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Artificially ordered semiconductor quantum dot (QD) patterns may be used to implement 

functionalities such as spintronic bandgap systems, quantum simulation and quantum computing, 

by manipulating the interaction between confined carriers via direct exchange coupling. In this 

dissertation, magnetotransport measurements have been conducted to investigate the electronic 

orbital and spin states of directed self-assembly single- and few-Ge/SiC/Si QD devices, 

fabricated by a directed self-assembly QD growth technique developed by our group. 

Diamagnetic and Zeeman energy shifts of electrons confined around the QD have been observed 

from the magnetotransport experiments. A triple-barrier resonant tunneling model has been 

proposed to describe the electron and spin transport. The strength of the Coulomb interaction 

between electrons confined at neighboring QDs has been observed dependent on the dot 

separation, and represents an important parameter for fabricating QD-based molecules and 

artificial arrays, which may be implemented as building blocks for future quantum simulation 

and quantum computing architectures. 

 

 

ELECTRON PROPERTIES IN  

DIRECETED SELF-ASSEMBLY GE/SIC/SI QUANTUM DOTS 

 Dongyue Yang, PhD 

University of Pittsburgh, 2014

 



 v 

TABLE OF CONTENTS 

PREFACE ..................................................................................................................................... X 

1 QUANTUM SIMULATION WITH QUANTUM DOTS ................................. 1 

1.1 INTRODUCTION OF QUANTNUM DOT ............................................... 1 

1.2 QUANTUM SIMULATION BASED ON QD SYSTEMS ........................ 2 

1.3 QUANTUM DOT FABRICATON .............................................................. 8 

1.4 QD STRUCTURAL CHARACTERIZATION ........................................ 14 

1.5 CHARACTERIZATION OF QD ELECTRONIC PROPERTIES ....... 17 

1.5.1 Electronic states in QD .......................................................................... 17 

1.5.2 Electrical characterization methods ..................................................... 21 

1.5.3 Photoluminescence measurements ....................................................... 25 

1.5.4 Carrier Localization .............................................................................. 28 

2 DIRECTED SELF-ASSEMBLED GE/SIC/SI QUANTUM DOT ................ 30 

2.1 INTRODUCTION....................................................................................... 30 

2.2 TEMPLATED GROWTH TECHNIQUE AND GROWTH 

CONDITION OPTIMIZATION ................................................................................... 32 

2.2.1 Precursor template preparation ........................................................... 34 

2.2.2 Ge MBE growth ..................................................................................... 38 

2.2.3 Structure characterization by TEM ..................................................... 42 



 vi 

2.2.4 Fabrication of Ge/SiC/Si QDs and QDMs ........................................... 45 

2.3 ELECTRONIC STRUCTURE OF GE/SIC/SI QD ................................. 46 

2.3.1 Electronic states of Ge/SiC/Si QD......................................................... 46 

2.3.2 Electron transport through QD ............................................................ 48 

3 DEVICE FABRICATION ................................................................................ 51 

3.1 OVERVIEW ................................................................................................ 51 

3.2 PRECURSOR TEMPLATE FABRICATION ......................................... 54 

3.3 MBE GRWOTH OF GE AND SI CAPPING........................................... 55 

3.4 ELECTRODE PATTERNING AND DEPOSITION .............................. 56 

4 MAGETOTRANSPORT THROUGH GE/SIC/SI QD/QDM ....................... 61 

4.1 INTRODUCTION....................................................................................... 61 

4.2 MEASUREMENT SET-UP ....................................................................... 61 

4.3 TRANSPORT DATA.................................................................................. 63 

4.4 RESONANT TUNNELING ....................................................................... 66 

4.5 MAGNETOTRANSPORT ......................................................................... 76 

4.6 INTERDOT INTERACTIONS ................................................................. 81 

4.6.1 Coulomb interaction .............................................................................. 81 

4.6.2 Exchange interaction ............................................................................. 82 

5 SUMMARY AND CONCLUSION .................................................................. 84 

BIBLIOGRAPHY ....................................................................................................................... 86 



 vii 

 LIST OF TABLES 

Table 4.1 Magnetotransport characterization of QD/QDM devices..……………………………80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

 

LIST OF FIGURES 

Figure 1.1 Principles of quantum simulation .................................................................................. 3 

Figure 1.2 Possible layouts of QD architectures for Heisenberg interaction QC ........................... 6 

Figure 1.3 Three possible epitaxial growth modes ......................................................................... 9 

Figure 1.4 AFM characterization of a single QD ......................................................................... 15 

Figure 1.5 Density of States versus energy at different dimensions ............................................. 18 

Figure 1.6 Coulomb blockade oscillation ..................................................................................... 21 

Figure 1.7 Vertical (a-a') potentials of a column QD under zero and resonant bias ..................... 23 

Figure 1.8 The photoluminescence experiment ............................................................................ 26 

Figure 1.9 Band alignment in type-I and type-II QDs .................................................................. 29 

Figure 2.1 Templated growth of Ge/SiC/Si QD arrays ................................................................. 33 

Figure 2.2 FWHM of aC:H nanodots versus ebeam dose ............................................................ 35 

Figure 2.3 AFM image of EBID aC:H nanodots .......................................................................... 36 

Figure 2.4 Final feature size affected by 500°C dwell.................................................................. 37 

Figure 2.5 AFM of Ge/SiC QDs grown at different Ge deposition temperatures ........................ 39 

Figure 2.6 Volume distributions of Ge/SiC composite nanodots ................................................. 40 

Figure 2.7 Degree of coarsening for Ge/SiC nanodots ................................................................. 41 

Figure 2.8 Statistical analysis of Ge/SiC size ............................................................................... 41 

Figure 2.9 XTEM of Ge/SiC/Si QDs ............................................................................................ 43 

Figure 2.10 HAADF-STEM of Ge/SiC/Si QDs ........................................................................... 44 



 ix 

Figure 2.11 AFM image of Ge/SiC/Si QDMs .............................................................................. 46 

Figure 2.12 Co-tunneling process via a virtual tunnel event ........................................................ 49 

Figure 2.13 Kondo phenomena in QDs ........................................................................................ 50 

Figure 3.1 An Integrated QD/QDM device .................................................................................. 53 

Figure 3.2 SEM image of aC:H nanodot patterns ......................................................................... 55 

Figure 3.3 Vertical transport single-QD device ............................................................................ 57 

Figure 3.4 EBL patterning and etching of trench structures ......................................................... 59 

Figure 3.5 The top-view of device electrode structures ................................................................ 60 

Figure 4.1 Vertical transport measurement scheme for one Ge/SiC/Si QD device ...................... 62 

Figure 4.2 Current intensity graphs for IV measurements with sweeping magnetic field ........... 63 

Figure 4.3 CV measurements of QD/QDM devices ..................................................................... 65 

Figure 4.4 The CB diagram of a Ge/SiC/Si QD device at zero bias ............................................. 67 

Figure 4.5 An equivalent electric circuit for the constant interaction model ................................ 68 

Figure 4.6 Magnetotransport of a reference device at 70 mK ...................................................... 70 

Figure 4.7 Magnetotransport of a 1QD device at 70 mK ............................................................. 71 

Figure 4.8 Magnetotransport of two 2QD devices at 70 mK ........................................................ 74 

 

 

 

 

 

 

 



 x 

 

PREFACE 

This Ph.D. thesis contains the result of research undertaken at the Department of Physics 

and Astronomy of the University of Pittsburgh. This research was realized within the project: 

Spintronic Bandgap Materials, funded by the U.S. Department of Energy (DOE). Certainly, I 

would have never reached the point of finishing my dissertation without the help and support of 

others.  

These five years have been a challenging trip, with both ups and downs. Fortunately, I 

was accompanied by an extended team of experts, always willing to coach, sponsor, help, and 

motivate me. For this, I would like to thank them.  

My most important coach throughout all these years was my research advisor Jeremy 

Levy. Jeremy was full of knowledge and ideas, and were always eager to share them and were 

always ready to find time for me disregarding his busy schedule. Furthermore, I would like to 

thank my other labmates Patrick Irvin, Guanglei Cheng, Feng Bi, Mengchen Huang, Megan 

Kirkendall, Shicheng Lu, Michelle Tomczak, Lu Chen, and former members Cheng Cen, Vanita 

Srinivasa and Joshua Veazey for their comments and suggestions on my work and their 

continuous support.  

Special thanks go to my collaborators who have worked with me on this project over the 

years, in particular Chris Petz, Jerrold Floro and Gilberto Medeiros-Ribeiro.  

Thanks and love to my family. They have been always supportive and patient in my 

journey towards this work.   



 xi 

Finally I want thank my Ph.D. committee members for spending time on evaluating my 

dissertation, and for providing professional comments and suggestions.  



 1 

1 QUANTUM SIMULATION WITH QUANTUM DOTS 

1.1 INTRODUCTION OF QUANTNUM DOT 

Quantum dot (QD) is defined as a three-dimensionally confined semiconductor quantum 

well (QW). Such QDs, coined as “artificial atoms”, typically consist of a few hundred to a few 

million atoms and behave in many ways like single atoms [1]. QDs exhibit quantum effects 

associated with their atomic counterparts, e.g. few electrons are held together by the nuclear 

potential. It is also expected that zero-dimensional confinement can yield the characteristic 

structure of a series of isolated current or optical spectrum peaks that can be studied by electronic 

transport [2, 3] and photo excitation [4] through a discrete spectrum of states.  

QD architectures have been proposed as an excellent platform on which control over 

electron/spin interactions at Hamiltonian level can be effectively implemented. Thus QD 

architectures can serve as an essential approach to realize apparatus such as spintronic devices 

[5-9], quantum information and computing [10], and quantum simulation [11-15]. QDs have also 

been widely used in electronic devices [16-22], photonic devices [23-26], light-emitting devices 

[27-33], cellular automata [34], and solar cells [35-37]. 

In this chapter, the theory and experiments of quantum simulation (QS) and quantum 

computing (QC) will be introduced to demonstrate the advantages of QD-based architectures as 

one of the motivations, followed by a brief review of fabrication techniques, characterization 

methods and electronic structures of semiconductor QDs. 
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1.2 QUANTUM SIMULATION BASED ON QD SYSTEMS 

Quantum simulation can be defined as the intentional mapping of quantum dynamics of 

one physical system onto another quantum system, one that is typically more controllable. 

Richard Feynman first proposed this idea for efficient simulation of quantum systems [11]. In 

quantum mechanics, it is common that physical problems turn out to be extremely difficult to 

simulate on a classical computer because they need to enumerate quantum states one at a time 

and also because of the exponential proliferation of quantum states required to characterize a 

large system. Examples of such problems are plenty, such as study of quantum phase transitions 

[38], computing molecular energy levels [39], etc. Quantum simulation, however, employs a 

controlled quantum-mechanical device to mimic and investigate other quantum systems. The 

controlled quantum-mechanical devices used to mimic other quantum systems in quantum 

simulation are defined as quantum simulators.  

Two types of quantum simulators have been proposed for physical realization: analog 

quantum simulator (AQS) and digital quantum simulator (DQS) [14] as schematically illustrated 

in Fig. 1.1. A device that maps the evolution of a quantum system and its dynamics, as discussed 

above, is referred to as an AQS. AQSs have been successfully constructed using a variety of 

quantum architectures. Atoms in ultracold quantum gases confined by optical lattice have been 

used to mimic condensed matter systems [40-43]. Circuit excitations in superconducting circuits 

[44] and single photon systems are promising platforms for simulating quantum phenomena of 

small-sized quantum systems. Trapped atomic ions held in radiofrequency traps enable the 

construction of a wide range of Hamiltonians so that various quantum simulations can be 

implemented [45]. With a DQS, the state of the system to be simulated is encoded in a register of 

quantum information carriers. The dynamics is approximated with elementary quantum gates, 
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and implemented in a circuit. In a DQS, the propagator describing the dynamical evolution is 

constructed from a sequence of quantum gates. The main steps of a DQS consist of preparing the 

input state, evolving it over a time t and carrying out measurements on the evolved state to 

extract the physical information of interest. The time evolution of the simulator is designed to 

match the time evolution of the model system to be simulated. DQS is very flexible as it can, in 

principle, be reprogrammed to efficiently simulate arbitrary quantum systems whose dynamics 

are determined by local interactions [12] and is therefore referred to as a universal quantum 

simulator (UQS) [12]. The idea of UQS is further developed and described as a universal 

quantum computer [46]. Also, methods to efficiently correct for and quantitatively bound 

experimental error have been studied to implement large-scale digital simulations [47]. The 

digital approach has been experimentally explored with various physical systems. For example, a 

DQS has been implemented with Nuclear magnetic resonance (NMR) systems to study two- and 

three-body interactions [15]. Trapped ion systems have been used to simulate the full time 

dynamics of a range of spin systems [48] and to simulate spin-spin interactions [49].  
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Figure 1.1 Principles of quantum simulation. A quantum simulation starts with mapping the initial state 

 0  of a model system to  ' 0  in a quantum simulator system. The time evolution of the simulator is 

designed to match the evolution of the model system in either analog or digital approach. In the end the evolved 

state is measured to extract the physical information of the model system. (Figure is adapted from [49]) 

 

Quantum simulation based on germanium/silicon-carbide/silicon quantum dot (Ge/SiC/Si 

QD) system motivates the research described in this dissertation. One attractive feature of using 

semiconductor systems is that very low relevant temperatures may be reached. The temperature 

of the semiconductor system can be controlled using a dilution refrigerator. Therefore energy 

regimes which are interested to the simulation are accessible [50]. Another feature is that due to 

the long-ranged Coulomb interaction between electrons confined around QDs, the interdot 

interaction can be tuned by controlling the QD separation. The spin exchange interaction can 

also be well modulated by applying external magnetic and electric fields [51]. Thirdly, the 

enhanced spin lifetime in Si and extended transport length originating from weak spin-orbit 

coupling and lattice inversion symmetry exceeds the time required for quantum gate operation 

and the spin transport coherence length, respectively [52]. Compared with other systems such as 

cold atoms, trapped ions and NMR systems, silicon-based architectures are more easily scaled 

and integrated with existing Si technology. 

