ρgS0(
φn+1 − φn
4t

− φt(tn+1), ψh)p (2.31)

ρ(
en+1
u − enu
4t

, vh)f + af (e
n+1
u , vh)− (pn+1 − pn+1

h ,∇ · vh) + CI(vh, φn+1 − φn+1/2
h )

= ρ(
un+1 − un
4t

− ut(tn+1), vh)f (2.32)

ρgS0(
en+1
φ − en+1/2

φ

4t
, ψh)p +

1

2
ap(e

n+1
φ , ψh)−

1

2
CI(e

n+1
φ , ψh)

= ρgS0(
φn+1 − φn+1/2

4t
− φt(tn+1), ψh)p (2.33)

In (2.31), take ψh = 24ten+1/2
φ and in (2.32), take vh = 24ten+1

u , ψh = 24ten+1
φ in (2.33)

and add up

ρgS0(||en+1/2
φ ||2p − ||enφ||2p) + ρ(||en+1

u ||2f − ||enu||2f ) + ρgS0(||en+1
φ ||2p − ||e

n+1/2
φ ||2p)

+ρgS0||en+1/2
φ − enφ||2p + ρ||en+1

u − en+1/2
u ||2f + ρgS0||en+1

φ − en+1/2
φ ||2p

+24tap(en+1/2
φ , e

n+1/2
φ ) + 24taf (en+1

u , en+1
u ) + +24tap(en+1

φ , en+1
φ )

= 2ρgS0(φn+1/2 − φn −4tφt(tn+1/2), e
n+1/2
φ )p + 2ρ(un+1 − un −4tut(tn+1), en+1

u )f

+2ρgS0(φn+1 − φn+1/2 −4tφt(tn+1), en+1
φ )p

+Interface Term (2.34)

Where

Interface Term = 4tCI(un+1/2 − unh, e
n+1/2
φ )− 24tCI(en+1

u , φn+1 − φn+1/2
h )

+4tCI(en+1
u , en+1

φ ) = 4tCI(un+1/2 − un, en+1/2
φ ) +4tCI(enu, e

n+1/2
φ )

−24tCI(en+1
u , e

n+1/2
φ )− 24tCI(en+1

u , φn+1 − φn+1/2) +4tCI(en+1
u , en+1

φ )

= 4tCI(un+1/2 − un, en+1/2
φ )− 24tCI(en+1

u , φn+1 − φn+1/2) +4tCI(enu, e
n+1/2
φ )

−24tCI(en+1
u , e

n+1/2
φ ) +4tCI(en+1

u , en+1
φ )

= 4tCI(un+1/2 − un, en+1/2
φ )− 24tCI(en+1

u , φn+1 − φn+1/2) +4tCI(enu − en+1
u , e

n+1/2
φ )

+4tCI(en+1
u , en+1

φ − en+1/2
φ )
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We can bound the interface term by using the standard inequalities

Interface Term ≤
2ρg4tC2

fC
2
gCINV h

−1CPF (Ωp)

kmin
||un+1/2 − un||2f +

ρg4t
8
||K1/2∇en+1/2

φ ||2p

+
2ρ2g24tC2

fC
2
gCINV h

−1CPF (Ωf )

µ
||φn+1 − φn+1/2||2p +

µ4t
2
||∇en+1

u ||2f

+
2ρg4tC2

fC
2
gCINV h

−1CPF (Ωp)

kmin
||enu − en+1

u ||2f +
ρg4t

8
||K1/2∇en+1/2

φ ||2p

+
2ρ2g24tC2

fC
2
gCINV h

−1CPF (Ωf )

µ
||en+1

φ − en+1/2
φ ||2p +

µ4t
4
||∇en+1

u ||2f

In (2.34),

φn+1/2 − φn −4tφt(tn+1/2) = φn+1/2 − φn − (φ(tn+1/2)− φ(tn))

+(φ(tn+1/2)− φ(tn))−4tφt(tn+1/2)

= w
n+1/2
p,1 + w

n+1/2
p,2

where

||wn+1/2
p,1 ||2 =

∫
Ω

(

∫ tn+1/2

tn
(Ph − I)φt(t)dt)

2dx

≤
∫

Ω

∫ tn+1/2

tn
((Ph − I)φt(t))

2dt4tdx

≤ 4t
∫ tn+1/2

tn
||(Ph − I)φt(t)||2pdt

≤ 4t
∫ tn+1

tn
||(Ph − I)φt(t)||2pdt

And

||wn+1/2
p,2 ||2p =

∫
Ω

(

∫ tn+1/2

tn
(t− tn)φtt(t)dt)

2dx

≤
∫

Ω

∫ tn+1/2

tn
(t− tn)2dt

∫ tn+1/2

tn
(φtt(t)dt)

2dtdx

≤ 4t3
∫ tn+1

tn
||φtt(t)||2pdt

Sililarly

un+1 − un −4tut(tn+1) = un+1 − un − (u(tn+1 − u(tn)) + (u(tn+1 − u(tn))4tut(tn+1)

= wn+1
f,1 + wn+1

f,2
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Where

||wn+1
f,1 ||

2
f ≤ 4t

∫ tn+1

tn
||(Ph − I)ut(t)||2fdt

||wn+1
f,2 ||

2
f ≤ 4t3

∫ tn+1

tn
||utt(t)||2fdt

And

φn+1 − φn+1/2 −4tφt(tn+1) = φn+1 − φn+1/2 − (φ(tn+1)− φ(tn+1/2))

+(φ(tn+1)− φ(tn+1/2))−4tφt(tn+1)

= wn+1
p,1 + wn+1

p,2

Where

||wn+1
p,1 ||2p ≤ 4t

∫ tn+1

tn
||(Ph − I)φt(t)||2pdt

||wn+1
p,2 ||2p ≤ 4t3

∫ tn+1

tn
||φtt(t)||2pdt

In (2.34), the consistent errors can be bounded by

2ρgS0(φn+1/2 − φn −4tφt(tn+1/2), e
n+1/2
φ )p + 2ρ(un+1 − un −4tut(tn+1), en+1

u )f

+2ρgS0(φn+1 − φn+1/2 −4tφt(tn+1), en+1
φ )p

≤ 16ρgS2
0

kmin4t
(4t

∫ tn+1

tn
||(Ph − I)φt(t)||2pdt+4t3

∫ tn+1

tn
||φtt(t)||2pdt)

+
8ρg4t

8
||K1/2∇en+1/2

φ ||2p +
8ρg4t

8
||K1/2∇en+1

φ ||2p

+
4ρ2

µ4t
(4t

∫ tn+1

tn
||(Ph − I)ut(t)||2fdt+4t3

∫ tn+1

tn
||utt(t)||2fdt) +

µ4t
4
||∇en+1

u ||2f
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(2.34) becomes

ρgS0(||en+1
φ ||2p − ||enφ||2p) + ρ(||en+1

u ||2f − ||enu||2f )

+ρgS0||en+1/2
φ − enφ||2p + ρ||en+1

u − en+1/2
u ||2f + ρgS0||en+1

φ − en+1/2
φ ||2p

+24tap(en+1/2
φ , e

n+1/2
φ ) + 24taf (en+1

u , en+1
u ) + 24tap(en+1

φ , en+1
φ )

≤
2ρg4tC2

fC
2
gCINV h

−1CPF (Ωp)

kmin
||un+1/2 − un||2f +

ρg4t
8
||K1/2∇en+1/2

φ ||2p

+
2ρ2g24tC2

fC
2
gCINV h

−1CPF (Ωf )

µ
||φn+1 − φn+1/2||2p +

µ4t
2
||∇en+1

u ||2f

+
2ρg4tC2

fC
2
gCINV h

−1CPF (Ωp)

kmin
||enu − en+1

u ||2f +
ρg4t

8
||K1/2∇en+1/2

φ ||2p

+
2ρ2g24tC2

fC
2
gCINV h

−1CPF (Ωf )

µ
||en+1

φ − en+1/2
φ ||2p +

µ4t
4
||∇en+1||2f

+
16ρgS2

0

kmin4t
(4t

∫ tn+1

tn
||(Ph − I)φt(t)||2pdt+4t3

∫ tn+1

tn
||φtt(t)||2pdt)

+
8ρg4t

8
||K1/2∇en+1/2

φ ||2p +
8ρg4t

8
||K1/2∇en+1

φ ||2p +
4ρ2

µ4t
(4t

∫ tn+1

tn
||(Ph − I)ut(t)||2fdt

+4t3
∫ tn+1

tn
||utt(t)||2fdt) +

µ4t
4
||∇en+1

u ||2f (2.35)

With the coercivity of ap(·, ·) and af (·, ·), we have

4tap(en+1/2
φ , e

n+1/2
φ ) ≥ ρg4t||K1/2∇en+1/2

φ ||2p

4tap(en+1
φ , en+1

φ ) ≥ ρg4t||K1/2∇en+1
φ ||2p

4taf (en+1
u , en+1

u ) ≥ µ4t||∇en+1
u ||2f
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Combining the same terms and adding up the inequality from 0 to N − 1

ρgS0||eN+1
φ ||2p + ρ||eN+1

u ||2f +
N−1∑
i=0

(ρ−
2ρg4tC2

fC
2
gCINV h

−1CPF (Ωp)

kmin
)||ei+1

u − ei+1/2
u ||2f

+
N−1∑
i=0

(ρgS0 −
2ρ2g24tC2

fC
2
gCINV h

−1CPF (Ωf )

µ
)||ei+1

φ − ei+1/2
φ ||2p

≤ ρgS0||e0
φ||2p + ρ||e0

u||2 +
N−1∑
i=0

2ρg4tC2
fC

2
gCINV h

−1CPF (Ωp)

kmin
||ui+1/2 − ui||2f

+
N−1∑
i=0

2ρ2g24tC2
fC

2
gCINV h

−1CPF (Ωf )

µ
||φi+1 − φi+1/2||2p

+
16ρgS2

0

kmin4t
(4t

∫ tN+1

t0
||(Ph − I)φt(t)||2pdt+4t3

∫ tN+1

t0
||φtt(t)||2pdt)

+
8ρg4t

8
||K1/2∇en+1/2

φ ||2p +
8ρg4t

8
||K1/2∇en+1

φ ||2p +
4ρ2

µ4t
(4t

∫ tN+1

t0
||(Ph − I)ut(t)||2fdt

+4t3
∫ tN+1

t0
||utt(t)||2fdt) (2.36)

ρgS0||eN+1
φ ||2p + ρ||eN+1

u ||2f ≤ C(4t2 + h4)

provided that

ρ−
2ρg4tC2

fC
2
gCINV h

−1CPF (Ωp)

kmin
≥ 0 and

ρgS0 −
2ρ2g24tC2

fC
2
gCINV h

−1CPF (Ωf )

µ
≥ 0

that is

4t ≤ min

{
µS0h

ρgC2
fC

2
pCINVCPF (Ωf )

,
kminh

2gC2
fC

2
pCINVCPF (Ωp)

}
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2.6 NUMERICAL EXPERIMENTS

We present numerical experiments to test the algorithms proposed in this chapter. First,

using the exact solution introduced in [88], we test accuracy. One new aspect is that we also

test mass conservation errors across the interface I, the last columns of Tables 2.1 through

2.4. While mixed methods are expected to have better conservation properties than the

non-mixed formulation we use, we find the mass conservation errors are quite acceptable in

this limited test. Second, we test stability over longer time intervals and small values of

kmin and S0. In these tests the splitting based partitioned methods appear to be stable for

larger time step sizes than the IMEX based partitioned methods and that good partitioned

methods are available when one parameter is small. When both are small, a very small time

step is required for stability for the four methods. The code was implemented using the

software package FreeFEM++.

2.6.1 Test 1: Convergence rates.

For the first test we select the velocity and pressure field given in [88]. Let the domain Ω be

composed of Ωf = (0, 1)× (1, 2) and Ωp = (0, 1)× (0, 1) with the interface Γ = (0, 1)× {1}.

The exact velocity field is given by

u1(x, y, t) = (x2(y − 1)2 + y) cos t ,

u2(x, y, t) =

(
−2

3
x(y − 1)3 + 2− π sin(πx)

)
cos t ,

p(x, y, t) = (2− π sin(πx)) sin
(π

2
y
)

cos t ,

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos t.

To check the rates of convergence, take the time interval 0 ≤ t ≤ 1 and in this first test

the physical parameters ρ, g, µ,K, S0 and α are simply set to 1. We utilize Taylor-Hood

P2−P1 finite elements for the Stokes subdomain and continuous piecewise quadratic finite

element for the Darcy subdomain. The boundary conditions on the exterior boundaries

(not including the interface I) are inhomogeneous Dirichlet: uh = uexact, φh = φexact on the
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exterior boundaries. The initial data and source terms are chosen to correspond the exact

solution.

For convenience, we denote ‖ · ‖I = ‖ · ‖L2(0,T ;L2(I)), ‖ · ‖∞ = ‖ · ‖L∞(0,T ;L2(Ωf |p)) and

‖ · ‖2 = ‖ · ‖L2(0,T ;L2(Ωf |p)). We show below in Table 2.1–2.4 the errors of approximated

velocity and Darcy pressure in several different norms. In the last columns of the tables are

the errors in mass conservation on I.

From the tables, we see that SDsplit, BEsplit1 and BEsplit2 are first order methods

while CNsplit is second order accuracy, as predicted. Further, the error levels of the first

order methods seem quite acceptable as are the mass conservation errors across I.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 2.921e-3 7.194e-2 4.030e-3 4.626e-3 2.280e-1

1/10 8.954e-4 2.181e-2 1.183e-2 1.661e-3 4.070e-2

1/20 4.198e-4 5.751e-3 6.367e-4 9.080e-4 9.566e-3

1/40 2.105e-4 1.959e-3 3.399e-4 4.977e-4 2.376e-3

1/80 1.057e-4 8.328e-4 1.771e-4 2.668e-4 5.047e-4

Table 2.1: The convergence performance for SDsplit method. The time step ∆t is set to be

equal to mesh size h.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 3.448e-3 7.371e-2 4.289e-3 4.766e-3 2.278e-1

1/10 1.657e-3 2.343e-2 1.163e-3 1.665e-3 4.694e-2

1/20 8.405e-4 7.200e-3 5.409e-4 8.126e-3 9.531e-3

1/40 4.239e-4 2.923e-3 2.705e-4 4.081e-4 2.369e-3

1/80 2.128e-4 1.367e-3 1.356e-4 2.046e-4 5.035e-4

Table 2.2: The convergence performance for BEsplit1 method. The time step ∆t is set to

be equal to mesh size h.
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h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 2.768e-3 7.130e-2 9.738e-3 1.649e-2 2.547e-1

1/10 9.282e-4 2.164e-2 4.833e-3 8.441e-3 7.087e-2

1/20 4.390e-4 5.610e-3 2.447e-3 4.231e-3 2.722e-2

1/40 2.196e-4 1.860e-3 1.233e-3 2.119e-3 1.212e-2

1/80 1.100e-4 7.739e-4 6.188e-4 1.060e-3 6.258e-3

Table 2.3: The convergence performance for BEsplit2 method. The time step ∆t is set to

be equal to mesh size h.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 3.044e-3 7.789e-2 7.647e-3 1.112e-2 2.284e-1

1/10 4.323e-4 2.259e-2 1.520e-3 2.085e-3 4.795e-2

1/20 5.466e-5 5.193e-3 3.654e-4 4.961e-4 9.849e-3

1/40 7.829e-6 1.270e-3 9.081e-5 1.227e-4 2.487e-3

1/80 1.573e-6 3.187e-4 2.265e-5 3.056e-5 5.273e-4

Table 2.4: The convergence performance for CNsplit method. The time step ∆t is set to

be equal to mesh size h.

