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ANALYSIS OF A PARTIAL DIFFERENTIAL EQUATION MODEL FOR

NECROTIZING ENTEROCOLITIS

Mark D. Tronzo, PhD

University of Pittsburgh, 2014

This thesis presents and analyzes a mathematical model for necrotizing enterocolitis (NEC), a

devastating disease that attacks the gastrointestinal tract of pre-term infants. Mathematical

models for NEC have been developed in the past. These modes are extremely valuable and

provide important insights into the disease. However, all of the models developed previously

are one dimensional, ordinary differential equation models and, therefore, simulate only the

transient effects of NEC but do not fully model its spatial effects. The mathematical model

presented here is a three dimensional model in the form of a system of nonlinear partial

differential equations. A three dimensional model is needed to accurately simulate diffusion

and advection of the major factors in NEC, to account for the different effects of NEC in

the different regions in the body, and to fully integrate all the effects of such mechanisms as

epithelial cell degradation and migration.

This thesis presents medical research regarding NEC, constructs inflammatory cascades

related to the disease, and develops the system of partial differential equation system. Also,

full mathematical analysis of the system of equations. The mathematical analysis of the

system of partial differential equations and the associated a mixed finite element analysis

are, perhaps, the most important parts of the thesis. The results of this analysis have

significance for the NEC system and have significance independent of the NEC system. For

example, existence, uniqueness, and regularity analysis is presented in the weak mixed form

for the coupled nonlinear equations:
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∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2)

∂u2
∂t

−∇ · (D2∇u2) = f2(u1, u2) (x, t) ∈ Ω× (0, T ]

∇u1 · n = 0 and ∇u2 · n = 0 on Γ

where f1 and f2 are nonlinear functions. Furthermore, finite element analysis (using the

mixed method) is done on this coupled system and convergence is proven, a new and very

important result. No mixed method finite element analysis has previously been published

for this system. Similar analysis is done on the rest of the partial differential equations in

the system. At the end of the thesis, computer simulations are done using the mathematical

model. These simulations demonstrate that the NEC mathematical model presented here

produces realistic results consistent with the actual progression of the disease.
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1.0 NECROTIZING ENTEROCOLITIS

Necrotizing Enterocolitis(NEC) is a devastating and often fatal disease that attacks the gas-

trointestinal tract of newborns. NEC is characterized by intestinal inflammation, intestinal

tissue death including destruction of the intestine, and sepsis. NEC most often attacks

preterm infants. Ironically, as the survival rate of preterm infants increases, so does the

incidence of NEC. NEC is diagnosed in about 2 out of 1000 live births per year [6]. NEC

occurs in approximately 7% of those infants with birth weights between 1 and 3 pounds.

The overall death rate among those infants diagnosed with NEC is between 20% and 30%

[101].

The purpose of this thesis is twofold. First of all this work presents a three dimensional

mathematical model of Necrotizing Enterocolitis(NEC). This model consists of a system of

partial differential equations (PDE) that models both the temporal and spatial aspects of

NEC. Secondly, this work analyses that NEC PDE system. That is, existence, uniqueness,

and regularity analysis is done on the entire PDE system. Also, a mixed finite element

analysis is done on the system of equations. This second purpose has significance for the

NEC PDE system and it has significance independent of the NEC PDE system. For the

NEC system, this analysis provides a strong mathematical foundation for the equations and

their interrelation with each other. On the other hand, some of the classes of equations in

the NEC PDE system occur, in a slightly different form, in other contexts but, in some cases,

no existence, uniqueness, and regularity results for these equations exist in the literature.

Even more importantly, the mixed finite element analysis presented later contains some new

and very significant results.

This first chapter will investigate much of the current medical research regarding NEC

in order to accumulate information for creating the NEC model. Much more material will

1



be presented in this chapter than will ultimately be used to build the model. This additional

material is included for a number of reasons. First of all, when constructing the NEC model it

is important to weigh all of the factors involved in NEC in order to decide what will and what

will not be included in the model. This can only be done after each mechanism and player in

the disease is investigated and evaluated in order to determine its importance to the model.

Therefore, much information is presented in this chapter and, then, in chapter two, the

evaluation process will be done and the factors to be included in the model will be determined.

Secondly, even though some of this material will not be used directly in the NEC model, the

material will still be used as a guide for setting simulation runs. Therefore, this material

will be of great help for creating realistic the initial conditions for the computer simulations

presented in chapter seven as well as for computer simulations in the future. Finally, the

additional material will provide background and motivation for a more advanced, extensive

NEC model in the future. This will be particularly relevant as new medical discoveries come

to light.

1.1 OVERVIEW OF THE DISEASE

NEC usually attacks the intestines resulting in severe, often irreparable damage. Bacteria

from the lumen may pass through the protective epithelial cells that line the intestines and

seeps into the underlying tissue. This triggers an inflammatory response within and around

the intestines that involves bacteria, macrophages, neutrophils, cytokines, as well as many

other biological components. If this inflammatory response is left unchecked it will cause

tissue death and, ultimately permanent damage to the intestine.

The causes of NEC are multifaceted. The main risk factor for NEC appears to be

prematurity - the more premature, the higher the risk for NEC. Formula feeding is another

risk factor for NEC which may also contribute to the disease once the disease has been

initiated. As mentioned above, the translocation of bacteria from the lumen to the underlying

tissue of the intestine is a critical factor in NEC, as well as the breakdown of the epithelial

layer of cells that protect the intestines. Many of these causes of NEC are interrelated and it

2



is not always clear which of these factors is most involved in initiating the disease and which

are secondary responses. These causes, their effects, and the physical mechanisms involved

will now be investigated.

1.2 SMALL INTESTINE STRUCTURE AND FUNCTION

In general, Necrotizing Enterocolitis strikes the gastrointestinal tract. Usually, NEC may

attack either the small or large intestine but the effects of NEC discussed in this thesis

will usually apply in either case. In this thesis, the small intestine will be used as the

representative organ of the GI tract that NEC attacks. Therefore,it will be worthwhile to

study the structure and function of the small intestine in some detail.

The study will begin by considering the components of the small intestine that are

directly affected by NEC. The open passage way of the GI tract in the small intestine will

here be referred to as the lumen. The interior radial surface on the lumen side of the small

intestine is covered with finger-like projections called villi (singular:villus). Throughout the

thesis, the villi will be represented by figure 1. These villi are covered by a gel layer called

mucus. On the outer part of the villi is a layer of cells called the epithelium. The epithelium

is supported below by the basal lamina or extracellular matrix (ECM). In the central portion

of each villus is the lamina propria. These (the mucus layer, the epithelium, the extra cellular

matrix, and the lamina propria) together make up what is called the mucosa.

The mucosa is responsible for functions critical for digestion such as absorption (of

nutrients) and secretion (of mucus). The epithelium is a layer of connected cells that

covers the villi and protects the underlying tissue. Throughout the thesis, the epithelium

will be represented by figure 2. These cells move at approximately 5-10 µm per hour and the

cells are renewed every 2 to 5 days [64]. The cells of the epithelium are primarily enterocytes,

which absorb nutrients and transfer these nutrients into the underlying tissue. Also included

in the epithelium are some goblet cells, which secrete mucus (a thick fluid which serves are a

protective layer for the epithelium) as well as intraepithelial lymphocytes (IELs). The small

intestine contains one IEL for every four to nine epithelial cells [35]. The regions between
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Figure 1: Representation of intestinal villi and crypts. Throughout this thesis, the intestinal villi and
crypts will be represented by diagrams similar to this one.

the villi are called the crypts (see figure 1). In the crypts are found Paneth cells, which play

an important defensive role. Paneth cells secrete a wide variety of antimicrobial proteins

and peptides, such as lysozyme and phospholipase α-defensins, that fight many types of

bacteria, viruses, and fungi [106]. They are stimulated to secrete defensins when exposed to

bacteria or lipopolysaccharides (LPS) [100]. Paneth cells are also believed to play a major

role in protecting epithelial cell proliferation - the Paneth cells’ location adjacent to the

crypts is an ideal place from which they may protect stem cells from invading bacteria [106],

[100]. Between the enterocytes are tight junction proteins (see figure 2), which serve as a

barrier that keeps pathogens from passing from the lumen into the underlying tissue, and

gap junction proteins, which are important for cell-cell communication.
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Figure 2: Representation of the epithelium. (This is the region of figure 1 that is enclosed by the rectangle.)
Throughout this thesis, the epithelium will be represented by diagrams similar to this one.

The mucus layer consists of mucus which is made up of water, lipids, and mucin [6].

Mucins are glycoproteins produced by goblet cells and have the ability to form viscoelastic

gels [6], [35]. Mucins provide lubrication and protection of the epithelium from mechanical

damage caused by dietary constituents [91]. Mucus forms a continuous covering for the villi.

The average mucus layer thickness for the three major sections of the small intestines have

been determined to be 170 µm for the duodenum, 123 µm for the jejunum, and 480 µm for

the ileum [11]. The mucus layer is the site at which the body first encounters gut bacteria

[31]. All bacteria, including commensal bacteria, increase mucus production [60]. The mucus

layer serves as protection for the epithelium. Particles, bacteria, and viruses are trapped in

the mucus layer and, eventually expelled before they reach the underlying epithelium [131],

[140]. Mucus also keeps antimicrobial compounds near the epithelium where they may kill

some of the entrapped organisms [140]. Since mucus is continuously created and expelled

from the body, any material trapped in the mucus layer, including pathogenic bacteria, is

swept away with the exiting mucus [140]. The mucus layer is also a reservoir for secretory

immunoglobulin A (IgA). Secretory IgA’s bind pathogen and prevents attachment to the
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epithelial cells [131].

The mucus layer greatly aids digestion. Mucus forms a constant, unstirred layer thereby

keeping digestive enzymes near the epithelium where they may aid normal absorbtion [91].

Molecules in the unstirred layer are, therefore, not taken away by peristalsis [128], [91]. (See

discussion of peristalsis later in this chapter.) In addition, mucins lower the diffusion of

large pathogenic bacteria but allows the passage of the smaller nutrient molecules [100]. It is

most beneficial for the host that the mucus layer be populated by normal flora or indigenous

bacteria, that is, the bacteria that is common to that particular host. This bacteria is often

referred to as commensal bacteria.

An important resident in the mucus layer is commensal bacteria. Commensal Bacteria

or Normal Flora plays a protective, beneficial role in the Mucus Layer. The human gut con-

tains between 10 x 1012 and 100 x 1012 organisms per ml of this commensal bacteria [35],[10].

Whenever it is operating properly, the immune system recognizes commensal bacteria and,

therefore, such bacteria does not illicit an inflammatory response. The commensal bacteria

protects by: 1) Competing with harmful bacteria for essential nutrients 2) Competing with

harmful bacteria for attachment sites 3) Producing substances that kill harmful bacteria

[35]. Commensal bacteria also facilitates the digestion, absorption and storage of certain

nutrients that would not otherwise be accessible to the host [10], [91].

While population of the mucus layer with commensal bacteria is beneficial to the host, fix-

ation of pathogenic bacteria in the mucus may be good or bad, as Montage [91] points out.

Whenever pathogenic bacteria is fixed in the mucus, it cannot reach the underlying epithelial

cells and, as long as there are only small amounts of trapped bacteria, the bacteria will be

removed together with the mucins during the normal mucus erosion process. On the other

hand, if the pathogenic bacterial accumulation in the mucus is at very high levels, so that it

exceeds the normal turnover rate of the mucus, then bacterial colonization occurs eventually

leading to infection and/or damage to the underlying epithelium [91].

The epithelium lies on what is called basal lamina or the extra cellular matrix (ECM).

(The ECM may be seen in figure 2.) The extra cellular matrix consists primarily of the pro-

tein collagen, elastin, fibronectin. Collagen provides strength to the extra cellular matrix.
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Fibronectin binds the epithelial cells to the extracellular matrix and guides cell migration

[3].

The lamina propria mucosae is the tissue section that lies beneath the epithelium and

extra cellular matrix (see figure 2). It consists of smooth muscle cells and fibroblasts [35]. The

lamina propria mucosae has been described as ’loose’ connective tissue because it does not

have a large amount fibrous reinforcement that characterizes more dense connective tissue.

Loose connective tissues are easily distorted. Such tissues may move freely with respect to

one another.[103] Among the important cells found in the lamina propria are macrophages

and dendritic cells [60], [35].

1.3 CELLS OF THE EPITHELIUM

Enterocytes. The majority of cells on the external surface of the small intestine are ente-

rocytes. Enterocytes are formed in the crypts and move out toward the villus tips. These

column shaped cells (these are the yellow cells in figures 2 and 3) are responsible for di-

gestion and absorption of nutrients. They transfer substances from the intestinal lumen to

the circulatory system. They also obstruct bacteria from entering the underlying lamina

propria. Enterocytes release inflammatory cytokines such as IL-6, IL8, and TNF-α and

anti-inflammatory cytokines IL-10 and IL-15 [96]. Intestinal enterocytes also secrete anti-

microbial peptides such as defensins, cathelicidins, and calprotectins [10].

On top of the enterocytes is the actin-rich microvillar extension surface known as the

brush border (see figure 3). The brush border serves to impede microbial attachment

and invasion. It contains digestive enzymes and transporter systems involved in uptake and

metabolism [10].

Goblet Cells. Goblet cells secrete mucus that covers and protects the epithelium (see

figure 3). Goblet cells mature in the crypts and, after maturation, travel for 5-7 days to

the villus tips. When necessary these cells will secrete large amounts of mucus in response

to bacterial insult [100]. Goblet cells have the ability to secrete mucins that promote colo-
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nization by commensal bacteria. Also, there is evidence that goblet cells, after coming into

contact with specific pathogenic bacteria, can produce mucus to which that bacteria will

bind. This will prevent the bacteria from binding to enterocytes [31].

M-Cells. These are specialized epithelial cells that lie over the Peyer’s Patch and lym-

phoid follicles. (The Peyer’s Patch consists of bundles of lymphatic tissue. See figure 3.

The Peyer’s Patch plays some role, not yet fully known, in immune response.) Unlike other

epithelial cells, M cells do not have long, fully developed microvilli (microvilli are the small

fingerlike projections on the top surface of many cells) and they lack certain surface glyco-

proteins. Instead, their microvilli are short and irregular. All of this means that antigen

have easy access to the apical surface of M cells. In fact, the primary function of M cells is

to transport material from the lumen, across the epithelium, to the underlying tissue [28].

In particular, M-Cells constantly sample the contents of the lumen and deliver antigen to

cells in the underlying tissue where inflammatory cells will be recruited if necessary [10].

Paneth Cells. These cells originate in the crypt stem cell region (see figure 4) but un-

like enterocytes, goblet, and M cells, Paneth cells move down toward the base of the crypts

[100]. Paneth cells secrete antimicrobial peptides and play a general defensive role. These

peptides apparently play a key role in destroying pathogenic bacteria while promoting col-

onization of favorable bacteria. Therefore, the proper functioning of Paneth cells is critical

for intestinal homeostasis [18].

1.4 IMPORTANT MECHANICAL AND PHYSICAL FACTORS.

1.4.1 Cell Death and Renewal of the epithelium

Cell death is an ongoing event of the epithelium. This death may be due to natural causes

or due to injury. Three types of cell death have been identified:

1. Apoptosis (Programmed Cell Death). This is cell death in an organized, well co-

8



Figure 3: Cells of the epithelium. (This figure is similar to figure 2 but shows different detail.) The
brush border on enterocytes prevents microbes from attaching to the enterocytes. Goblet cells secrete
mucins. Mucus (mucins) helps to provide lubrication and protection for the epithelium. Mucus also keep
enzymes near the epithelium, away from the effects of intestinal peristalsis, so that the enzymes may be
easily absorbed. M-Cells constantly sample the lumenal contents and transport bacteria (gram-positive and
gram-negative bacteria) to the underlying Peyer’s patch.

Figure 4: Function of Paneth Cells. Paneth Cells are located in a strategic defensive position near the
crypts. There these cells are able to defend the stem cells located in the crypts. Paneth cells secrete
antimicrobial peptides that destroy pathogenic bacteria and promote colonization by beneficial bacteria.
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ordinated fashion followed by an organized removal of the dying cells. Apoptosis is usually

timely and desirable as it removes malfunctioning, senescent, or potentially dangerous cells.

However, if apoptosis occurs at too high a rate, the epithelial barrier function may be com-

promised [122]. It is not clear what causes apoptosis but TNF has been implicated as a

major factor in cell apoptosis/cell shedding [58].

2. Cell Shedding (Cell Suicide). Cell shedding is usually restricted to the surface cells

or villus tip cells where cells are loosely attached and may be easily shed into the lumen.

This shedding may involve single cells or sheets of cells [44]. It must be noted that some

believe that cell shedding is the result of apoptosis and, therefore, should not be classified

as a distinct form of cell death. On the other hand, others have observed that cell shedding

regularly occurs even among cells that have no evidence of initiation of apoptosis [138].

3. Cell Necrosis. This may be the result of injury and is characterized by the rapid

breakdown of the membrane integrity. The result is the release of cellular contents which

may damage nearby cells and create an unwanted cellular response. For example, HMGB1,

which is known to activate TLR4, is often released from damaged cells [44],[122].

An important mechanism in the small intestine is the process of renewal of the epithe-

lium. Under normal circumstances, intestinal epithelial cell turnover in nonhuman mammals

is about 2 days for adults but 4-5 days for infants [100]. In the absence of injury, cells are

shed at the villus tips and they are replaced by cells migrating up the villus from the crypts.

As a cell is in the process of being shed it induces its neighboring cells to shed and, in fact,

these neighboring cells shed about 5-10 minutes later [48]. In this way, the epithelium is

constantly renewed.

There are times during which epithelial cells shed at a higher rate than the rate at which

new cells move in to replace them. The result is that there are often gaps in the epithelium.

A paper published in 2005 indicated that about 3 % of the epithelium does not have cells

covering it at any given time [138]. This result appears to have been widely accepted,

however, a more recent study indicates that these gaps amount to a little less than 1 %

of the epithelium [48]. Either of these estimates would suggest that large passages exist in

the epithelium through which pathogenic bacteria might easily pass. Yet, during this entire

process of cell shedding and replacement, the epithelial barrier function is maintained, i.e.,
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Figure 5: Cell Shedding. The top row shows the top view of the epithelium and the bottom row shows the
side view of the epithelium. 1.) An actin/myosin ring forms around and under the dying cell (the dying cell
is colored gray). 2.) This actin/myosin ring begins to contract and, thereby, begins to force the dying cell up
and out of the epithelium [118]. At the same time, neighboring cells begin to move under the dying cell and
tight junctions begin to redistribute under the cell (see Guan,[48]). 3.) The dying cell is forced completely
out of the epithelium and the tight junction proteins seal the resulting gap.
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the epithelium remains sealed. This can be explained by either (1) cytoplasmic extensions

from neighboring cells, (2) an extracellular substance is secreted, perhaps by neighboring

epithelial cells, that fills the gap [138], (3) tight junction proteins will form connections

between the cells neighboring the departing cell [48]. The most recent research favors a

combination of (1) and (3): As a cell leaves the epithelium, its neighboring cells move in

underneath the dying cell and ZO1 (a tight junction protein) redistribution occurs. This

redistribution seals the gap created by the shed cell [48].

Therefore, current knowledge suggests the following model for cell shedding and the

continued maintenance of the epithelium: First, an actin/myosin ring forms around and

under the dying cell. Secondly, this actin/myosin ring begins to contract and, thereby, begins

to force the dying cell up and out of the epithelium [118]. At the same time, neighboring

cells begin to move under the dying cell and tight junctions begin to redistribute under the

cell [48]. Thirdly, the dying cell is forced completely out of the epithelium and the tight

junction proteins seal the resulting gap. (This model is illustrated in figure 5.)

1.4.2 Wound Healing

NEC is usually accompanied by some injury to the epithelium. Any injury to the epithelium

reduces its barrier function, thereby bacteria and other toxins may invade the underlying tis-

sue causing sustained inflammation to the host. Rapid and efficient resealing of the wounded

area is, therefore, essential to full recovery from NEC. Proper wound healing depends upon

many factors including proper cell migration, proliferation, and differentiation as well as

restoration of tight junctions between the cells [94]. Some important features of these pro-

cesses will be mentioned here.

After injury to the small intestine epithelium, a number of processes (processes which

may overlap) go into motion. 1 Villus Contraction. Almost simultaneous with the injury,

the villus dramatically contracts. This contraction greatly reduces the wounded area, thereby

aiding the healing process. 2 Within minutes after the injury, epithelial cell restitution

begins. Epithelial cells adjacent to the injured area begin to migrate to cover the exposed

area. This process does not usually involve cell proliferation. 3 About 18-24 hours after
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injury, cell proliferation occurs in the crypts. This replenishes cells lost during injury.

4 The final, and essential, step in repairing the epithelium and all of its functions is the

restoration of tight junctions [19], [82].

1. Villus Contraction A most interesting feature of wound healing in the small intes-

tine is the phenomenon of villus contraction which greatly aids restitution. After an injury,

the villus actually contracts to reduce the surface area that needs to be resealed by epithelial

cells. (see figure 7) Specifically, the villus contracts enough to reduce the ”open area” by

about one half. It has been discovered that one large contraction of the villus occurs imme-

diately after injury. After that, the villus continues to contract, albeit at a slower rate, in

the hours following the injury [92].

2. Restitution Wound healing depends upon the cells’ ability to move across the

extracellular matrix. Immediately after injury, the cells adjacent to the wound begin to

migrate in order to cover the exposed part of the ECM. The leading edge of the cell flattens

and stretches forward attaching to the ECM at some point of the uncovered area of the

wound. In the process of stretching and reaching, elastic forces are generated in the cell.

These elastic forces cause the back of the cell to detach from the ECM. The cell then contracts

and the process is repeated. (see figure 6).

The attachment to the ECM is accomplished by activated integrins located at the bottom

of the cell. The integrin’s proper adherence to the ECM is essential for efficient cell motility.

This adherence must be strong enough for the cell to get enough traction to pull itself across

the ECM and, yet, it must not be too strong otherwise the integrins at the the back of the

cell will not detach from the ECM in a timely manner.

The whole process of cell motility is very complex. However, a crude summary of the

process may be presented here: 1) A prerequisite to cell motility is sufficient integrin expres-

sion on the bottom of the cell - enough expression to firmly adhere to the ECM. 2) There

is a ”spreading” or a shape changing of the cell from a round to a flattened shape. This

”flattening” tends to be more pronounced at the leading edge of the cell. This front flattened

part of the cell is known as a lamellipod. 3) Due to the ”stretched” state of the cell, forces

will be generated within the cell tending to pull the leading edge and trailing edge of the

cell toward the middle. 4) The trailing edge of the cell detaches from the ECM. 5) The cell
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Figure 6: 1. Stationary Cells 2. Cell moves by reaching forward. In the process of stretching, elastic forces
are built up in the cell. 3. Elastic forces cause the back of the cell to detach from the ECM.

changes shape again, returning to a somewhat rounded shape. 6) The whole process begins

again.

Thus it can be seen that if the adherence of the cell to the ECM is not great enough,

i.e. there is not enough integrin expression or the integrins do not bind properly to the

ECM, too little ”traction” will be generated at the front of the cell for it to grip and pull

itself efficiently across the ECM. This results in slow cell movement. On the other hand,

if the adherence is too strong, the cells may still have the ability to reach forward, stretch

and attach at a forward point on the ECM but the elastic forces generated within the cell

will not be strong enough for the trailing edge of the cell to ”break free” from the ECM.

Again, resulting in little or no cell movement. Experiments have shown that exposing cells

to large amounts of bacterial LPS leads to overexpression of integrins and, therefore, greatly

inhibited cell movement [113].

Not surprisingly, then, maximum cell migration speed occurs at an intermediate ratio of

cell-ECM adhesiveness to intracellular contractile forces. This intermediate ratio occurs at

levels at which the cell can both properly adhere at the front end while still being able to
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Figure 7: Villus loses epithelial cells due to injury or other insult to the intestinal villi (left), the villus
immediately gets shorter (right) thereby reducing the surface area that must be covered by the migrating
cells.

detach at the rear of the cell [107].

3 Epithelial Cell proliferation Even though the wound has been covered during the

restitution process, many less cells are present in the epithelial. About 18-25 hours after the

injury, new cells are formed in the crypts which replenish cells lost during the injury [19].

4 Restoration of Tight Junctions After the wound has been closed, the tight junction

proteins begin to be restored. However, studies have determined that adherens junctions are

restored prior to the tight junctions. Adherens junctions, which form just below tight junc-

tions, have a belt-like structure and appear to hold adjoining cells together like a thread in

clothing even though the cadherins do the actual adhesion. (see figure 8). It is only after

the reestablishment of the adherens junctions that the tight junctions begin to be formed

[49], [3], [19]. Only after the tight junctions are fully formed is the barrier function of the

epithelium restored.
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Figure 8: Tight Junction, Adherens, Cadherins, Integrins. During the restitution process, adherens junc-
tions are reestablished. Only after that, do the tight junctions begin to be restored.

Growth Factors and Cytokines that enhance restitution.

Several growth factors and cytokines enhance epithelial restitution. Some of these operate

through a transforming growth factor beta (TGF-β) dependent pathway while others work

through a TGF-β independent mechanism. TGF-β, which is a product of lamina propria

cells and epithelial cells, is required for normal epithelial cell migration even in the absence

of injury or insult [32], [82]. TGF-β itself stimulates the migration of intestinal epithelial

cells and mediates the work of other migration-promoting growth factors and cytokines [44].

Such growth factors and cytokines act on the basolateral part of the epithelial cells and

include TGF-α, EGF, HGF, and FGF peptides as well as the cytokines IL-1, IL-2, IFN-γ

[32].

Some of the members of the trefoil factor family (TFF) of peptides play an important

role in epithelial restitution. These peptides work from the apical side of the epithelial cells

and work in conjunction with glycoproteins through a TGF-β independent mechanism

[32]. Many of the TFFs are secreted by intestinal goblet cells and remain in the lumen.
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Figure 9: Members of the trefoil factor family (TFF) of peptides are secreted by goblet cells. TGF-Beta
is secreted by epithelial cells and lamina propria cells. These, along with the other factors and cytokines
shown in the figure, promote epithelial restitution.

Their special structure allow these peptides to survive in the lumen - they are resistant to

degradation by luminal enzymes [44]. TFFs interact with the mucus and influence epithelial

restitution [82].

EGF which is primarily known to stimulate epithelial cell proliferation (see below), has

also been shown to promote epithelial restitution. One study showed that EGF promoted

Caco-2 enterocyte sheet migration that was dependent upon the make up of the extracellu-

lar matrix. In particular, EGF was observed to stimulate migration over laminin and this

migration was independent of cell proliferation [15].

Growth Factors and Cytokines that enhance cell proliferation.

EGF and TGF-α, which is a product of most intestinal epithelial cells, are among the

most important stimulators of intestinal epithelial cell (IEC) proliferation. To a much lesser

extent, other growth factors, peptides and cytokines stimulate proliferation. These include
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Figure 10: Disruption and restoration of the epithelium. At the top of the illustration we see that nitric
oxide destroys gap junction protein (GJP), epithelial cells and tight junction protein(TJP). Also, proxynitrite
(ONOO-) destroys epithelial cells and IFN-gamma downregulates the production of tight junction protein.
In the middle and the bottom of the illustration, we see the effects on epithelial restitution and proliferation:
P means that the cytokine or growth factor contributes somewhat to epithelial proliferation. +P means
that the cytokine or growth factor contributes greatly to epithelial proliferation. -P means that the cytokine
or growth factor inhibits epithelial proliferation. +R means that the cytokine or growth factor contributes
greatly to epithelial restitution . -R means that the cytokine or growth factor inhibits epithelial restitution.
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Figure 11: Intestinal Peristalsis. 1.Peristalsis keeps bacteria and other material moving through the lumen.
2.Bacteria and other components that are fixed in the mucus layer are not effected by peristalsis.

FGF, IGF, HGF, and IL-2 [32]. Interestingly, TGF-β inhibits cell proliferation. If not for

its inhibitory effects, cell growth might continued uncontrolled [32].

1.4.3 Intestinal Peristalsis

. This mechanism is initiated by wave-like muscular contractions that causes contents of

the lumen to move along the GI tract. As noted earlier, bacteria and other material that is

trapped in the mucus layer will not normally be affected by peristalsis. On the other hand,

peristalsis, when working properly, has the effect of limiting the amount of time antigen

are able to interact with the epithelial cells thereby limiting bacterial translocation [61]

(see figure 11). If this mechanism is impaired or underdeveloped, then bacteria, which is

supposed to keep moving through the lumen, may build up and remain in contact with the

mucosa for long periods of time possibly resulting in bacterial translocation and damage

to the epithelium [6]. As will be seen later (see the subsection on prematurity), intestinal

peristalsis is, in fact, underdeveloped in preterm infants and this plays a role in NEC.

1.4.4 Bacterial Translocation

The movement of bacteria (translocation of bacteria) from the lumenal side of the epithelium

to the underlying tissue is a key factor in the inflammatory cascade and, therefore, a critical
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factor in NEC. Three of the most important bacterial pathways from the lumen into the

underlying tissue are A) through a disruption in the epithelium; B) by a paracellular pathway,

in between epithelial cells; and C) transcellular pathway, phagocytosis by the enterocytes.

(see figure 12.)

Disruption of the epithelium. The intestinal epithelium may be injured in many

ways including interaction with microbes, inflammation, oxidative stress, toxic substances in

the lumen, as well as by normal functions such as digestion [64]. Any such injury will result

in a loss of cells in the epithelium and, therefore, the free flow of bacteria into the underlying

tissue.

Paracellular Pathway. As noted above, tight junction proteins prevent large particles,

such as whole bacteria, from passing between epithelial cells. (Note: it may be possible

for smaller particles, such as LPS, to pass between epithelial cells even when tight junction

protein is in tact.) However, any disruption of the tight junction barrier, for example by

nitric oxide, will result in increased ”leakage” between cells of the epithelium allowing even

whole bacteria to pass.

Transcellular Pathway. There is speculation bacteria is able to move through entero-

cytes of the epithelium. This speculation is the result of studies that prove that enterocytes

are capable of phagocytosis of gram-negative bacteria. These same studies indicate that

TLR4 is required for the process of enterocyte phagocytosis [97].

1.5 FACTORS CRITICAL TO NEC

1.5.1 Affects of Prematurity

Preterm infants are much more susceptible than term infants to many diseases including

NEC. Preterm infants are vulnerable to NEC because many of their bodily systems are

severely underdeveloped. The preterm infant suffers from underdeveloped intestinal peristal-

sis, an immature GI immune system, excessive immune response, immature glycosylation,

lower levels of antimicrobial peptides, and lower levels of EGF.
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Figure 12: Three important pathways of bacteria from the lumen into the tissue are A) through a disruption
in the epithelium B) In-between cells, after tight junction protein is missing or degraded C) phagocytosis by
enterocytes.

Underdeveloped Intestinal Peristalsis. As noted above, peristalsis is required for

the sustained movement and distribution of luminal contents. In particular, properly working

peristalsis keeps bacteria and other antigen from congregating and lingering too long at any

one location on the epithelium. Premature infants do not have fully developed peristalsis.

The associated migrating complexes are not present in the preterm infant until around 34

weeks gestation [120]. Therefore, in the context of undeveloped or limited peristalsis, large

amounts of gram-negative bacteria may congregate near the mucus layer and, if the build-

up is great enough, the bacteria may colonize the mucus layer and eventually contact the

underlying epithelium. This may result in an inflammatory response, epithelial cell death,

and bacterial translocation [6].

Immature Gastrointestinal Immune System The gastrointestinal immune system

in the premature infant is underdeveloped. In particular, the premature infant has less

protective mucus, less gastric acid production, and lower levels of secretory IgA. In addition,

the premature infant has increased mucosal permeability. [26]. Pathogenic organisms are

more likely to attach to and translate across the epithelium in immature animals than in

mature animals. [26].
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The mucin layer is rather sparse in the premature infant. This may be due to the fact

that immature goblet cells secrete less mucin than mature cells [51], [99]. As a consequence

of this sparse layer, pathogenic bacteria have easier access to the underlying epithelium.

Also, pathogenic bacteria adhere to the complex carbohydrates of mucin, another defence

mechanism provided by mucin. Therefore, the reduced mucin levels results in this mechanism

being severely handicapped [91].

Bile acids, which play a critical role in digestion, may cause damage to the immature

epithelium. The accumulation of Bile acids near the epithelium has been shown to cause

damage to the epithelial cells. In particular, bile acids have been shown to reduce the amount

of Mucin 2 produced by intestinal goblet cells. Evidence shows that this reduction on mucin

secretion by goblet cells is much more pronounced in immature than mature cells [86].

Gastric acid, which acts as a barrier to microorganisms, is much lower in very low birth

weight (VLBW) preterm infants, compared to full term normal sized infants [100]. For all

preterm infants, the gastric PH levels are initially much higher than for term infants but

these levels come back to normal as time passes [62].

Finally, preterm infants have lower levels of secretory IgA, an antibody which binds

bacteria [26], [51].

Excessive Immune Response It has been determined that the immature intestine

has an exaggerated response to certain stimuli. In particular, studies have shown that both

Caco-2 and H4 cells exhibited increased secretion of IL-8 in response to LPS and IL-1β [96].

Immature Glycosylation Glycosylation results in the creation of carbohydrate recep-

tors on the microvilli. These carbohydrate receptors serve as binding sites for gram-negative

bacteria. Glycosylation is a developmentally regulated process and, therefore, is not complete

in the pre-mature infant [26],[34]. On the one hand, the lack of binding sites for bacteria may

seem advantageous (i.e. it may be less likely for bacteria to colonize near the epithelium).

On the other hand, these binding sites may also serve as another layer of protection for the

epithelium - another obstacle for the bacteria. As a result, immature glycosylation results

in more pathogenic bacteria crossing the epithelium and penetrating the underlying tissue.

Furthermore, colonization by commensal bacteria is beneficial to the host as it competitively
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excludes pathogenic bacteria from congregating near the epithelium. Such colonization by

commensal bacteria is not possible without the carbohydrate receptors on the microvilli.

Lower levels of antimicrobial peptides Defensins are antimicrobial peptides of which

certain types, such as HD5 and HD6, are produced by Paneth Cells. Like other antimicrobial

peptides, these defensins kill pathogenic bacteria and are, therefore, critical to epithelial

layer defense. There is strong evidence to suggest that Paneth cell production of defensins is

significantly lower in premature infants compared to term infants and increases with gestation

age [119].

Low Levels of EGF Epidermal Growth Factor (EGF) is extremely important for ep-

ithelial cell proliferation and, in some cases, aids restitution of the epithelium. Therefore,

lack of EGF may result in slow repair to the epithelium after injury or insult. EGF may

come from many sources but the great majority of EGF is produced in the salivary glands.

Studies have shown that infants at earlier gestational ages have lower levels of EGF during

their first days of life compared to other infants [136].

Low levels of PAF-degrading enzyme PAF-acetylhydrolase (PAF-AH) As will

be noted later in this chapter, Platelet Activating Factor (PAF) plays a large part in the

pathology of NEC. In an adult, PAF may normally be kept under control by the PAF-

degrading enzyme PAF-acetylhydrolase (PAF-AH). In the newborn, PAF synthesis pathways

are increased and the newborn has low circulating activity of PAF-AH [121], [93]. There are

strong indications that PAF-AH is found in even lower quantities, or may not exist at all, in

the pre-term infant [93].

1.5.2 Advantages of Breast Feeding vs. Formula Feeding in NEC

The advantages of breast feeding over formula feeding are well documented. The incidence of

NEC is much higher in formula-fed compared to breast-fed neonates [79]. Richter, et al notes

that breast-feeding has antimicrobial, ant-inflammatory, and immunomodulating properties

and influences the intestinal flora.

Among the advantages of breast feeding in the case of NEC are: 1) Breast feeding results
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Figure 13: Some of the advantages of breast feeding: 1. Beneficial colonization of the gut competitively
excludes pathogenic bacteria. 2. Secretory IgA specifically targets bacteria to which the mother has been
exposed. 3. Oligosaccharides have similar structures as binding cites on epithelial cells, therefore, pathogenic
bacteria will bind these rather than epithelial cells. 4. Breast feeding causes glycosylation of the epithelial
microvilli that attracts favorable bacterial colonization. 5. EGF in breast milk promotes epithelial cell resti-
tution and proliferation. 6. Anti-inflammatory factors cause downregulation of certain cytokines including
IL-8 and IL-18.
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in a more beneficial colonization of the gut (that is, the gut is colonized with primarily

gram-positive bacteria) and, thereby, ”competitively excludes” more harmful pathogen from

accumulating near the epithelium. 2) There are anti-inflammatory factors in breast milk. 3)

Antibodies in breast milk such as secretory IgA bind specific pathogens to which the mother

has been exposed. 4) Oligosaccharides in breast milk act as decoys - bacteria binds to the

oligosaccharides rather than to the epithelial cells. 5) Breast milk facilitates maturation

of the intestinal mucosal barrier and 6) Breast feeding results in favorable glycosylation

patterns on the intestinal microvilli.

1. Beneficial bacterial colonization of the GI tract. Current opinion suggests that

the gram-positive bacteria bifidobacteria and lactobacilli are the most beneficial bacteria that

can colonize the infant gut. On the other hand, staphylococci and clostridia are potentially

pathogenic. [111] Breast feeding results, primarily, in gram-positive colonization of the GI

tract (e.g colonization primarily bifidobacterium, along with some lactobacillus, streptococ-

cus. In particular, lactoferrin and α-lactalbumin in breast milk stimulate the growth of

bifidobacterium [17]). Even though some enterobacteria (gram-negative bacteria) is present

in breast-fed infants, it is the bifidobacterium that predominates the breastfed infant gut

[102], [51]. Gram-positive bacteria tends to attenuate the growth of gram-negative bacteria

and leads to the production of lactic acid which is easily absorbed in the small intestine

[83],[112]. Just as importantly, gram-positive bacteria competes with pathogenic bacteria

for binding sites and nutrients.

While it is true that there is some gram-positive lactobacilli in the gut of formula-

fed infants, there are sufficient pathogenic species such as staphylococcus, escherichia coli,

and clostridia to be a potential danger [26], [51]. In general, formula feeding may lead to

proliferation of gram-negative bacteria (e.g. coliforms) in the intestine [13]. Gram-negative

colonization of the GI tract will intensify any inflammatory cascade and will make the host

vulnerable should any insult to the intestine occur. Also, gram-negative bacteria can lead to

the production of hydrogen, carbon dioxide, and organic acids. All of which are not easily

expelled from the body [112].

Infants delivered vaginally and born at home have the most beneficial gut colonization

(the most bifidobacteria and the least C. difficile and E. Coli).Hospitalization and prematu-
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rity are both associated with C. difficile. [111] Antibiotics reduced both bifidobacteria and

bacteroides [111].

2. Anti-inflammatory factors in human milk. Goldman [45] lists several anti-

inflammatory factors in human milk: cytoprotectives, epithelial growth factors, matura-

tional factors, binders of enzymes, modulators of leukocytes, antioxidants. Also, TGF-β1 is

in human breast milk. Human milk suppresses IL-1β induced IL-8 production in intestinal

epithelial cells [100].

3. Antibodies in breast milk. Among the most important components of human

milk that serve as antimicrobial agents include IgA, lactoferrin, and lysozyme [26].

Antibodies in breast milk such as Polymeric IgA (pIgA) and secretory IgA bind anti-

gens, bacteria and endotoxin. In infants, this secretory IgA binds to pathogens before the

pathogens attach to the epithelial lining of the intestinal wall [6]. Polymeric IgA and secre-

tory IgA are produced by the mother’s immune system and are created to bind the specific

pathogens to which the mother has been exposed [26], [102]. It is likely that mother and

infant will be exposed to many of the same pathogens, therefore, these antibodies provide a

particularly relevant and valuable defensive tool.

Kohler, et. al. [72] report that human milk is rich in immunoglobulins of which about

90% is secretory IgA. The Kohler study showed that IgA concentrations in the feces of

breast-fed infants was three times high than in formula-fed infants.

Lactoferrin and lysozyme are nonspecific anti-microbial factors. [26] Lactoferrin has been

shown to have anti-microbial activities against a broad range of bacteria but all the types of

bacteria and all the conditions under which it is effective have not yet been fully established

[39], [102]. Lactoferrin also appears to work synergistically with lysozyme against bacteria

[39].

Finally, Goldman [45] notes that these antimicrobial peptides have further advantages:

they are resistant to digestive enzymes and they operate without causing an inflammatory

response.

Defensins are endogenous antimicrobial peptides produced by the epithelial surface,
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which provide nonspecific defense against against a multitude of microorganisms. In the

small intestine, α−defensins are expressed predominantly by Paneth cells.

4. Oligosaccharides in breast milk act as decoys Human milk oligosaccharides

are complex carbohydrate structures that are normally attached to lactose and which sur-

vive the passage through the intestine [102]. Oligosaccharides actually bind to bacteria be-

fore the bacteria are able to attach to glycoconjugates on the microvillous membrane [102].

Oligosaccharides act as decoys (homologues of of host surface glycoconjugates) so that bac-

teria bind to the Oligosaccharides rather than to the glycoconjugates on the microvillus

membrane. Pathogenic bacteria will bind intestinal epithelial cells via protein adhesions but

many oligosaccharides in human milk have the same sugar sequences as the carbohydrate

chains of glycolipids and glycoproteins on human epithelial cell surfaces [34]. Thus they

prevent binding of pathogen to the intestinal epithelial cells. [26] [102], (Goldman 1993).

Oligosaccharides may also act as nutrients for beneficial commensal bacteria [100], [99].

5. Breast Milk Facilitates Maturation of Intestinal Mucosal Barrier EGF is

found in large amounts in the breast milk of the mothers of preterm infants (actually it

is found in colostrum - milk generated just before giving birth). In fact, the more pre-

mature the infant, the higher the level of EGF in breast milk [137]. Not only does EGF

promote epithelial cell restitution and proliferation but also downregulates the production

of the inflammatory cytokine IL-18 and upregulates the anti-inflammatory cytokine IL-10

[137]. Another study showed that HB-EGF, a member of the EGF family, promoted cell

migration/proliferation and resulted in reduced epithelial cell necrosis/apoptosis as well as

lower levels of Nitric Oxide [40]. Thus, EGF is particularly important to help prevent and/or

relieve NEC.

6. Favorable Glycosylation Patterns As noted above, bacteria binds to the microvilli

on the apical side of the epithelial cells. Of course, it is desirable for non-pathogenic bacteria

to bing to these cells. According to Bernt [17], certain bacteria will bind to specific glyco-

conjugate compositions on the microvilli of cells. Specific hormones in breast milk, cortisol

in particular, induces glycosylation patterns on the microvilli that results in colonization by

non-pathogenic bacteria [17]. Thus, breast feeding results in favorable glycosylation.
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7. PAF-degrading enzyme PAF-acetylhydrolase (PAF-AH) As noted above,

the newborn has low circulating activity of PAF-AH and evidence suggest that even lower

quantities of PAF-AH are found in the pre-term infant [93]. Formula does not contain PAF-

AH but human milk contains large quantities of PAF-AH. Interestingly, studies indicate that

milk from mothers of pre-term infants contain significantly higher amounts of PAF-AH than

even normal breast milk [121], [93].

1.5.3 Particular Advantages of Breast Feeding in case of Prematurity

When one carefully considers the facts given in the last two sections, it is impossible not to

notice that for many of the disadvantages of prematurity, there is a corresponding advantage

in breastfeeding. For some reason, this fact does not appear to be emphasized in the journal

articles. Perhaps because it is so obvious? In any case, this is summarized in the following

table.

1.6 DESCRIPTION OF INFLAMMATORY CELLS, CYTOKINES, AND

OTHER FACTORS IN NEC

Macrophages. Macrophages reside in the blood stream, epithelial layer, and tissue. These

large and powerful phagocytes play a variety of roles. They are antigen presenting cells, they

secrete cytokines, they rid the body of dead cells and they ingest pathogens. Macrophages

live approximately two to four months [81].

Upon contact with bacterial LPS, macrophages release pro-inflammatory cytokines and

Nitric Oxide which can cause destruction to the tight junction protein that seals the para

cellular space between epithelial cells. Whenever (resting) macrophages come in contact with

cytokines, cytokines bind to the receptors on macrophages to cytokine-receptor complexes.

These complexes are then internalized into the macrophages. [12]

Neutrophils. Neutrophils reside in the blood stream until activated. After activation,
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Effects of Prematurity Corresponding Advantage

of Breastfeeding

Immature glycosylation Favorable glycosylation patterns

Low levels of IgA production pIgA and sIgA in breast milk

Lower levels of Antimicrobial Antimicrobial peptides

peptides in breast milk

EGF is found in large

Low levels of EGF amounts in breast milk of mothers

of preterm infants

Elevated levels of PAF PAF-AH is found in large

Low levels of PAF-AH amounts in breast milk of mothers

of preterm infants

Excessive Immune Antimicrobial factors in

response breast milk

Table 1: Affects of prematurity and the corresponding advantages of breast feeding.
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they move to the site of injury/insult through the blood vessels and through tissue. Neu-

trophils tend to accumulate in the tissue below the epithelium during inflammation [19].

After arriving at the site of injury/insult, the neutrophils phagocyte the pathogens and they

aid in sterilizing the wound. Unlike macrophages, neutrophils have a short life, one or two

days [81], [19].

Neutrophils can have very positive effects on wound healing such as producing IL-1β

which promotes epithelial repair. On the other hand, if the neutrophils do not encounter

pathogen in a timely manner, they cause tissue damage, in particular they may damage the

extra cellular matrix and they may release elastase which causes epithelial cell death and

permanent damage to the tight junctions. Furthermore, they may cross from the tissue side

of the epithelium to the lumenal side and in the process cause damage to the epithelium

barrier function by increasing the paracellular space. The larger paracellular space makes it

easier for toxins to cross the epithelium into the underlying tissue [19].

IL-1. This inflammatory cytokine is released by macrophages. There are two distinct IL-

1 genes: IL-1 α and IL-1 β. IL-1 α promotes the inflammatory response. It has been shown

that there is a high correlation between IL-1 synthesis and tissue damage and inflammation.

In particular, IL-1 α levels in the tissue have been correlated with intestinal necrosis [27].

These findings have been corroborated by studies that have shown significant reduction of

inflammatory cell infiltration after the introduction of IL-1ra [27]. (The description of IL-

1ra may be found below.) IL-1 helps to promote the inflammatory cascade by stimulating

other cells to produce cytokines. [33]. IL-1 β contributes to the production of nitric oxide.

In particular, it has been shown that exposing epithelial cells to TNF-α, in combination

with IFN-γ and IL-1 β, leads to increased expression of nitric oxide [53]. Increased levels of

Nitric Oxide leads to increased epithelial layer permeability (see below). IL-1 β stimulates

the production of IL-8 which, in turn, causes neutrophils to congregate near the site of the

inflammation [33], [90]. Interestingly, there is some evidence that IL-1 β may have a positive,

protective effect on intestinal mucosa integrity by stimulating the increase of Glial cells which

are critical to intestinal gut integrity [83].

IL-1ra. Interleukin-1 receptor antagonist binds to the same cell receptors as IL-1 and

thereby prevents IL-1 from binding to these sites. Upon binding, IL-1ra produces no biolog-
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ical response. Thus, IL-ra has the effect of dampening the inflammatory cascade.

IL-4. This is an anti-inflammatory cytokine. IL-4 serves to dampen the inflammatory

cascade. It is produced by TH2 cells as well as by bone marrow stroma [83]. IL-4 has been

found to inhibit human macrophage colony formation [83] [66], IL-4 also inhibits monocyte-

derived hydrogen peroxide production [83] and the release of certain inflammatory mediators

such as TNF-α and IL-1β. It also reduces the tissue destruction caused by oxygen radicals

associated with ischemia and reperfusion injury [83]. IL-4/IL-13 have been shown to inhibit

macrophages’ ability to phagocyte pathogens [87], [132].

IL-6. IL-6 is produced by T cells, B cells, monocytes, fibroblasts, endothelial cells as

well as many other cell types [69]. Studies have found that intestinal epithelial cells, as well,

make IL-6 [124]. The release of IL-6 is stimulated by IL-1 and TNF-α as well as by other

pro-inflammatory cytokines [83]. IL-6 stimulates B cell growth [42]. There are indications

that IL-6 may play a dual role in NEC as studies show that it has both inflammatory and

anti-inflammatory effects. The inflammatory effects of IL-6 are well know. High levels of IL-6

have been shown to be associated with NEC severity [83]. Harris showed that IL-6 levels were

significantly higher in nonsurvivors compared to survivors of NEC [57]. On the other hand,

IL-6 appears to have certain anti-inflammatory affects. IL-6 can drive TGF-β activation.

Some research indicates that IL-6 may be responsible for increased local and circulating IL-

1ra, increased production of tissue inhibitors of metalloproteinases (TIMPs), and has been

shown to inhibit the production of superoxides [83]. As noted above, any up-regulation of

IL-1ra competes for the same binding cites as IL-1 but with no inflammatory effects. The

increased production of TIMPs results in the inhibition of the enzymes that degrade the

extra cellular matrix (see discussion of MMPs below). Finally, superoxides produce tissue

damage and, therefore, any inhibition thereof will help protect the host.

IL-8. IL-8 plays a major role in inflammation. IL-8 is a chemokine (a chemokine is a

special type of cytokine that is involved in cell migration) produced by enterocytes that causes

neutrophils to congregate near the site of inflammation [33], [90], [80]. For example, it has

been shown that in the midst of inflammatory cascades, the administration of neutralizing

antibodies against IL-8 resulted in reduced neutrophil infiltration and prevented neutrophil-

related tissue damage [56]. Studies have shown that, in general, IL-1β induces the production
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of IL-8 [33], [90]. Other studies indicate that both IL-1β and endotoxin induce the production

of IL-8. [96]. For example, some studies have shown that, in the presence of TNF-α and LPS,

the inhibition of IL-1 does not fully eliminate the production of IL-8 and neutrophils leading

to speculation that TNF-α and LPS, even without the help of IL-1, may lead directly to the

production of IL-8 and neutrophils [56]. In summary, for the case of intestinal epithelial cells

(IEC’s), both IL-1β and endotoxin may lead to the secretion of IL-8. However, it appears

that IL-1β is far more effective than endotoxin in inducing IL-8 secretion by the IECs in

both pre-term and full-term infants [90],[96]. Since the IECs are prominent in the study of

NEC, IL-1β activation of IL-8 warrants a few more comments.

Studies have shown that IL-1β activation of IL-8 occurs through activation of nuclear

factor (NF-κ B). Studies by Claud, et. al. [25],[26] indicate that IL-1β activation of IL-8 is

muted by various factors found in breast milk [25]. In particular, it has been shown these

factors (e.g. TGF-β1, Epo) in breast milk inhibit the activation of NF-κ and, thereby, results

in reduced secretion by IECs [90], [25].

As a side note, one of the studies by Claud [25] indicated that the presence of the anti-

inflammatory cytokine IL-10 did not inhibit TNFα or IL-1β secretion of IL-8 by IECs. This

surprising result conflicted with the expected affects IL-10. However, the authors noted the

other anti-inflammatory features of IL-10 may result in reduced inflammation by affecting

macrophages and speculate that IL-10 may even affect IECs in an indirect way. (This same

study by Claud produced another unexpected result - EGF appears to increase secretion

of IL-8 by IECs. The authors of the report observed that pretreating IECs with EGF and,

afterwards, stimulating the cells with TNFα resulted in increased secretion of IL-8 by IECs.

This phenomenon cannot be fully explained at the present time.)

Finally, the presence of high concentrations of IL-8 is a significant indicator of the severity

of NEC. For example, studies have shown that within the first day of the onset of the disease,

IL-8 concentrations are significantly higher in infants with stage 3 NEC compared to infants

with stage 2 NEC [36].

IL-10. This is an anti-inflammatory cytokine that is produced by TH2 cells, B cells,

and monocytes [117]. Like IL-4, this cytokine serves to dampen the inflammatory response.

It has been shown that the addition of IL-10 suppressed inducible nitric oxide synthase

32



(iNOS), messenger RNA (mRNA), and nitric oxide expression in the small bowel, liver, and

serum by 60%, 89%, and 11%, respectively (Markel [83] quoting Kling [70]). IL-10 decreases

production of IL-2 [125]. It inhibits the activation of macrophages, TNF-α, IL-1β, IL-6,

and IL-8. It was discovered that IL-10 decreases the production of metalloproteinases (by

inhibiting T cell activation at its earliest stages.) [110]. It inhibits the synthesis of the

cytokines IL1, IL-6, IL-8, IL-10, and IL-12 [55]. Furthermore, IL-10 is a good indicator of

the severity of NEC, as concentrations of this cytokine were observed to be much higher

in infants with stage 3 NEC compared with stage 2 NEC. One study has shown that these

differences in concentrations between the stages continued until 72 hours after the onset of

the disease [36].

IL-12. This pro-inflammatory cytokine is secreted by B cells and macrophages and

induces the release of small amounts of IFN-γ from T cells and natural killer (NK) cells.

IL-12 is able, by itself, to stimulate the production of IFN-γ. However, in collaboration

with IFN-γ-Inducing Factor (IGIF) causes T cells to produce significantly greater amounts

of IFN-γ [2]. This appears to be due to the fact that IL-12 causes the expression of receptor

IGIF on certain cell lines [2]. In the same way, IL-12 induces the expression of the IL-18

receptor on Th1 cells. Therefore, IL-12 in collaboration with IL-18 causes T cells to produce

exponentially large amounts of IFN-γ [24].