AQS is anticipated to be useful for helping to provide insight into the physics of quantum 

material systems. A QD array architecture has been proposed as an AQS to simulate the system 

of a Cu-O plane in copper-oxide superconductors [53]. An AQS can also be constructed for a 

Fermi-Hubbard model using a coupled semiconductor QD array confined in a semiconductor 

two-dimensional-electron-gas (2DEG) system [50]. For a given average electron number in the 
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QDs, the low-energy physics can be described by an effective one- or two-band Hubbard model 

[50].  

This AQS can be generalized to different lattice geometries by adjusting the gate design 

and applied gate voltage. Manipulating the long-ranged Coulomb interaction between QDs 

allows the simulation of two-dimensional Hubbard model that describes strongly-correlated 

phenomena such as metal-insulator transitions [54] and magnetism [55]. 

Artificially arranged Ge/SiC/Si QDs can be considered as a promising architecture for 

AQS if one can manipulate the electronic states confined by the QDs and if the inter-QD 

(interdot) interaction can be modulated. Pryor, etc. proposed a method to manipulate the 

confined electronic states and the interdot interactions in an artificially ordered Ge/Si QD system 

by varying QD spacing or by applying electrical fields [51]. This method provides a clue to 

implementing Ge/SiC/Si QDs as an AQS due to the similar type-II band edge alignment of 

Ge/SiC/Si and Ge/Si QD (Details discussed in section 1.2.3). Compared with AQS that performs 

dedicated tasks to solve specific Hamiltonians, making a QD-based UQS or quantum computer 

that performs operations at the qubit level is a far more difficult task.  

Quantum computation (QC) architectures have been proposed based on QD system with 

various QD spatial configurations. D. Loss and D. DiVincenzo first proposed that quantum 

computing can be implemented by spin states of coupled single-electron QDs [56]. An efficient 

universal quantum computation (UQC) architecture that uses pairs of spin-1/2 particles to form 

logical qubits, and Heisenberg exchange to produce all gate operations was presented [57]. In 

this architecture, a decoherence-free (DF) subspace is constructed and the physical qubits, i.e. the 

spin-1/2 pairs, evolve in this DF-subspace. Therefore a DF-UQC is possible within this 

architecture. Heisenberg interaction between neighboring QDs alone has been theoretically 
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studied to implement UQC. Compared with the earlier proposed QC architecture in Ref. [56], the 

complexity of one-qubit operations in this architecture can be effectively reduced to accelerate 

the QC progress [58], even though three physical qubits (QDs) are required to encode one logic 

qubit as schematically demonstrated in Fig. 1.2. One-way quantum computation is an alternative 

QC architecture that can be implemented by QDs [59]. The architecture consists of single qubit 

measurements on a prepared cluster state. A cluster state is a particular type of highly entangled 

state, which can be generated in lattices with Ising type of interactions [60]. Quantum logic 

circuit is created by the single qubit measurements that destroy the entanglement of the cluster 

state at the same time. Cluster states have been created by atom qubits in optical lattices by 

Mandel, etc., [61]. However these cluster states are not suitable for QC because the atom qubits 

are too close in the optical lattices ( ~ 410 nm in Ref. [61]) to measure single atoms. In QD 

systems, this challenge can be solved as inter-QD interaction can be long-range ( ~ um ) and the 

electron/spin states of QDs can be measured individually [62-64]. 
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Figure 1.2 Possible layouts of QD architectures for Heisenberg interaction QC [58] for (a) One-dimensional 

layout, and (b) Two-dimensional layout. Three QDs are required to encode one logical qubit and the Heisenberg 

interaction J is represented by blue arrows.   

 

The architectures described above use one, two or three QDs to encode one logical qubit 

and up to about ten QDs to produce one two-qubit operation [57, 58]. Each architecture requires 

specific QD spatial arrangements [65]. Besides challenges in positioning QDs with high 

precision, one needs to find an approach to externally manipulate quantum states, to preserve the 

quantum coherence of these states for some time and to transport the states at a macroscopic 

distance before the quantum information is dissipated. To accomplish these tasks, this 

dissertation focuses on growing directed self-assembled Ge/SiC/Si QDs and QDMs with various 

spatial configurations, integrating QD/QDM structures into vertical transport electronic devices 

(refer as QD/QDM devices); conducting magnetotransport measurements on the QD/QDM 

devices; investigating electron states confined around the QDs and exploring interdot electron 

interactions with respect to QD spatial configurations.  
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1.3 QUANTUM DOT FABRICATON 

QDs were first discovered in 1980s in semiconductor microcrystals grown in a dielectric 

matrix [66]. Since then, several methods have been developed for QD fabrication.  

One widely used fabrication method is the self-assembly of QD islands by molecular 

beam epitaxy (MBE) in Stranski–Krastanov (S-K) growth mode [67]. Self-assembly QDs 

spontaneously nucleate when a material is grown on a substrate to which it is not lattice matched. 

The strain from the lattice mismatch produces coherently strained islands on top of a two-

dimensional initial layer of atoms, usually referred to as a wetting layer. For epitaxial thin film 

growth, there are two other possible growth modes: Volmer-Weber (V-W) mode and Frank-van 

der Merwe (F-vdM) mode as shown in Fig. 1.3. The VW growth occurs where interactions 

among adatoms are stronger than those of the adatom with the surface. Therefore the interface 

energy alone is sufficient for island formation in three dimensions (3D) [68]. During FM growth, 

adatoms prefer to attach to surface sites, leading to atomically smooth two-dimensional (2D) 

layers. The 2D layer-by-layer growth indicates a complete formation of films before growth of 

subsequent layers [68]. S-K growth is a process represented by both 2D wetting layer growth and 

3D island formation. Transition from the layer-by-layer to island growth occurs at a critical layer 

thickness. The critical thickness has been found highly dependent on the surface energies and 

lattice parameters of the grown film and substrate [69]. 

Taking growth of Ge QDs on Si substrate in S-K mode as an example, Ge initially wets 

the Si surface and grows 2D layers due to the low surface energy of Ge. A 4.2% lattice mismatch 

between Ge and Si ( 5.65 ÅGea , 5.43 ÅSia ) causes a linear increase in film elastic energy 

during the layer growth. As the layer grows, the elastic energy increases and drives a layer-to-
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island transition at a critical thickness near three monolayers (ML) [67]. Initially, islands forming 

on the wetting layer are coherent or defect free. These nanoscale coherent islands are the self-

assembling QDs. A substantial fraction of the mismatch induced strain is relieved by elastic 

deformation of the substrate. As the QDs grow, the QDs’ shape changes in order to minimize 

their free energy [70-72]. Continued growth causes the coherent islands to dislocate which 

dramatically reduces the QD chemical potential [67, 73]. Critical thickness and critical size at 

which the dislocation is introduced into the initially coherent Ge QDs have been calculated by 

Cabrera, etc. [74]. 

 

Figure 1.3 Three possible epitaxial growth modes. (a) Frank-van der Merwe (F-vdM) mode, (b) Volmer-

Weber (V-W) mode, (c) Stranski-Krastinov (S-K) mode. Where interface energy alone is sufficient to cause island 

formation, VW growth will occur; S-K growth is uniquely confined to systems where the island strain energy is 

lowered by misfit dislocations underneath the islands. 

 

Starting from a single layer inhomogeneous QDs, by subsequent multilayer MBE growth, 

vertically stacked QD structures can be obtained on top of the initial layer of QDs separated by 
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spacer layers. An example is a structure that consists of successive layers of pure Ge or of SiGe 

alloys separated by Si barrier layers [75-78]. The QDs in the upper layers grow on the top of the 

buried ones, giving rise to a vertical correlation between islands along the growth direction. This 

vertical self-organization has been observed both for InAs/GaAs [79, 80] and Ge/Si [75, 78] QD 

systems. The origin of the vertical correlation is attributed to inhomogeneous strain fields 

induced by the buried islands [73]. Electron properties has been investigated for vertical QD 

molecules both theoretically [81] and experimentally [76]. Vertically correlated QDs can form 

vertical QDMs. Electronic/magnetic properties and interdot interactions of a vertical QDM can 

be tuned by applying external electric/magnetic fields and by adjusting the thickness of the 

spacing layer respectively [81]. In vertically correlated QDs, the depth of the potential well 

confining carriers increases due to accumulation of strain energy from different dot layers [78]. 

Therefore carriers are localized more strongly in multilayer QD structures than in single layer 

QDs. An enhanced efficiency of photo- and electroluminescence [82], photo detectors [83] and 

solar cells [84] has been reported due to strongly localized electron states in multilayer Ge/Si QD 

structures. Despite of all these advantages, scaling the self-assembly approaches to larger two-

dimensional crystals with nanoscale QDs has not yet been worked out. 

The main limitations of self-assembly growth method are the cost of fabrication, 

difficulties in optimizing growth parameters such as deposition rate and substrate temperatures, 

the lack of control over positioning individual QDs, and the challenge in obtaining uniform QD 

size distribution. The non-uniformity of QD size distribution is caused by the Ostwald ripening 

process, in which larger islands grow at the cost of smaller islands. Surface energy minimization 

is the driving force of Ostwald ripening effect [73].  

 



 11 

Another method that has been frequently used to fabricate QD is creating quantum 

confinement in a semiconductor heterostructure by lithographic patterning of surface gates, i.e., 

depositing metal electrodes on heterostructure surface. Individual QDs can be created from two-

dimensional electron or hole gases in QWs or semiconductor heterostructures. This type of QD is 

called lateral QD. Sample surface is first coated with a thin layer of resist. A lateral pattern is 

then defined in the resist by lithography techniques. This pattern can then be transferred to 

electron or hole gas by etching, or by depositing metal electrodes that allow application of 

external voltages between the electron or hole gas and the electrodes.  

Experimentally, electrode patterning has been facilitated by nano-imprinting or 

lithography techniques such as electron beam lithography (EBL), focused beam implantation 

(FIB), focused laser beam (FLB), etc. 2DEG heterostructures form in the system of 

GaAs/AlGaAs [85-87], InAs/GaAs [88], GaSb/GaAs [89, 90], Ge/Si [77], etc. Lateral QDs are 

mainly of interest for experiments and applications involving electron or hole transport. 

Flexibility of lithography techniques enables fabrication of complex QD devices such as: double-

QD with quantum point contact for charge sensing [87, 91], QD-based single electron transistor 

[92-96], etc. Similarly, a carbon nanotube quantum dot (CNT QD) can be fabricated when 

electrons are confined to a small region within a carbon nanotube by applying voltage to gate 

electrodes, thereby causing electrons to accumulate in the vicinity of the electrode. Metallic leads 

are then laid over the nanotube in order to connect the CNT QD to an electrical circuit [97-99] 

for electron transport characterization.  

The advantage of lithography fabrication method is that QD and electrical circuit can be 

geometrically defined for various device purpose. While its disadvantage is that, QD size is 

normally larger than 100 nm in diameter due to insufficient resolution of lithography techniques 
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and QDs cannot be scaled up to create macroscopic QD superlattice because of slow speed of the 

process.    

To engineer size, shape and position of QDs in fabrication process, a so-called twofold 

cleaved-edge overgrowth (CEO) method has been developed. The twofold CEO method is an 

MBE growth technique that uses regrowth of QDs on cleaved edge of a multilayer sample. This 

method has proven to be a powerful technique for fabricating highly uniform QDs at the 

intersection of QWs [100-103]. With atomic control of size and position of CEO QDs, coupled 

QDMs were fabricated at the intersection of GaAs/AlGaAs QWs by Wegscheider, etc. [103] 

Schedelbeck, etc. reported a control of inter-QD coupling strength in a CEO QDM by adjusting 

spatial distance between QDs [101]. Although the uniformity and position control of CEO QDs 

is greatly enhanced compared with that of self-assembled QDs, fabricating CEO QDs/QDMs is 

challenged by complex MBE growth procedures and limited by material properties.  

 

Other examples of QD fabrication methods are chemical vapor deposition (CVD) and 

colloidal synthesizing. CVD technique was first reported for fabricating a layer of isolated Si 

QDs by Nakajima, etc. [104]. In their work, a conventional low-pressure chemical vapor 

deposition (LPCVD) was used for an extremely short deposition time in the early stage of Si film 

growth. Si QDs with 5 ~ 20 nm in diameter and 2 ~ 10 nm in height were obtained resulting from 

a deposition time of 60 seconds. Colloidal semiconductor QDs are synthesized from precursor 

compounds dissolved in solutions [105, 106]. The synthesis of colloidal QDs is based on three 

components: precursors, organic surfactants, and solvents. When a reaction medium is heated to 

a sufficiently high temperature, the precursors chemically transform into molecules that may 

bind chemically to other molecules. Once these molecules reach a high enough level, the QD 
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growth starts with a nucleation process [107]. Colloidal QDs are normally 20 ~ 200 Å in 

diameter, depending on the materials. Many different semiconductor QDs can be produced by 

colloidal methods. Typical QDs are made of binary alloys such as CdSe [108], CdS [109], InAs 

[110], and InP [111]. For example, InAs QDs can be prepared via colloidal chemical synthesis 

using the reaction of InCl3 and As[Si(CH3)3]3. The synthesized InAs QD size ranges from 25 to 

60 Å in diameter with size distributions of 10% 15%  [110]. Large batches of QDs can be 

synthesized via colloidal synthesis. Therefore colloidal synthetic methods are widely used for 

commercial applications such as solar cells [36, 106] and light-emitting diodes (LED) [112-114]. 