2.6.2 Test 2: Stability in case of small parameters.

In this test, we compare the performance of our proposed methods for uncoupling Stokes-

Darcy flows for three cases: small kmin and O(1) S0, O(1) kmin and small S0, and small kmin

and small S0. The last case is separated into several sub-cases to distinguish ’extremely

small’ and ’moderately small’ S0 and kmin. Our test here is to check the largest time step

for which the four methods are stable over long time intervals. Since the problem is linear

we can take the body force terms to be zero. The true solution decays as t → ∞, so any
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growth in the approximate solution is an instability. We take the initial condition

u1(x, y, 0) = (x2(y − 1)2 + y) ,

u2(x, y, 0) =

(
−2

3
x(y − 1)3 + 2− π sin(πx)

)
,

p(x, y, 0) = (2− π sin(πx)) sin
(π

2
y
)
,

φ(x, y, 0) = (2− π sin(πx))(1− y − cos(πy)).

Define the kinetic energy En = ‖unh‖2
f + ‖φnh‖2

p. The final time Tf in our experiment is 10.0

and the system parameters are simply set to be 1.0, except hydraulic conductivity kmin and

storativity coefficient S0. We take the mesh size h = 1/10 and run the experiment with

different time-step sizes. With each value of ∆t, we compute the kinetic energy at final time,

i.e., EN where N = Tf/∆t. However, we use 10250 as a ’cut-off’ value for En. If En exceeds

10250 at some n, we stop and output En, the kinetic energy at that point. By looking at

these figures, we can estimate the largest ∆t for which numerical methods is stable.

Since Stokes flows and porous media flows are not typically high velocity flows, and since

the domains are large with associated significant costs for subdomain solves, the ability to

take large time steps is desirable. In the stability tests for small parameter kmin or S0 the

three first order methods are superior. They are stable for larger time steps, as predicted

by the theory. The CNsplit method generally requires a much smaller time step to attain

stability. Thus, in some of the figures, the largest time steps needed for the stability of

CNsplit are not shown in some cases. To present the CNsplit case, Figure 2.7 gives a graph

showing stability of CNsplit alone with numerous small values of S0 and kmin.

2.7 CONCLUSIONS

In both our analysis and tests on problems kmin and S0 are small it seems that stability over

long time intervals (and the associated time step restriction) is a key issue in uncoupling

the Stokes-Darcy problem. With one small parameter, the first order splitting methods had

significant advantages in stability and are a good option when kmin or S0 is small.
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Many other open problems remain. Finding partitioned methods stable for large time

steps when both kmin, S0 are small is an open problem. Further, while the first order methods

gave acceptable error levels, more accuracy is always desirable. The stability of higher order

partitioned methods for large time steps and small parameters also is also largely an open

problem. We have not tried to optimize the dependence of the time step barriers upon the

domain size. This is an important and open problem, especially for domains with large aspect

ratios. At this point we do not know if a partitioned method exists with time step restriction

independent of S0, kmin, µ and h. If kmin, µ → 0 the problem reduces to ut + Cφ = 0 and

φt − Cu = 0 and any such algorithm would be an explicit method for an abstract wave-

like equation written as a first order system. The behavior of numerical methods (both

partitioned time stepping methods and iterative decoupling methods for use with monolithic

time discretizations) in the quasi-static limit (as S0 → 0) is an open question critical in

applications to aquifers since quasi static models are common, e.g., [23] for an example

and [86] for a first step to its resolution. In many problems kmin and S0 are both small

and the double asymptotics of both parameters is important and open. Since fluid flow acts

on different time scales in free flow and in porous media, developing algorithms with good

properties that allow different time step sizes in the two domains (multi-rate or asynchronous

methods) is an important and largely open challenge.
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Figure 2.1: EN using different time step sizes and splitting methods with kmin = 1 and

S0 = 10−12.

Figure 2.2: EN using different time step sizes and splitting methods with kmin = 10−12 and

S0 = 1.
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Figure 2.3: EN using different time step sizes and splitting methods with kmin = 10−3 and

S0 = 10−3.

Figure 2.4: EN using different time step sizes and splitting methods with kmin = 10−4 and

S0 = 10−4.
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Figure 2.5: EN using different time step sizes and splitting methods with kmin = 10−4 and

S0 = 10−12.

Figure 2.6: EN using different time step sizes and splitting methods with kmin = 10−12 and

S0 = 10−4.
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Figure 2.7: Stability of CNsplit at different small values of kmin and S0.
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3.0 ANALYSIS OF A MULTI-RATE SPLITTING METHOD FOR

UNCOUPLING EVOLUTIONARY GROUNDWATER-SURFACE WATER

FLOWS

3.1 NOTATIONS AND NUMERIC ALGORITHM

Partitioned methods have great advantages for multi-physics, multi-domain problems, e.g.,

[68], [70], [88], [104]. Splitting methods, one approach for partitioning, have been widely

used in applications [55], [50]. For first steps in partitioned method for Stokes-Darcy, see

Mu and Zhu [88], extended to a multi-rate method in [105]. For the Stokes-Darcy problem,

typical velocities are greater in the fluid region than in the porous media region. Therefore,

there are significant advantages in accuracy and efficiency in using a small time step size

in the fluid region and a large time step size in the porous media region. However, both

partitioning and asynchronous time steps require interpolation of unknown values for the

solves and this manufacturing of required value can introduce instabilities. Our work herein

is motivated by the search for more partitioned methods, which can accurately capture the

features of the physical process while making it easy to calculate numerically. The interface

coupling conditions are conservation of mass across the interface, balance of forces and

the Beavers-Joseph-Saffman condition, [8], [57], [58], [97], [101]. More general application-

oriented partitioned methods and more general IMEX and splitting methods have been

widely studied, see, e.g., [113], [110], [3], [27], [37], [53], [113], [75], [116].

In comparison with the multi-rate method in [105], the method herein starts from a

Darcy solve, from which an intermediate velocity in porous media is derived, and then has

r(a constant) Stokes solves in sequence and ends with a Darcy solve at the following time

level, while the multistep method in [105] has a different sequence of Stokes and Darcy solves,
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resulting in different conditions of stability and convergence.

Let W = Xf ×Xp, we consider a triangulation Th of the domain Ω̄f ∪ Ω̄p, depending on

a positive parameter h > 0, made up of triangles if d = 2, or tetrahedra if d = 3. Here we

make the same assumptions for the triangulation as in [88] that:

(1) each triangle or tetrahedra, say T, is such that int(T ) 6= ∅;

(2) int(T1) ∩ int(T2) = ∅ for each pair of different T1, T2 ∈ Th, and if T1 ∩ T2 = F 6= ∅, then

F is a common face or edge or vetex to T1 and T2;

(3) diam(T ) ≤ h for all T ∈ Th;

(4) Th is regular; that is, there exists a constant Cr ≥ 1 such that

max
T∈Th

diam(T )

ρT
≤ Cr ∀ h > 0

with ρT = sup diam(B): B is a ball contained in T;

(5) the triangulations Tfh and Tph induced on the subdomains Ωf and Ωp are compatible on

the interface Γ; that is, they share the same edges (if d = 2) or faces (if d = 3) therein;

(6) the triangulation TΓh induced on Γ is quasi-uniform; that is, it is regular and there exists

a constant CΓ > 0 such that

min
T∈TΓh

hT ≥ CΓh for all h > 0

And the equilibrium projection operator is defined as in section 2.2

Ph : (w(t), p(t)) ∈ (W,Q)→ (wh(t), ph(t)) ∈ (Wh, Qh), ∀ t ∈ [0, T ]

such that

a(wh(t),vh) + b(vh, ph(t)) = a(w(t),vh) + b(vh, p(t)), ∀ vh ∈ Wh

b(wh(t), qh) = 0, ∀ qh ∈ Qh
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Ph is a linear operator. Furthermore, from [88] and [77], if

w ∈ W ∩
{

(H2(Ωf ))
d ×H2(Ωp)

}
, the following approximation properties hold:

||Phw(t)−w(t)||0 ≤ Ch2

||Phw(t)−w(t)||1 ≤ Ch

||Php(t)− p(t)|| ≤ Ch

3.1.1 Algorithm

To streamline notations, choose a uniform timestep 4t in Ωf ,

P =
{

0 = t0, t1, t2, · · · , tN = T
}
, tj = j4t

The large time step in Ωp is given by a separate notations hereafter, 4s = r4t. Denote by

S = {0 = tm0 , tm1 , tm2 , · · · , tmM = T} ⊂ P ,

a subset satisfying tmk = rtk such that the positive constant r is fixed and Mr = N .

To streamline our notation further, we shall suppress the subscript ”h” and replace umh ,

φmh , pmh by um, φm, pm, respectively. For tm, tmk ∈ [0, T ], (um, φm, pm) will denote the

discrete approximation to (u(tm), φ(tm), p(tm)). In practice only the data at time t0 would

be provided. One important feature of the algorithm given bellow is that (um, pm) can be

calculated for m = mk,mk + 1, · · · mk+1 − 1 in parallel with φmk+1 .

• Given umk , φmk , do one step with the large time step 4s to obtain φm
∗
k ∈ Hph, such that

∀ ψ ∈ Hph

gS0

(
φm
∗
k − φmk

4s
, ψ

)
+

1

2
ap
(
φm
∗
k , ψ
)

=
1

2
g
(
f
m∗k
2 , ψ

)
+

1

2
g

∫
Γ

ψumk · nf . (3.1)

• Obtaining φm
∗
k from the first step, do r step in fluid region with small time step4t = 4s/r

to find (um+1, pm+1) for m = mk,mk + 1, · · · ,mk+1 − 1, such that ∀ (v, q) ∈ (Hfh, Qh)(
um+1 − um

4t
, v

)
+ af

(
um+1, v

)
+ b
(
v, pm+1

)
=

(
fm+1

1 , v
)
− g

∫
Γ

φm
∗
kv · nf ,

b
(
um+1, q

)
= 0. (3.2)
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• With φm
∗
k , umk+1 obtained from Step 1 and Step 2, do one step in porous region with the

large step 4s to find φmk+1 ∈ Hph, such that ∀ ψ ∈ Hph

gS0

(
φmk+1 − φm∗k
4s

, ψ

)
+

1

2
ap (φmk+1 , ψ) =

1

2
g
(
f
mk+1

2 , ψ
)

+
1

2
g

∫
Γ

ψumk+1 · nf . (3.3)

• Set k = k + 1 and repeat until k = M − 1.

3.2 STABILITY OF THE MULTI-RATE SPLITTING METHOD ON

STOKES-DARCY EQUATION

In this section, we prove conditional stability when the smaller time step in fluid region 4t

is within some restriction C, the restriction of larger time step can be also derived with the

ratio of r = 4s/4t fixed.

Theorem 3.2.1. Under the time step restriction

4t ≤ 4t ≤ 2h

gr(C∗f )2(C∗p)2CINV
min

{
S0ν

rCPF (Ωf )
,

kmin
3CPF (Ωg)

}
, (3.4)

where the constant CPF (Ωf/p) and C∗f , C∗p , CINV are from 2.3, 2.4 and 2.2, the asynchronous

algorithm is stable over 0 ≤ t <∞. We have the stability inequality:

1

2
||uml+1||2f +

1

2
gS0||φml+1||2p +

1

2
gS0

l∑
k=0

||φm∗k − φmk ||2p

≤ gC2
PF (Ωp)r4t

2kmin

l∑
k=0

||fm
∗
k

2 ||2p +
C2
PF (Ωf )4t

2ν

l∑
k=0

mk+1−1∑
i=mk

||f i+1
1 ||2f

+
gC2

PF (Ωp)r4t
4kmin

l∑
k=0

||fmk+1

2 ||2p.
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Proof. In (3.1), take ψ = 4sφm∗k , this gives

1

2
gS0(||φm∗k ||2p − ||φmk ||2p + ||φm∗k − φmk ||2p) +

1

2
4sap(φm

∗
k , φm

∗
k)

=
1

2
4sg(f

m∗k
2 , φm

∗
k) +

1

2
4sg

∫
Γ

φm
∗
kumk · nf . (3.5)

Taking v = 4tumk+1 in the second step (3.2), using divergence-free property, and summing

over m = mk,mk + 1, · · · ,mk+1 − 1 give

1

2
(||umk+1||2f +

mk+1−1∑
i=mk

||ui+1 − ui||2f − ||umk ||2f ) +4t
mk+1−1∑
i=mk

af (u
i+1, ui+1)

= 4t
mk+1−1∑
i=mk

(f i+1
1 , ui+1)− g4t

mk+1−1∑
i=mk

∫
Γ

φm
∗
kui+1 · nf . (3.6)

In the third step (3.3), taking ψ = 4sφmk+1 , we obtain:

1

2
gS0(||φmk+1||2p − ||φm

∗
k ||2p + ||φmk+1 − φm∗k ||2p) +

1

2
4sap(φmk+1 , φmk+1)

=
1

2
4sg(f

mk+1

2 , φmk+1) +
1

2
4sg

∫
Γ

φmk+1umk+1 · nf . (3.7)

Combining (3.5), (3.6), (3.7), we obtain:

1

2
gS0(||φmk+1||2p − ||φmk ||2p) +

1

2
(||umk+1||2f − ||umk ||2f )

+
1

2
gS0(||φm∗k − φmk ||2p + ||φmk+1 − φm∗k ||2p) +

1

2

mk+1−1∑
i=mk

||ui+1 − ui||2f

+
1

2
4sap(φm

∗
k , φm

∗
k) +

1

2
4sap(φmk+1 , φmk+1) +4t

mk+1−1∑
i=mk

af (u
i+1, ui+1)

=
1

2
4sg(f

m∗k
2 , φm

∗
k) +4t

mk+1−1∑
i=mk

(f i+1
1 , ui+1) +

1

2
4sg(f

mk+1

2 , φmk+1)

+
1

2
4sg

∫
Γ

φm
∗
kumk · nf − g4t

mk+1−1∑
i=mk

∫
Γ

φm
∗
kui+1 · nf +

1

2
4sg

∫
Γ

φmk+1umk+1 · nf . (3.8)
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Now, for the interface terms in the above energy equations (3.8):

Interface terms =
1

2
4sg

∫
Γ

φm
∗
kumk · nf − g4t

mk+1−1∑
i=mk

∫
Γ

φm
∗
kui+1 · nf

+
1

2
4sg

∫
Γ

φmk+1umk+1 · nf

=
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φm
∗
kumk · nf −4tg

mk+1−1∑
i=mk

∫
Γ

φm
∗
kui+1 · nf

+
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φmk+1umk+1 · nf .