IL-18. This pro-inflammatory cytokine, like IL-12, induces the release of small amounts

of IFN-γ but unlike IL-12, it is secreted by macrophages and IECs. Levels of IL-18 tend to

increase in step with the increased severity of NEC. [52].

There is some speculation that IL-18 is a negative regulator of TNF-α production by

IFN-γ. IFN-γ usually induces the production of TNF-α. However, in the presence of IL-12

and IL-18, even high levels of IFN-γ failed to produce TNF-α.[24].

IL-18 in combination with IL-12 leads to the production of nitric oxide and oxygen

radicals in macrophages and neutrophils. These, in turn, have both positive and negative

effects - the radicals are toxic to the microbial pathogens but also destructive to tissue [68].

(As noted above, IL-18 and IL-12 together cause the production of IFN-γ. IFN-γ, in turn,

induces macrophages and neutrophils to produce nitric oxide and oxygen radicals.)

TNF-α This cytokine can induce other cells to release IL-1, IL-2, IL-6, and IL-8 [139].
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Although TNF-α is released from a variety of sources, they mostly come from activated

macrophages [139]. TNF-α is not only released by macrophages but is also a major activator

of macrophages. For this study, it is particularly important that TNF-α causes macrophages

to produce proinflammatory cytokines and nitric oxide [139].

IFN-γ This cytokine is secreted from T cells and NK cells. IL-12 causes T cells to

produce IFN-γ while IL-1,IL-2, and TNF together induce NK cells to produce IFN-γ [104].

This induces NO and TNF-α production. It has been shown to cause mucosal inflammation.

It has been shown that IL-12 and IL-18 individually induce T cells to produce IFN-γ while

together induce the production of very large amounts of IFN-γ (see discussion under IL-12

above). Interestingly, mice injected with large amounts of IFN-γ without the presence of

IL-12 or IL-18 did not have pathological effects [24]. There is some speculation that NO

inhibits IFN-γ production (see discussion under NO below). It is very important to note

that IFN-γ downregulates the production of the tight junction protein ZO1 [53] [35] and

IFN-γ reduces gap junction communication [76].

Platelet Activating Factor (PAF) Platelet Activating Factor is a powerful inflamma-

tory mediator and, therefore, an important player in NEC. PAF is produced by neutrophils,

macrophages, endothelial cells, and enterocytes in response to endotoxin and hypoxia [121].

PAF leads to the activation of IL-1 β, IL-6, and IL-8 [83], [22].

Its specific role in NEC is unclear. On the one hand, patients with NEC exhibit high

levels of PAF. In rat experiments, injection with PAF leads to intestinal necrosis. Also,

other experiments on rats have shown that PAF receptor antagonist prevents injury in-

duced by hypoxia, bacteria, and TNF-α [59]. Furthermore, the PAF degrading enzyme

PAF-acetylhydrolase (PAF-AH) blocks the initiation of NEC [22]. On the other hand, PAF

without the presence of bacteria failed to cause bowel injury in rat experiments [67]. There-

fore, PAF plays a major role in NEC but appears to require bacteria to cause inflammation

and damage.

PAF activates apoptosis of intestinal epithelial cells[22].

Matrix Metalloproteinases (MMPs). These are enzymes that degrade the extra

cellular matrix which supports the intestinal epithelial cells. It has been shown that TNF-α

drives the production of the MMPs. It has also been shown that activated lamina propria
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T cells will begin a cascade that results in the production of MMPs. On the other hand,

IL-10 will inhibit T cell activation thereby reducing the destruction of the ECM by MMPs

[110]. Tissue Inhibitor of Metalloproteinases (TIMPs) controls the local activity of MMPs

in tissues. However, if the MMP production is too high, an imbalance will result and it will

not be possible for the TIMPs to control the MMPs [109],[108].

Nitric Oxide. Nitric oxide plays a number of critical roles in NEC. Nitric Oxide is asso-

ciated with epithelial barrier dysfunction. In particular, nitric oxide reduces the functional

levels of tight junction proteins. In addition, nitric oxide impairs communication between

epithelial cells by interfering with the normal function of the gap junction proteins. Nitric

oxide is, also, involved in epithelial cell death and has been shown to lead to destruction of

the tissue that underlies the epithelial layer.

Nitric oxide is produced from nitrogen oxide synthase (NOS). There are three isoforms of

NOS. However, for our study, we are particularly interested in inducible nitric oxide synthase

(iNOS). iNOS is produced from macrophages and other inflammatory cells. For example,

TNF-α and IFN-γ stimulate macrophages to produce iNOS. Nitric oxide is then produced

by oxidation of L-arginine mediated by iNOS [84], [77].

It is very important to note that nitric oxide usually only acts locally. This is partially

due to the fact that its metabolic lifespan is, perhaps, only a few seconds [84]. Specifically,

Levy et al [77] report that its half life is .1 to 10 seconds. Thus, the effects of nitric oxide are

limited to the area near where it is produced. On the other hand, iNOS expression usually

leads to the production of large quantities of nitric oxide over an extended period of time

[77]. As a result, even though nitric oxide dies out before it moves beyond the local area, its

sustained production can have devastating effects in the area near where it is produced.

The body naturally produces some NO and, in fact, moderate amounts of NO are bene-

ficial to the epithelium - nitric oxide plays an anti-microbial role and inhibits the growth of

gram-positive bacteria. [65] [77] However, under stressed conditions, large amounts of NO

can be produced causing damage to the epithelial layer, the tight junction proteins, and the

gap junction proteins [77].

Nitric oxide is strongly linked to epithelial layer permeability. Tight junction proteins

are responsible for maintaining a barrier to pathogen attempting to pass between epithelial
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cells into the underlying tissue layer. Nitric Oxide has been shown to reduce the functional

levels of the tight junction proteins, ZO1, ZO3, and occludin [53].

It is theorized that NO impairs phosphorylation of the gap junction protein Cx43, re-

sulting in reduced cell-to-cell communication. This communication is required for epithelial

cell migration. Therefore, NO impairs epithelial cell migration that is required for mucosal

repair [5].

Nitric Oxide also reacts with superoxide O−
2 to produce the oxidant peroxynitrite

(ONOO−). Peroxynitrite inhibits the proliferation and differentiation of epithelial cells [130].

Gap Junction Proteins. These are intercellular membrane channels that facilitate the

passage of ions and solutes between adjacent cells. These membrane channels are composed

of the gap junction protein connexin 43 (Cx43). Leaphart, et al [76] have demonstrated that

epithelial cells migrate in unison and that gap junction communication plays a crucial role in

the migration of intestinal epithelial cells during intestinal healing after injury. They show

that epithelial cells, in particular IEC-6 cells, exposed to IFN-γ exhibit reduced gap junction

communication and, therefore, greatly reduced migration speed. In particular, they showed

that IFN effected this reduced communication by dephosphorylating Cx43 and by causing

Cx43 to move inside the cell. Interestingly, inhibited gap junction communication does not

appear to reduce epithelial cell proliferation nor does it appear to induce epithelial cell death

[76].

A key factor in gap junction communication is the phosphorylation and surface local-

ization of the gap junction protein Cx43. Any inhibition of phosphorylation of Cx43 will

lead to an inhibition of epithelial cell migration. Anand, et al [5] has demonstrated that

macrophage activation leads to production of nitric oxide. The nitric oxide, in turn, inhibits

the phosphorylation of Cx43 resulting in significantly reduced cell migration.

Tight Junction Proteins.(Zonula Occludens) These include occludin, ZO-1,ZO-2, ZO-

3, claudin-1, and JAM. [74]. These proteins are formed between adjacent epithelial cells and

are closely linked with the actin-based cytoskeleton [53]. Among other functions, Zonula

Occludens serve as a barrier to keep bacteria and other molecules from passing through the
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epithelial layer into the underlying tissue. It has been discovered that tight junctions restrict

passage of molecules based on the size of the particles and, in fact, the size of the solutes

that are allowed to pass between cells varies at different locations in the intestine. In partic-

ular, the permeability to larger solutes decreases from the crypt to the villus [128]. Also, by

restricting transport across the epithelium, the tight junctions serve to prevent equilibrium

across on both sides of the epithelium. In this way, a concentration gradient is maintained

across the epithelium. This concentration gradient is needed in order that the epithelium

can properly absorb and secrete substances [128].

Many factors effect the integrity and health of the tight junction proteins. For example,

there is a close connection between the presence of nitric oxide and increased epithelial layer

permeability. It is theorized that nitric oxide alters the expression and localization of some of

the tight junction proteins, in particular ZO1 [53]. Furthermore, it has been discovered that

IFN-γ causes a time-dependent down-regulation of the tight junction protein ZO1 [35], pg.

23. Some studies also indicate that TNF causes increased paracellular permeability [128].

Therefore, TNF may effect the tight junction protein.

DAMPs and Damaged cells. Injured cells send out danger/alarm signals. Cells

that send out such signals are cells that are exposed to bacteria, toxins, or cells that have

sustained mechanical damage. This is particularly true of cells that are in the process of

dying after an insult or injury. [88] Alarm signals might be in the form of any substance made

or modified by the dying cell. Cells that die under a normal process will not send out these

danger signals. [88] These alarm/danger signals are known as Damage-associated Molecular

Pattern molecules [DAMPs]. DAMPs tend to keep inflammation going even when most or

all of the invading bacteria has been killed. Therefore, a cycle of damage - inflammation -

damage can occur. [134]

LPS. LPS is a glycolipid on the outer membrane of gram-negative bacteria which com-

bines with other components and forms LPS/CD-14 [71], [126], LPS/CD-14 is recognized by

and becomes attached to TLR4.

The LPS/CD-14 complex leads to secretion of IL-1, IL-6, and TNF-α in macrophages

[89].

TLR4. TLR4 is one member of the group of Toll-like receptors. Also referred to as
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pattern recognition molecules (PRMs) or pattern recognition receptors (PRRs). Toll-like re-

ceptors are normally expressed on the outside of the cell on what is known as the cell mem-

brane or plasma membrane and they recognize large molecules that are associated with

pathogens. These large molecules are sometimes referred to as pathogen-associated molecu-

lar patterns (PAMPs) or microorganism-associated molecular patterns (MAMPS) [55]. For

our study, the only toll-like receptors that we need to consider are TLR4 and TLR9. TLR4

recognizes lipopolysaccharide (LPS) which is on the outer membrane of gram-negative bac-

teria. TLR4 is expressed on many different types of cells. However, we are most interested

in TLR4’s role on intestinal epithelial cells (IECs).

It has been discovered that TLR4 mediates phagocytosis of gram-negative bacteria by

IECs. This results in IECs translocating bacteria from the mucosa to underneath the ep-

ithelial layer in a transcellular manner [97].

On IECs, TLR4-LPS binding begins a signalling cascade inside the cell ultimately result-

ing in integrin activation. Often TLR4-LPS binding results in over-expression of integrins

resulting in reduced cell motility. Other adverse affects of TLR4-LPS binding are increased

epithelial cell apoptosis, inhibited cell-cell communication, and decreased cell proliferation

[41],[75]. Not surprisingly, there appears to be a strong correlation high levels of TLR4

expression and NEC severity [50]. In particular, high levels of TLR4 have been associated

with a decrease in goblet cells and, in turn, a reduction in the protective mucins that goblet

cells produce [123].

It has been observed that TLR4 increases during gut development. Fold expression of

TLR4 in the gut in mice was shown to increase approximately three-fold from embryonic

day 14 to day 18. Then goes back to day 14 levels right after birth. TLR4 expression then

increases but falls again after weaning [46],[122].

In humans, at the time of full-term birth, TLR4 expression drops greatly. On the other

hand, TLR4 expression remains high at the birth of the pre-term infant and continues to

remain high after birth (yet another disadvantage of prematurity) [50].

There are indications that Heat Shock Protein-70 (HsP70) regulates TLR4 signalling

resulting in decreased NEC severity [1].

TLR9. TLR9, like TLR4 is a Toll-like receptor. TLR9 is the receptor for bacterial
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Figure 14: Results of TLR4 signalling.

DNA (CpG-DNA). It has been determined that TLR4 and TLR9 have a reciprocal role,

i.e., increased signalling in one TLR is associated with decreased signalling of the other.

Studies have shown that, in enterocytes, activating TLR9 with CpG-DNA inhibited LPS-

mediated signalling by TLR4 [46]. Furthermore, NEC has been found to develop in a mucosal

environment of increased TLR4 expression and decreased TLR9 expression [46].

Integrins. Integrins are cell surface glycoproteins that are responsible for cell adhesion

to the extra cellular matrix on which the epithelium resides. Proper integrin expression is

critical for proper cell migration after an injury. Signals from inside the cell cause integrins to

become activated. Upon TLR4-LPS binding, a signalling cascade begins resulting in integrin

activation.

Extracellular ligands of integrins are primarily proteins of the ECM such as fibronectin

and collagen. As a result of this binding to proteins of the ECM, the integrins form clusters

known as focal adhesions [73]. Integrins then transmit signals across the plasma membrane

and, in cooperation with growth-factor initiated signals determine various cell functions [9],

[63].

This concludes the survey of the medical research of NEC. The topics in this chapter

were presented as they relate to NEC. More general information about these topics may

be found in other sources. Janeway’s Immunobiology [95] provides a good introduction to

the immune system. For cell signalling, see Marks, Klingmuller, and K. Muller-Decker [84].
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Tomkins [127] gives a general overview of the role of the cell and its place in creation.
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2.0 PREPARATIONS FOR CONSTRUCTION OF A NEC MODEL

Much information related to NEC was presented in the previous chapter. In that chapter,

many of the mechanisms and factors involved in NEC were explored and examined. Most

of that information will now be organized, summarized, and filtered down into a form that

can be used for a 3-D mathematical NEC model. Some of the material in that first chapter

will not be used in a direct way to construct the NEC model but will be used to inform the

simulation runs later in the thesis. For example, when simulating prematurity in chapter

seven, underdeveloped peristalsis, which is a common problem for the pre-term infant, will

be simulated by including large amounts of bacteria near the epithelium. On the other hand,

some factors presented in chapter one that have common characteristics will be combined

into single factors for the purpose of the model. For example, the cytokines that have

inflammatory effects will be combined into the general category of cytokines. In addition,

certain practical considerations must be kept in mind when constructing this model. This is

the first 3-D model for NEC, it will be wise not to include too much detail in this first model.

Also, there is currently very little quantitative clinical data concerning some of the specific

NEC factors covered in chapter one. As a result, some simplification and/or combining of

NEC factors is necessary. Therefore, the main goal of this chapter will be to identify the

most essential factors in NEC, generalize these factors as much as possible, and define the

interaction among these factors. This work will result in the General Inflammatory Cascade

presented in this chapter (see figure 21). In chapter three, this General Inflammatory Cascade

will be used as a guide for the construction of the 3-D mathematical NEC model.

The General Inflammatory Cascade will be presented after the construction of interme-

diate diagrams and cascades. It is possible to construct the General Inflammatory Cascade

without these intermediate steps and diagrams. However, it is important that the reader
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understand the rationale for many of the simplifications that will be done in this chapter.

Also, this intermediate information will provide ideas and motivation for a more advanced

NEC model in the future. That is, this intermediate information may supply the next level

of detail that can be included in a more extensive NEC model. This information will be

particularly relevant as soon as new clinical data becomes available that touches the factors

included in these intermediate steps.

2.1 INFLAMMATORY CASCADE

In this section, inflammatory cascades and other diagrams will be developed based on the

information presented in chapter 1. An inflammatory cascade which shows the interplay

between cytokines, bacteria, etc. is presented in figure 15. (This cascade is a generalization

based on the information presented in chapter 1.) In order to preserve clarity, PAF and its

role in the inflammatory cascade is not included in figure 15 but in a separate figure (figure

16). In figure 15 we have the following important information (this is all based on the

material presented in chapter 1):

1) Beginning along the bottom of the diagram, macrophages eliminate bacteria. At

the same time, bacterial contact with macrophages induces the production of IL-12,IL-18,

TNF-α.

2) TNF-α induces the production of IL-1, IL-2, IL-6, and IL-8. TNF-α in combination

with IL-1, IL-2 induce NK cells to produce IFN-γ (this combination is indicated by the blue

++.) TNF-α also induces the production of MMPs.

3) IL-12 and IL-18 individually induce the production of IFN-γ but in combination IL-12

and IL-18 produce even larger amounts of IFN-γ (this combination is indicated by the blue

++.)

4) IL-18 induces the production of IL-4,5,8,10,13.

5) Both IL-1 and TNF-α induce the production of IL-6.

6) IL-6 induces the production of IL-1ra and TIMPs. IL-1ra in turn reduces the effects

of IL-1 by competing for the same binding sites as that cytokine. (IL-6 also leads to TGF-β

42



Figure 15: Partial Inflammatory Cascade. See the text for discussion. Symbols: Ma stands for activated
macrophages, Na for activated neutrophils, B for bacteria, the other symbols are self-explanatory. Box
color designations are as follows: inflammatory cytokines and other destructive agents have white
background boxes; cytokines and other factors that play an anti-inflammatory role have green background
boxes; phagocytes have yellow background boxes; free radicals have boxes with gray background. Arrow
color designations are as follows: a red arrow with a negative sign indicates downregulation or production
inhibition; a black arrow with a positive sign indicates upregulation; whenever two or more arrows meet at a
plus sign with a blue background, this indicates that two or more factors, when working together, induce the
production of a large amount of a substance. Note that activated neutrophils, like activated macrophages,
produce cytokines and nitric oxide. For clarity, this function of activated neutrophils is not shown in the
figure. Note, also, that some of the intermediate roles of the inflammatory cells are not shown here. For
example, the diagram implies that TNF-α and IFN-γ directly produce nitric oxide and O2- but in reality
TNF-α and IFN-γ induce macrophages to produce these molecules. Also, IL-10 does not directly inhibit the
production of MMP’s. Instead, IL-10 inhibits the T cell activation which, in turn, slows the production of
MMP’s. Finally, the function of IL-4, IL-8, and IL-10 are shown near the middle of the diagram but the
production of these cytokines is shown in the upper left hand corner.
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Figure 16: PAF’s role in the inflammatory cascade
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Figure 17: Disruption and restoration of the epithelium. This diagram, unlike the inflammatory cascades,
shows the physical effects on the structure of the epithelium. At the top of the illustration we see that nitric
oxide destroys gap junction protein (GJP), epithelial cells and tight junction protein(TJP). Also, ONOO-
destroys epithelial cells and IFN-γ downregulates the production of tight junction protein. At the bottom,
we see that nitric oxide, IFN-γ, and ONOO- inhibits epithelial restitution. Paradoxically, IFN-γ promotes
epithelial cell migration and, therefore, also contributes to epithelial restitution.
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Figure 18: Other factors involved in epithelial restitution/proliferation. Epithelial cells produce TGF-α;
Lamina propria cells produce TGF-β; Salivary glands produce EGF; Goblet cells produce TFF. TGF-β,
EGF, and TFF all enhance epithelial cell migration. TGF-α and EGF enhance epithelial cell proliferation
but TGF-β inhibits epithelial cell proliferation.
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activation.)

7) TIMPs inhibit the production of MMPs.

8) IL-1β induces the production of IL-8.

9) IL-8 causes neutrophils to congregate near the site of inflammation.

10) IL-10 inhibits production of TNF-α, IL-1β, IL-6, and IL-8.

11) Not shown is the fact that IL-10 may inhibit MMP production by inhibiting T cell

activation.

12) On the bottom right of the diagram, TNF-α and IFN-γ causes macrophages to

produce Nitric Oxide and O−
2 .

13) Also on the bottom right of the diagram, Nitric Oxide reacts with O−
2 to produce

ONOO−.

Other effects not explicitly shown:

14) IL-4, particularly with IL-13, inhibits macrophages’ ability to phagocytize pathogen.

15) IL-4 inhibits macrophages’ ability to produce nitric oxide.

PAF’s role in the inflammatory cascade is given in figure 16. Here it is shown that activated

macrophages and activated neutrophils produce PAF. PAF, in turn, leads to the activation

of IL-1β, IL-6, and IL-8.

Disruption of the epithelium. Figure 17 shows how the inflammatory cascade affects

the epithelium. Notice that nitric oxide interferes with the normal function of gap junction

proteins and, therefore, inhibits epithelial cell-cell communication which in turn inhibits

epithelial cell restitution. Nitric oxide also directly reduces the functional levels of tight

junction proteins and causes epithelial cell death. ONOO- destroys epithelial cells. IFN-γ

downregulates the production of some tight junction protein.

Also, note that figure 17 shows that IFN-γ both inhibits restitution and enhances resti-
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tution of the epithelium. This is based on the evidence, presented in chapter one, that IFN-γ

reduces gap junction communication [76] and, one would conclude, slows epithelial restitu-

tion. Other evidence, also presented in chapter one, suggests that IFN-γ promotes epithelial

cell migration [32].

Other factors involved in epithelial restitution/proliferation Figure 18 is a sim-

plification and summary of much of the information that was presented in the last chapter.

(See the discussion in chapter one and figure 10 in that chapter.) Recall from chapter one

that many of the growth factors such as HGF, and FGF peptides as well as the cytokines

IL-1, IL-2, IFN-γ affect the epithelium through TGF-β dependent pathways. Therefore, in

figure 18 the functions of these particular growth factors, peptides and cytokine are repre-

sented simply by TGF-β. On the other hand, the growth factor EGF plays such an important

role in epithelial proliferation and restitution that its explicit inclusion in figure 18 is war-

ranted. TGF-α, which is produced by epithelial cells is explicitly included for similar reasons

- it plays an important role in epithelial proliferation. Members of the trefoil factor family

(TFF), which are produce by goblet cells, work in conjunction with glycoproteins on the

apical side (lumenal side) of the epithelium through an TGF-β independent pathway (see

chapter one) and it is, therefore, explicitly included.

2.2 PHYSICAL DOMAIN FOR THE NEC MODEL.

Based on the discussion in chapter one, the lumen, the mucus, the epithelial layer, the extra

cellular matrix (ECM), the underlying tissue, and the blood (or circulatory system) are

important regions for the study of NEC. Ideally, all of these regions would be included in

the mathematical model. However, a model that includes six regions may be too complex.

So, the number of regions considered will be reduced. The mucus will not be included in

the mathematical model because it, like the epithelium, is part of the mucosa. Much of

what occurs in the mucus can be considered together with the epithelial layer. The integrity

of ECM is closely related to the integrity of the epithelium. Recall that the ECM is the
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Figure 19: This diagram shows how the presence of nitric oxide and IFN-γ results in epithelial

layer permeability.

foundation upon which the epithelial cells stand. Any degradation of the extra cellular matrix

will contribute to epithelial layer permeability. Therefore, extra cellular matrix permeability

and epithelium permeability will not be treated as separate functions. The extra cellular

matrix will not be included in the physical domain for the mathematical model. The function

of the ECM will be included in the function of the epithelium. This leaves us with four regions

as seen in figure 20.

2.3 GENERAL INFLAMMATORY CASCADE

As we move toward a mathematical model, it is desirable to use the information in figures

15, 16, and 17 to create one simplified General Inflammatory Cascade. Toward this end,

we first consider 15 and note the role of MMPs. It was shown in chapter one that the

primary action of the MMPs is to destroy the extra cellular matrix (ECM) but, as noted

above, ECM integrity will not be included explicitly in our model but will be considered

as part of epithelium integrity. Therefore, we will also not include MMPs nor TIMPs (the

prime function of which is to downregulate the MMPs). Instead, the MMPs degradation

of the epithelium/ECM, will be mathematically modeled, in chapter three, by cytokines
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Figure 20: This diagram shows the four regions that will be used in the NEC mathematical

model.

affecting epithelial layer integrity. This simplification is reasonable because the cytokine

TNF-α induces the production of MMPs as can be seen from figure 15. On the other

hand, we will include the immune cells, activated macrophages, ma, and activated

macrophages, Na, in the General Inflammatory Cascade. Next note that figures 15 and 16

indicate that activated macrophages and activated neutrophils, either directly or indirectly

induce the production of all the inflammatory cytokines. (By ”indirectly”, it is meant that

activated macrophages and activated neutrophils induce the production of some cytokines

which, in turn, induce the production of the remaining cytokines shown in the figures.) That

is, activated macrophages and activated neutrophils induce the production of TNF-α, IL-1β

IL-12, IL-18, PAF, these in-turn induce the production of IL-1,IL-2, IL-4, IL-5, IL-8, IL-10,

IL-13, IFN-γ then IL-1 induces the production of IL-6. Therefore, it will be reasonable to

group all of the aforementioned inflammatory cytokines under cytokines, c. Furthermore,

note that in figure 15 that the anti-inflammatory cytokines such as IL-4, IL-10, IL-1ra

downregulate most of the inflammatory cytokines. Therefore, these anti-inflammatory
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cytokines, ca, may be grouped together.

Note that figure 15 indicates that the same factors that produce NO also produce O2-.

Furthermore, NO and O2- together produce ONOO-. Therefore, it is possible to include

nitric oxide, NO, in the General Inflammatory Cascade and not O2- nor ONOO- as long

as we assign the affects of O2- and ONOO- to NO. For example, note that O2- destroys

bacteria so in the General Inflammatory Cascade we will indicate that NO destroys bacteria.

Also, in figure 17 we see that ONOO- destroys epithelial cells and interferes with epithelial

layer restitution but this action mirrors the action of nitric oxide.

In figure 17 we see that nitric oxide (NO) destroys epithelial cells, tight junction protein

and gap junction protein. As noted in chapter one, gap junction protein is necessary for

epithelial cell communication and for coordinated epithelial cell migration. So, if we model

epithelial cell migration and proliferation together, we will not need to include gap junction

protein in our General Inflammatory Cascade. That is, we will assume that nitric oxide will

cause destruction of the epithelial layer and inhibit its repair.

On the other hand, it would be wise to include tight junction protein, ZO1, in the

General Inflammatory Cascade because it is possible for enough nitric oxide to be present to

destroy the tight junction protein, and therefore, create epithelial layer permeability, without

(or before) destroying epithelial cells.

In figure 17, we see that IFN-γ both helps and inhibits epithelial restitution. Based

on the evidence presented in chapter one, the net action of IFN-γ is more likely to inhibit

epithelial restitution than to promote restitution. Therefore, IFN-γ may be left out of the

general inflammatory cascade and its action represented by cytokines, which inhibit epithelial

restitution.

epithelial cells, ec, are essential to the model and, of course will be included in the

General Inflammatory Cascade. Note in figure 17 that many of the factors that contribute to

epithelial proliferation and restitution originate in the epithelium itself or originate naturally

in other parts of the body, i.e., the tissue and salivary glands. It will, therefore, be reasonable

to exclude all of the factors in figure 17 from the General Inflammatory Cascade and represent

their effects by terms in the epithelial cell equation (this last part will be done in chapter

three).
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Damage (in the context of DAMPs) was covered in chapter one but it was not included

in figures 15, 16, or 17 because as noted in the first chapter, many different components

produced or modified by injured or dying cells can play the role of DAMPs. Therefore,

DAMPs did not fit in well with the well defined components shown in figures 15, 16, or 17.

On the other hand, DAMPs fit well into the General Inflammatory Cascade in which each

component may represent a more general class of components. Also, as noted in chapter

one, damage is a major player in keeping the inflammatory cascade going, even after all of

the bacteria has been destroyed. Therefore, it is necessary to include damage, d, in the

General Inflammatory Cascade.

Finally, bacteria, b, is essential for the model and, therefore, will be included in the

general inflammatory cascade. So, the General Inflammatory Cascade is given in figure 21.

This General Inflammatory cascade may be though of as occurring in multiple regions, with

the understanding, of course, that epithelial cells are present only in the epithelial region.

In figure 21, the components are as follows:

b: bacteria - endotoxin, LPS; Interacting with activated neutrophils and activated

macrophages, induces the production of cytokines. This effect is indicated by the black

dashed lines in the diagram. At the same time, activated neutrophils and activated

macrophages destroy bacteria. (This is indicated by the red arrows pointing from activated

neutrophils and activated macrophages toward bacteria).

c: pro-inflammatory cytokines. This group includes IL-1, IL-8, IL-12, IL-18, IFN-γ, TNF-

α and, perhaps IL-6 (although as indicated in chapter 1, IL-6 may have both inflammatory

and anti-inflammatory affects). These cytokines induce macrophages and neutrophils to

produce other cytokines (As indicated by the solid black lines going to and from activated

neutrophils and activated macrophages). Also, these cytokines induce macrophages and

neutrophils to produce nitric oxide. (This is indicated by the black dashed lines). Certain

cytokines such as TNF can induce epithelial cell death. (This is indicated by the red line

pointing from the cytokines to epithelial cells.)

ca: anti-inflammatory cytokines - This group includes IL-4 and IL-10. These cytokines

tend to reduce the inflammatory response by slowing down the production of cytokines,

activated neutrophils and activated macrophages. (This is indicated by the blue dashed
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Figure 21: General Inflammatory Cascade. See the text for discussion. Symbols: ma stands for
activated macrophages, Na for activated neutrophils, b for bacteria, Ca for anti-inflammatory cytokines, d
for damage, NO nitric oxide, ZO1 represents tight junction protein, ec represents epithelial cells. Arrow
color designations are as follows: a red arrow with a negative sign indicates downregulation or production
inhibition; a black arrow with a positive sign indicates upregulation.

lines in the diagram).

d: damage - Damage was covered in chapter 1 under DAMPs, Damage-associated Molec-

ular Pattern molecules. Damage might be thought of as the measure of the level of severity of

the inflammation. DAMPs are induced by inflammation in stressed/injured cells and which

serve to perpetuate inflammation in a feed-forward fashion [43], [88], [135].

ec: epithelial cells - these cells line the intestinal wall and protect the underlying tissue

from bacterial invasion. Tight junction proteins, such as ZO1, seal the space between these

cells so that pathogen may not pass into the underlying tissue [53], [54].

m: macrophage - resting immune cells. (For clarity, these are not explicitly shown in the

diagram but will be included in the PDE model developed in chapter 3.) Macrophages are

activated by bacteria, cytokines, and damage.

ma: activated macrophage - activated immune cells. These cells phagocytose bacteria.

These cells release inflammatory cytokines and nitric oxide.

n: neutrophil - resting immune cells normally found in the bloodstream. (For clarity,
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these are not explicitly shown in the diagram but will be included in the PDE model devel-

oped in chapter 3.) Neutrophils are activated by cytokines and damage.

na: activated neutrophil - activated immune cells that move from the blood stream

toward the site of infection. These cells release inflammatory cytokines and nitric oxide.

NO: nitric oxide - this chemical is released by activated macrophages and activated

neutrophils after these inflammatory cells come in contact with certain cytokines (this is

indicated by the black dashed lines coming from activated macrophages and activated neu-

trophils to nitric oxide. Nitric Oxide destroys the tight junction protein, ZO1, that seals the

space between epithelial cells [53], [54]. (This is indicated by the red arrow from the nitric

oxide to ZO1). Finally, the presence of nitric oxide in the epithelium leads to epithelial cell

apoptosis. (This is indicated by the red arrow from the nitric oxide to the epithelial cells).

ZO1: tight junction protein - keeps the epithelial cells in close apposition and prevents

the passage of bacteria into the underlying tissue. Nitric Oxide destroys this protein.

2.4 A TYPICAL SCENARIO

At this point, it will be wise to use the information in chapter one to put together a typical

NEC scenario, that is, a sequence of events in the progression of the disease. It will be

helpful to have such a scenario available when constructing the NEC mathematical model

and when doing simulations. There are many possible cases of scenarios. The following

example is a typical case of a premature, formula fed infant with no initial injury

to the intestinal barrier. To be sure, even this case has many possible variations within

it but we will pick one variation that includes all of the features of this particular case.

Under this scenario, formula feeding causes bacterial colonization of the lumen. Un-

derdeveloped peristalsis, a common problem in the premature infant, does not clear away

the bacteria (figure 22, # 1). Some of the bacteria that lingers for a long time near the

epithelium eventually passes through the protective epithelial cells and invades the under-

lying tissue (figure 22, # 2). Note that this bacterial translocation may occur by several
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different mechanisms (see figure 12 in chapter 1). Bacteria that gets into the underlying

tissue invokes an inflammatory response. Macrophages interacting with the bacteria become

activated. The activated macrophages release cytokines, in particular, TNF-α (figure 22, #

3 and # 4). The TNF-α causes increased production of IL-1 [16] and MMP’s [83] (figure

22, # 5). The activated macrophages also release the cytokines IL-12 and IL-18 which each

induce T and NK cells to produce IFN-γ (figure 22, # 6). Recall from chapter one that

IL-12 and IL-18 acting together cause an exponential increase in IFN-γ (figure 22, # 7).

Many of the cytokines that have been produced then act on the macrophages. In par-

ticular, TNF-α and IFN-γ cause macrophages to produce inducible Nitric Oxide synthase

(iNOS) which, in turn, produces Nitric Oxide (NO) (figure 23, # 8 and # 9).

Large amounts of nitric oxide and cytokines near the epithelium lead to its destruction.

The nitric oxide causes both the death of epithelial cells as well as destruction of the tight

junction protein, such as ZO1, which normally seals the space between the epithelial cells.

As noted in chapter one, IFN-γ causes a time-dependent down-regulation of ZO1(figure 23,

# 10). Simultaneously, MMP’s cause the degradation of the Basal Lamina that underlies the

the epithelial layer (figure 23, # 11). All of this together results in the greater permeability

of the epithelial layer.

The degraded epithelial layer provides only minimal protection for the underlying tissue.

Bacteria and other species may easily travel from the lumen into the underlying tissue (figure

23, # 12). After the bacterial invasion, the tissue becomes the location of a very aggressive

inflammatory cascade that involves, among others, IL-1, IL-6, IL-8, IL-12, IL-18, IFN-γ,

TNF-α, and HMGB1 (figure 24, # 13 and # 14).

While this is occurring, the epithelial layer attempts to repair itself. However, as noted

earlier, IFN-γ causes a significant reduction in phosphorylated Cx43, a gap junction pro-

tein critical to cell-cell communication and epithelial cell migration. Nitric Oxide similarly

prevents the phosphorylation of Cx43. Interference with gap junction proteins results in

inhibited epithelial cell migration. Furthermore, over-activation of TLR-4 by lumen bacteria

results in over-expression of integrins. Too much integrin expression results in the epithelial

cells adhering too tightly to extra-cellular matrix (see chapter one). All of this results in

greatly reduced cell migration and in a sustained wound (figure 24, # 15).
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Figure 22: A typical NEC scenario (1 of 3). 1. Gram-negative bacterial colonization near the epithelium.
2. Bacteria pass through the epithelium and invades the underlying tissue. 3. Bacteria in the lumen comes
in contact with macrophages. 4. The macrophages respond by releasing cytokines such as TNF-α. 5. TNF-
α increases production of Metalloproteinases (MMPs) and induces the release of cytokines such as IL-1 . 6.
Macrophages also release other cytokines such as IL-12 and IL-18. IL-12 and IL-18 each provoke the release
of IFN-γ. 7. IL-12 and IL-18 work together to induce the release of large amounts IFN-γ.
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Figure 23: A typical NEC scenario (2 of 3). 8. and 9. Macrophage/cytokine interaction leads to the
secretion of Nitric Oxide. 10. Nitric Oxide and IFN-γ lead to epithelial layer permeability. Nitric Oxide
destroys the tight junction protein that seals the space between the epithelial cells and IFN-γ downregulates
the production of the tight junction protein ZO1. 11. Metalloproteinases (MMPs) causes degradation of the
tissue underlying the epithelial cells. 12. After destruction of the tight junction protein and degradation of
the tissue underlying the epithelial cells, bacteria invades the underlying tissue.

57



Figure 24: A typical NEC scenario (3 of 3). 13. and 14. Bacteria in the tissue results in an aggressive
inflammatory response resulting in the release of cytokines such as IL-1, IL-6, IL-8, IL-12, IL-18, IFN-γ,
TNF-α, HMGB1. 15. Nitric oxide and IFN-γ interferes with gap junction proteins. Bacteria contact with
the epithelial cells leads to over expression of integrins. All of this leads to reduced epithelial migration. 16.
Macrophages produce nitric oxide and O2 radicals which, in turn, produce ONOO-. 17. The NO/ONOO-
/O2 Radicals Cause Epithelial Cell Death/Tissue Death.
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The inflammatory cascade is now unchecked. The production of nitric oxide and O2

radicals leads to the production of ONOO−. [130](figure 24, # 16). These work together

to cause extensive tissue death (figure 24, # 17). The ultimate result will be organ failure

and possibly death to the infant.

In this chapter, much of the material from chapter one has been organized, summarized,

and put into a form that may now be used to construct a NEC model. In particular, the

General Inflammatory Cascade (see figure 21) has been constructed. This General Inflam-

matory Cascade, which shows the interaction among the major players in NEC, will provide

the basis for the NEC mathematical model. This cascade can be converted directly into a

basic mathematical model. Other information presented in the present chapter will be used

to add greater detail to the model. The NEC mathematical model will be constructed in

the next chapter.
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3.0 A PARTIAL DIFFERENTIAL EQUATION MODEL FOR NEC

This chapter presents a three dimensional mathematical model for NEC. The General In-

flammatory Cascade developed in chapter two (see figure 21), will be used as a blueprint for

the mathematical model. Other information presented in chapters one and two will be used

to create detail in the model.

Mathematical models for NEC and/or inflammation have been developed in the past

[116], [29], [8], [129]. These models are extremely valuable and provide important insights

into the disease. Furthermore, many of the parameters, mathematical terms, and functions

developed in these papers will continue to be used in future NEC mathematical models. In

fact, a number of terms developed in Reynold.s et al. [116] that model inflammation will be

used in the 3-D mathematical model developed in this chapter. (These will be noted below.)

However, the models mentioned above are all one dimensional, ordinary differential equa-

tion (ODE) models and, therefore, simulate only the transient effects of NEC but do not fully

model its spatial effects. Only a 3-D model can accurately simulate diffusion and advection

of the major players in NEC, account for the different effects of NEC in the different regions

in the body (as noted in chapter two, our mathematical model will include four different

regions, see figure 20), and fully integrate all the effects of epithelial cell degradation and

migration. Therefore, a 3-D model will fill a void in the NEC mathematical models.

Before going forward, it is important to note that several people, over a period of sev-

eral years, contributed to the development of the NEC PDE system presented in this chapter:

Joshua Sullivan, Ivan Yotov, Mark Tronzo, Christopher Horvat, Jared Barber, Yoram

Vodovotz, Jeff Upperman, Gilles Clermont.
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The author of this thesis will, here, present the PDE system and attempt to give justifi-

cation for the structure of each equation. In the process, the close connections between the

PDEs and the data presented in chapters one and two will be noted.

3.1 DERIVATION OF PARTIAL DIFFERENTIAL EQUATIONS

In this section, the partial differential equations for the NEC model will be constructed using

the General Inflammatory Cascade, figure 21, as a guide.

Activated macrophages. Activated Macrophages will diffuse in the direction of de-

creasing density of activated macrophages. Thus the activated macrophage equation will

have a diffusion term, ∇ · (−Dma∇ma). Activated macrophages will move in the direction

of increasing cytokines and increasing bacteria. So, the advection term may be written as

∇ · (γmacma∇c+ γmabma∇b).

The source/sink will include a number of terms:

1) A decay term −kmama.

2) Since macrophages are activated by bacteria, cytokines, and damage, the source terms

kmbbm, kmccm, and kmddm are included. Therefore, when no anti-inflammatory cytokines

are present, the source/sink terms become

−kmama + kmbbm+ kmccm+ kmddm.

However, when anti-inflammatory cytokines are present, they down-regulate the production

of activated macrophages. This is modeled by multiplying these last three terms by R(ca):

−kmama +R(ca)(kmbbm+ kmccm+ kmddm) where R(ca) =
1

1 + kRca
(ca/c̄a)2

.

Note that the equation for R(ca) is obtained from [116]. Putting this all together, we get

∂ma

∂t
− ∇ · (Dma∇ma − γmacma∇c− γmabma∇b)

= −kmama +R(ca)(kmbbm+ kmccm+ kmddm).
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Macrophages. (Resting) macrophages are normally located in the tissue and are considered

to be stationary until they are activated. Therefore, the equation for macrophages does not

include diffusion or advection terms but only source/sink terms. Note that every activated

macrophage comes from a (resting) macrophage. Therefore, one of the terms from the

activated macrophage equation, namely R(ca)(kmbbm + kmccm + kmddm), is included here

but with a negative sign. Macrophages will be produced up to a maximum. Thus, the source

term km(mmax −m) is included. Putting these together gives us

∂m

∂t
= km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm).

Cytokines. The cytokine equation includes a diffusion term but no advection term. The

source/sink terms are as follows:

1) There is a decay term −kcc.

2) Activated macrophages and activated neutrophils both produce cytokines. Whenever

anti-inflammatory cytokines are absent, this is modeled by kcmama + kcnana. However,

whenever anti-inflammatory cytokines are present, they down-regulate the production of

cytokines. This is modeled by multiplying these two terms by R(ca):

R(ca)(kcmama + kcnana) where R(ca) =
1

1 + kRca
(ca/c̄a)2

.

3) Whenever cytokines come in contact with macrophages and neutrophils, the cytokines

bind to receptors on these phagocytes to form cytokine-receptor complexes. These complexes

are then internalized into the phagocytes. (This was discussed in chapter 1. See under

macrophages.) This is modeled by−knccn−kmccm whenever anti-inflammatory cytokines are

absent. Note that when anti-inflammatory cytokines are present, they slow the production

of cytokines (see figure 21), therefore, the factor

−R(ca)(knccn+ kmccm)

Putting everything together, we have:

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)

−R(ca)(knccn+ kmccm). (3.1)
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Anti-inflammatory cytokines. The equation for anti-inflammatory cytokines contains a

diffusion term but no advection term. The source/sink terms are:

1) A decay term −kcaca.

2) A constant anti-inflammatory cytokine growth term sc. This term is usually set to

zero (or an extremely small number) unless a known source of anti-inflammatory cytokines,

such as breast milk, is present.

3) Activated macrophages, neutrophils, and damage induce the production of anti-

inflammatory cytokines. Anti-inflammatory cytokines slow down this production rate. It

is reasonable to assume that there will be a saturation point for the anti-inflammatory cy-

tokines.

kcaP
Q

1 +Q
where Q = R(ca)(kcamanana +ma + kcamadd).

kcaP is the rate of anti-inflammatory cytokine production.

kcamad Effectiveness of damage in producing anti-inflammatory cytokine.

kcamana Effectiveness of activated macrophages and activated neutrophils in producing anti-

inflammatory cytokines.

Putting everything together, we have:

∂ca
∂t

− ∇ ·Dca∇ca = −kcaca + sca + kcaP
Q

1 +Q
. (3.2)

Bacteria. The equation for bacteria contains a diffusion term but no advection term. The

source/sink terms are:

1) In the place of a decay term we use a term from Reynolds, et al. [116] which represents

elimination of bacteria due to a baseline local immune response, −kbb/(1 + b/ϵ). Decay will

be slower with this term than if we had −kbb alone. This is particularly true whenever the

bacteria levels are high. Here ϵ is the range for bacterial death and is usually set at .2.

(Obviously, the smaller the value of ϵ, the slower the decay rate.)

2) Also consistent with Reynolds, et al. [116] we include a logistic term kbgb(1− b/bmax).

3) Peptides in breast-fed milk causes the destruction of bacteria. This is modeled by

−kppb.
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4) Both activated macrophages and activated neutrophils phagocyte bacteria (see figure

21). This is modeled by kbmamab+ kbnanab. However, when anti-inflammatory cytokines are

present, this is down-regulated in the usual way, so that this term becomes:

−R(ca)(kbmamab+ kbnanab)− kppb where R(ca) =
1

1 + kRca
(ca/c̄a)2

.

Putting everything together, we have:

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb. (3.3)

Nitric Oxide. The equation for Nitric Oxide includes a diffusion term but no advection

term. The source/sink terms are:

1) A decay term −kNONO.

2) Activated macrophages and activated neutrophils both produce cytokines. Certain

cytokines then induce macrophages to produce Nitric Oxide. Therefore, both activated

macrophages and activated neutrophils induce, directly or indirectly, the production of Nitric

Oxide. However, there is a time-delay in the production of the Nitric Oxide. After testing

many types of mathematical terms to simulate this time-delay, it was found that the following

terms best model this phenomenon:

kNOma

mq1
a

1 + (ma/ma)q1
+ kNOna

nq1
a

1 + (na/na)q1
.

where kNOma and kNOna are the rates at which activated macrophages and activated neu-

trophils, respectively, produce Nitric Oxide.

Putting everything together, we have:

∂NO

∂t
− ∇ ·DNO∇NO = −kNONO + kNOma

mq1
a

1 + (ma/ma)q1

+kNOna

nq1
a

1 + (na/na)q1
. (3.4)
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Tight Junction Protein, ZO1. The tight junction protein, ZO1, keeps the space in

between epithelial cells sealed so that pathogen may not pass into the underlying tissue.

This protein does not move and is not diffused. Therefore, the equation for ZO1 does not

contain a diffusion term nor an advection term. Furthermore, ZO1 does not naturally decay.

So, no decay term is included. The source/sink terms look like this:

1) Nitric Oxide destroys the tight junction protein, ZO1, this is modeled by the term

−kZNNO ∗ ZO1.

2) A certain amount of tight junction protein will be created for each epithelial cell, up

to maximum value of zec. (The equation for zec is given below.) This creation of tight

junction protein is given by:

kZec
ec (1− ZO1/zec).

As epithelial cells proliferate (or as they are destroyed), tight junction protein is created (or

destroyed) with the epithelial cells. This may be modeled by:

kZect

∂ec
∂t

(1− ZO1/zec).

Here zec serves as a limiting value for ZO1. One option would be to set zec to some constant

value (such as 1 or .95) but setting zec to some constant value might allow the density of ZO1

to grow well beyond the density of epithelial cells. This may be all right - as demonstrated

in chapter 1, in some cases ZO1 might fill in small open areas of the epithelium where no

epithelial cells exists. However, it was apparently decided that ZO1 should be modeled to

exist only between epithelial cells. Therefore, the expression for zec was made to be

zec = (1− ϵzec) + ϵzec

(
1

ec,max

)
ec.

Putting everything together, we have:

∂ZO1

∂t
=
(
kZec

ec + kZect

∂ec
∂t

)
(1− ZO1/zec)− kZNNO · ZO1 (3.5)

where

zec = (1− ϵzec) + ϵzec

(
1

ec,max

)
ec. (3.6)
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Activated neutrophils. For activated neutrophils, we have a diffusion term, −∇·(Dna∇na).

Activated neutrophils will move in the direction of increasing cytokines (see chapter 1). So,

the advection term may be written as ∇ · (γnacna∇c).

The source/sink will include a number of terms:

1) A decay term −knana.

2) Since neutrophils are activated by cytokines and damage (see figure 21), the terms

knccn and knddn are included. Therefore, when no anti-inflammatory cytokines are present,

the source/sink terms become

−knana + knccn+ knddn.

However, when anti-inflammatory cytokines are present, they down-regulate the production

of activated neutrophils. This is modeled by multiplying these last two terms by R(ca):

−knana +R(ca)(knccn+ knddn) where R(ca) =
1

1 + kRca
(ca/c̄a)2

.

Putting this all together, we get

∂na

∂t
− ∇ · (Dna∇na − γnacna∇c) = −knana +R(ca)(knccn+ knddn).

Damage. Recall from chapters 1 and 2 that damage is correlated with DAMP molecules.

These DAMP molecules likely diffuse. So, the damage equation has a diffusion term but no

advection term. The source/sink will terms include:

1) A decay term −kdd.

2) Note as defined in chapter 2, damage is the measure of the level of severity of the

inflammation. Therefore, even though nitric oxide, activated neutrophils, and macrophages

cause tissue destruction (see chapter 1 and figure 21), it is acceptable to include only cy-

tokines in our equation for damage. For that purpose, we use the type of term used in

a previous paper [115] (although in that paper, activated phagocytes were used instead of

cytokines):

kdc
T q2

xq2dc + T q2
(3.7)
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Figure 25: Damage Production Term

here T = R(ca)c and the constant xdc is the range for damage/DAMP production.

Therefore, the term T = R(ca)c indicates that cytokines lead to the production of dam-

age while anti-inflammatory cytokines, through R(ca), moderates this effect. Note that the

source term (3.7) has an upper bound of kdc. Using kdc = .35,xdc = .06, and q2 = 1.5 then

R(ca)c may be plotted against (3.7) to get figure 25.

∂d

∂t
− ∇ ·Dd∇d = −kdd+ kdc

T q2

xq2dc + T q2
. (3.8)

Epithelial Cells Modeling of the epithelial cells is somewhat more complicated. Epithelial

cell migration speed is directly related to integrin activation. Optimum migration speed

occurs at some medium/optimal amount of integrin activation. Whenever integrin activation

is low, migration speed is low or zero. Likewise, epithelial cell migration speed is low at high

levels of integrin activation. Higher migration speeds occur at integrin activation levels

between these two extremes.
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In this model it will be assumed, in the absence of bacteria that epithelial cells will

move at optimal speed, i.e., integrins are adhering at optimal levels. Bacteria is directly

related to integrin activation. Higher concentrations of bacteria results in higher levels of

integrin activation. Therefore, it will be assumed that the presence of any amount of bacteria

will begin a signalling process in the epithelial cells that will result in more than optimal

adherence of the integrins to the ECM. The following equation is used to relate bacteria to

integrin activation:

α(b) = Dec

(bmax − b).25

(bmax − b).25 + b.25
.

Let u = −α(b)∇ec. Note that u is a velocity and is proportional to −∇ec. Therefore, a

basic diffusion term would be

−∇ · (α(b)∇ec) = ∇ · u.

This is then multiplied by the Buckley-Leverett equation [23]

β(ec) = h(ec, ec,max, q) =
eqc

eqc + (ec,max − ec)q
.

from two-phase flow (Most usually we will have q = 2 and ec,max = 1.), to give the diffusion

equation

−β(ec)∇ · (α(b)∇ec) = β(ec)∇ · u.

Advection would, then, be represented by:

∇(β(ec)u) = ∇β(ec) · u =
∂β

∂ec
∇ec · u.

Note that we have assumed the velocity u = −α(b)∇ec is constant. Also note that the

Buckley-Leverett equation is S-shaped and leads to no advection for ec = 0 and ec = ec,max

since, for q = 2, we have
∂β

∂ec
= 2ec(ec,max)

2 − 2e2cec,max.

Figure (26) shows graphs from the Buckley-Leverett equation with exponent values q =

2, 4, 8. Figure (27) shows graphs from the Buckley-Leverett equation with fractional exponent

values q = 1/2, 1/4, 1/8. So the left hand side of the epithelial equation becomes:
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Figure 26: Buckley-Leverett equation. The horizonal axis represents epithelial cells concentration, ec,
ranging from 0 to 1. The vertical axis represents the output of the Buckley-Leverett equation, β(ec).
Exponent values for the three graphs are, from left to right, q = 2, 4, 8. In each graph, we have ec,max = 1.

Figure 27: Buckley-Leverett equation. The horizonal axis represents epithelial cells concentration, ec,
ranging from 0 to 1. The vertical axis represents the output of the Buckley-Leverett equation, β(ec).
Exponent values for the three graphs are, from left to right, q = 1/2, 1/4, 1/8. In each graph, we have
ec,max = 1.
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∂ec
∂t

+∇β(ec) · u+ β(ec)∇ · u

or
∂ec
∂t

+∇ · (β(ec)u(ec, b)).

For epithelial proliferation, we have kpec multiplied by the logistic term (1 − ec/ec,max).

Cytokines, activated neutrophils, and bacteria all contribute to epithelial cell death. There-

fore,epithelial cell death is modeled by −ka(na, c, b)ec where ka(na, c, b) is given by:

ka(na, c, b) =
eq0ca(na, c, b)

eq0ca(na, c, b) + (eca(na,max, cmax, bmax)− eca(na, c, b))q0

and eca(na, c, b) = na + kecnacc+ kecnabb.

Putting everything together, we get

∂ec
∂t

+∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka(na, c, b)ec.
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3.2 THE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

The entire system of partial differential equations for the NEC model is given by:

∂ec
∂t

+∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka(na, c, b)ec

Where

ka(na, c, b) =
eca(na, c, b)

q0

eca(na, c, b)q0 + [eca(na,max, cmax, bmax)− eca(na, c, b)]q0

eca(na, c, b) = na + kecnacc+ kecnabb

β(ec) =
e2c

e2c + (ec,max − ec)2

u(ec, b) = −α(b)∇ec α(b) =
(bmax − b)q

(bmax − b)q + bq

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb

∂m

∂t
= km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm)

∂ma

∂t
− ∇ · (Dma∇ma − γmacma∇c− γmabma∇b)

= −kmama +R(ca)(kmbbm+ kmccm+ kmddm)

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm)

∂ca
∂t

− ∇ ·Dca∇ca = −kcaca + sca + kcaP
Q

1 +Q
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∂NO

∂t
− ∇ ·DNO∇NO = −kNONO + kNOma

mq1
a

1 + (ma/ma)q1
+ kNOna

nq1
a

1 + (na/na)q1

∂ZO1

∂t
=
(
kZec

ec + kZect

∂ec
∂t

)
ZO1max(1− ZO1/zec)− kZNNO · ZO1

where

zec = (1− ϵzec)ZO1max + ϵzec

(
ZO1max

ec,max

)
ec

∂na

∂t
− ∇ · (Dna∇na − γnacna∇c) = −knana +R(ca)(knccn+ knddn)

∂d

∂t
− ∇ ·Dd∇d = −kdd+ kdc

T q2

xq2dc + T q2

where

R(ca) =
1

1 + kRca(ca/ca)
2

T = R(ca)c Q = R(ca)(kcamanana +ma + kcamadd)

Notes:

1. The physical domain Ω is 3-dimensional consisting of four horizontal regions. The regions

from top to bottom are lumen Ω1, epithelial layer Ω2, tissue region Ω3 and circulatory

system Ω4.