However, the lack of position control of individual QDs hinders their application in single- or 

few-QD electronic/spintronic devices. 

 

Conclusion 

Although size- and position-control by lithography patterning method is superb, this 

approach is slow, and unlikely to meet the demand of fabricating macroscopic arrays of QDs for 

practical applications. On the other hand lithographic approaches are limited by insufficient 

resolution to produce the nanometer scale QDs we are interested in. Self-assembly in nature 

leads to pattern formation at characteristic length scales. It also presents an approach to fabricate 

densely packed arrays of nanometer scale devices. The general idea is to use a template to direct 

the assembly during subsequent deposition. The template is typically fabricated by lithography 

followed by etching to produce artificially patterned substrates. However this approach is labor 

intensive, particularly if the detailed structure of individual cells within the pattern is to be 

controlled. 
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Alternatively, a hybrid approach, directed self-assembly, can be used. An initial 

lithographically determined pattern sets conditions for the physical driving forces to control 

evolution during a subsequent sample growth step. In this process, a template is fabricated to 

guide the assembly of large numbers of structures quickly. To make this practical, it is crucial to 

understand the underlying physical mechanisms involved. Researches carried out in this 

dissertation have been toward gaining such an understanding, by probing QD pattern 

characteristics during directed self-assembly growth [115-118]. With the knowledge of the 

underlying mechanism and optimized parameters that control the QD growth, directed self-

assembly enables deterministic seeding of sub-10 nm QDs in nanometer precision in electronic 

devices. 

1.4 QD STRUCTURAL CHARACTERIZATION 

Electronic and optical properties of QDs can be fine-tuned by QD size, shape and 

composition. These structural parameters determine electron/hole transport, optical spectral 

position and purity of photoluminescence. The ability to position QDs sufficiently close is also a 

necessity to develop interdot coupling energies comparable to 
Bk T . To fabricate high quality QD 

devices with useful and understandable properties, it is of utmost importance to characterize QD 

structural and position parameters. 

 Primary methods for structural characterization can be categorized as follows:  

1. direct imaging methods such as scanning tunneling microscopy 

(STM), atomic force microscopy (AFM) [119] and transmission 

electron microscopy (TEM) [120-126]  
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2. diffraction methods such as reflective high-energy electron diffraction 

(RHEED) [127-129] and its ellipsometric equvalent reflectance 

anisotropic spectroscopy (RAS) [130-133] and X-ray diffraction [134-

138]. 

STM has the advantage of being able to image directly the morphology of a surface on an 

atomic level and to manipulate surface atoms. For example, an STM-tip-induced QD in a GaAs 

surface layer has been created by applying voltage bias between the metallic STM tip and GaAs 

surface [139]. A hole or an electron accumulation layer can be formed under the tip. AFM has in 

principle atomic resolution. Typically a lateral resolution of a few nanometers and a much higher 

z resolution of 0.1 nm can be achieved [140, 141]. As demonstrated in Fig. 1.4, the lateral 

resolution mainly depends on the size and the shape of the AFM tip. 

 

Figure 1.4 AFM characterization of a single QD. The measured diameter 'd  is larger than actual diameter 

of the QD d . 

 

STM and AFM measurements of uncovered QDs are challenging to perform in situ or at 

growth temperatures. However the morphology actually investigated can be different from that 

after growth, e.g. in this dissertation research, the size and facet angle of Ge/SiC QDs can change 
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during Si capping layer deposition [116]. This problem can be avoided by using TEM 

technologies such as high-resolution electron microscopy (HREM) [117] or electron energy loss 

spectroscopy (EELS) [142], which provide frozen-in morphology information on QDs. The 

disadvantage is that these techniques are very time consuming can affect the shape of QDs by 

strain fields [143]. 

RHEED is a highly surface sensitive technique that can be used to monitor QD growth in 

MBE systems. RHEED pattern changes from streaky to spotty upon transformation of an initially 

2D ordered surface into a QD nanostructure [144]. RAS allows to monitor the asymmetry of the 

dielectric properties of a sample surface. It has been applied to monitor metal organic chemical 

vapor deposition (MOCVD) growth of self-assembly QDs by Steimetz, etc. [130] X-ray 

diffraction techniques are useful for structural investigation after growth. X-ray diffraction 

characterization of single QD layers [134] and stacks [145] have been reported for InAs/GaAs 

and Ge/Si QD systems respectively. The diffraction signal due to QDs is weak since the size of 

QD (10 ~ 100 nm) is much larger than the probing X-ray wavelength (~0.1 nm). Thus, it is 

important to use high-brightness X-ray sources and implement experimental set-ups to yield a 

large dynamic range. 

A combination of AFM, SEM and TEM characterization techniques has been employed 

in our research to track the size (volume) and position of precursor SiC nanodots, to monitor 

Ge/SiC QD growth with different MBE growing conditions. Atomic resolution structural 

characteristics of Si capped Ge/SiC/Si QDs are also studied by TEM [117].  
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1.5 CHARACTERIZATION OF QD ELECTRONIC PROPERTIES 

1.5.1 Electronic states in QD 

The energy of an electron or hole confined in a QD is strongly quantized, i.e., the energy 

spectrum is discrete. In typical semiconductor QD structures with dimensions in the range of 10 

~ 100 nm, the distance between neighboring energy levels is on the order of a few meV [146]. 

The quantization of energy is directly reflected in the dependence of the density of the states 

(DOS) on energy. The DOS for a three-dimensional bulk system has the form 
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For a one-dimensional system, e.g. a quantum wire, the DOS has a peculiarity, 
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For a zero-dimensional system like QD, the DOS has  -peaks, 
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Here  i  are discrete energy levels,  is the Heaviside step function, and  is the Dirac function. 

The quantization of energy is shown in Fig. 1.5 in the dependence of the DOS in systems with 

different dimensionalities. 
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Figure 1.5 Density of States versus energy at different dimensions. From left to right: 3D bulk material, 2D 

QW, 1D quantum wire and 0D QD. 

 

At cryogenic temperatures (below the Debye temperature) the energy of phonons is too 

low to excite electrons/holes and the strong quantization of energy determines the electronic 

properties of semiconductor QDs. Although in any material, electrical and optical properties vary 

with reduced size, in semiconductors, this size-related transition occurs for a given temperature 

at a relatively large size compared to metals and insulators. In metals, the relevant energy 

spacing is small because the Fermi level lies in the center of conduction band (CB). Therefore at 

the temperature above a few kelvin, the electrical and optical properties resemble those of a 

continuum, even at small size as tens or hundreds of atoms [147]. In semiconductors, however, 

Fermi level lies between CB and valance band (VB), such that the edges of the bands dominate 

the low-energy electrical and optical behavior. Therefore, the electrical transport for 

semiconductor QDs depends strongly on size, mainly because of the large variation in energy 

required to add or remove charges on a QD.  

QDs are mainly created by producing a lateral confinement restricting the motion of the 

charge carriers, which are initially confined in a very narrow QW by the potential ( )QWV z . Thus 

the QDs have the shape of flat disks, with transverse dimensions considerably larger than their 
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thickness, and the confined charge carriers can be considered as two-dimensional. Depending on 

QD fabrication methods, the lateral potential can be approximated by various potential models. 

A parabolic profile of the confining potential  

 
2

0( ) , V r V kr   (1.5) 

has been applied in numeric simulation of electron-states in a GaAs QD by Kumar etc. [148] 

Their calculation shows that the separation between energy levels is almost independent of the 

number of electrons confined in QDs, and the evolution of energy levels in magnetic field is 

similar to that of levels of a parabolic well. These results have been observed in several 

experiments [148-150]. Therefore, the application of such an approximation in model calculation 

has been justified. 

The symmetry of a 2D, disk-shaped QD leads to a shell structure [1]. In atoms, a 3D 

spherically symmetric potential yields degeneracies known as shells, 1s, 2s, 2p, 3s, 3p, etc. Each 

shell can hold a specific number of electrons. The electronic configuration is particularly stable 

when these shells are completely filled with electrons, occurring at 'magic' atomic numbers 2, 10, 

18, 36…. In QDs, a lower degree of symmetry in 2D results in a shell structure with different 

sequence of magic numbers, 2, 6, 12, 20,…[1]. By measuring electron transport through QDs, a 

periodic table of artificial 2D elements can be obtained [151].  

The borderline between the physics of bulk condensed matter and few-body quantum 

systems is crossed with the quantized electron transport. Experimentally, a quantum regime can 

be achieved by studying electronic transport and photoluminescence (PL) spectra of QD devices. 

The transport between QD and carrier reservoirs occurs via tunneling barriers [16, 152-156]. If 

the tunneling barriers are thick enough, the transport is dominated by resonant tunneling. If the 

QD is fully decoupled from its environment, it confines a well-defined number N of electrons. 
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For weak coupling, the total electrostatic energy of the QD can be estimated by 2( 1) (2 )N N e C  

[157], where C is the capacitance of the QD. Thus adding a single electron requires energy 

2Ne C , which is discretely spaced by the charging energy 2e C . If this charging energy exceeds 

the thermal energy Bk T , electrons cannot tunnel on and off the QD by thermal excitations alone, 

and transport is blocked. This phenomena is usually referred to as Coulomb blockade. Coulomb 

blockade and Coulomb ‘staircase’ are first observed by Kuzmin [158, 159] and by Fulton [160] 

for granular systems and thin-film tunnel junctions, respectively. Both of their work show a 

transport signature as equidistantly spaced clear peaks, separated by regions of zero conductance 

as schematically shown in Fig. 1.6. Coulomb blockade has been intensively investigated both 

theoretically [161] and experimentally in various QD systems [161-169]. Most of these 

experiments focused on single or double electrostatically defined lateral QDs within in a 2DEG 

in a GaAs/AlGaAs [162] or Si/Si-Ge [167, 168] heterostructure. The results of Coulomb 

blockade spectroscopy enables us to construct the addition spectrum of these lateral QD device. 

On the contrary, there are not as many Coulomb blockade investigations in self-assembly QD 

system because of the difficulties in isolating individual self-assembly QDs and integrating them 

into single- or few-QD electronic devices.  

The rest of this section describes commonly used electrical and photoluminescence (PL) 

methods for electronic structure investigation in QD systems. In the end, the localization of the 

charge carriers confined by QDs are briefly discussed. 
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Figure 1.6 Coulomb blockade oscillation. The upper is the QD conductance spectra as a function of the QD 

plunger gate voltage. The lower one is the corresponding electron occupancy number in the QD. The QD 

conductance spectra shows features as equidistantly spaced clear peaks, separated by regions of zero conductance. 

The electron occupancy number increases by one at each conductance peaks. 

 

 

1.5.2 Electrical characterization methods 

Electrical characterization methods are introduced as following: 

 CV Spectroscopy 

Charging QDs with electrons or holes can be probed with capacitance voltage (CV) 

spectroscopy. By tuning Fermi level FE  through the states of a QD via a bias voltage, the 

differential capacitance of the QD can be probed with an additional small alternating (ac) signal.  



 22 

Assuming that a QD is charged with one electron in the s-like ground state, a second 

electron (with opposite spin) can fill the ground state and experiences an additional charging 

energy 21 2 1 E E E  of the order 2e C . Therefore the Fermi level has to increase in order to fill 

another electron into the QD. This is the Coulomb blockade phenomenon, as introduced earlier 

in this section. Coulomb blockade is normally observed at temperatures for which 
21 BE k T . 

Subsequent bound-state electrons must occupy excited states, due to the Pauli exclusion 

principle. The energy difference 32 3 2 E E E  consists of the energy difference between the 

single-particle ground and excited states, plus the addition energy. Magnetic fields further lead to 

a splitting of the p-like excited state. A clear separation of lowest two peaks has been reported 

for CV characteristics due to magnetic field induced splitting in Fricke’s work [170]. 

A model taking inter- and intra-QD Coulomb interactions into account using a Monte 

Carlo simulation of CV experiments has been studied for single-electron charging in InAs self-

assembled QDs [62]. The Coulomb interaction provides two capacitance peaks which correspond 

to sequential loading of two electrons into a single QD. The distance between the peaks and the 

width of the peaks contain information about interactions inside one dot and between the dots. 

The inter-QD interaction is important for the quantitative interpretation of the experimental data 

in Ref. [62]. This inter-QD Coulomb interaction model also provides a clue to explain the 

magnetotransport data in our research.   

 

 Vertical Tunneling 

When a QD is sandwiched between two barriers, electrons can tunnel through the QD only at 

a bias voltage for which an occupied emitter state is resonant with a QD energy level. This 
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phenomena is referred to as resonant tunneling. Resonant tunneling devices containing GaAs 

QDs have been investigated by Reed, etc. [152, 171]  

 

Figure 1.7 Vertical (a-a') potentials of a column QD under zero and resonant bias. (a) A column containing 

InGaAs QD. (b) The potential of the QD under zero bias along (a-a') axis. (c) The potential of the QD under 

resonant bias along the same axis as in (b). 

 

The band line-up of the GaAs QDs studied in Ref. [171] is schematically drawn in Fig. 1.7. 

In samples containing QD within tunneling barriers, electron transport features due to tunneling 

through QD states have been observed. In forward bias, when electrons flow from the substrate 

of the device to the top contact, a number of current peaks appear in current-voltage (IV) curve. 
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These peaks represent sharp increase of conductivity induced by the resonant tunneling transport 

through the QD. At around 50 K, the resonant tunneling features are almost completely smeared 

out due to the increased thermal energy. 