Rewriting the interface terms as differences by splitting the middle term, this gives:

Interface terms =
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φm
∗
kumk · nf −

1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φm
∗
kui+1 · nf

−(
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φm
∗
kui+1 · nf −

1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φmk+1umk+1 · nf ). (3.9)

The Poincaré and inverse inequalities (2.3) and (2.4) now give the bounds:

1

2
4tg

mk+1−1∑
i=mk

|
∫

Γ

φm
∗
k(umk − ui+1) · nf |

≤ 1

2
4tg(C∗f )(C∗p)

mk+1−1∑
i=mk

||φm∗k ||1/2p ||∇φm
∗
k ||1/2p ||(umk − ui+1)||1/2f ||∇(umk − ui+1)||1/2f

≤ 1

2
4tg(C∗f )(C∗p)C

1/2
PF (Ωp)C

1/2
INV h

−1/2

mk+1−1∑
i=mk

||∇φm∗k ||p||(umk − ui+1)||f

≤ 4t
2
√
kmin

g(C∗f )(C∗p)C
1/2
PF (Ωp)C

1/2
INV h

−1/2

mk+1−1∑
i=mk

||κ1/2∇φm∗k ||p||(umk − ui+1)||f

≤
mk+1−1∑
i=mk

(
g4t

4
||κ1/2∇φm∗k ||2p +

g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−14t

4kmin
||(umk − ui+1)||2f )

≤ rg4t
4
||κ1/2∇φm∗k ||2p +

g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−14t

4kmin

mk+1−1∑
i=mk

||(umk − ui+1)||2f

≤ rg4t
4
||κ1/2∇φm∗k ||2p +

g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−1r4t

4kmin

mk+1−1∑
i=mk

||(ui+1 − ui)||2f . (3.10)
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For the last two terms in the equation (3.9), we use the identity:

−1

2
4tg

mk+1−1∑
i=mk

∫
Γ

(φm
∗
kui+1 − φmk+1umk+1) · nf

= −1

2
4tg

mk+1−1∑
i=mk

∫
Γ

φm
∗
k(ui+1 − umk+1) · nf −

1

2
4tg

mk+1−1∑
i=mk

∫
Γ

umk+1(φm
∗
k − φmk+1) · nf .

(3.11)

The Trace, Poincaré, Young and Holder inequalities give the bound :

1

2
4tg

mk+1−1∑
i=mk

|
∫

Γ

φm
∗
k(ui+1 − umk+1) · nf |

≤ rg4t
8
||κ1/2∇φm∗k ||2p +

g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−1r4t

2kmin

mk+1−1∑
i=mk

||(ui+1 − ui)||2f . (3.12)

and

1

2
4tg

mk+1−1∑
i=mk

|
∫

Γ

umk+1(φm
∗
k − φmk+1) · nf |

≤ 1

2
4trg(C∗f )(C∗p)C

1/2
PF (Ωf )C

1/2
INV h

−1/2||∇umk+1||f ||φm
∗
k − φmk+1||p

≤ ν4t
4
||∇umk+1||2f +

g2r2(C∗f )2(C∗p)2CINVCPF (Ωf )h
−14t

4ν
||φm∗k − φmk+1||2p. (3.13)

Next, using the Young and Holder’s inequality, we bound the other three terms on the right-

hand side of the equation (3.8) in a standard way:

1

2
4sg(f

m∗k
2 , φm

∗
k) =

1

2
r4tg(fm

∗
k , φm

∗
k) ≤ rg4t

8
||κ1/2∇φm∗k ||2p+

gC2
PF (Ωp)r4t

2kmin
||fm

∗
k

2 ||2p, (3.14)

4t
mk+1−1∑
i=mk

(f i+1
1 , ui+1) ≤

mk+1−1∑
i=mk

(
C2
PF (Ωf )4t

2ν
||f i+1

1 ||2f +
ν4t

2
||∇ui+1||2f ), (3.15)

1

2
4sg(f

mk+1

2 , φmk+1) ≤ rg4t
4
||κ1/2∇φmk+1||2p +

gC2
PF (Ωp)r4t

4kmin
||fmk+1

2 ||2p. (3.16)
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For the left side of the energy equation (3.8), we apply coercivity:

1

2
4sap(φm

∗
k , φm

∗
k) ≥ rg4t

2
||κ1/2∇φm∗k ||2p, (3.17)

4t
mk+1−1∑
i=mk

af (u
i+1, ui+1) ≥ ν4t

mk+1−1∑
i=mk

||∇ui+1||2f , (3.18)

1

2
4sap(φmk+1 , φmk+1) ≥ rg4t

2
||κ1/2∇φmk+1 ||2p. (3.19)

Combining all the inequalities from (3.10)-(3.19), we arrive at:

1

2
gS0(||φmk+1 ||2p − ||φmk ||2p) +

1

2
(||umk+1||2f − ||umk ||2f ) +

1

2
gS0||φm

∗
k − φmk ||2p

+(
1

2
gS0 −

g2r2(C∗f )2(C∗p)2CINVCPF (Ωf )h
−14t

4ν
)||φm∗k − φmk+1||2p

+(
1

2
−

3g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−1r4t

4kmin
)

mk+1−1∑
i=mk

||(ui+1 − ui)||2f

≤ gC2
PF (Ωp)r4t

2kmin
||fm

∗
k

2 ||2p +
C2
PF (Ωf )4t

2ν

mk+1−1∑
i=mk

||f i+1
1 ||2f +

gC2
PF (Ωp)r4t

4kmin
||fmk+1

2 ||2p.

Summing this over k = 0, 1, · · · , l with 0 ≤ l ≤M − 1, we have:

1

2
||uml+1||2f +

1

2
gS0||φml+1||2p +

1

2
gS0

l∑
k=0

||φm∗k − φmk ||2

+(
1

2
gS0 −

g2r2(C∗f )2(C∗p)2CINVCPF (Ωf )h
−14t

4ν
)

l∑
k=0

||φm∗k − φmk+1||2p

+(
1

2
−

3g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−1r4t

4kmin
)

l∑
k=0

mk+1−1∑
i=mk

||(ui+1 − ui)||2f

≤ gC2
PF (Ωp)r4t

2kmin

l∑
k=0

||fm
∗
k

2 ||2p +
C2
PF (Ωf )4t

2ν

l∑
k=0

mk+1−1∑
i=mk

||f i+1
1 ||2f

+
gC2

PF (Ωp)r4t
4kmin

l∑
k=0

||fmk+1

2 ||2p.
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Stability follows under the two conditions below:

1

2
gS0 −

g2r2(C∗f )2(C∗p)2CINVCPF (Ωf )h
−14t

4ν
≥ 0

and

1

2
−

3g(C∗f )2(C∗p)2CINVCPF (Ωp)h
−1r4t

4kmin
≥ 0.

These two are equivalent to the time step restriction:

4t ≤ 2h

gr(C∗f )2(C∗p)2CINV
min

{
S0ν

rCPF (Ωf )
,

kmin
3CPF (Ωp)

}
.

Remark 3.2.2. Recall that 4s = r4t with a fixed r. The time step restriction in Theorem

1 can be rephrased as:

4s ≤ 2h

g(C∗f )2(C∗p)2CINV
min

{
S0ν

rCPF (Ωf )
,

kmin
3CPF (Ωp)

}
.
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3.3 ERROR ANALYSIS

In this section, we estimate the error for the algorithm. Here we are using the following nota-

tions. Define umc = u(tm), φmc = φ(tm), pmc = p(tm), and define um = Phu(tm), φm = Phφ(tm),

pm = Php(t
m) to be the projection of the true solutions on to the finite element spaces, then

we set emc = umc − um, εmc = φmc − φm, ηmc = pmc − pm, and em = um − um, εm = φm − φm,

ηm = pm−pm. Obviously, we observe that u(tm)−um = emc + em and φ(tm)−φm = εmc + εm,

from approximation properties, we have||emc ||f + ||εmc ||p ≤ Ch2, ||∇emc ||f + ||∇εmc ||p ≤ Ch.

Moreover, we assume that u0 = u0 = Phu(t0), φ0 = φ0 = Phφ(t0), which imply e0 = ε0 = 0.

Rewriting the true solutions of the Stokes-Darcy equations, for(v, q) ∈ (Wh, Qh), we have

gS0

(
φm∗k − φmk

4s
, ψ

)
+

1

2
ap(φm∗k , ψ)− 1

2
g

∫
Γ

ψum∗k · nf

=
1

2
gS0(w

m∗k
p,s , ψ) +

1

2
g(f

m∗k
2 , ψ) (3.20)(

um+1 − um
4t

, v

)
+ af (um+1, v) + g

∫
Γ

vφm+1 · nf + b(v, pm+1)

= (wm+1
f,t , v) + (fm+1

1 , v) (3.21)

gS0

(
φmk+1

− φm∗k
4s

, ψ

)
+

1

2
ap(φmk+1

, ψ)− 1

2
g

∫
Γ

ψumk+1
· nf

=
1

2
gS0(wmk+1

p,s , ψ) +
1

2
g(f

mk+1

2 , ψ), (3.22)

where

w
m∗k
p,s =

φm∗k − φmk

4s
− φs(tm

∗
k)

=

[
φm∗k − φmk

4s
− φ(tm

∗
k)− φ(tmk)

4s

]
+

[
φ(tm

∗
k)− φ(tmk)

4s
− φs(tm

∗
k)

]
= w

m∗k
p,s,1 + w

m∗k
p,s,2. (3.23)
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and

wm+1
f,t =

um+1 − um
4t

− ut(tm+1)

=

[
um+1 − um
4t

−
u(t

m+1)− u(tm)

4t

]
+

[
u(tm+1)− u(tm)

4t
− ut(tm+1)

]
= wm+1

f,t,1 + wm+1
f,t,2 , (3.24)

wmk+1
p,s =

φmk+1
− φm∗k
4s

− φs(tmk+1)

=

[
φmk+1

− φm∗k
4s

− φ(tmk+1)− φ(tm
∗
k)

4s

]
+

[
φ(tmk+1)− φ(tm

∗
k)

4s
− φs(tmk+1)

]
= w

mk+1

p,s,1 + w
mk+1

p,s,2 . (3.25)

It is easy to verify the following properties of wf,t, wp,s, from the definition

wm+1
f,t,1 = (Ph − I)

u(tm+1)− u(tm)

4t
=

1

4t

∫ tm+1

tm
(Ph − I)ut(t)dt. (3.26)

then from Cauthy-Schwarz inequality, we have

||wm+1
f,t,1 ||

2
f =

1

4t2

∫
Ω

(

∫ tm+1

tm
(Ph − I)ut(t)dt)

2dx

≤ 1

4t2

∫
Ω

∫ tm+1

tm
((Ph − I)ut(t))

2dt

∫ tm+1

tm
12dtdx

≤ 1

4t

∫ tm+1

tm
||(Ph − I)ut(t)||2fdt. (3.27)

and

wm+1
f,t,2 =

u(tm+1)− u(tm)−4tut(tm+1)

4t
= −

∫ tm+1

tm
(t− tm)utt(t)dt

4t
, (3.28)

which means

||wm+1
f,t,2 ||

2
f =

1

4t2

∫
Ω

(

∫ tm+1

tm
(t− tm)utt(t)dt)

2dx

≤ 1

4t2

∫
Ω

∫ tm+1

tm
(utt(t))

2dt

∫ tm+1

tm
(t− tm)dtdx

≤ 4t
∫ tm+1

tm
||utt(t)||2fdt. (3.29)
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The similar property hold for w
m∗k
p,s,1, w

m∗k
p,s,2, w

mk+1

p,s,1 , w
mk+1

p,s,2 while considering the large time step

size 4s,

||wm
∗
k

p,s,1||2p =
1

4s2

∫
Ω

(

∫ tm
∗
k

tmk

(Ph − I)φs(s)ds)
2dx

≤ 1

4s2

∫
Ω

∫ tm
∗
k

tmk

((Ph − I)φs(s))
2ds

∫ tmk+1

t
m∗

k

12dsdx

≤ 1

4s

∫ tm
∗
k

tmk

||(Ph − I)φs(s)||2pds

≤ 1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2pds, (3.30)

||wm
∗
k

p,s,2||2p =
1

4s2

∫
Ω

(

∫ tm
∗
k

tmk

(t− tm∗k)φss(s)ds)
2dx

≤ 1

4s2

∫
Ω

∫ tm
∗
k

tmk

(φss(s))
2ds

∫ tmk+1

t
m∗

k

(t− tm)2dsdx

≤ 4s
∫ tm

∗
k

tmk

||φss(s)||2pds

≤ 4s
∫ tmk+1

tmk

||φss(s)||2pds. (3.31)

Similarly,

||wmk+1

p,s,1 ||2p ≤
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2pds. (3.32)

||wmk+1

p,s,2 ||2p ≤ 4s
∫ tmk+1

tmk

||φss(s)||2pds. (3.33)

Also we can show

mk+1−1∑
i=mk

||φi+1 − φm∗k ||
2 =

mk+1−1∑
i=mk

||Ph(φ(ti+1)− φ(tm
∗
k))||2

≤
mk+1−1∑
i=mk

C||φ(ti+1)− φ(tm
∗
k)||2.
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Then bound this term using the Cauthy-Schwartz inequality

mk+1−1∑
i=mk

C||φ(ti+1)− φ(tm
∗
k)||2 ≤

mk+1−1∑
i=mk

C

∫
Ωp

(φ(ti+1)− φ(tm
∗
k))2dx

≤
mk+1−1∑
i=mk

C

∫
Ωp

(

∫ ti+1

t
m∗

k

φs(s)ds)
2dx

≤
mk+1−1∑
i=mk

C

∫
Ωp

∫ ti+1

t
m∗

k

(φs(s))
2ds

∫ ti+1

t
m∗

k

12dsdx

≤
mk+1−1∑
i=mk

C4s
∫ tmk+1

tmk

||φs(s)||2pds

= Cr4s
∫ tmk+1

tmk

||φs(s)||2pds. (3.34)

Similarly, we have

||um∗k − umk
||2f ≤ C4s

∫ tmk+1

tmk

||ut(t)||2fdt. (3.35)

Subtracting (3.1) from (3.20) gives

gS0

(
εm
∗
k − εmk

4s
, ψ

)
+

1

2
ap(ε

m∗k , ψ) =
1

2
gS0(w

m∗k
p,s , ψ) +

1

2
g

∫
Γ

ψ(um∗k − u
mk) · nf . (3.36)

Considering the smaller time step size 4t and subtracting (3.2) from (3.21), we get

(
em+1 − em

4t
, v

)
+ af (e

m+1, v) + b(v, ηm+1) = (wm+1
f,t , v)− g

∫
Γ

(φm+1 − φm
∗
k)v · nf . (3.37)

Subtracting (3.3) from (3.22), we have

gS0

(
εmk+1 − εm∗k
4s

, ψ

)
+

1

2
ap(ε

mk+1 , ψ)

=
1

2
gS0(wmk+1

p,s , ψ) +
1

2
g

∫
Γ

ψ(umk+1
− umk+1) · nf . (3.38)
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Next we will show that under a certain time step restriction for the small time step 4t, the

multi-step splittling method has first order convergence with respect to the time step size

4t and is of second order accurate with respect to the spacing size h to the true solution at

each time level for large time step 4s.