2. Db, Dc, Dca , Dd, Dna , Dma , DNO are diffusion coefficients for bacteria, cytokines, anti-

inflammatory cytokines, damage, activated neutrophils, and activated macrophages, re-

spectively.

3. γmac, γmab, γnac are advection coefficients.
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3.3 THE NEC EQUATIONS IN THE FOUR REGIONS

Recall that the NEC equations will be applied over four regions (Lumen, Epithelial, Tissue,

and Blood). Of course, not all the NEC equations apply to all four regions. For example,

the epithelial equation and the ZO1 (tight junction) equation are only valid in the epithelial

region. Furthermore, the diffusion coefficients D will be different for each equation and in

each region. These diffusion coefficients also play a major role in the communication between

the regions. Communication between regions is a very important part of the NEC model

and is discussed in more detail in section 7.7 of chapter seven.

3.4 SUGGESTED CHANGES

As noted above, the author of this thesis was involved in the forming and modification of

the above PDE model. Yet, the author of this thesis suggests some further changes to the

PDE system:

1) Changes to the nitric oxide equation. The nitric oxide equation was originally

written with no diffusion term. However, the group chose to add a diffusion term to this

equation. The author of this thesis suggests that the diffusion term be removed from this

equation or, if the diffusion term is retained, other changes to the system should be made.

This author’s reasoning is as follows:

On the one hand, if nitric oxide in our model is intended to simulate the affects of

nitric oxide only, then the diffusion term should be removed. As indicated in the previous

chapters, nitric oxide decays very quickly and, therefore, will decay before it diffuses. On

the other hand, if nitric oxide in our model is intended to simulate not only nitric oxide

but also components formed with the help of nitric oxide such as ONOO− then additional

terms must be added. In our current PDE model, nitric oxide destroys tight junction protein

but does nothing else. Now, ONOO− is not known to destroy tight junction protein but

73



ONOO− is known to destroy epithelial cells. However, no such destruction of epithelial

cells by nitric oxide is included in our PDE model. (In our model, epithelial cell death by

nitric oxide is modeled in an indirect way - bacteria causes epithelial cell death). Therefore,

if we wish to retain the diffusion term in the nitric oxide equation, terms should be added

to the epithelial equation (and other equations) to model the affects of ONOO− and other

components created by nitric oxide.

2) Changes to the tight junction protein equation. As noted in chapter 1, in some

cases ZO1 might fill in small open areas of the epithelium where no epithelial cells exist. In

the case of cell shedding, ZO1 moves under the exiting cell in order to fill the newly created

space. Therefore, in the equation

∂ec
∂t

ZO1max(1− ZO1/zec),

it might, in fact, be reasonable to set zec = ZO1max. Setting zec = ZO1max was avoided

by the group because we did not want there to be tight junction protein in places where no

epithelial cells existed. However, in view of the findings noted in chapter 1, we now know

that such a condition is possible.

3) Changes to the equation for Q. Note that Q was created as:

Q = R(ca)(kcamanana +ma + kcamadd).

It would be more reasonable to multiply kcamana by both na and ma. So that we have:

Q = R(ca)(kcamana(na +ma) + kcamadd).
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4.0 ANALYSIS OF THE PDE SYSTEM

In this chapter, the system of partial differential equations will be analyzed.

The most important part of the analysis of the system of partial differential equations

in the NEC model is the investigation of the existence of a solution to the system. This

particular system of PDEs presents special challenges due unique nonlinearities in some

of the equations and the fact that some of the equations are coupled through these non

linearities.

Due to the specific coupling involved in the NEC mathematical system, the analysis of

the of the partial differential equations may naturally be divided into three parts as follows.

Part I. Part I will consist of eight equations: the equations for bacteria, macrophages,

activated macrophages, cytokines, anti-inflammatory cytokines, nitric oxide, activated neu-

trophils, and damage.

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb

∂m

∂t
= km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm)

∂ma

∂t
− ∇ · (Dma∇ma − γmacma∇c− γmabR(ca)ma∇b)

= −kmama +R(ca)(kmbbm+ kmccm+ kmddm)

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm)
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∂ca
∂t

− ∇ ·Dca∇ca = −kcaca + sca + kcaP
Q

1 +Q

∂NO

∂t
− ∇ ·DNO∇NO = −kNONO + kNOma

mq1
a

1 + (ma/ma)q1

+kNOna

nq1
a

1 + (na/na)q1

∂na

∂t
− ∇ · (Dna∇na − γnacna∇c) = −knana +R(ca)(knccn+ knddn)

∂d

∂t
− ∇ ·Dd∇d = −kdd+ kdc

T q2

xq2dc + T q2

where

R(ca) =
1

1 + kRca(ca/ca)
2

T = R(ca)c

Q = R(ca)(kcamanana +ma + kcamadd)

Part II. Part II will consist of the epithelial equation:

∂ec
∂t

+∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka(na, c, b)ec

Where

ka(na, c, b) =
eca(na, c, b)

q0

eca(na, c, b)q0 + [eca(na,max, cmax, bmax)− eca(na, c, b)]q0

eca(na, c, b) = na + kecnacc+ kecnabb

β(ec) =
e2c

e2c + (ec,max − ec)2

u(ec, b) = −α(b)∇ec α(b) =
(bmax − b)q

(bmax − b)q + bq

Part III. Part III consists of the tight junction protein equation:

∂ZO1

∂t
=
(
kZec

ec + kZect

∂ec
∂t

)
ZO1max(1− ZO1/zec)− kZNNO · ZO1

76



where

zec = (1− ϵzec)ZO1max + ϵzec

(
ZO1max

ec,max

)
ec.

It is not obvious here but the tensor D in each of the equations in Part I depends

upon the equation in Part II. (This dependence is more obvious in the computer code for

the simulations, which come later in the thesis.) This dependence will be neglected in the

following analysis. The equations in Part I do not depend at all on the equation in Part III.

Therefore, the existence and uniqueness of solutions for the aforementioned eight equations

in Part I may be found independently of the equations in Part II and Part III. This existence

and uniqueness study is done in Analysis of PDEs in Part I.

Notice that the equation in Part II (the epithelial equation) depends on the equations

from part I but does not depend on the equation in Part III (the tight junction protein

equation). Therefore, error bounds found in part I may be used to bound the error for the

epithelial cells. This study is done in Analysis of PDEs in Part II.

The equation in Part III (the tight junction protein equation) depends upon the equations

in Part I and Part II. Therefore, error bounds found in part I and Part II may be used to

bound the error for the tight junction protein. This study is done in Analysis of PDEs in

Part III.

4.1 NOTATION

(·, ·) is the L2(Ω) inner product.

Lp(Ω) =

{
f : Ω → R

∣∣∣∣ ∫
Ω

|f |p <∞
}

for 1 ≤ p <∞

∥f∥Lp(Ω) =

[ ∫
Ω

|f |p
]1/p

for 1 ≤ p <∞

L∞(Ω) = {f : Ω → R | ess supx∈Ω |f(x)| <∞}
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∥f∥L∞(Ω) = ess supx∈Ω |f(x)|

H(div; Ω) = {f ∈ (L2(Ω))n|∇ · f ∈ L2(Ω)}

∥x∥∞ = max
1≤i≤n

|xi| ∥A∥∞ = sup
x∈Rn,x ̸=0

∥Ax∥∞
∥x∥∞

for x ∈ Rn A ∈ Rn×n

Note that the above definition implies ∥Ax∥∞ ≤ ∥A∥∞∥x∥∞.

L∞(Rn×n) = {A ∈ Rn×n
∣∣∣∥A∥∞ <∞}

The following two theorems may be found in [38]

Theorem 4.1 (Banach’s Fixed Point Theorem). Assume that

A : X → X

where A is a nonlinear mapping and X is a Banach space. Further suppose that

∥A[u1]− A[u2]∥ ≤ k∥u1 − u2∥ ∀u1, u2 ∈ X

for some constant k such that k < 1. Then A has a unique fixed point.

Theorem 4.2 (Schauder’s Fixed Point Theorem - Version 1). Suppose that K is a

compact and convex space and M is a continuous mapping:

M : K → K

then M has a fixed point in K.

Theorem 4.3 (Schauder’s Fixed Point Theorem - Version 2). Let A be a compact

and continuous mapping of a bounded, convex set S into S. Then A has a fixed point in S.

Theorem 4.4 (Ascoli-Arzela Theorem). Let (X, d) be a compact space. A subset F of

C(X) is relatively compact if and only if F is equibounded and equicontinuous.
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Recall the shift operator ∆Shift(h)f(x) = f(x+ h) where h ∈ R3.

The following theorem is found in [21],

Theorem 4.5 (Kolmogorov-M.Riesz-Frechet). Let F be a bounded set in Lp(RN) with

1 ≤ p <∞. Furthermore, suppose

lim
h→0

∥∆Shift(h)f∥p = 0 uniformly in f ∈ F

where ∆Shift(h)f(x) = f(x+ h) for h ∈ R3 is the shift operator.

Then the closure of F|Ω in Lp(Ω) is compact for any measurable set Ω ⊂ RN with finite

measure.

Theorem 4.6 (Cauchy’s inequality with ε). Suppose that a, b > 0 and ε > 0 then,

ab ≤ εa2 +
b2

4ε
.

The following theorem may be found in [85]

Theorem 4.7 (Cauchy-Schwarz inequality). For u, v ∈ L2(Ω),

|(u, v)| ≤ ∥u∥∥v∥.

One form of the Gronwall Inequality is given by (see [78]),

Theorem 4.8 (The Gronwall Inequality). For any t ∈ [t0, T ), if we have

u(t) ≤ a(t) +

∫ t

t0

b(s)u(s)ds,

where a(t) is not decreasing and b ≥ 0, then

u(t) ≤ a(t)e
∫ t
t0

b(s)ds
, for t ∈ [t0, T ).

Theorem 4.9 (Aubin-Lions Compactness Criteria). Suppose that X,Y, Z are Banach

Spaces and X ⊆ Y ⊆ Z. Suppose that X and Z are reflective spaces. Furthermore suppose

that X is compactly embedded in Y and Y is continuously embedded in Z. Let

Q =

{
u ∈ Lp(0, T ;X)

∣∣∣∣∣ ∂u∂t ∈ Lq(0, T ;Z)

}
for 1 < p, q <∞

then Q is compactly embedded into Lp(0, T ;Y ).
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4.2 ANALYSIS OF PDES IN PART I

Representative system

The partial differential equations in Part I are of two general types: (a) those equations

that are nonlinear in the ”data” only, i.e., the nonlinearities reside in the right hand side

functions only. The equations of this type are the bacteria, macrophage, cytokine, anti-

inflammatory cytokine, Nitric Oxide, and damage equations; (b) those equations that contain

nonlinearities in the advection terms. The equations of this type are activated macrophage

and activated neutrophil equations. Such equations are particularly difficult to analyze

because these nonlinearities are coupled to other equations in the system.

The particular features mentioned in (a) and (b) above may be represented by the fol-

lowing system of two equations:

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2) (4.1)

∂u2
∂t

−∇ · (D2∇u2) = f2(u1, u2) (x, t) ∈ Ω× (0, T ] (4.2)

∇u1 · n = 0 and ∇u2 · n = 0 on Γ. (4.3)

where f1 and f2 are nonlinear functions of u1 and u2. Notice that (4.1) might represent the

activated macrophage equation or the activated neutrophil equations. On the other hand,

(4.2) might represent the bacteria, macrophage, cytokine, anti-inflammatory cytokine, Nitric

Oxide, or damage equation. These are the only two types of equations that we have in Part

I.

Notice, for example, we do not have any ”two-way” coupling in the advection terms, i.e.,

we do not have the following coupling in our system:

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2)

∂u2
∂t

−∇ · (D2∇u2 − u2∇u1) = f2(u1, u2)

Therefore, in order to prove that the system of equations in Part I has a solution, it suffices

to prove that (4.1), (4.2) has a solution.
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4.3 EXISTENCE AND REGULARITY OF WEAK MIXED SOLUTION

FOR THE LINEAR PROBLEM

The numerical method that will be used to solve the PDE system will be based on the

Mixed Finite Element Method. Therefore, it will be helpful to prove that the PDE system

has a weak mixed solution and to establish some regularity for that solution. First, it will

be shown that the linear problem has a mixed weak solution. After that, regularity will be

established for the weak mixed formulation. Then, in the next subsection, it will be shown

that the nonlinear mixed weak form has a solution.

Definition of the Weak Mixed Solution. Consider for f ∈ L2(Ω) the PDE

ut −∆u = f (x, t) ∈ Ω× (0, T ]

u(0) = g

∇u · n = 0 on Γ

Set z = −∇u⇒ z+∇u = 0

ut +∇ · z = f

z+∇u = 0

Multiply by test functions and integrate. We say u ∈ L2(Ω), z ∈ V 0 is a weak mixed

solution if,

(ut, w) + (∇ · z, w) = (f, w) ∀w ∈ L2(Ω) (4.4)

(z, v)− (u,∇ · v) = 0 ∀v ∈ V 0. (4.5)

The second equation was obtained by integrating by parts. Here V = H(div; Ω)) and

V 0 = V ∩ {v : v · n = 0 on Γ}.
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4.3.1 Existence of Solution to Finite System.

Consider the basis ϕi for V
0 and the orthonormal basis ψi for L

2(Ω). Now, define

um :=
m∑
i=1

ξiψi ⇒ umt =
m∑
i=1

ξitψi (4.6)

zn :=
n∑

i=1

χiϕi ⇒ znt =
n∑

i=1

χitϕi (4.7)

where ξi for i = 1, ...,m and χi for i = 1, ..., n are functions of t only. Note that ξit := dξi/dt

and χit := dχi/dt.

Substitute (4.6) and (4.7) into (4.4) and (4.5) and replace w and v by the basis functions

( m∑
i=1

ξitψi, ψj

)
+

(
∇ ·

n∑
i=1

χiϕi, ψj

)
= (f, ψj) (4.8)( n∑

i=1

χiϕi, ϕj

)
−
( m∑

i=1

ξiψi,∇ · ϕj

)
= 0 (4.9)

For (4.8), set j = 1, ...,m to get


1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · ·

0 0 · · · 0 1

Ct +


(∇ · ϕ1, ψ1) · · · (∇ · ϕn, ψ1)

(∇ · ϕ1, ψ2) · · · (∇ · ϕn, ψ2)

· · · · · · · · ·

(∇ · ϕ1, ψm) · · · (∇ · ϕn, ψm)

X =


(f, ψ1)

(f, ψ2)

·

(f, ψm)

 .

For (4.9), set k = 1, ..., n to get


(ϕ1, ϕ1) · · · (ϕn, ϕ1)

(ϕ1, ϕ2) · · · (ϕn, ϕ2)

· · · · · · · · ·

(ϕ1, ϕn) · · · (ϕn, ϕn)

X−


(ψ1,∇ · ϕ1) · · · (ψm,∇ · ϕ1)

(ψ1,∇ · ϕ2) · · · (ψm,∇ · ϕ2)

· · · · · · · · ·

(ψ1,∇ · ϕn) · · · (ψm,∇ · ϕn)

C = 0.
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Where

X :=



χ1

χ2

·

·

·

χn


C :=



ξ1

ξ2

·

·

·

ξm


Ct :=



ξ1t

ξ2t

·

·

·

ξmt


.

If we define

A :=


(ϕ1, ϕ1) · · · (ϕn, ϕ1)

(ϕ1, ϕ2) · · · (ϕn, ϕ2)

· · · · · · · · ·

(ϕ1, ϕn) · · · (ϕn, ϕn)

 B :=


(∇ · ϕ1, ψ1) · · · (∇ · ϕn, ψ1)

(∇ · ϕ1, ψ2) · · · (∇ · ϕn, ψ2)

· · · · · · · · ·

(∇ · ϕ1, ψm) · · · (∇ · ϕn, ψm)



F :=


(f, ψ1)

(f, ψ2)

·

(f, ψm)

 and G :=


g1

g2

·

gm


then the system may be written as

Ct +BX = F (4.10)

AX−BTC = 0 (4.11)

C(0) = G.

So, from (4.11) we have X = A−1BTC. Substituting this into (4.10) gives:

Ct +BA−1BTC = F. (4.12)

It can be shown that BA−1BT is SPD and BA−1BT ∈ L∞(Rn×n), i.e., ∃K such that

∥BA−1BT∥∞ ≤ K. Note that (4.12) is a system of ordinary differential equations in the

variable t. It is now necessary to show that (4.12) has a solution.
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Prove that there exists a solution to the system (4.12) of ODEs.

A solution to (4.12) will now be constructed on an arbitrary interval [0, T ]. Integrate (4.12)

from 0 to T1 ≤ T to get:

C−C(0) +

∫ T1

0

BA−1BTC ds =

∫ T1

0

F ds. (4.13)

So,

C = G+

∫ T1

0

F ds−
∫ T1

0

BA−1BTC ds. (4.14)

Now, we may define the mapping:

H(C) := G+

∫ T1

0

F ds−
∫ T1

0

BA−1BTC ds. (4.15)

Banach’s fixed point theorem (Theorem 4.1) will be used to prove that this mapping has

a fixed point. In order to do this, choose two C’s, say C1 and C2. Then

H(C2)−H(C1) =

∫ T1

0

BA−1BT(C1 −C2) ds. (4.16)

Since BA−1BT and ∥BA−1BT∥∞ ≤ K is SPD, we have:

∥H(C2)−H(C1)∥MaxNorm(T1) ≤ KT1∥C2 −C1∥MaxNorm(T1) (4.17)

where ∥ · ∥MaxNorm(T ∗) := sup
0≤t≤T ∗

∥ · ∥∞ and K is a constant.

Now pick T1 so that KT1 < 1. Then by Banach’s fixed point theorem (Theorem 4.1) there

exists a C such that H(C) = C on [0, T1]. Thus, there exists a solution to (4.12) on [0, T1].

Next, choose T2 so as to get a similar contraction, and therefore establish a solution, on

the interval [T1, T2]. Continue to prove the existence of solutions on these subintervals until

the entire interval [0, T ] is covered. In this way, a solution to (4.12) may be constructed on

any interval [0, T ].
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Thus, we have established that for any finite integers, m and n, the system

(umt , ψj) + (∇ · zn, ψj) = (f, ψj) (4.18)

(zn, ϕk)− (um,∇ · ϕk) = 0 (4.19)

has a solution (um, zn) ∈ L∞(0, T ;L2(Ω))× L∞(0, T ;V 0).

4.3.2 Establish Bounds for Various Terms

In order to prove any regularity for the solution to the PDE system, it will first be necessary

to establish bounds on various terms.

Establishment of a bound for ∥um∥L∞(0,T ;L2(Ω)) and ∥zn∥L2(0,T ;L2(Ω)).

Multiply (4.18) by ξj and multiply (4.19) by χk to get:

(umt , ξjψj) + (∇ · zn, ξjψj) = (f, ξjψj) (4.20)

(zn, χkϕk)− (um,∇χkϕk) = 0. (4.21)

Summing j = 1, ...,m and summing k = 1, ..., n and recalling (4.6),(4.7) gives:

(umt , um) + (∇ · zn, um) = (f, um) (4.22)

(zn, zn)− (um,∇zn) = 0. (4.23)

Substitute (4.23) into (4.22),use the Cauchy-Schwarz inequality (theorem 4.7) and Cauchy’s

inequality (theorem 4.6) to get,

1

2

d

dt
∥um∥2 + ∥zn∥2 = (f, um) ≤

1

2
∥f∥2 + 1

2
∥um∥2. (4.24)

Multiply by 2 and integrate from 0 to t, for 0 < t ≤ T ,

∥um∥2(t) + 2

∫ t

0

∥zn∥2 ≤
∫ t

0

∥f∥2 +
∫ t

0

∥um∥2 + ∥um∥2(0).
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Applying the Gronwall Inequality, theorem 4.8,

sup
0≤t≤T

∥um∥2 + 2

∫ T

0

∥zn∥2 ≤ C

(∫ T

0

∥f∥2 + ∥um∥2(0)

)
.

Thus, if um(0) ∈ L2(Ω) and f ∈ L2(0, T ;L2(Ω)) then

{um}∞m=1 is bounded in L∞(0, T ;L2(Ω)) (4.25)

{zn}∞n=1 is bounded in L2(0, T ;L2(Ω)). (4.26)

Establishment of a bound for ∥umt∥L2(0,T ;L2(Ω)) and ∥zn∥L∞(0,T ;L2(Ω))

Now, multiply (4.18) by ξjt . Then, take the derivative of (4.19) with respect to t and

then multiply it by χk to get

(umt , ξjtψj) + (∇ · zn, ξjtψj) = (f, ξjtψj) (4.27)

(znt , χkϕk)− (umt ,∇χkϕk) = 0. (4.28)

Summing j = 1, ...,m and k = 1, ..., n gives:

(umt , umt) + (∇ · zn, umt) = (f, umt) (4.29)

(znt , zn)− (umt ,∇ · zn) = 0. (4.30)

Substitute (4.30) into (4.29),

∥umt∥2 +
1

2

d

dt
∥zn∥2 = (f, umt) ≤

1

2
∥f∥2 + 1

2
∥umt∥2. (4.31)

Move 1
2
∥umt∥2 to the left hand side, multiply by 2 and integrate from 0 to t, for 0 < t ≤ T ,∫ t

0

∥umt∥2 + ∥zn∥2(t) ≤
∫ t

0

∥f∥2 + ∥zn∥2(0). (4.32)

Thus, if zn(0) ∈ L2(Ω),which is true if g ∈ H1(Ω), and f ∈ L2(0, T ;L2(Ω)) then

{zn}∞n=1 is bounded in L∞(0, T ;L2(Ω)) (4.33)

{umt}∞m=1 is bounded in L2(0, T ;L2(Ω)). (4.34)
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We will fix P and Q and choose

w =
P∑

j=1

cjψj and v =

Q∑
k=1

ykϕk. (4.35)

Where cj and yk are functions of t only.

Now, multiply (4.18) by cj and (4.19) by yk to get

(umt , cjψj) + (∇ · zn, cjψj) = (f, cjψj) (4.36)

(zn, ykϕk)− (um,∇ykϕk) = 0. (4.37)

Summing j = 1, ..., P and k = 1, ..., Q gives

(umt , w) + (∇ · zn, w) = (f, w) ∀w ∈ span{ψj}mj=1 (4.38)

(zn, v)− (um,∇ · v) = 0 ∀v ∈ span{ϕk}nk=1. (4.39)

Since w, v are constructed from the basis functions ψj, ϕj and there is a solution to (4.18),(4.19),

this implies that there exists a solution to (4.38),(4.39).

Establishment of a bound on ∥∇ · zn∥L2(0,T ;L2(Ω))

Now, in (4.38) set w = ∇ · zn,

(umt ,∇ · zn) + (∇ · zn,∇ · zn) = (f,∇ · zn). (4.40)

Then

∥∇ · zn∥2 ≤ ∥f∥∥∇ · zn∥+ ∥umt∥∥∇ · zn∥. (4.41)

Dividing,

∥∇ · zn∥ ≤ ∥f∥+ ∥umt∥. (4.42)

This implies,

∥∇ · zn∥2 ≤ 2∥f∥2 + 2∥umt∥2.
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Integrate from 0 to t and use (4.32)∫ t

0

∥∇ · zn∥2 ≤ 2

∫ t

0

∥f∥2 + 2

∫ t

0

∥f∥2 + 2∥zn∥2(0). (4.43)

Thus, if f ∈ L2(0, T ;L2(Ω)) and zn(0) ∈ L2(Ω) (which is true if g ∈ H1(Ω)) then

{∇ · zn}∞n=1 is bounded in L2(0, T ;L2(Ω)). (4.44)

4.3.3 Convergence to a Solution of Linear Weak Mixed System

Now, integrate (4.38) and (4.39) from 0 to T .∫ T

0

(umt , w) +

∫ T

0

(∇ · zn, w) =
∫ T

0

(f, w) (4.45)∫ T

0

(zn, v)−
∫ T

0

(um,∇ · v) = 0. (4.46)

Note that from (4.25), (4.26), (4.33),(4.34), (4.44) all of the relevant sequences are bounded

in the appropriate spaces. Therefore, each of these sequences has a weakly convergent

subsequence in that space. Choose convergent subsequences {umL
, znL

} of {um, zn} such

that umL
⇀ u weakly and znL

⇀ z weakly. Set m = mL, n = nL and takemL → ∞, nL → ∞

in (4.38) - (4.39). Then∫ T

0

(ut, w) +

∫ T

0

(∇ · z, w) =
∫ T

0

(f, w) ∀w ∈ L2(Ω) (4.47)∫ T

0

(z, v)−
∫ T

0

(u,∇ · v) = 0 ∀v ∈ V 0(Ω). (4.48)

By choosing test functions ϕ(t)w and ψ(t)v where ϕ, ψ ∈ C∞
0 (0, T ) one can show that

(ut, w) + (∇ · z, w) = (f, w) ∀w ∈ L2(Ω) (4.49)

(z, v)− (u,∇ · v) = 0 ∀v ∈ V 0(Ω). (4.50)

u(0) = g

holds for a.e. t ∈ (0, T ].
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Establishment of a bound for ∥ut∥L∞(0,T ;L2(Ω)) and ∥zt∥L2(0,T ;L2(Ω))

In (4.49) and (4.50) take the derivative with respect to t and set w = ut, v = zt

(utt, ut) + (∇ · zt, ut) = (ft, ut) (4.51)

(zt, zt)− (ut,∇ · zt) = 0. (4.52)

Substitute (4.52) into (4.51),

1

2

d

dt
∥ut∥2 + ∥zt∥2 = (ft, ut) ≤

1

2
∥ft∥2 +

1

2
∥ut∥2. (4.53)

Multiply by 2 and integrate from 0 to t,

∥ut∥2(t) +
∫ t

0

∥zt∥2 ≤
∫ t

0

∥ft∥2 + ∥ut∥2(0). (4.54)

Thus, if g ∈ L2(Ω)), f ∈ L∞(0, T ;L2(Ω)) and ft ∈ L2(0, T ;L2(Ω)) then

zt ∈ L2(0, T ;L2(Ω))

ut ∈ L∞(0, T ;L2(Ω)). (4.55)

Establishment of a bound for ∥utt∥L2(0,T ;L2(Ω)) and ∥zt∥L∞(0,T ;L2(Ω))

Take the derivative, with respect to t, of (4.49). Take two derivatives, with respect to t,

of (4.50) then set w = utt, v = zt

(utt, utt) + (∇ · zt, utt) = (ft, utt) (4.56)

(ztt, zt)− (utt,∇ · zt) = 0. (4.57)

Substitute (4.57) into (4.56),

∥utt∥2 +
1

2

d

dt
∥zt∥2 = (ft, utt) ≤

1

2
∥ft∥2 +

1

2
∥utt∥2. (4.58)
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Move 1
2
∥utt∥2 to the left hand side, multiply by 2 and integrate from 0 to t,∫ t

0

∥utt∥2 + ∥znt∥2(t) ≤
∫ t

0

∥ft∥2 + ∥zt∥2(0). (4.59)

Thus, if zt(0) ∈ L2(Ω) (which is true if g ∈ H3(Ω)), f ∈ L∞(0, T ;L2(Ω)) and ft ∈

L2(0, T ;L2(Ω)) then

zt ∈ L∞(0, T ;L2(Ω))

utt ∈ L2(0, T ;L2(Ω)). (4.60)

Establishment of a bound on ∥∇ · zt∥L2(0,T ;L2(Ω))

Take derivative of (4.49) with respect to t to get,

(utt, w) + (∇ · zt, w) = (ft, w)

Set w = ∇ · zt

(utt,∇ · zt) + (∇ · zt,∇ · zt) = (ft,∇ · zt)

then

∥∇ · zt∥2 ≤ ∥ft∥∥∇ · zt∥+ ∥utt∥∥∇ · zt∥

and

∥∇ · zt∥ ≤ ∥ft∥+ ∥utt∥

Finally ∫ T

0

∥∇ · zt∥2 ≤ 2

∫ T

0

∥ft∥2 + 2

∫ T

0

∥utt∥

We know from (4.60) that the last term on the right hand side is bounded. So if we have

that ft ∈ L2(0, T ;L2(Ω))

∇ · zt ∈ L2(0, T ;L2(Ω)) (4.61)
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Establishment of a bound on ∥∇ · zn∥L∞(0,T ;L2(Ω))

Go back to (4.40) and take the derivative with respect to t,

(utt,∇ · z) + (ut,∇ · zt) + 2(∇ · z,∇ · zt)

= (ft,∇ · zn) + (f,∇ · zt).

Rearranging,

d

dt
∥∇ · z∥2 ≤ ∥ft∥∥∇ · z∥+ ∥f∥∥∇ · zt∥

+∥utt∥∥∇ · zn∥+ ∥ut∥∥∇ · zt∥

then

d

dt
∥∇ · z∥2 ≤ C∥ft∥2 + C∥∇ · z∥2 + C∥f∥2

+C∥∇ · zt∥2 + C∥utt∥2 + C∥ut∥2

Integrating from 0 to t:

∥∇ · z∥2 ≤ C

∫ T

0

∥ft∥2 + C

∫ T

0

∥∇ · z∥2 + C

∫ T

0

∥f∥2

+C

∫ T

0

∥∇ · zt∥2 + C

∫ T

0

∥utt∥2 + C

∫ T

0

∥ut∥2 + ∥∇ · z∥2(0)

Apply the Gronwall Inequality, theorem 4.8, to get:

sup
0≤t≤T

∥∇ · z∥2 ≤ C

∫ T

0

∥ft∥2 + C

∫ T

0

∥f∥2 + C

∫ T

0

∥∇ · zt∥2

+C

∫ T

0

∥utt∥2 + C

∫ T

0

∥ut∥2 + ∥∇ · zn∥2(0)

If f, ft ∈ L2(0, T ;L2(Ω)) and because of the bounds (4.61), (4.34), and (4.60) we have

{∇ · zn}∞n=1 is bounded in L∞(0, T ;L2(Ω)) (4.62)
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Establishment of a bound for ∥uttt∥L2(0,T ;L2(Ω)) and ∥ztt∥L∞(0,T ;L2(Ω))

Take two derivatives, with respect to t, of (4.49). Take three derivatives, with respect

to t, of(4.50) and set w = uttt, v = ztt to get

(umttt , umttt) + (∇ · zntt , umttt) = (ftt, umttt) (4.63)

(zttt, ztt)− (uttt,∇ · ztt) = 0. (4.64)

Substitute (4.64) into (4.63),

∥uttt∥2 +
1

2

d

dt
∥ztt∥2 = (ftt, uttt) ≤

1

2
∥ftt∥2 +

1

2
∥uttt∥2. (4.65)

Move 1
2
∥uttt∥2 to the left hand side, multiply by 2 and integrate from 0 to T ,∫ t

0

∥uttt∥2 + ∥ztt∥2 ≤
∫ t

0

∥ftt∥2 + ∥ztt∥2(0). (4.66)

Thus, if ztt(0) ∈ L2(Ω) (which is true if g′′ ∈ H1(Ω)) and ftt ∈ L2(0, T ;L2(Ω)) then

ztt ∈ L∞(0, T ;L2(Ω))

uttt ∈ L2(0, T ;L2(Ω)). (4.67)

Establishment of a bound on ∥∇ · zntt∥L2(0,T ;L2(Ω))

Take two derivatives of (4.38) with respect to t to get,

(uttt, w) + (∇ · ztt, w) = (ftt, w)

Set w = ∇ · ztt

(uttt,∇ · ztt) + (∇ · ztt,∇ · ztt) = (ftt,∇ · ztt)

then

∥∇ · ztt∥2 ≤ ∥ftt∥∥∇ · ztt∥+ ∥uttt∥∥∇ · ztt∥
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and

∥∇ · ztt∥ ≤ ∥ftt∥+ ∥uttt∥

Finally ∫ T

0

∥∇ · ztt∥2 ≤ 2

∫ T

0

∥ftt∥2 + 2

∫ T

0

∥uttt∥2

We know from (4.67) that the last term on the right hand side is bounded. So if we have

that ftt ∈ L2(0, T ;L2(Ω))

∇ · ztt ∈ L2(0, T ;L2(Ω)) (4.68)

Establishment of a bound on ∥∇ · zt∥L∞(0,T ;L2(Ω))

Take derivative of (4.49) with respect to t to get,

(utt, w) + (∇ · zt, w) = (ft, w)

Set w = ∇ · ztt

(utt,∇ · ztt) + (∇ · zt,∇ · ztt) = (ft,∇ · ztt)

then

1

2

d

dt
∥∇ · zt∥2 ≤ ∥ft∥∥∇ · ztt∥+ ∥utt∥∥∇ · ztt∥

and

1

2

d

dt
∥∇ · zt∥2 ≤ C∥ft∥2 + C∥∇ · ztt∥2 + C∥utt∥2

and

∥∇ · znt∥2 ≤ C

∫ t

0

∥ft∥2 + C

∫ t

0

∥∇ · zntt∥2

+C

∫ T

0

∥utt∥2 + ∥∇ · zt∥2(0)

93



We know from (4.67) and (4.68) that the right hand side is bounded. So if we have that

ft ∈ L2(0, T ;L2(Ω))

∇ · znt ∈ L∞(0, T ;L2(Ω)) (4.69)

4.3.4 Regularity of Linear Weak Mixed System

Based on all of the foregoing bounds and convergence, we can state the following theorems:

Theorem 4.10 (Theorem A). Suppose g ∈ H1(Ω) and f ∈ L2(0, T ;L2(Ω)) then

(ut, w) + (∇ · z, w) = (f, w) ∀w ∈ L2(Ω)

(z, v)− (u,∇ · v) = 0 ∀v ∈ V 0(Ω).

u(0) = g

∇u · n = 0 on Γ

has a weak solution with z ∈ L∞(0, T ;L2(Ω)), ∇ · z ∈ L2(0, T ;L2(Ω)), u ∈ L∞(0, T ;L2(Ω)),

ut ∈ L2(0, T ;L2(Ω)).

Theorem 4.11 (Theorem B). Suppose g ∈ H3(Ω) and ft ∈ L2(0, T ;L2(Ω)) then

(ut, w) + (∇ · z, w) = (f, w) ∀w ∈ L2(Ω)

(z, v)− (u,∇ · v) = 0 ∀v ∈ V 0(Ω).

u(0) = g

∇u · n = 0 on Γ

has a weak solution with zt ∈ L∞(0, T ;L2(Ω)), ut ∈ L∞(0, T ;L2(Ω)), utt ∈ L2(0, T ;L2(Ω)),

∇ · z ∈ L∞(0, T ;L2(Ω)),∇ · zt ∈ L2(0, T ;L2(Ω)).
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Theorems 4.10 and 4.11 afford a certain amount of regularity to the solution of the equa-

tions in Part I, later in the thesis more regularity of the solution will be required. The proof

of the following theorem follows from the classical elliptic regularity theory [47].

Theorem 4.12 (Theorem C). .

I. Suppose for m ≥ 0, we have

g ∈ Hm+1(Ω) and f ∈ L2(0, T ;Hm(Ω)) then

(ut, w) + (∇ · z, w) = (f, w) ∀w ∈ L2(Ω) (4.70)

(z, v)− (u,∇ · v) = 0 ∀v ∈ V 0(Ω) (4.71)

u(0) = g (4.72)

∇u · n = 0 on Γ (4.73)

has a weak solution with

u ∈ L2(0, T ;Hm+2(Ω)) z ∈ L2(0, T ;Hm+1(Ω)).

u ∈ L∞(0, T ;Hm+1(Ω)) z ∈ L∞(0, T ;Hm(Ω)).

II. Suppose for k = 1, 2, 3, ... and m ≥ 2(k − 1), we have

g ∈ Hm+1(Ω) and
dLf

dtL
∈ L2(0, T ;Hm−2L(Ω)) for L = 0, 1, ..., k − 1

then the system (4.70),(4.71),(4.72),(4.73) has a weak solution with

dku

dtk
∈ L2(0, T ;Hm−2(k−1)(Ω))

dkz

dtk
∈ L2(0, T ;Hm−1−2(k−1)(Ω)).

dku

dtk
∈ L∞(0, T ;Hm−1−2(k−1)(Ω))

dku

dtk
∈ L∞(0, T ;Hm−2−2(k−1)(Ω)).
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4.4 THE NONLINEAR WEAK MIXED SYSTEM

In this section, we will establish the fact that the representative system of equations in

mixed form has a weak solution. No published analysis exists for this particular system of

equations in the weak mixed form. Analysis has been done in the weak form (but not the

weak mixed form) by A. Boy [20] on the following system:

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = 0 (4.74)

∂u2
∂t

−∇ · (D2∇u2) = C1u1 + C2u2 (x, t) ∈ Ω× (0, T ] (4.75)

∇u1 · n = 0 and ∇u2 · n = 0 on Γ. (4.76)

As can be seen, the system in the Boy paper has the nonlinearity in the advection term but

lacks the nonlinear functions f1 and f2 that appear in our system (see (4.77),(4.78) below).

For that reason, the analysis of our system will be more difficult. Furthermore, the fact that

our analysis will done in the weak mixed form, makes the work here somewhat different than

the work in the Boy paper.

4.4.1 Development and Proof of nonlinear Theorems

As noted previously, we will consider the representative system:

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2) (4.77)

∂u2
∂t

−∇ · (D2∇u2) = f2(u1, u2) (x, t) ∈ Ω× (0, T ] (4.78)

∇u1 · n = 0 and ∇u2 · n = 0 on Γ (4.79)

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ Ω.

We assume that D is sufficiently smooth, so that the theory from the last section applies.

Let,

z1 = −D1∇u1 and z2 = −D2∇u2 (4.80)

So, D−1
1 z1 = −∇u1 and D−1

2 z2 = −∇u2. (4.81)
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Multiplication by test functions and integration in Ω gives,

(u1t , w)− (∇ · (D−1
2 z2u1), w) + (∇ · z1, w) = (f1, w) ∀w ∈ W (4.82)

(u2t , w) + (∇ · z2, w) = (f2, w) ∀w ∈ W (4.83)

(D−1
1 z1, v) = −(∇u1, v) ⇒ (D−1

1 z1, v) = (u1,∇ · v)− ⟨u1, v · n⟩Γ ∀v ∈ V 0 (4.84)

(D−1
2 z2, v) = −(∇u2, v) ⇒ (D−1

2 z2, v) = (u2,∇ · v)− ⟨u2, v · n⟩Γ ∀v ∈ V 0 (4.85)

where

W = L2(Ω) V = H(div; Ω)) V 0 = V ∩ {v : v · n = 0 on Γ}.

The last term in each of (4.84) and (4.85) is zero by the definition of V 0. Then the weak

mixed formulation of (4.77), (4.78), and (4.79) may be stated as :

Find u1, u2 ∈ W and z1, z2 ∈ V 0 such that

(u1t , w)− (∇ · (D−1
2 z2u1), w) + (∇ · z1, w) = (f1, w) ∀w ∈ W (4.86)

(u2t , w) + (∇ · z2, w) = (f2, w) ∀w ∈ W (4.87)

(D−1
1 z1, v) = (u1,∇ · v) ∀v ∈ V 0 (4.88)

(D−1
2 z2, v) = (u2,∇ · v) ∀v ∈ V 0 (4.89)

We will first prove that solution to this system (4.86), (4.87), (4.88),(4.89) exists under

certain regularity assumptions on f1, f2. Then we will prove that these regularity assump-

tions hold for each of the equations in Part I of the NEC PDE system.

Assumption 1. For all ξ1 ∈ L2(0, T ;H2(Ω)) and ξ2 ∈ L2(0, T ;H3(Ω)) we have f2(ξ1, ξ2) ∈

L2(0, T ;H2(Ω)).

Assumption 2. For all ξ1 ∈ L2(0, T ;H2(Ω)) and ξ2 ∈ L2(0, T ;H3(Ω)) we have f1(ξ1, ξ2) ∈

L2(0, T ;H1(Ω)) and f2(ξ1, ξ2) ∈ L2(0, T ;H2(Ω)).
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Theorem 4.13 (Existence and Regularity for second set of equations). For any

u1 ∈ L2(0, T ;H2(Ω)), under Assumption 1, the system

(u2t , w) + (∇ · z2, w) = (f2(u1, u2), w) ∀w ∈ W (4.90)

(D−1
2 z2, v) = (u2,∇ · v) ∀v ∈ V 0 (4.91)

u2(x, 0) = u02(x) x ∈ Ω.

such that f2 is Lipschitz continuous has a solution (u2, z2) such that

u2 ∈ L2(0, T ;H4(Ω)) z2 ∈ L2(0, T ;H3(Ω)).

u2t ∈ L2(0, T ;H2(Ω)) z2t ∈ L2(0, T ;H1(Ω)).

z2 ∈ L∞(0, T ;H2(Ω)) ∇ · z2 ∈ L∞(0, T ;H1(Ω)).

Proof. Let u1 ∈ L2(0, T ;H2(Ω)) be fixed. For any u2 ∈ L2(0, T ;H3(Ω)) by Assump-

tion 1, f2(u1, u2) ∈ L2(0, T ;H2(Ω)). Then by the Theorem 4.12 developed in the previous

section, the linearized form of (4.90) and (4.91),

(ϕ2t , w) + (∇ · ψ2, w) = (f2(u1, u2), w) (4.92)

(D−1
2 ψ2, v) = (ϕ2,∇ · v) (4.93)

has a solution ϕ2 ∈ L2(0, T ;H4(Ω)) ψ2 ∈ L2(0, T ;H3(Ω)).

dϕ2/dt ∈ L2(0, T ;H2(Ω)) dψ2/dt ∈ L2(0, T ;H1(Ω))

(Note that since u2 ∈ L2(0, T ;H3(Ω)) then z2 ∈ L2(0, T ;H2(Ω)).)

So, the above defines a mapping M such that:

M : (u2, z2) → (ϕ2, ψ2)

M : (L2(0, T ;H3(Ω)), L2(0, T ;H2(Ω))) → (L2(0, T ;H4(Ω)), L2(0, T ;H3(Ω))).

Now, since H4 is compactly imbedded in H3 and H3 is continuously imbedded in H2 then

by the Aubin-Lions Compactness Criteria, Theorem 4.9.

{u2 ∈ L2(0, T ;H4(Ω) : u2t ∈ L2(0, T ;H2(Ω)}

is compactly imbedded into L2(0, T ;H3(Ω)).
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Now, since H3 is compactly imbedded in H2 and H2 is continuously imbedded in H1 then

by the Aubin-Lions Compactness Criteria, Theorem 4.9.

{z2 ∈ L2(0, T ;H3(Ω) : z2t ∈ L2(0, T ;H1(Ω)}

is compactly imbedded into L2(0, T ;H2(Ω)).

Then by Schauder’s Fixed Point Theorem 4.2, the mapping, M has a fixed point. Thus,

there exists a solution, (u2, z2), to (4.92),(4.93) and

u2 ∈ L2(0, T ;H4(Ω)) z2 ∈ L2(0, T ;H3(Ω)). (4.94)

Now that a solution has been established, we may claim the additional regularity from

Theorem 4.12:

z2 ∈ L∞(0, T ;H2(Ω)) ∇ · z2 ∈ L∞(0, T ;H1(Ω)).Q.E.D.

Strategy for proving that the system (4.86), (4.87),(4.88), and (4.89) has a so-

lution. Before stating the next theorem, which gives the existence of the solution of (4.1),

(4.2), it will be helpful to first show in diagram form the main idea of the theorem:

Choose

(u1, u2

z1, z2)

→
Theorem 4.13 gives

solution ũ2, z̃2 to

second equation.

→

Use the ũ2, z̃2

just found and u1, z1

to find a solution ϕ1, ψ1

to first equation.

→

The result is a solution

(ϕ1, ψ1,

ũ2, z̃2)

to the linearized system.

The above defines a mapping:

T : (u1, u2, z1, z2) −→ (ϕ1, ψ1ũ2, z̃2). (4.95)

It will, then be proved that this mapping has a fixed point.
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Theorem 4.14 (Existence and Regularity for the coupled equations). Consider the

system of equations,

(u1t , w)− (∇ · (D−1
2 z2u1), w) + (∇ · z1, w) = (f1(u1, u2), w) ∀w ∈ W (4.96)

(u2t , w) + (∇ · z2, w) = (f2(u1, u2), w) ∀w ∈ W (4.97)

(D−1
1 z1, v) = (u1,∇ · v) ∀v ∈ V 0 (4.98)

(D−1
2 z2, v) = (u2,∇ · v) ∀v ∈ V 0 (4.99)

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ Ω.

under Assumption 2, and if f1 and f2 are Lipschitz continuous then the system

(4.96),(4.97),(4.98), and (4.99) has a solution (u1, u2, z1, z2) such that

u1 ∈ L2(0, T ;H3(Ω)), u2 ∈ L2(0, T ;H4(Ω)),

z1 ∈ L2(0, T ;H2(Ω)), z2 ∈ L2(0, T ;H3(Ω)).

Proof. Re-write (4.96),(4.97),(4.98), and (4.99) as

(u1t , w) + (∇ · z1, w) = (f1(u1, u2), w) + (∇ · (D−1
2 z2u1), w) ∀w ∈ W (4.100)

(u2t , w) + (∇ · z2, w) = (f2(u1, u2), w) ∀w ∈ W (4.101)

(D−1
1 z1, v) = (u1,∇ · v) ∀v ∈ V 0 (4.102)

(D−1
2 z2, v) = (u2,∇ · v) ∀v ∈ V 0 (4.103)

Linearize by

(ϕ1t , w) + (∇ · ψ1, w) = (f1(u1, u2), w) + (∇ · (D−1
2 z2u1), w) (4.104)

(ϕ2t , w) + (∇ · ψ2, w) = (f2(u1, u2), w) ∀w ∈ W (4.105)

(D−1
1 ψ1, v) = (ϕ1,∇ · v) (4.106)

(D−1
2 ψ2, v) = (ϕ2,∇ · v) ∀v ∈ V 0 (4.107)
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and choose

u1 ∈ L2(0, T ;H2(Ω)), u2 ∈ L2(0, T ;H3(Ω)),

z1 ∈ L2(0, T ;H1(Ω)), z2 ∈ L2(0, T ;H2(Ω)).

Then by Theorem 4.13,(4.105) and (4.107) has a solution

u2 ∈ L2(0, T ;H4(Ω)) z2 ∈ L∞(0, T ;H3(Ω)) ∇ · z2 ∈ L∞(0, T ;H2(Ω))

u2t ∈ L2(0, T ;H2(Ω)) z2t ∈ L2(0, T ;H1(Ω)).

Define f ∗
1 := f1(u1, u2) +∇ · (D−1

2 z2u1) and note that

∥f ∗
1∥2L2(0,T ;H1(Ω)) =

∫ T

0

∥f1(u1, u2) +∇ · (D−1
2 z2u1)∥2H1(Ω)

≤
∫ T

0

(
∥f1(u1, u2)∥H1(Ω) + ∥(∇ ·D−1

2 z2)u1∥H1(Ω) + ∥D−1
2 z2∇u1∥H1(Ω)

)2
≤ C

∫ T

0

(
∥f1(u1, u2)∥2H1(Ω) + ∥(∇ ·D−1

2 z2)∇u1∥2L2(Ω) + ∥(△D−1
2 z2)u1∥2L2(Ω)

+∥D−1
2 z2△u1∥2L2(Ω) + ∥(∇ ·D−1

2 z2)u1∥2L2(Ω) + ∥D−1
2 z2∇u1∥2L2(Ω)

)
≤ C

∫ T

0

∥f1∥2H1(Ω) + C

∫ T

0

∫
Ω

|∇ ·D−1
2 z2|2|∇u1|2 + C

∫ T

0

∫
Ω

|△D−1
2 z2|2|u1|2

+C

∫ T

0

∫
Ω

|D−1
2 z2|2|△u1|2 + C

∫ T

0

∫
Ω

|∇ ·D−1
2 z2|2|u1|2

+C

∫ T

0

∫
Ω

|D−1
2 z2|2|∇u1|2

≤ C

∫ T

0

∥f1∥2H1(Ω) + C

∫ T

0

∥∇ ·D−1
2 z2∥2L∞(Ω)

∫
Ω

|∇u1|2

+C

∫ T

0

∥u1∥2L∞(Ω)

∫
Ω

|△D−1
2 z2|2

+C

∫ T

0

∥D−1
2 z2∥2L∞(Ω)

∫
Ω

|△u1|2

+C

∫ T

0

∥∇ ·D−1
2 z2∥2L∞(Ω)

∫
Ω

|u1|2

+C

∫ T

0

∥D−1
2 z2∥2L∞(Ω)

∫
Ω

|∇u1|2

≤ C

∫ T

0

∥f1∥2H1(Ω) + C

∫ T

0

∥∇ ·D−1
2 z2∥2L∞(Ω)∥∇u1∥2L2(Ω)

+C

∫ T

0

∥u1∥2L∞(Ω)∥z2∥2H2(Ω) + C

∫ T

0

∥D−1
2 z2∥2L∞(Ω)∥△u1∥2L2(Ω)
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+C

∫ T

0

∥∇ ·D−1
2 z2∥2L∞(Ω)∥u1∥2L2(Ω) + C

∫ T

0

∥D−1
2 z2∥2L∞(Ω)∥∇u1∥2L2(Ω).

Since z2, ∇ · z2, and ∆z2 are in L∞ in time, we can say

∥f ∗
1∥2L2(0,T ;H1(Ω)) ≤ C

∫ T

0

∥f1∥2H1(Ω) + C∥∇ ·D−1
2 z2∥2L∞(0,T ;L∞(Ω))

∫ T

0

∥∇u1∥2L2(Ω)

+C∥z2∥2L∞(0,T ;H2(Ω))

∫ T

0

∥u1∥2L∞(Ω) + C∥D−1
2 z2∥2L∞(0,T ;L∞(Ω))

∫ T

0

∥△u1∥2L2(Ω)

+C∥∇ ·D−1
2 z2∥2L∞(0,T ;L∞(Ω))

∫ T

0

∥∇u1∥2L2(Ω) + C∥D−1
2 z2∥2L∞(0,T ;L∞(Ω))

∫ T

0

∥∇u1∥2L2(Ω).

All of the terms on the right hand side of the inequality are bounded (for example, by

Assumption 2,
∫ T

0
∥f1(u1, u2)∥2H1(Ω) is bounded). Therefore,

f ∗
1 ∈ L2(0, T ;H1(Ω)) and by Assumption 2 we have f2 ∈ L2(0, T ;H2(Ω)).

Then by the Theorem 4.12 from the previous section, the linearized system

(4.104),(4.105),(4.106), and (4.107) has a solution

ϕ1 ∈ Q = L2(0, T ;H3(Ω)) (4.108)

ϕ2 ∈ Q = L2(0, T ;H4(Ω)) (4.109)

ψ1 ∈ Q = L2(0, T ;H2(Ω)) (4.110)

ψ2 ∈ Q = L2(0, T ;H3(Ω)). (4.111)

We will the use these spaces to define the space Q,

Q := L2(0, T ;H3(Ω))× L2(0, T ;H4(Ω))× L2(0, T ;H2(Ω))× L2(0, T ;H3(Ω)).

Recall that we chose,

u1 ∈ L2(0, T ;H2(Ω)), u2 ∈ L2(0, T ;H3(Ω)),

z1 ∈ L2(0, T ;H1(Ω)), z2 ∈ L2(0, T ;H2(Ω)).

We will the use these spaces to define the space QW,

QW := L2(0, T ;H2(Ω))× L2(0, T ;H3(Ω))× L2(0, T ;H1(Ω))× L2(0, T ;H2(Ω))
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The above defines a mapping T such that:

T : (u1, u2, z1, z2) → (ϕ1, ϕ2, ψ1, ψ2)

T : QW → Q.

Since H4 is compactly imbedded in H3 and H3 is continuously imbedded in H2

and

Since H3 is compactly imbedded in H2 and H2 is continuously imbedded in H1, then by the

Aubin-Lions Compactness Criteria, Theorem 4.9. Q is compactly imbedded into QW .

Thus, T is a continuous mapping T such that:

T : Q→ Q.

Then by Schauder’s Fixed Point Theorem 4.2, the mapping, T has a fixed point. Thus,

there exists a solution, (u1, u2, z1, z2), to this system the system (4.100),(4.101),(4.102), and

(4.103) with regularity given by (4.108),(4.109),(4.110), and (4.111). Based on this regularity,

we have, in particular that,

u1 ∈ L2(0, T ;H3(Ω)), u2 ∈ L2(0, T ;H4(Ω)),

z1 ∈ L2(0, T ;H2(Ω)), z2 ∈ L2(0, T ;H3(Ω)).