 Vertical resonant tunneling IV characteristic measurement has been employed to 

investigate electron or hole states for various QD systems [152-156, 172-174]. For example, 

Yakimov, etc. reported conductance oscillations as a function of bias voltage of isolated epitaxial 

Ge/Si QDs. The conductance was associated with hole tunneling into the QDs and the 

oscillations were attributed to the interplay of single-electron charging effects and resonant 

tunneling through individual energy levels [175]. Resonant tunneling at 300 K with a peak 

current to valley ratio as high as 10 has been measured for a single self-assembled Si/SiO2 QD 

[154]. Resonant tunneling is also characterization exploited to explore the electronic properties 

of our directed self-assembled Ge/SiC/Si QDs. 

 

 Lateral Transport 

The presence of QDs in a layer or channel largely modifies its transport characteristics. For 

example, a sheet of InAs QDs close to (384 nm) a 2DEG at an AlGaAs/GaAs heterointerface can 

decrease the mobility of electrons in the channel drastically [176]. The decrease of mobility is 

attributed to the scattering potential introduced by the QDs.  

The lateral transport enables the investigation of not only electronic states of single QDs but 

also the inter-QD interactions. The lateral transport through a double QD (DQD) has been 

investigated by Fujisawa, etc. [177]. The number of QDs contributing to the transport has been 

defined by lithographically patterned split gate structures with depletion zone such that only one 

or a few QDs is located in the transport channel. The QDs in the DQD are coupling to each other 
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through an electrostatically tunable tunnel barrier. The lateral transport current spectrum has 

been associated with the gate voltages defining the DQD and the tunneling barriers between the 

QDs.  

The lateral transport dc current through QD usually consists of elastic resonant tunneling 

current peaks and inelastic current at the off-resonant conditions. The inelastic current is 

attributed to electron-phonon coupling. In this process, the electron can tunnel from a higher-

energy state in one QD to a lower-energy state in other QDs or to electron reservoir by 

spontaneously emitting an acoustic phonon [177, 178]. 

 

1.5.3 Photoluminescence measurements 

Another basic experiment technique for investigating discrete energy levels of QDs is 

photoluminescence (PL) measurements as schematically presented in Fig. 1.8. An incident laser 

beam  in  excites the electrons from the VB to the CB and creates electron-hole pairs. These pairs 

can be excited directly into the discrete levels in the QD, above the discrete level, or to the bulk 

semiconductor continuum with higher excitation energy. Part of the generated excitons relax 

nonradiatively to the ground state (Fig 1.6, left) or to weakly excited states in QDs. The electron-

hole pairs confined in the QDs recombine, accompanied by emitting photons, which are 

registered (   oute h ).  
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Figure 1.8 The photoluminescence experiment: measurement of the intensity of outgoing beam 
out  as a 

function of its wavelength at the constant wavelength of the incoming beam 
in  (PL spectrum), or on the 

wavelength 
in at the constant wavelength 

out  (PLE spectrum) (Figure adapted from [179]). 

 

There are two main types of PL experiments implemented for measuring the spectrum of 

light emission and absorption by the QD system, respectively.  

In the first case (PL), the wavelength of the incident light is small, creating electron-hole 

pairs high above the discrete energy levels of the QDs. The measured dependence of the 

radiation intensity on the outgoing beam energy, provides information on the energy levels of the 

QDs. 

In the second case (photoluminescence excitation, PLE), the energy of the incoming photon 

is varied as shown in Fig 1.6. Only those outgoing photons that have their energy equal to a fix 

constant are registered. The measured spectrum in this case is the dependence of the emitted 
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radiation intensity on the incoming photon energies. The spectrum is related to the number of 

electron-hole pairs excited at a given incoming photon energy. On the other hand, the probability 

of creating an electron-hole pair by absorbing an incident photon is proportional to a joint 

density of states of the electron-hole pair. Therefore, in the case of a QD, a peak in the PLE 

spectrum corresponds to a discrete energy level of the QD. 

 

The spectral lines emitted by a single QD are very narrow because of QD’s - function DOS. 

The size dependence of shift and splitting of the energy states can be directly visualized by the 

optical spectral. Carrier dynamics, i.e. capture, relaxation and recombination, can also be 

experimentally accessed using time-resolved spectroscopy. Therefore local luminescence probe 

techniques are particularly useful for the investigation of single QDs. [180, 181]. On the other 

hand, due to the small intensity of radiation that is emitted by a single QD, the measurements are 

usually taken from a large system of QDs. The inhomogeneity of the individual QD sizes leads 

to an additional broadening of peaks. 

PL measurements have been widely used to characterize various QD systems as referenced in 

[180-190]. One example is the PL measurement of a single quantum dot molecule (QDM) in the 

presence of a electric field. The coupling between excited states of two QDs can be tuned by the 

field, leading to charge transfer from one dot to the other, which can be characterized in the 

measured PL spectrum [184]. Another example is the PL measurement on a vertically stacked 

multilayer InAs/GaAs QD structure. The PL study of this structure shows that an increase of the 

thickness of the spacing layers between adjacent QD layers leads to a decrease of the lateral 

dimensions of QDs, accompanied by an increase of the energy separation between the ground 

and first excited states.  
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1.5.4 Carrier Localization 

Considering carrier location, there are two types of band-edge alignment, type I and type 

II, with semiconductor quantum dots. In type-I QDs, the band gap of the narrow-gap material lies 

entirely within the gap of the wide gap semiconductor, and both electrons and holes are confined 

inside the same region. A typical example of the type-I band-edge lineup is InAs QDs in a GaAs 

matrix as shown in Fig. 1.9(a).  

For type-II QDs, the localization inside the dot occurs only for one of the charge carriers, 

electron (e) or hole (h), whereas the dot forms a potential barrier for the other particle. Take 

Ge/Si(001) QDs formed by strain epitaxy as an example, holes are strongly confined in the Ge 

region, and the electrons are free in the Si conduction band as shown in Fig. 1.9(b). The tensile 

strain in the Si in the vicinity of the Ge QD reduces the band gap compared to that for bulk Si. 

Therefore the lowest conduction band edge just above and below the Ge island is formed by 2

valleys, yielding triangle potential well around 0.16 eV , for electrons in Si near the Si/Ge 

boundary. Thus three-dimensional localization of electrons can be expected in the strained 

silicon near the Ge dots (Fig. 1.9(c) and (d)) [51, 77, 78, 191, 192]. Type-II QDs such as 

GaSb/GaAs [89, 90] and Ge/Si systems [77] attract intensive research interest because the 

effective exchange interaction between spins can be greatly increased due to the weak 

confinement [51]. 
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Figure 1.9 Band alignment in type-I and typ-II QDs. (a) Schematic overview of the band alignment in type-

I InAs/GaAs QD and (b) type-II Ge/Si QD. (c) Band structure in Ge/Si(001) QD’s modified by tensile strain. The 

conduction band (CB) in Si just above and below the Ge dot splits into 𝚫𝟒 and 𝚫𝟐 valleys. (d) Fermi surface in the 

Si conduction band. (Adapted from Ref. [77].) 
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2 DIRECTED SELF-ASSEMBLED GE/SIC/SI QUANTUM DOT 

2.1 INTRODUCTION 

The directed self-assembly Ge/SiC/Si QDs are fabricated with templated growth 

technique. Templated growth technique offers a substantial control over the QD size (volume), 

size distribution and QD location with sub-10 nanometer accuracy [115]. The Ge/SiC/Si QDs are 

silicon based semiconductor system, so it is promising to be integrated with current 

semiconductor technologies. EBL patterning and MBE growth are two key techniques employed 

in the fabrication process: EBL is capable of patterning configuration of nanostructures at 

nanometer precision and the MBE growth creates sub-10 nm scale dislocation-free Ge/SiC/Si 

QDs. Two important configuration parameters related to the directed self-assembly QDs and 

device characterization are the dot size (diameter)   and interdot spacing d.  

Random arrangements of Ge islands with  ~20–100 nm and separations d~50 nm have 

been be achieved on Si(100) via the Stranski–Krastanov instability [67, 193], by which Ge 

islands form over a two-dimensional wetting layer that exceeds a critical thickness. Extremely 

small carbon-induced Ge (CGe) QDs can be formed by epitaxial growth of a submonolayer 

amount of C (~ 0.1 ML), followed by 2~4 MLs Ge [194, 195]. The Ge islands are also randomly 

distributed at the carbon precursor center, with a high density (~1011/cm2) and relatively narrow 

size distribution. To control the placement of individual islands, several groups have developed 

template growth techniques using lithographic patterning methods. One such example is 

formation of Ge QDs in SiO2/Si(001) windows prepared either by partial thermal desorption of 

an ultra-thin oxide layer or by standard electron beam lithography with wet chemical etching [84, 

196]. G. Jin, etc., controlled the arrangement of the self-organized Ge dots on the pre-grown Si 
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mesas by selective epitaxial growth: well-ordered one dimensional Ge dot arrays were formed on 

the <110> -oriented ridges of the Si stripe mesas [197]. The formation of these dot arrays was 

attributed to the balance between the strain energy of the dots and the repulsive interactions of 

the neighboring dots through the substrate. A brief review of other template growth techniques 

can be found in Section 1.2.  

Due to resolution limitation from the lithography techniques, the smallest island size that 

has been achieved by these methods is around 40 nm, and the smallest separation observed is 

about 80 nm [196, 198]. However quantum computation and quantum simulation requires a fine 

control over QD size and spatial arrangement on the sub-35 nm length scale [51]. To achieve this 

goal, templated growth technique has been developed in our laboratory, taking advantages of the 

patterning flexibility by electron beam lithography and the sub-10 nm quantum dot growth 

ability by molecular beam epitaxy (MBE).  

The fabrication process and growth condition optimization are described in section 2.2. In 

section 2.3, the atomic structure of carbon dot precursor and Ge/SiC QD is characterized by 

AFM, SEM and TEM. The electronic structure of the Si capped Ge/SiC QD (Ge/SiC/Si QD) are 

discussed in section 2.4. 
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2.2 TEMPLATED GROWTH TECHNIQUE AND GROWTH CONDITION 

OPTIMIZATION 

The directed self-assembled Ge/SiC/Si QDs in our research are fabricated by the templated 

Ge growth technique, first developed by O. Guise, etc., in 2005 [115]. In this process, 

carbonaceous precursor templated are created on Si substrates by electron-beam induced 

deposition (EBID) using high resolution electron beam lithography (EBL). Then the template is 

etched by ozone, followed by annealing in ultra-high vacuum, yielding small (~4 nm) SiC 

nucleation sites for subsequent deposition of Ge. The Ge is deposited by molecular beam epitaxy 

(MBE) in S-K mode to produce strain relaxed self-assembly Ge quantum dots on the substrate. 

The Ge accumulates at the SiC nucleation sites due to the localized strain. AFM images Ge 

islands with mean diameter 8 nmd  and 2 nm absolute position precision. However the 

fluctuations of the Ge island volumes are large as the result of competition for Ge by nearest 

neighbors, i.e., Ostwald ripening (see section 1.3). To become useful for fabricating quantum 

devices, it will be important to gain an ultimate level of control with Ge nanostructures, which 

requires understanding how the kinetic history of the Ge/SiC can be tailored to reduce island size 

fluctuations, and how their structure relates to electronic and optical properties.  

The fabrication process used in this research has been modified by capping Ge/SiC QDs with

50 nm intrinsic silicon so that electrons can be confined in the silicon in the vicinity of the apex 

and the base of the QDs.  

The fabrication process scheme in Fig. 2.1 shows growth process for two-dimensional 

Ge/SiC QD arrays with 50 nm Si capping layer. After each step, AFM images the topography of 

the resulting nanostructures, as shown underneath each schematic image in Fig. 2.1. Quantitative 

analysis of the resulting topography of 2D QD arrays after each step provides QD structural 
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characteristics such as QD volume, volume distribution and QD positioning accuracy. These 

characteristics, in turn, are good indications for adjusting process parameters of each step to 

optimized working ranges. 

 

Figure 2.1 Templated growth of Ge/SiC/Si QD arrays. The top images are processing schemes and the bottom 

images are AFM topography after each step. (a) Prepare carbonaceous precursor template with EBID. (b) Anneal in 

MBE to form SiC template. (c) Deposit Ge on SiC template to form QD arrays in MBE. (d) Cap the QD arrays with 

50 nm Si layer in MBE.   

 

The details of the processing including growth parameters optimization are described in the 

following sections. 
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2.2.1 Precursor template preparation 

Precursor template substrates have been prepared with silicon wafers with a miscut of 

0.1° cleaned via a modified IMEC/Shiraki process. The cleaning procedure starts with removing 

native oxides followed by passivation. SiO2 layer is stripped in a 2% dilute hydrofluoric acid 

(HF) solution immediately, leaving a hydrogen-atom-terminated flat surface immune to re-

oxidation for several hours before the wafer is loaded into the Raith e-LiNE EBL system 

(Pbase~10-7T). The electron beam (ebeam) column is operated with an accelerating voltage of 20 

keV and an emission current of ~21 pA for precursor deposition. Focused electron beam 

irradiation of ambient hydrocarbon adsorbates on the Si(001) surface yields nanoscale islands of 

carbonaceous material, presumably amorphous hydrogenated carbon. These carbonaceous 

nanostructures are referred to as aC:H from literature [115, 199]. Square arrays of N N  aC:H 

nanodots are patterned, with interdot spacing of 100, 50, and 35 nm in this research.  

The size of aC:H nanodots positively correlates with the size of final Ge/SiC/Si QDs. 