Theorem 3.3.1. Suppose the true solution is smooth, the initial approximation are suffi-

ciently accurate and that the time step and mesh width 4t, h satisfy

4t ≤ h

rg(C∗f )2(C∗p)2CINV
min

{
kmin

2CPF (Ωp)
,

2S0ν

rCPF (Ωf )

}
then the following error estimate at the large time steps holds

1

2
gS0||εml+1||2p +

1

2
||eml+1 ||2f ≤ C(4t2 + h4)

where C = C(u, φ,Ωf/p,material parameters)

Proof. In equation (3.36), we take ψ = 4sεm∗k

1

2
gS0(||εm∗k ||2p − ||εmk ||2p + ||εm∗k − εmk ||2p) +

1

2
4sap(εm

∗
k , εm

∗
k)

=
1

2
4sgS0(w

m∗k
p,s , ε

m∗k) +
1

2
4sg

∫
Γ

εm
∗
k(um∗k − u

mk) · nf . (3.39)

Taking v = 4tem+1 in equation (3.37), using the divergence-free property, summing it over

m = mk,mk + 1, · · · ,mk+1 − 1, yield

1

2
(||emk+1 ||2f − ||emk ||2f ) +

1

2

mk+1−1∑
i=mk

||ei+1 − ei||2f +4t
mk+1−1∑
i=mk

af (e
i+1, ei+1)

= 4t
mk+1−1∑
i=mk

(wi+1
f,t , e

i+1)−4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm
∗
k)ei+1 · nf . (3.40)

Take ψ = 4sεmk+1 in equation (3.38)

1

2
gS0(||εmk ||2p − ||εm

∗
k ||2p + ||εmk+1 − εm∗k ||2p) +

1

2
4sap(εmk+1 , εmk+1)

=
1

2
4sgS0(wmk+1

p,s , εmk+1) +
1

2
4sg

∫
Γ

εmk+1(umk+1
− umk+1) · nf . (3.41)

69



Adding up the above inequalities (3.39), (3.40) and (3.41), we obtain

1

2
gS0(||εmk+1||2p − ||εmk ||2p) +

1

2

mk+1−1∑
i=mk

||ei+1 − ei||2f

+
1

2
gS0||εm

∗
k − εmk ||2p +

1

2
gS0||εmk+1 − εm∗k ||2p +

1

2
(||emk+1||2f − ||emk ||2f )

+
1

2
4sap(εm

∗
k , εm

∗
k) +4t

mk+1−1∑
i=mk

af (e
i+1, ei+1) +

1

2
4sap(εmk+1 , εmk+1)

=
1

2
4sgS0(w

m∗k
p,s , ε

m∗k) +4t
mk+1−1∑
i=mk

(wi+1
f,t , e

i+1) +
1

2
4sgS0(wmk+1

p,s , εmk+1)

+
1

2
4sg

∫
Γ

εm
∗
k(um∗k − u

mk) · nf −4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm
∗
k)ei+1 · nf

+
1

2
4sg

∫
Γ

εmk+1(umk+1
− umk+1) · nf . (3.42)

First, look at the last three interface terms on the righthand side of the equation (3.42)

1

2
4sg

∫
Γ

εm
∗
k(um∗k − u

mk) · nf =
1

2
4sg

∫
Γ

εm
∗
k(um∗k − umk

) · nf +
1

2
4sg

∫
Γ

εm
∗
kemk · nf

=
1

2
4sg

∫
Γ

εm
∗
k(um∗k − umk

) · nf +
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
kemk · nf ,

(3.43)

and

−4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm
∗
k)ei+1 · nf

= −4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm∗k)ei+1 · nf −4tg
mk+1−1∑
i=mk

∫
Γ

εm
∗
kei+1 · nf . (3.44)
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For the last term in (3.42), we have

1

2
4sg

∫
Γ

εmk+1(umk+1
− umk+1) · nf =

1

2
4sg

∫
Γ

εmk+1emk+1 · nf

=
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εmk+1emk+1 · nf . (3.45)

Summing up the above three equations (3.43)-(3.45), then the interface terms on the RHS

of (4.23) can be rewritten as

1

2
4sg

∫
Γ

εm
∗
k(um∗k − u

mk) · nf −4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm
∗
k)ei+1 · nf

+
1

2
4sg

∫
Γ

εmk+1(umk+1
− umk+1) · nf

=
1

2
4sg

∫
Γ

εm
∗
k(um∗k − umk

) · nf −4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm∗k)ei+1 · nf

+
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
kemk · nf −4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
kei+1 · nf

+
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εmk+1emk+1 · nf . (3.46)

We bound the terms in the equation (3.46) using trace and Young and Holder’s inequalities

(??)

|1
2
4sg

∫
Γ

εm
∗
k(um∗k − umk

) · nf |

≤ 1

2
4sg(C∗f )(C∗p)||εm∗k ||1/2p ||∇εm

∗
k ||1/2p ||um∗k − umk

||1/2f ||∇(um∗k − umk
)||1/2f

≤ 1

2
4sg(C∗f )(C∗p)C

1/2
PF (Ωp)C

1/2
INV h

−1/2||∇εm∗k ||p||um∗k − umk
||f

≤ g4s
8
||∇K1/2εm

∗
k ||2p +

g(C∗f )2(C∗p)2CPF (Ωp)CINV h
−14s

2kmin
||um∗k − umk

||2f . (3.47)
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and

| − 4tg
mk+1−1∑
i=mk

∫
Γ

(φi+1 − φm∗k)ei+1 · nf |

≤ 4tg(C∗f )(C∗p)C
1/2
PF (Ωf )C

1/2
INV h

−1/2

mk+1−1∑
i=mk

||∇ei+1||f ||φi+1 − φm∗k ||p

≤
mk+1−1∑
i=mk

ν4t
4
||∇ei+1||2f +

mk+1−1∑
i=mk

g2(C∗f )2(C∗p)2CPF (Ωf )CINV h
−14t

ν
||φi+1 − φm∗k ||

2
p. (3.48)

For the last three terms on the righthand side of the equation (3.46), split the middle one

into halves and associate the first two and the last two:

1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
kemk · nf −4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
kei+1 · nf +

1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εmk+1emk+1 · nf

=
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
k(emk − ei+1) · nf −

1

2
4tg

mk+1−1∑
i=mk

∫
Γ

(εm
∗
kei+1 − εmk+1emk+1) · nf

=
1

2
4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
k(emk − ei+1) · nf

−1

2
4tg

mk+1−1∑
i=mk

∫
Γ

(εm
∗
k(ei+1 − emk+1) + (εm

∗
k − εmk+1))emk+1 · nf . (3.49)

Bounding the terms in the equation (3.49) using the Trace, Young and Holder’s inequalities

again, we obtain

|1
2
4tg

mk+1−1∑
i=mk

∫
Γ

εm
∗
k(emk − ei+1) · nf |

≤ 1

2
4tg(C∗f )(C∗p)C

1/2
PF (Ωf )C

1/2
INV h

−1/2

mk+1−1∑
i=mk

||∇εm∗k ||p||emk − ei+1||f

≤ gr4t
8
||∇κ1/2εm

∗
k ||2p +

g(C∗f )2(C∗p)2CPF (Ωp)CINV h
−14t

2kmin

mk+1−1∑
i=mk

||emk − ei+1||2f

≤ gr4t
8
||∇κ1/2εm

∗
k ||2p +

g(C∗f )2(C∗p)2CPF (Ωp)CINV h
−14tr

2kmin

mk+1−1∑
i=mk

||ei+1 − ei||2f . (3.50)
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Similarly

| − 1

2
4tg

mk+1−1∑
i=mk

∫
Γ

(εm
∗
k(ei+1 − emk+1) + (εm

∗
k − εmk+1))emk+1 · nf |

≤ gr4t
8
||∇κ1/2εm

∗
k ||2p +

g(C∗f )2(C∗p)2CPF (Ωp)CINV h
−14t

2kmin

mk+1−1∑
i=mk

||emk − ei+1||2f

+
ν4t

4
||∇emk+1||2f +

g2(C∗f )2(C∗p)2CPF (Ωf )CINV h
−1r24t

4ν
||εm∗k − εmk+1 ||2p

≤ gr4t
8
||∇κ1/2εm

∗
k ||2p +

g(C∗f )2(C∗p)2CPF (Ωp)CINV h
−14tr

2kmin

mk+1−1∑
i=mk

||ei+1 − ei||2f

+
ν4t

4
||∇emk+1 ||2f +

g2(C∗f )2(C∗p)2CPF (Ωf )CINV h
−1r24t

4ν
||εm∗k − εmk+1||2p. (3.51)

Next, look at the first three terms on the RHS of the equation (3.42)

1

2
4sgS0(w

m∗k
p,s , ε

m∗k) +4t
mk+1−1∑
i=mk

(wi+1
f,t , e

i+1) +
1

2
4sgS0(wmk+1

p,s , εmk+1)

≤ g4s
8
||κ1/2∇εm∗k ||2p +

gS2
0C

2
PF (Ωp)4s
2kmin

||wm
∗
k

p,s ||2p +
ν4t

4

mk+1−1∑
i=mk

||∇ei+1||2f

+
C2
PF (Ωf )4t

ν

mk+1−1∑
i=mk

||wi+1
f,t ||

2
f +

g4s
4
||κ1/2∇εmk+1||2p +

gS2
0C

2
PF (Ωp)4s
4kmin

||wmk+1
p,s ||2p.

For the terms on the lefthand side of the equation (3.42), we have:

1

2
4sap(εm

∗
k , εm

∗
k) ≥ rg4t

2
||κ1/2∇εm∗k ||2p, (3.52)

4t
mk+1−1∑
i=mk

af (e
i+1, ei+1) ≥ ν4t

mk+1−1∑
i=mk

||∇ei+1||2f , (3.53)

1

2
4sap(εmk+1 , εmk+1) ≥ rg4t

2
||κ1/2∇εmk+1||2p. (3.54)
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Combining all the above inequalities (3.42)-(3.54), we arrive at

1

2
gS0(||εmk+1||2p − ||εmk ||2p) +

1

2
(||emk+1||2f − ||emk ||2f )

+(
1

2
gS0 −

g2(C∗f )2(C∗p)2CPF (Ωf )CINV h
−1r24t

4ν
)||εmk+1 − εm∗k ||2p

+(
1

2
−
g(C∗f )2(C∗p)2CPF (Ωp)CINV h

−1r4t
kmin

)

mk+1−1∑
i=mk

||ei+1 − ei||2f

≤
g(C∗f )2(C∗p)2CPF (Ωp)CINV h

−14s
2kmin

||um∗k − umk
||2f

+
g2(C∗f )2(C∗p)2CPF (Ωf )CINV h

−14t
ν

mk+1−1∑
i=mk

||φi+1 − φm∗k ||
2
p

+
gS2

0C
2
PF (Ωp)4s
2kmin

||wm
∗
k

p,s ||2p +
C2
PF (Ωf )4t

ν

mk+1−1∑
i=mk

||wi+1
f,t ||

2
f +

gS2
0C

2
PF (Ωp)4s
4kmin

||wmk+1
p,s ||2p.

Recall that the initial conditions for the algorithm are chosen so that e0 = 0, ε0 = 0.

Summing the inequality over k = 0, 1, · · · , l, combinning with the inequalities (3.23)-(3.35)
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we arrive at

1

2
gS0||εml+1 ||2p +

1

2
||eml+1||2f ≤

g(C∗f )2(C∗p)2CPF (Ωp)CINV4s
2kminh

l∑
k=0

||um∗k − umk
||2f

+
g2(C∗f )2(C∗p)2CPF (Ωf )CINV4t

νh

l∑
k=0

mk+1−1∑
i=mk

||φi+1 − φm∗k ||
2
p

+
gS2

0C
2
PF (Ωp)4s
2kmin

l∑
k=0

||wm
∗
k

p,s ||2p +
C2
PF (Ωf )4t

ν

l∑
k=0

mk+1−1∑
i=mk

||wi+1
f,t ||

2
f

+
gS2

0C
2
PF (Ωp)4s
4kmin

l∑
k=0

||wmk+1
p,s ||2p

≤
g(C∗f )2(C∗p)2CPF (Ωp)CINV4s2C

2kminh

l∑
k=0

∫ tmk+1

tmk

||ut||2fdt

+
g2(C∗f )2(C∗p)2CPF (Ωf )CINV r4t2

νh

l∑
k=0

mk+1−1∑
i=mk

∫ ti+1

ti
||φs||2pds

+
gS2

0C
2
PF (Ωp)4s
2kmin

l∑
k=0

(
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2pds+4s
∫ tmk+1

tmk

||φss||2pds)

+
C2
PF (Ωf )4t

ν

l∑
k=0

mk+1−1∑
i=mk

(
1

4t

∫ ti+1

ti
||(Ph − I)ut(t)||2fdt+4t

∫ ti+1

ti
||utt||2fdt)

+
gS2

0C
2
PF (Ωp)4s
4kmin

l∑
k=0

(
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2pds+4s
∫ tmk+1

tmk

||φss||2pds). (3.55)

provided that we have

1

2
gS0 −

g2(C∗f )2(C∗p)2CPF (Ωf )CINV h
−1r24t

4ν
≥ 0

and

1

2
−
g(C∗f )2(C∗p)2CPF (Ωp)CINV h

−1r4t
kmin

≥ 0
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This is equivalent to the restriction of 4t in Theorem 2.

From (3.34) and (3.35), we can estimate the terms on the RHS of (3.55)

g(C∗f )2(C∗p)2CPF (Ωp)CINV4s2C

2kminh

l∑
k=0

∫ tmk+1

tmk

||ut||2fdt

+
g2(C∗f )2(C∗p)2CPF (Ωf )CINV r4t2

νh

l∑
k=0

mk+1−1∑
i=mk

∫ ti+1

ti
||φs||2pds

=
g(C∗f )2(C∗p)2CPF (Ωp)CINV4s2C

2kminh

∫ T

0

||ut||2fdt

+
g2(C∗f )2(C∗p)2CPF (Ωf )CINV r4t2

νh

∫ T

0

||φs||2pds

≤ C4t2. (3.56)

and

gS2
0C

2
PF (Ωp)4s
2kmin

l∑
k=0

(
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2pds+4s
∫ tmk+1

tmk

||φss||2pds)

+
C2
PF (Ωf )4t

ν

l∑
k=0

mk+1−1∑
i=mk

(
1

4t

∫ ti+1

ti
||(Ph − I)ut(t)||2fdt+4t

∫ ti+1

ti
||utt||2fdt)

+
gS2

0C
2
PF (Ωp)4s
4kmin

l∑
k=0

(
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2pds+4s
∫ tmk+1

tmk

||φss||2pds)

=
gS2

0C
2
PF (Ωp)4s
2kmin

(
1

4s

∫ T

0

||(Ph − I)φs(s)||2pds+4s
∫ T

0

||φss||2pds)

+
C2
PF (Ωf )4t

ν
(

1

4t

∫ T

0

||(Ph − I)ut(t)||2fdt+4t
∫ T

0

||utt||2fdt)

+
gS2

0C
2
PF (Ωp)4s
4kmin

(
1

4s

∫ T

0

||(Ph − I)φs(s)||2pds+4s
∫ T

0

||φss||2pds) ≤ C(4t2 + h4). (3.57)

From (3.56) and (3.57), we have

1

2
gS0||εml+1||2 +

1

2
n||eml+1 ||2 ≤ C(4t2 + h4).