Now that a solution has been established, we may claim the additional regularity from

Theorem 4.12:

z1 ∈ L∞(0, T ;H2(Ω)) ∇ · z1 ∈ L∞(0, T ;H1(Ω)),

z2 ∈ L∞(0, T ;H3(Ω)) ∇ · z2 ∈ L∞(0, T ;H2(Ω)).
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4.4.2 Uniqueness Mixed Weak Solution

Now that it has been shown that a solution exists to the Part I equations, it is necessary to

prove the uniqueness of that solution:

(u1t , w)− (∇ · (D−1
2 z2u1), w) + (∇ · z1, w) = (f1(u1, u2), w) (4.112)

(u2t , w) + (∇ · z2, w) = (f2(u1, u2), w) ∀w ∈ W (4.113)

(D−1
1 z1, v) = (u1,∇ · v) (4.114)

(D−1
2 z2, v) = (u2,∇ · v) ∀v ∈ V 0 (4.115)

Suppose (u1, z1, u2, z2) is one solution and (u∗1, z
∗
1, u

∗
2, z

∗
2) is another solution.

Take the difference between the two solutions:

((u1 − u∗1)t, w) + (∇ · (z1 − z∗1), w)

= (f1(u1, u2)− f1(u
∗
1, u

∗
2), w)

+(∇ · (D−1
2 (z2u1 − z∗2u

∗
1), w) (4.116)

((u2 − u∗2)t, w) + (∇ · (z2 − z∗2), w)

= (f2(u1, u2)− f2(u
∗
1, u

∗
2), w) (4.117)

(D−1
1 (z1 − z∗1), v)− (u1 − u∗1,∇ · v) = 0 (4.118)

(D−1
2 (z2 − z∗2), v)− (u2 − u∗2,∇ · v) = 0 (4.119)

First Bound

Consider (4.117) and (4.119). Take the derivative with respect to t of (4.119)

((u2 − u∗2)t, w) + (∇ · (z2 − z∗2), w)

= (f2(u1, u2)− f2(u
∗
1, u

∗
2), w) (4.120)

(D−1
2 (z2 − z∗2)t, v)− ((u2 − u∗2)t,∇ · v) = 0 (4.121)

Set w = z2 − z∗2 and v = (u2 − u∗2)t

((u2 − u∗2)t, (u2 − u∗2)t) + (∇ · (z2 − z∗2), (u2 − u∗2)t)
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= (f2(u1, u2)− f2(u
∗
1, u

∗
2), (u2 − u∗2)t) (4.122)

(D−1
2 (z2 − z∗2)t, z2 − z∗2)− ((u2 − u∗2)t,∇ · (z2 − z∗2)) = 0 (4.123)

Substitute (4.123) into (4.122) and use the Cauchy-Schwarz inequality (theorem 4.7) and

the fact that f2 is Lipschitz,

∥(u2 − u∗2)t∥2 +
1

2

d

dt
∥(D−1/2

2 (z2 − z∗2)∥2

≤ (C∥u1 − u∗1∥+ C∥u2 − u∗2∥)∥(u2 − u∗2)t∥. (4.124)

Use Cauchy’s inequality (theorem 4.6) and then hide ∥(u2 − u∗2)t∥2 on the left hand side to

get

1

2
∥(u2 − u∗2)t∥2 +

1

2

d

dt
∥(D−1/2

2 (z2 − z∗2)∥2

≤ C∥u1 − u∗1∥2 + C∥u2 − u∗2∥2. (4.125)

Multiply by 2 and then integrate from 0 to t,∫ t

0

∥(u2 − u∗2)t∥2 + ∥(D−1/2
2 (z2 − z∗2)∥2(t)

≤ C

∫ t

0

∥u1 − u∗1∥2 + C

∫ t

0

∥u2 − u∗2∥2 + ∥(D−1/2
2 (z2 − z∗2)∥2(0). (4.126)

Second Bound

Consider (4.117)

((u2 − u∗2)t, w) + (∇ · (z2 − z∗2), w)

= (f2(u1, u2)− f2(u
∗
1, u

∗
2), w)

set w = ∇ · (z2 − z∗2)

((u2 − u∗2)t,∇ · (z2 − z∗2)) + (∇ · (z2 − z∗2),∇ · (z2 − z∗2))

= (f2(u1, u2)− f2(u
∗
1, u

∗
2),∇ · (z2 − z∗2)).

Rearranging,and using the fact that f2 is Lipschitz,

∥∇ · (z2 − z∗2)∥2 ≤ (∥(u2 − u∗2)t∥+ C∥u1 − u∗1∥+ C∥u2 − u∗2∥)∥∇ · (z2 − z∗2)∥.
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Dividing,

∥∇ · (z2 − z∗2)∥ ≤ ∥(u2 − u∗2)t∥+ C∥u1 − u∗1∥+ C∥u2 − u∗2∥.

Square, integrate from 0 to t, and use (4.126)∫ t

0

∥∇ · (z2 − z∗2)∥2 ≤ ∥(D−1/2
2 (z2 − z∗2)∥2(0)

+C

∫ t

0

∥u1 − u∗1∥2 + C

∫ t

0

∥u2 − u∗2∥2. (4.127)

This bound will be used shortly.

Now, consider again (4.116),(4.117),(4.118),(4.119) and set w = u1 − u∗1 and v = z2 − z∗2 to

get,

((u1 − u∗1)t, u1 − u∗1) + (∇ · (z1 − z∗1), u1 − u∗1)

= (f1(u1, u2)− f1(u
∗
1, u

∗
2), u1 − u∗1)

+(∇ · (D−1
2 (z2u1 − z∗2u

∗
1), u1 − u∗1) (4.128)

((u2 − u∗2)t, u2 − u∗2) + (∇ · (z2 − z∗2), u2 − u∗2)

= (f2(u1, u2)− f2(u
∗
1, u

∗
2), u2 − u∗2) (4.129)

(D−1
1 (z1 − z∗1), z1 − z∗1) = (u1 − u∗1,∇ · (z1 − z∗1)) (4.130)

(D−1
2 (z2 − z∗2), z2 − z∗2) = (u2 − u∗2,∇ · (z2 − z∗2)) (4.131)

Substitute (4.130) into (4.128 ), use the Lipschitz continuity of f1, and use the Cauchy-

Schwarz inequality (theorem 4.7)

1

2

d

dt
∥u1 − u∗1∥2 + ∥D−1/2

1 (z1 − z∗1)∥2 = (f1(u1, u2)− f1(u1, u
∗
2), u1 − u∗1)

+(f1(u1, u
∗
2)− f1(u

∗
1, u

∗
2), u1 − u∗1)

+(∇ · (D−1
2 (z2u1 − z2u

∗
1 + z2u

∗
1 − z∗2u

∗
1), u1 − u∗1)

≤ (C|u2 − u∗2|, |u1 − u∗1|) + (C|u1 − u∗1|, |u1 − u∗1|)

+

∫
Ω

(∇ ·D−1
2 z2)(u1 − u∗1)

2 +

∫
Ω

(D−1
2 z2(∇ · (u1 − u∗1))(u1 − u∗1)

+

∫
Ω

∇ ·D−1
2 (z2 − z∗2)u

∗
1(u1 − u∗1) +

∫
Ω

D−1
2 (z2 − z∗2)(∇u∗1)(u1 − u∗1)
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≤ C
ε1
2
∥u2 − u∗2∥2 +

C

2ε1
∥u1 − u∗1∥2 + C∥u1 − u∗1∥2

+∥∇ ·D−1
2 z2∥L∞(Ω)∥u1 − u∗1∥2 + ∥D−1

2 z2∥L∞(Ω)

∫
Ω

(∇ · (u1 − u∗1))(u1 − u∗1)

+∥u∗1∥L∞(Ω)∥∇ ·D−1
2 (z2 − z∗2)∥∥u1 − u∗1∥

+∥∇u∗1∥L∞(Ω)

∫
Ω

D−1
2 (z2 − z∗2)(u1 − u∗1).

Substitute ∇ · (u1 − u∗1) = D−1
1 (z1 − z∗1), then use the Cauchy-Schwarz inequality (theorem

4.7) and Cauchy’s inequality (theorem 4.6)

1

2

d

dt
∥u1 − u∗1∥2 + ∥D−1/2

1 (z1 − z∗1)∥2

≤ C
ε1
2
∥u2 − u∗2∥2 +

C

2ε1
∥u1 − u∗1∥2 + C∥u1 − u∗1∥2

+C∥u1 − u∗1∥2 + C
ε2
2
∥D−1

1 (z1 − z∗1)∥2 +
C

2ε2
∥u1 − u∗1∥2

+C
ε3
2
∥∇ ·D−1

2 (z2 − z∗2)∥2 +
C

2ε3
∥u1 − u∗1∥2

+C
ε4
2
∥D−1

2 (z2 − z∗2)∥2 +
C

2ε4
∥u1 − u∗1∥2

≤ C
ε1
2
∥u2 − u∗2∥2 + (C +

C

2ε1
+

C

2ε2
+

C

2ε3
+

C

2ε4
)∥u1 − u∗1∥2

+C
ε2
2
∥D−1

1 (z1 − z∗1)∥2 + C
ε3
2
∥∇ ·D−1

2 (z2 − z∗2)∥2 + C
ε4
2
∥D−1

2 (z2 − z∗2)∥2.

Finally,

1

2

d

dt
∥u1 − u∗1∥2 + C∥(z1 − z∗1)∥2

≤ C
ε1
2
∥u2 − u∗2∥2 + (C +

C

2ε1
+

C

2ε2
+

C

2ε3
+

C

2ε4
)∥u1 − u∗1∥2

+C
ε2
2
∥z1 − z∗1∥2 + C

ε3
2
∥∇ · (z2 − z∗2)∥2 + C

ε4
2
∥(z2 − z∗2)∥2. (4.132)

Now, go to the other set of equations. That is, Substitute (4.131) into (4.129 )

1

2

d

dt
∥u2 − u∗2∥2 + ∥D−1/2

2 (z2 − z∗2)∥2 = (f2(u1, u2)− f2(u1, u
∗
2), u2 − u∗2)

+(f2(u1, u
∗
2)− f2(u

∗
1, u

∗
2), u2 − u∗2)

≤ (C|u2 − u∗2|, |u2 − u∗2|) + (C|u1 − u∗1|, |u2 − u∗2|)

≤ C
ε5
2
∥u1 − u∗1∥2 +

C

2ε5
∥u2 − u∗2∥2 + C∥u2 − u∗2∥2.
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Finally,

1

2

d

dt
∥u2 − u∗2∥2 + C∥(z2 − z∗2)∥2 ≤ C∥u1 − u∗1∥2 + C∥u2 − u∗2∥2. (4.133)

Add (4.132) and (4.133)

1

2

d

dt
(∥u1 − u∗1∥2 + ∥u2 − u∗2∥2) + C∥(z1 − z∗1)∥2 + C∥(z2 − z∗2)∥2

≤ (C + C
ε1
2
)∥u2 − u∗2∥2 + (C +

C

2ε1
+

C

2ε2
+

C

2ε3
+

C

2ε4
)∥u1 − u∗1∥2

+C
ε2
2
∥z1 − z∗1∥2 + C

ε3
2
∥∇ · (z2 − z∗2)∥2 + C

ε4
2
∥(z2 − z∗2)∥2. (4.134)

Choose ε2, ε4 to hide terms and set ε3 = 1

1

2

d

dt
(∥u1 − u∗1∥2 + ∥u2 − u∗2∥2) + C∥(z1 − z∗1)∥2 + C∥(z2 − z∗2)∥2

≤ C∥u1 − u∗1∥2 + C∥u2 − u∗2∥2 + C∥∇ · (z2 − z∗2)∥2. (4.135)

Integrate 0 to t,

(∥u1 − u∗1∥2(t) + ∥u2 − u∗2∥2(t)) + C

∫ t

0

(∥(z1 − z∗1)∥2 + ∥(z2 − z∗2)∥2)

≤ C

∫ t

0

(∥u1 − u∗1∥2 + ∥u2 − u∗2∥2) + C

∫ t

0

∥∇ · (z2 − z∗2)∥2

+∥u1 − u∗1∥2(0) + ∥u2 − u∗2∥2(0). (4.136)

Use (4.127)

(∥u1 − u∗1∥2(t) + ∥u2 − u∗2∥2(t)) + C

∫ t

0

(∥(z1 − z∗1)∥2 + ∥(z2 − z∗2)∥2)

≤ C

∫ t

0

(∥u1 − u∗1∥2 + ∥u2 − u∗2∥2) + C∥(D−1/2
2 (z2 − z∗2)∥2(0)

+∥u1 − u∗1∥2(0) + ∥u2 − u∗2∥2(0). (4.137)

Use the Gronwall Inequality, theorem 4.8,

(∥u1 − u∗1∥2(t) + ∥u2 − u∗2∥2(t)) + C

∫ t

0

(∥(z1 − z∗1)∥2 + ∥(z2 − z∗2)∥2)

≤ ect(∥(D−1
2 (z2 − z∗2)∥2(0) + ∥u1 − u∗1∥2(0) + ∥u2 − u∗2∥2(0)). (4.138)

Obviously, if the initial conditions are the same, the solutions will be the same.
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4.4.3 Application of the Theorems to Individual Equations

In this section we will show that the right hand side functions in each equation of our PDE

system meets the hypothesis of theorems 4.13 and 4.14.

Bounds on various terms. There are certain terms that will occur repeatedly throughout

the thesis. Therefore, it will be helpful to find bounds on these terms and then refer to these

bounds whenever necessary.

It is obvious by inspection of the Part I NEC equations that the variables in the equations

will always be non-negative. In any case, we list that fact as an assumption:

Assumption 3 ec, b, m, ma, c, ca, NO, na, d ≥ 0. (4.139)

Now, consider the terms

T = R(ca)c and R(ca) =
1

1 + kRca(ca/ca)
2
.

Note that since kRca ≥ 0 and our assumption (4.139), we have

0 < R(ca) ≤ 1 and T = R(ca)c ≥ 0. (4.140)

Since xdc ≥ 0 and q2 > 0, then

0 ≤ T q2

xq2dc + T q2
≤ 1. (4.141)

Consider

Q = R(ca)(kcamanana +ma + kcamadd). (4.142)

Since kcamana > 0 , kcamad > 0, (4.139) and (4.140) we have

Q ≥ 0 and 0 ≤ Q

1 +Q
≤ 1. (4.143)

Consider the terms

mq1
a

1 + (ma/ma)q1
and

nq1
a

1 + (na/na)q1
. (4.144)
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Since the constants q1 > 0, ma > 0 and na > 0 and (4.139),

0 ≤ mq1
a

1 + (ma/ma)q1
≤ mq1

a ≤ C and 0 ≤ nq1
a

1 + (na/na)q1
≤ nq1

a ≤ C (4.145)

for some C > 0.

Consider

kbb/(1 + b/ϵ). (4.146)

Since kb > 0, ϵ > 0, and (4.139) ,

kbb/(1 + b/ϵ) ≤ kbϵ ≤ C (4.147)

for some C > 0.

Application to Individual Equations. Now, we apply theorems 4.13 and 4.14 to the

individual equations of the NEC model. The equations will be analyzed in the ideal or-

der, i.e., so that the regularity established for some equations may be used in the subsequent

analysis of the other equations. Such an ordering, will require the least possible assumptions.

Damage Equation

∂d

∂t
− ∇ ·Dd∇d = −kdd+ kdc

T q2

xq2dc + T q2
. (4.148)

Define

fd := −kdd+ kdc
T q2

xq2dc + T q2
and choose d ∈ L2(0, T ;H3(Ω)), then,

∥fd∥2L2(0,T ;H2(Ω)) =

∫ T

0

∥∥∥− kdd+ kdc
T q2

xq2dc + T q2

∥∥∥2
H2(Ω)

≤ C

∫ T

0

∥kdd∥2H2(Ω) + C

∫ T

0

∥kdd∥H2(Ω)

∥∥∥kdc T q2

xq2dc + T q2

∥∥∥
H2(Ω)

+C

∫ T

0

∥∥∥kdc T q2

xq2dc + T q2

∥∥∥2
H2(Ω)

.
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Using (4.141),

∥fd∥2L2(0,T ;H2(Ω)) ≤ Ck2d

∫ T

0

∥d∥2H2(Ω) + Ckdckd

∫ T

0

∥d∥H2(Ω) + Ck2dcT

≤ (Ck2d + Ckdckd)∥d∥2L2(0,T ;H2(Ω)) + Ck2dcT.

So, fd ∈ L2(0, T ;H2(Ω)). Then by Theorem 4.13, (4.148), has a solution with

d ∈ L2(0, T ;H4(Ω)). (4.149)

Nitric Oxide Equation

∂NO

∂t
− ∇ ·DNO∇NO = −kNONO + kNOma

mq1
a

1 + (ma/ma)q1

+kNOna

nq1
a

1 + (na/na)q1
. (4.150)

Define

fNO := −kNONO + kNOma

mq1
a

1 + (ma/ma)q1
+ kNOna

nq1
a

1 + (na/na)q1

and choose NO ∈ L2(0, T ;H3(Ω)), then,

∥fNO∥2L2(0,T ;H2(Ω)) =∫ T

0

∥∥∥− kNONO + kNOma

mq1
a

1 + (ma/ma)q1
+ kNOna

nq1
a

1 + (na/na)q1

∥∥∥2
H2(Ω)

.

Then by (4.145)

∥fNO∥2L2(0,T ;H2(Ω)) ≤ C

∫ T

0

∥NO∥2H2(Ω) + CT

≤ C∥NO∥2L2(0,T ;H2(Ω)) + CT.

So, fNO ∈ L2(0, T ;H2(Ω)). Then by Theorem 4.13, (4.150), has a solution with

NO ∈ L2(0, T ;H4(Ω)). (4.151)
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Anti-inflammatory Cytokine Equation

∂ca
∂t

− ∇ ·Dca∇ca = −kcaca + sca + kcaP
Q

1 +Q
(4.152)

Define

fca := −kcaca + sca + kcaP
Q

1 +Q
and choose ca ∈ L2(0, T ;H3(Ω)).

Then,

∥fca∥2L2(0,T ;H2(Ω)) =

∫ T

0

∥∥∥− kcaca + sca + kcaP
Q

1 +Q

∥∥∥2
H2(Ω)

.

Using (4.143) and noting that kca , sca and kcaP are constants,

∥fca∥2L2(0,T ;H2(Ω)) ≤ C

∫ T

0

∥ca∥2H2(Ω) + CT ≤ C∥ca∥2L2(0,T ;H2(Ω)) + CT.

So, fca ∈ L2(0, T ;H2(Ω)). Then by Theorem 4.13, (4.152), has a solution with

ca ∈ L2(0, T ;H4(Ω)). (4.153)

Cytokine Equation

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm) (4.154)

Define

fc := −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm)

choose c ∈ L2(0, T ;H3(Ω)) and choose m,ma, n, na ∈ L2(0, T ;H2(Ω)).

(Since each of these are solutions to their respective PDEs, we can say,

c ∈ L∞(0, T ;H2(Ω)) and m,ma, n, na ∈ L∞(0, T ;H1(Ω)), see theorem 4.12.)

Then∥fc∥2L2(0,T ;H2(Ω)) =∫ T

0

∥∥∥− kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm)
∥∥∥2
H2(Ω)
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≤ C

∫ T

0

∥∥∥c+ma + na + cn+ cm
∥∥∥2
H2(Ω)

≤ C

∫ T

0

∥c∥2H2(Ω) + C

∫ T

0

∥ma∥2H2(Ω) + C

∫ T

0

∥na∥2H2(Ω)

+ C

∫ T

0

∥cn∥2H2(Ω) + C

∫ T

0

∥cm∥2H2(Ω)

≤ C

∫ T

0

∥c∥2H2(Ω) + C

∫ T

0

∥ma∥2H2(Ω) + C

∫ T

0

∥na∥2H2(Ω)

+C

∫ T

0

∫
Ω

|cn|2 + C

∫ T

0

∫
Ω

|(∇c)n|2 + C

∫ T

0

∫
Ω

|c∇n|2

+C

∫ T

0

∫
Ω

|(∇c)∇n|2 + C

∫ T

0

∫
Ω

|(△c)n|2 + C

∫ T

0

∫
Ω

|c△n|2

+C

∫ T

0

∫
Ω

|cm|2 + C

∫ T

0

∫
Ω

|(∇c)m|2 + C

∫ T

0

∫
Ω

|c∇m|2

+C

∫ T

0

∫
Ω

|(∇c)(∇m)|2 + C

∫ T

0

∫
Ω

|(△c)m|2 + C

∫ T

0

∫
Ω

|c△m|2

≤ C

∫ T

0

∥c∥2H2(Ω) + C

∫ T

0

∥ma∥2H2(Ω) + C

∫ T

0

∥na∥2H2(Ω)

+C

∫ T

0

∥c∥2L∞(Ω)

∫
Ω

|n|2 + C

∫ T

0

∥n∥2L∞(Ω)

∫
Ω

|∇c|2 + C

∫ T

0

∥c∥2L∞(Ω)

∫
Ω

|∇n|2

+C

∫ T

0

∥∇c∥2L4(Ω)∥∇n∥2L4(Ω) + C

∫ T

0

∥n∥2L∞(Ω)

∫
Ω

|(△c)|2

+C

∫ T

0

∥c∥2L∞(Ω)

∫
Ω

|△n|2 + C

∫ T

0

∥c∥2L∞(Ω)

∫
Ω

|m|2 + C

∫ T

0

∥m∥2L∞(Ω)

∫
Ω

|∇c|2

+C

∫ T

0

∥c∥2L∞(Ω)

∫
Ω

|∇m|2 + C

∫ T

0

∥∇c∥2L4(Ω)∥∇m∥2L4(Ω)

+C

∫ T

0

∥m∥2L∞(Ω)

∫
Ω

|(△c)|2 + C

∫ T

0

∥c∥2L∞(Ω)

∫
Ω

|△m|2.

In the last inequality above, the L4(Ω) norms come from applying Cauchy-Schwarz, for

example,

C
∫ T

0

∫
Ω
|(∇c)(∇m)|2 ≤ C

∫ T

0

( ∫
Ω
(|∇c|2)2

)1/2( ∫
Ω
|∇m|2)2

)1/2
= C

∫ T

0

((( ∫
Ω
(|∇c|2)2

)1/2)1/2)2((( ∫
Ω
|∇m|2)2

)1/2)1/2)2
= C

∫ T

0
∥∇c∥2L4(Ω)∥∇m∥2L4(Ω).

Now, note that since c ∈ L∞(0, T ;H2(Ω)), we have ∇c ∈ L∞(0, T ;L6(Ω)) and since m,n ∈

L2(0, T ;H2(Ω)) we have ∇m,∇n ∈ L2(0, T ;L6(Ω)) and △m,△n ∈ L2(0, T ;L6(Ω)). All of

this is used to say,

∥fc∥2L2(0,T ;H2(Ω)) ≤ C

∫ T

0

∥c∥2H2(Ω) + C

∫ T

0

∥ma∥2H2(Ω) + C

∫ T

0

∥na∥2H2(Ω)
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+C∥c∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|n|2 + C∥n∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|∇c|2

+C∥c∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|∇n|2 + C∥∇c∥2L∞(0,T ;L4(Ω))

∫ T

0

∥∇n∥2L4(Ω)

+C∥n∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|(△c)|2 + C∥c∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|△n|2

+C∥c∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|m|2 + C∥m∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|∇c|2

+C∥c∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|∇m|2 + C∥∇c∥2L∞(0,T ;L4(Ω))

∫ T

0

∥∇m∥2L4(Ω)

+C∥m∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|(△c)|2 + C∥c∥2L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|△m|2.

Each of the terms above are bounded. So, fc ∈ L2(0, T ;H2(Ω)). Then by Theorem

4.13, (4.154), has a solution with

c ∈ L2(0, T ;H4(Ω)). (4.155)

Bacteria Equation

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb (4.156)

Define

fb := kbgb(1− b/bmax)− kbb/(1 + b/ϵ)−R(ca)(kbmamab+ kbnanab)− kppb

choose b ∈ L2(0, T ;H3(Ω)) and choose ma, na ∈ L2(0, T ;H2(Ω)).

(Since each of these are solutions to their respective PDEs, we can say,

b ∈ L∞(0, T ;H2(Ω)) and ma, na ∈ L∞(0, T ;H1(Ω)), see theorem 4.12.)

It has been shown that b ≥ 0, therefore, it is reasonable to assume that

|1− b/bmax| ≤ 1.
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∥fb∥2L2(0,T ;H2(Ω)) =

∫ T

0

∥∥∥ kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb
∥∥∥2
H2(Ω)

≤ C

∫ T

0

∥b2∥2H2(Ω) + C

∫ T

0

∥mab∥2H2(Ω) + C

∫ T

0

∥nab∥2H2(Ω) + C

∫ T

0

∥b∥2H2(Ω).(4.157)

Notice that in each term, at least one of the functions is in L2(0, T ;H3(Ω)). Therefore, using

techniques similar to those in the analysis of the cytokine equation above, it can be shown

that all of the terms in (4.157) are bounded. So, fb ∈ L2(0, T ;H2(Ω)). Then by Theorem

4.13, (4.156), has a solution with

b ∈ L2(0, T ;H4(Ω)). (4.158)

Macrophage Equation

∂m

∂t
= km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm). (4.159)

Define

fm := km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm).

Choose m ∈ L2(0, T ;H2(Ω)). Then m ∈ L∞(0, T ;H1(Ω)), see theorem 4.12.

In the following we will use the results (4.149),(4.155),and (4.158)

(i.e. d, c, b ∈ L2(0, T ;H4(Ω)) which implies d, c, b ∈ L∞(0, T ;H3(Ω)), see theorem 4.12).

∥fm∥2L2(0,T ;H2(Ω)) =∫ T

0

∥∥∥ km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm)∥2H2(Ω)

≤ C

∫ T

0

∥m∥2H2(Ω) + C

∫ T

0

∥bm∥2H2(Ω) + C

∫ T

0

∥cm∥2H2(Ω)

+ C

∫ T

0

∥dm∥2H2(Ω) + C. (4.160)
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Notice that in each term, at least one of the functions is in L2(0, T ;H3(Ω)). Therefore, using

techniques similar to those in the analysis of the cytokine equation above, it can be shown

that all of the terms in (4.160) are bounded. So, fm ∈ L2(0, T ;H2(Ω)). Then by Theorem

4.13, (4.159), has a solution with

m ∈ L2(0, T ;H4(Ω)). (4.161)

Activated Macrophage Equation (coupled with the cytokine and bacteria equa-

tions)

∂ma

∂t
− ∇ · (Dma∇ma − γmacma∇c− γmabR(ca)ma∇b)

= −kmama +R(ca)(kmbbm+ kmccm+ kmddm). (4.162)

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm) (4.163)

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb (4.164)

Define

fc := −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm),

fma := −kmama +R(ca)(kmbbm+ kmccm+ kmddm) and

fb := kbgb(1− b/bmax)− kbb/(1 + b/ϵ)−R(ca)(kbmamab+ kbnanab)− kppb.

Choose ma ∈ L2(0, T ;H2(Ω)).

In the following we will use the results (4.149),(4.155),(4.158), and (4.161) (i.e. d, c, b,m ∈

L2(0, T ;H4(Ω)) and since each of these are solutions to their respective PDEs, we can say,

d, c, b,m ∈ L∞(0, T ;H3(Ω)), by theorem 4.12).

∥fma∥2L2(0,T ;H1(Ω)) =

∫ T

0

∥∥∥ − kmama +R(ca)(kmbbm+ kmccm+ kmddm)∥2H1(Ω)
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≤ C

∫ T

0

∥ma∥2H1(Ω) + C

∫ T

0

∥bm∥2H1(Ω) + C

∫ T

0

∥cm∥2H1(Ω) + C

∫ T

0

∥dm∥2H1(Ω).(4.165)

Using techniques similar to those in the analysis of the cytokine equation above, it can be

shown that all of the terms in (4.165) are bounded. So, fma ∈ L2(0, T ;H1(Ω)). We have

already shown that fc, fb ∈ L2(0, T ;H2(Ω)) (see cytokines and bacteria above). So, we

may apply Theorem 4.14 to conclude that the system (4.162), (4.163),(4.164) has a solution

with

ma ∈ L2(0, T ;H3(Ω)) c ∈ L2(0, T ;H4(Ω))

b ∈ L2(0, T ;H4(Ω)). (4.166)

Activated Neutrophil Equation (coupled with the cytokine equation)

∂na

∂t
− ∇ · (Dna∇na − γnacna∇c)

= −knana +R(ca)(knccn+ knddn). (4.167)

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm) (4.168)

Define

fna := −knana +R(ca)(knccn+ knddn) and

fc := −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm).

Choose n, na ∈ L2(0, T ;H2(Ω)).

In the following we will use the results (4.149) and (4.155) (i.e. d, c ∈ L2(0, T ;H4(Ω)) and

since each of these are solutions to their respective PDEs, we can say, d, c ∈ L∞(0, T ;H3(Ω)),

by theorem 4.12.)

∥fm∥2L2(0,T ;H1(Ω)) =

∫ T

0

∥∥∥ − knana +R(ca)(knccn+ knddn)∥2H1(Ω)

≤ C

∫ T

0

∥na∥2H1(Ω) + C

∫ T

0

∥cn∥2H1(Ω) + C

∫ T

0

∥dn∥2H1(Ω). (4.169)
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Using techniques similar to those in the analysis of the cytokine equation above, it can be

shown that all of the terms in (4.169) are bounded. So, fna ∈ L2(0, T ;H1(Ω)) and we

have already shown that fc ∈ L2(0, T ;H2(Ω)) (see cytokines above). So, we may apply

Theorem 4.14 to conclude that the system (4.167), (4.168) has a solution with

na ∈ L2(0, T ;H3(Ω)) c ∈ L2(0, T ;H4(Ω)). (4.170)

4.4.4 Conclusion

We have shown that Theorems 4.13 and 4.14 may be applied the eight equations in PDE

Analysis - Part I. Therefore, the system of eight equations in PDE Analysis - Part

I has a weak solution.
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4.5 ANALYSIS OF PDES IN PART II

In this section we will consider the epithelial equation. This equation is challenging for

two reasons. First of all, it contains a difficult nonlinearity in its diffusion term. Secondly,

the diffusion term may go to zero in some cases. In this case, this PDE is a degenerate

parabolic PDE.

In this chapter, we will consider both the non-degenerate and the degenerate cases for this

PDE. Existence analysis will be provided for the non-degenerate case. An equation similar

to, but much more general than our equation, has been analyzed by by Alt and Luckhaus

[4]. However, the analysis in that paper is much more complicated than we require. So, the

analysis presented here will use many ideas from Alt and Luckhaus as well as from other

works but will be tailored to the specifics in our equation.

For the degenerate case of our equation, many cite Alt and Luckhaus, although their

paper does not fully address the degeneracy the occurs. For example, Arbogast, Wheeler,

and Zhang [7] rely heavily on the Alt and Luckhaus paper. We will do the same here.

Therefore, there will be no need to do new analysis for the degenerate case in this thesis.

Instead, the degenerate case will be covered by making appropriate references to the work of

the aforementioned authors. After referencing the work of these authors, further regularity

will be established for the mixed weak form of the degenerate case.

Epithelial Equation

The epithelial equation is given by:

∂ec
∂t

+ ∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka(na, c, b)ec (4.171)

where

β(ec) =
e2c

e2c + (ec,max − ec)2
u(ec, b) = −α(b)∇ec (4.172)
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ka(na, c, b) :=

(na + kecnacc+ kecnabb)
.45

(na + kecnacc+ kecnabb)
.45 + ((na,max − na) + kecnac(cmax − c) + kecnab(bmax − b)).45

α(b) =
(bmax − b)q

(bmax − b)q + bq
.

Equation (4.171) may be written as

∂ec
∂t

−∇ · (β(ec)α(b)∇ec) = fec(ec, b, na). (4.173)

Define

fec(ec, b, na) := kpec(1− ec/ec,max)−Aec

where

A = ka(na, c, b).

Note that (4.173) equation may be written as

∂ec
∂t

−∇ · (α(b)∇P (ec)) = fec(ec, b, na) (4.174)

where P (ec) is the Kirchhoff transformation given by:

P (ec) =

∫ ec

0

β(s) ds

so that

∇P (ec) =
∂P

∂ec
∇ec + ∇xP (ec) = β(ec)∇ec +

∫ ec

0

∇xβ(s) ds = β(ec)∇ec.

Note that ec may, at times, be zero. B(ec) and ∇P (ec) will be zero whenever ec = 0. Such

a PDE is classified as a degenerate parabolic PDE. So, analysis of the epithelial equation

will include two cases: 1) the non-degenerate case (conditions under which ec will never

be zero) and 2) the degenerate case (conditions under which ec may be zero).
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4.5.1 Properties that apply to both the Non-Degenerate Case and the Degen-

erate Case

Before considering these two cases note that the right hand side of the epithelial equation

(4.173) is Lipschitz Continuous in both the degenerate case and the non-degenerate case:

|fec(ec2)− fec(ec1)| = | kp(ec2 − ec1)−
1

ec,max

(e2c2 − e2c1)−A(ec2 − ec1)|

=

∣∣∣∣∣ kp(ec2 − ec1)−
1

ec,max

(e2c2 − e2c1)−A(ec2 − ec1)

∣∣∣∣∣
=

∣∣∣∣∣ kp − 1

ec,max

(ec2 + ec1)−A

∣∣∣∣∣|ec2 − ec1 |.

Since ec is bounded, we have

|fec(ec2)− fec(ec1)| ≤ C|ec2 − ec1 |. (4.175)

For some C ≥ 0.

Further, since ec ≥ 0 we have

P (ec) =

∫ ec

0

s2

s2 + (1− s)2
ds ≤ (1)

∫ ec

0

ds = ec.

So, we can say

∥P (ec)∥2 ≤ ∥ec∥2. (4.176)
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4.5.2 Properties that apply only to Non-Degenerate Case

Now, we consider the non-degenerate case. Once again consider (4.173). Note that na, kecnac,

c, kecnab, b, ka0 are all non-negative. If we assume that we have na,max ≥ na, cmax ≥

c, bmax ≥ b then

0 ≤ A ≤ 1.

So, (4.173) may be written as

∂ec
∂t

−∇ · (a(∇ec, ec)) = fec(ec, b, na) (4.177)

where a(∇ec, ec) = β(ec)α(b)∇ec.

Several properties for this epithelial equation, such as monotonicity and a growth condi-

tion, can only be proved for the non-degenerate case. This is done here:

For the non-degenerate case, there exists some constants ec,min, αmin such that:

ec ≥ ec,min > 0 ∀ec and α(b) ≥ αmin > 0 ∀b.

So, obviously, we also have αmax = 1. Then

β(ec) =
e2c

e2c + (ec,max − ec)2
≥

e2c,min

e2c,min + (ec,max − ec,min)2
.

So, we may say,

βmin :=
e2c,min

e2c,min + (ec,max − ec,min)2
> 0

and, obviously βmax = 1. Then

0 < βmin < βmax = 1.

Monotonicity

In the non-degenerate case, we can establish monotonicity of a(·, ·)

(a(∇ec1 , ec)− a(∇ec2 , ec)) · (∇ec1 −∇ec2)

= β(ec)α(b)(∇ec1 −∇ec2) · (∇ec1 −∇ec2)
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≥ βminαmin|∇ec1 −∇ec2|2.

Growth Condition

In the non-degenerate case, we can also establish a growth condition. First note that

|fec(ec)| = |kpec(1− ec/ec,max)−Aec| ≤ kp|ec||(1− ec/ec,max)|+ |Aec|

≤ C|ec|+ C|ec| ≤ 2C|ec|.

Therefore,

|fec(ec)|2 ≤ C1e
2
c . (4.178)

Also, we have

a(∇ec, ec) = β(ec)α(b)∇ec ≤ βmaxαmax∇ec ≤ C∇ec.

Therefore,

|a(∇ec, ec)|2 ≤ C|∇ec|2. (4.179)

So, by (4.178) and (4.179), there exists a C such that,

|a(∇ec, ec)|2 + |fec(ec)|2 ≤ C
(
1 + |∇ec|2 +

e2c
2

)
. (4.180)

Lower Bound for ∥P (ec)∥

Further, since 0 ≤ ec ≤ 1 we have

P (ec) =

∫ ec

0

s2

s2 + (1− s)2
ds ≥ e3c

12
≥
e2c,min

12
ec ≥ Cec

for some C > 0.

So, we can say

∥P (ec)∥ ≥ C∥ec∥.
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Holder Continuity

Holder continuity is usually required in order to establish uniqueness of the solution. Unfor-

tunately, it is not possible to establish Holder continuity for the epithelial equation, even in

the non-degenerate case. First note that

β(ec1)− β(ec2) =
e2c1

e2c1 + (ec,max − ec1)
2
−

e2c2
e2c2 + (ec,max − ec2)

2

=
(ec1 − ec2)(e

2
c,max(ec1 + ec2)− 2ec,maxec1ec2)

(e2c1 + (ec,max − ec1)
2))(e2c2 + (ec,max − ec2)

2)

≤ (ec1 − ec2)(1
2(ec1 + ec2)− 2(1)ec1ec2)

(.5)(.5)
≤ (ec1 − ec2)(ec1 + ec2)

.25
.

In the above, we used the fact that ec1 , ec2 ≥ 0 and ec,max = 1. Now, the best we can get is

∣∣∣β(ec1)α(b)∇ec − β(ec2)α(b)∇ec
∣∣∣ ≤ ∣∣∣∣∣α(b)∇ec (ec1 − ec2)(ec1 + ec2)

.25

∣∣∣∣∣.
Thus, we cannot establish Holder Continuity.

4.6 NON-DEGENERATE CASE - EXISTENCE OF A SOLUTION.

Here, it will be demonstrated that a solution exists in the non-degenerate case, (4.177). (In

this analysis, various standard techniques for analyzing PDEs will be used. Most of the

techniques used here may be found in Evans [38] and/or Alt and Luckhaus [4].) Consider

the orthonormal basis {ψi}∞i=1 for H1(Ω). We will look for a solution to (4.177) of the form:

ecm :=
m∑
i=1

ξiψi (4.181)
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where ξi for i = 1, ...,m is a function of t only.

Substituting into:

∂ec
∂t

−∇ · (a(∇ec, ec)) = fec(ec, b, na)

multiplying by the basis functions ψj and integrating by parts, we get:(
∂ec
∂t
, ψj

)
+ (a(∇ecm , ecm),∇ψj) = (fecm , ψj)

for j = 1, ...,m.

Consider the time interval [0, h] for small h. Use backward Euler in place of the time

derivative in the previous equation.(
ecm(t)− ecm(t− h)

h
, ψj

)
+ (a(∇ecm , ecm),∇ψj) = (fecm , ψj).

We can say, (
ecm(t)− ec(0)

h
, ψj

)
+ (a(∇ecm , ecm),∇ψj) = (fecm , ψj).

Now define: C := (ξ1, ..., ξm) and define:

vj(C) :=

(
ecm(t)− ec(0)

h
, ψj

)
+ (a(∇ecm , ecm),∇ψj) − (fecm , ψj).

Then vm = (v1, ..., vm).

vm(C) ·C =

(
ecm(t)− ecm(0)

h
, ecm

)
+ (a(∇ecm , ecm),∇ecm) − (fecm , ecm)

≥

(
ecm(t)

h
, ecm

)
−

(
ecm(0)

h
, ecm

)
+ c1∥∇ecm∥2 − c2∥ecm∥2

≥ 1

h
|C|2 − 1

2h
∥ecm(0)∥2 −

1

2h
∥ecm∥2 + c1∥∇ecm∥2 − c2∥ecm∥2

=
1

2h
(|C|2 − ∥ecm(0)∥2) + c1|C|2 − c2|C|2.

Note that ∥ecm(0)∥2 is known. Now choose C so that |C|2 − ∥ecm(0)∥2 > 0, then take h

small enough so that the right hand side becomes positive. Thus, vm(C) ·C ≥ 0 for |C| > 0.
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Therefore, there exists a solution C to vm(C) = 0 on the interval [0, h]. So, there exists a

solution at t = h. Therefore, the same process may be applied to the interval [h, h+ k], etc.

In this way, a solution may be established on [0, T ].

Thus, there exists a solution ecm of the form (4.181) to the equation:(
∂ecm
∂t

, ψj

)
+ (a(∇ecm , ecm),∇ψj) = (fecm , ψj) for j = 1, ...,m. (4.182)

Now, it will be necessary to bound the sequences that appear in this equation. Using (4.182)

we can say: (
∂ecm
∂t

, ecm

)
+ (a(∇ecm , ecm),∇ecm) = (fecm , ecm). (4.183)

1

2

d

dt
∥ecm∥2 + c1∥∇ecm∥2 ≤ (fecm , ecm) ≤ ∥fecm∥∥ecm∥ ≤ c2∥ecm∥2.

∥ecm∥2 + 2c1

∫ T

0

∥∇ecm∥2 ≤ ∥ecm∥2(0) + 2c2

∫ T

0

∥ecm∥2.

Apply the Gronwall Inequality, theorem 4.8,:

sup
0≤t≤T

∥ecm∥2 + c1

∫ T

0

∥∇ecm∥2 ≤ c3∥ecm∥2(0).

So,

{ecm}∞m=1 is bounded in L∞(0, T ;L2(Ω)) (4.184)

{∇ecm}∞n=1 is bounded in L2(0, T ;L2(Ω)). (4.185)

Putting (4.184) and (4.185) together, we have

{ecm}∞m=1 is bounded in L2(0, T ;H1(Ω)). (4.186)

In order to bound the time derivative consider,

(ecmt
, ψj) + (a(∇ecm , ecm),∇ψj) = (fecm , ψj).
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Here we will use a technique given by Evans [38]. Fix v ∈ H1(Ω) with ∥v∥H1(Ω) ≤ 1 where

v = v1 + v2. With the the property v1 ∈ span{ψj}mj=1 and (v2, ψj) = 0 for all j. Now,

(ecmt
, v1) + (a(∇ecm , ecm),∇v1) = (fecm , v

1)

(ecmt
, v1) = −(a(∇ecm , ecm),∇v1) + (fecm , v

1).

Since ecmt
is in span{ψj}mk=1, we have (ecmt

, v2) = 0. So,

(ecmt
, v) = −(a(∇ecm , ecm),∇v1) + (fecm , v

1)

|(ecmt
, v)| ≤ ∥∇ecm∥∥∇v1∥ + ∥fecm∥∥v

1∥

|(ecmt
, v)| ≤ ∥∇ecm∥∥v1∥H1(Ω) + ∥fecm∥∥v

1∥H1(Ω)

|(ecmt
, v)| ≤ ∥∇ecm∥ + ∥fecm∥.

Since this last inequality is true for all ∥v∥H1(Ω) ≤ 1, we have

∥ecmt
∥H−1(Ω) ≤ ∥∇ecm∥ + ∥fecm∥∫ T

0

∥ecmt
∥H−1(Ω) ≤

∫ T

0

∥∇ecm∥ +

∫ T

0

∥fecm∥.

So, {
d

dt
ecm

}∞

n=1

is bounded in L2(0, T ;H−1(Ω)). (4.187)

In view of (4.179), we can say a(∇ecm , ecm) ≤ C|∇ecm |. So, by (4.185),

{a(∇ecm , ecm)}∞m=1 is bounded in L2(0, T ;L2(Ω)). (4.188)

Thus, by (4.184),(4.185),(4.187), and (4.188) the solution to (4.182) is bounded, i.e.,

{ecm}∞n=1, {∇ecm}∞n=1,
{

d
dt
ecm

}∞

n=1
and {a(∇ecm , ecm)}∞m=1 are all bounded.

Therefore, there exists a subsequence {ecmL
}∞L=1 of {ecm}∞m=1 that converges weakly to

some y1 and such that { d
dt
ecmL

}∞L=1 converges weakly to some y2.

Now, we must show that y2 is the weak derivative of y1. That is, we must show that (see

Evans [38], page 285.): ∫ T

0

dh

dt
y1 dt = −

∫ T

0

hy2 dt

for all test functions h ∈ C∞
c (0, T ).
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So, let h ∈ C∞
c (0, T ) and w ∈ H1(Ω)(∫ T

0

dh

dt
y1 dt, w

)
=

∫ T

0

(
dh

dt
y1, w

)
dt =

∫ T

0

(
y1,

dh

dt
w

)
dt

= lim
L→∞

∫ T

0

(
ecmL

,
dh

dt
w

)
dt = lim

L→∞

(∫ T

0

ecmL

dh

dt
dt, w

)

= lim
L→∞

(
−
∫ T

0

h
decmL

dt
dt, w

)
=

(
−
∫ T

0

hy2 dt, w

)
.

Here, change the name y1 to ec and change y2 to d
dt
ec.

In order to deal with the convergence of a(), we will use the method of Browder and

Minty. This method is usually applied to elliptic equations (see for example Zhang [142])

but here we will apply it to our parabolic equation following the same basic steps.

By (4.184),(4.185),(4.187), and (4.188) we know that there exists an a∗ such that

a(∇ecmL
, ecmL

) → a∗ weakly. So that we can say(
∂ecm
∂t

, ψj

)
+ (a∗,∇ψj) = (fecm , ψj). (4.189)

is satisfied for each j. So, (
∂ecm
∂t

, w

)
+ (a∗,∇w) = (fecm , w). (4.190)

From monotonicity we have

((a(∇ecm , ecm)− a(∇w,w)), (∇ecm −∇w)) ≥ 0

(a(∇ecm , ecm),∇ecm)− (a(∇ecm , ecm),∇w)

−(a(∇w,w),∇ecm) + (a(∇w,w) · ∇w)) ≥ 0. (4.191)

Now, recall (4.183),

(a(∇ecm , ecm),∇ecm) = (fecm , ecm)−

(
∂ecm
∂t

, ecm

)
. (4.192)
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Substitute (4.192) into (4.191) to get:

(fecm , ecm)−

(
∂ecm
∂t

, ecm

)
− (a(∇ecm , ecm),∇w)

−(a(∇w,w),∇ecm) + (a(∇w,w),∇w)) ≥ 0.

Substituting the subsequences {ecmL
} and taking limits gives:

(fecm , ec)−

(
∂ec
∂t
, ec

)
− (a∗,∇w)

−(a(∇w,w),∇ec) + (a(∇w,w),∇w)) ≥ 0. (4.193)

In (4.190) set w = ec to get

(fecm , ec)−

(
∂ecm
∂t

, ec

)
= (a∗,∇ec). (4.194)

Substituting this into (4.193), we get

(a∗,∇ec)− (a∗,∇w)− (a(∇w,w),∇ec) + (a(∇w,w),∇w)) ≥ 0

(a∗,∇ec −∇w) + (a(∇w,w),∇w −∇ec) ≥ 0

(a∗ − a(∇w,w),∇ec −∇w) ≥ 0.

For v ∈ H1(Ω) we set w := ec − (1/n)v where n is a natural number, and get(
a∗ − a

(
∇ec −

1

n
∇v, ec −

1

n
v
)
,∇ec −∇ec +

1

n
∇v

)
≥ 0(

a∗ − a
(
∇ec −

1

n
∇v, ec −

1

n
v
)
,
1

n
∇v

)
≥ 0(

a∗ − a
(
∇ec −

1

n
∇v, ec −

1

n
v
)
,∇v

)
≥ 0.

Now take limn→∞ 1/n, to get

(a∗ − a(∇ec, ec),∇v) ≥ 0. (4.195)
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Using the same v ∈ H1(Ω) and set w := ec + (1/n)v where n is a natural number, we get(
a∗ − a

(
∇ec +

1

n
∇v, ec +

1

n
v
)
,∇ec −∇ec −

1

n
∇v

)
≥ 0(

a∗ − a
(
∇ec +

1

n
∇v, ec +

1

n
v
)
,− 1

n
∇v

)
≥ 0

−

(
a∗ − a

(
∇ec +

1

n
∇v, ec +

1

n
v
)
,∇v

)
≥ 0.

Now take limn→∞ 1/n, to get

−(a∗ − a(∇ec, ec),∇v) ≥ 0 or (a∗ − a(∇ec, ec),∇v) ≤ 0. (4.196)

Putting (4.195) and (4.196) together we see that

(a∗ − a(∇ec, ec),∇v) = 0. (4.197)

Thus, we conclude that a∗ = a(∇ec, ec). So, we can substitute a∗ = a(∇ec, ec) into (4.189).

For the rest, we will follow the standard techniques used for a linear parabolic PDE, (see,

for example, Evans page 357 [38]):

Now, fix P and choose:

w :=
P∑
i=1

ciψi (4.198)

where ci for i = 1, ...,m is a function of t only.

Multiply

(ecmt
, ψj) + (a(∇ecm , ecm),∇ψj) = (fecm , ψj) (4.199)

by cj to get:

(ecmt
, cjψj) + (a(∇ecm , ecm),∇cjψj) = (fecm , cjψj).
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Summing j = 1, ..., P gives:

(ecmt
, w) + (a(∇ecm , ecm),∇w) = (fecm , w).∫ T

0

(ecmt
, w) +

∫ T

0

(a(∇ecm , ecm),∇w) =

∫ T

0

(fecm , w).

Substituting subsequences {ecmL
} and take limits to find that∫ T

0

(ect , w) +

∫ T

0

(a(∇ec, ec),∇w) =

∫ T

0

(fec , w).

Thus, there exists a weak solution in the non-degenerate case,(4.177).

4.7 DEGENERATE CASE

As noted above, the degenerate case has been studied by others. Therefore, we will begin

by noting the results of these authors. After that, we will establish some regularity.

Near the beginning of this chapter, we put our equation into the form of (4.177) so that

we may apply the work done by Alt and Luckhaus [4] as well as work by Otto [105]. We will

use these works directly as well as Arbogast, Wheeler, and Zhang’s [7] interpretation of the

work by Alt and Luckhaus.

Alt and Luckhaus analyze the following PDE in their paper.

∂bj(u)

∂t
−∇ · (aj(b(u),∇u)) = f j(b(u)). (4.200)

Alt and Luckhaus identify the solution space for this type of equation as:∫ T

0

∫
Ω

(Ψ(b(u)) + |∇u|r <∞

where

Ψ(z) := sup
σ∈R

∫ σ

0

(z − b(s))ds.
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In our case, b(ec) is just the identity function. So,

Ψ(b(ec)) = Ψ(ec) =
e2c
2
.

Therefore, our growth condition, (4.180), may be written as:

|a(∇ec, ec)|2 + |fec(ec)|2 ≤ C(1 + |∇ec1 |2 +Ψ(ec)). (4.201)

4.7.1 Degenerate Case - Regularity

Therefore, based on the conditions listed above and the assumption that for (4.174) we have

fec ∈ L2{(0, T ];L2(Ω)}, then according to Arbogast, Wheeler, and Zhang [7], the epithelial

PDE has a solution with:

ec ∈ L∞{(0, T ];L1(Ω)}
∂ec
∂t

∈ L2{(0, T ];H−1(Ω)} (4.202)

z ∈ L2{(0, T ]; (L2(Ω))
3}. (4.203)

Now, we will attempt to establish higher regularity as well as regularity for the mixed weak

form.
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4.7.2 Degenerate Case - Regularity of the Weak Form

Note that (4.202) and (4.203) give the minimum regularity for the degenerate parabolic

equation. It is normal to assume more regularity than what is given in (4.202). In fact,

Arbogast, Wheeler, and Zhang [7] themselves as well as well as Woodward and Dawson [141]

assume more regularity than (4.202). Here, the following regularity will be assumed:

ec ∈ L2{(0, T ];L2(Ω)}
∂ec
∂t

∈ L2{(0, T ];L2(Ω)}. (4.204)

Using this as a starting point, more regularity will be developed here.

To begin with, we may use (4.176) along with (4.204) to get:

P (ec) ∈ L2(0, T ;L2(Ω)). (4.205)

Weak Mixed Form

Recalling (4.174)

∂ec
∂t

−∇ · (α(b)∇P (ec)) = fec(ec, b, na). (4.206)

Set α−1z = ∇P (ec). Then the weak form becomes

(ect , w) + (∇ · z, w) = (fec(ec, b, na), w) (4.207)

(α−1z, v) = (−∇P (ec), v). (4.208)

In the weak system (4.207), (4.208), integrate the second equation (4.208) by parts then set

w = P (ec) and v = z:

(ect , P (ec)) + (∇ · z, P (ec)) = (fec , P (ec))

(α−1z, z) = (P (ec),∇ · z).

Combining these and applying the Cauchy-Schwarz inequality (theorem 4.7) we get,

C∥z∥2 ≤ ∥fec∥∥P (ec)∥+ ∥ect∥∥P (ec)∥.
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Apply Cauchy’s inequality (theorem 4.6):

∥z∥2 ≤ C

(
∥fec∥2 + ∥P (ec)∥2 + ∥ect∥2

)
. (4.209)

Integrate (4.209) then using (4.176), (4.178), (4.204), and (4.205)∫ t

0

∥z∥2 = C

∫ t

0

(
∥fec∥2 +

∫ t

0

∥P (ec)∥2 +
∫ t

0

∥ect∥2
)

≤ C

∫ t

0

(
∥fec∥2 +

∫ t

0

∥ec∥2 +
∫ t

0

∥ect∥2
)

we can say

z ∈ L2(0, T ; (L2(Ω))3). (4.210)

In (4.207), set w = ∇ · z

(ect ,∇ · z) + (∇ · z,∇ · z) = (fec ,∇ · z).