Hence it is of utmost importance to investigate the dependence of the size and size distribution of 

these nanodots on different interdot spacings and various EBL deposition conditions. The full 

width at half maximum (FWHM) of the diameter of aC:H nanodots as a function of electron 

charge deposited at single nanodot sites, defined as ebeam dose ( ea ), has been studied as shown 

in Fig. 2.2. The power law fitting of the experiment data provides a power of 0.3. The volume of 

the deposited aC:H, aC:HV , is assumed to be proportional to the ebeam dose ea  by:  

 aC:HV . ea   (2.1) 

Therefore the dependence of the FWHM with the ebeam dose by the power of 0.3 falls 

around the expectation of 0.33. The deviation may come from z direction deposition anisotropy.  
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Figure 2.2 FWHM of aC:H nanodots versus ebeam dose. The power law fitting provides a power of 0.3. 

 

Ebeam dose is controlled in EBL by ebeam current and exposure time. An exposure dwell 

time in the range of 45-50 ms has been used in this research to obtain smallest possible QDs. 

With ebeam emission current around 21 pA, the ebeam dose on a single nanodot is estimated 

around 1 pA s , corresponding to ~10 nm FWHM of aC:H nanodots. 

Next, templated aC:H nanodots are exposed to UV-ozone to eliminate excess 

hydrocarbon contamination between the patterned sites. However this exposure also etches the 

patterned nanodots. Hence UV-ozone exposure time needs to be critically controlled to prevent 

the complete removal of nanodots. 

The precursor template wafer then is loaded into an ultra-high vacuum (UHV) chamber (

10

baseP 1 10  Torr  ) of molecular beam epitaxy (MBE) and is radiatively heated during 9 hour 

temperature ramp to 500°C. The wafer dwells at 500°C for at least an hour prior to oxide 

desorption at 780°C to provide further outgassing. aC:H nanodots are fully converted to SiC 

during oxide desorption at 780°C [117]. Figure 2.3 shows a square array of SiC nanodots with 35 

nm pitch, as well as an arbitrary SiC pattern with minimum spacing of 28 nm. 
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Figure 2.3 AFM image of EBID aC:H nanodots. (a) Square array of SiC nanodots with 35 

nm pitch. (b) Arbitrary SiC pattern with minimum spacing of 28 nm. 

 

During the heating of an aC:H template in UHV, the 500°C dwell strongly affects final 

feature size. AFM topography of the features (either aC:H or converted SiC) is taken for 

quantitative analysis with Ge either deposited and then selectively removed, or not deposited at 

all. Figure 2.4(a) shows that the overall heating and conversion to SiC results in up to 86% 

reduction in feature volume from the original aC:H nanodots. As shown in Fig. 2.4, the longer 

dwells lead to reduced feature size (Fig. 2.4(a)) and a much broader size distribution (Fig. 

2.4(b,c)). The loss of the volume is attributed to the evaporation of residual hydrogen from the 
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aC:H nanodots at 500°C, leaving behind carbon. The complete dehydrogenation of aC:H has 

been reported between 450-550°C in Ref. [200]. The broadening of the size distribution either 

implies the evaporative loss process is locally non-uniform, or that coarsening is occurring 

simultaneously with evaporation, likely mediated by a non-volatile surface diffusing species, e.g. 

carbon atoms. The evolution of the size distribution from Gaussian as-EBID to log-normal after 

processing is consistent with Ostwald ripening [201].  

 



 38 

Figure 2.4 Final feature size affected by 500°C dwell. (a) Average SiC nanodot volume vs. dwell times at 

500°C. In all cases, Ge has either been deposited and then selectively removed, or not deposited at all. 35nm, 50nm, 

and 100nm template spacings are delineated by connecting lines. (b) Corresponding distributions of nanodot 

volumes for the 100 nm pattern spacing for each 500ºC dwell time, where Ln(Volume) is used to more clearly 

show the evolution of the mean size. (c) The distributions are plotted on a linear volume scale normalized to the 

mean volume of each distribution. 

 

 

2.2.2 Ge MBE growth 

Upon cooling to the growth temperature, a 1.3 ML of Ge is deposited via magnetron 

sputtering in 3 mTorr of getter-purified Ar at a rate of 0.1 Å/s, with a subsequent annealing at 

700°C. Ge deposited in different growth conditions are characterized to compare the deposition 

temperature effects on thermal stabilities of overall structures. Figure 2.5 shows the AFM images 

of a small portion of Ge/SiC arrays after Ge growth at 600°C (Fig. 2.5 (a-c)), and after Ge growth 

at 400°C followed by a 700°C anneal (Fig. 2.5 (d-f)). 
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Figure 2.5 AFM of Ge/SiC QDs grown at different Ge deposition temperatures. 35nm, 50nm, and 100nm 

feature arrays after (a-c) 600°C and (d-f) 400°C followed by 700°C Ge depositions. Each tile is a 350nm x 350nm 

section from larger arrays. (Note: Small deviations in orthogonality are due to drift during AFM scanning.) 

 

In depositions without post-annealing, the presence of Ge had no effect on the size and 

distribution of the templated arrays. Ge completely avoids SiC sites during elevated temperature 

growth (T~600ºC) due to the unfavorable Ge-C bond. Hence, Ge strongly prefers to attach to the 

lower energy surface bonding sites on the nearby Si substrate [117]. Alternatively, the effects of 

post-deposition annealing on the size uniformity are also shown in Fig. 2.6. Growth of 1.3 ML of 

Ge at 600°C results in a volume distribution that is nearly identical to that of the underlying SiC 
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template (obtained by selective etching). This observation holds for all three interdot spacings. 

On the other hand, growth of Ge at 400°C, followed by a 700°C, 30 min anneal, clearly leads to 

coarsening. The total volume of the distribution is larger than that of the distribution for 

conformal Ge on the SiC template, implying additional mass was accumulated. Furthermore, the 

degree of coarsening increases with the interdot spacing. At 100 nm, a clearly bimodal 

distribution is produced. The bimodality is less pronounced at 50 nm spacing, and only a 

shoulder is observed at 35 nm.  

 

Figure 2.6 Volume distributions of Ge/SiC composite nanodots (2.75 hr dwell at 500°C) for two different 

growth strategies: (blue) Ge deposited at 600°C and (red) Ge deposited at 400°C then annealed at 700°C. (a) 35nm 

spacing, (b) 50nm spacing, and (c) 100nm spacing. For comparison, the bare SiC arrays after selective Ge etching 

are also shown (black). In the case of 100nm spacing, the annealed specimen was also etched (dashed-black). 

 

To further investigate the degree of coarsening, the volume of each island relative to the 

average volume of its nearest neighbors is plotted in Fig. 2.7. In general, larger islands tend to 

have smaller neighbors, consistent with the mechanism of Ostwald ripening [201].  



 41 

 

Figure 2.7 Degree of coarsening for Ge/SiC nanodots. A scatter plot showing the average nearest-neighbor 

volume surrounding each Ge/SiC island. 

 

Figure 2.8(a) shows a 35nm array with Ge deposition at 600°C along with a fast Fourier 

transform (FFT) of the full array. By extracting the FWHM of the first order <01> peak, the 

average spatial variation is determined to be ±1.6 nm. This positional accuracy of these QDs is 

adequate for device needs. From a cumulative probability plot of QD diameters for the same 

35nm array in Fig. 2.8(b), 51% of islands have FWHM ≤10 nm and 95% are ≤15 nm.  
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Figure 2.8 Statistical analysis of Ge/SiC size. (a) AFM image of a 10x10 array section of composite Ge/SiC 

QDs with 35nm spacing. The inset displays a FFT of the full array; the FWHM of the <10> peak determines a 

positional error of ±1.6nm. (b) Cumulative probability plot of the QD diameters for the same 35nm spacing array. 

51% of islands have Ø ≤10 nm, while 95% have Ø ≤15 nm. 

 

In the end of the process, Ge/SiC nanodots are encapsulated with 50 nm Si grown at 250-

300°C. The low capping temperature was chosen to ensure conformal Si growth, maintaining 

single crystalline epitaxy [116]. 

 

2.2.3 Structure characterization by TEM 

Transmission electron microscopy (TEM) is performed at 300 kV, examining in the 

<110> zone axis [117]. Figure 2.9(a) shows high resolution, cross-section TEM (HR-XTEM) 

micrographs of two Si capped Ge/SiC/Si(001) QDs. These QDs are prepared by the above-

described process with deposition of 1-3 ML Ge at 600°C without subsequent annealing. The 

nanodots in Fig. 2.9 have basal diameters of 7 nm and 15 nm, respectively, and heights of 1.5–2 

nm. It is observed from Fig. 2.9 that these SiC nanodots are completely surrounded by Si in the 

cross-section. In Fig. 2.9 (c), ‘V’ shaped dislocation features are clearly observed. The 

dislocation is caused by the strain from the SiC and Si lattice mismatch. 
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Figure 2.9 XTEM image of Ge/SiC/Si QDs. (a) and (b) Cross-sectional TEM (XTEM) of two carbide 

nanodots, along a <110> zone axis. The original Si substrate surface is delineated with dashed. (c) XTEM of one 

array of Ge/SiC QDs embedded in Si. Strain induced dislocations are visible in the Si capping layer. 

 

Spatial distribution of an embedded SiC nanodot and Ge film is imaged by high-angle 

annular dark field (HAADF). As shown in Fig. 2.10(a), the SiC nanodot is the dark region, while 

the white band is the Ge layer. The Ge layer does not preferentially accumulate at the SiC site, 

nor does it even appear to coexist with the Si capping layer. Figure 2.10(b) also displays a high 

resolution scanning transmission electron microscopy (STEM) image of the same SiC nanodot. 

Notably, the Ge film is fully epitaxial and wets the Si substrate completely to the SiC/Si 

interface. From Fig. 2.9 and 2.10, it is clear that, while fully epitaxial and strain-relaxed 3C-SiC 

nanodots form, there is no excess Ge accumulation to form a morphological QD, nor even 

conformal wetting of the carbide template sites. Low temperature Si, however, does epitaxially 

overgrow the carbides. Apparently, the large chemical and lattice mismatch between Ge and SiC, 

combined with lower-energy Si (001) surface sites, results in complete Ge avoidance of the 
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carbide under conditions of high adatom mobility. Despite the avoidance of Ge directly over the 

SiC nanodot, the overall epitaxial nature of the resulting structures appears promising for the 

creation of artificial nanoscale molecules with engineered electronic and spintronic properties. 

 

Figure 2.10 HAADF-STEM of Ge/SiC/Si QDs (a) HAADF-STEM image of an embedded SiC nanodot 

(dark region). Z-contrast clearly shows the deposited Ge film at the substrate-cap interface. No Ge has overgrown 

the SiC nanodot. (b) High-resolution HAADF-STEM showing the edge of a SiC nanodot and its intersection with 

the Ge wetting layer. 
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2.2.4 Fabrication of Ge/SiC/Si QDs and QDMs 

The directed self-assembly growth enables deterministic seeding of QDs with arbitrary 

spatial configurations into QD devices. Therefore it is a promising technique for implementing 

various types of QD-based architectures as proposed in section 1.2. Figure 2.11 shows a 

representative AFM image of Si-capped QDM structures (Ge/SiC/Si QDM), with six different 

spatial configurations referenced to a square face of the die, with the square face size of 

45 2 nm , giving an interdot spacing of 22 nm. The configurations of these QDM structures are 

of research interest because they cover a majority of the proposed QD architectures for quantum 

simulation and quantum computing in section 1.2. The electronic and spintronic properties of 

Ge/SiC/Si QD will be studied in the following sections with vertical transport QDM devices 

fabricated with these QD/QDM structures.   

In the fabrication process for these QDMs, an aC:H nanodots precursor pattern is 

prepared with 1.0 pA∙s dose ebeam exposed on an SOI substrate. Being UV-ozone treated for 3 

minutes, SiC nanodots form and SiO2 is desorbed at 850°C in UHV for 30 minutes. Then 1.4 

mono-layer Ge is deposited by MBE at 600°C without post-annealing. In the end, the structures 

are capped with 50 nm Si by MBE at 300°C. The dot spacing d arranges in 11, 22, 45 and 90 nm 

so that interdot interaction can be investigated as a function of the dot spacing. 
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Figure 2.11 AFM image of Ge/SiC/Si QDMs. AFM image of the Si capped (50nm) Ge/SiC QDM structure, 

with the definition of dice spacing d.  

 

 

2.3 ELECTRONIC STRUCTURE OF GE/SIC/SI QD 

Determination of energy spectrum, kinetics of transitions between electronic levels and 

interactions of elementary excitations, forms a base of current fundamental studies of QDs.  

2.3.1 Electronic states of Ge/SiC/Si QD 

Indirect band gap QDs fabricated with IV materials such as Ge, Si, SiC Ge/Si, etc., have 

been intensively investigated by optical and electrical means [77, 78, 146, 191, 202, 203]. These 

researches are essential for better understanding experiment results and for the prediction of new 

ones. As described in section 1.5.4, Ge/Si(001) QDs exhibit a type-II band lineup. A large (∼0.7 

eV) valence band (VB) offset in this heterojunction leads to effective localization of holes in the 

Ge regions, whereas these Ge regions form potential barriers for electrons. When the hole is 
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captured by the Ge QD, its Coulomb potential results in the binding of an electron in the vicinity 

of the QD. 