Remark 3.3.2. For fixed ratio of 4s/4t, we impose a time step restriction for the small

time step 4t of the form 4t ≤ Ch to estimate the error. Since convergence implies stability,

Theorem 2 also gives a stability condition depending on the physical parameters.
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3.4 NUMERICAL TESTS OF STABILITY AND CONVERGENCE RATE

This section consists of two testing parts. The first one is a test of stability. It reveals that

the methods are stable for beyond the range of 4t given by (3.4) in our analysis. The second

one confirms the predicted convergence rate and the efficiency of using different time steps

and spacing size.

3.4.1 Stability

In this test, we take Ωf = (0, 1)× (1, 2) and Ωp = [0, 1]× [0, 1] with interface Γ = (0, 1)× 1.

The exact solution is given by

(u1, u2) = ([x2(y − 1)2 + y]cos(wt), [−2

3
x(y − 1)3]cos(wt) + [2− πsin(πx)]cos(t)),

p = [2− πsin(πx)]sin(0.5πy)cos(t),

φ = [2− πsin(πx)][1− y − cos(πy)]cos(t).

Here we take r = 4s/4t = 5, and the initial conditions, boundary conditions, and the

forcing terms follows the solution.

We constructed the finite element spaces are by using the well-known MINI elements

for the Stokes problem and the linear Lagrangian elements for the Darcy flow. The code

was implemented using the software package FreeFEM++. For the uncoupled scheme, a

multi-frontal Gauss LU factorization implemented to solve the SPD sub-systems.

First, we want to look at the numerical test for stability for kmin = 1, 1.0e−4, and1.0e−8.

Define the kinetic energy En = ‖unh‖2
f + ‖φnh‖2

p. The final time Tf in our experiment is 1.0

and all the system parameters are simply set to be 1.0 except kmin. We fix the mesh size

at h = 1/8. With ∆t = 0.005 we take the corresponding 4s = 54t. We simply choose the

initial condition and the exterior boundary condition to be the exact solution. The external

force terms are solved when plug the true solution in the equations. We generally compute

the kinetic energy on large time step size and figure 3.4.1 shows the quantity. The horizontal
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axe represents time step while the vertical axe is the corresponding kinetic energy.

Figure 3.1: Energy versus time on large time step points with ∆t = 0.005 and r = 5 for

different kmin

3.4.2 Error Estimate

Firstly we will compare the performance of the original SDsplit in section 2 with uniform

time step in two subregions with the performance of the multi-rate splitting method. Define

the error kinetic energy Error Energy = ||u(tn)−unh||2f + ||φ(tn)−φnh||2p . We simply set all the

system parameters to be 1.0, fix the mesh size at h = 1/8 and final time at T = 1.0. Again

with ∆t = 0.005, the corresponding ∆s = 5∆t. The initial condition and the boundary

condition are set to be the exact solution. We generally compute the kinetic error energy

on large time step size and figure 3.4.2 reveals that the multi-rate splitting scheme is more

accurate than the uniform time step splitting scheme.

Next, we will focus on examining the order of convergence with respect to the spacing h

or the time step4t with the fixed ratio of4s/4t = 5. We here use the method developed in

Mu and Zhu [88] to examine the order of convergence with respect to the time step 4t and
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Figure 3.2: Error of SDsplit method versus multi-rate splitting method on large time step

with ∆t = 0.005 and r = 5

the mesh size h due to the approximation errors O(4tγ) +O(hµ). For example, assuming

v4th (x, tm) ≈ v(x, tm) + C1(x, tm)4tγ + C̃1(x, tm)hµ (3.58)

Thus,

ρv,h,i =
||v4t(x,t

m)
h − v4t(x,t

m)
h
2

||i

||v4t(x,t
m)

h
2

− v4t(x,t
m)

h
4

||i
≈ 4µ − 2µ

2µ − 1
.

ρv,4t,i =
||v4t(x,t

m)
h − v

4t
2

(x,tm)

h ||i
||v
4t
2

(x,tm)

h − v
4t
4

(x,tm)

h ||i
≈ 4γ − 2γ

2γ − 1
.

Here, v can be u, p, φ and i can be 0, 1. While ρv,h,i, ρv,4t,i approach 4.0 or 2.0, the convergence

order will be 2.0 and 1.0, respectively.

In Table 1, we study the convergence order with a fixed time step 4t = 0.01 and 4s = 54t
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h ||umh − umh
2

||0 ρu,h,0 ||φmh − φmh
2

||0 ρφ,h,0 ||pmh − pmh
2

||0 ρp,h,0

1
2

0.209968 3.79667 0.136084 3.28272 0.695738 1.25399

1
4

0.0553032 3.86264 0.0414546 4.06725 0.695738 1.25399

1
8

0.0143175 4.05795 0.0101923 4.19066 0.0860786 2.79538

1
16

0.00352825 0.00243215 0.0860786

h ||∇(umh −umh
2

)||0 ρu,h,1 ||∇(φmh −φmh
2

)||0 ρφ,h,1

1
2

1.60657 1.91156 1.30526 1.68152

1
4

0.840451 1.91004 0.77624 1.90587

1
16

0.440018 2.13987 0.40729 1.98435

1
32

0.205628 0.205251

Table 3.1: Examining the second order convergence for spacing h with fixed time step 4t =

0.01 and at time tm = 1.0

4t ||um4t − um4t
2

||0 ρu,4t,0 ||φm4t − φm1
2
4t||0 ρφ,4t,0 ||pm4t −

pm4t
2

||0

ρp,4t,0

0.1 0.0195322 1.77476 0.0547219 1.75764 0.0230683 1.51918

0.05 0.0111668 1.82594 0.0360206 1.89842 0.0132468 1.71832

0.0025 0.00593724 1.98954 0.0209627 1.9492 0.00727495 1.88277

0.00125 0.00309429 0.011134 0.00397785

4t ||∇(um4t −

um1
2
4t)||0

ρu,4t,1 ||∇(φm4t −

φm4t
2

)||0

ρφ,4t,1

0.1 0.00225926 1.74142 0.0547219 1.75764

0.05 0.00127299 1.82088 0.0360206 1.89842

0.025 0.000697171 1.82886 0.0209627 1.9492

0.00125 0.000350418 0.011134

Table 3.2: Examining the first order convergence for time step 4t with fixed spacing h = 1
8
,

and at time tm = 1.0
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and varying spacing h = 1/2, 1/4, 1/8, 1/16, 1/32. Observe that ρu,h,0 and ρφ,h,0 are over

4.0 when mesh size is smaller and ρu,h,1, ρφ,h,1 and ρp,h,0 approach 2.0, which suggest that

the order of convergence in space for u and φ are 2 and for p is 1. However, in table 2,

we study the convergence order with a fixed spacing h = 1/8 and varying time step size

4t = 0.1, 0.05, 0.025, 0.0125 and 4s = 54t. The numerical results strongly show that

all ρu,4t,0, ρφ,4t,0, ρp,4t,0 are less than 2 but increasing, which suggested that the order of

convergence is approaching O(4t) from below.

3.5 CONCLUSION

A multi-rate decoupled method with different time steps in each sub-domain for the coupled

Stokes-Darcy problem is proposed and analyzed in this work. The method required only

subdomain/sub physics solves and exchanged interface data without reference to the glob-

ally coupled problem. Under a time step restriction we prove stability over bounded time

intervals of the method. An error estimate is presented with respect to both time step sizes

4t and spacing h. Numerical experiments confirmed the analytical results of the decoupled

approach.

Interesting open problems include modifying the boundary condition on ∂Ωf/p, seeing how

the extreme case of the parameters, large T , small kmin, small S0, affect the stability, effi-

ciency and accuracy of the partitioned method. Other multi-rate decoupled methods with

higher order of convergence or less restrictive time step conditions are also to be found.
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4.0 A CONNECTION BETWEEN FILTER STABILIZATION AND EDDY

VISCOSITY MODELS

4.1 FILTER STABILIZATION AND LES MODEL

It is well known, see, e.g., [12] or [73], that explicit filtering is related to adding eddy or

artificial viscosity. The connection of the filter stabilization as defined above to LES modeling

is easily recovered by noting that shifting the index n + 1 → n on steps 2 and 3 and using

step 1 gives the implicit discretization of the NS, with explicitly treated nonlinear dissipation

term:


1

4t
(wn+1 − wn) + (wn+1 · ∇)wn+1 +∇pn+1 − ν∆wn+1 +

χ

4t
Gwn = fn+1,

divwn+1 = 0,

(4.1)

with

G := I − F, I is the identity operator.

Assume χ = χ04t, where χ0 is a time- and mesh-independent constant, then (4.1) can be

treated as the time-stepping scheme for

wt + (w · ∇)w +∇p− ν∆w + χ0Gw = f,

divw = 0.
(4.2)

We note that numerical experiments in [36,38] suggested that χ = O(4t) is indeed the right

scaling of the relaxation parameter with respect to the time step. These arguments show

that the numerical integrator (A1) with filter stabilization is the splitting scheme for solving
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(4.2). Furthermore, (4.2) can be observed as a LES model, with χ0Gw corresponding to the

the Reynolds stress tensor closure:

∇ · (w ⊗ w − w ⊗ w) ≈ χ0Gw.

This simple observation leads to a refined analysis and better interpretation of the numerical

results and the method properties.

We start by showing several numerical properties of the approach. Throughout the paper

we use (·, ·) and ‖ · ‖ to denote the L2 scalar product and the norm, respectively. For the

sake of analysis, assume the homogeneous Dirichlet boundary conditions for velocity. Taking

the L2 scalar product of (4.1) with 24twn+1 and integrating by parts gives

‖wn+1‖2−‖wn‖2+
1

2
‖wn+1−wn‖2+ν4t‖∇wn+1‖2+χ(Gwn, wn+1) = 4t(fn+1, wn+1). (4.3)

For a self-adjoint filtering operator, i.e. (Gu, v) = (Gv, u) for any u, v ∈ H1
0 (Ω)3, the equality

(4.3) can be alternatively written as

‖wn+1‖2 − ‖wn‖2 + ν4t‖∇wn+1‖2 +
χ

2

(
(Gwn+1, wn+1) + (Gwn, wn)

)
= 4t(f, wn+1) +

1

2

(
χ(G(wn+1 − wn), wn+1 − wn)− ‖wn+1 − wn‖2

)
. (4.4)

Considering the last two terms on the right-hand side, we immediately get the sufficient

condition of the energy stability of (4.1) for the case of self-adjoint filters:

χ(Gu, u) ≤ ‖u‖2 ∀ u ∈ H1
0 (Ω)3. (4.5)

If G is not necessarily self-adjoint, one may rewrite (4.3) as

‖wn+1‖2 − ‖wn‖2 +
1

2
‖wn+1 − wn‖2 + ν4t‖∇wn+1‖2 + χ(Gwn, wn)

= 4t(f, wn+1) + χ(Gwn, wn − wn+1).

Thanks to the Cauchy inequality one gets for any θ ∈ R:

‖wn+1‖2 − ‖wn‖2 + ν4t‖∇wn+1‖2 + (1− θ)χ(Gwn, wn)

≤ 4t(f, wn+1)− χ
(
θ(Gwn, wn)− χ

2
(Gwn, Gwn)

)
. (4.6)

83



In this more general case, one may consider the following sufficient condition for the energy

stability. Fixing, for example, θ = 1
2
, assures the sum of the last two terms in (4.6) is positive

if

χ(Gu,Gu) ≤ (Gu, u) ∀ u ∈ H1
0 (Ω)3. (4.7)

Assume G is self-adjoint and wn approximates a smooth in time Navier-Stokes solution,

then (4.4) leads to the following energy balance relation of the numerical method:

‖wN‖2 + ν

N∑
n=1

4t‖∇wn‖2 + χ0

N∑
n=1

4t(Gwn, wn) = ‖w0‖2 +
N∑
n=1

4t(fn, wn) +O(4t).

In particular, we may conclude that the filter stabilization introduces the model dissipation

of

χ0

N∑
n=1

4t(Gwn, wn). (4.8)

Finally, we notice that the filtering and relaxation steps in (A1) can be rearranged as

un+1 − wn+1

4t
= −χ0Gw

n+1,

which is the explicit Euler method for integrating

ut = −χ0Gu on [tn, tn+1], with u(tn) = w(tn+1). (4.9)

The coupling of a DNS method with the evolution equation (4.9) is known as another way of

introducing explicit filtering in modelling of dynamical systems, e.g. [12]. This suggests that

an improvement leading to higher order methods for integrating (4.9) might be possible.

In the next section, we shall study properties of the operator G for a class of nonlinear

differential filters.
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4.2 NONLINEAR DIFFERENTIAL FILTERS

Linear differential filters have a long history in LES, see [39]. We also point to [49] and

references therein for applications of linear differential filters in the Lagrange-averaging tur-

bulence models. In this section, we consider a family of nonlinear differential filters for

the filtering procedure. Some conclusions will be drawn concerning the stability conditions

(4.5), (4.7) and equivalence to other approachers in the LES modelling. We use the following

notation:

V :=
{
v ∈ H1

0 (Ω)3 : div v = 0
}
, H =

{
v ∈ L2(Ω)3 : div v = 0, v · n|dO = 0

}
.

By P we denote the L2 orthogonal projector from L2(Ω)3 onto H.

For a given sufficiently smooth vector function u we define F w as the solution to

(δ2a(u)∇(F w),∇v) + (F w, v) = (w, v) ∀v ∈ X, (4.10)

with an indicator functional 0 ≤ a(u) ≤ 1 and filtering radius δ2, which generally may

depend on x and t, δmax = maxx,t |δ|. Here X = H1
0 (Ω)3 or X = V , if the filter is div-free

preserving. We note that it is not immediately clear if the problem (4.10) is well-posed. In

practice, this is not an issue, since in a finite dimension setting, e.g. for a finite element

method, the bilinear form from the left-hand side of (4.10) is elliptic and thus (4.10) is well-

posed. Otherwise, we may assume 0 < ε ≤ a(u) ≤ 1 for some sufficiently small positive ε.

If we assume this, none of our results further in the paper depend on the parameter ε. It

is standard to base the indicator functional on the input function w itself, that is u = w

and we will denote w := F w in this case. However, in the course of analysis we need to

consider (auxiliary) filtering with u 6= w. If we need to show explicitly the function used for

the indicator, we shall write F (u)w instead of F w or F (w)w instead of w.

The action of G = I − F , wg := Gw, is defined formally as the solution to

(δ2a(u)∇wg,∇v) + (wg, v) = (δ2a(u)∇w,∇v) ∀v ∈ X. (4.11)

The operator G is self-adjoint on X and in the operator notation it can be written as

G = − [I −∆a]
−1 ∆a, (4.12)
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with

∆a :=

 div(δ2a(u)∇) if X = H1
0 (Ω)3,

P div(δ2a(u)∇) if X = V.