Apply the Cauchy-Schwarz inequality (theorem 4.7)

∥∇ · z∥2 ≤ ∥fec∥∥∇ · z∥+ ∥ect∥∥∇ · z∥.

Apply Cauchy’s inequality (theorem 4.6) and hide terms:

∥∇ · z∥2 ≤ C

(
∥fec∥2 + ∥ect∥2

)
. (4.211)

Integrate (4.211) ∫ t

0

∥∇ · z∥2 = C

∫ t

0

(
∥fec∥2 + ∥ect∥2

)
(4.212)

using (4.204), we have

∇ · z ∈ L2(0, T ;L2(Ω)). (4.213)

In (4.207), set w = ec

(ect , ec) + (∇ · z, ec) = (fec , ec).
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Cauchy-Schwarz inequality (theorem 4.7),

1

2

d

dt
∥ec∥2 = ∥fec∥∥ec∥+ ∥∇ · z∥∥ec∥.

Cauchy’s inequality (theorem 4.6):

d

dt
∥ec∥2 = C∥fec∥2 + C∥ec∥2 + C∥∇ · z∥2.

Integrate from 0 to T :

∥ec∥2(t) = C

∫ T

0

∥fec∥2 + C

∫ T

0

∥ec∥2 + C

∫ T

0

∥∇ · z∥2 + ∥ec∥2(0).

apply the Gronwall Inequality, theorem 4.8,

sup
0≤t≤T

∥ec∥2(t) = C

(∫ T

0

∥fec∥2 +
∫ T

0

∥∇ · z∥2 + ∥ec∥2(0)

)
. (4.214)

Using (4.178) and (4.213) in (4.214) gives

ec ∈ L∞(0, T ;L2(Ω)). (4.215)
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4.8 ANALYSIS OF PDES IN PART III

In this section, we will consider the ZO1 equation. Recall,

∂ZO1

∂t
=
(
kZec

ec + kZect

∂ec
∂t

)
ZO1max(1− ZO1/zec)− kZNNO · ZO1

where

zec = (1− ϵzec)ZO1max + ϵzec

(
ZO1max

ec,max

)
ec

We will show that this equation has a solution by explicitly finding the solution.

In order to simplify the notation we will replace all of the parameters with their actual

values:

ZO1t +

(
.03ec + 2ect
.95 + .05ec

+ .75NO

)
ZO1 = .03ec + 2ect

We will solve this using an integrating factor

I∗ = e
∫ t
0 ((.03ec+2ect )/(.95+.05ec) +.75NO) dt = e(1/.05)(.03t+2 ln(.95+.05ec)−.03

∫ t
0 .95/(.95+.05ec)+

∫ t
0 .75NO)

If we apply I∗ to our differential equation, we get:

I∗ZO1 =

∫ t

0

I∗(.03ec + 2ect) dt+ IC

ZO1 =

∫ t

0
I∗(.03ec + 2ect) dt+ IC

I∗
(4.216)

∥ZO1∥∞ ≤

∥∥∥∥∥
∫ t

0
I∗(.03ec + 2ect) dt

I∗

∥∥∥∥∥
∞

+

∥∥∥∥∥ICI∗
∥∥∥∥∥
∞

. (4.217)

We proved in PDE Analysis Part I that NO ∈ W 1,2([0, T ];L2(Ω)) thus I∗ is just a number.

Therefore, (4.216) implies that the ZO equation has a solution and (4.217) indicates that

ZO ∈ L∞(Ω). In the appendix it is demonstrated that the right hand side functions of

each of the equations in Part I are Lipschitz continuous. Lipschitz continuity is a necessary

condition for the numerical analysis that will done later in the thesis.
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Equation Regularity Equation Regularity

Bacteria b ∈ L2(0, T ;H3(Ω)) Nitric NO ∈ L2(0, T ;H3(Ω))

Oxide

Macrophage m ∈ L2(0, T ;H3(Ω)) Tight ZO1 ∈ C([0, T ];H2(Ω))

Junction

Activated ma ∈ C([0, T ];H2(Ω)) Activated na ∈ C([0, T ];H2(Ω))

Macrophage Neutrophils

Cytokine c ∈ L2(0, T ;H3(Ω)) Damage d ∈ L2(0, T ;H3(Ω))

ec ∈ L∞(0, T ;L2(Ω))

Anti-Infl. ca ∈ L2(0, T ;H3(Ω)) Epithelial ect ∈ L2(0, T ;H−1(Ω))

Cytokine z ∈ L2(0, T ; ((L2(Ω))3)

∇ · z ∈ L2(0, T ;L2(Ω))

Table 2: Regularity of the weak solution of the NEC PDE system.
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5.0 FINITE ELEMENT ANALYSIS (CONVERGENCE ANALYSIS FOR

THE FULLY COUPLED SYSTEM OF PDES)

The purpose of this chapter is to prove that the numerical approximation of the PDE system

using the mixed finite element method will converge to the true solution of the system. For

each of the ten variables in our NEC PDE system, it will be demonstrated that the numerical

error v − vh is bounded, in some norm, by some power of h multiplied by a constant not

dependent upon h. This will then show that as h gets smaller, the numerical error gets

smaller and convergence to the true solution may be achieved.

Much of the analysis in this chapter, particularly the analysis for the eight equations in

Part I of the PDE system, is new. In particular, no mixed finite element method exists for

the particular type of coupled equations, represented by the system (5.6), (5.7) below. There

does exist a mixed finite element method for a similar equation:

∂u1
∂t

−∇ · (u1u2 −D∇u1) = f1(u1) (5.1)

(see Dawson[30] and Vassilev and Yotov[133]). However, in (5.1) u2 is the Darcy velocity,

a known quantity, which makes the analysis somewhat simpler than what we will have

in our system, (5.6), (5.7) below. On the other hand, Epshteyn and Kurganov [37] do

a finite element analysis on a coupled system very similar to our system. However, they

use a discontinuous Galerkin finite element method, a method somewhat different from the

mixed finite element method. Furthermore, the solution in this last paper was found in an

unbounded space, we will find the solution in a bounded space. In any case, our analysis

will utilize some ideas from each of the above mentioned papers.

A mixed finite element method for an equation very similar to the equation in Part II

has been done in Arbogast, Wheeler, and Zhang [7]. Therefore, the analysis of the Part II
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equation will not add anything new to the general knowledge. Yet, in order that the analysis

for all of the equations in the NEC PDE system are included in this thesis, the analysis for

the Part II equation will be done here. Of course, our analysis will closely follow Arbogast,

Wheeler, and Zhang.

The Part III equation, although unique, does not pose any significant challenges. The

analysis of the Part III equation is presented below.

The numerical analysis on the NEC PDE system will be done in three parts, according

to the natural grouping of the types of PDEs. This grouping is identical to the grouping

listed in the PDE analysis chapter. For convenience, that listing is repeated here:

Part I. Part I will consist of eight equations: the equations for bacteria, macrophages,

activated macrophages, cytokines, anti-inflammatory cytokines, nitric oxide, activated neu-

trophils, and damage.

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb

∂m

∂t
= km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm)

∂ma

∂t
− ∇ · (Dma∇ma − γmacma∇c− γmabR(ca)ma∇b)

= −kmama +R(ca)(kmbbm+ kmccm+ kmddm)

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm)

∂ca
∂t

− ∇ ·Dca∇ca = −kcaca + sca + kcaP
Q

1 +Q

∂NO

∂t
− ∇ ·DNO∇NO = −kNONO + kNOma

mq1
a

1 + (ma/ma)q1

+kNOna

nq1
a

1 + (na/na)q1
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∂na

∂t
− ∇ · (Dna∇na − γnacna∇c) = −knana +R(ca)(knccn+ knddn)

∂d

∂t
− ∇ ·Dd∇d = −kdd+ kdc

T q2

xq2dc + T q2

where

R(ca) =
1

1 + kRca(ca/ca)
2

T = R(ca)c

Q = R(ca)(kcamanana +ma + kcamadd).

Part II. Part II will consist of the epithelial equation:

∂ec
∂t

+∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka(na, c, b)ec

where

ka(na, c, b) =
eca(na, c, b)

q0

eca(na, c, b)q0 + [eca(na,max, cmax, bmax)− eca(na, c, b)]q0

eca(na, c, b) = na + kecnacc+ kecnabb

β(ec) =
e2c

e2c + (ec,max − ec)2

u(ec, b) = −α(b)∇ec α(b) =
(bmax − b)q

(bmax − b)q + bq
.

Part III. Part III consists of the tight junction protein equation:

∂ZO1

∂t
=
(
kZec

ec + kZect

∂ec
∂t

)
ZO1max(1− ZO1/zec)− kZNNO · ZO1

where zec = (1− ϵzec)ZO1max + ϵzec

(
ZO1max

ec,max

)
ec.

Note that the tensor D in each of the equations in Part I depends upon the equation in

Part II. In the analysis of this chapter, this dependence will be neglected. The equations

in Part I do not depend at all on the equation in Part III. Therefore, the error bounds for
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the aforementioned eight equations in Part I may be found independently of the equations

in Part II and Part III. These error bounds are derived in Analysis of PDEs in Part I.

Notice that the equation in Part II (the epithelial equation) depends on the equations

from part I but does not depend on the equation in Part III (the tight junction protein

equation). Therefore, error bounds found in part I may be used to bound the error for the

epithelial cells. This study is done in Analysis of PDEs in Part II.

The equation in Part III (the tight junction protein equation) depends upon the equa-

tions in Part I and Part II. Therefore, error bounds found in part I and Part II may be used

to bound the error for the tight junction protein. This study is done in Analysis of PDEs

in Part III.

Strategy for demonstrating convergence. In order to prove convergence of the nu-

merical approximation to the true solution for the NEC PDE system, it will be necessary

to determine the convergence rates in a specific order. First, the convergence rates for the

PDEs in Part I of the PDE system will be determined. It is most logical to analyze the

Part I equations first because they are not dependent upon the equations in Part II and

III. The convergence rate of the Part I equations will be shown to be in some power of h

in terms of the L2 norm for each of the variables in Part I. Next, the equation in Part II,

the epithelial equation, will be analyzed. This equation is dependent upon three equations

from Part I. Namely, the bacteria, activated neutrophil and cytokine equations. Therefore,

the error bounds found in Part I for these three equations will be used to find the error

bound for the numerical approximation of the epithelial equation of Part II. However, due

to the fact that the epithelial equation is degenerate parabolic, the numerical error will be

bounded in terms of the H−1 norm. Existing tools do not allow us to bound this error in

any stronger norm. Finally, the equation in Part III, the ZO1 equation, will be analyzed.

The ZO1 equation is dependent upon an equation from Part I, the NO equation, and the

epithelial equation from Part II. Since the numerical error for epithelial equation can only

be bounded in the H−1 norm, it will not be possible to bound the ZO1 error in the L2 norm.

Instead, a bound for the ZO1 error will be found in the H−1 norm. Thus, convergence for

the fully coupled system will be demonstrated in this chapter.
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5.1 CONDITIONS AND NOTATION FOR FEM SECTION.

Let Ω be a bounded domain in Rd where d = 1, 2 or 3. Let (·, ·) denote the L2(Ω) inner

product and ∥ · ∥ the L2(Ω) norm. Define the spaces

W = L2(Ω) V = H(div; Ω) V 0 = V ∩ {v : v · n = 0 on Γ}.

Let τh be a quasiuniform family of finite element partitions of Ω. Such that for E ∈ τh,

hE = max
x,y∈E

∥x− y∥Rd h = max
hE∈τh

hE

and there exists a Kτh such that Kτh ≥ hE
ρE

∀E ∈ τh

where ρE is the diameter of the largest circle (in 3-D, the largest sphere) that will fit inside

the element E.

Let Wh, Vh denote mixed finite element approximating subspaces of W and V , respectively,

e.g., the Raviart-Thomas-Nedelec [98], [114] finite element spaces. Let V 0
h = Vh ∩ V 0. Fur-

thermore, we have:

∇ · Vh = Wh and ∇hWh ⊂ (Wh)
n.

(Where ∇h is the element-wise gradient.) The functions u1 and u2 are approximated by

u1,h ∈ Wh and u2,h ∈ Wh, respectively. On any element E ∈ τh, w ∈ Wh is a polynomial,

discontinuous across the element boundaries.

In this paper, it will be necessary to utilize two different definitions for the normals to

the element boundaries. On each edge, e, in the finite element mesh a fixed normal vector,

ne, is assigned. Since this normal is fixed, it will be the same no matter which element is

under consideration. Then for any point, x, on each edge, the functions w+(x) and w−(x)

will be defined as follows

w+(x) = lim
c→0+

(w(x+ cne)) w−(x) = lim
c→0−

(w(x+ cne))
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66

-

w−

w− w−

ne1 ne2

ne3

e1 e2
e3

w+ w+

w+

The ’jump’ and ’average’ terms will be defined in this way:

[w] = w+ − w− w =
1

2
(w+ + w−) in Ω.

On the boundary, Γ, we will assign ne so that it points outward. Thus,

[w] = w− w = w− on Γ.

In this paper, we also define an outward normal nE on each element boundary. When con-

sidering any particular element, E, this normal will always point outward. Therefore, its

direction will be different depending upon the element under consideration.

We must define the following projections:

1) The ”π” or Raviart-Thomas projection. There exists a projection operator Πh :

(H1(Ω))d → Vh. If q ∈ (H1(Ω))d then Πhq ∈ Vh and

(∇ · (Πhq− q), wh) = 0 ∀wh ∈ Wh. (5.2)

2) The L2 projection. There exists a projection operator Qh : L2(Ω) →Wh. If u ∈ L2(Ω)

then Qhu ∈ Wh and

(Qhu− u,wh) = 0 ∀wh ∈ Wh. (5.3)

3) The Π0 projection. If u ∈ L2(Ω) then Π0u is the projection of u into piecewise constants

and

(Π0u− u, 1) = 0. (5.4)
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4) Weighted projection. (The weighted projected will be used in the Part II equations.

)We define a weighted projection operator Ph : (L2(Ω))
d → Vh. If v ∈ (L2(Ω))d then

Phv ∈ Vh and

(a(·, t)(Phv − v), vh) = 0 ∀vh ∈ Vh. (5.5)

(a(·, t) will be defined Part II).

Special Notation. In the following sections, we will use θx = x−Πhx and ψx = xh −Πhx.

su1 , su2 , sz1 , sz2 are the regularities of u1, u2, z1, z2 respectively in Hs(Ω).

su1,∞, su2,∞, sz1,∞, sz2,∞ are the regularities of u1, u2, z1, z2 respectively in W s
∞(Ω).

ru1 , ru2 , rz1 , rz2 are the polynomial degrees of u1, u2, z1, z2 respectively.

Approximation Results: In this paper, the following approximation results will be used,

∥u1 −Qhu1∥m ≤ C
hµu1−m

r
su1−m
u1

∥u∥su1 ∥∇ · (z1 − Πhz1)∥m ≤ C
hµz1−m

r
sz1−m
z1

∥∇ · z1∥sz1

∥u1 −Qhu1∥m,∞ ≤ C
hµu1,∞−m

r
su1−m
u1

∥u∥su1 ,∞

∥u2 −Qhu2∥m ≤ C
hµu2−m

r
su2−m
u2

∥u∥su2 ∥∇ · (z2 − Πhz2)∥m ≤ C
hµz2−m

r
sz2−m
z2

∥∇ · z2∥sz2

∥u2 −Qhu2∥m,∞ ≤ C
hµu2,∞−m

r
su2−m
u2

∥u∥su2 ,∞

for 0 ≤ m ≤ µα.

In the above we have µα = min(rα + 1, sα) and µα,∞ = min(rα + 1, sα,∞)

where α = u1, u2, z1, or z2 as appropriate.

Inverse Inequalities:

For any polynomial, w, we have

∥w∥∞ ≤ Ch−1∥w∥ ∥w∥H1(E) ≤ Ch−1∥w∥E ∥w∥e ≤ Ch−1/2∥w∥E.
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Trace Inequalities:

∥w∥e ≤ Ch−1/2(∥w∥E + h∥∇w∥E) ∥∇w · n∥e ≤ Ch−1/2(∥∇w∥E + h∥∇2w∥E).
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5.2 FINITE ELEMENT ANALYSIS OF THE PDES IN PART I

We may properly analyze the equations from Part I by considering the following coupled

partial differential equations:

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2) (5.6)

∂u2
∂t

−∇ · (D2∇u2) = f2(u1, u2) (x, t) ∈ Ω× (0, T ] (5.7)

∇u1 · n = 0 and ∇u2 · n = 0 on Γ, (5.8)

where T > 0; D1 and D2 are positive definite tensors; f1 and f2 are nonlinear functions of

u1 and u2 but f1 and f2 are each Lipschitz continuous in both u1 and u2, i.e., there exist

constants L11,L12,L21, and L22 such that

|f1(x1, y)− f1(x2, y)| ≤ L11|y||x1 − x2| (5.9)

|f1(x, y1)− f1(x, y2)| ≤ L12|x||y1 − y2| (5.10)

|f2(x1, y)− f2(x2, y)| ≤ L21|y||x1 − x2| (5.11)

|f2(x, y1)− f2(x, y2)| ≤ L22|x||y1 − y2|. (5.12)

(Recall that in chapter 4, it was proven that conditions (5.9) through (5.12) hold for each

and every one of the equations in Part I.)

The initial condition is given by:

u1(x, 0) = u01(x) and u2(x, 0) = u02(x) in Ω.

These initial conditions will often be represented by u01 and u02, respectively. In a previous

chapter, it was shown that a unique solution u1, u2 exists.

Mixed Method Formulation

Considering our system (5.6), (5.7), and (5.8) we set

z1 = −D1∇u1 and z2 = −D2∇u2 (5.13)
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So, D−1
1 z1 = −∇u1 and D−1

2 z2 = −∇u2. (5.14)

Then the weak formulation of (5.6), (5.7), and (5.8) may be stated as :

Find u1, u2 ∈ W and z1, z2 ∈ V 0 such that ∀w ∈ W ,

(u1t , w)− (∇ · (u1D−1
2 z2), w) + (∇ · z1, w) = (f1, w) (5.15)

(u2t , w) + (∇ · z2, w) = (f2, w) (5.16)

and ∀v ∈ V 0,

(D−1
1 z1, v) = −(∇u1, v) ⇒ (D−1

1 z1, v) = (u1,∇ · v)− ⟨u1, v · n⟩Γ (5.17)

(D−1
2 z2, v) = −(∇u2, v) ⇒ (D−1

2 z2, v) = (u2,∇ · v)− ⟨u2, v · n⟩Γ (5.18)

The last term in each of (5.17) and (5.18) is zero by the definition of V 0.

The second term on the left hand side of (5.15) may be written as

−(∇ · (u1D−1
2 z2), w) = −

∑
E

(∇ · (u1D−1
2 z2), w)E.

Integration by parts on this term gives,

−(∇ · (u1D−1
2 z2), w) =

∑
E

(u1D
−1
2 z2,∇w)E +

∑
e

((u1D
−1
2 z2) · ne, [w])e (5.19)

If we substitute (5.19) into (5.15), we get ∀w ∈ W and ∀v ∈ V

(u1t , w) +
∑
E

(u1D
−1
2 z2,∇w)E +

∑
e

((u1D
−1
2 z2) · ne, [w])e

+(∇ · z1, w) = (f1, w) (5.20)

(u2t , w) + (∇ · z2, w) = (f2, w) (5.21)

(D−1
1 z1, v) = (u1,∇ · v) (5.22)

(D−1
2 z2, v) = (u2,∇ · v). (5.23)

Discrete Formulation
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For the discrete formulation, we replace u1, u2 by u1,h, u2,h ∈ Wh, respectively and replace

z1, z2 by z1,h, z2,h ∈ V 0
h , respectively, with the exception that on each edge e, replace u1 and

u2 by their respective ”upwind” values:

uu1,h =

{
u−1,h if D−1

2 z2,h · ne < 0

u+1,h if D−1
2 z2,h · ne ≥ 0.

At t = 0 we define u1h(x, 0) := u01h ∈ Wh and u2h(x, 0) := u02h ∈ Wh by

(u01h − u01, w) = 0 and (u02h − u02, w) = 0 ∀w ∈ Wh. (5.24)

This results in the following discrete formulation. Find u1,h, u2,h ∈ Wh and z1,h, z2,h ∈ Vh

such that for all w ∈ Wh and for all v ∈ Vh,

(u1,ht
, w) +

∑
E

(D−1
2 z2,hu1,h,∇w)E +

∑
e

((D−1
2 z2,h) · ne, u

up
1,h[w])e

+(∇ · z1,h, w) = (f1(u1,h, u2,h), w) (5.25)

(u2,ht
, w) + (∇ · z2,h, w) = (f2(u1,h, u2,h), w) (5.26)

(D−1
1 z1,h, v) = (u1,h,∇ · v) (5.27)

(D−1
2 z2,h, v) = (u2,h,∇ · v). (5.28)

Stability and Error Analysis. In order to do the stability and error analysis for the mixed

finite element method we will use an approach that is similar to Epshteyn and Kurganov

[37]. This approach involves creating a set, a mapping, and then finding a fixed point of

the mapping within the set. However, Epshteyn and Kurganov used the approach on a

discontinuous Galerkin application. We will be using this approach on the mixed method.

Therefore, the details in our analysis will be completely different from the details in the

Epshteyn and Kurganov paper. Furthermore, Epshteyn and Kurganov were satisfied finding

their solution in an unbounded set. We will prove that our solution exists in a bounded set,

a somewhat more lengthy process.
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Define the following space, S, (notice that S is the space of functions of a given error

estimate):

S =

{
(ϕu1 , ϕu2 , ϕz1 , ϕz2) ∈ H1([0, T ]) ∩ L∞([0, T ]) ∩

Wu1
h ×Wu2

h ×Wz1
h ×Wz2

h , (5.29)

such that there exists constants Cu1 , Cu2 , Cz1 , Cz2 , and

sup
t∈[0,T ]

∥ϕu1 −Qhu1∥2 ≤ Cu1β1,

sup
t∈[0,T ]

∥ϕu2 −Qhu2∥2 ≤ Cu2β2,∫ T

0

∥ϕz1 − Πhz1∥2 ≤ Cz1β3,

sup
t∈[0,T ]

∥ϕz2 − Πhz2∥2 +
∫ T

0

∥ϕz2 − Πhz2∥2 +
∫ T

0

∥∇ · (ϕz2 − Πhz2)∥2 ≤ Cz2β4

}
where

β1 = β2 = β3 = β4 = h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2

For T ≤ t̃, the value t̃ is defined in the lines immediately after (5.77) below.

Wu1
h ,Wu2

h ,Wz1
h ,W

z2
h are the respective Raviart-Thomas spaces of piecewise polynomials of

degrees ru1 , ru2 , rz1 , rz2 , respectively. Cu1 , Cu2 , Cz1 , Cz2 are positive constants independent of

h and the polynomial degrees ru1 , ru2 , rz1 , rz2 .

Note that the constants, Cu1 , Cu2 , Cz1 , Cz2 , are determined below.

Definition. Define the norm

∥(ϕu1 , ϕu2 , ϕz1 , ϕz2)∥S = sup
t∈[0,T ]

∥ϕu1∥+ sup
t∈[0,T ]

∥ϕu2∥+

(∫ t

0

∥ϕz1∥

)1/2

+ sup
t∈[0,T ]

∥ϕz2∥+

(∫ t

0

∥ϕz2∥

)1/2

+

(∫ t

0

∥∇ · ϕz2∥

)1/2

(5.30)
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Theorem 5.1. For any (ϕu1 , ϕu2 , ϕz1 , ϕz2) ∈ S there exist positive constantsMu1 ,Mu2 ,Mz1 ,Mz2

independent of h, ru1 , ru2 , rz1 , rz2 such that

sup
t∈[0,T ]

∥ϕu1∥∞ ≤Mu1 sup
t∈[0,T ]

∥ϕu2∥∞ ≤Mu2 sup
t∈[0,T ]

∥ϕz1∥∞ ≤Mz1 sup
t∈[0,T ]

∥ϕz2∥∞ ≤Mz2 .

Proof. See Epshteyn and Kurganov [37]), proof of Lemma 5.1.

Linearized System:

In this section, the linearized system will be considered. Define A on S as follows:

∀(ϕu1 , ϕz1 , ϕu2 , ϕz2) ∈ S A(ϕu1 , ϕz1 , ϕu2 , ϕz2) = (ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L )

the initial conditions are (ϕu1,0, ϕz1,0, ϕu2,0, ϕz2,0) = (Qhu
0
1,Πhz

0
1, Qhu

0
2,Πhz

0
2).

(ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ) is the solution to the linearized system:

((ϕu1
L )t, w) +

∑
E

(D−1
2 ϕz2ϕu1

L ,∇w)E +
∑
e

((D−1
2 ϕz2 · ne, ϕ

u1
Lup

[w])e

+(∇ · ϕz1
L , w) = (f1(ϕ

u1
L , ϕ

u2), w) (5.31)

(D−1
1 ϕz1

L , v) = (ϕu1
L ,∇ · v) (5.32)

((ϕu2
L )t, w) + (∇ · ϕz2

L , w) = (f2(ϕ
u1 , ϕu2

L ), w) (5.33)

(D−1
2 ϕz2

L , v) = (ϕu2
L ,∇ · v) (5.34)

where ϕu2 , ϕz2 ∈ S (these were inserted to linearize the system).

Theorem 5.2. For each (ϕu1 , ϕz1 , ϕu2 , ϕz2) ∈ S there exists a unique

(ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ) = A(ϕu1 , ϕz1 , ϕu2 , ϕz2).
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Proof. The proof follows from the analysis in section 4.3.1.

Before moving on to the next theorem, the following notation will be introduced:

ξu1 = u1 −Qhu1 τu1 = ϕu1
L −Qhu1

ξu2 = u2 −Qhu2 τu2 = ϕu2
L −Qhu2

ξz1 = z1 − Πhz1 τ z1 = ϕz1
L − Πhz1

ξz2 = z2 − Πhz2 τ z2 = ϕz2
L − Πhz2.

Theorem 5.3. For any (ϕu1 , ϕz1 , ϕu2 , ϕz2) ∈ S we have A(ϕu1 , ϕz1 , ϕu2 , ϕz2) ∈ S.

(That is, A : S → S.)

Proof. Let (ϕu1 , ϕz1 , ϕu2 , ϕz2) ∈ S then, as we have proven there exists a unique

(ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ) = A(ϕu1 , ϕz1 , ϕu2 , ϕz2). Now, it will be proven that this unique

solution (ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ) is, in fact, in S.

Note that the exact solution satisfies:

(u1t , w) +
∑
E

(D−1
2 z2u1,∇w)E +

∑
e

((D−1
2 z2) · ne, u

up
1 [w])e

+(∇ · z1, w) = (f1(u1, u2), w) (5.35)

(D−1
1 z1, v)− (u1,∇ · v) = 0 (5.36)

(u2t , w) + (∇ · z2, w) = (f2(u1, u2), w) (5.37)

(D−1
2 z2, v)− (u2,∇ · v) = 0 (5.38)
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Add and subtract Qhu1,Qhu2,Πhz1 or Πhz2 in the appropriate terms of (5.35),(5.36), (5.37)

and (5.38) to get:

(u1t −Qhu1t +Qhu1t , w) +
∑
E

(D−1
2 z2(u1 −Qhu1 +Qhu1),∇w)E

+
∑
e

((D−1
2 z2) · ne, (u

up
1 −Qhu

up
1 +Qhu

up
1 )[w])e + (∇ · (z1 − Πhz1 +Πhz1), w)

−(f1(u1, u2)− f1(Qhu1, u2) + f1(Qhu1, u2), w) = 0

(D−1
1 (z1 − Πhz1 +Πhz1), v)− (u1 −Qhu1 +Qhu1,∇ · v) = 0

(u2t −Qhu2t +Qhu2t , w) + (∇ · (z2 − Πhz2 +Πhz2), w)

−(f2(u1, u2)− f2(u1, Qhu2) + f2(u1, Qhu2), w) = 0

(D−1
2 (z2 − Πhz2 +Πhz2), v)− (u2 −Qhu2 +Qhu2,∇ · v) = 0

Use ξu1 = u1 −Qhu1,etc.

(Qhu1t , w) +
∑
E

(D−1
2 z2Qhu1,∇w)E

+
∑
e

(D−1
2 z2 · ne, Qhu

up
1 [w])e + (∇ · Πhz1, w)− (f1(Qhu1, u2), w) =

−((ξu1)t, w))−
∑
E

(D−1
2 z2ξ

u1 ,∇w)E −
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[w])e

−(∇ · ξz1 , w) + (f1(u1, u2)− f1(Qhu1, u2), w) (5.39)

(D−1
1 Πhz1, v)− (Qhu1,∇ · v) = −(D−1

1 ξz1 , v) + (ξu1 ,∇ · v) (5.40)

(Qhu2t , w) + (∇ · Πhz2, w)− (f2(u1, Qhu2), w) =

−((ξu2)t, w))− (∇ · ξz2 , w) + (f2(u1, u2)− f2(u1, Qhu2), w) (5.41)

(D−1
2 Πhz2, v)− (Qhu2,∇ · v) = −(D−1

2 ξz2 , v) + (ξu2 ,∇ · v) (5.42)

Subtract (5.39) from (5.31) and (5.40) from (5.32) to get:

((ϕu1
L )t −Qhu1t , w) +

∑
E

(D−1
2 (ϕz2ϕu1

L − z2Qhu1),∇w)E

+
∑
e

(D−1
2 ϕz2 · neϕ

u1
Lup
, [w])e −

∑
e

(D−1
2 z2 · neQhu

up
1 , [w])e
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+(∇ · (ϕz1
L − Πhz1), w)− (f1(ϕ

u1
L , ϕ

u2)− f1(Qhu1, u2), w) =

((ξu1)t.w)) +
∑
E

(D−1
2 z2ξ

u1 ,∇w)E +
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[w])e

+(∇ · ξz1 , w)− (f1(u1, u2)− f1(Qhu1, u2), w)

(D−1
1 (ϕz1

L − Πhz1), v)− (ϕu1
L −Qhu1,∇ · v) = (D−1

1 ξz1 , v)− (ξu1 ,∇ · v)

And Subtract (5.41) from (5.33) and (5.42) from (5.34) to get:

((ϕu2
L )t −Qhu2t , w) + (∇ · (ϕz2

L − Πhz2), w)− (f2(ϕ
u1 , ϕu2

L )− f2(u1, Qhu2), w) =

((ξu2)t, w)) + (∇ · ξz2 , w)− (f2(u1, u2)− f2(u1, Qhu2), w) (5.43)

(D−1
2 (ϕz2

L − Πhz2), v)− (ϕu2
L −Qhu2,∇ · v) = (D−1

2 ξz2 , v)− (ξu2 ,∇ · v) (5.44)

Add and subtract the appropriate terms:

((ϕu1
L )t −Qhu1t , w) +

∑
E

(D−1
2 ϕz2τu1 ,∇w)E +

∑
e

(D−1
2 ϕz2 · neτ

u1
up , [w])e

+
∑
E

(D−1
2 Qhu1(ϕ

z2 − Πhz2),∇w)E +
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 [w])e

−
∑
E

(D−1
2 Qhu1ξ

z2 ,∇w)E −
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 [w])e

+(∇ · (ϕz1
L − Πhz1), w)− (f1(ϕ

u1
L , ϕ

u2), w) + (f1(Qhu1, ϕ
u2), w)

−(f1(Qhu1, ϕ
u2), w) + (f1(Qhu1, u2), w) =∑

E

(D−1
2 z2ξ

u1 ,∇w)E +
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[w])e

−(f1(u1, u2)− f1(Qhu1, u2), w) (5.45)

(D−1
1 (ϕz1

L − Πhz1), v)− (ϕu1
L −Qhu1,∇ · v) = (D−1

1 ξz1 , v) (5.46)

((ϕu2
L )t −Qhu2t , w) + (∇ · (ϕz2

L − Πhz2), w)− (f2(ϕ
u1 , ϕu2

L ), w) + (f2(ϕ
u1 , Qhu2), w)

−(f2(ϕ
u1 , Qhu2), w) + (f2(u1, Qhu2), w) =

−(f2(u1, u2)− f2(u1, Qhu2), w) (5.47)
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(D−1
2 (ϕz2

L − Πhz2), v)− (ϕu2
L −Qhu2,∇ · v) = (D−1

2 ξz2 , v) (5.48)

Set w = τu1 in (5.45), v = τ z1 in (5.46), w = τu2 in (5.47), and v = τ z2 in (5.48)to get:

((ϕu1
L )t −Qhu1t , τ

u1) +
∑
E

(D−1
2 ϕz2τu1 ,∇τu1)E +

∑
e

(D−1
2 ϕz2 · neτ

u1
up , [τ

u1 ])e

+
∑
E

(D−1
2 Qhu1(ϕ

z2 − Πhz2),∇τu1)E +
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 [τu1 ])e

−
∑
E

(D−1
2 Qhu1ξ

z2 ,∇τu1)E −
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 [τu1 ])e

+(∇ · τ z1 , τu1)− (f1(ϕ
u1
L , ϕ

u2), τu1) + (f1(Qhu1, ϕ
u2), τu1)

−(f1(Qhu1, ϕ
u2), τu1) + (f1(Qhu1, u2), τ

u1) =∑
E

(D−1
2 z2ξ

u1 ,∇τu1)E +
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[τ

u1 ])e

−(f1(u1, u2)− f1(Qhu1, u2), τ
u1) (5.49)

(τu1 ,∇ · τ z1) = (D−1
1 (ϕz1

L − Πhz1), τ
z1)− (D−1

1 ξz1 , τ z1) (5.50)

((ϕu2
L )t −Qhu2t , τ

u2) + (∇ · (ϕz2
L − Πhz2), τ

u2)− (f2(ϕ
u1 , ϕu2

L ), τu2) + (f2(ϕ
u1 , Qhu2), τ

u2)

−(f2(ϕ
u1 , Qhu2), τ

u2) + (f2(u1, Qhu2), τ
u2) = −(f2(u1, u2)− f2(u1, Qhu2), τ

u2) (5.51)

(τu2 ,∇ · τ z2) = (D−1
2 (ϕz2

L − Πhz2), τ
z2)− (D−1

2 ξz2 , τ z2) (5.52)

Consider the third term on the left hand side of (5.49):

∑
e

(D−1
2 ϕz2 · neτ

u1
up , [τ

u1 ])e =
∑
e

(D−1
2 ϕz2 · ne(τ

u1
up − 1

2
τu1
down +

1

2
τu1
down), [τ

u1 ])e

=
1

2

∑
e

(D−1
2 ϕz2 · ne(τ

u1
up − τu1

down), [τ
u1 ])e +

1

2

∑
e

(D−1
2 ϕz2 · ne(τ

u1
up + τu1

down), [τ
u1 ])e

Note that whenever D−1
2 ϕz2 · ne ≥ 0

(τu1
up − τu1

down), [τ
u1 ] = (τu1,+ − τu1,−)(τu1,+ − τu1,−) = (τu1,+ − τu1,−)2 = [τu1 ]2
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So,

1

2

∑
e

(D−1
2 ϕz2 · ne(τ

u1
up − τu1

down), [τ
u1 ])e =

1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e

Note that whenever D−1
2 ϕz2 · ne < 0

(τu1
up − τu1

down), [τ
u1 ] = (τu1,− − τu1,+)(τu1,+ − τu1,−) = −(τu1,+ − τu1,−)2

So,

1

2

∑
e

(D−1
2 ϕz2 · ne(τ

u1
up − τu1

down), [τ
u1 ])e =

1

2

∑
e

(−|D−1
2 ϕz2 · ne|,−[τu1 ]2)e

=
1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e

Note that whenever D−1
2 ϕz2 · ne ≥ 0

(τu1
up + τu1

down), [τ
u1 ] = (τu1,+ + τu1,−)(τu1,+ − τu1,−) = (τu1,+)2 − (τu1,−)2

Note that whenever D−1
2 ϕz2 · ne < 0

(τu1
up + τu1

down), [τ
u1 ] = (τu1,− + τu1,+)(τu1,+ − τu1,−) = (τu1,+)2 − (τu1,−)2

So, we have

∑
e

(D−1
2 ϕz2 · neτ

u1
up , [τ

u1 ])e =
1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e

+
1

2

∑
e

(D−1
2 ϕz2 · ne, (τ

u1,+)2 − (τu1,−)2)e

Apply the divergence theorem:

∑
e

(D−1
2 ϕz2 · neτ

u1
up , [τ

u1 ])e =
1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e

−1

2

∑
E

(∇ ·D−1
2 ϕz2 , (τu1)2)−

∑
E

(D−1
2 ϕz2τu1 ,∇τu1) (5.53)

Substitute (5.50) and (5.53) into (5.49) and rearranging:

1

2

d

dt
∥τu1∥2 − 1

2

∑
E

(∇ ·D−1
2 ϕz2 , (τu1)2)E +

1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e
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+∥D−1/2
1 τ z1∥2 = −

∑
E

(D−1
2 Qhu1(ϕ

z2 − Πhz2),∇τu1)E

−
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 [τu1 ])e

+
∑
E

(D−1
2 Qhu1ξ

z2 ,∇τu1)E +
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 [τu1 ])e

+(f1(ϕ
u1
L , ϕ

u2), w)− (f1(Qhu1, ϕ
u2), w)

+(f1(Qhu1, ϕ
u2), w)− (f1(Qhu1, u2), w)

+
∑
E

(D−1
2 z2ξ

u1 ,∇τu1)E +
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[τ

u1 ])e

−(f1(u1, u2)− f1(Qhu1, u2), τ
u1) + (D−1

1 ξz1 , τ z1) (5.54)

Substitute (5.52) into (5.51):

1

2

d

dt
∥τu2∥2 + ∥D−1/2

2 τ z2∥2 = (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1 , Qhu2), τ

u2)

+(f2(ϕ
u1 , Qhu2)− f2(u1, Qhu2), τ

u2)

−(f2(u1, u2)− f2(u1, Qhu2), τ
u2) + (D−1

2 ξz2 , τ z2) (5.55)

Rearranging (5.54):

1

2

d

dt
∥τu1∥2 + 1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + ∥D−1/2

1 τ z1∥2

=
∑
E

(D−1
2 z2ξ

u1 ,∇τu1)E +
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[τ

u1 ])e

−
∑
E

(D−1
2 Qhu1(ϕ

z2 − Πhz2),∇τu1)E −
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 [τu1 ])e

+
∑
E

(D−1
2 Qhu1ξ

z2 ,∇τu1)E +
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 [τu1 ])e

+
1

2

∑
E

(∇ ·D−1
2 ϕz2 , (τu1)2)E + (f1(ϕ

u1
L , ϕ

u2)− f1(Qhu1, ϕ
u2), τu1)

+(f1(Qhu1, ϕ
u2)− f1(Qhu1, u2), τ

u1)− (f1(u1, u2)− f1(Qhu1, u2), τ
u1)

+(ϕu2τu1 , τu1)− (Qhu1(ϕ
u2 − u2), τ

u1)− (ξu1u2, τ
u1) + (D−1

1 ξz1 , τ z1) (5.56)

We will consider the third and fourth terms on the right hand side of (5.56). Integrating by

parts and rewriting terms, we get:

−
∑
E

(D−1
2 Qhu1(ϕ

z2 − Πhz2),∇τu1)E −
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 [τu1 ])e
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=
∑
E

((∇ ·D−1
2 (ϕz2 − Πhz2))Qhu1, τ

u1)E +
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ∇Qhu1, τ

u1)E

+
∑
E

((D−1
2 (ϕz2 − Πhz2)) · neQhu

+
1 , τ

u1,+)E −
∑
E

((D−1
2 (ϕz2 − Πhz2)) · neQhu

−
1 , τ

u1,−)E

−
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 τ

u1,+)e +
∑
e

(D−1
2 (ϕz2 − Πhz2) · ne, Qhu

up
1 τ

u1,−)e

=
∑
E

((∇ ·D−1
2 (ϕz2 − Πhz2))Qhu1, τ

u1)E +
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ∇Qhu1, τ

u1)E

+
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ne(Qhu

+
1 −Qhu

up
1 ), τu1,+)E

+
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ne(Qhu

up
1 −Qhu

−
1 ), τ

u1,−)E (5.57)

We will consider the fifth and sixth terms on the right hand side of (5.56). Integrating by

parts and rewriting terms, we get:

∑
E

(D−1
2 Qhu1ξ

z2 ,∇τu1)E +
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 [τu1 ])e

= −
∑
E

((∇ · (D−1
2 ξz2))Qhu1, τ

u1)E −
∑
E

((D−1
2 ξz2) · ∇Qhu1, τ

u1)E

−
∑
E

((D−1
2 ξz2) · neQhu

+
1 , τ

u1,+)E +
∑
E

((D−1
2 ξz2) · neQhu

−
1 , τ

u1,−)E

+
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 τ

u1,+)e −
∑
e

(D−1
2 ξz2 · ne, Qhu

up
1 τ

u1,−)e

= −
∑
E

((∇ · (D−1
2 ξz2))Qhu1, τ

u1)E −
∑
E

((D−1
2 ξz2) · ∇Qhu1, τ

u1)E

+
∑
E

((D−1
2 ξz2) · ne(Qhu

up
1 −Qhu

+
1 ), τ

u1,+)E

+
∑
E

((D−1
2 ξz2) · ne(Qhu

−
1 −Qhu

up
1 ), τu1,−)E (5.58)

Substitute (5.57) and (5.58) into (5.56),

1

2

d

dt
∥τu1∥2 + 1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + ∥D−1/2

1 τ z1∥2

=
∑
E

(D−1
2 z2ξ

u1 ,∇τu1)E +
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[τ

u1 ])e

+
∑
E

((∇ ·D−1
2 (ϕz2 − Πhz2))Qhu1, τ

u1)E

+
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ∇Qhu1, τ

u1)E
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+
∑
e

((D−1
2 (ϕz2 − Πhz2)) · ne(Qhu

+
1 −Qhu

up
1 ), τu1,+)e

+
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ne(Qhu

up
1 −Qhu

−
1 ), τ

u1,−)e

−
∑
E

((∇ ·D−1
2 ξz2)Qhu1, τ

u1)E −
∑
E

((D−1
2 ξz2) · ∇Qhu1, τ

u1)E

+
∑
e

((D−1
2 ξz2) · ne(Qhu

up
1 −Qhu

+
1 ), τ

u1,+)e

+
∑
e

((D−1
2 ξz2) · ne(Qhu

−
1 −Qhu

up
1 ), τu1,−)e

+
1

2

∑
E

(∇ ·D−1
2 ϕz2 , (τu1)2)E

+(f1(ϕ
u1
L , ϕ

u2)− f1(Qhu1, ϕ
u2), τu1)

+(f1(Qhu1, ϕ
u2)− f1(Qhu1, u2), τ

u1)

−(f1(u1, u2)− f1(Qhu1, u2), τ
u1)

+(ϕu2τu1 , τu1)− (Qhu1(ϕ
u2 − u2), τ

u1)

−(ξu1u2, τ
u1) + (D−1

1 ξz1 , τ z1)

=: T1 + T2 + T3 + · · ·+ T16 + T17 + T18 (5.59)

From (5.55):

1

2

d

dt
∥τu2∥2 + ∥D−1/2

2 τ z2∥2 = (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1 , Qhu2), τ

u2)

+(f2(ϕ
u1 , Qhu2)− f2(u1, Qhu2), τ

u2)− (f2(u1, u2)− f2(u1, Qhu2), τ
u2)

+(D−1
2 ξz2 , τ z2) =: T19 + T20 + T21 + T22 (5.60)

Bounds on the terms T1, T2, ...

Here bounds for both equations, (5.59) and (5.60) will be computed.
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T1 =
∑
E

(D−1
2 z2ξ

u1 ,∇τu1)E =
∑
E

(D−1
2 z2ξ

u1 − Π0D
−1
2 z2ξ

u1 ,∇τu1)E

≤ C
∑
E

h∥z2∥1,∞,E∥ξu1∥E∥∇τu1∥E ≤ C
∑
E

h∥ξu1∥Eh−1∥τu1∥E

≤ C
∑
E

hµu1∥u1∥su1 ,E∥τ
u1∥ ≤ C

∑
E

hµu1∥τu1∥E ≤ ε1Ch
2µu1 +

1

ε1
∥τu1∥2

≤ ε1Ch
2µu1 +

1

ε1
∥τu1∥2

T2 =
∑
e

((D−1
2 z2) · ne, (ξ

u1
up)[τ

u1 ])e

≤
∑
e

∥(D−1
2 z2) · n∥0,∞,e∥ξu1

up∥e(∥τu1,+∥e + ∥τu1,−∥e)

≤ C
∑
E

h−1/2∥ξu1∥E(h−1/2∥τu1∥E + h−1/2∥τu1∥E)

≤ C
∑
E

hµu1−1∥u1∥su1 ,E∥τ
u1∥E ≤ ε2Ch

2µu1−2 +
1

ε2
∥τu1∥2

≤ ε2Ch
2µu1−2 +

1

ε2
∥τu1∥2

T3 =
∑
E

((∇ ·D−1
2 (ϕz2 − Πhz2))Qhu1, τ

u1)E

≤
∑
E

∥(∇ ·D−1
2 (ϕz2 − Πhz2)∥E∥Qhu1∥∞,E∥τu1∥E

≤
∑
E

C∥(∇ ·D−1
2 (ϕz2 − Πhz2)∥E∥τu1∥E

≤ ε3∥∇ · ((ϕz2 − Πhz2)∥2 +
1

ε3
∥τu1∥2

For T4, we will use the inverse inequality

T4 =
∑
E

((D−1
2 (ϕz2 − Πhz2)) · ∇Qhu1, τ

u1)E

≤
∑
E

∥(D−1
2 (ϕz2 − Πhz2)∥E∥∇Qhu1∥∞,E∥τu1∥E

≤
∑
E

C∥(D−1
2 (ϕz2 − Πhz2)∥E∥τu1∥E
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≤
∑
E

C∥ϕz2 − Πhz2∥E∥τu1∥E ≤ ε4C∥ϕz2 − Πhz2∥2 +
1

ε4
∥τu1∥2

T5 =
∑
e

((D−1
2 (ϕz2 − Πhz2)) · ne(Qhu

+
1 −Qhu

up
1 ), τu1,+)e

≤
∑
e

∥((D−1
2 (ϕz2 − Πhz2)) · ne∥e∥Qhu

+
1 −Qhu

up
1 ∥0,∞,e∥τu1,+∥e

≤
∑
E

Ch−1/2∥(D−1
2 (ϕz2 − Πhz2))∥E∥u1 −Qhu1∥0,∞,Eh

−1/2∥τu1∥E

≤
∑
E

Ch−1/2∥(D−1
2 (ϕz2 − Πhz2))∥Ehµu1,∞∥u1∥su1 ,∞,Eh

−1/2∥τu1∥E

≤
∑
E

Chµu1,∞−1∥((ϕz2 − Πhz2))∥E∥τu1∥E

≤ ε5h
2µu1,∞−2C∥((ϕz2 − Πhz2))∥2 +

1

ε5
∥τu1∥2

In the same way:

T6 ≤ ε6h
2µu1,∞−2C∥((ϕz2 − Πhz2))∥2 +

1

ε6
∥τu1∥2

T7 = −
∑
E

((∇ · (D−1
2 ξz2))Qhu1, τ

u1)E ≤
∑
E

∥∇ · (D−1
2 ξz2)∥E∥Qhu1∥∞,E∥τu1∥E

≤
∑
E

Chµz2∥∇ · z2∥E∥τu1∥E

≤
∑
E

ε7Ch
2µz2∥∇ · z2∥2E +

1

ε7
∥τu1∥2E ≤ ε7h

2µz2C +
1

ε7
∥τu1∥2

T8 = −
∑
E

((D−1
2 ξz2) · ∇Qhu1, τ

u1)E ≤
∑
E

∥D−1
2 ξz2∥E∥∇Qhu1∥∞,E∥τu1∥E

≤
∑
E

∥D−1
2 ξz2∥E∥∇Qhu1∥∞,E∥τu1∥E ≤

∑
E

C∥ξz2∥E∥τu1∥E

≤ ε8Ch
2µz2∥z2∥2 +

1

ε8
∥τu1∥2 ≤ ε8h

2µz2C +
1

ε8
∥τu1∥2

T9 =
∑
e

((D−1
2 ξz2) · ne(Qhu

up
1 −Qhu

+
1 ), τ

u1,+)e

≤
∑
e

∥(D−1
2 ξz2) · ne∥e∥Qhu

+
1 −Qhu

up
1 ∥0,∞,e∥τu1,+∥e

≤
∑
E

Ch−1/2∥(D−1
2 ξz2)∥E∥u1 −Qhu1∥0,∞,Eh

−1/2∥τu1∥E
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≤
∑
E

Ch−1/2hµz2∥z2∥EC∥u1∥∞,Eh
−1/2∥τu1∥E

≤
∑
E

Chµz2−1∥z2∥E∥τu1∥E ≤
∑
E

ε9Ch
2µz2−2∥z2∥2E +

1

ε9
∥τu1∥2E

≤ ε9h
2µz2−2C +

1

ε9
∥τu1∥2

In the same way,

T10 ≤ ε10h
2µz2−2C +

1

ε10
∥τu1∥2

T11 =
1

2

∑
E

(∇ ·D−1
2 ϕz2 , (τu1)2)E ≤ C

∑
E

∥∇ ·D−1
2 ϕz2∥∞,E∥τu1∥2E

≤ C
∑
E

∥ϕz2∥∞,E∥τu1∥2E ≤ C∥τu1∥2

T12 = (f1(ϕ
u1
L , ϕ

u2)− f1(Qhu1, ϕ
u2), τu1) ≤ ∥f1(ϕu1

L , ϕ
u2)− f1(Qhu1, ϕ

u2)∥∥τu1∥

≤ (|f1(ϕu1
L , ϕ

u2)− f1(Qhu1, ϕ
u2)|, |τu1 |) ≤ (C|ϕu2 ||ϕu1

L −Qhu1|, |τu1 |)

≤ C∥ϕu2∥∞∥τu1∥2 ≤ C∥τu1∥2

T13 = (f1(Qhu1, ϕ
u2)− f1(Qhu1, u2), τ

u1) ≤ C∥Qhu1∥∞∥ϕu2 − u2∥∥τu1∥

≤ C∥ϕu2 −Qhu2 +Qhu2 − u2∥∥τu1∥

≤ C∥ϕu2 −Qhu2∥∥τu1∥+ Chµu2∥u2∥su2∥τ
u1∥

≤ ε13C∥ϕu2 −Qhu2∥2 +
2

ε13
∥τu1∥2 + ε13Ch

2µu2∥u2∥2su2

≤ ε13C∥ϕu2 −Qhu2∥2 +
2

ε13
∥τu1∥2 + ε13h

2µu2C

T14 = (f1(u1, u2)− f1(Qhu1, u2), τ
u1) ≤ ∥u2∥∞∥u1 −Qhu1∥∥τu1∥

≤ Chµu1∥u1∥su1∥τ
u1∥ ≤ ε14Ch

2µu1∥u1∥2su1 +
1

ε14
∥τu1∥2

≤ ε14h
2µu1C +

1

ε14
∥τu1∥2

T15 = (ϕu2τu1 , τu1) ≤ ∥ϕu2∥∞∥τu1∥2 ≤ C∥τu1∥2
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T16 = −(Qhu1(ϕ
u2 − u2), τ

u1) ≤ ∥Qhu1∥∞∥ϕu2 − u2∥∥τu1∥

≤ C∥ϕu2 −Qhu2 +Qhu2 − u2∥∥τu1∥

≤ C∥ϕu2 −Qhu2∥∥τu1∥+ Chµu2∥u2∥su2∥τ
u1∥

≤ ε16C∥ϕu2 −Qhu2∥2 +
2

ε16
∥τu1∥2 + ε16Ch

2µu2∥u2∥2su2

≤ ε16C∥ϕu2 −Qhu2∥2 +
2

ε16
∥τu1∥2 + ε16h

2µu2C

T17 = −(ξu1u2, τ
u1) ≤ ∥u2∥∞∥ξu1∥∥τu1∥ ≤ ε17Ch

2µu1∥u1∥2su1 +
1

ε17
∥τu1∥2

≤ ε17Ch
2µu1 +

1

ε17
∥τu1∥2

T18 = (D−1
1 ξz1 , τ z1) ≤ ∥D−1

1 ξz1∥∥τ z1∥ ≤ Chµz1∥z1∥sz1∥τ
z1∥

≤ C

ε18
h2µz1∥z1∥2sz1 + ε18∥τ z1∥2 ≤

C

ε18
h2µz1 + ε18∥τ z1∥2

T19 = (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1 , Qhu2), τ

u2)

≤ ∥ϕu1∥∞∥ϕu2
L −Qhu2∥∥τu2∥ ≤ C∥τu2∥2

T20 = (f2(ϕ
u1 , Qhu2)− f2(u1, Qhu2), τ

u2)

≤ ∥Qhu2∥∞
(
∥ϕu1 −Qhu1∥+ ∥Qhu1 − u1∥

)
∥τu2∥

≤ C∥ϕu1 −Qhu1∥∥τu2∥+ Chµu1∥u1∥su1∥τ
u2∥

≤ ε20∥ϕu1 −Qhu1∥2 +
C

ε20
∥τu2∥2 + ε20h

2µu1∥u1∥2su1

T21 = −(f2(u1, u2)− f2(u1, Qhu2), τ
u2) ≤ ∥u1∥∞∥u2 −Qhu2∥∥τu2∥

≤ Chµu2∥u2∥su2∥τ
u2∥ ≤ Ch2µu2 + C∥τu2∥2

T22 = (D−1
2 ξz2 , τ z2) ≤ ∥D−1

2 ξz2∥∥τ z2∥ ≤ Chµz2∥z2∥sz2∥τ
z2∥

≤ C
h2µz2

ε22
∥z2∥2sz2 + ε22∥τ z2∥2
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Put T1, T2, T3, · · ·, T16, T17, T18 into (5.59) assuming that h < 1 and noting that r ≥ 1, and

D1, D2 are SPD,

1

2

d

dt
∥τu1∥2 + 1

2

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + C∥τ z1∥2

≤

(
1

ε1
+

1

ε2
+

1

ε3
+

1

ε4
+

1

ε5
+

1

ε6
+

1

ε7
+

1

ε8

+
1

ε9
+

1

ε10
+

2

ε13
+

1

ε14
+

2

ε16
+

1

ε17
+ C

)
∥τu1∥2

+ε18∥τ z1∥2 + (ε1 + ε14 + ε17)Ch
2µu1 + ε2Ch

2µu1−2

+(ε13 + ε16)Ch
2µu2 +

C

ε18
h2µz1 + (ε7 + ε8)Ch

2µz2 + (ε9 + ε10)Ch
2µz2−2

+(ε13 + ε16)C∥ϕu2 −Qhu2∥2 +
(
ε4C + (ε5 + ε6)Ch

2µu1,∞−2
)
∥((ϕz2 − Πhz2))∥2

+ε3C∥∇ · ((ϕz2 − Πhz2)∥2 (5.61)

Define:

1

ε′
:=

1

ε1
+

1

ε2
+

1

ε3
+

1

ε4
+

1

ε5
+

1

ε6
+

1

ε7
+

1

ε8
+

1

ε9
+

1

ε10
+

2

ε13
+

1

ε14
+

2

ε16
+

1

ε17
.