Electronic states have been simulated for Ge1−xSix /Si heterojunctions [204] and Ge 

nanoclusters coherently embedded in Si host [70, 203, 205-207]. The simulation results show 

that the inhomogeneous tensile strain in the Si surrounding Ge nanostructure causes a splitting of 

the six-fold-degenerate Δ valleys (Δ6) into the four-fold-degenerate in-plane Δ4 valleys and the 

two-fold-degenerate Δ2 valleys along the [001] growth direction (Fig. 1.9(c)(d)). The Δ4 and Δ2 

levels shift in the opposite directions with the Δ2 band moving by twice the amount of the Δ4 

band [76, 77]. Therefore the tensile strain in the surrounding Si reduces the band gap compared 

to that for bulk Si. A lowering of Si band gap by 0.16 eV induced by the strain on top of Ge 

islands has been observed experimentally using locally resolved STM by Meyer etc. [208]. The 

lowest conduction band edge just above and below the Ge island is formed by the Δ2 valleys 

yielding triangle potential wells for electrons in the Si near the Si/Ge interface. Therefore one 

can expect three-dimensional localization of electrons in the strained silicon near the Ge/Si QD 

(Fig. 1.9(c)).  

Regarding the Ge/SiC/Si QD structure fabricate in this work, Petz’s calculation suggested 

that, right at the SiC/Si interface, there is a stress about 1% [118], less than the 4% estimated for 

the Ge/Si interface in Pryor’s model [51]. Hence, the band bending at the SiC/Si interfaces along 

the growth direction [001] (vertical direction) may create similar but shallower potential wells 

comparing with Pryor's model. A vertical ([110]) trap assisted tunneling and thermal emission 

mechanism has been proposed to explain the current-voltage characteristics of SiC/Si 

heterojunctions [209]. The electron tunnels from the valence band of Si to the trap at SiC/Si 

interface followed by thermal emission into the conduction band of the SiC. Besides the vertical 
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confinement, in the Ge/SiC/Si QD devices, electrons are also confined laterally in the Si 

surrounding the SiC nanodot where the bandgap is lowered, forming an electron-trapping 

annulus.  

2.3.2 Electron transport through QD 

The electronic states confined by a QD can be probed by electron transport 

characterization when a small tunneling is allowed between the QD and nearby emitter and 

collector leads. When the tunnel coupling is weak, the number of confined electrons in the QD 

fluctuates weakly, so the number of electrons N is a well-defined number in this case, implying a 

definite confined charge, N e , where e is the elementary charge. The quantization of charge 

permits the use of a ‘capacitance charging model’ in which a single electron is captured by the 

QD’s self-capacitance C, with charging energy 2e C . This simple model has been successful in 

describing transport phenomena such as single-electron transport and Coulomb blockade effects 

as already discussed in section 1.5. Electron transport through the QD is allowed only at the 

transition points where N and  1N  states are both energetically accessible. Otherwise, N  is a 

constant and the transport current is strongly suppressed.  

If the tunnel coupling to the leads increases, the number of electrons on the QD becomes 

less well defined. When the fluctuations in N  become much greater than unity, the quantization 

of charge is completely lost. The transport in this case is usually described by a non-interacting 

theory. It is more complicated in the intermediate regime where the tunnel coupling is relatively 

strong but the discreteness of charge still plays an important role. In this case, the transport 

description incorporates higher order tunneling processes through virtual, intermediate states 

(Fig. 2.12(b)). When spin is neglected, these processes are known as co-tunneling since they 
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involve the simultaneous tunneling of two or more electrons [210]. In contrast to first-order 

tunneling, higher order processes in which the virtual intermediate state costs an addition energy 

( ) N  are allowed for short time scales. Cotunneling process allows the investigation of high-

order transport processes and many-body phenomena, such as the Kondo effect, commonly 

regarded as the result of a coherent superposition of higher-order cotunneling events. 

 

Figure 2.12 Co-tunneling process via a virtual tunnel event. 

 

Kondo phenomena in QDs has been intensively studied both theoretically [211-213] and 

experimentally [86, 94]. Particularly, the Kondo phenomena involving the virtual tunneling 

events that effectively flip the spin on a QD via intermediate states have received considerable 

attention. In a QD, Kondo resonance gives rise to enhanced conductance through the QD when 

DOS is pinned at electrochemical potentials of the left and right leads sandwiching the QD, 

L R   (Fig. 2.13, left). In the non-equilibrium case, when a bias voltage V is applied between 

source and drain electrodes, L ReV    , the Kondo peak in the DOS splits into two peaks, 

each pinned to one chemical potential (source and drain) (Fig. 2.13, right). This splitting leads to 

two specific features in the transport: Firstly, at zero magnetic field, the differential conductance 

dI dV  versus V  mimics the Kondo resonance in the DOS, so a peak in dI dV  is expected 

around zero voltage. Secondly, a magnetic field lifts spin degeneracy, resulting in two peaks in 
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the differential conductance at   BeV g B  [214, 215], where g is the Landé factor and B
 is 

the Bohr magneton. 

 

Figure 2.13 Kondo phenomena in QDs. When a bias voltage V is applied between the source ( L ) and 

drain ( R ) electrodes, the Kondo peak in the DOS splits into two peaks, each pinned to one chemical potential. 

 

Electrical manipulation of an electronic two-state system in Ge QDs embedded in Si has 

been proposed by Pryor, etc. [51]. The manipulation is based on the fact that the electronic 

ground state localized at the apex of the QD is nearly degenerate with the state localized at the 

base of the QD. Therefore a small electric field can shift the electronic ground state from apex-

localized to base-localized state, which permits sensitive tuning of the electronic, optical, and 

magnetic properties of the QD. For instance, the exchange coupling between two Ge QDs can be 

tuned from 500 eV  to 0 by shifting the electronic ground states between the apex and base of 

each QD with a change of voltage of only ~ 0.1 mV . The strength of the interdot exchange 

coupling also depends on the dot spacing: A larger dot spacing leads to a weaker interdot 

exchange coupling. Combining similar geometric and electrical modulation method, exchange 

interaction is expected to be highly tunable for the directed self-assembly Ge/SiC/Si QD devices 

in this research. 
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3 DEVICE FABRICATION 

3.1 OVERVIEW 

The devices investigated in this research are prepared with QDs/QDMs fabricated by the 

process described in section 2.2.4. Integrating QDs into devices has been mainly operated in the 

Nanoscale Fabrication and Characterization Facility (NFCF) cleanroom at University of 

Pittsburgh and electrodes sputtering has been done in the cleanroom at the Carnegie Mellon 

Nanofabrication Facility. 

The following is the detailed fabrication process and recipes. Precursor carbonaceous 

nanostructure template is prepared in NFCF as described in section 2.2.1. Chris Petz processes 

template annealing, subsequent Ge growth and Si capping with MBE. Electrode areas are ebeam 

lithographed and etched by reactive ion etching system (RIE), followed by aluminum (Al) and 

gold (Au) sputtering to form Al/Si Schottky barrier contact [216] for subsequent vertical 

transport measurements. Beginning with a slightly n-doped SOI wafer, the outline of the 

fabrication process is as follows: 

1. Cleave a small chip (~ 5 mm × 10 mm) from an SOI wafer and clean with 

modified IMEC/Shiraki cleaning procedure (see section 2.2). 

2. Prepare carbonaceous nanodots template on the SOI wafer by EBID. 

3. UV-Ozone process, annealing of the template at UHV to form SiC nanodots. 

4. Deposit Ge over the SiC nanodot template, then cap the structure with Si by 

MBE. 
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5. Pattern, etch and deposit top gates as collectors and back gates as emitters to 

define vertical transport QD devices on a sub-10 μm scale (EBL, sputtering 

and ebeam evaporator). 

6. Pattern and deposit large size ( 200 m ) electrode bond pads. These pads are 

designed to connect the emitter and collector gates to electrode contacts on a 

chip carrier (EBL, ebeam evaporator). 

7. Glue the device chip onto a chip carrier (silver paint) and bond the electrode 

contacts on the chip carrier to the device electrode bond pads of interest by 

sliver epoxy. 

 

Figure 3.1 shows an integrated QD/QDM device ready for vertical transport 

characterization. The close-up image on the right shows a ‘crossbar’ electrode lay out. Each 

cross section site embeds one QD/QDM, sandwiched by one top gate (connected by vertical 

electrode leads in Fig 3.1) as a collector and one back gate as an emitter (connected by horizontal 

electrode leads). The details of the electrode structures are discussed in section 3.4. Recipes in 

the outline listed above are described in section 3.2, 3.3 and 3.4. 
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Figure 3.1 An Integrated QD/QDM device. (a) The electrodes of the QD devices are wire-bonded to the 

chip carrier contacts. (b) and (c) The optical microscope image and its close-up of the QD/QDM devices showing a 

‘crossbar’ electrode lay out. Each cross section site embeds one QD/QDM, sandwiched by the top gate (connected 

by vertical electrode leads) as a collector and back gates (connected by horizontal electrode leads) as an emitter. 
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3.2 PRECURSOR TEMPLATE FABRICATION 

A Raith eLiNE-Plus EBL machine has been used to fabricate aC:H precursor templates. 

EBL recipe has been developed and optimized to obtain high operation reliability and high 

resolution. The EBL recipe that has been used is as following. 

1) Clean an SOI chip with modified IMEC/Shiraki process (section 2.2), and passivate the 

SOI chip by stripping with diluted ( 2% ) hydrofluoric acid to remove surface oxidation 

layer and to form hydrogen-terminated surface to prevent immediate re-oxidation. 

2) Blow N2 gas to dry the SOI chip. 

3) Load the passivated chip into EBL high vacuum chamber immediately (less than 10 min) 

before the surface gets oxidized. 

4) Expose device areas with predesigned nanodot patterns at ebeam column settings as 

following: Aperture size = 7.5 μm; Column voltage (electron acceleration voltage) = 20 

kV; Ebeam current ~ 21 pA, ebeam working distance ~ 1 mm. At these column settings, 

the dot with dose 1.0 pA•s corresponds to ebeam dot dwell time ~ 47.6 ms. 

5) Take SEM images of reference nanodots far away from the device areas after the EBID. 

The reference nanodots are exposed at the same ebeam column settings but locating 

about 200 μm  away from the device nanodot pattern area. Therefore the SEM imaging 

provides topographic characterization of all deposited nanodots, while not affecting the 

device nanodots by electron-scanning. Figure 3.2 shows the SEM image of a reference 

aC:H nanodot pattern from the sample processing of a device that is used for electronic 

characterization in this dissertation. 
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Figure 3.2 SEM image of aC:H nanodot patterns. SEM image of a reference aC:H nanodot pattern from sample 

processing of the device that is used for electronic characterization in this dissertation. 

 

Exposure parameters have been tested for optimization purpose as discussed in section 2.2.1. 

Ebeam column aperture size is the smallest allowed by this model to narrow down the diameter 

of the ebeam. Ebeam focus and focus plan is well adjusted to ensure high resolution ebeam 

deposition and imaging. A small working distance (the distance from the column to the wafer 

surface) around 1 mm have been used for best resolution. 

 

3.3 MBE GRWOTH OF GE AND SI CAPPING 

The MBE deposition of Ge and Si capping is done by Chris from Jerry Floro’s group at 

University of Virginia. Growth conditions are listed as below: 

1) Expose the templated nanodots for 3 min to UV-ozone to eliminate excess 

hydrocarbon contamination between the patterned sites. 

2) Insert the template into MBE’s UHV chamber (Pbase=1x10−10 Torr) and radiatively 

heat it up during 9 hour temperature ramp to 500 °C for at least an hour to provide 

further outgassing. Then desorb the oxide at 850 °C. 
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3) Deposit 1.4 ML Ge at 600 °C. 

4) Deposit 50 nm Si capping layer at 300 °C.  

 

3.4 ELECTRODE PATTERNING AND DEPOSITION 

QDs and QDMs are sandwiched by top gates (collectors)/back gates (emitters) and 

bonded to a chip carrier for vertical transports characterization. On one device chip, 64 QD 

patterns are fabricated occupying 8 × 8 squares grid sites with 20 μm 20 μm  spacing between 

each grids. Eight top gate leads and eight back gate leads cover 64 QD patterns with crossbar 

electrode design (Fig. 3.1). This multiplexing electrode design enables convenient testing of 

multiple devices per chip and per cryostat cool-down. The multiplexing design also benefits 

investigation of systematic variations in different QDM structures by reducing non-uniformity 

from chip to chip. 

Starting from the Si capped Ge/SiC QD/QDM as shown in Fig. 2.11, the Si surrounding 

each QD/QDM pattern is etched 400 nm into the SOI device layer for back gates deposition. 

Al/Au is deposited on Si to form electric contacts. Top gates cover each QD/QDM region by 1 

μm × 1 μm squares. The top gates and back gates overlap regions are insulated by depositing 

SiO2 layer (~ 30 nm). The QD number contained in these devices varies from 0 to 6 with dot 

spacing d = 11, 22, 45, 90 nm, referred to as “nQD-d”. The schematic image of a vertical 

transport QD device is shown in Fig. 3.3. The detailed processes and recipes are listed as 

following. 
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Figure 3.3 Vertical transport single-QD device. Schematic cross-section view of a vertical transport QD 

device fabricated on 1QD structure. 

 

1) Deposit 30 nm SiO2 to cover the whole QD structure chip. 

SiO2 is deposited by a Perkin 8L sputtering system. The recipe is as following: 

Pre-sputtering power = 200 W, Pre-sputtering (PS) = 10 min, Bleed gas: Argon, 

Pressure = 10.00 mTorr, Target power = 100 W, Estimated depositing rate = 1.11 

nm/min. 

2) Etch the 30 nm SiO2 layer and ~300 nm Si into the SOI device layer around each 

QD/QDM pattern, forming 2 μm wide square trenches surrounding each pattern. The 

trench is defined by EBL and the etching is operated with a reactive-ion etching (RIE) 

machine.  

The EBL process in this step and in other following steps, e.g. defining top gate 

and back gate patterns, shares the same recipe:  

 Three-solvent cleaning for 5 min each in acetone, isopropanol (IPA) and 

deionized water.  