Since operator ∆a is self-adjoint and positive definite, one see from (4.12) that G ≤ I

and thus the sufficient stability condition (4.5) holds for any χ ∈ [0, 1]. This can be easily

verified in a formal way by substituting v = F w in (4.10) to get (w,F w) ≥ 0 and thus

(w,Gw) = (w,w−F w) ≤ ‖w‖2 for any w ∈ H1
0 (Ω)3. Moreover, varying θ in (4.6) and using

(4.7), one shows the energy stability estimate for any χ ∈ [0, 2]. However, such refinement

is not important for our further analysis.

With the help of (4.8) and (4.12), we now quantify the model dissipation introduced by

the differential filters. To make notation shorter and without loss of generality, let χ = χ04t.

First, representation (4.12) immediately implies G ≤ −∆a. Thus the additional dissi-

pation introduced by the differential filtering does not exceed those introduced by the LES

closure model:

div(w ⊗ w − w ⊗ w) ≈ −χ0∆aw. (4.13)

It is easy to show that for a discrete case and if the condition

δ . spacial mesh width

holds and 0 ≤ a(u) ≤ 1, then the dissipation introduced by the differential filtering (4.10) is

equivalent to the dissipation of the closure model (4.13).

We make the above statement more precise for a finite element discretization. To this

end, assume a consistent triangulation T of Ω, satisfying the minimal angle condition

inf
K∈T

ρ(K)/r(K) =: α0 > 0

where ρ(K) and r(K) are the diameters of inscribed and superscribed circles (spheres in 3D)

for a triangle (tetrahedron) K. We have the following result.
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Theorem 4.2.1. Assume X is the finite element space of continuous functions which are

polynomials of degree p ≥ 1 on every element K and maxx∈K |δ(x)| ≤ Cδ r(K) for any

K ∈ T , with a constant Cδ independent of K. Then for any w ∈ X the equivalence

c̃ (δ2a(u)∇w,∇w) ≤ (Gw,w) ≤ (δ2a(u)∇w,∇w) (4.14)

holds with a constant c̃ > 0 independent of w, the indicator a(·), and the filtering radius δ.

The constant c̃ > 0 may depend on p, Cδ, and α0.

Proof. Consider the finite element inverse inequality

‖∇w‖L2(K) ≤ c0ρ(K)−1‖w‖L2(K), ∀w ∈ X, (4.15)

where the constant c0 depends only on the polynomial degree p and α0. The inequality

(4.15), the assumption on δ and the minimal angle condition imply

‖δ∇w‖L2(K) ≤ C̃‖w‖L2(K), (4.16)

where the constant C̃ depends only on p, Cδ, and α0. Squaring (4.16), summing over all

K ∈ T , and recalling that a(·) ≤ 1, implies

(δ2a(u)∇w,∇w) ≤ C̃2‖w‖2. (4.17)

Denote wg = Gw for some w ∈ X. We set v = wg and v = −w in (4.11) and sum up the

equalities to get

0 = (δ2a(u)∇wg,∇wg) + (wg, wg)− 2(δ2a(u)∇w,∇wg)− (wg, w) + (δ2a(u)∇w,∇w)

= ‖wg‖2 − (wg, w) + (δ2a(u)∇(w − wg),∇(w − wg)).

Thus, it holds ‖wg‖2 ≤ (wg, w), i.e. the condition (4.7). Now we set v = w in (4.11) and use

(4.7) and (4.17) to estimate

(δ2a(u)∇w,∇w) = (δ2a(u)∇wg,∇w) + (wg, w)

≤ 1

2
(δ2a(u)∇wg,∇wg) +

1

2
(δ2a(u)∇w,∇w) + (wg, w)

≤ 1

2
C̃2‖wg‖2 +

1

2
(δ2a(u)∇w,∇w) + (wg, w)

≤ (
1

2
C̃2 + 1)(wg, w) +

1

2
(δ2a(u)∇w,∇w).
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We proved the lower bound in (4.14).

To show the upper bound we set v = wg and v = w in (4.11) and sum up the equalities

to get

0 = (δ2a(u)∇wg,∇wg) + (wg, wg) + (wg, w)− (δ2a(u)∇w,∇w).

This yields the upper bound in (4.14): (wg, w) ≤ (δ2a(u)∇w,∇w).

Few conclusions can be drawn from the equivalence result (4.14) concerning the relation

of the filter stabilization to some other eddy-viscosity models.

The use of the linear differential filter (a ≡ 1), as considered in [36], is equivalent to

the method of artificial viscosity. This means that the model dissipation is equivalent to

the isotropic diffusion scaled with χ0δ
2. Given what is known about the method of artificial

viscosity, it is not surprising that the method is not very accurate in this case. Thus, more

elaborated indicators functionals should be used. Generally, we may think of a(u) as a real

valued functional, depending on u,∇u, and selected with the intent that

a(u(x)) ≈ 0 for laminar regions or persistent flow structures,

a(u(x)) ≈ 1 for flow structures which decay rapidly.

The choice of the Smagorinsky type indicator function, a(u) = |∇u|, does not necessarily

satisfy the condition a(u) ≤ 1. In this case, we do not have the equivalence result of the filter

stabilization to the Smagorinsky LES model. Only the upper bound in (4.14) is guaranteed

to hold. Thus the dissipation introduced by the filtering with a(u) = |∇u| is likely less than

that of the Smagorinsky model. This can be a desirable property, since the Smagorinsky

LES model is known to be severely over-diffusive for certain flows, e.g. [102], and several ad

hoc corrections were introduced such as van Driest damping, dynamic models, and others,

see [34, 40,93].

Several reasonable indicator functions a(u) are known to satisfy the boundedness con-

dition: 0 ≤ a(u) ≤ 1. These are the re-normalized Smagorinsky type indicator [11], the

indicator based on the Q-criteria [115] and the Vreman indicators [111]; also an indicator

based on the normalized helical density distribution was considered in [13]. Given several
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indicators ai(·), i = 1, . . . , N , the combined indicator can be defined as the geometric mean:

a(·) :=

(
N∏
i=1

ai(·)
) 1

N

.

We remark, that the convergence results proved further in this paper do not rely on any

smoothness properties or particular form of a(·).

The last remark in this section is that Theorem 4.2.1 does not give much insight if

enforcing the divergence constraint in the filter is important or not. However, if we assume

X = V in (4.10), i.e., the filtered velocity satisfies the divergence free condition, then this

slightly simplifies the error analysis in Section 4.6.

4.3 THREE EXAMPLES OF INDICATOR FUNCTIONS AND

NONLINEAR FILTERS

The most mathematically convenient indicator function, recovering variants of the Smagorin-

sky model, is a(u) = |∇u| (suitably normalized) due to its strong monotonicity property.

However, it is well known that the Smagorinsky model is not sufficiently selective. Indeed,

this choice incorrectly selects laminar shear flow (where|∇u|is constant but large) as sites

of large turbulent fluctuations. Insights into construction of indicator functions of increased

accuracy can be obtained from theories of intermittence and eduction. In some respects, the-

ories of intermittence are complementary to theories of eduction of coherent and persistent

flow structures. Both therefore have insights that can be used to sharpen the indicator func-

tion used in nonlinear filtering. In this section we show how several can be adapted to give

indicator functions. Since the geometric average of indicator functions is a more selective

indicate function, examples are not isolated but give a path for successive improvements.

4.3.1 The Q criterion

Let the deformation and spin tensors be denoted, respectively

∇su :=
1

2
(∇u+∇utr) ∇ssu :=

1

2
(∇u−∇utr)
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The most popular method for eduction of coherent votices is the Q criterion of Hunt, Wray

and Moin [54] which marks as persistent and coherent vortex those regions where

Q(u, u) :=
1

2
(∇ssu : ∇ssu−∇su : ∇su) > 0

Thus Q > 0 occurs in those regions where spin (local rigid body rotation) dominates. It

is known to be a necessary condition (in 3d) and both necessary and sufficient (in 2d) for

slower than exponential local separation of trajectories.

An indicator function is obtained by rescaling Q(u, u) so the the condition Q(u, u) > 0

implies a(u) ≈ 0 so that u ≈ ū. There are many plausible ways to do this. We shall test the

following.

Definition 4.3.1. The Q-criterion based indicator function is given by

aQ(u) :=
1

2
− 1

π
arctan(δ−1 Q(u, u)

Q(u, u) + δ2
) (4.18)

4.3.2 Vreman’s eddy viscosity

Perhaps the most advanced and elegant eddy viscosity model has recently been proposed by

Vreman [111]. In a very deep construction, using only the gradient tensor he constructs an

eddy viscosity coefficient formula that vanishes identically for 320 types of flow structures

that are known to be coherent (non turbulent). Define

|∇w|2F =
∑

i,j=1,2,3

(
∂uj
∂xi

)2, βi,j :=
∑

m=1,2,3

∂ui
∂xm

∂uj
∂xm

B(u) := β11β22 − β2
12 + β11β33 −−β2

13 − β22β33 − β2
23

In 2d, B(u) simplifies to

B(u) = [(
∂u1

∂x1

)2 + (
∂u1

∂x2

)2][(
∂u2

∂x1

)2 + (
∂u2

∂x2

)2]− [
∂u1

∂x1

∂u2

∂x1

+
∂u1

∂x2

∂u2

∂x2

]2

With C a positive tuning constant, it is given as follows

Vreman’s eddy viscosity coefficient = Cδ2


√

B(u)

|∇u|4F
, if|∇u|F 6= 0

0, if|∇u|F = 0

Since 0 ≤ B(u)/|∇u|4F ≤ 1 we take as indicator function the following.
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Definition 4.3.2. The Vreman based indicator function is

aV (u) =
√
B(u)/|∇u|4F

4.4 PROJECTION SCHEME WITH FILTER STABILIZATION

One idea behind introducing the filter stabilization or explicit filtering was to provide CFD

software users and developers with a simple way to enhance existing codes for laminar

incompressible flows to compute high Reynolds number flows. This goal is accomplished by

making the filtering procedure algorithmically independent of a time integration method.

Driven by this intention, we consider the Chorin [26] splitting (projection) scheme with the

additional separate filtering step. Projection methods are the common numerical approach

to the incompressible Navier-Stokes equations and form a family of splitting algorithms,

cf. [42,94]. We perform the numerical analysis for the simplest first order method given below.

From the algorithmic standpoint, the generalization to higher order projection methods is

straightforward, although analysis may become considerably more involved.

Projection methods split the time evolution of the velocity vector field according to

the momentum equation and the projection of the velocity to satisfy the divergence-free

condition. The filtering step can be introduced before or after the projection step. If the

filter is div-free preserving, then it is reasonable to put it after the projection. We shall

study the following algorithm:

Step 1: Solve the convection-diffusion type problem: Given un, w∗, find w̃n+1:


1

4t
(w̃n+1 − un) + (w∗ · ∇)w̃n+1 − ν∆w̃n+1 = fn+1,

w̃n+1|∂Ω = 0.

(4.19)

The velocity w∗ is typically an interpolation from previous times, e.g. w∗ := wn or higher

order interpolation. For the sake of analysis we consider w∗ = wn.
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Step 2: Project w̃n+1 on the div-free subspace: Find pn+1 and wn+1 solving the Neumann

pressure Poisson problem:


1

4t
(wn+1 − w̃n+1) +∇pn+1 = 0,

divwn+1 = 0,

n · wn+1|∂Ω = 0.

(4.20)

Step 3: Filter: wn+1 := F wn+1;

Step 4: Relax:

un+1 := (1− χ)wn+1 + χwn+1, (4.21)

with some χ ∈ [0, 1].

Similar to what was shown in section 4.1, shifting the index n+ 1→ n on steps 2–4 and

substituting into (4.19) gives for χ = χ04t


1

4t
(w̃n+1 − w̃n) + (w∗ · ∇)w̃n+1 +∇pn+1 − ν∆w̃n+1 + χ0Gw̃n −4tχ0G∇pn+1 = fn+1,

div w̃n+1 −4t∆pn+1 = 0,

(4.22)

From (4.22) we see that the splitting scheme (4.19)–(4.21) is formally the first order

accurate time-discretization of the LES model (4.2).

Further, we show that the splitting scheme (4.19)–(4.21) is stable. There are two well-

known approaches to accomplish the error analysis of projection methods. The one of Ran-

nacher and Prohl [94], [99] uses the relation between projection and quasi-compressibility

methods as it is seen from (4.22). However, this analysis needs considerable effort to get

extended to equations different from the plain Navier-Stokes equations. Another framework

is mainly due to Shen (see [59,103]), where convergence results were shown based on energy

type estimates. In our error analysis we follow (to a certain extend) arguments from these

two papers.
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4.5 STABILITY

To show the stability of the splitting scheme, we need the following simple auxiliary result:

Lemma 4.5.1. For wn+1 and un+1 from the algorithm (4.19)–(4.21) and the filter F defined

in (4.10), it holds

‖wn+1‖ ≥ ‖un+1‖.

Proof. From the definition (4.10) we obtain:

(δ2a(wn+1)∇wn+1,∇wn+1) + ‖wn+1‖2 = (wn+1, wn+1)

=
1

2
(‖wn+1‖2 + ‖wn+1‖2 − ‖wn+1 − wn+1‖2).

This yields

‖wn+1‖2 = 2(δ2a(wn+1)∇wn+1,∇wn+1) + ‖wn+1‖2 + ‖wn+1 − wn+1‖2.

Hence, ‖wn+1‖ ≥ ‖wn+1‖. From (4.21), we get

‖un+1‖ ≤ (1− χ)‖wn+1‖+ χ‖wn+1‖ ≤ ‖wn+1‖ for χ ∈ [0, 1].

Now we are ready to prove the following stability result.

Theorem 4.5.2. The algorithm (4.19)–(4.21) is stable in the sense of the following a priori

estimate:

‖wl‖2 +
l−1∑
n=0

‖wn+1 − w̃n+1‖2 +
l−1∑
n=0

‖w̃n+1 − un‖2 +
l−1∑
n=0

ν4t‖∇w̃n+1‖2

≤ ‖w0‖2 +
l−1∑
n=0

ν−14t‖f(tn+1)‖2
−1 (4.23)

for any l = 1, 2, . . . .
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Proof. Take the L2 scalar product of (4.19) with 24tw̃n+1:

2(w̃n+1−un, w̃n+1)+2ν4t‖∇w̃n+1‖2 = 24t(fn+1, w̃n+1) ≤ ν−14t‖fn+1‖2
−1 +ν4t‖∇w̃n+1‖2.

Rewriting and simplifying this leads to:

‖w̃n+1‖2 − ‖un‖2 + ‖w̃n+1 − un‖2 + ν4t‖∇w̃n+1‖2 ≤ ν−14t‖fn+1‖2
−1. (4.24)

The L2 scalar of (4.20) with 24t wn+1 and div wn+1 = 0 gives

2(wn+1 − w̃n+1, wn+1) = 0 =⇒ ‖wn+1‖2 − ‖w̃n+1‖2 + ‖wn+1 − w̃n+1‖2 = 0.

Substituting ‖w̃n+1‖2 with ‖wn+1‖2 + ‖wn+1 − w̃n+1‖2 in (4.24) yields

‖wn+1‖2 − ‖un‖2 + ‖wn+1 − w̃n+1‖2 + ‖w̃n+1 − un‖2 + ν4t‖∇w̃n+1‖2 ≤ ν−14t‖fn+1‖2
−1.