Since u1 ∈ L2(0, T ;H3(Ω)), then ∇u1 ∈ L2(0, T ;H2(Ω)) and ∇u1 ∈ L2(0, T ;L∞(Ω)) we

have µu1,∞ = 1. Using this information, multiplying (5.61) by 2, choosing ε18 carefully,

integrating with respect to time, and noting that h < 1 gives:

∥τu1∥2 +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + C

∫ t

0

∥τ z1∥2

≤
(
1

ε′
+ C

)∫ t

0

∥τu1∥2 + (ε1 + ε14 + ε17 + ε2)C

∫ t

0

h2µu1−2

+(ε13 + ε16)C

∫ t

0

h2µu2 +
C

ε18

∫ t

0

h2µz1 + (ε7 + ε8 + ε9 + ε10)C

∫ t

0

h2µz2−2

+(ε13 + ε16)C

∫ t

0

∥ϕu2 −Qhu2∥2 + (ε4 + ε5 + ε6)C

∫ t

0

∥((ϕz2 − Πhz2))∥2

+ε3C

∫ t

0

∥∇ · ((ϕz2 − Πhz2)∥2 + ∥τu1∥(0)

Apply the Gronwall Inequality, theorem 4.8, while noting that ∥τu1∥(0) = 0 :

∥τu1∥2 +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + C

∫ t

0

∥τ z1∥2
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≤ e(
1
ε′+C)t

[
(ε1 + ε14 + ε17 + ε2)C

∫ t

0

h2µu1−2

+(ε13 + ε16)C

∫ t

0

h2µu2 +
C

ε18

∫ t

0

h2µz1 + (ε7 + ε8 + ε9 + ε10)C

∫ t

0

h2µz2−2

+(ε13 + ε16)C

∫ t

0

∥ϕu2 −Qhu2∥2 +
(
ε4 + ε5 + ε6)C

∫ t

0

∥((ϕz2 − Πhz2))∥2

+ε3C

∫ t

0

∥∇ · ((ϕz2 − Πhz2)∥2
]

Using the definition of the space, S,

∥τu1∥2 +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + C

∫ t

0

∥τ z1∥2

≤ e(
1
ε′+C)t

[
(ε1 + ε14 + ε17 + ε2)Ch

2µu1−2

+(ε13 + ε16)Ch
2µu2 +

C

ε18
h2µz1 + (ε7 + ε8 + ε9 + ε10)Ch

2µz2−2

+
(
(ε13 + ε16)CCu1 + (ε4 + ε5 + ε6 + ε3)CCz2

)
(h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2)

]

So,

∥τu1∥2 +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + C

∫ t

0

∥τ z1∥2

≤ e(
1
ε′+C)t

[
C∗(h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2)

+
(
(ε13 + ε16)CCu1 + (ε4 + ε5 + ε6 + ε3)CCz2

)
(h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2)

]

Finally,

∥τu1∥2 +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [τu1 ]2)e + C ′

∫ t

0

∥τ z1∥2

≤ e(
1
ε′+C)t

[
C∗ +

(
(ε13 + ε16)CCu1

+(ε4 + ε5 + ε6 + ε3)CCz2

)]
(h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2). (5.62)
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Define Cu1 := 2C∗ + 2.

Define Cz1 := 2C∗/C ′ + 2/C ′.

Now, if ε3, ε4, ε5, ε6, ε13, ε16 are chosen small enough then there exists a t1 such that for t ≤ t1

the sum of the constants on the right hand side of (5.62) is less than Cu1 and less than C ′Cz1 .

Thus, (5.62) gives us a bound for ∥τu1∥2(t),
∫ t

0
∥τ z1∥2. We will also require bounds for

∥τu2∥2(t),
∫ t

0
∥τ z2∥2, ∥∇ · τ z2∥. This will be done below.

Equation for ∥τu2∥2(t)

Put T19, T20, T21, T22 into (5.60) assuming that h < 1 and noting that r ≥ 1, and D1, D2

are singular positive definite (SPD),

1

2

d

dt
∥τu2∥2 + C∥τ z2∥2 ≤

(
C +

2

ε20

)
∥τu2∥2 + ε22∥τ z2∥2 + ε20h

2µu1∥u1∥2su1

+ε21Ch
2µu2∥u2∥2su2 +

1

ε22
h2µz2∥z2∥2 + ε20∥ϕu1 −Qhu1∥2 (5.63)

Multiply (5.63) by 2 and choose ε21 carefully then integrate

∥τu2∥2 + C

∫ t

0

∥τ z2∥2 ≤ 2

∫ t

0

(
C +

2

ε20

)
∥τu2∥2 + 2ε20C

∫ t

0

h2µu1∥u1∥2su1

+2ε21C

∫ t

0

h2µu2∥u2∥2su2 +
2C

Cε22

∫ t

0

h2µz2∥z2∥2 + 2ε20

∫ t

0

∥ϕu1 −Qhu1∥2 + ∥τu2∥2(0)

Using the regularity noted above, note that ∥τu2∥2(0) = 0, and apply the Gronwall Inequality,

theorem 4.8,

∥τu2∥2 + C

∫ t

0

∥τ z2∥2 ≤ e
(2C+ 4

ε20
)t

[
C∗∗
(
h2µu1 + h2µu2 + h2µz2

)
+2ε20

∫ t

0

∥ϕu1 −Qhu1∥2
]

Using the definition of the space S and noting that h < 1,

∥τu2∥2 + C

∫ t

0

∥τ z2∥2 ≤ e
(2C+ 4

ε20
)t

[
(C∗∗ + 2ε20Cu1)

(
h2µu1−2 + h2µu2
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+h2µz1 + h2µz2−2
)]

(5.64)

Define Cu2 := 2C∗∗ + 2Cu1 .

Note that for small enough ε20 there exists a t2 such that for t ≤ t2, we have

e
(2C+ 4

ε20
)t
(C∗∗ + 2ε20Cu1) ≤ 2C∗∗ + 2Cu1 .

Equation for
∫ t

0
∥τu2

t ∥2(t)

Go back to (5.43) and (5.44), noting that (ξu2 ,∇ · v) = 0,(∇ · ξz2 , w) = 0 ((ξu2)t, w)) = 0:

((ϕu2
L )t −Qhu2t , w) + (∇ · (ϕz2

L − Πhz2), w)− (f2(ϕ
u1 , ϕu2

L )− f2(u1, Qhu2), w) =

−(f2(u1, u2)− f2(u1, Qhu2), w) (5.65)

(D−1
2 (ϕz2

L − Πhz2), v)− (ϕu2
L −Qhu2,∇ · v) = (D−1

2 ξz2 , v) (5.66)

Take the derivative with respect to t of (5.66), then (5.65) and (5.66) become:

(τu2
t , w) + (∇ · τ z2 , w)− (f2(ϕ

u1 , ϕu2
L )− f2(u1, Qhu2), w) =

−(f2(u1, u2)− f2(u1, Qhu2), w) (5.67)

(D−1
2 τ z2t , v)− (τu2

t ,∇ · v) = (D−1
2 ξz2t , v) (5.68)

Set v = τ z2 and w = τu2
t , then substitute the (5.68) into (5.67) and add/subtract appropriate

terms:

1

2

d

dt
∥D−1/2

2 τ z2∥2 + ∥τu2
t ∥2 = (D−1

2 ξz2t , τ
z2) + (f2(ϕ

u1 , ϕu2
L ), τu2

t )− (f2(ϕ
u1 , Qhu2), τ

u2
t )

+(f2(ϕ
u1 , Qhu2), τ

u2
t )− (f2(u1, Qhu2), τ

u2
t )− (f2(u1, u2)− f2(u1, Qhu2), τ

u2
t )

Then

1

2

d

dt
∥D−1/2

2 τ z2∥2 + ∥τu2
t ∥2 ≤ ∥ξz2t ∥∥τ z2∥+ ∥ϕu1∥∞∥ϕu2

L −Qhu2∥∥τu2
t ∥

+∥ϕu1 −Qhu1 +Qhu1 − u1∥∥Qhu2∥∞∥τu2
t ∥+ ∥u1∥∞∥u2 −Qhu2∥∥τu2

t ∥

≤ 1

2
∥ξz2t ∥2 + 1

2
∥τ z2∥2 + C

ε∗1
∥ϕu2

L −Qhu2∥2 + ε∗1∥τ
u2
t ∥2
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+
C

ε∗2
∥ϕu1 −Qhu1∥2 +

C

ε∗3
∥Qhu1 − u1∥2 + (ε∗2 + ε∗3)∥τ

u2
t ∥2

+
C

ε∗4
∥u2 −Qhu2∥2 + ε∗4∥τ

u2
t ∥2

Choose ε∗1, ε
∗
2, ε

∗
3, ε

∗
4 carefully

1

2

d

dt
∥D−1/2

2 τ z2∥2 + C∥τu2
t ∥2 ≤ 1

2
h2µz2 +

1

2
∥τ z2∥2 + C

Cε∗1

∥τu2∥2

+
C

Cε∗2

∥ϕu1 −Qhu1∥2 + C
h2µu1

Cε∗3

+ C
h2µu2

Cε∗4

Multiply by 2 and integrate with respect to t, and apply the Gronwall Inequality, theorem

4.8:

∥τ z2∥2 + 2C

∫ t

0

∥τu2
t ∥2 ≤ et

[
2
C

Cε∗1

∫ t

0

∥τu2∥2 + 2
C

Cε∗2

∫ t

0

∥ϕu1 −Qhu1∥2

+

∫ t

0

(
2Ch2µz2 + 2C

h2µu1

Cε∗3

+ 2C
h2µu2

Cε∗4

)]
(5.69)

Equation for
∫ t

0
∥∇ · τ z2∥2

Go back to (5.67):

(τu2
t , w) + (∇ · τ z2 , w)− (f2(ϕ

u1 , ϕu2
L )− f2(u1, Qhu2), w) =

−(f2(u1, u2)− f2(u1, Qhu2), w)

Set w = ∇ · τ z2 :

∥∇ · τ z2∥2 ≤ ∥τu2
t ∥∥∇ · τ z2∥+ ∥f2(ϕu1 , ϕu2

L )− f2(u1, Qhu2)∥∥∇ · τ z2∥

+∥f2(u1, u2)− f2(u1, Qhu2)∥∥∇ · τ z2∥

∥∇ · τ z2∥2 ≤ (ε∗∗1 + ε∗∗2 + ε∗∗3 )∥∇ · τ z2∥2 + C∥τu2
t ∥2 + C∥τu2∥2 + C∥ϕu1 −Qhu1∥2

+Ch2µu1 + Ch2µu2
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Choose ε∗∗1 , ε
∗∗
2 , ε

∗∗
3 carefully and integrate from 0 to t:

C

∫ t

0

∥∇ · τ z2∥2 ≤ C

∫ t

0

∥τu2
t ∥2 + C

∫ t

0

∥τu2∥2

+C

∫ t

0

∥ϕu1 −Qhu1∥2 + C

∫ t

0

h2µu1 + C

∫ t

0

h2µu2 (5.70)

Substitute (5.69) into (5.70):

∫ t

0

∥∇ · τ z2∥2 ≤ et

[
2
C

Cε∗1

∫ t

0

∥τu2∥2 + 2
C

Cε∗2

∫ t

0

∥ϕu1 −Qhu1∥2

+

∫ t

0

(
2Ch2µz2 + 2C

h2µu1

Cε∗3

+ 2C
h2µu2

Cε∗4

)]
+C∥τu2∥2 + C∥ϕu1 −Qhu1∥2 + Ch2µu1 + Ch2µu2 (5.71)
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.

More Bounds.

Consider (5.64),

∥τu2∥2 + C

∫ t

0

∥τ z2∥2 ≤ e
(2C+ 4

ε20
)t

[
(C∗∗ + 2ε20Cu1)

(
h2µu1−2 + h2µu2

+h2µz1 + h2µz2−2
)]

(5.72)

Combine equations (5.72), (5.69) and (5.71),

∥τu2∥2 + ∥τ z2∥2 + C

∫ t

0

∥τ z2∥2 +
∫ t

0

∥∇ · τ z2∥2 + C

∫ t

0

∥τu2
t ∥2

≤ e
(2C+ 4

ε20
)t

[
(C∗∗ + 2ε20Cu1)

(
h2µu1−2 + h2µu2

+h2µz1 + h2µz2−2
)]

(5.73)

+et

[
2
C

Cε∗1

∫ t

0

∥τu2∥2 + 2
C

Cε∗2

∫ t

0

∥ϕu1 −Qhu1∥2

+

∫ t

0

(
2Ch2µz2 + 2C

h2µu1

Cε∗3

+ 2C
h2µu2

Cε∗4

)]

et

[
2
C

Cε∗1

∫ t

0

∥τu2∥2 + 2
C

Cε∗2

∫ t

0

∥ϕu1 −Qhu1∥2

+

∫ t

0

(
2Ch2µz2 + 2C

h2µu1

Cε∗3

+ 2C
h2µu2

Cε∗4

)]

+C

∫ t

0

∥τu2∥2 + C

∫ t

0

∥ϕu1 −Qhu1∥2 + C

∫ t

0

h2µu1 + C

∫ t

0

h2µu2

Now,

∥τu2∥2 + ∥τ z2∥2 + C

∫ t

0

∥τ z2∥2 +
∫ t

0

∥∇ · τ z2∥2 + C

∫ t

0

∥τu2
t ∥2

≤

[
e
(2C+ 4

ε20
)t
(C∗∗ + 2ε20Cu1)

(
h2µu1−2 + h2µu2

+h2µz1 + h2µz2−2
)]

+
(
4et

C

Cε∗1

+ C
)∫ t

0

∥τu2∥2 (5.74)
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+2et
∫ t

0

(
2Ch2µz2 + 2C

h2µu1

Cε∗3

+ 2C
h2µu2

Cε∗4

)]

+4et
( C

Cε∗2

+ C
)∫ t

0

∥ϕu1 −Qhu1∥2 + C

∫ t

0

h2µu1 + C

∫ t

0

h2µu2

Apply the Gronwall Inequality, theorem 4.8, take the sup of both sides and use the definition

of the space S,

∥τu2∥2 + ∥τ z2∥2 + C

∫ t

0

∥τ z2∥2 +
∫ t

0

∥∇ · τ z2∥2 + C

∫ t

0

∥τu2
t ∥2

≤ e

(
4et C

Cε∗1
+C
)
t

[(
e
(2C+ 4

ε20
)t
(C∗∗ + 2ε20Cu1) + Cet

)(
h2µu1−2 + h2µu2

+h2µz1 + h2µz2−2
)]

(5.75)

Noting that all factors on the right hand side are constants except for h, there exists a

CII , CIII and CIV such that

sup
t∈[0,T ]

(
∥τu2∥2 + ∥τ z2∥2

)
+ C

∫ T

0

∥τ z2∥2 +
∫ T

0

∥∇ · τ z2∥2 + C

∫ T

0

∥τu2
t ∥2

≤

[(
CIIC∗∗ + CIIICu1 + CIV

)(
h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2

)]
(5.76)

Since ∥τu2∥2 is non-negative, we can say

sup
t∈[0,T ]

∥τ z2∥2 ≤ sup
t∈[0,T ]

(
∥τu2∥2 + ∥τ z2∥2

)
Therefore, from (5.76), we can say

sup
t∈[0,T ]

∥τ z2∥2 + C

∫ T

0

∥τ z2∥2 +
∫ T

0

∥∇ · τ z2∥2 + C

∫ T

0

∥τu2
t ∥2

≤

[(
CIIC∗∗ + CIIICu1 + CIV

)(
h2µu1−2 + h2µu2 + h2µz1 + h2µz2−2

)]
(5.77)

Define Cz2 := CIIC∗∗ + CIIICu1 + CIV .

Now, the constants in the space S have been defined. Furthermore, we can now define

t̃ = min (t1, t2). (Note that t1 is defined immediately after (5.62) and t2 is defined immedi-

ately after (5.64)).

Therefore, we can say (ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ) ∈ S.

170



Now, prove that the mapping, A, has a fixed point in S.

Theorem 5.4. The mapping A is continuous.

Proof. Choose any sequence

{(ϕu1
n , ϕ

u2
n , ϕ

z1
n , ϕ

z2
n )} ∈ S such that

lim
n→∞

sup
t∈[0,T ]

∥(ϕu1
n , ϕ

u2
n , ϕ

z1
n , ϕ

z2
n )− (ϕu1 , ϕu2 , ϕz1 , ϕz2)∥S = 0.

Recall the mapping, A(ϕu1 , ϕz1 , ϕu2 , ϕz2) = (ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ) defined by

(5.31),(5.32),(5.33),(5.34):

(ϕu1
Lt
, w) +

∑
E

(ϕu1
L D

−1
2 ϕz2 ,∇w)E +

∑
e

(D−1
2 ϕz2 · neϕ

u1
Lup
, [w])e

+(∇ · ϕz1
L , w)− (f1(ϕ

u1
L , ϕ

u2), w) = 0 (5.78)

(D−1
1 ϕz1

L , v) = (ϕu1
L ,∇ · v) (5.79)

(ϕu2
Lt
, w) + (∇ · ϕz2

L , w)− (f2(ϕ
u1 , ϕu2

L ), w) = 0 (5.80)

(D−1
2 ϕz2

L , v) = (ϕu2
L ,∇ · v). (5.81)

We may also do A(ϕu1
n , ϕ

z1
n , ϕ

u2
n , ϕ

z2
n ) = (ϕu1

L,n, ϕ
z1
L,n, ϕ

u2
L,n, ϕ

z2
L,n) where:

(ϕu1
L,nt

, w) +
∑
E

(ϕu1
L,nD

−1
2 ϕz2

n ,∇w)E +
∑
e

(D−1
2 ϕz2

n · neϕ
u1
L,nup

, [w])e

+(∇ · ϕz1
L,n, w)− (f2(ϕ

u1
L,n, ϕ

u2
n ), w) = 0 (5.82)

(D−1
1 ϕz1

L,n, v) = (ϕu1
L,n,∇ · v) (5.83)

(ϕu2
L,nt

, w) + (∇ · ϕz2
L,n, w)− (f2(ϕ

u1
n , ϕ

u2
L,n), w) = 0 (5.84)
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(D−1
2 ϕz2

L,n, v) = (ϕu2
L,n,∇ · v). (5.85)

Subtract (5.82),(5.83).(5.84), and (5.85) from (5.78),(5.79).(5.80), and (5.81), respectively

(ϕu1
Lt

− ϕu1
L,nt

, w) +
∑
E

(D−1
2 (ϕu1

L ϕ
z2 − ϕu1

L,nϕ
z2
n ),∇w)E

+
∑
e

(ϕu1
Lup
D−1

2 ϕz2 − ϕu1
L,nup

D−1
2 ϕz2

n ) · ne, [w])e

+(∇ · (ϕz1
L − ϕz1

L,n), w)− (f1(ϕ
u1
L , ϕ

u2)− f1(ϕ
u1
L,n, ϕ

u2
n ), w) = 0

(D−1
1 (ϕz1

L − ϕz1
L,n), v) = (ϕu1

L − ϕu1
L,n,∇ · v)

(ϕu2
Lt

− ϕu2
L,nt

, w) + (∇ · (ϕz2
L − ϕz2

L,n), w)− (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1
n , ϕ

u2
L,n), w) = 0

(D−1
2 (ϕz2

L − ϕz2
L,n), v) = (ϕu2

L − ϕu2
L,n,∇ · v).

Add and subtract the appropriate terms to get:

(ϕu1
Lt

− ϕu1
L,nt

, w) +
∑
E

(D−1
2 (ϕu1

L ϕ
z2 − ϕz2ϕu1

L,n + ϕz2ϕu1
L,n − ϕu1

L,nϕ
z2
n ),∇w)E

+
∑
e

(ϕu1
Lup
D−1

2 ϕz2 − ϕu1
L,nup

D−1
2 ϕz2 + ϕu1

L,nup
D−1

2 ϕz2 − ϕu1
L,nup

D−1
2 ϕz2

n ) · ne, [w])e

+(∇ · (ϕz1
L − ϕz1

L,n), w)− (f1(ϕ
u1
L , ϕ

u2)− f2(ϕ
u1
L,n, ϕ

u2
n ), w) = 0

(D−1
1 (ϕz1

L − ϕz1
L,n), v) = (ϕu1

L − ϕu1
L,n,∇ · v)

(ϕu2
Lt

− ϕu2
L,nt

, w) + (∇ · (ϕz2
L − ϕz2

L,n), w)− (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1
n , ϕ

u2
L,n), w) = 0

(D−1
2 (ϕz2

L − ϕz2
L,n), v) = (ϕu2

L − ϕu2
L,n,∇ · v).

Define ϕ̂u1
L := ϕu1

L − ϕu1
L,n ϕ̂u2

L := ϕu2
L − ϕu2

L,n ϕ̂z1
L := ϕz1

L − ϕz1
L,n ϕ̂z2

L := ϕz2
L − ϕz2

L,n

and set w = ϕ̂u1
L and v = ϕ̂z1

L and rearrange the terms:

(ϕ̂u1
Lt
, ϕ̂u1

L ) +
∑
E

(ϕ̂u1
L D

−1
2 ϕz2 ,∇ϕ̂u1

L )E +
∑
e

(ϕ̂u1
Lup
D−1

2 ϕz2 · ne, [ϕ̂
u1
L ])e

+
∑
E

(ϕu1
L,nD

−1
2 (ϕz2 − ϕz2

n ),∇ϕ̂u1
L )E +

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2 − ϕz2

n ) · ne, [ϕ̂
u1
L ])e
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+(∇ · ϕ̂z1
L , ϕ̂

u1
L )− (f1(ϕ

u1
L , ϕ

u2)− f2(ϕ
u1
L,n, ϕ

u2
n ), ϕ̂u1

L ) = 0 (5.86)

(D−1
1 ϕ̂z1

L , ϕ̂
z1
L ) = (ϕ̂u1

L ,∇ · ϕ̂z1
L ) (5.87)

(ϕ̂u2
Lt
, ϕ̂u2

L ) + (∇ · ϕ̂z2
L , ϕ̂

u2
L )− (f2(ϕ

u1 , ϕu2
L )− f2(ϕ

u1
n , ϕ

u2
L,n), ϕ̂

u2
L ) = 0 (5.88)

(D−1
2 ϕ̂z2

L , ϕ̂
z2
L ) = (ϕ̂u2

L ,∇ · ϕ̂z2
L ). (5.89)

Substituting (5.87) into (5.86) and (5.89) into (5.88) and rewriting terms, we get:

1

2

d

dt
∥ϕ̂u1

L ∥2 +
∑
E

(ϕ̂u1
L D

−1
2 ϕz2 ,∇ϕ̂u1

L )E +
∑
e

(ϕ̂u1
Lup
D−1

2 ϕz2 · ne, [ϕ̂
u1
L ])e

+
∑
E

(ϕu1
L,nD

−1
2 (ϕz2 − ϕz2

n ),∇(ϕu1
L ))E +

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2 − ϕz2

n ) · ne, [ϕ
u1
L ])e

+
∑
E

(ϕu1
L,nD

−1
2 (ϕz2

n − ϕz2),∇(ϕu1
L,n))E +

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2

n − ϕz2) · ne, [ϕ
u1
L,n])e

+∥D−1/2
1 ϕ̂z1

L ∥2 = (f1(ϕ
u1
L , ϕ

u2)− f2(ϕ
u1
L,n, ϕ

u2
n ), ϕ̂u1

L ) (5.90)

1

2

d

dt
∥ϕ̂u2

L ∥2 + ∥D−1/2
1 ϕ̂z2

L ∥2 = (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1
n , ϕ

u2
L,n), ϕ̂

u2
L ). (5.91)

Consider the seventh term on the left hand side of (5.90) (note that ϕz2 − ϕz2
n has already

been replaced by ϕz2
n − ϕz2 in that term in order to make the sign in front of the summation

positive).

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2

n − ϕz2) · ne, [ϕ
u1
L,n])e

=
∑
e

D−1
2 (ϕz2

n − ϕz2) · ne, (ϕ
u1
L,nup

− 1

2
ϕu1
L,ndown

+
1

2
ϕu1
L,ndown

)[ϕu1
L,n])e

=
1

2

∑
e

D−1
2 (ϕz2

n − ϕz2) · ne, (ϕ
u1
L,nup

− ϕu1
L,ndown

)[ϕu1
L,n])e

+
1

2

∑
e

D−1
2 (ϕz2

n − ϕz2) · ne, (ϕ
u1
L,nup

+ ϕu1
L,ndown

)[ϕu1
L,n])e. (5.92)

Note that whenever D−1
2 (ϕz2

n − ϕz2) · ne ≥ 0,we have

(ϕu1
L,nup

− ϕu1
L,ndown

)[ϕu1
L ] = (ϕu1,+

L,n − ϕu1,−
L,n )(ϕu1,+

L,n − ϕu1,−
L,n ) = [ϕu1

L,n]
2
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and

(ϕu1
L,nup

+ ϕu1
L,ndown

)[ϕu1
L ] = (ϕu1,+

L,n + ϕu1,−
L,n )(ϕu1,+

L,n − ϕu1,−
L,n ) = ((ϕu1,+

L,n )2 − (ϕu1,−
L,n )2).

Also, whenever D−1
2 (ϕz2

n − ϕz2) · ne < 0,we have

(ϕu1
L,nup

− ϕu1
L,ndown

)[ϕu1
L ] = (ϕu1,−

L,n − ϕu1,+
L,n )(ϕu1,+

L,n − ϕu1,−
L,n ) = −[ϕu1

L,n]
2

and

(ϕu1
L,nup

+ ϕu1
L,ndown

)[ϕu1
L ] = (ϕu1,−

L,n + ϕu1,+
L,n )(ϕu1,+

L,n − ϕu1,−
L,n ) = ((ϕu1,+

L,n )2 − (ϕu1,−
L,n )2).

Therefore, (5.92) may be written as,∑
e

(ϕu1
L,nup

D−1
2 (ϕz2

n − ϕz2) · ne, [ϕ
u1
L ])e

=
1

2

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕu1
L ]2)e

+
1

2

∑
e

D−1
2 (ϕz2

n − ϕz2) · ne, (ϕ
u1,+
L,n )2 − (ϕu1,−

L,n )2)e.

After applying the divergence theorem, we find that∑
e

(ϕu1
L,nup

D−1
2 (ϕz2

n − ϕz2) · ne, [ϕ
u1
L ])e

=
1

2

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕu1
L ]2)e

−1

2

∑
E

∫
(∇ ·D−1

2 (ϕz2
n − ϕz2))(ϕu1

L,n)
2 dx−

∑
E

∫
ϕu1
L,n(∇ ·D−1

2 (ϕz2
n − ϕz2)) · ∇ϕu1

L,n dx.

Do the same things to the third term on the left hand side of (5.92). After making these

substitutions, (5.92) then becomes:

1

2

d

dt
∥ϕ̂u1

L ∥2 − 1

2

∑
E

(∇ ·D−1
2 ϕz2 , (ϕ̂u1

L )2)E +
1

2

∑
e

(|D−1
2 ϕz2 · ne|, [ϕ̂u1

L ]2)e

−1

2

∑
E

(∇ ·D−1
2 (ϕz2

n − ϕz2), (ϕu1
L,n)

2)E +
1

2

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕ̂u1
L,n]

2)e

+∥D−1/2
1 ϕ̂z1

L ∥2 = (f1(ϕ
u1
L , ϕ

u2)− f2(ϕ
u1
L,n, ϕ

u2
n ), ϕ̂u1

L )

−
∑
E

(ϕu1
L,nD

−1
2 (ϕz2 − ϕz2

n ),∇(ϕu1
L ))E −

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2 − ϕz2

n ) · ne, [ϕ
u1
L ])e
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1

2

d

dt
∥ϕ̂u2

L ∥2 + ∥D−1/2
1 ϕ̂z2

L ∥2 = (f2(ϕ
u1 , ϕu2

L )− f2(ϕ
u1
n , ϕ

u2
L,n), ϕ̂

u2
L ).

Now,

1

2

d

dt
∥ϕ̂u1

L ∥2 + 1

2

∑
e

(|D−1
2 ϕz2 · ne|, [ϕ̂u1

L ]2)e +
1

2

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕ̂u1
L,n]

2)e

+∥D−1/2
1 ϕ̂z1

L ∥2 = (f1(ϕ
u1
L , ϕ

u2)− f2(ϕ
u1
L,n, ϕ

u2) + f2(ϕ
u1
L,n, ϕ

u2)− f2(ϕ
u1
L,n, ϕ

u2
n ), ϕ̂u1

L )

−
∑
E

(ϕu1
L,nD

−1
2 (ϕz2 − ϕz2

n ),∇(ϕu1
L ))E −

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2 − ϕz2

n ) · ne, [ϕ
u1
L ])e

+
1

2

∑
E

(∇ ·D−1
2 ϕz2 , (ϕ̂u1

L )2)E +
1

2

∑
E

(∇ ·D−1
2 (ϕz2

n − ϕz2), (ϕu1
L,n)

2)E

≤ C∥ϕ̂u1
L ∥2∥ϕu2∥∞,Ω + C∥ϕu1

L,n∥∞,Ω∥(ϕu2 − ϕu2
n )∥∥ϕ̂u1

L ∥ (5.93)

+C∥ϕu1
L,n∥∞,Ω∥ϕz2 − ϕz2

n ∥∥∇(ϕu1
L )∥ −

∑
e

(ϕu1
L,nup

D−1
2 (ϕz2 − ϕz2

n ) · ne, [ϕ
u1
L ])e

+C∥∇ ·D−1
2 ϕz2∥∞,Ω∥ϕ̂u1

L ∥2 + C∥∇ ·D−1
2 (ϕz2

n − ϕz2)∥∥ϕu1
L,n∥∞,Ω∥ϕu1

L,n∥

and

1

2

d

dt
∥ϕ̂u2

L ∥2 + ∥D−1/2
1 ϕ̂z2

L ∥2 ≤ C∥ϕ̂u2
L ∥2∥ϕu1∥∞,Ω + C∥ϕu2

L,n∥∞,Ω∥(ϕu1 − ϕu1
n )∥∥ϕ̂u2

L ∥ (5.94)

Since ϕu1 , ϕu2 , ϕu1
L,n, ϕ̂

u1
L , ϕ

z2 ∈ S, then ∥ϕu1∥∞,Ω, ∥ϕu2∥∞,Ω, ∥ϕu1
L,n∥, ∥ϕ

u1
L,n∥∞,Ω,

∥ϕ̂u1
L ∥, ∥∇(ϕu1

L )∥, ∥∇ ·D−1
2 ϕz2∥∞,Ω are bounded. After combining (5.93) and (5.94) we get,

1

2

d

dt
(∥ϕ̂u1

L ∥2 + ∥ϕ̂u2
L ∥2) + 1

2

∑
e

(|D−1
2 ϕz2 · ne|, [ϕ̂u1

L ]2)e

+
1

2

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕ̂u1
L,n]

2)e + ∥D−1/2
1 ϕ̂z1

L ∥2 + ∥D−1/2
1 ϕ̂z2

L ∥2

≤ C(∥ϕ̂u1
L ∥2 + ∥ϕ̂u2

L ∥2) + C∥(ϕu1 − ϕu1
n )∥+ C∥(ϕu2 − ϕu2

n )∥+ C∥ϕz2 − ϕz2
n ∥ (5.95)

+
∑
e

C∥D−1
2 (ϕz2 − ϕz2

n )∥e∥[ϕu1
L ]∥e + C∥∇ ·D−1

2 (ϕz2
n − ϕz2)∥.

Consider the fifth term on the right hand side of (5.95):

∑
e

C∥D−1
2 (ϕz2 − ϕz2

n )∥e∥[ϕu1
L ]∥e ≤

∑
e

C∥D−1
2 (ϕz2 − ϕz2

n )∥e(∥(ϕu1
L )E

1

e ∥e + ∥(ϕu1
L )E

2

e ∥e)

≤
∑
E

C∥D−1
2 (ϕz2 − ϕz2

n )∥E(∥ϕu1
L ∥E1 + ∥ϕu1

L ∥E2) ≤
∑
E

C∥D−1
2 (ϕz2 − ϕz2

n )∥. (5.96)
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Substitute (5.96) into (5.95) and treat h as a constant:

1

2

d

dt
(∥ϕ̂u1

L ∥2 + ∥ϕ̂u2
L ∥2) + 1

2

∑
e

(|D−1
2 ϕz2 · ne|, [ϕ̂u1

L ]2)e

+
1

2

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕ̂u1
L,n]

2)e + ∥D−1/2
1 ϕ̂z1

L ∥2 + ∥D−1/2
1 ϕ̂z2

L ∥2

≤ C(∥ϕ̂u1
L ∥2 + ∥ϕ̂u2

L ∥2) + C∥(ϕu1 − ϕu1
n )∥+ C∥(ϕu2 − ϕu2

n )∥+ C∥ϕz2 − ϕz2
n ∥

+
∑
E

C
r2

h
∥D−1

2 (ϕz2 − ϕz2
n )∥+ C∥∇ ·D−1

2 (ϕz2
n − ϕz2)∥. (5.97)

Multiply (5.97) by 2 and integrate from 0 to t,

(∥ϕ̂u1
L ∥2 + ∥ϕ̂u2

L ∥2) +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [ϕ̂u1

L ]2)e

+

∫ t

0

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕ̂u1
L,n]

2)e + 2

∫ t

0

∥D−1/2
1 ϕ̂z1

L ∥2 + 2

∫ t

0

∥D−1/2
1 ϕ̂z2

L ∥2

≤ C

∫ t

0

(∥ϕ̂u1
L ∥2 + ∥ϕ̂u2

L ∥2) + C

∫ t

0

∥(ϕu1 − ϕu1
n )∥+ C

∫ t

0

∥(ϕu2 − ϕu2
n )∥

+C

∫ t

0

∥ϕz2 − ϕz2
n ∥+

∫ t

0

∑
E

C
r2

h
∥D−1

2 (ϕz2 − ϕz2
n )∥

+C

∫ t

0

∥∇ ·D−1
2 (ϕz2

n − ϕz2)∥+ ∥ϕ̂u1,t=0
L ∥2 + ∥ϕ̂u2,t=0

L ∥2.

Apply the Gronwall Inequality, theorem 4.8,

(∥ϕ̂u1
L ∥2 + ∥ϕ̂u2

L ∥2) +
∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [ϕ̂u1

L ]2)e

+

∫ t

0

∑
e

(|D−1
2 (ϕz2

n − ϕz2) · ne|, [ϕ̂u1
L,n]

2)e + 2

∫ t

0

∥D−1/2
1 ϕ̂z1

L ∥2 + 2

∫ t

0

∥D−1/2
1 ϕ̂z2

L ∥2

≤ C

(∫ t

0

∥(ϕu1 − ϕu1
n )∥+ C

∫ t

0

∥(ϕu2 − ϕu2
n )∥+ C

∫ t

0

∥ϕz2 − ϕz2
n ∥

+

∫ t

0

∑
E

C
r2

h
∥D−1

2 (ϕz2 − ϕz2
n )∥+ C

∫ t

0

∥∇ ·D−1
2 (ϕz2

n − ϕz2)∥

)
. (5.98)

As

lim
n→∞

sup
t∈[0,T ]

∥(ϕu1
n , ϕ

u2
n , ϕ

z1
n , ϕ

z2
n )− (ϕu1 , ϕu2 , ϕz1 , ϕz2)∥S = 0 (5.99)
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the right hand side of (5.98) goes to zero. Thus, we have

∥ϕ̂u1
L ∥2 + ∥ϕ̂u2

L ∥2 + 2

∫ t

0

∥D−1/2
1 ϕ̂z1

L ∥2 + 2

∫ t

0

∥D−1/2
1 ϕ̂z2

L ∥2 = 0.

In a similar way, it can be shown that for 5.99

sup
t∈[0,T ]

∥ϕ̂z2
L ∥+

∫ t

0

∥∇ · ϕ̂z2
L ∥ = 0.

So,

lim
n→∞

sup
t∈[0,T ]

∥A(ϕu1
n , ϕ

u2
n , ϕ

z1
n , ϕ

z2
n )− A(ϕu1 , ϕu2 , ϕz1 , ϕz2)∥S = 0.

By this, the continuity of A is established. Q.E.D.

Theorem 5.5. The mapping A is compact.

Proof. Let

(ϕu1 , ϕu2 , ϕz1 , ϕz2) ∈ S.

Recall the mapping, A(ϕu1 , ϕz1 , ϕu2 , ϕz2) = (ϕu1
L , ϕ

z1
L , ϕ

u2
L , ϕ

z2
L ), defined by

(5.31),(5.32),(5.33),(5.34):

(ϕu1
Lt
, w) +

∑
E

(ϕu1
L D

−1
2 ϕz2 ,∇w)E +

∑
e

(D−1
2 ϕz2 · neϕ

u1
Lup
, [w])e

+(∇ · ϕz1
L , w)− (f1(ϕ

u1
L , ϕ

u2), w) = 0 (5.100)

(D−1
1 ϕz1

L , v) = (ϕu1
L ,∇ · v) (5.101)

(ϕu2
Lt
, w) + (∇ · ϕz2

L , w)− (f2(ϕ
u1 , ϕu2

L ), w) = 0 (5.102)

(D−1
2 ϕz2

L , v) = (ϕu2
L ,∇ · v). (5.103)

Recall the shift operator ∆Shift(h)f(x) = f(x+ h) where h ∈ R3 . If we apply the shift op-

erator to (5.100),(5.101),(5.102),(5.103) and follow the same steps as in the proof of theorem

5.4, we get something similar to (5.98),

(∥∆Shift(h)ϕ
u1
L ∥2 + ∥∆Shift(h)ϕ

u2
L ∥2) +

∫ t

0

∑
e

(|D−1
2 ϕz2 · ne|, [∆Shift(h)ϕ

u1
L ]2)e
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+

∫ t

0

∑
e

(|D−1
2 (∆Shift(h)ϕ

z2) · ne|, [∆Shift(h)ϕ
u1
L ]2)e

+2

∫ t

0

∥D−1/2
1 ∆Shift(h)ϕ

z1
L ∥2 + 2

∫ t

0

∥D−1/2
1 ∆Shift(h)ϕ

z2
L ∥2 (5.104)

≤ C

(∫ t

0

∥∆Shift(h)ϕ
u2∥+ C

∫ t

0

∥∆Shift(h)ϕ
u2∥+ C

∫ t

0

∥∆Shift(h)ϕ
z2∥

+

∫ t

0

∑
E

C∥D−1
2 ∆Shift(h)ϕ

z2∥+ C

∫ t

0

∥∇ ·D−1
2 ∆Shift(h)ϕ

z2∥

)
.

In a similar way, it can be shown that,

sup
t∈[0,T ]

∥∆Shift(h)ϕ
z2
L ∥+

∫ t

0

∥∇ ·∆Shift(h)ϕ
z2
L ∥ (5.105)

≤
∫ t

0

C∥∆Shift(h)ϕ
z2∥+ C

∫ t

0

∥∇ · (∆Shift(h)ϕ
z2)∥. (5.106)

Since the functions ϕu2 , ϕz2 that appear on the right hand side of (5.104),(5.106)are in the

space S, these functions are Lipschitz continuous. Thus we may can conclude that

lim
h→0

∥∆Shift(h)ϕ
u1
L ∥ = 0 uniformly.

The same may be said of ∥∆Shift(h)ϕ
z2
L ∥, etc. Thus we may apply Kolmogorov-M.Riesz-

Frechet, theorem 4.5, and conclude that the mapping A is compact. Q.E.D.

Therefore, by the Schauder’s Fixed Point Theorem - Version 2, theorem 4.3, the mapping A

has at least one fixed point in S.

Error Analysis. Based on the previous analysis, we can say,

∥u1,h −Qhu1∥L∞([0,T ];L2(Ω)) + ∥u2,h −Qhu2∥L∞([0,T ];L2(Ω))

+∥z2,h − Πhz2∥L∞([0,T ];L2(Ω)) +

(∫ T

0

∥z1,h − Πhz1∥2
)1/2

+

(∫ T

0

∥z2,h − Πhz2∥2
)1/2

+

(∫ T

0

∥∇ · (z2,h − Πhz2)∥2
)1/2

≤ C(hµu1−1 + hµu2 + hµz1 + hµz2−1). (5.107)
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5.3 FINITE ELEMENT ANALYSIS OF THE PDES IN PART II

Recall the epithelial equation:

∂ec
∂t

+∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka(na, c, b)ec (5.108)

Where

ka(na, c, b) =
eca(na, c, b)

q0

eca(na, c, b)q0 + [eca(na,max, cmax, bmax)− eca(na, c, b)]q0

eca(na, c, b) = na + kecnacc+ kecnabb

β(ec) =
e2c

e2c + (ec,max − ec)2

u(ec, b) = −α(b)∇ec α(b) =
(bmax − b)q

(bmax − b)q + bq
(5.109)

Equation (5.108) may be written as

∂ec
∂t

−∇ · (β(ec)α(b)∇ec) = γ(ec, b, na, c) (5.110)

Where

γ(ec, b, na, c) = kpec(1− ec/e
max
c )− ka(na, c, b)ec

This equation may be written as

∂ec
∂t

−∇ · (α(b)∇P (ec)) = γ(ec, b, na, c) (5.111)

where P (ec) is the Kirchhoff transformation given by:

P (ec) =

∫ ec

0

β(s) ds

so that ∇P (ec) =
∂P

∂ec
∇ec + ∇xP (ec)

= β(ec)∇ec +

∫ ec

0

∇xβ(s) ds = β(ec)∇ec
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Note that ec may, at times, be zero. B(ec) and ∇P (ec) will be zero whenever ec = 0. There-

fore, (5.111) is a degenerate parabolic PDE.

Assumptions

In the PDE Analysis Part I, it was proven that na, b and c are at least in L∞(Ω). Fol-

lowing Arbogast, Wheeler, and Zhang [7] as well as Woodward and Dawson [141], we will

assume that:

ec ∈ L∞((0, T );L∞(Ω)) and ect ∈ L2((0, T );H
−1(Ω))

Assume that there exists a constant C0 > 0, independent of time such that

∥P (ϕ1)− P (ϕ2)∥2 ≤ C0(P (ϕ1)− P (ϕ2), ϕ1 − ϕ2) ∀ϕ1, ϕ2 ∈ L2(Ω) (5.112)

(This implies, among other things, that P is Lipschitz continuous)

Assume that for the function γ we have ∀ϕ1, ϕ2 ∈ L2(Ω), ∃ C > 0 such that

∥γ(ϕ1, b, na, c)− γ(ϕ2, b, na, c)∥2 ≤ C(P (ϕ1)− P (ϕ2), ϕ1 − ϕ2) (5.113)

∥γ(ϕ1, b, na, c)− γ(ϕ2, b, na, c)∥ ≤ C∥ϕ1 − ϕ2∥ (5.114)

and ∀b1, b2 ∈ L2(Ω), ∃ C > 0

∥γ(ϕ, b1, na, c)− γ(ϕ, b2, na, c)∥ ≤ C∥b1 − b2∥ (5.115)

and ∀na1 , na2 ∈ L2(Ω), ∃ C > 0

∥γ(ϕ, b, na1 , c)− γ(ϕ, b, na2 , c)∥ ≤ C∥na1 − na2∥ (5.116)

and ∀c1, c2 ∈ L2(Ω), ∃ C > 0

∥γ(ϕ, b, na, c1)− γ(ϕ, b, na, c2)∥ ≤ C∥c1 − c2∥ (5.117)

180



Let

z = −α(b)∇P (ec). (5.118)

Note that α(b) as given by (5.109) has an inverse, in particular,

α−1 = b(α) =
bmax(

1−α
α

)1/q

1 + (1−α
α

)1/q
. (5.119)

Using (5.110),(5.118), and (5.119) we can find the variational formulation:

⟨ect , w⟩+ ⟨∇ · z, w⟩ = ⟨γ(ec, b, na, c), w⟩ ∀w ∈ H1
0 (Ω) (5.120)

⟨α−1z, v⟩ + ⟨∇P (ec), v⟩ = 0 ∀v ∈ H(Ω; div) (5.121)

Using Green’s,

⟨ect , w⟩+ ⟨∇ · z, w⟩ = ⟨γ(ec, b, na, c), w⟩ (5.122)

⟨α−1z, v⟩ − ⟨P (ec),∇ · v⟩ = −⟨P (ecD), v · n⟩ (5.123)

Where n is normal to the boundary.

Integrating (5.110), from 0 to t∫ t

0

∂ec
∂s

ds+∇ ·
∫ t

0

z ds =

∫ t

0

γ(ec, b, na, c) ds (5.124)

ec(t) +∇ ·
∫ t

0

z ds =

∫ t

0

γ(ec, b, na, c) ds+ ec(0) (5.125)

The variational formulation becomes,

⟨ec, w⟩+

⟨
∇ ·
∫ t

0

z ds, w

⟩

=

⟨∫ t

0

γ(ec, b, na, c) ds, w

⟩
+ ⟨ec(0), w⟩ ∀w ∈ L2(Ω) (5.126)

⟨α−1z, v⟩ − ⟨P (ec),∇ · v⟩ = −⟨P (ecD), v · n⟩ (5.127)

∀v ∈ H(Ω; div)
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Semi-discrete mixed finite element method

Let (ech , zh) be the approximation of (ec, z). Where (ech , zh) ∈ Wh ×Vh such that

⟨ech , wh⟩+

⟨
∇ ·
∫ t

0

zh ds, wh

⟩
=

⟨∫ t

0

γ(ech , bh, nah , ch) ds, wh

⟩
+ ⟨ec(0), wh⟩ (5.128)

⟨α−1zh, vh⟩ − ⟨P (ech),∇ · vh⟩ = −⟨P (ecD), vh · n⟩ (5.129)

For all wh ∈ Wh ⊂ L2(Ω) and for all vh ∈ Vh ⊂ H(Ω, div)

5.3.1 Analysis of semi-discrete scheme

The following analysis depends heavily on a paper by Arbogast, Wheeler, and Zhang [7].

Let ec be the true solution of the variational form (5.126),(5.127) and ech be the solution of

the semi-discrete form (5.128),(5.129). Subtracting (5.126),(5.127) from (5.128),(5.129), we

get

(ech − ec, wh) +

(
∇ ·
∫ t

0

(zh − z) ds, wh

)

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)] ds, wh

)
(α−1(zh − z), vh) − (P (ech)− P (ec),∇ · vh) = 0

Using the notation of Arbogast, Wheeler, and Zhang [7]:

Φ = zh − z Φ́ =

∫ t

0

Φ ds ź =

∫ t

0

z ds

the last two equations become

(ech − ec, wh) +

(
∇ · Φ́ , wh

)
=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)] ds, wh

)
(α−1Φ, vh) − (P (ech)− P (ec),∇ · vh) = 0
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By (5.2),

(ech − ec, wh) + (∇ · ΠhΦ́, wh)

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds, wh)

)
∀wh ∈ Wh (5.130)

(aΦ, vh)− (QhP (ech)−QhP (ec),∇ · vh) = 0 ∀vh ∈ Vh (5.131)

Set wh = QhP (ech)−QhP (ec) ∈ Wh

Set vh = PhΦ́ = ΠhΦ́ + (Πh − Ph)ź ∈ Vh this is because Phźh = Πhźh = źh

Important! From this point on, we let a = α−1.

(ech − ec, QhP (ech)−QhP (ec)) + (∇ · ΠhΦ́, QhP (ech)−QhP (ec))

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,QhP (ech)−QhP (ec))

)

(aΦ,PhΦ́)− (QhP (ech)−QhP (ec),∇ · PhΦ́) = 0

Use PhΦ́ = ΠhΦ́ + (Πh − Ph)ź

(ech − ec, QhP (ech)−QhP (ec)) + (QhP (ech)−QhP (ec),∇ · ΠhΦ́)

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,QhP (ech)−QhP (ec))

)

(aΦ,PhΦ́)− (QhP (ech)−QhP (ec),∇ · ΠhΦ́ +∇ · (Πh − Ph)ź) = 0

(ech − ec, QhP (ech)−QhP (ec)) + (QhP (ech)−QhP (ec),∇ · ΠhΦ́)

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,QhP (ech)−QhP (ec))

)

(aΦ,PhΦ́)− (QhP (ech)−QhP (ec),∇ · ΠhΦ́)− (QhP (ech)−QhP (ec),∇ · (Πh − Ph)ź) = 0
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Add these two equations

(ech − ec, QhP (ech)−QhP (ec)) + (aΦ,PhΦ́)

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,QhP (ech)− ΠP (ec))

)
+
(
QhP (ech)−QhP (ec),∇ · (Πh − Ph)ź

)
Now, note that since z ∈ L2(J ; (L2(Ω))

d) we have Φ = zh − z ∈ L2(J ; (L2(Ω))
d)

and since PhΦ́ ∈ Vh, we can use (5.5) to say that:

(a(PhΦ− Φ),PhΦ́)) = 0 and so (aPhΦ,PhΦ́) = (aΦ,PhΦ́) ∀vh ∈ Vh.

In our equation, we now have

(ech − ec, QhP (ech)−QhP (ec)) + (aPhΦ,PhΦ́)

=

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,QhP (ech)−QhP (ec))

)

+
(
QhP (ech)−QhP (ec),∇ · (Πh − Ph)ź

)
(5.132)

Consider the first term on the left hand side of the error equation, (5.132) :

(ech − ec, QhP (ech)−QhP (ec)) = (ech −Qhec, QhP (ech)−QhP (ec))

= (ech −Qhec, P (ech)− P (ec)) = (ech − ec + ec −Qhec, P (ech)− P (ec))

= (ech − ec, P (ech)− P (ec))− (Qhec − ec, P (ech)− P (ec))

If we integrate from 0 to t,∫ t

0

(ech − ec, QhP (ech)−QhP (ec)) ds =

=

∫ t

0

(ech − ec, P (ech)− P (ec)) ds

−
∫ t

0

(Qhec − ec, P (ech)− P (ec)) ds (5.133)
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Before considering the second term on the left hand side of (5.132) recall

(a(·, t)(Ph(t)v − v), vh)) = 0 ∀vh ∈ Vh

Set v = Φ́

(a(·, t)(Ph(t)Φ́− Φ́), vh)) = 0 ∀vh ∈ Vh

Take the derivative with respect to time, recalling that d
dt
Φ́ = d

dt

∫ t

0
Φ ds = Φ

(at(Ph(t)Φ́− Φ́), vh)) + (a((Ph(t)Φ́)t − Φ), vh)) = 0 ∀vh ∈ Vh

Set vh = PhΦ́

(at(Ph(t)Φ́− Φ́),PhΦ́)) + (a((Ph(t)Φ́)t − Φ),PhΦ́)) = 0

Using (5.5), we say

(at(Ph(t)Φ́− Φ́),PhΦ́)) + (a((Ph(t)Φ́)t − PhΦ),PhΦ́)) = 0

(at(Ph(t)Φ́− Φ́),PhΦ́)) + (a(Ph(t)Φ́)t,PhΦ́))− (aPhΦ,PhΦ́)) = 0

(aPhΦ,PhΦ́)) = (at(Ph(t)Φ́− Φ́),PhΦ́)) + (a(Ph(t)Φ́)t,PhΦ́)) (5.134)

Note that
d

dt
(aPhΦ́,PhΦ́) =

∫
atPhΦ́PhΦ́ + 2

∫
aPhΦ́(PhΦ́)t

This gives,

(a(PhΦ́)t,PhΦ́) =
1

2

[
d

dt
(aPhΦ́,PhΦ́) − (atPhΦ́,PhΦ́)

]
Put this into equation (5.134), we get

(aPhΦ,PhΦ́) = (at(Ph(t)Φ́− Φ́),PhΦ́)

+
1

2

[
d

dt
(aPhΦ́,PhΦ́) − (atPhΦ́,PhΦ́)

]
(5.135)

(aPhΦ,PhΦ́) = (at(Ph(t)Φ́− Φ́),PhΦ́)

+
1

2

d

dt
∥a1/2PhΦ́∥2 − 1

2
(atPhΦ́,PhΦ́) (5.136)
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Integrating from 0 to t, we get∫ t

0

(aPhΦ,PhΦ́) ds =

∫ t

0

(at(Ph(t)Φ́ − Φ́),PhΦ́) ds+
1

2
∥a1/2(·, t)PhΦ́(t)∥2

− 1

2
∥a1/2(·, 0)PhΦ́(0)∥2 − 1

2

∫ t

0

(atPhΦ́,PhΦ́) ds (5.137)

Integrating (5.132) in time from 0 to t, substituting (5.133) and (5.137) gives∫ t

0

(ech − ec, P (ech)− P (ec)) ds −
∫ t

0

(Qhec − ec, P (ech)− P (ec)) ds

∫ t

0

(at(Ph(t)Φ́ − Φ́),PhΦ́) ds+
1

2
∥a1/2(·, t)PhΦ́(t)∥2

− 1

2
∥a1/2(·, 0)PhΦ́(0)∥2 − 1

2

∫ t

0

(atPhΦ́,PhΦ́) ds

=

∫ t

0

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,QhP (ech)−QhP (ec))

)
ds

+

∫ t

0

(QhP (ech)−QhP (ec),∇ · (Πh − Ph)ź)ds.