 Hotplate bake, 180 °C for 2 min.  
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 Spin Microchem 950 PMMA C4 photoresist at 600 rpm for 10 sec, 4000 rpm for 

45 sec, and 600 rpm for 10 sec. A 450 nm thick layer of PMMA is spin coated. 

 Hotplate bake, 180 °C for 1 min 30 sec. 

 Load into a Raith e-LiNE EBL system and expose pre-designed patterns with 

electron beam column settings: Aperture size = 10 um, ebeam voltage = 20 kV, 

Current measured = 36 pA, ebeam exposure area dose is set at 200 μAs/cm2, and the 

writing field is 50 μm x 50 μm. 

 Develop with MIBK:IPA (1:3) solution for 2 min and rinse with deionized water 

for 3 min. Then blow dry the chip with N2 and hot plate baking at 110 °C 

 For liftoff steps after metal deposition, soak the chip in acetone for overnight. 

The etching is done by the Trion Phantom III LT RIE system. The recipes for 

SiO2 and Si etching are both listed:  

For SiO2 etching: Chamber pressure = 15 mTorr, Power = 300W, CHF3 flow rate 

= 23sccm, O2 flow rate = 0, the calibrated etching speed is ~ 500 Å/min.  

For Si etching: Chamber pressure = 30 mTorr, Power = 100W, SF6 flow rate = 10 

sccm, O2 flow rate = 0, the calibrated etching speed is ~ 4000 Å/min. 
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Figure 3.4 EBL patterning and etching of trench structures. Left upper: optical microscopic image of the EBL 

patterned trench structures before etching. Left lower: the scale of the trench structure. Right: the AFM topography 

of the etched trench. The center of the trench locates a QD/QDM pattern. 

 

3) Deposit Al (6 nm)/Au (50 nm) back gate leads and electrode contact pads by EBL 

and ebeam evaporator covering part of the trenches, as shown by the green area in 

Fig. 3.5. The EBL recipe is listed in step 2, and the ebeam evaporator uses ebeam 

voltage 6 kV for both Al and Au deposition.  

4)  Deposit 50 nm SiO2 insulating layer over the QD pattern areas to electrically insulate 

the back gates from the subsequent deposition of top gates. The recipe is the same as 

in step 1. 
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5) Etch the SiO2 right on top of the QD/QDM patterns into the Si capping layer on top 

of the dots, using the recipes listed in step 2. 

6) Deposit Al (20 nm)/Au (30 nm) top gate leads and electrode contact pads by EBL and 

ebeam evaporator with the same recipe as in step 3. 

7) Glue the QD device chip to a 16 pin chip carrier by sliver paint. Bond the top gate 

and back gate contact pads to the chip carrier’s electrode contacts by sliver epoxy.   

 

Figure 3.5 shows the electrode and etched area layers with different colors representing 

each process. The top gate is not shown in this image for a better clarification of the back gate 

and trench structures.  

 

Figure 3.5 The top-view of device electrode structures. The schematic top view of different processing layers 

without showing the top gate to reveal the structures under the top gate.  
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4 MAGETOTRANSPORT THROUGH GE/SIC/SI QD/QDM 

4.1 INTRODUCTION 

Self-assembly Ge/SiC/Si QD/QDM devices fabricated in chapter 3 are investigated by 

vertical electron transport measurements, at cryogenic temperatures, to characterize the electrons 

confined by QDs. Applying magnetic fields induces energy shifts related with the electron’s spin 

degrees of freedom. The interdot interactions of QDMs are expected tunable by applying electric 

fields and by varying QD spatial configurations. In the following sections, vertical transport 

measurement set-up is described in section 4.2. Transport current intensity spectrum is shown in 

section 4.3. A resonant tunneling model is described in details in section 4.4 to explain the 

transport data. Section 4.5, 4.6 and 4.7 discuss the energy spectrum of QDs, kinetics of the 

transitions between electronic levels, spintronic dynamics of transport carriers and the interdot 

interaction. 

4.2 MEASUREMENT SET-UP 

Magnetotransport is conducted by applying dc voltage from collector gates (top gates) to 

emitter gates (back gates), measuring the transport current through each device with magnetic 

field sweeping up to 6 Tesla (see Fig. 4.1 for measurement scheme). The transport is measured at 

cryogenic temperatures so that thermal excitation energy Bk T  does not exceed carrier’s energy 

spacing E . The device is loaded in a dilution refrigerator (Oxford DR200 system) and the DR 

is cooled down to 70 mK. To observe temperature effects on the transport, magnetotransport at 5 

K is also conducted by a Physical Property Measurement System (Quantum Design, PPMS). 
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Emitter leads and collector leads are selected to characterize individual devices located at the 

conjunctions of these leads. Most of the transport current is contributed from the electron 

transport through QDs/QDMs at the conjunction because the resistance between the selected 

gates over the sandwiched pattern is much lower than that between other devices.  

 

Figure 4.1 Vertical transport measurement scheme for one Ge/SiC/Si QD device. 

 

A typical current-voltage (IV) measurement set-up is shown in Fig. 4.1. A dc voltage is 

applied to the collector gate of the device from a dc analog output (DAC) of a lock-in amplifier, 

amplified by a voltage amplifier (×14). The transport current from the emitter gate is amplified 

by a current amplifier (Femto Current Amplifier). The amplified signal is fed into an analog-to-

digital input (ADC) of the lock-in amplifier. A 10 MΩ resistors is placed in series with the 

device to limit the transport current.  

In the PPMS measurement, the two-terminal measurement scheme is slightly modified: 

the capacitance and conductance of the device are measured by applying a small amplitude ac 

voltage (from a lock-in amplifier) superimposed on dc bias voltages. The dc voltage biases the 
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energy levels in QDs. The resistance and capacitance of QD devices at varying energy levels are 

extracted from the lock-in measurement of the ac signal. To investigate spin effect on transport, 

magnetic fields are applied along the QD growth direction (z direction) in both measurements. 

4.3 TRANSPORT DATA 

Vertical magnetotransport measurement focuses on the magnetotransport through 

QDs/QDMs at low temperatures. Magnetotransport data (current intensity (z-axis) graph) with 

DR temperature at 70 mK is presented in Fig. 4.2. QD spatial configurations are schematically 

drawn on the upper left corner of each graph, with interdot spacing d noted on the lower left 

corner. These configurations have been systematically named as “nQD-d”. In each current 

intensity graph, dc bias voltage (fast scan axis, Vdc) is the x-axis and magnetic field (slow scan 

axis, B) is the y-axis. The current intensities are plotted in log scale. Details of transport pattern 

are discussed associated with corresponding dot spatial configurations in the following sections. 
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Figure 4.2 Current intensity graphs of IV measurements with sweeping magnetic field for (a) Reference 

device containing zero QD (0QD device). (b) 1QD device. (c) 2QD-11 nm device. (d) 2QD-22 nm device. (e) 2QD-

90 nm device. (f) 3QD-22 nm device. (g) 4QD-22 nm device. (h) 5QD-22 nm device. (i) 6QD-90 nm device. 

 

Figure 4.3 shows capacitance and conductance measured at 5 K by PPMS. The 

capacitance and conductance intensities are shown for three typical devices: reference device 

(0QD), 1QD and 6QD-90 nm device, as a function of magnetic field (fast scan axis, x) and dc 

bias voltage (slow scan axis, y). 
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Figure 4.3 CV measurements of QD/QDM devices. Capacitance and conductance of three QDM devices as 

a function of magnetic field and top gate bais at 5 K. (a,d) 0-QD, (b,e) 1-QD, (c,f) 6-QD. Sharp features near B = 0 

are observed at low magnetic fields that are not seen in the control structure (0-QD) 

 

Although V-shape conductance peaks centered at zero magnetic field are still observable 

for devices containing QD/QDM (Fig. 4.3 (e, f)), the transport features in Fig. 4.2 are partially 

smeared out when the measurement is conducted at 5 K. This temperature effect indicates that 

the trapping energy at the Si/SiC interfaces are shallow as discussed in section 2.3.1.  

The data/image analysis and physical interpretations in the following sections mainly 

focus on the current intensity spectrum at 70 mK (Fig. 4.2). 

 

4.4 RESONANT TUNNELING 

Charge transport in directed self-assembly Ge/SiC/Si QD/QDM device is associated with 

electrons tunneling from a lightly n-doped Si substrate (the Si device layer of SOI wafer is 

lightly n-doped with phosphorous), through QDs/QDMs, to the intrinsic Si capping layer. The 

transition of the relative concentration of Al from 1.0 to 0.0 normally occurs at a length about 20 

nm at the Al/Si interface [216] , comparable to the capping layer thickness. Hence, the diffused 

Al atoms from Al/Si contacts also provide electrons as donors like the doping phosphorous 

atoms. Au is deposited immediately after Al evaporation and the sample is kept in high vacuum 

in the ebeam evaporator chamber. Therefore the rectifying Schotty-barrier formed at the Al/Si 

interface is considered as a ‘fresh’ contact with barrier height around 0.45 eV [216]. Two 

spatially-localized interface trap states are proposed to localize in the Si surrounding the apex 
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and the base of the SiC islands due to the intrinsic structure/bonding of the SiC/Si interface. The 

apex-localized-state (ALS) and the base-localized-state (BLS) in this dissertation refer to the two 

nearly-degenerate states confined at the apex and the base of the Ge/SiC/Si QD, similarly as 

described in Ref. [51]. The orbital ground state of the QD is presumed to localize at the apex of 

the QD, with the first excited state located at the base. The SiC island forms a potential barrier 

between the ALS and the BLS. The entire QD device can be described as a triple-barrier 

resonant tunneling (TBRT) structure, as shown in Fig. 4.4. The electron chemical potential of the 

device is tuned by the applied dc voltage between the emitter and collector gates. 

 

Figure 4.4 The conduction band (CB) diagram of a Ge/SiC/Si QD device at zero bias. On the right is the 

schematic CB diagram describing the TBRT transport model along the dashed line through the center of the QD 

(left). The figures are not up to scale.  

 

As shown in Fig. 4.4, the emitter and the collector electrochemical potentials, E  and C , 

affect the QD level occupancy, assumed to be filled with N electrons, with Schottky tunnel 

barriers at both emitter and collector. Kinetics of transitions between the electronic levels in the 

QD can be described by a constant interaction model [146, 217]. The constant interaction model 

assumes that the Coulomb interaction between the electrons on a QD and the electrons in the 

surroundings is parameterized by a single constant capacitance, the self-capacitance C. It is also 
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assumes that the discrete energy levels in the QD are not affected by electron-electron 

interactions, i.e. the number of the electrons on the QD. Figure 4.5 shows a schematic equivalent 

electric circuit representing QDs capacitively coupled to emitter and collector gates with tunnel 

barriers, i.e. kEC , ER  and kCC , CR , respectively. 

 

Figure 4.5 An equivalent electric circuit for the constant interaction model. A schematic equivalent electric 

circuit representing QDs capacitively coupled to the emitter and collector gates with tunnel barriers. 
CR , 

kCC  (
ER ,

kEC ) is the tunnel coupling between 
kQD  and the collector (emitter) gate. 

 

Based on the constant interaction model, the electrochemical potential for the Nth electron, 

i.e., the energy required to add electron N to the kth QD, (N)k , can be written as [146]:  

 
2 1

(N) N
2

k N kE E kC C

k

e
e V V

C
   

 
     

 
.                                   (4.1) 

Here N  is the energy level of the Nth electron in the confinement potential; kV , EV , CV  are 

electrostatic potentials on the kth QD, the device emitter gate and collector gate respectively; 
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( ) ( )kE C kE C kC C   is the lever arm of the emitter (collector), used to relate the gate voltage to 

the potential on the QD; and kC , EC , CC  are the self-capacitance of the kth QD and the mutual 

capacitance between kth QD and the emitter (collector).  

Particularly, in the case of the TBRT structure in this dissertation, it is also reasonable to 

assume that the thermal energy is low compared to the single-particle spacing, and the tunnel 

barriers (Al/Si Schottky barrier~ 0.45 eV) are high enough to ensure that the electrons are 

sufficiently localized to the QD. With these assumptions, electron transport from the emitter gate 

to the collector gate is blocked at zero or small dc bias. 

Experimentally electron tunneling through QDs can be characterized from IV 

measurements. Figure 4.6 shows a typical IV characteristics at zero magnetic field for a 

reference device that does not contain any dots (0QD). Sharp current oscillations are observed 

(Fig. 4.6(a)), superimposed on a nearly zero current background. The threshold for the onset of 

these oscillations increases approximately linearly with the strength of the applied magnetic field 

(Fig. 4.6(b)). These oscillations are attributed to resonant tunneling of electrons from the emitter 

gate, through the Ge wetting layer, to the collector gate. This pattern of current oscillations 

appears for all of the nQD devices (n=0,…,6). 
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Figure 4.6 Magnetotransport of a reference device at 70 mK. (a) The oscillation of the current is attributed 

to the electron tunneling through the Ge wetting layer. (b) The current intensity (z-axis) vs. the dc bias voltage (x-

axis) and the magnetic field (y-axis). The line cut shows the IV characteristic at zero magnetic field in (a) 

 

Figure 4.7 shows magnetotransport measurements of a 1QD device. In the absence of an 

applied magnetic field (Fig. 4.7(b)), the current is low up to a threshold of 1.5 V (“ 1V ”), showing 

a resonance at Vdc=2 V (“ 2V ”), followed by the onset of sharp oscillations at Vdc=8 V (“ 3V ”). 