The application of Lemma 4.5.1 gives

(‖wn+1‖2 − ‖wn‖2) + ‖wn+1 − w̃n+1‖2 + ‖w̃n+1 − un‖2 + ν4t‖∇w̃n+1‖2 ≤ ν−14t‖fn+1‖2
−1.

Summing up the inequality from n = 0, . . . , l − 1, we arrive at (4.23).
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4.6 ERROR ESTIMATES

We shall use 〈·, ·〉 to denote the duality product between H−s and Hs
0(Ω) for all s ≥ 0. In

the following, we assume that the given data and solution to the equations (1.6) subject to

the homogeneous Dirichlet velocity boundary conditions satisfy



u0 ∈ (H2(Ω))d ∩ V,

f ∈ L∞(0, T ; (L2(Ω))d) ∩ L2(0, T ; (H1(Ω))d),

ft ∈ L2(0, T ;H−1),

supt∈[0,T ] ‖∇u(t)‖ ≤ C̃.

(4.25)

We will use c and C as a generic positive constant which may depend on Ω, ν, T , constants

from various Sobolev inequalities, u0, f , and the solution u through the constant C̃ in (4.25).

Under the assumption (4.25) one can prove the following inequalities, cf. [52]:

sup
t∈[0,T ]

{‖u(t)‖2 + ‖ut(t)‖+ ‖∇p(t)‖} ≤ C, (4.26)∫ T

0

‖∇ut(t)‖2 + t‖utt‖2dt ≤ C, (4.27)

which will be used in the sequel. Further we often use the following well-known [107] esti-

mates for the bilinear form b(u, v, w) =
∫

Ω
(u · ∇)v · w dx:

b(u, v, w) ≤


c‖∇u‖‖∇v‖ 1

2‖v‖ 1
2‖∇w‖,

c‖u‖2‖v‖‖∇w‖,

c‖∇u‖‖v‖2‖w‖.

and b(u, v, w) = −b(u,w, v) for u ∈ H.

Define the Stokes operator Au = −P∆u, ∀u ∈ D(A) = V ∩ H2(Ω)3. We will use

the following properties: A is an unbounded positive self-adjoint closed operator in H with
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domain D(A), and its inverse A−1 is compact in H and satisfies the following relations [59,

103]:

∃ c, C > 0, such that ∀u ∈ H :


‖A−1u‖2 ≤ c‖u‖ and ‖A−1u‖ ≤ c‖u‖V ′ ,

c‖u‖2
V ′ ≤ (A−1u, u) ≤ C‖u‖2

V ′ .

Before we proceed with the error analysis, we prove several auxiliary results given below

in Lemma 4.6.1. The lemma gives estimates on the difference between a velocity w and the

filtered velocity F (u)w.

Lemma 4.6.1. Consider the differential filter F defined in (4.10) with some admissible u.

For any w ∈ V and Fw ∈ V it holds

‖w − Fw‖ ≤ δmax‖∇w‖, (4.28)

‖w − Fw‖V ′ ≤ δ2
max‖∇w‖. (4.29)

Proof. Denote e = w − Fw. The equation (4.10) gives

(δ2a(u)∇e,∇v) + (e, v) = −(div(δ2a(u)∇w), v), ∀ v ∈ V

Letting v = e yields

‖δ
√
a(u)∇e‖2 + ‖e‖2 = −(div(δ2a(u)∇w), e) ≤ ‖δ

√
a(u)∇w‖‖δ

√
a(u)∇e‖

≤ ‖δ
√
a(u)∇e‖2 +

1

4
‖δ
√
a(u)∇w‖2 ≤ ‖δ

√
a(u)∇e‖2 +

1

4
δ2

max‖∇w‖2.

This proves (4.28). To show (4.29), we note that setting v = F w − w in (4.10) gives with

F w − w gives

(δ2a(u)∇F w,∇(Fw − w)) = −‖Fw − w‖2 ≤ 0

Hence, we obtain:

‖δ
√
a(u)∇Fw‖2 ≤ ‖δ

√
a(u)∇w‖2. (4.30)
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Allowing v = A−1(w − Fw) in (4.10) leads to the following relations:

‖w − Fw‖2
V ′ = (w − Fw,A−1(w − Fw)) = (δ2a(u)∇F w,A−1(w − Fw))

≤ ‖δ2a(u)∇Fw‖V ′‖∇A−1(w − Fw)‖ ≤ 1

2
(‖δ2a(u)∇Fw‖2 + ‖w − Fw‖2

V ′)

≤ 1

2
δ2

max‖δ
√
a(u)∇Fw‖2 +

1

2
‖w − Fw‖2

V ′ .

The last estimate and (4.30) implies (4.29).

Further in this section, we first show that wn+1, wn+1 and un+1 are all strongly O((4t) 1
2 +

δ) approximations to u(tn+1) in L2(Ω)3 provided χ = χ04t. Then we use this result to

improve the error estimates to weakly O(4t + δ2) approximations. This analysis largely

follows the framework from [59] and [103] for the pure (non-filtered) Navier-Stokes equations,

so we shall refer to these papers and [92] for some arguments which do not depend on the

filtering procedure.

Lemma 4.6.2. Let u be the solution to the Navier-Stokes system, satisfying (4.25). Denote

ε̃n+1 = u(tn+1)− w̃n+1; εn+1 = u(tn+1)− wn+1 and en+1 = u(tn+1)− un+1.

The following estimate holds

‖ε̃l‖2 +
l−1∑
n=0

(‖εn+1 − ε̃n+1‖2 + ‖ε̃n+1 − en‖2) +
l−1∑
n=0

2ν4t‖∇ε̃n+1‖2 ≤ C(4t+ δ2
max). (4.31)

Proof. Let Rn denote the truncation error defined by

1

4t
(u(tn+1)− u(tn))− ν4u(tn+1) + (u(tn+1) · ∇)u(tn+1) +∇p(tn+1) = fn+1 +Rn, (4.32)

where Rn is the integral residual of the Taylor series, i.e,

Rn =
1

4t

∫ tn+1

tn

(t− tn)utt(t)dt.

By subtracting (4.19) from (4.32), we obtain

1

4t
(ε̃n+1 − en)− ν4ε̃n+1 = (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1)−∇p(tn+1) +Rn. (4.33)
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Taking the L2 scalar product of (4.33) with 24tε̃n+1, we get

‖ε̃n+1‖2 − ‖en‖2 + ‖ε̃n+1 − en‖2 + 2ν4t‖∇ε̃n+1‖2 = 24t(Rn, ε̃n+1)− 24t(∇p(tn+1), ε̃n+1)

+ 24tb∗(wn, w̃n+1, ε̃n+1)− 24tb∗(u(tn+1), u(tn+1), ε̃n+1). (4.34)

The terms on the right-hand side are bounded exactly the same way as in [59] p.64 and [103]

p.512, leading to the estimates:

4t|b∗(wn, w̃n+1, ε̃n+1)− b∗(u(tn+1), u(tn+1), ε̃n+1)|

≤ ν4t
2
‖∇ε̃n+1‖2 + C4t‖εn‖2 + C(4t)2

∫ tn+1

tn

‖ut‖2dt, (4.35)

24t(Rn, ε̃n+1) ≤ ν4t
4
‖∇ε̃n+1‖2 + C(4t)2

∫ tn+1

tn

t‖utt‖2
−1dt, (4.36)

24t(∇p(tn+1), ε̃n+1) = 24t(∇p(tn+1), ε̃n+1 − en) ≤ 1

2
‖ε̃n+1 − en‖2 + 2(4t)2‖∇p(tn+1)‖2.

(4.37)

Combining the inequalities (4.34) ,(4.35), (4.36), (4.37), and rearranging terms, we obtain

‖ε̃n+1‖2 − ‖en‖2 +
1

2
‖ε̃n+1 − en‖2 + ν4t‖∇ε̃n+1‖2

≤ 2(4t)2‖∇p(tn+1)‖2 + C4t‖εn‖2 + C(4t)2(

∫ tn+1

tn

t‖utt‖2
−1dt+

∫ tn+1

tn

‖ut‖2dt) (4.38)

The step 4 of the algorithm (4.19)–(4.21) yields

en = (1− χ)εn + χF (wn+1)εn + χ(u(tn)− F (wn+1)u(tn)). (4.39)

The definition of the filter and recalling that εn is the L2 projection of ε̃n give ‖F (wn+1)εn‖ ≤

‖εn‖ ≤ ‖ε̃n‖. We use this to deduce from (4.39) the following estimate:

‖en‖ = (1− χ)‖εn‖+ χ‖F (wn+1)εn‖+ χ‖u(tn)− F (wn+1)u(tn)‖

≤ ‖ε̃n‖+ χ‖u(tn)− F (wn+1)u(tn)‖.
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Now we apply (4.28) and square the resulting inequality to get (for the sake of convenience

we assume 4t ≤ C and recall χ = χ04t):

‖en‖2 ≤ (1 +4t)‖ε̃n‖2 + C4tδ2
max. (4.40)

We substitute (4.40) to the left-hand side of (4.38) for ‖en‖, use ‖εn‖ ≤ ‖ε̃n‖ and arrive at

‖ε̃n+1‖2 − ‖ε̃n‖2 + ‖εn+1 − ε̃n+1‖2 +
1

2
‖ε̃n+1 − en‖2 + ν4t‖∇ε̃n+1‖2

≤ 2(4t)2‖∇p(tn+1)‖2 + C4t‖ε̃n‖2

+C(4t)2

(∫ tn+1

tn

t‖utt‖2
−1dt+

∫ tn+1

tn

‖ut‖2dt

)
+ C4tδ2

max. (4.41)

Summing up (4.41) from n = 0 to n = l − 1, assuming that w̃0 = w0 = u0 (this implies

‖e0‖ = ‖ε0‖ = 0), we obtain

‖ε̃l‖2 +
l−1∑
n=0

‖εn+1 − ε̃n+1‖2 +
1

2

l−1∑
n=0

‖ε̃n+1 − en‖2 +
l−1∑
n=0

ν4t‖∇ε̃n+1‖2

≤
l−l∑
n=0

C4t‖ε̃n‖2 + 2(4t)2

l−1∑
n=0

‖∇p(tn+1)‖2 + C(4t)2(

∫ tl

t0

t‖utt‖2
−1dt+

∫ tl

t0

‖ut‖2dt) + Cδ2
max

≤
l−1∑
n=0

C4t‖ε̃n‖2 + C4t+ Cδ2
max

Applying the discrete Gronwall inequality yields (4.31).

Now, we will use the result of the lemma and improve the predicted order of convergence

for the velocity. The main result in this section is the following theorem, stating that all

w̃n+1, wn+1 and un+1 are first-order approximations to the Navier-Stokes solution.

Theorem 4.6.3. Assume the solution to the Navier-Stokes system satisfies (4.25) and χ =

χ04t. Suppose ∂Ω ∈ C1,1 or Ω is convex. It holds

4t
l∑

n=1

(‖ε̃n‖2 + ‖εn‖2 + ‖en‖2) ≤ C((4t)2 + δ4
max). (4.42)

Additionally assume
∫ T

0
‖∇pt‖2 ≤ C and the filtering radius is bounded as δ4

max ≤ C4t,

then pn is an approximation to p(tn) in L2(Ω)/R in the following sense:

4t
l∑

n=1

‖pn − p(tn)‖2 ≤ C(4t+ δ2
max). (4.43)
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Proof. Literally repeating the arguments from [59], pp. 66-69, one shows the estimate

‖εn+1‖2
V ′ − ‖en‖2

V ′ + ‖εn+1 − en‖2
V ′ + ν4t‖εn+1‖2 ≤ C

(
4t‖εn+1‖2

V ′

+ (4t)2

∫ tn+1

tn

(t‖utt‖2
−1 +‖ut‖2)dt+ (4t)2‖∇ε̃n+1‖2 +4t‖ε̃n+1− en‖2 +4t‖εn+1− ε̃n+1‖2

)
(4.44)

The estimate (4.29) gives ‖Fεn‖V ′ ≤ ‖εn‖V ′ + δ2
max‖∇εn‖. Here and in the rest of the proof

the filtering is based on the wn+1 velocity, that is F · := F (wn+1)·. Due to the assumption

∂Ω ∈ C1,1 or Ω is convex, the L2 projection on H is H1 stable, i.e. ‖∇εn‖ ≤ C‖∇ε̃n‖ and

therefore we conclude

‖Fεn‖V ′ ≤ ‖εn‖V ′ + Cδ2
max‖∇ε̃n‖.

Using this and (4.29), we get from (4.39) for χ = χ04t

‖en‖V ′ = (1− χ)‖εn‖V ′ + χ‖Fεn‖V ′ + χ‖u(tn)− Fu(tn)‖V ′

≤ ‖εn‖V ′ + C4t
(
δ2

max‖∇ε̃n‖+ ‖u(tn)− Fu(tn)‖V ′
)

≤ ‖εn‖V ′ + C4tδ2
max

(
‖∇ε̃n‖+ 1

)
.

Squaring the inequality we get after elementary calculations

‖en‖2
V ′ ≤ (1 +4t)‖εn‖2

V ′ + C4tδ4
max

(
‖∇ε̃n‖2 + 1

)
.

We substitute the above estimate to the left-hand side of (4.44) and arrive at

‖εn+1‖2
V ′ − ‖εn‖2

V ′ + ‖εn+1 − en‖2
V ′ + ν4t‖εn+1‖2

≤ C
(
4t(‖εn+1‖2

V ′ + ‖εn‖2
V ′) + (4t)2

∫ tn+1

tn

(t‖utt‖2
−1 + ‖ut‖2)dt+ (4t)2‖∇ε̃n+1‖2

+4t(‖ε̃n+1 − en‖2 + ‖εn+1 − ε̃n+1‖2) +4tδ4
max(1 + ‖∇ε̃n‖2)

)
.
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Assume for the sake of convenience δmax ≤ C. Summing up the inequalities for n = 0, . . . , l−

1, we get

‖εl‖2
V ′ +

l−1∑
n=0

‖εn+1 − en‖2
V ′ +

l−1∑
n=0

ν4t‖εn+1‖2

≤ C

(
l−1∑
n=0

4t‖εn+1‖2
V ′ + (4t)2

∫ tl

t0

(‖utt‖2
V ′ + ‖ut‖2)dt+ δ4

max

l−1∑
n=0

4t‖∇ε̃n‖2

+
l−1∑
n=0

4t‖ε̃n+1 − en‖2 +
l−1∑
n=0

4t‖εn+1 − ε̃n+1‖2 +4tδ4
max

)
. (4.45)

Now we use the result of the Lemma 4.6.2 to bound

4t‖εl‖2
V ′ + δ4

max

l−1∑
n=0

4t‖∇ε̃n+1‖2 +
l−1∑
n=0

4t‖ε̃n+1 − en‖2 +
l−1∑
n=0

4t‖εn+1 − ε̃n+1‖2

≤ C((4t)2 +4tδ2
max + δ4

max).