Moving some terms to the right hand side, we get the following error equation:∫ t

0

(ech − ec, P (ech)− P (ec)) ds +
1

2
∥a1/2(·, t)PhΦ́(t)∥2

=

∫ t

0

(∫ s

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds1, QhP (ech)−QhP (ec))

)
ds

+

∫ t

0

(QhP (ech)−QhP (ec),∇ · (Πh − Ph)ź)ds

+

∫ t

0

(Qhec − ec, P (ech)− P (ec)) ds−
∫ t

0

(at(Ph(t)Φ́ − Φ́),PhΦ́) ds
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+
1

2

∫ t

0

∥a1/2(·, 0)PhΦ́(0)∥2 ds+
1

2

∫ t

0

(atPhΦ́,PhΦ́) ds

= T1 + T2 + T3 + T4 + T5 (5.138)

Bounding the terms

T1 =

∫ t

0

(∫ s

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds1, QhP (ech)− ΠP (ec)

)
ds

≤
∫ t

0

∥
∫ s

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds1∥∥QhP (ech)−QhP (ec)∥ ds

≤
∫ t

0

1

2ε3
∥
∫ s

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds1∥2ds

+
ε3
2

∫ t

0

∥QhP (ech)−QhP (ec))∥2 ds

Add and subtract the appropriate terms with the function γ and apply (5.115) through

(5.117):

T1 ≤
∫ t

0

1

2ε3
∥
∫ s

0

[γ(ech , b, na, c)− γ(ec, b, na, c)]ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|na − nah|ds1∥2ds+
∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|b− bn|ds1∥2ds+
ε3
2

∫ t

0

∥QhP (ech)−QhP (ec))∥2 ds

By the assumption on γ, see (5.113),

T1 ≤
∫ t

0

1

2ε3
∥
∫ s

0

[C0(P (ech)− P (ec), ech − ec)]ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

∥b− bn∥ds1∥2ds+
∫ t

0

C

2ε3
∥
∫ s

0

|na − nah |ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds+
ε3
2

∫ t

0

∥QhP (ech)−QhP (ec))∥2 ds

T2 =

∫ t

0

(QhP (ech)−QhP (ec),∇ · (Πh − Ph)ź)ds

≤
∫ t

0

∥QhP (ech)−QhP (ec)∥∥∇ · (Πh − Ph)ź∥ds

≤ ε2
2

∫ t

0

∥QhP (ech)−QhP (ec)∥2 +
1

2ε2
∥∇ · (Πh − Ph)ź∥2ds
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T3 =

∫ t

0

(Qhec − ec, P (ech)− P (ec)) ds

≤
∫ t

0

∥Qhec − ec∥∥P (ech)− P (ec))∥ ds

≤
∫ t

0

1

2ε1
∥Qhec − ec∥2 +

ε1
2
∥P (ech)− P (ec))∥2 ds

T4 = −
∫ t

0

(at(Ph(t)Φ́ − Φ́),PhΦ́) ds

= −
∫ t

0

(at(Ph(t)

∫ t

0

(zh − z)ds −
∫ t

0

(zh − z)ds),PhΦ́) ds

= −
∫ t

0

(at(Ph(t)(źh − ź) − (źh − ź)),PhΦ́) ds

= −
∫ t

0

(at(Ph(t)źh − źh),PhΦ́) ds

−
∫ t

0

(at(Ph(t)(−ź) − (−ź)),PhΦ́) ds

= −
∫ t

0

(at(Ph(t)źh − źh),PhΦ́) ds +

∫ t

0

(at(Ph(t)ź − ź),PhΦ́) ds

By (5.5), the first term on the right hand side is zero, so we have

T4 =

∫ t

0

(at(Ph(t)ź − ź),PhΦ́) ds

Assume that at is bounded above,

T4 ≤
∫ t

0

C1∥Ph(t)ź − ź∥∥PhΦ́∥ ds

≤
∫ t

0

C2

2
∥Ph(t)ź − ź∥2 + C3

2
∥PhΦ́∥2 ds

T5 = +
1

2

∫ t

0

(atPhΦ́,PhΦ́) ds ≤
1

2
C1

∫ t

0

∥PhΦ́∥2 ds

Substituting T1 through T5 into (5.138), we get∫ t

0

(ech − ec, P (ech)− P (ec))ds+ ∥a1/2PhΦ́∥2

≤
∫ t

0

1

2ε1
∥Qhec − ec∥2 ds+

∫ t

0

ε1
2
∥P (ech)− P (ec))∥2 ds
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+ C4

∫ t

0

∥PhΦ́∥2 ds+
∫ t

0

C2

2
∥Ph(t)ź − ź∥2ds

+
ε2
2

∫ t

0

∥QhP (ech)−QhP (ec)∥2 +
1

2ε2
∥∇ · (Πh − Ph)ź∥2ds

+

∫ t

0

1

2ε3
∥
∫ s

0

[C0(P (ech)− P (ec), ech − ec)]ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

∥b− bn∥ds1 +
∫ t

0

C

2ε3
∥
∫ s

0

|na − nah|ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds+
ε3
2

∫ t

0

∥QhP (ech)−QhP (ec))∥2ds

Before continuing, note that from (5.112), we can say,

∥P (ech)− P (ec)∥2 ≤ C0(P (ech)− P (ec), ech − ec) (5.139)

This will be used in what follows.

Using the fact that ∥QhP (ech)−QhP (ec)∥ ≤ C∥P (ech)− P (ec)∥, we have∫ t

0

(ech − ec, P (ech)− P (ec))ds+ ∥a1/2PhΦ́∥2

≤
∫ t

0

1

2ε1
∥Qhec − ec∥2 ds+

∫ t

0

ε1
2
∥P (ech)− P (ec))∥2 ds

+ C4

∫ t

0

∥PhΦ́∥2 ds+
∫ t

0

C2

2
∥Ph(t)ź − ź∥2ds

+C
ε2
2

∫ t

0

∥P (ech)− P (ec)∥2ds+
∫ t

0

1

2ε2
∥∇ · (Πh − Ph)ź∥2ds

+

∫ t

0

1

2ε3
∥
∫ s

0

[C0(P (ech)− P (ec), ech − ec)]ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

∥b− bn∥ds1∥2ds+
∫ t

0

C

2ε3
∥
∫ s

0

|na − nah |ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds+
ε3
2

∫ t

0

∥P (ech)− P (ec))∥2 ds (5.140)

Using (5.139):∫ t

0

(ech − ec, P (ech)− P (ec))ds+ C9∥PhΦ́∥2

≤
∫ t

0

1

2ε1
∥Qhec − ec∥2 ds+

∫ t

0

ε1
2
C0(P (ech)− P (ec), ech − ec) ds
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+ C4

∫ t

0

∥PhΦ́∥2 ds+
∫ t

0

C2

2
∥Ph(t)ź − ź∥2ds

+C
ε2
2

∫ t

0

C0(P (ech)− P (ec), ech − ec)ds+

∫ t

0

1

2ε2
∥∇ · (Πh − Ph)ź∥2ds

+

∫ t

0

1

2ε3

∫ s

0

[C0(P (ech)− P (ec), ech − ec)]ds1ds

+
ε3
2

∫ t

0

C00(P (ech)− P (ec), ech − ec) ds

+

∫ t

0

C

2ε3
∥
∫ s

0

∥b− bn∥ds1∥2ds+
∫ t

0

C

2ε3
∥
∫ s

0

|na − nah |ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds (5.141)

Choosing ε1, ε2, and ε3 carefully,

C5

∫ t

0

(ech − ec, P (ech)− P (ec)) ds+ C9∥PhΦ́∥2

≤
∫ t

0

C6∥Qhec − ec∥2 ds+ C4

∫ t

0

∥PhΦ́∥2 ds

+

∫ t

0

C2

2
∥Ph(t)ź − ź∥2ds+ C7

∫ t

0

∥∇ · (Πh − Ph)ź∥2ds

+ C8

∫ t

0

∫ s

0

[C0(P (ech)− P (ec), ech − ec)]ds1ds

+

∫ t

0

C

2ε3
∥
∫ s

0

∥b− bn∥ds1∥2ds+
∫ t

0

C

2ε3
∥
∫ s

0

|na − nah|ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds

Note that the Gronwall Inequality, theorem 4.8, can be applied to the terms that have the

constants C5 and C8. Also, the Gronwall Inequality can be applied to the terms that have

the constants C9 and C4 to get:

C5

∫ t

0

(ech − ec, P (ech)− P (ec)) ds+ C9∥PhΦ́∥2

≤ C10

{∫ t

0

C6∥Qhec − ec∥2 ds+
∫ t

0

C2

2
∥Ph(t)ź − ź∥2ds

+C7∥∇ · (Πh − Ph)ź∥2ds +

∫ t

0

C

2ε3
∥
∫ s

0

|b− bn|ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|na − nah |ds1∥2ds
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+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds

}
(5.142)

Using (5.113) and the definition of ∥PhΦ́∥

C5

∫ t

0

∥γ(ech , b, na, c)− γ(ec, b, na, c)∥2 ds+ C9∥
∫ t

0

zh ds−
∫ t

0

Phz ds∥2

≤ C10

{∫ t

0

C6∥Qhec − ec∥2 ds+
∫ t

0

C2

2
∥Ph(t)ź− ź∥2ds

+C7∥∇ · (Πh − Ph)ź∥2ds +

∫ t

0

C

2ε3
∥
∫ s

0

|b− bn|ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|na − nah |ds1∥2ds

+

∫ t

0

C

2ε3
∥
∫ s

0

|c− ch|ds1∥2ds

}
(5.143)

Furthermore, since all the terms are positive, we get:

Bound 1 (Degenerate Case)∫ t

0

∥γ(ech , b, na, c)− γ(ec, b, na, c)∥ ds+ ∥
∫ t

0

zh ds−
∫ t

0

Phz ds∥

≤ C11

{∫ t

0

∥Qhec − ec∥ ds+
∫ t

0

∥Ph(t)ź − ź∥ds

+∥∇ · (Πh − Ph)ź∥2ds +

∫ t

0

∥
∫ s

0

|b− bn|ds1∥2ds

+

∫ t

0

∥
∫ s

0

|na − nah|ds1∥2ds +

∫ t

0

∥
∫ s

0

|c− ch|ds1∥2ds

}
. (5.144)

We may also go back to (5.142) and use (5.112) and the definition of ∥PhΦ́∥ and, again,

use the fact that all terms are positive, to get:

Bound 2 (Degenerate Case)∫ t

0

∥P (ech)− P (ec)∥ ds+ C9∥
∫ t

0

zh ds−
∫ t

0

Phz ds∥

≤ C12

{∫ t

0

∥Qhec − ec∥ ds+
∫ t

0

∥Ph(t)ź − ź∥ds

191



+∥∇ · (Πh − Ph)ź∥2ds +

∫ t

0

∥
∫ s

0

|b− bn|ds1∥2ds

+

∫ t

0

∥
∫ s

0

|na − nah |ds1∥2ds +

∫ t

0

∥
∫ s

0

|c− ch|ds1∥2ds

}
. (5.145)

Bound in the H−1 Norm

So far, we have succeeded in finding a bound in the error P (ech)−P (ec) in the L2 norm.

We now desire to find a bound in the error ech − ec in some norm. Once again, we follow

Arbogast, Wheeler, and Zhang [7] to get such a bound in the H−1 norm.

Let φ ∈ H1
0 and Qhφ ∈ Wh. Where Πφ is the L2 projection of φ onto Wh. Then

⟨ech − ec, φ⟩ = ⟨ech − ec, φ−Qhφ+Qhφ⟩

= ⟨ech − ec, φ−Qhφ⟩ + ⟨ech − ec, Qhφ⟩

= ⟨ech −Qhec +Qhec − ec, φ−Qhφ⟩ + ⟨ech − ec, Qhφ⟩

= ⟨ech −Qhec, φ−Qhφ⟩ + ⟨Qhec − ec, φ−Qhφ⟩ + ⟨ech − ec, Qhφ⟩

Note that ech −Qhec ∈ Wh and φ−Qhφ is orthogonal to Wh. So, the first term on the right

hand side is zero. So, we have

⟨ech − ec, φ⟩ = ⟨Qhec − ec, φ−Qhφ⟩ + ⟨ech − ec, Qhφ⟩

Then by (5.130),

⟨ech − ec, φ⟩ = (Qhec − ec, φ−Qhφ)

+

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,Qhφ

)
− (∇ · ΠhΦ́, Qhφ)

Since ∇ · ΠhΦ́ ∈ Wh, we have ⟨∇ · ΠhΦ́, Qhφ⟩ = ⟨∇ · ΠhΦ́, φ⟩

⟨ech − ec, φ⟩ = (Qhec − ec, φ−Qhφ)

+

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,Qhφ

)
− (∇ · ΠhΦ́, φ)
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Integration by parts gives

⟨ech − ec, φ⟩ = (Qhec − ec, φ−Qhφ)

+

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,Qhφ

)
+ (ΠhΦ́,∇φ)− (ΠhΦ́, φ)∂Ω

Since φ ∈ H1
0 , the last term on the right hand side is zero. So, we have

⟨ech − ec, φ⟩ ≤ ⟨Qhec − ec, φ−Qhφ⟩

+

(∫ t

0

[γ(ech , bh, nah , ch)− γ(ec, b, na, c)]ds,Qhφ

)
+ (ΠhΦ́,∇φ)

≤ ∥Qhec − ec∥∥φ−Qhφ∥

+

∫ t

0

∥γ(ech , bh, nah , ch)− γ(ec, b, na, c)∥ds∥Qhφ∥+ ∥ΠhΦ́∥∥∇φ∥

For a projection, ∥Qhφ∥ ≤ ∥φ∥. The approximation result gives us

∥φ−Qhφ∥ ≤ h1−0K∥φ∥H1(Ω)

Also, we have

∥∇φ∥L2 ≤ ∥φ∥H1 and ∥φ∥L2 ≤ ∥φ∥H1

⟨ech − ec, φ⟩ ≤ C

(
∥Qhec − ec∥h

+

∫ t

0

∥γ(ech , bh, nah , ch)− γ(ec, b, na, c)∥ds+ ∥ΠhΦ́∥

)
∥φ∥H1(Ω)

⟨ech − ec, φ⟩
∥φ∥H1(Ω)

≤ C

(
∥Qhec − ec∥h

+

∫ t

0

∥γ(ech , bh, nah , ch)− γ(ec, b, na, c)∥ds+ ∥ΠhΦ́∥

)

Since this is true for all φ ∈ H1
0 (Ω),

sup
φ∈H1

0 (Ω)

⟨ech − ec, φ⟩
∥φ∥H1(Ω)

≤ C

(
∥Qhec − ec∥h

+

∫ t

0

∥γ(ech , bh, nah , ch)− γ(ec, b, na, c)∥ds+ ∥ΠhΦ́∥

)
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∥ech − ec∥H−1(Ω) ≤ C

(
∥Qhec − ec∥h

+

∫ t

0

∥γ(ech , bh, nah , ch)− γ(ec, b, na, c)∥ds+ ∥ΠhΦ́∥

)

Add and subtract the appropriate functions of γ within the second term on the right hand

side. Add and subtract
∫ t

0
Phzds inside the last term on the right hand side and using (5.115)

through (5.117), we get,

∥ech − ec∥H−1(Ω) ≤ C

(
∥Qhec − ec∥h +

∫ t

0

∥na − nah∥ds +

∫ t

0

∥c− ch∥ds

+

∫ t

0

∥bh − b∥ds+
∫ t

0

∥γ(ech , b, na, c)− γ(ec, b, na, c)∥ ds

+∥
∫ t

0

zh ds−
∫ t

0

Phz ds∥+ ∥
∫ t

0

Phz ds−
∫ t

0

Πhz ds∥

)
.

Substitute (5.144)

∥ech − ec∥H−1(Ω) ≤ C

(
∥Qhec − ec∥h +

∫ t

0

∥na − nah∥ds

+

∫ t

0

∥c− ch∥ds+
∫ t

0

∥bh − b∥ds+
∫ t

0

∥Qhec − ec∥ ds

+

∫ t

0

∥Ph(t)ź − ź∥ds+
∫ t

0

∥∇ · (Πh − Ph)ź∥ds

+∥
∫ t

0

Phz ds−
∫ t

0

Πhz ds∥+
∫ t

0

∥
∫ s

0

|b− bn|ds1∥2ds

+

∫ t

0

∥
∫ s

0

|na − nah |ds1∥2ds +

∫ t

0

∥
∫ s

0

|c− ch|ds1∥2ds

≤ C

(
∥Qhec − ec∥h +

∫ t

0

∥bh − b∥ds+
∫ t

0

∥Qhec − ec∥ ds

+

∫ t

0

∥na − nah∥ds +

∫ t

0

∥c− ch∥ds

+

∫ t

0

∥Ph(t)ź − ź∥ds+
∫ t

0

∥∇ · (Πhź− ź+ ź− Phź)∥ds

+∥
∫ t

0

Phz ds−
∫ t

0

z ds+

∫ t

0

z ds−
∫ t

0

Πhz ds∥
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+

∫ t

0

∥
∫ s

0

|na − nah|ds1∥2ds +

∫ t

0

∥
∫ s

0

|c− ch|ds1∥2ds

+

∫ t

0

∥
∫ s

0

|b− bn|ds1∥2ds

)

≤ C

(
∥Qhec − ec∥h +

∫ t

0

∥bh − b∥ds+
∫ t

0

∥Qhec − ec∥ ds

+

∫ t

0

∥na − nah∥ds +

∫ t

0

∥c− ch∥ds

+

∫ t

0

∥Ph(t)ź − ź∥ds+
∫ t

0

(∥∇ · (Πhź− ź)∥+ ∥∇ · (ź− Phź)∥)ds

+∥
∫ t

0

(Phz − z) ds∥+ ∥
∫ t

0

(z− Πhz) ds∥+
∫ t

0

∥
∫ s

0

|b− bn|ds1∥2ds

+

∫ t

0

∥
∫ s

0

|na − nah |ds1∥2ds +

∫ t

0

∥
∫ s

0

|c− ch|ds1∥2ds

)
. (5.146)

Bound 3 (Error bound in H−1 Norm - Degenerate Case)

Thus, (5.146) gives an error bound for ech − ec in the H−1 norm. Note that in (5.146)

the terms ∥Qhec − ec∥, ∥Ph(t)ź − ź∥, ∥∇ · (ź − Phź)∥, ∥∇ · (Πhź − ź)∥, ∥
∫ t

0
(z − Πhz) ds∥,

and ∥
∫ t

0
(Phz − z) ds∥ will be bounded using approximation results. Bounds on the terms

∥bh − b∥,∥nah − na∥, and ∥ch − c∥ were found in the numerical analysis for the equations in

Part I of the PDE system.

Note: A careful look at Bound 3 indicates that in order to get convergence of at least

h, it is required that P (ec) ∈ H3(Ω).
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5.4 FINITE ELEMENT ANALYSIS OF THE PDES IN PART III

In this section we will do the final error bound, the bound on the error of ZO1. Recall,

∂ZO1

∂t
=
(
kZec

ec + kZect

∂ec
∂t

)
ZO1max(1− ZO1/zec)

−kZNNO · ZO1 (5.147)

where

zec = (1− ϵzec)ZO1max + ϵzec

(
ZO1max

ec,max

)
ec. (5.148)

The initial condition is given by:

ZO1(x, 0) := ZO10(x) on Ω

(Note that ZO10(x) will usually be represented by ZO10.)

Note that the right hand side of (5.147) is dependent upon an equation (the NO equation)

from Part I of PDE equations and upon the equation (the epithelial equation) from Part II

of PDE equations. We found an error bound for the numerical approximation of the Part

I equations in terms of the L2 norm but the error bound for Part II equation was found in

terms of the H−1 norm. Therefore, it will probably not be possible to find an error for the

numerical approximation of ZO1 in a norm any stronger than H−1. Therefore, the goal in

this section is to find an error bound in that norm.

In order to simplify the following calculations the parameters in (5.147) and (5.148) will

be replaced with their actual values:

ZO1t = (.03ec + 2ect)(1− ZO1/zec)− .75NO · ZO1 (5.149)

zec = .95 + .05ec. (5.150)

Now, substitute (5.150) into (5.149) and integrate with respect to t to obtain:

ZO1 = .03

∫ t

0

ec + 2ec − 2ec(0)− .03

∫ t

0

ecZO1

.95 + .05ec

− 2

∫ t

0

ectZO1

.95 + .05ec
− .75

∫ t

0

NO · ZO1 + ZO1(0).
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Weak Formulation

Set W := H1
0 (Ω). The weak formulation of the above equation may be stated as follows:

find ZO1 ∈ W such that

(ZO1, w) = .03

∫ t

0

(ec, w) + 2(ec, w)

+ .03

∫ t

0

(
−ecZO1
.95 + .05ec

, w

)
+ 2

∫ t

0

(
−ectZO1
.95 + .05ec

, w

)

−.75
∫ t

0

(NO · ZO1, w) + (ZO1(0), w) ∀w ∈ H1
0 (Ω). (5.151)

Discrete Formulation

Let Wh denote the finite element approximating subspace of W . Then the semidiscrete

formulation may be described as: find ZO1h ∈ Wh such that

(ZO1h, w) = .03

∫ t

0

(ech , w) + 2(ech , w)

+ .03

∫ t

0

(
echZO1h
.95 + .05ech

, w

)
+ 2

∫ t

0

(
ecthZO1h

.95 + .05ech
, w

)

−.75
∫ t

0

(NOh · ZO1h, w) + (ZO1h(0), w) ∀w ∈ Wh (5.152)

At t = 0 define ZO1h(x, 0) := ZO10h ∈ Wh by:

(ZO10h − ZO10, w) = 0 ∀w ∈ Wh. (5.153)

The subtracting (5.152) from (5.151) and using (5.153) we get the error equation,

(ZO1− ZO1h, w) = .03

∫ t

0

(ec − ech , w) + 2(ec − ech , w)

+ .03

∫ t

0

(
−ecZO1
.95 + .05ec

+
echZO1h
.95 + .05ech

, w

)
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+2

∫ t

0

(
−ectZO1
.95 + .05ec

+
ecthZO1h

.95 + .05ech
, w

)

+.75

∫ t

0

(−NO · ZO1 +NOh · ZO1h, w)

:= .03

∫ t

0

T1 + 2T2 + .03

∫ t

0

T3 + 2

∫ t

0

T4 + .75

∫ t

0

T5 ∀w ∈ Wh.

Bounds on each term

In the following analysis, we will need the following three assumptions:

Assumption 1. For the functions f where f is ZO1, ZO1h, ect or ecth there exists a constant

Cf,Ω such that:

sup
w∈H1(Ω)

(fu, w)

∥w∥H1(Ω)

≤ Cf,Ω sup
w∈H1(Ω)

(u,w)

∥w∥H1(Ω)

(5.154)

where Cf,Ω is a constant that depends only on f and Ω.

Note that any functions that are in L∞(Ω), such as ZO1, will automatically satisfy (5.154).

Based on the results of Part I of the PDE analysis, we know that ∥NO∥L∞(Ω) is bounded

and using the results of Part I of the numerical analysis, we know that ∥NOh∥ is bounded.

Here we will make the further assumption:

Assumption 2. ∥NOh∥∞ is bounded.

We previously assumed that ec is a non-negative function. Therefore, it is reasonable to

make the following assumption:

Assumption 3. −4 ≤ ech .
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Note that the terms T1 and T2 are already in a form that may be analyzed. For T3 and

T4, we will find a common denomination, add and subtract the appropriate terms to get:

T3 =

(
−.95ech(ZO1− ZO1h)

(.95 + .05ec)(.95 + .05ech)
, w

)
+

(
−.95ZO1(ec − ech)

(.95 + .05ec)(.95 + .05ech)
, w

)

+

(
−.05echec(ZO1− ZO1h)

(.95 + .05ec)(.95 + .05ech)
, w

)
= (f31(ZO1− ZO1h), w) + (f32(ec − ech), w) + (f33(ZO1− ZO1h), w).

T4 =

(
−.95ecth (ZO1− ZO1h)

(.95 + .05ec)(.95 + .05ech)
, w

)
+

(
−.95ZO1(ect − ecth )

(.95 + .05ec)(.95 + .05ech)
, w

)

+

(
−.05ecthec(ZO1− ZO1h)

(.95 + .05ec)(.95 + .05ech)
, w

)
+

(
.05ZO1het(ec − ech)

(.95 + .05ec)(.95 + .05ech)
, w

)

+

(
−.05ZO1hec(ect − ecth )

(.95 + .05ec)(.95 + .05ech)
, w

)
= (f41(ZO1− ZO1h), w) + (f42(ect − ecth ), w) + (f43(ZO1− ZO1h), w)

+(f44(ec − ech), w) + (f45(ect − ecth ), w).

T5 = (−NO · ZO1 +NOh · ZO1−NOh · ZO1 +NOh · ZO1h, w)

= ((−NOh)(ZO1− ZO1h), w) + (ZO1(NOh −NO), w)

≤ ((−NOh)(ZO1− ZO1h), w) + ∥ZO1∥L∞∥NOh −NO∥∥w∥

≤ ((−NOh)(ZO1− ZO1h), w) + ∥ZO1∥L∞∥NOh −NO∥∥w∥H1(Ω).

Put these terms into the error equation to get:

(ZO1− ZO1h, w) ≤ C

∫ t

0

(ec − ech , w) + 2(ec − ech , w)

+C

∫ t

0

((f31 + f33 + f41 + f43)(ZO1− ZO1h), w)

+C

∫ t

0

((f32 + f44)(ec − ech), w) + C

∫ t

0

((f42 + f45)(ect − ecth ), w)

+C∥NOh∥L∞

∫ t

0

((ZO1− ZO1h), w)

+C

∫ t

0

∥ZO1∥L∞∥NOh −NO∥∥w∥H1(Ω).
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Take the sup and note that the functions f31 and f33 are bounded. Apply (5.154) to the

terms that contain f32, f41, f42, f43, and f44 to get:

sup
w∈H1(Ω)

(ZO1− ZO1h, w)

∥w∥H1(Ω)

≤ C

∫ t

0

sup
w∈H1(Ω)

(ec − ech , w)

∥w∥H1(Ω)

+2 sup
w∈H1(Ω)

(ec − ech , w)

∥w∥H1(Ω)

+ C

∫ t

0

sup
w∈H1(Ω)

((ZO1− ZO1h), w)

∥w∥H1(Ω)

+C

∫ t

0

sup
w∈H1(Ω)

((ec − ech), w)

∥w∥H1(Ω)

+ C

∫ t

0

sup
w∈H1(Ω)

((ect − ecth ), w)

∥w∥H1(Ω)

+C∥NOh∥L∞

∫ t

0

sup
w∈H1(Ω)

((ZO1− ZO1h), w)

∥w∥H1(Ω)

+C

∫ t

0

∥ZO1∥L∞∥NOh −NO∥.

In the PDE section Part III, we proved that ∥ZO1∥L∞ is bounded. By Assumption 2,

∥NOh∥L∞ is bounded. So, the above simplifies to:

∥ZO1− ZO1h∥H−1(Ω) ≤ C

∫ t

0

∥ec − ech∥H−1(Ω) + C∥ec − ech∥H−1(Ω)

+C

∫ t

0

∥ect − ecth∥H−1(Ω) + C

∫ t

0

∥ZO1− ZO1h∥H−1(Ω)

+C

∫ t

0

∥NOh −NO∥.

Result - Bound in H−1 norm.

Finally, apply the Gronwall Inequality, theorem 4.8, to get

∥ZO1− ZO1h∥H−1(Ω) ≤ C

(∫ t

0

∥ec − ech∥H−1(Ω) + C∥ec − ech∥H−1(Ω)

+C

∫ t

0

∥ect − ecth∥H−1(Ω) + C

∫ t

0

∥NOh −NO∥

)
. (5.155)

For (5.155), the bound on ∥ect−ecth∥H−1(Ω) with convergence of h (as long as P (ec) ∈ H3(Ω))

was found in the numerical analysis of the Part II equations. A bound on ∥NOh − NO∥

with convergence h2µNO was found in the numerical analysis of the Part I equations. Thus,

∥ZO1−ZO1h∥H−1(Ω) is bounded by h, as long as the regularity of NO and the power of rNO

is great enough.
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5.5 CONCLUSION FOR FINITE ELEMENT ANALYSIS CHAPTER

It was demonstrated in this chapter that convergence for the fully coupled NEC system is

attainable. Convergence for the equations in Part I, using the L2 norm, was O(h2µα) for

α = b,m, c, ca, NO, d, ec, ZO1 and O(h2µα−2) for α = ma, na. By using this result, it was

found that convergence for the epithelial equation in Part II, using the H−1 norm, was O(h)

(as long as we have P (ec) ∈ H3(Ω)). Finally, using the results of Part I and Part II, it was

found that convergence for the tight junction equation in Part III, using the H−1 norm, was

O(h). All of these results are summarized in the following two tables.
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Equation Error Norm Conv Notes

Rate

Bacteria ∥bh − b∥ L2(Ω) h2µb

Macrophage ∥mh −m∥ L2(Ω) h2µm

Activated

Macrophage ∥mah −ma∥ L2(Ω) h2µma−2

Cytokine ∥ch − c∥ L2(Ω) h2µc

Anti-Infl.

Cytokine ∥cah − ca∥ L2(Ω) h2µca

Table 3: Convergence Rates for fully coupled system (1 of 2).
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Equation Error Norm Conv Notes

Rate

Nitric

Oxide ∥NOh −NO∥ L2(Ω) h2µNO

Activated

Neutrophils ∥nah − na∥ L2(Ω) h2µna−2

Damage ∥dh − d∥ L2(Ω) h2µd

Requires

Epithelial ∥ech − ec∥H−1(Ω) H−1(Ω) h P (ec) ∈ H3(Ω)

Tight

Junction ∥ZO1h − ZO1∥H−1(Ω) H−1(Ω) h

Table 4: Convergence Rates for fully coupled system (2 of 2).
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6.0 CONVERGENCE TESTS

6.1 CODE TO TEST COUPLED ADVECTION EQUATION

The author of this thesis wrote MATLAB code in order to do convergence tests on the system

∂u

∂t
−∇ · (D1∇u− u∇v) = f1(u, v) (6.1)

∂v

∂t
−∇ · (D2∇v − v∇u) = f2(u, v). (6.2)

Note that this system is more general than the system in our NEC model in that (6.2)

contains the term ∇ · (D2∇v − v∇u) instead of just ∇ · D2∇v. The test runs below will

include this more general case as well as cases similar to the NEC model.

Even though the purpose of these tests is determine the convergence of the mixed method,

for comparison purposes code was also written for the Implicit Finite Difference Method,

Explicit Finite Difference Method, and Cell-Centered Finite Difference Method. Due to the

unusual non-linearities in the PDE system, a short description of equations for each of these

methods is given here.

6.1.1 Implicit Finite Difference

This section covers the Implicit Finite Difference Method. The left hand side of equation

(6.1) is discretized as follows:

um+1
ix,iy − umix,iy

∆t
+

C11

(
um+1
ix,iy − um+1

ix−1,iy

∆x

)(
vm+1
ix+1,iy − vm+1

ix−1,iy

2∆x

)
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+C12

(
um+1
ix,iy − um+1

ix,iy−1

∆y

)(
vm+1
ix,iy+1 − vm+1

ix,iy−1

2∆y

)

+C11

(
um+1
ix,iy

vm+1
ix−1,iy − 2vm+1

ix,iy + vm+1
ix+1,iy

(∆x)2

)

+C12

(
um+1
ix,iy

vm+1
ix,iy−1 − 2vm+1

ix,iy + vm+1
ix,iy+1

(∆y)2

)

−C21

(
um+1
ix−1,iy − 2um+1

ix,iy + um+1
ix+1,iy

(∆x)2

)

−C22

(
um+1
ix,iy−1 − 2um+1

ix,iy + um+1
ix,iy+1

(∆y)2

)
. (6.3)

The left hand side of equation (6.2) is discretized as follows:

vm+1
ix,iy − vmix,iy

∆t
+

D11

(
vm+1
ix,iy − vm+1

ix−1,iy

∆x

)(
um+1
ix+1,iy − um+1

ix−1,iy

2∆x

)

+D12

(
vm+1
ix,iy − vm+1

ix,iy−1

∆y

)(
um+1
ix,iy+1 − um+1

ix,iy−1

2∆y

)

+D11

(
vm+1
ix,iy

um+1
ix−1,iy − 2um+1

ix,iy + um+1
ix+1,iy

(∆x)2

)

+D12

(
vm+1
ix,iy

um+1
ix,iy−1 − 2um+1

ix,iy + um+1
ix,iy+1

(∆y)2

)

−D21

(
vm+1
ix−1,iy − 2vm+1

ix,iy + vm+1
ix+1,iy

(∆x)2

)

−D22

(
vm+1
ix,iy−1 − 2vm+1

ix,iy + vm+1
ix,iy+1

(∆y)2

)
. (6.4)

The next few pages will make more sense if we first rearrange in this way:

um+1
ix,iy − umix,iy

∆t
+

C11

(
um+1
ix,iy − um+1

ix−1,iy

∆x

)(
vm+1
ix+1,iy − vm+1

ix−1,iy

2∆x

)

+C12

(
um+1
ix,iy − um+1

ix,iy−1

∆y

)(
vm+1
ix,iy+1 − vm+1

ix,iy−1

2∆y

)
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−C21

(
um+1
ix−1,iy − 2um+1

ix,iy + um+1
ix+1,iy

(∆x)2

)

−C22

(
um+1
ix,iy−1 − 2um+1

ix,iy + um+1
ix,iy+1

(∆y)2

)
(6.5)

+C11

(
um+1
ix,iy

vm+1
ix−1,iy − 2vm+1

ix,iy + vm+1
ix+1,iy

(∆x)2

)

+C12

(
um+1
ix,iy

vm+1
ix,iy−1 − 2vm+1

ix,iy + vm+1
ix,iy+1

(∆y)2

)
.

vm+1
ix,iy − vmix,iy

∆t
+

D11

(
vm+1
ix,iy − vm+1

ix−1,iy

∆x

)(
um+1
ix+1,iy − um+1

ix−1,iy

2∆x

)

+D12

(
vm+1
ix,iy − vm+1

ix,iy−1

∆y

)(
um+1
ix,iy+1 − um+1

ix,iy−1

2∆y

)

−D21

(
vm+1
ix−1,iy − 2vm+1

ix,iy + vm+1
ix+1,iy

(∆x)2

)

−D22

(
vm+1
ix,iy−1 − 2vm+1

ix,iy + vm+1
ix,iy+1

(∆y)2

)
(6.6)

+D11

(
vm+1
ix,iy

um+1
ix−1,iy − 2um+1

ix,iy + um+1
ix+1,iy

(∆x)2

)

+D12

(
vm+1
ix,iy

um+1
ix,iy−1 − 2um+1

ix,iy + um+1
ix,iy+1

(∆y)2

)
.

The first partial differential equation

Thus, the discretization of equation (6.1) simplifies to:

g := K1 uix,iy +K2 uix,iyvix+1,iy +K3 uix,iyvix−1,iy +K4 uix−1,iyvix+1,iy +

K5 uix−1,iyvix−1,iy +K6 uix,iyvix,iy+1 +K7 uix,iyvix,iy−1 +K8 uix,iy−1vix,iy+1 +

K9 uix,iy−1vix,iy−1 +K10 uix−1,iy +K11 uix,iy +K12 uix+1,iy +K13 uix,iy−1 + (6.7)

K14 uix,iy +K15 uix,iy+1 +K18 vix−1,iyuix,iy +K19 vix,iyuix,iy +K20 vix+1,iyuix,iy +

K18 vix,iy−1uix,iy +K19 vix,iyuix,iy +K20 vix,iy+1uix,iy − f1(x, y, t) +K17u
m
ix,iy
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Where K1 = 1/(△t), K2 = C11/(2 ∗ (△x)2), K3 = −K2, K4 = −K2, K5 = K2, K6 =

C12/(2 ∗ (△y)2), K7 = −K6, K8 = −K6, K9 = K6, K10 = −C21/(△x)2, K11 = (−2) ∗

K10, K12 = K10, K13 = −C22/(△y)2, K14 = (−2) ∗K13, K15 = K13, K17 = −K1, K18 =

C11/(△x)2, K19 = (−2)∗K18, K20 = K18, K21 = C12/(△y)2, K22 = (−2)∗K21, K23 = K21.

Note that f1(x, y, t) is term number 16. Therefore K16 = 1 and is not shown here. K17

is shown last here for clarity because it is associated with the ”m” time step. Unless other-

wise noted all superscripts are m+ 1.

The second partial differential equation

Likewise, the discretization of equation (6.2) simplifies to:

h = J1 vix,iy + J2 vix,iyuix+1,iy + J3 vix,iyuix−1,iy + J4 vix−1,iyuix+1,iy +

J5 vix−1,iyuix−1,iy + J6 vix,iyuix,iy+1 + J7 vix,iyuix,iy−1 + J8 vix,iy−1uix,iy+1 +

J9 vix,iy−1uix,iy−1 + J10 vix−1,iy + J11 vix,iy + J12 vix+1,iy + J13 vix,iy−1 + (6.8)

J14 vix,iy + J15 vix,iy+1 + J18 uix−1,iyvix,iy + J19 uix,iyvix,iy + J20 uix+1,iyvix,iy +

J18 uix,iy−1vix,iy + J19 uix,iyvix,iy + J20 uix,iy+1vix,iy − f2(x, y, t) + J17v
m
ix,iy.

Where J1 = 1/(△t), J2 = D11/(2 ∗ (△x)2), J3 = −J2, J4 = −J2, J5 = J2, J6 =

D12/(2∗ (△y)2), J7 = −J6, J8 = −J6, J9 = J6, J10 = −D21/(△x)2, J11 = (−2)∗J10, J12 =

J10, J13 = −D22/(△y)2, J14 = (−2) ∗ J13, J15 = J13, J17 = −J1, J18 = C11/(△x)2, J19 =

(−2) ∗ J18, J20 = J18, J21 = D12/(△y)2, J22 = (−2) ∗ J21, J23 = J21.

Note that f2(x, y, t) is term number 16. Therefore J16 = 1 and is not shown here. J17

is shown last here for clarity because it is associated with the ”m” time step. Unless other-

wise noted all superscripts are m+ 1.
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Define

FF :=



g1

...

gn

h1

...

hn


and u :=



u1

...

un

v1

...

vn


.

We need to find a vector u such that FF(u) = 0. Due to the non-linearities, this system of

equations will be solved using Newton’s method, i.e., u will be found by iteratively solving:

u = u−A−1(x)FF(x).

The Jacobian A(x) is given by:

A(x) =



∂g1
∂u1

(x) ... ∂g1
∂un

(x) ∂g1
∂v1

(x) ... ∂g1
∂vn

(x)

... ... ... ... ... ...

∂gn
∂u1

(x) ... ∂gn
∂un

(x) ∂gn
∂v1

(x) ... ∂gn
∂vn

(x)

∂h1

∂u1
(x) ... ∂h1

∂un
(x) ∂h1

∂v1
(x) ... ∂h1

∂vn
(x)

... ... ... ... ... ...

∂hn

∂u1
(x) ... ∂hn

∂un
(x) ∂hn

∂v1
(x) ... ∂hn

∂vn
(x)


.

Therefore, the derivatives of g and h will be required:

Partial derivatives of g with respect to each variable that has ”m+1” super-

script

∂g

∂uix,iy
= K1 +K11 +K14 + (K19 +K22)vix,iy + (K3 +K18)vix−1,iy

+(K2 +K20)vix+1,iy + (K7 +K21)vix,iy−1 + (K6 +K23)vix,iy+1

∂g

∂uix−1,iy

= K10 +K5vix−1,iy +K4vix+1,iy

∂g

∂uix+1,iy

= K12
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∂g

∂uix,iy−1

= K13 +K9vix,iy−1 +K8vix,iy+1

∂g

∂uix,iy+1

= K15

∂g

∂vix,iy
= (K19 +K22)uix,iy

∂g

∂vix−1,iy

= (K3 +K18)uix,iy +K5uix−1,iy

∂g

∂vix+1,iy

= (K2 +K20)uix,iy +K4uix−1,iy

∂g

∂vix,iy−1

= (K7 +K21)uix,iy +K9uix,iy−1

∂g

∂vix,iy+1

= (K6 +K23)uix,iy +K8uix,iy−1.

Partial derivatives of h with respect to each variable that has ”m+1” super-

script

∂h

∂vix,iy
= J1 + J11 + J14 + (J19 + J22)uix,iy + (J3 + J18)uix−1,iy

+(J2 + J20)uix+1,iy + (J7 + J21)uix,iy−1 + (J6 + J23)uix,iy+1

∂h

∂vix−1,iy

= J10 + J5uix−1,iy + J4uix+1,iy

∂h

∂vix+1,iy

= J12

∂h

∂vix,iy−1

= J13 + J9uix,iy−1 + J8uix,iy+1

∂h

∂vix,iy+1

= J15

∂h

∂uix,iy
= (J19 + J22)vix,iy

∂h

∂uix−1,iy

= (J3 + J18)vix,iy + J5vix−1,iy

∂h

∂uix+1,iy

= (J2 + J20)vix,iy + J4vix−1,iy

∂h

∂uix,iy−1

= (J7 + J21)vix,iy + J9vix,iy−1

∂h

∂uix,iy+1

= (J6 + J23)vix,iy + J8vix,iy−1.
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These will result in equations g1, g2, ..., gn, h1, h2, ..., hn.
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.

Node Numbering for the Implicit and Explicit Finite Difference Method

Dirichlet Boundary Conditions

The nodes are numbered using L1 = ix+(Nodes in y direction−iy)∗(Nodes in x direction).

For example, these will look like:

•

•

•

•

•

•

•

•

•

•

•

•

P10

P7

P4

P1

P11

P8

P5

P2

P12

P9

P6

P3

x0 x1 ... xN xN+1

Note that in the MATLAB code, the vector u is represented by:

u(1)

...

u(n)

u(n+ 1)

...

u(2n)


where the u1, ..., un are represented by u(1), ..., u(n) and the v1, ..., vn are represented by

u(n+ 1), ..., u(2n).
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.

Node Numbering for the Implicit and Explicit Finite Difference Method

Neumann Boundary Conditions

The nodes are numbered using L1 = ix+(Nodes in y direction−iy)∗(Nodes in x direction).

For example, these will look like:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

P26

P21

P16

P11

P6

P1

P27

P22

P17

P12

P7

P2

P28

P23

P18

P13

P8

P3

P29

P24

P19

P14

P9

P4

P30

P25

P20

P15

P10

P5

x0 x1 x2 ... xN−1 xN xN+1

Note that in the MATLAB code, the vector u is represented by:



u(1)

...

u(n)

u(n+ 1)

...

u(2n)
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where the u1, ..., un are represented by u(1), ..., u(n) and the v1, ..., vn are represented by

u(n+ 1), ..., u(2n).
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6.1.2 Explicit Finite Difference

K1 u
m
ix,iy +K2 uix,iyvix+1,iy +K3 uix,iyvix−1,iy +K4 uix−1,iyvix+1,iy +

K5 uix−1,iyvix−1,iy +K6 uix,iyvix,iy+1 +K7 uix,iyvix,iy−1 +K8 uix,iy−1vix,iy+1 +

K9 uix,iy−1vix,iy−1 +K10 uix−1,iy +K11 uix,iy +K12 uix+1,iy +K13 uix,iy−1 + (6.9)

K14 uix,iy +K15 uix,iy+1 +K18 vix−1,iyuix,iy +K19 vix,iyuix,iy +K20 vix+1,iyuix,iy +

K18 vix,iy−1uix,iy +K19 vix,iyuix,iy +K20 vix,iy+1uix,iy +K17uix,iy = f1(x, y, t).

Where K1 = 1/(△t), K2 = C11/(2 ∗ (△x)2), K3 = −K2, K4 = −K2, K5 = K2, K6 =

C12/(2 ∗ (△y)2), K7 = −K6, K8 = −K6, K9 = K6, K10 = −C21/(△x)2, K11 = (−2) ∗

K10, K12 = K10, K13 = −C22/(△y)2, K14 = (−2) ∗K13, K15 = K13, K17 = −K1, K18 =

C11/(△x)2, K19 = (−2)∗K18, K20 = K18, K21 = C12/(△y)2, K22 = (−2)∗K21, K23 = K21.

Note that f1(x, y, t) is term number 16. Therefore K16 = 1 and is not shown here. K17

is shown last here for clarity because it is associated with the ”m” time step. Unless other-

wise noted all superscripts are m− 1.

J1 v
m
ix,iy + J2 vix,iyuix+1,iy + J3 vix,iyuix−1,iy + J4 vix−1,iyuix+1,iy +

J5 vix−1,iyuix−1,iy + J6 vix,iyuix,iy+1 + J7 vix,iyuix,iy−1 + J8 vix,iy−1uix,iy+1 +

J9 vix,iy−1uix,iy−1 + J10 vix−1,iy + J11 vix,iy + J12 vix+1,iy + J13 vix,iy−1 + (6.10)

J14 vix,iy + J15 vix,iy+1 + J18 uix−1,iyvix,iy + J19 uix,iyvix,iy + J20 uix+1,iyvix,iy +

J18 uix,iy−1vix,iy + J19 uix,iyvix,iy + J20 uix,iy+1vix,iy + J17vix,iy = f2(x, y, t).

Where J1 = 1/(△t), J2 = D11/(2 ∗ (△x)2), J3 = −J2, J4 = −J2, J5 = J2, J6 =

D12/(2∗ (△y)2), J7 = −J6, J8 = −J6, J9 = J6, J10 = −D21/(△x)2, J11 = (−2)∗J10, J12 =

J10, J13 = −D22/(△y)2, J14 = (−2) ∗ J13, J15 = J13, J17 = −J1, J18 = C11/(△x)2, J19 =

(−2) ∗ J18, J20 = J18, J21 = D12/(△y)2, J22 = (−2) ∗ J21, J23 = J21.

Note that f2(x, y, t) is term number 16. Therefore J16 = 1 and is not shown here. J17
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is shown last here for clarity because it is associated with the ”m” time step. Unless other-

wise noted all superscripts are m− 1.

6.1.3 Cell-Centered Finite Difference Method

Cell Numbering for Cell-centered finite difference

• • • • • •

• • • • • ••

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

P1

P5

P9

P13

P17

P2

P6

P10

P14

P18

P3

P7

P11

P15

P19

P4

P8

P12

P16

P20
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Left Boundary

Left Boundary • • • • •• •
u1 u2 u3

z1/2 z3/2 z5/2 z7/2

u1/2 u3/2 u5/2 u7/2

- - -� � �

△x △x △x

So, if we have ∇ ·D∇u. Set z = D∇u. Then

z1/2 = D1/2

u1 − u1/2
(△x/2)

and z3/2 = D3/2
u2 − u1
△x

∇ ·D∇u1 =
z3/2 − z1/2

△x
=
D3/2

u2−u1

△x
−D1/2

u1−u1/2

(△x/2)

△x

=
D3/2u2 −D3/2u1 − 2D1/2u1 + 2D1/2u1/2

(△x)2

If D = 1. Then

∇ · ∇u1 =
u2 − 3u1 + 2u1/2

(△x)2

Right Boundary

Right Boundary• • • • •• •
zn−5/2 zn−3/2 zn−1/2 zn+1/2

un−5/2 un−3/2 un−1/2 un+1/2

- - -� � �

△x △x △x

So, if we have ∇ ·D∇u. Set z = D∇u. Then

zn+1/2 = Dn+1/2

un+1/2 − un
(△x/2)

and zn−1/2 = Dn−1/2
un − un−1

△x
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If D = 1. Then

∇ · ∇u1 =
2un+1/2 − 3un + un−1

(△x)2

6.2 TEST RUNS

The following pages contain convergence tests based on various test equations, methods, and

boundary conditions for the types of equations in Part I of the PDE system. The methods

include implicit finite difference, explicit finite difference, and cell centered finite difference.

Even though the typical equations in Part I of the PDE system include an equation with

an advection term coupled with an equation with no advection term, other cases are included

in the tests which follow. For example in Cases 1 and 3 both of the coupled equations contain

advection terms. These are of particular interest because it has not been proven that such

PDEs (nor the associated numerical methods) always have solutions. Case 4 contains two

coupled equations neither of which has an advection term. Case 2, contains the typical

coupling of the equations in Part I of the PDE system - one equation with an advection

term, and one equation with no advection term.

In the following tests, we have:

SRSS =

√
ΣNodes(True Solution-numerical solution)2

Number of Node Points
.

SAV =
ΣNodes|True Solution-numerical solution|

Number of Node Points
.

Most importantly, the maximum error is given by:

MAXError = max
Nodes

|True Solution-numerical solution|.

The convergence rates are based on the maximum error and are calculated by:

p =
ln(MAXError2)− ln(MAXError1)

ln(h2)− ln(h1)
.
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Case 1

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = − e−2x−3y

(1 + t)2
− 13

e−2x−3y

1 + t
+ 28

e−6x−4y

(1 + t)2

∂u2
∂t

−∇ · (D2∇u2 − u2∇u1) = − e−4x−y

(1 + t)2
− 17

e−4x−y

1 + t
+ 24

e−6x−4y

(1 + t)2

on [0, 1]× [0, 1] 2 ≤ t ≤ 7

u1 =
e−2x−3y

1 + t
and u2 =

e−4x−y

1 + t
on ∂Ω

u1 =
e−2x−3y

3
and u2 =

e−4x−y

3
at t = 2.

x = 0.00 to 1.00 and y = 0.00 to 1.00 Time = 2.00 sec to 7.00 sec.

Dirichlet Boundary Conditions.

Implicit Finite Difference ——– Function Numbers 8 and 9

Delta X Delta Y Delta T SRSS SAV MAX Error

0.20000 0.20000 0.024876 0.00043062 0.00034962 0.00086695

0.16667 0.16667 0.024876 0.00028619 0.00022819 0.00062912

0.14286 0.14286 0.024876 0.00020176 0.00015824 0.00046375

0.07692 0.07692 0.024876 0.00004734 0.00003438 0.00011859

Convergence Rate = 2.16 (Based on the Maximum Error).

Explicit Finite Difference - No Upwinding — Function Numbers 8 and 9

Delta X Delta Y Delta T SRSS SAV MAX Error

0.20000 0.20000 0.000500 0.00043034 0.00034933 0.00086646

0.16667 0.16667 0.000500 0.00028592 0.00022792 0.00062862

0.14286 0.14286 0.000050 0.00020151 0.00015798 0.00046322

0.07692 0.07692 0.000050 0.00004711 0.00003416 0.00011806

Convergence Rate = 2.16 (Based on the Maximum Error)

Cell Centered Finite Difference - Upwinding – Function Numbers 8 and 9

Delta X Delta Y Delta T SRSS SAV MAX Error

0.20000 0.20000 0.000050 0.00140068 0.00087865 0.00451430
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0.16667 0.16667 0.000050 0.00101304 0.00062353 0.00354081

0.14286 0.14286 0.000050 0.00076371 0.00046374 0.00283941

0.07692 0.07692 0.000050 0.00023244 0.00013494 0.00106125

Convergence Rate = 1.56 (Based on the Maximum Error).
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Case 2

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = (2t− 4t2(1 + x2 + y2))ex
2+y2

+(18 + 8x+ 8y2)t3e4x+x2+2y2

∂u2
∂t

−∇ · (D2∇u2) = (1− 18t− 4y2t)e4x+y2

on [0, .5]× [0, .5] 2 ≤ t ≤ 7

u1 = t2ex
2+y2 and u2 = te4x+y2 on ∂Ω

u1 = 4ex
2+y2 and u2 = 2e4x+y2 at t = 2.

Results

x = 0.00 to 0.50 and y = 0.00 to 0.50 Time = 2.00 sec to 7.00 sec.

Dirichlet Boundary Conditions.

Implicit Finite Difference ——– Function Numbers 12 and 13

Delta X Delta Y Delta T SRSS SAV MAX Error

0.10000 0.10000 0.098039 0.52831048 0.37976163 1.13428824

0.03846 0.03846 0.098039 0.23052810 0.15107538 0.55326673

0.03125 0.03125 0.098039 0.18987872 0.12304563 0.47302421

0.02500 0.02500 0.098039 0.15369333 0.09859691 0.39135379

0.02174 0.02174 0.098039 0.13446556 0.08579368 0.34693499

Convergence Rate = 0.85 (Based on the Maximum Error).

Explicit Finite Difference - No Upwinding – Function Numbers 12 and 13

Delta X Delta Y Delta T SRSS SAV MAX Error

0.10000 0.10000 0.000500 0.52818714 0.37967200 1.13410669

0.03846 0.03846 0.000050 0.23039674 0.15098086 0.55305044

0.03125 0.03125 0.000050 0.18974669 0.12295091 0.47281510

0.02500 0.02500 0.000050 0.15356077 0.09850211 0.39115397

0.02174 0.02174 0.000050 0.13433274 0.08569888 0.34673113

Convergence Rate = 0.85 (Based on the Maximum Error).
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Cell Centered Finite Difference - Upwinding – Function Numbers 12 and 13

Delta X Delta Y Delta T SRSS SAV MAX Error

0.10000 0.10000 0.000050 0.60547023 0.48115077 1.30528104

0.03846 0.03846 0.000050 0.22996059 0.16125296 0.58496432

0.03125 0.03125 0.000050 0.18800082 0.12888287 0.48879547

0.02500 0.02500 0.000050 0.15152485 0.10171055 0.40131272

0.02174 0.02174 0.000050 0.13239148 0.08784893 0.35162598

Convergence Rate = 0.91 (Based on the Maximum Error).
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Neumann Boundary Conditions for Case 2

Spatial Domain – x = 0.00 to 0.50 and y = 0.00 to 0.50 Time = 2.00 sec to 7.00 sec

Neumann Boundary Conditions

Explicit Finite Difference - No Upwinding – Function Numbers 12 and 13

Delta X Delta Y Delta T SRSS SAV MAX Error

0.10000 0.10000 0.000005 12.77238570 10.33884141 18.92834610

0.04167 0.04167 0.000005 2.26910258 1.97228186 3.28782200

0.03333 0.03333 0.000005 1.47215238 1.31112482 2.10428574

0.02632 0.02632 0.000005 0.93706418 0.85777338 1.31156866

0.02273 0.02273 0.000005 0.71139595 0.66248244 0.97826721

Convergence Rate = 2.00 (Based on the Maximum Error).
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Case 3

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = (2t− 4t2(1 + x2 + y2))ex
2+y2

+(18 + 8x+ 8y2)t3e4x+x2+2y2

∂u2
∂t

−∇ · (D2∇u2 − u2∇u1) = (1− 18t− 4y2t)e4x+y2

+2t3(2 + 4x+ 2x2 + 4y2)e4x+x2+2y2

on [0, .5]× [0, .5] 2 ≤ t ≤ 7

u1 = t2ex
2+y2 and u2 = te4x+y2 on ∂Ω

u1 = 4ex
2+y2 and u2 = 2e4x+y2 at t = 2

Note that these are functions 12 and 14 in the code.

Results

Implicit Finite Difference ——– Function Numbers 12 and 14

x = 0.00 to 0.50 and y = 0.00 to 0.50 Time = 2.00 sec to 7.00 sec.

Dirichlet Boundary Conditions.

Delta X Delta Y Delta T SRSS SAV MAX Error

0.10000 0.10000 0.098039 0.22152365 0.19252587 0.42037679

0.03846 0.03846 0.098039 0.09096140 0.07646009 0.19700125

0.03125 0.03125 0.098039 0.07429931 0.06196773 0.16254211

0.02500 0.02500 0.098039 0.05969120 0.04941398 0.13205175

0.02174 0.02174 0.098039 0.05201304 0.04287958 0.11566309

Convergence Rate = 0.94 (Based on the Maximum Error).
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,

Explicit Finite Difference - No Upwinding – Function Numbers 12 and 14

**No Solution**

Delta X Delta Y Delta T SRSS SAV MAX Error

0.10000 0.10000 0.000005 **No Solution**

0.03846 0.03846 0.000005 **No Solution**

Cell Centered Finite Difference - Upwinding – Function Numbers 12 and 14

**No Solution**
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Case 4 (Diffusion Only, Equations not coupled)

∂u1
∂t

−∇ · (D1∇u1) = (2t− 4t2(1 + x2 + y2))ex
2+y2

∂u2
∂t

−∇ · (D2∇u2) = (2t− 4t2(1 + x2 + y2))ex
2+y2

on [0, 1]× [0, 1] 2 ≤ t ≤ 7

u1 = t2ex
2+y2 and u2 = t2ex

2+y2 on ∂Ω

u2 = 4ex
2+y2 and u2 = 4ex

2+y2 at t = 2

Note that these are functions 11 and 11 in the code.

Results

Implicit Finite Difference ——– Function Numbers 11 and 11

x = 0.00 to 1.00 and y = 0.00 to 1.00 Time = 2.00 sec to 7.00 sec

Dirichlet Boundary Conditions

Delta X Delta Y Delta T SRSS SAV MAX Error

0.20000 0.20000 0.024876 0.97960738 0.92570389 1.44478352

0.16667 0.16667 0.024876 0.67174248 0.62781339 1.05640592

0.14286 0.14286 0.024876 0.48812595 0.45194552 0.77341119

0.07692 0.07692 0.024876 0.13695343 0.12249615 0.23645546

0.06250 0.06250 0.024876 0.09008938 0.07981570 0.15812972

Convergence Rate = 1.92 (Based on the Maximum Error).

Explicit Finite Difference - No Upwinding – Function Numbers 11 and 11

Delta X Delta Y Delta T SRSS SAV MAX Error

0.20000 0.20000 0.000500 0.97721845 0.92337131 1.44132091

0.16667 0.16667 0.000050 0.66945500 0.62560563 1.05312373

0.14286 0.14286 0.000050 0.48588182 0.44980142 0.77035057

0.07692 0.07692 0.000050 0.13483303 0.12054486 0.23320608

0.06250 0.06250 0.000050 0.08799651 0.07790955 0.15484686
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Convergence Rate = 1.94 (Based on the Maximum Error).

Cell Centered Finite Difference - Upwinding – Function Numbers 11 and 11

Delta X Delta Y Delta T SRSS SAV MAX Error

0.20000 0.20000 0.000050 2.79983922 2.28396678 7.00094784

0.16667 0.16667 0.000050 1.98465021 1.61033163 5.24666498

0.14286 0.14286 0.000050 1.47663050 1.19412742 4.06794314

0.07692 0.07692 0.000050 0.43921360 0.35271975 1.36536394

0.06250 0.06250 0.000050 0.29101280 0.23346200 0.93007695

Convergence Rate = 1.79 (Based on the Maximum Error).
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7.0 SIMULATION RESULTS

Simulation results are presented in this chapter. These simulations were created in MAT-

LAB using the PDE system from chapter three. The PDE system was discretized using

a cell-centered finite difference method. Which, technically, is a form of the Mixed Finite

Element Method. Unlike all of the other code in this thesis, which was written

solely by the author, the writing of the code in this chapter was a collaborative

effort. Among those who contributed to the writing of the code:

Joshua Sullivan, Ivan Yotov, Chris Horvat, and Mark Tronzo (the author of this thesis).

The purpose of this chapter is to show that the most critical features of NEC are rea-

sonably modeled by the PDE system presented in this thesis. It must be noted that there

is currently not enough data available to accurately determine the parameters in the NEC

model. Furthermore, it is very likely that new NEC discoveries will prompt further changes

to the equations in the PDE system. Therefore, we are not claiming that the com-

puter runs presented here exactly match actual disease conditions. Instead, we

hope to demonstrate that our NEC PDE system is flexible enough that with

proper parameter selection and minor changes to the equations the model will

be able to simulate the general patterns of the disease. So one should not focus

upon the actual numbers shown in the following graphs but upon the general patterns.

(For those interested in ”the next step”, i.e. an attempt to more accurately simulate

NEC with the PDE model presented in this chapter, we point out that Jared Barber has

significantly updated and refined the MATLAB code presented in this chapter.

His results are presented in our paper [14].)
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Computer runs were made in order to simulate actual NEC conditions. In particular,

different combinations of the following were used:

1) Two Types of feedings: formula-fed and breastfed. Within the breastfed category,

several levels of anti-microbial peptides were used. (These different levels are simulated by

using different values of the parameter kpp, which is the rate of the destruction of bacteria

by the anti-microbial peptides in breast milk.)

2) Two different levels of infant maturity: Premature infants and term infants.

3) Three different epithelial injury levels: no injury to the epithelium, partial injury

to the epithelium and total injury to the epithelium.

Various combinations of the conditions in 1) through 3) above are represented in the cases

which follow.

For the most part, the initial conditions are the same for each NEC component in all

four regions with the following exceptions: (resting) macrophages are set to 0 in the lumen

and to their maximum value in the other three regions; (resting) neutrophils are set to their

maximum value in the blood and to 0 in the other three regions; epithelial cell density and

ZO1 density is zero in all regions except the epithelial layer.

7.1 NORMAL CASE - TERM INFANT, NO INJURY TO THE

EPITHELIUM.

We will begin by presenting a normal case. Of course, many cases might be considered nor-

mal. Here we are defining our normal case as a term infant with no injury to the epithelium

but the epithelium is not perfect, its density is not quite 100 %. (Recall from chapter one

that during the process of natural cell death and proliferation, gaps in the epithelium of 1%
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to 3 % are very common.) kpp is set at .25, higher than with formula feeding but lower than

with regular breast feeding. The results are shown in figures 28 and 29. Notice that the

epithelial density begins at .98 and ZO1 begins at .99, indicating the imperfection in the

epithelial layer. Immediately, this epithelial density drops to .95 but levels off while ZO1

rises to 1. (Recall from chapter one that it is believed that ZO1 will fill in small gaps in the

epithelium created by missing cells. That would explain why ZO1 is slightly greater than

the epithelial density in some cases.) The run begins with bacteria in the tissue, lumen, and

epithelial layer but approaches zero in all of those layers except the lumen where it levels

off at a positive value. At the beginning of the run, damage is zero in all four layers but

quickly rises in the tissue, lumen, and epithelial layer but approaches zero in all of those

layers. Cytokines rise in all four layers but eventually level off. Similar observations may be

made of the other components.

So, what we see in our normal case is not perfection but the players in NEC under

control. The epithelium is not perfectly sealed but is dense enough to prevent any significant

bacterial invasion into the underlying tissue. Bacteria is either eliminated or remains at a

constant, non-threatening level. Damage occurs in several regions but is quickly repaired.

7.2 CASE - PREMATURITY, NO INJURY TO THE EPITHELIUM.

These cases will consider the premature infant that has no injury to the epithelium. The

main assumption of this group of runs is that the premature infant has reduced peristalsis.

Recall from chapter one that peristalsis aids in moving bacteria and other material along the

lumen. When peristalsis is not fully functioning or underdeveloped, as is often the case in

the premature infant, gram-negative bacteria may, over time, build up near the epithelium.

Therefore, these runs will begin with high levels of gram-negative bacteria near the epithe-

lium (simulated by setting bmax = 5.0).

Formula Fed kpp = .05, bmax = 5. The first simulation under this case was run with

formula feeding. It was assumed that with formula feeding only a very small amount of anti-
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Figure 28: Normal Case - Term Infant, No Injury to the epithelium (1 of 2). The 18 graphs shown in this
figure show the amount of each component in the epithelial and lumen layers. (For example, the graph in
the bottom left corner shows the amount of activated macrophages in the epithelial layer.) For each graph,
the vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.

Figure 29: Normal Case - Term Infant, No Injury to the epithelium (2 of 2). The 18 graphs shown in this
figure show the amount of each component in the blood and tissue layers. (For example, the graph in the
bottom left corner shows the amount of activated macrophages in the blood layer.)
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microbial peptides will be present, simulated by setting kpp = .05. The results are shown in

figure 30, 31, and 32. Figure 30 indicates that epithelial layer density is dropping steadily.

This is very bad. Recall from chapter two that the resulting permeability of that layer will

lead to bacterial invasion of the underlying tissue and usually a very bad outcome. Further

bad indicators are that damage and nitric oxide are rising in certain layers.

Breast Fed kpp = .5, bmax = 5. This run was made assuming breast feeding. In this

case, moderate levels of anti-microbial peptides were assumed, simulated by setting kpp = .5.

The results are shown in figure 33, 34, and 35. This case does is not good. Unlike the previous

case, the epithelial density is not dropping quickly but not quite stable either. Furthermore,

damage is rising in that layer. At the same time, rising cytokines, damage, and nitric oxide

in the blood and tissue are serious problems.

Breast Fed kpp = .7, bmax = 5. This run was made assuming breast feeding. In this

case, higher levels of anti-microbial peptides were assumed, simulated by setting kpp = .7.

The results are shown in figure 36, 37, and 38. Toward the end of the run, many NEC

factors are approaching normal levels (compare to the normal case in the last section).

Rising epithelial density is a very good sign. However, increasing damage in the blood, if

continued unchecked, will be a problem.

Breast Fed kpp = 1, bmax = 5. This run was made assuming breast feeding. In this

case, high levels of anti-microbial peptides was assumed, simulated by setting kpp = 1. The

results are shown in figure 39, 40, and 41. The results in this case are extremely good. The

epithelium is approaching full density and, similar to the normal case from the last section,

and all of the NEC factors are either approaching zero or under control.

The epithelial layer for the four cases in this section are shown in figure 42.

7.3 CASE - TERM INFANT, PARTIAL INJURY TO EPITHELIUM.

In these runs, a full term infant with a partial injury to the epithelium will be simulated.

Note that ‘partial injury’ will indicate that there is a circular area in the epithelial layer that

is at 33% of its maximum density and ‘total injury’ means that there is a circular area in
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Figure 30: Simulation for Prematurity, No Injury, Formula Fed kpp = .05, bmax = 5 (1 of 2). The 18
graphs shown in this figure show the amount of each component in the epithelial and lumen layers. (For
example, the graph in the bottom left corner shows the amount of activated macrophages in the epithelial
layer.) For each graph, the vertical axis indicates the quantity of the substance and the horizontal axis
indicates time, in hours. In this particular case, the steady decrease in epithelial layer density will allow
bacterial invasion of the underlying tissue which can lead to a very bad outcome.
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Figure 31: Simulation for Prematurity, No Injury, Formula Fed kpp = .05, bmax = 5 (2 of 2). The 18 graphs
shown in this figure show the amount of each component in the blood and tissue layer. (For example, the
graph in the bottom left corner shows the amount of activated macrophages in the blood layer.) In this case,
nitric oxide and damage are increasing in some layers.
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Figure 32: Simulation for Prematurity, No Injury, Formula Fed kpp = .05, bmax = 5. The purpose of
this figure is to give an average visual picture of what is happening physically. This graph should not be
considered as accurate as the other graphs for this simulation. In order not to clutter the diagram, only a
limited number of components are shown: bacteria in the lumen, nitric oxide in the epithelium (represented
by the small gray balls), epithelial cells (represented by the yellow balls), tight junction protein (represented
by the red bars), bacteria in the tissue, and damage to the tissue (represented by the black areas).
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Figure 33: Simulation for Prematurity, No Injury, Breast Fed kpp = .5, bmax = 5 (1 of 2). The 18 graphs
shown in this figure show the amount of each component in the epithelial and lumen layers. (For example,
the graph in the bottom left corner shows the amount of activated macrophages in the epithelial layer.) For
each graph, the vertical axis indicates the quantity of the substance and the horizontal axis indicates time,
in hours. In this case, epithelial density is not dropping quickly but not quite stable either. Damage is rising
in the epithelial layer.
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Figure 34: Simulation for Prematurity, No Injury, Breast Fed kpp = .5, bmax = 5 (2 of 2). The 18 graphs
shown in this figure show the amount of each component in the blood and tissue layer. (For example, the
graph in the bottom left corner shows the amount of activated macrophages in the blood layer. In this case,
rising cytokines, damage, and nitric oxide in the blood and tissue are serious problems.)
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Figure 35: Simulation results for Prematurity, No Injury, Breast Fed kpp = .5, bmax = 5. The purpose of
this figure is to give an average visual picture of what is happening physically. This graph should not be
considered as accurate as the other graphs for this simulation. In order not to clutter the diagram, only a
limited number of components are shown: bacteria in the lumen, nitric oxide in the epithelium (represented
by the small gray balls), epithelial cells (represented by the yellow balls), tight junction protein (represented
by the red bars), bacteria in the tissue, and damage to the tissue (represented by the black areas).
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Figure 36: Simulation results for Prematurity, No Injury, Breast Fed kpp = .7, bmax = 5 (1 of 2). The 18
graphs shown in this figure show the amount of each component in the epithelial and lumen layers. (For
example, the graph in the bottom left corner shows the amount of activated macrophages in the epithelial
layer.) For each graph, the vertical axis indicates the quantity of the substance and the horizontal axis
indicates time, in hours. In this case, rising epithelial density is a very good sign.
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Figure 37: Simulation results for Prematurity, No Injury, Breast Fed kpp = .7, bmax = 5 (2 of 2). The
18 graphs shown in this figure show the amount of each component in the blood and tissue layer. (For
example, the graph in the bottom left corner shows the amount of activated macrophages in the blood layer.)
In this case, increasing damage in the blood, if continued unchecked, will be a problem.
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Figure 38: Simulation results for Prematurity, No Injury, Breast Fed kpp = .7, bmax = 5. The purpose of
this figure is to give an average visual picture of what is happening physically. This graph should not be
considered as accurate as the other graphs for this simulation. In order not to clutter the diagram, only a
limited number of components are shown: bacteria in the lumen, nitric oxide in the epithelium (represented
by the small gray balls), epithelial cells (represented by the yellow balls), tight junction protein (represented
by the red bars), bacteria in the tissue, and damage to the tissue (represented by the black areas).
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Figure 39: Simulation for Prematurity, No Injury, Breast Fed kpp = 1, bmax = 5 (1 of 2). The 18 graphs
shown in this figure show the amount of each component in the epithelial and lumen layers. (For example,
the graph in the bottom left corner shows the amount of activated macrophages in the epithelial layer.) The
results in this case are extremely good. The epithelium is approaching full density and, similar to the normal
case from the last section, and all of the NEC factors are either approaching zero or under control. For each
graph, the vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in
hours. The colored vertical graphs are logs of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1,
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Figure 40: Simulation for Prematurity, No Injury, Breast Fed kpp = 1, bmax = 5 (2 of 2). The 18 graphs
shown in this figure show the amount of each component in the blood and tissue layer. (For example, the
graph in the bottom left corner shows the amount of activated macrophages in the blood layer.)
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Figure 41: Simulation for Prematurity, No Injury, Breast Fed kpp = 1, bmax = 5. The purpose of this figure
is to give an average visual picture of what is happening physically. This graph should not be considered as
accurate as the other graphs for this simulation. In order not to clutter the diagram, only a limited number
of components are shown: bacteria in the lumen, nitric oxide in the epithelium (represented by the small
gray balls), epithelial cells (represented by the yellow balls), tight junction protein (represented by the red
bars), bacteria in the tissue, and damage to the tissue (represented by the black areas).
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Figure 42: Comparison between formula fed and breast fed for prematurity and no injury. All of these
cases use bmax = 5. These graphs show the epithelial layer. The top graph is the formula fed case. Next, is
breast fed with kpp = .5. The third graph from the top, is breast fed with kpp = .7. The bottom graph is
breast fed with kpp = 1.
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the epithelial layer that has zero density.

Formula Fed kpp = 0. The simulation run using the initial conditions of a partial

injury and formula feeding is shown in figure 43. The end result is sustained inflammation.

High levels of bacteria remain in the lumen. Epithelial cells reach a steady state of 87%

concentration, indicating an injury that has not healed completely and the injury is no

longer in the process healing. This unhealed injury will provide a permanent pathway for

the bacteria in the lumen to pass through the epithelial layer into the underlying tissue.

Notice that damage is high and sustained in both the lumen and epithelial layer (the graphs

marked d lumen and d epith in figure 43). Damage is also high and sustained in the tissue

layer (the time graph of the tissue layer is not shown here). High concentrations of cytokines

in the epithelial layer indicate an ongoing pro-inflammatory response that contributes to

damage in that layer. One of the few favorable indicators is the tight junction protein, ZO1

nearing 100 % concentration, an indication that the para cellular space between epithelial

cells is being sealed with functional ZO1. Overall, however, this is a very unhealthy outcome.

Figure 46 shows several snapshots in time of the epithelial layer density. Notice that the

wound, at first, appears to be healing but, by the end of the run, a substantial wound remains.

(Note that the color scale is changing in each graph. In the last graph, red represents .88,

yellow represents .86, and blue represents .83.) The average, visual representation of this

case is given in figure 44.

Breast Fed kpp = .7. Figure 45 shows the results of starting with a partial injury and

breast feeding. In contrast to the formula fed case, we see here a healthy outcome. Epithelial

layer concentration has reached 100% indicating that this layer is completely healed. Damage

has decreased to zero in the two layers shown in the time graph. (The damage is also zero in

the time graph of the tissue layer which is not shown here.) The bacterial concentration is

zero in both layers. We can see that the body’s anti-inflammatory immune response is aiding

the healing process, as evidenced by the zero concentration of pro-inflammatory cytokines.

The tight junction protein is at 100 % concentration, indicating that the cell walls are being

fully repaired. Figure 47 shows snapshots of the epithelial layer. The wound closes very

quickly and is fully healed by the end of the run. (Note that the color scale is changing
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Figure 43: Simulation results for Case Partial Injury, Formula Fed. The 18 graphs shown in this figure
show the amount of each component in the epithelial and lumen layers. (For example, the graph in the
bottom left corner shows the amount of activated macrophages in the epithelial layer.) For each graph, the
vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.
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Figure 44: Case - Partial Injury Formula Fed. The purpose of this figure is to give an average visual
picture of what is happening physically. This graph should not be considered as accurate as the other graphs
for this simulation. In order not to clutter the diagram, only a limited number of components are shown:
bacteria in the lumen, nitric oxide in the epithelium (represented by the small gray balls), epithelial cells
(represented by the yellow balls), tight junction protein (represented by the red bars), bacteria in the tissue,
and damage to the tissue (represented by the black areas). Also, unlike the some of the previous graphs,
cytokines in the tissue are shown here. 247



Figure 45: Simulation results for Case Partial Injury, Breastfed, kpp = .7. The 18 graphs shown in this
figure show the amount of each component in the epithelial and lumen layers. (For example, the graph in
the bottom left corner shows the amount of activated macrophages in the epithelial layer.) For each graph,
the vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.

in each graph. In the last graph, red/yellow/green represents .99999 and blue represents

.9999.) This is in stark contrast to the slow, inefficient wound closing in Case Partial Injury

Formula Fed (Figure 46).

The epithelial layer for these cases are shown in figure 48.

7.4 CASE - TERM INFANT, TOTAL INJURY TO EPITHELIUM.

In these runs, a full term infant with a total injury to the epithelium will be simulated. Note

that ‘total injury’ indicate that there is a circular area in the epithelial layer that has zero

density.

Formula Fed kpp = 0. The case of formula fed is shown in figure 49. Again we see an

unhealthy outcome. This example shows the epithelial layer concentration rising at about

t = 40, but at about t = 190 it begins to slowly but steadily fall. This is a very bad
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Figure 46: Wound Closing for Case Partial Injury, Formula Fed. These snapshots show the progression
of the wound. The wound, at first, appears to be healing but, by the end of the run, a substantial wound
remains.
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Figure 47: Wound Closing for Case Partial Injury, Breastfed. These snapshots show the progression of the
wound. The wound heals very quickly.

Figure 48: Comparison between formula fed and breast fed for term infant and partial injury. These graphs
show the epithelial layer. The top graph is the formula fed case. kpp = 0. The bottom graph is breast fed
with kpp = .7.
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sign, indicating that the injury to the epithelial layer is actually getting worse. The tight

junction protein, ZO1, is also deteriorating near the end of the run, further increasing the

permeability of the epithelial layer. Nitric oxide levels are also on the rise. Nitric oxide will

cause further damage to the tight junction protein. Damage, as in the previous formula fed

case, is high and is increasing over time. Damage does not exhibit any asymptotic behavior,

indicating it will continue to increase if the system is stimulated further. Bacteria is again

not eliminated fully in the epithelial layer and remains at high levels in the lumen. The

cytokine presence in the lumen and epithelial layers is non-zero and increasing over time,

indicating an increasing, self-sustaining pro-inflammatory response that contributes to the

increasing damage throughout the system.

Breast Fed, kpp = .7. Figure 50. We see here a system approaching full recovery.

Unlike the total injury formula fed case, the epithelial cell concentration is very close to

100%, indicating that the injury is practically fully healed. Damage is approaching zero

everywhere. Bacterial content is eliminated swiftly in both layers. As a direct result of the

anti-inflammatory cytokines, the pro-inflammatory cytokine presence has decreased to zero

in the system. This decrease in inflammation leads to reduced damage, leading to system

recovery. Figure 51 shows snapshots of the epithelial layer. Notice how the wound closes

smoothly and efficiently. (Note that the color scale is changing in each graph. In the last

graph, red represents .9999, yellow represents .9997, and blue represents .9995.)

We next examine two cases that vary the effect of the anti-microbial peptides in breast

milk. These simulations were carried out using total injury. The parameter involved is kpp.

For normal cases, kpp = .7. The following two cases show how first by reducing kpp by several

orders of magnitude and secondly by doubling kpp affects the system outlook.

Breast Fed, kpp = .000125 and kpp = 1.25, respectively. Notice that when the

effect of the anti-microbial peptides is reduced, by setting kpp = .000125, Figure 52, the

system recovery appears to slow down. The epithelial cell concentration is approximately

83 %, and still rising - it appears that recovery is only a matter of time. On the other

hand, when the effect of the anti-microbial peptides is increased, by setting kpp = 1.25

(see Figure 53), the system recovery appears to speed up slightly as compared with the

kpp = .7 case. The epithelial cell layer reaches its full concentration, 100 %, very quickly.
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Figure 49: Simulation results for Case Total Injury, Formula Fed. The 18 graphs shown in this figure show
the amount of each component in the epithelial and lumen layers. (For example, the graph in the bottom
left corner shows the amount of activated macrophages in the epithelial layer.) For each graph, the vertical
axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.
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Figure 50: Simulation results for Case Total Injury, Breast Fed kpp = .7. The 18 graphs shown in this
figure show the amount of each component in the epithelial and lumen layers. (For example, the graph in
the bottom left corner shows the amount of activated macrophages in the epithelial layer.) For each graph,
the vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.
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Figure 51: Wound Closing for Case Total Injury, Breast Fed kpp = .7. These snapshots show the progression
of the wound. The wound closes very quickly.
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Therefore, it appears that changing the effects of the anti-microbial peptides relates only

to the speed of the recovery, not the fact of the recovery. However, when we look at the

damage to the tissue for the three cases Case Total Injury, breastfed with kpp = .7, Case

Total Injury, breastfed with kpp = .000125 and Case Total Injury, breastfed with kpp = 1.25

(see Figure 54), we notice something very important: damage is high and sustained for Case

Total Injury, breastfed with kpp = .000125, which uses the lowest value of kpp. On the other

hand, damage is under control for the two cases of high kpp.

These test cases show the direct effect of varying the presence of anti-microbial peptides

in breast milk. Based on these cases, we can say that below some value of kpp, the parameter

that simulates anti-microbial peptides in the computer code, the system has an unhealthy

outcome. On the other hand, above some critical concentration of kpp the system has a

healthy outcome. As one continues to increase kpp above this critical value, recovery will be

proportionally faster.

7.5 SUMMARY OF SIMULATIONS

The simulations in this chapter show several things. First of all, a good result is char-

acterized by the quantities of all components staying within reasonable limits and all the

components staying under control. A good result does not necessarily mean that all NEC

quantities remain at ideal levels. For example in section 7.1 (the normal case), the steady

state epithelial density is 95 %. This is not perfect but is dense enough to prevent a pathogen

invasion into the underlying tissue. In this same simulation, bacteria in the lumen are never

eradicated. However, they do attain a manageable steady state level. On the other hand,

a bad result is characterized by at least some of the undesirable NEC factors continuing to

increase throughout the simulation or leveling off at too high of a value toward the end of

the simulation. This can be seen in section 7.2 (prematurity, no injury) in the circumstance

of formula feeding. Here, damage in the tissue and the blood remains high at the end of the

run. Furthermore, nitric oxide remains high in some regions. Another characteristic of a bad

result is low epithelial density throughout the entire simulation. This can be seen in section
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Figure 52: Simulation results for Case Total Injury, Breast Fed kpp = .000125. The 18 graphs shown in this
figure show the amount of each component in the epithelial and lumen layers. (For example, the graph in
the bottom left corner shows the amount of activated macrophages in the epithelial layer.) For each graph,
the vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.
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Figure 53: Simulation results for Case Total Injury, Breast Fed kpp = 1.25. The 18 graphs shown in this
figure show the amount of each component in the epithelial and lumen layers. (For example, the graph in
the bottom left corner shows the amount of activated macrophages in the epithelial layer.) For each graph,
the vertical axis indicates the quantity of the substance and the horizontal axis indicates time, in hours.
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Figure 54: Tissue Damage for Case Total Injury, breastfed with kpp = .000125 (Top), Case Total Injury,
breastfed with kpp = .7 (Middle), and Case Total Injury, breastfed with kpp = 1.25 (Bottom).
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7.3 (term infant, partial injury) in the circumstance of formula feeding. In this simulation,

the epithelial density appears to be reaching a level density. However, the density is not high

enough to prevent bacterial invasion of the underlying tissue.

Secondly, consistent breast feeding, simulated in these runs by high values of kpp, will

usually lead to good results. This fact can be seen throughout the cases in this chapter.

Even in the difficult case of total injury to the epithelium, consistent breast feeding led,

eventually, to a good outcome.

Thirdly, an unhealthy NEC outcome is the result of at least two undesirable events or

factors. One bad factor is not enough for an unhealthy NEC outcome. For example, in

section 7.2 (prematurity, no injury), the high levels of bacteria near the epithelium led to a

bad NEC outcome when combined with formula feeding. On the other hand, in this same

section it was shown that high levels of bacteria near the epithelium did not lead to an

unhealthy outcome in the circumstance of consistent breast feeding, (simulated by kpp = 1).

Furthermore, a survey of the other simulations in this chapter will reveal the fact that injury

alone, prematurity alone, or formula feeding alone will not result in a bad NEC outcome.

7.6 CONCLUSIONS

The general pattern of the graphs generated by our NEC model very closely resembles what

one would expect under actual disease conditions. For example, it was shown that an initial

large injury to the epithelial layer followed by formula feeding resulted in an ever-escalating

inflammatory cascade with a very bad outcome. On the other hand, an initial small injury

to the epithelial layer combined with breast feeding resulted in a very positive outcome. In

the cases studied, the peaks and valleys of each graph occurred in very realistic patterns.

However, the actual value of the peaks and valleys in the graphs as well as the relative time

at which they occur are areas for future study and refinement. This refinement may be

achieved through better parameter estimation and better evaluation of the uncertainties in

the parameter values.
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7.7 A COMPUTATIONAL NOTE OF THE APPLICATION OF THE NEC

EQUATIONS TO DIFFERENT DOMAINS

The calculations done in this chapter were done in three dimensions, using the cell-centered

finite difference method. For computational purposes, each region was divided into compu-

tational cells. The computational domain, discretized into a grid of computational cells, is

shown in figure 55. (The third dimension, going into the page, is not shown.) As the cells

get smaller, the number of cells increases and so does the accuracy of the solution. However,

decreasing the size of the cells greatly increases the computation time.

Obviously, some of the equations in the NEC model apply only in certain domains, for

example, the epithelial equation and the ZO1 (tight junction) equation are only valid in the

epithelial layer. (That is why these components are zero in other regions.) Even though

some of the NEC equations are valid in all four regions, they have different vertical and

horizontal diffusion coefficients, D, depending upon the region. For example, the bacteria

equation’s diffusion coefficient is greater in the blood region than in the tissue region.

These vertical and horizontal diffusion coefficients affect the rates at which the NEC

components move from computational cell to computational cell within each region. The

vertical diffusion coefficients also effect how the NEC components move from region to region.

Diffusion coefficients for computational cells along the interface of two regions are calculated

by finding the harmonic average of the diffusion coefficients in both of the regions.

Another consideration for diffusion coefficients is epithelial layer permeability. In the

computer code, diffusion coefficients into and out of the epithelial region increase as ZO1

(the tight junction protein) decreases. Recall from chapters one through three that tight

junction protein seals the para cellular space between epithelial cells. So, as ZO1 is destroyed,

epithelial layer permeability increases. Furthermore, ZO1 density is highly correlated to

epithelial cell density - as epithelial cells die and create ”holes” in the epithelium, ZO1

decreases. Therefore, it is reasonable to inversely correlate ZO1 density with epithelial

permeability, i.e., we increase diffusion coefficients into and out of the epithelial region as

ZO1 decreases and we decrease diffusion coefficients into and out of the epithelial region as

ZO1 increases.
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Figure 55: The computational domain, discretized into grid of computational cells. Two dimensions are
shown, the third dimension which goes into the page, is not shown.

Finally, we consider the tissue/blood barrier. Under normal circumstances, this barrier

has a low level of permeability. However, as damage in the tissue increases, this barrier will

be compromised. Therefore, in the code, the vertical diffusion coefficient between these two

layers increases as damage increases.
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8.0 CONCLUSIONS AND FUTURE WORK

As noted in the introduction, the purpose of this thesis is twofold. First of all this work

presents a three dimensional mathematical model of Necrotizing Enterocolitis(NEC). NEC

models published previously were all one dimensional, ordinary differential equation models.

These one dimensional models are extremely valuable, however, they do not model important

spatial aspects of the disease. The model in this thesis consists of a system of partial

differential equations (PDEs) that models both the temporal and spacial aspects of NEC.

Secondly, this work analyses that NEC PDE system. That is, existence, uniqueness, and

regularity analysis is done on the entire PDE system. Also, a mixed finite element analysis

is done on the system of equations. This second purpose has significance for the NEC

PDE system and it has significance independent of the NEC PDE system. For the NEC

system, this analysis provides a strong mathematical foundation for the equations and their

interrelation with each other. On the other hand, some of the classes of equations in the

NEC PDE system occur, in a slightly different form, in other contexts but, in some cases,

no existence, uniqueness, and regularity results for these equations exist in the literature.

The same may be said of the mixed finite element analysis of some of the equations in the

system - no published analysis exists. Therefore, the PDE analysis and the finite element

analysis include new and important results.

As seen in the last chapter, the NEC model presented in this thesis incorporates the

most significant features of NEC. Furthermore, the simulations presented in that chapter

are consistent with the progression of the disease as seen in actual NEC patients. The model

may now be used to simulate other NEC scenarios.

The existence, uniqueness, and regularity for the NEC PDE system was developed in
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chapter four. The analysis of the nonlinear coupled system in Part I,

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2)

∂u2
∂t

−∇ · (D2∇u2) = f2(u1, u2) (x, t) ∈ Ω× (0, T ]

∇u1 · n = 0 and ∇u2 · n = 0 on Γ

where f1 and f2 are nonlinear functions is new. It was proven that the system does indeed

have a weak solution and regularity was established. Furthermore, regularity was established

for all of the NEC variables.

Furthermore, mixed finite element convergence was established for each of the NEC

variables. The mixed method finite analysis for the Part I equations is new and it is perhaps

the most significant result of the thesis. That analysis consisted of finding a solution in the

bounded set S.

Future Work.

There are many possibilities for future work for the NEC model. For example, it may

be helpful to include more detail in the epithelial layer and extra cellular matrix. This may

mean including cell migration in the model as well adding an extra cellular matrix region to

the model.

Further work may also be done in the area of analysis. The PDEs analyzed in chapters

four and five were relevant to the NEC system. However, it would be beneficial to do

existence, uniqueness, and regularity studies as well as finite element analysis on a more

general system that contains more complicated coupling. For example, instead of the Part

I type equations (see chapter four), one might study a system that has ”two-way” coupling

in the advection terms:

∂u1
∂t

−∇ · (D1∇u1 − u1∇u2) = f1(u1, u2)

∂u2
∂t

−∇ · (D2∇u2 − u2∇u1) = f2(u1, u2)

Some computer convergence tests were done for the system above and it was found that there

was no convergence in some cases(see chapter six) when using the explicit finite difference

method. On the other hand, there was convergence for all of the implicit cases that were
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tested. However, no formal analysis was done on this system. Such an analysis would be

interesting but very difficult in view of the challenges that the two-way coupling presents.

The existence and regularity analysis for the PDE in part II was presented in chapter

four. The results for the degenerate case heavily depended on the excellent paper by Alt and

Luckhaus [4]. However, Alt and Luckhaus, make certain assumptions that do not always

apply to the degenerate case. For example, for our Part II equation, (see equation (4.177)

in chapter four :

∂ec
∂t

−∇ · (a(∇ec, ec)) = fec(ec, b, na)

Alt and Luckhaus would make the assumption that

(a(∇ec1 , ec)− a(∇ec2 , ec)) · (∇ec1 −∇ec2) ≥ βminαmin|∇ec1 −∇ec2 |2.

(See [4], page 314 assumption 3.) We showed that this assumption is, in fact, valid for the

non-degenerate case but it will often not be true for the degenerate case. Therefore, further

work can be done to eliminate such assumptions for the Part II equations for the degenerate

case.
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APPENDIX A

FEM ANALYSIS PART II NON-DEGENERATE CASE

In chapter 5 of this thesis, the mixed finite element analysis of the degenerate case of PDEs

in Part II of the NEC system were presented. Below is the analysis of the non-degenerate

case.

Assumptions Following Arbogast, Wheeler, and Zhang, we assume for the non-degenerate

case we have,

0 < C ′ ≤ Pec ≤ C ′′ (A.1)

For some positive constants C ′ and C ′′. Which, of course, implies that

0 < C ′ ≤ P (ech)− P (ec)

ech − ec
≤ C ′′ (A.2)

and

C ′|ech − ec| ≤ |P (ech)− P (ec)| ≤ C ′′|ech − ec| (A.3)

1

2
CA(ech − ec)

2 ≤
∫ ech

ec

(P (µ)− P (ec)) dµ ≤ 1

2
CB(ech − ec)

2 (A.4)

We may replace the first term on the left hand side of (5.145) with (A.3) to get the

following error bound:∫ t

0

C ′∥ech − ec∥ ds+ ∥
∫ t

0

zh ds−
∫ t

0

Phz ds∥
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≤ C12

{∫ t

0

∥Πec − ec∥ ds+
∫ t

0

∥Ph(t)ź − ź∥ds+
∫ t

0

∥∇ · (Πh − Ph)ź∥ds

}

≤ C12

{∫ t

0

∥Πec − ec∥ ds+
∫ t

0

∥Ph(t)ź − ź∥ds

+

∫ t

0

∥∇ · (Πhź− ź+ ź− Phź)∥ds

}

≤ C12

{∫ t

0

∥Πec − ec∥ ds+
∫ t

0

∥Ph(t)ź − ź∥ds

+

∫ t

0

∥∇ · (Πhź− ź∥ds+
∫ t

0

∥ź− Phź)∥ds

}

Bound 4 (Error bound in L2 Norm - Non-Degenerate Case)∫ t

0

C ′∥ech − ec∥ ds+ ∥
∫ t

0

zh ds−
∫ t

0

Phz ds∥

≤ C13

{∫ t

0

∥Πec − ec∥ ds+
∫ t

0

∥Ph(t)ź − ź∥ds

+

∫ t

0

∥∇ · (Πhź− ź∥ds

}
(A.5)

Thus, (A.5) gives an error bound for ech − ec in the L2 norm.

Terms ∥Πec−ec∥, ∥Ph(t)ź − ź∥, ∥∇·(Πhź− ź)∥ will be bounded using approximation results.
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APPENDIX B

RENAMING OF PARAMETERS

During the update of the NEC computer code, many of the parameters in the code were

renamed and a few new parameters were added. The old and new parameter names are

listed in the next three tables along with the current numerical values of these parameters.
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New Name Value Old Name Checked

kbg 0.9 kbg *

kb 1.5 kb *

kRca
1.0 knc *

kbma 1.8 kab *

kbna 1.8 kNab *

kpp 0-.25 kcab *

km 0.12 km *

kmb 0.1 kbm *

kmc 0.076 kcm *

kmd 0.02 kdm *

kma 0.05 kma *

kc 1.0 kc *

kcma 0.2 kmac *

kcna 0.05 kNac *

knc 0.04 kcN *

kcamana 0.25 NEW *

Table 5: Renaming of parameters (1 of 3).
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New Name Value Old Name Checked

kcamad 48 kcnd *

kca 0.1 kca *

kcaP 0 or .04 kcnn *

kNO 2.0 kNO *

kNOma 10,000 kmaNO *

kNOna 10,000 knaNO *

kna 0.05 kNa *

knd 0.018 kdN *

kd 0.02 kd *

kdc 0.35 kdn *

kZec 0.03 kZO1 *

kZect
2.0 NEW Previously 1

kZN 0.75 kNZ *

kP 0.25 kP *

kecnab 0.25 NEW *

kecnac 0.5 NEW *

Table 6: Renaming of parameters (2 of 3).

267



New Name Value Old Name Checked

bmax 20 bmax *

ca 0.2800 kb *

cmax 0.3500 cmax *

dmax .92 dmax *

ec,max 1.0000 ec,max *

ϵ 0.2 ϵ *

Dec 0.000003 Dec *

ϵzec 0.05 γzec *

γmac .0001 γ0 *

γnac 0.0001 γ2 *

γmab 0.0001 γ1 *

ma 0.01 ma *

mmax 0.67 m0 *

na 0.01 na *

na,max 0.62 na,max *

nb 1 nb *

q0 0.45 New *

q1 3.5 q1 *

q2 1.5 q2 *

sca 0 or .0125 sc *

xdc 0.06 xdn *

ZO1max 1 ZO1max *

Table 7: Renaming of parameters (3 of 3).
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APPENDIX C

LIPSCHITZ CONTINUITY RELATED TO PDES IN PART I

In this section, we will show that the right hand side functions of each of the equations in

Part I are Lipschitz continuous. Lipschitz continuity is a necessary condition for the numer-

ical analysis that will done later in the thesis.

Anti-inflammatory Cytokine Equation

∂ca
∂t

− ∇ ·Dca∇ca = −kcaca + sca + kcaP
Q

1 +Q
(C.1)

where

Q = R(ca)(kcamanana +ma + kcamadd) and R(ca) =
1

1 + kRca(ca/ca)
2

Define

fca := −kcaca + sca + kcaP
Q

1 +Q

Set A = kcamanana +ma + kcamadd. We previously showed that na,ma, ca are bounded and

non-negative, also, kcamanana and kcamadd are non-negative constants therefore, A is bounded

and non-negative. Now,

Q

1 +Q
=

A
(1 + kRca(ca/ca)

2)(1 + A
(1+kRca (ca/ca)

2 ))
=

A
1 + kRca(ca/ca)

2 +A

|fca(ca2)− fca(ca1)| =

∣∣∣∣∣− kcaca2 + kcaP
A

1 + kRca(ca2/ca)
2 +A
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−
(
− kcaca1 + kcaP

A
1 + kRca(ca1/ca)

2 +A

)∣∣∣∣∣
=

∣∣∣∣∣− kcaca2 + kcaca1 +
kcaPA(1 + kRca(ca1/ca)

2 +A)− kcaPA(1 + kRca(ca2/ca)
2 +A)

(1 + kRca(ca2/ca)
2 +A)(1 + kRca(ca1/ca)

2 +A)

∣∣∣∣∣
=

∣∣∣∣∣− kcaca2 + kcaca1 +
kcaPAkRca(c

2
a1
− c2a2)

c2a(1 + kRca(ca2/ca)
2 +A)(1 + kRca(ca1/ca)

2 +A)

∣∣∣∣∣
Set B =

kcaPAkRca

c2a(1 + kRca(ca2/ca)
2 +A)(1 + kRca(ca1/ca)

2 +A)

then

|fca(ca2)− fca(ca1)| = | − kcaca2 + kcaca1 − B(ca1 + ca2)(ca2 − ca1)|

= |(−kca − B(ca1 + ca2))(ca2 − ca1)|

≤ C|(ca2 − ca1)| (C.2)

This last inequality is true because the terms in the denominator of B are all positive, ca is

constant and ca was previously shown to be bounded.

Epithelial Equation

∂ec
∂t

+ ∇ · (β(ec)u(ec, b)) = kpec(1− ec/ec,max)− ka0ka(na, c, b)ec (C.3)

where

β(ec) =
e2c

e2c + (ec,max − ec)2
u(ec, b) = α(b)∇ec (C.4)

ka(na, c, b) :=

(na + kecnacc+ kecnabb)
.45

(na + kecnacc+ kecnabb)
.45 + ((na,max − na) + kecnac(cmax − c) + kecnab(bmax − b)).45

Define

fec := kpec(1− ec/ec,max)−Aec
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where

A = ka0ka(na, c, b)

Note that na, kecnac, c, kecnab, b, ka0 are all non-negative and if we can assume that we

have na,max ≥ na, cmax ≥ c, bmax ≥ b then

0 ≤ A ≤ 1

|fec(ec2)− fec(ec1)| = | kp(ec2 − ec1)−
1

ec,max

(e2c2 − e2c1)−A(ec2 − ec1)|

=

∣∣∣∣∣ kp(ec2 − ec1)−
1

ec,max

(e2c2 − e2c1)−A(ec2 − ec1)

∣∣∣∣∣
=

∣∣∣∣∣ kp − 1

ec,max

(ec2 + ec1)−A

∣∣∣∣∣|ec2 − ec1 |

Since ec is bounded, we have

|fec(ec2)− fec(ec1)| ≤ C|ec2 − ec1 | (C.5)

For some C ≥ 0.

Bacteria Equation

∂b

∂t
− ∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ϵ)

−R(ca)(kbmamab+ kbnanab)− kppb (C.6)

Define

fb := kbgb(1− b/bmax)− kbb/(1 + b/ϵ)−R(ca)(kbmamab+ kbnanab)− kppb

|fb(b2)− fb(b1)| = | kbgb2(1− b2/bmax)− kbb2/(1 + b2/ϵ)

+b2(−R(ca)kbmama −R(ca)kbnana − kpp)

− kbgb1(1− b1/bmax) + kbb1/(1 + b1/ϵ)

−b1(−R(ca)kbmama −R(ca)kbnana − kpp)|
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=
∣∣∣ kbg(b2 − b1)−

kbg
bmax

(b2 − b1)− kb
b2 + b1b2/ϵ− b1 − b1b2/ϵ

(1 + b1/ϵ)(1 + b2/ϵ)

+(b2 − b1)(−R(ca)kbmama −R(ca)kbnana − kpp)
∣∣∣

=
∣∣∣kbg − kbg

bmax

− kb
1

(1 + b1/ϵ)(1 + b2/ϵ)

−R(ca)kbmama −R(ca)kbnana − kpp

∣∣∣|b2 − b1|

|fb(b2)− fb(b1)| ≤ C|b2 − b1| (C.7)

Since the bacteria equation is coupled with the activated macrophage equation, we will also

have to show that fb is Lipschitz continuous in ma:

|fb(ma2)− fb(ma1)| = | −R(ca)kbmab(ma2 −ma1)|

|fb(ma2)− fb(ma1)| ≤ C|ma2 −ma1 | (C.8)

Activated Neutrophil Equation

∂na

∂t
− ∇ · (Dna∇na − γnacna∇c) = −knana +R(ca)(knccn+ knddn)

Define

fna := −knana +R(ca)(knccn+ knddn)

Note that the last two terms on the right hand side do not depend on na and also note that

kna ≥ 0, so

|fd(na2)− fd(na1)| = | − knana2 − (−knana1)| = kna|na2 − na1 | (C.9)

Since the activated neutrophil equation is coupled with the cytokine equation, we will also

have to show that fna is Lipschitz continuous in c:

|fna(c2)− fna(c1)| = | R(ca)kncn(c2 − c1)|
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|fna(c2)− fna(c1)| ≤ C|c2 − c1| (C.10)

Activated Macrophage Equation

∂ma

∂t
− ∇ · (Dma∇ma − γmacma∇c− γmabma∇b)

= −kmama +R(ca)(kmbbm+ kmccm+ kmddm)

Define

fma := −kmama +R(ca)(kmbbm+ kmccm+ kmddm)

Note that the last three terms on the right hand side do not depend on ma and also note

that kma ≥ 0, so

|fma(ma2)− fma(ma1)| = | − kmama2 − (−kmama1)| = kma|ma2 −ma1 | (C.11)

Since the activated macrophage equation is coupled with the cytokine equation, we will also

have to show that fma is Lipschitz continuous in c:

|fma(c2)− fma(c1)| = | R(ca)kmcm(c2 − c1)|

|fma(c2)− fma(c1)| ≤ C|c2 − c1| (C.12)

The activated macrophage equation is also coupled with the bacteria equation, so we will

also have to show that fma is Lipschitz continuous in b:

|fma(b2)− fma(b1)| = | R(ca)kmbm(b2 − b1)|

|fma(b2)− fma(b1)| ≤ C|b2 − b1| (C.13)
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Damage Equation

∂d

∂t
− ∇ ·Dd∇d = −kdd+ kdc

T q2

xq2dc + T q2
(C.14)

Define

fd := −kdd+ kdc
T q2

xq2dc + T q2

Note that the second term on the right hand side does not depend on d and also note that

kd ≥ 0, so

|fd(d2)− fd(d1)| = | − kdd2 − (−kdd1)| = kd|d2 − d1| (C.15)

Nitric Oxide Equation

∂NO

∂t
− ∇ ·DNO∇NO = −kNONO + kNOma

mq1
a

1 + (ma/ma)q1
+ kNOna

nq1
a

1 + (na/na)q1
(C.16)

Define

fNO := −kNONO + kNOma

mq1
a

1 + (ma/ma)q1
+ kNOna

nq1
a

1 + (na/na)q1

|fNO(NO2)− fNO(NO1)| = | − kNONO2 − (−kNONO1)| = kNO|NO2 −NO1| (C.17)

Cytokine Equation

∂c

∂t
− ∇ ·Dc∇c = −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm) (C.18)

Define

fc := −kcc+R(ca)(kcmama + kcnana)−R(ca)(knccn+ kmccm)

|fc(c2)− fc(c1)| = | − kcc2 −R(ca)(kncc2n+ kmcc2m)− (−kcc1 −R(ca)(kncc1n+ kmcc1m))
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= |c2(−kc −R(ca)kncn−R(ca)kmcm)− c1(−kc −R(ca)kncn−R(ca)kmcm))

= | − kc −R(ca)kncn−R(ca)kmcm||c2 − c1|

Using (4.140), the fact that n is fixed and m ≤ mmax, a constant. So,

|fc(c2)− fc(c1)| ≤ C|c2 − c1| (C.19)

Since the cytokine equation is coupled with the activated macrophage equation, we will also

have to show that fc is Lipschitz continuous in ma:

|fc(ma2)− fc(ma1)| = | R(ca)kcmac(ma2 −ma1)|

|fc(ma2)− fc(ma1)| ≤ C|ma2 −ma1 | (C.20)

The cytokine equation is coupled with the activated neutrophil equation, we will also have

to show that fc is Lipschitz continuous in na:

|fc(na2)− fc(na1)| = | R(ca)kcna(na2 − na1)|

|fc(na2)− fc(na1)| ≤ C|na2 − na1 | (C.21)

Macrophage Equation

∂m

∂t
= km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm)

Define

fm := km(mmax −m)−R(ca)(kmbbm+ kmccm+ kmddm)

|fm(m2)− fm(m1)| ≤ km|m2 −m1|+R(ca)(kmbb+ kmcc+ kmdd)|m2 −m1|

≤ C|m2 −m1|.
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APPENDIX D

VERTICAL GRAPHS FOR THE SIMULATION CHAPTER.

Figure 56: Normal Case - Term Infant, No Injury to the epithelium. The colored vertical graphs are logs
of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 28 in the Simulation
Results chapter.
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Figure 57: Simulation results for Case Partial Injury, Formula Fed. The colored vertical graphs are logs
of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 43 in the Simulation
Results chapter.

Figure 58: Simulation results for Case Partial Injury, Breastfed. kpp = .7. The colored vertical graphs
are logs of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 45 in the
Simulation Results chapter.
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Figure 59: Simulation results for Case Total Injury, Formula Fed. The colored vertical graphs are logs of,
from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 49 in the Simulation
Results chapter.

Figure 60: Simulation results for Case Total Injury, Breast Fed kpp = .7. The colored vertical graphs
are logs of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 50 in the
Simulation Results chapter.

Figure 61: Simulation results for Case Total Injury, Breast Fed kpp = .000125. The colored vertical graphs
are logs of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 52 in the
Simulation Results chapter.
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Figure 62: Simulation results for Case Total Injury, Breast Fed kpp = 1.25. The colored vertical graphs
are logs of, from left to right, ca, d, ec, b, c,m,ma, NO,ZO1. This graph is associated with figure 53 in the
Simulation Results chapter.
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