Thus, applying the Gronwall inequality to (4.45) yields

‖εl‖2
V ′ +

l−1∑
n=0

‖εn+1 − en‖2
V ′ +

l−1∑
n=0

ν4t‖εn+1‖2 ≤ C((4t)2 + δ4
max). (4.46)

Here we also used 4tδ2
max ≤ (4t)2 + δ4

max. Finally, the Lemma 4.6.2 helps us to estimate

4t
l−1∑
n=0

‖ε̃n+1‖2 ≤ 4t
l−1∑
n=0

‖εn+1 − ε̃n+1‖2 +4t
l−1∑
n=0

‖εn+1‖2 ≤ C((4t)2 + δ4
max).

4t
l∑

n=0

‖en‖2 ≤ 4t
l−1∑
n=0

‖εn+1 − en‖2 +4t
l−1∑
n=0

‖εn+1‖2 ≤ C((4t)2 + δ4
max).

These estimates together with (4.46) proves the velocity error estimate of the theorem.

Further we show that the pressure is weakly 1
2

order convergent to the true solution.

Denote the pressure error as qn = pn − p(tn). We may assume (qn, 1) = 0. It holds

−∇qn+1 = − 1

4t
(εn+1 − en) + ν4ε̃n+1 + (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1).+Rn (4.47)
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Repeating the arguments from [59] and using the Nečas inequality, see [89], one deduces

from (4.47)

‖qn+1‖ ≤ c sup
v∈H1

0 (Ω)3

(∇qn+1, v)

‖∇v‖

≤ 1

4t
‖εn+1 − en‖−1 + C(‖Rn‖−1 + ‖∇ε̃n+1‖+ ‖∇εn+1‖+ ‖u(tn+1)− u(tn)‖).

Therefore, by using (4.31), we get

4t
l−1∑
n=0

‖qn+1‖2 ≤ 1

4t

l−1∑
n=0

‖∇(εn+1 − en)‖2
−1 + C(4t+ δ2

max) (4.48)

To bound the first term on the right-hand side of (4.48) one estimates:

‖εn+1−en‖−1 ≤ c‖εn+1−en‖ ≤ c(‖εn+1−εn‖+‖εn−en‖) ≤ c(‖ε̃n+1− ε̃n‖+‖εn−en‖). (4.49)

The estimate for the second term on the right-hand side of (4.49) follows from (4.39):

‖εn−en‖ ≤ χ04t(‖εn−Fεn‖+‖u(tn)−Fu(tn)‖) ≤ χ04t(‖εn‖+‖Fεn‖+‖u(tn)−Fu(tn)‖).

Thanks to (4.28), (4.31), and ‖Fεn‖ ≤ ‖εn‖ we continue the above estimate as

‖εn − en‖ ≤ C((4t)
3
2 +4tδmax). (4.50)

Below we shall prove the bound

l−1∑
n=0

‖ε̃n+1 − ε̃n‖2 ≤ C((4t)2 +4tδ2
max).

From (4.19) and (4.21) we get

1

4t
(ε̃n+1 − en)− ν∆ε̃n+1 +∇p(tn+1) + (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1) = Rn. (4.51)

The projection step (4.20) gives εn = ε̃n +4t∇pn, so (4.39) yields

en = (1− χ)(ε̃n +4t∇pn) + χFεn + χ(u(tn)− Fu(tn)).
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Substituting this in (4.51) implies

1

4t
(ε̃n+1 − ε̃n)− ν∆ε̃n+1 + (1− χ)∇(p(tn+1)− pn) + χ∇p(tn+1)− χ

4t
(Fεn − ε̃n)

− χ

4t
(u(tn)− Fu(tn)) + (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1) = Rn. (4.52)

The inner product of (4.52) with 4t(ε̃n+1 − ε̃n) gives

‖ε̃n+1 − ε̃n‖2 +
ν4t

2
(‖∇ε̃n+1‖2 − ‖∇ε̃n‖2 + ‖∇(ε̃n+1 − ε̃n)‖2)

= 4t(Rn, ε̃n+1 − ε̃n) + (1− χ)4t(p(tn+1)− pn, div(ε̃n+1 − ε̃n))

+4t((wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1), ε̃n+1 − ε̃n)

− χ4t(∇p(tn+1), ε̃n+1 − ε̃n) + χ(Fεn − ε̃n, ε̃n+1 − ε̃n) + χ(u(tn)− Fu(tn), ε̃n+1 − ε̃n)

= 4t(Rn, ε̃n+1 − ε̃n) + (1− χ)4t
[
(qn, div(ε̃n+1 − ε̃n)) + (p(tn+1)− p(tn), div(ε̃n+1 − ε̃n))

]
− χ

[
4t(∇p(tn+1), ε̃n+1 − ε̃n)− (Fεn − ε̃n, ε̃n+1 − ε̃n)− (u(tn)− Fu(tn), ε̃n+1 − ε̃n)

]
+4t((wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1), ε̃n+1 − ε̃n)

= I1 + I2 + I3 + I4 + I5 + I6 + I7. (4.53)

The last term I7 is estimated in [92]:

4t|((wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1), ε̃n+1 − ε̃n)|

≤ σ‖ε̃n+1 − ε̃n‖2 + C((4t)2‖ε̃n+1‖2 + (4t)2‖εn+1‖2 +4t
3
2‖∇εn‖2‖∇ε̃n+1‖2

+
ν4t

2
‖∇(ε̃n+1 − ε̃n)‖2 + (4t)3)

for some σ > 0, which can be taken sufficiently small. Applying (4.31) and ‖∇εn‖ ≤ C‖∇̃εn‖

leads to

I7 ≤ σ‖ε̃n+1 − ε̃n‖2 + C((4t)3 + (4t)2δ2
max) +4t

3
2‖∇ε̃n‖2‖∇ε̃n+1‖2 +

ν4t
2
‖∇(ε̃n+1 − ε̃n)‖2.

(4.54)

103



For I4, I5, and I6 one has

I4 = −χ4t(∇p(tn+1), ε̃n+1 − ε̃n) ≤ Cχ2(4t)2‖∇p(tn+1)‖2 + σ‖ε̃n+1 − ε̃n‖2, (4.55)

I5 = χ(Fεn − ε̃n, ε̃n+1 − ε̃n) ≤ Cχ2(‖Fεn‖2 + ‖ε̃n‖2) + σ‖ε̃n+1 − ε̃n‖2

≤ C((4t)3 + (4t)2δ2
max) + σ‖ε̃n+1 − ε̃n‖2, (4.56)

I6 = χ(u(tn)− Fu(tn), ε̃n+1 − ε̃n) ≤ C(4t)2δ4
max + σ‖ε̃n+1 − ε̃n‖2. (4.57)

The terms I1, I2 and I3 are estimated in [59]. Using those estimates and (4.54)–(4.57) in

(4.53) yields for sufficiently small σ > 0:

‖ε̃n+1 − ε̃n‖2 +
ν4t

2
(‖∇ε̃n+1‖2 − ‖∇ε̃n‖2) + (1− χ)(4t)2(‖∇qn+1‖2 − ‖∇qn‖2)

≤ C

{
(4t)2

∫ tn+1

tn

‖utt‖2dt+ (4t)2

∫ tn+1

tn

‖∇pt‖2dt+ (4t)4‖∇p(tn+1)‖2

+(4t)3 + (4t)2δ2
max +4t

3
2‖∇ε̃n‖2‖∇ε̃n+1‖2

}
. (4.58)

We sum up the estimate for n = 0, . . . , l−1 and apply our assumptions for the Navier-Stokes

solution. This leads to the bound

l−1∑
n=0

‖ε̃n+1 − ε̃n‖2 +
ν4t

2
‖∇ε̃l‖2 ≤ C((4t)2 +4tδ4

max +4t
3
2

l−1∑
n=0

‖∇ε̃n‖2‖∇ε̃n+1‖2).

The application of the discrete Gronwall inequality, (4.31) and the assumption δ4
max ≤ C4t

yields

l−1∑
n=0

‖ε̃n+1 − ε̃n‖2 +
ν4t

2
‖∇ε̃l‖2 ≤ C ((4t)2 +4tδ2

max) exp

{
(4t)

1
2

l−1∑
n=0

‖∇ε̃n+1‖2

}
≤ C ((4t)2 +4tδ2

max) exp
{
C((4t)

1
2 + (4t)−

1
2 δ4

max)
}

≤ C((4t)2 +4tδ4
max).

Therefore, (4.48)–(4.50) yield the desired bound:

4t
l−1∑
n=0

‖qn+1‖2 ≤ C(4t+ δ2
max).
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4.7 NUMERICAL TESTINGS

In this section, we present numerical experiments to test the algorithms presented in Chap-

ter 4. We used FREEFEM + + using Taylor-Hood elements(Xh =continuous piecewise

quadratics and Qh =continuous piecewise linears).

4.7.1 TEST OF STABILITY

We begin by testing the stability of Theorem 4.5.2 in linear and nonlinear filter in some 2d

flows with known exact solution. In 2d helicity is exactly zero. We consider

Linear Filtering⇔ a(·) ≡ 1

Nonlinear Filtering by Q-criterion⇔ a = aQ(·)

Nonlinear Filtering by Vreman’s formula⇔ a = aV (·)

For the test we select the velocity field given by the Green-Taylor vortex, frozen at time

t=1. The Green-Taylor vortex is used as a numerical test in many papers, e.g., Chorin [22],

Tafti [106], John and Layton [56], Berselli and Grisanti [4] and Berselli [5]. The exact velocity

field is given by

u1(x, y, t) = −cos(wπx)sin(wπy)e−2w2π2t/τ ,

u2(x, y, t) = sin(wπx)cos(wπy)e−2w2π2t/τ ,

p(x, y, t) = −1

4
(cos(2wπx) + cos(2wπy))e−2w2π2t/τ .

We take

w = 1, T = 1(fixed), τ = Re = 100, Ω = (0, 1)2, δ = h = 1/m

Where m is the number of subdivisions of the interval (0, 1). When the relaxation time

τ = Re, the predicted solution is a solution of the NSE with f = 0. Convergence rates are

calculated from the error at two successive values of h and 4t at final time T = 1. The
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boundary conditions could be taken to be periodic (the easiest case), but instead we take

the boundary condition on the filtering problem to be inhomogeneous Dirichlet

uh = uexact, on ∂Ω

The plot 4.7.1 shows that with linear or nonlinear filter, as we decrease the size of the time

step, the velocity energy term does not blow up and this support our proof in theorem 4.5.2.

4.7.2 TEST OF THE RATE OF CONVERGENCE

We begin testing the errors and the rates of convergence with linear and nonlinear filters

which are presented for the 3 methods in Table 4.1. All discrete filters achieved their pre-

dicted rates of convergence. Lemma 4.6.2 indicates the strongly first order convergence for

spacing h and half order convergence for time step ∆t, when verifying the result, we started

with ∆t = 0.05 and h = 1/4, in the following step we decrease the time step size to one

fourth, and the spacing size to half of the value in the previous step, the ratio of L2 norm

of the error term on the LHS of 4.31 at two consecutive step should be approaching to 2.

Numerical results shows the theoretical results in Lemma 4.6.2 is not optimal and can be

further improved. Theorem 4.6.3 indicates that the squared error energy term on the LHS

is of second order with respect to time step size and is of fourth order with respect to the
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spacing size. We start the numerical test with ∆t = 0.05 and h = 1/2, in the following step,

we decrease the time step to one fourth of the previous step and the spacing size by half, the

ratio of the squared error energy term at two consecutive step is assumed to be approaching

to 16. This result is confirmed in table 4.7.2.

a(u) 1 1 Q-based Q-based Vreman-

based

Vreman-

based

4t h ||uNSE − uh||2 rate ||uNSE − uh||2 rate ||uNSE −

uh||2

rate

0.05 1
4

0.020236 0.024074 0.0193774

0.05
4

1
8

0.00571722 3.54 0.0081305 2.96 0.00523308 3.70

0.05
16

1
16

0.00194931 2.93 0.0026404 3.08 0.00163201 3.21

0.05
64

1
32

0.000620057 3.14 0.000743168 3.55 0.000488043 3.34

Table 4.1: Examining the strongly first order convergence for spacing h and half order

convergence for time step 4t
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a(u) 1 1 Q-based Q-based Vreman-

based

Vreman-

based

4t h Error rate Error rate Error rate

0.05 1
2

0.00337251 0.00340044 0.00340229

0.05
4

1
4

0.000100713 17.32 0.000124105 14.51 0.000104528 19.68

0.05
16

1
8

5.81492e− 06 13.15 8.55445e-06 11.60 5.31219e−06 14.61

0.05
64

1
16

4.42276e− 07 12.60 7.3727e-07 14.12 3.63708e−07 14.94

0.05
256

1
32

3.50889e− 08 14.00 5.22619e-08 15.25 2.43474e−08 15.31

Table 4.2: Examining the weakly second order convergence for spacing h and first order

convergence for time step 4t, Error=4t
∑l

n=1(‖ε̃n‖2 + ‖εn‖2 + ‖en‖2)
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5.0 CONCLUDING REMARKS AND FUTURE RESEARCH

The major contribution of this work is the development and analysis of partitioned methods

for coupled fluid flow problems and filter stabilization for high Reynolds number turbulence

flows.

1. partitioned time stepping methods for Stokes-Darcy problems,

2. extension of the unified time step partitioned method to multi-rate partitioned methods

for Stokes-Darcy problems,

3. pressure corrected and nonlinear filtered method for Navier-Stokes equation.

Our methods have substantial algorithmic advantage, since they effectively break the

complex coupled system into the subproblems and allow the use of optimized and legacy

codes. By this way, they help to reduce the technical costs and programming effort. It has

been shown that the proposed algorithms are stable and convergent at the optimal rates.

In particular, long time and uniform in time stability are obtained for Stokes-Darcy flows,

which surpasses previous results. The goal of any uncoupled method is to give results not

appreciably worse than the associated fully coupled approach (which is expected to be more

accurate). In the numerical experiments presented herein, our methods well meet this goal.

For uncoupling a coupled problem, our methods face some limitations as a trade-off for

algorithmic advantage. The time stepping methods normally require time step restrictions

for stability. These conditions are particularly troublesome in applications involving small

or large physical parameters. We partially address the issue in this thesis; however, schemes

with stronger stability properties are still in need in many cases. Also, deriving the exact

dependence of the stability and/or error behavior on model parameters remains largely an

open question. Certainly, studying higher order accurate uncoupling strategies, or strategies
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which allow the use of different time step and mesh size for subproblem solvers is another

important and promising direction for future works.

In this work, we also show that introducing the filter stabilization is closely related to

adapting a certain eddy-viscosity model for LES. It would be natural to extend the nonlinear

filtered method to other splitting method for the time-integration of the incompressible

Navier-Stokes equations for fast unsteady flows. The following research projects would help

develop further computational capabilities for complex flow systems:

1. Developing algorithms with higher order time accuracy for Stokes-Darcy flows, allowing

large time steps when both kmin and S0 are small.

2. Studying the mass conservation errors across the interface I for the Stokes-Darcy flow.

One interesting direction is developing and analyzing the combination of uncoupling

schemes and mixed formulations, which are expected to have better conservation prop-

erties.

3. Extending the nonlinear filtered approach to other splitting algorithms for the time

integration of the NSE.

4. Developing pressure corrected and nonlinear filtered algorithms with higher order time

accuracy for NSE.
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