Application of a magnetic field exceeding 1 Tesla causes the onset peak to become much more 
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pronounced (Fig. 4.7(c)). The oscillation period undergoes distinct changes at two values of dcV

that have visible signatures separated by the primary resonant tunneling peaks and the dashed 

eye-guide in Fig. 4.7(a). Each change is one of a family of thresholds that for low magnetic fields 

appears to vary quadratically with B and then increases linearly at higher magnetic fields. 
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Figure 4.7 Magnetotransport of a 1QD device at 70 mK. (a) The current intensity (z-axis) vs. the dc bias 

voltage (x-axis) and the magnetic field (y-axis). The dash-line is an eye guide of the secondary tunneling peaks, and 

DE  represents the charging energy of a second electron to the BLS. (b) and (c) show the line cuts representing the 

IV curves at 0 T and 2 T respectively. (d), (e) and (f) The schematic CB diagram with the arrowed bias voltages as 

indicated by 
1V , 

2V  and 
3V  in (b) respectively. The drawing is not up to scale. (d) One charge accumulates to the 

base quantum confinement as the voltage increases. The primary resonant tunneling occurs when the lowest bound 

states are both accessible for the ALS and BLS. (f) A second electron is charged to the ALS as the voltage keeps 

increasing. 

 

To help understand the magnetotransport characteristics, the electron potential at 

different bias voltages is sketched (not to scale) in Fig. 4.7(d-f) for three gate bias conditions: 1V , 

2V , and 3V  defined in Fig. 4.7(b). When the positive dc bias increases, electrons from the emitter 

gate are transported to the collector gate. The current is comprised of two components: elastic 

peaks due to resonant transmission between aligned energy states, and an inelastic background 
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signal which also exhibits peaks when the energy associated with processes matched the energy 

difference between final and initial states [218]. 

When an occupied ALS state becomes resonant with the top i-Si conduction band, it can 

tunnel with a high probability, leading to the peak 2V . After the electron leaves, a sequence of 

tunneling processes can take place to repopulate the state, either directly from the emitter or by 

sequential tunneling BLSALS followed by repopulation of the BLS state from the emitter. 

Because there is no direct tunneling from one side of the Ge layer to the other, there is no 

interference to the tunneling through the QDs/QDMs. As dcV  is increased further, an abrupt 

transition takes place (“ 3V ”) in which direct tunneling (without intermediate relaxation within 

the QD) takes place. A “replica” feature is clearly visible for this threshold in which electrons 

can now tunnel to the collector either from the BLS state (in addition to the ALS state). The 

energy difference between the primary resonant tunneling peak ( 2V ) and the nearest secondary 

tunneling peak ( 3V ) can be used to characterize the energy difference between the two lowest 

accessible energy levels for ALS and BLS.  

For the QDMs (Fig. 4.8), there are two distinct ALS ground states that can be occupied. 

The behavior of two QD molecules is shown: 2QD-22 nm (Fig. 4.8(a-c)) and 2QD-90 nm (Fig. 

4.8(d-f)), respectively. The first threshold corresponds to the occupation of the lowest ALS of the 

two dots. The most significant difference with the single QD case is that aside from the 

resonance there is no appreciable increase in the net current (apart from a slowly increasing 

background). Only at the second threshold (~10 V) does the current increase significantly. With 

the calibration of the lever-arm ratio, the energy difference is given by A B k kU e V   , where 
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the index k is used to refer to a specific device. These charging energies for various devices are 

calculated and listed in Table 4.1. As shown in transport current intensity graphs in Fig. 4.6, 4.7 

and 4.8, the current oscillations arise when the biased dc voltage increases for all devices. 

However the current steps caused by the TBRT are only observed for the dot-devices. The 

current oscillations indicate the existence of two-dimensionally confined electronic states at the 

interface between the Ge wetting layer and the Si capping/substrate layer caused by their 

conduction band offset. The current oscillations features are superimposed on the single- and 

double-QD device transport current intensity graphs, which are associated with spatially 

extended states localized near the Ge wetting layer. 
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Figure 4.8 Magnetotransport of two 2QD devices at 70 mK. The current intensity (z-axis) vs. the dc bias 

voltage (x-axis) and the magnetic field (y-axis) for (a) the 2QD-22 nm device and (d) the 2QD-90 nm device. The 

line cuts at 0 T and 1 T are shown in (b, e) and (c, f) respectively for both of the devices. The current oscillations are 

attributed to electron tunneling through the Ge wetting layer in the devices. 

 

 

4.5 MAGNETOTRANSPORT 

Applying magnetic fields parallel to the QD growth direction leads to a shift of energy 

levels in both of the apex and the base region. Magnetotransport measurements provide a useful 

spectroscopic probe of orbital and spin states in tunneling processes. At low magnetic fields, a 

diamagnetic (quadratic with field) energy shift is observed [81, 219], while at higher magnetic 

fields the dominant contribution is linear, due to Zeeman spin splitting [149, 220]. This kind of 

crossover from diamagnetic to Zeeman has been theoretically predicted and reported 

experimentally as well on ensemble photoluminescence measurements [149, 219, 221]. Here, the 

diamagnetic energy shift and its transition to the Zeeman energy shift is directly measured by 

transport in a single QD device. 

In the effective-mass theory, the Hamiltonian for a single electron in a uniform magnetic 

field B is 

  
 

   *
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                          (4.2) 

where B A , is the magnetic field. / 2B ee m  , is the Bohr magneton. eV  is electron 

potential.  *

em r  is the position-dependent effective mass of the electron. g is Landé factor and 
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S is electron spin. Considering the magnetic field as a perturbation, the Hamiltonian can be 

written as: 

 0 I II  effH H H H   ,                                                   (4.3) 

where  
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in which 

  00 *

1
e

e

H eV
m

 p p r ,                                                  (4.7) 

is the Hamiltonian with 𝐁 = 0 . The eigenfunctions of 𝐻00  is denoted as |𝑖⟩ ≡ 𝜓𝑖(𝐫) , 

corresponding to eigenvalues, 𝐸0
𝑖 . The 1st order energy shift in 𝐁 (the Zeeman energy shift), 𝐸𝑍, 

is the sum of electron spin energy and the first-order perturbation due to 𝐻I 

   gZ BE  B L S ,                                                      (4.8)  

where 𝐋 is the angular momentum and S is the electron spin. 

For the QDs fabricated in this research, the confinement potential 𝑉𝑒(𝐫) and the effective 

electron mass 𝑚𝑒
∗(𝑟) have an axial symmetry that lies parallel to the magnetic field 𝐁. In this 

case, 𝐁 ∙ 𝐋 is a constant of the motion and the gauge can be chosen as 𝐀 = −
1

2
𝐫 × 𝐁, with origin 

on the symmetry axis. Thus, 𝐻I = 𝑒/(2𝑚𝑒
∗)𝐁 ∙ 𝐋. The ground state |0⟩ has magnetic quantum 

number 𝑚𝑙 = 0 . Therefore, 𝐁 ∙ 𝐋|0⟩ ≡ 0  and ⟨𝑖|𝐻I|0⟩ = 0 . This indicates the second-order 
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Zeeman term vanishes, and the diamagnetism term equals to the ground state expectation value 

with the direction of B along the QD growth direction (z-direction) [221] 

2 22 2 2 2
2 2 2 2

* * *

x y

2 8 4

dx
D

e e e

e ae e
E B B B

m m m



   A .   (4.9) 

In a Ge/SiC/Si QD system, the confined electrons locate in the weakly strained Si annulus region 

surrounding the SiC nanodot (section 2.3.1). Therefore it is reasonable to assume 
*

00.19em m , 

the transverse effective mass of the electron in Si ( 0m  is the rest electron mass); 

2 21

2
dxa x y   is defined as the diamagnetic length for the ground state, which equals the 

expectation value of the ground-state radius; and 
2 2 */ 4dx ee a m   is commonly defined as the 

diamagnetic coefficient [81, 222, 223].   

The second-order perturbation theory is valid only if the magnetic length  
1/2

/Bl Be  

exceeds the diamagnetic length dxa  [221]. As a result, the diamagnetic shifts transits to the linear 

Zeeman shifts at a critical magnetic field CB . For 1QD device as shown in Fig. 4.7, the first-

order and second-order energy shift transition occurs at a critical field 2.5 TCB  . Therefore the 

upper-bound of dxa  is estimated around 16 nm  which is a reasonable upper-bound value for QD 

structures of around 10 nm in radius. 

The Zeeman energy shift in the low field region is given by 
1

2
Z BdE g dB , which is 

associated with the applied dc bias voltage by Z iC CdE e dV . Thus, the lever-arm ratio can be 

calculated from the slope of the primary resonant tunneling voltage versus the magnetic field: 



 79 

1
(B)

2

CB
iC

dVg

e dB






 
  

 
,                                                     (4.10)  

where g is Lande g-factor of the electrons confined in silicon around the SiC QDs. It is assumed 

that 2g  , close to the g-factor value for free electrons in bulk silicon [224] since the electrons 

are confined in the epitaxially overgrown silicon capping layer and substrate. A linear fit of 

Zeeman energy shift gives the lever-arm ratio for the single-QD device: 
52.6 10iC   .  

In the diamagnetic energy shift region, a parabolic fit of the resonant tunneling voltage 

versus the B field gives the diamagnetic coefficient: 

2

2

(B)1

2

Dd E

dB
  . The energy shift is related 

to the collector voltage by D iC CdE e dV . Thus the diamagnetic coefficient can be written as 

2

22

iC Ce d V

dB


  . Together with 

2 2 */ 4dx ee a m  , the expectation of the ground-state radius for the 

1QD device in Fig. 4.7 is calculated to be around 12 nm. The transition from the diamagnetic 

energy shift region at low field to Zeeman energy shift at high field region has been observed for 

devices containing single and double QDs (Fig. 4.7(a), Fig. 4.8(a) and (d)). In addition, this 

transition does not show up for the reference devices, indicating the diamagnetic energy shift 

occurs through the states confined around the QD. The lever-arm ratio and the ground-state 

expectation radius of the confined electrons are listed in Table 4.1. The lever-arm ratio values for 

all of the three configurations are close, indicating the electrodes deposition is uniform for all the 

devices on the device chip. Also, the ground-state expectation values are close, demonstrating 

that the electronic structures of the quantum dots are not affected much by the dot configuration. 

The replica of the primary tunneling peaks (see the eye guide in Fig. 4.7(a)) indicates the 

adding of a second electron to the BLS. Thus, the charging energy can be calculated from the 
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voltage difference between the primary and secondary tunneling peaks. The voltage peak 

difference remains nearly constant at different magnetic fields. This fact implies that the energy 

levels in the apex and the base are shifted by nearly the same amount by magnetic field. The 

adding energy is denoted by DE  in Fig. 4.7(a). The summary of the lever-arm ratio, the ground-

state expectation radius, and the adding energy of a second electron different QD patterns are 

listed in Table 4.1.  

 

 

Table 4.1 Magnetotransport characterization of QD/QDM devices. The lever-arm ratio, the expectation 

value of the ground state radius and the adding energy for the QD/QDM are listed for 1QD, 2QD-22 nm and 2QD-

90 nm devices. 

 

From the analysis results shown in Table 4.1, the lever-arm ratio values for all of the 

three configurations are close, indicating that the electrodes deposition is uniform to all the 

devices on the device chip. In addition, the expectation values of the ground state radius 

approximately equal, implying that the electronic structures of individual QDs are not obviously 

Dot configuration 1-dot 2-dot 2-dot 

Spacing (nm) / 22 90 

Lever-arm ratio 2.6 × 10−5 2.6 × 10−5 2.4 × 10−5 

dxa  (nm) 12 11 11 

Adding Energy (μeV) 250 250 200 
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affected by dot configurations. Therefore the conclusion can be made that the fabrication process 

is uniform from device to device.   

 

 

 

4.6 INTERDOT INTERACTIONS 

4.6.1 Coulomb interaction 

The occupation of an electron at the first QD increases the energy level of the lowest 

bound state at the second QD. Thus a higher adding energy is required for another electron to 

tunnel to the second dot. When the bias increases, the electron overcomes the Coulomb repulsion 

energy from the electron hosted in the base. Thus the transition from the shallow to the primary 

resonant tunneling peak offers the magnitude of the interdot Coulomb interaction.  

By comparing the two dot charging energy of the 22 nm ( 250 eV ) and 90 nm 

( 200 eV ) spacing configuration, adding the second electron to the base requires higher energy 

for the 22 nm device. This difference is attributed to the Coulomb repulsion energy difference 

from the existing first electron in the base: The two confined electrons are localized at the Si 

surrounding the base of the SiC nanodots and the electron wave function expectation values for 

both of the configuration are around 16 nm. Thus, the strength of the interdot Coulomb repulsion 

energy decreases with the distance between two dots, as expected. Also, the interaction strength 

is comparable to the Zeeman spin splitting energy (~100 eV at 1 Tesla), providing a possibility 

to fabricate spintronic bandgap materials. More complex QDMs with more than two dots have 
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been successfully grown, however considerably more elaborate analysis is required to fully 

understand the single particle features observed. 

A simplified simulation model for the interdot Coulomb interaction can be built as 

following. The two confined electrons are localized at the base annulus region surrounding the 

SiC nanodots and the electron wave function expectation values for both of the configuration are 

around 12 nm. Thus, the strength of the interdot Coulomb repulsion energy depends only on the 

distance between two dots. The Coulomb interaction between dot A and dot B with dot spacing r 

is given by: 
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The closer dot configuration gives larger Coulomb interaction. From table 4.1, it can be 

concluded that:    22nm 90nm 50 eVAB ABU U   . 

The dependence of the Coulomb interaction on dot spacing provides the possibility of 

fabricating QD arrays in which the interdot Coulomb interaction can be tuned geometrically. 

These arrays are capable of implementing the AQS architectures to simulate the 2D Hubbard 

model as proposed in section 1.2.   

4.6.2 Exchange interaction 

The exchange interaction alters the expectation value of the energy levels in a QD when 

the wave functions of two or more electrons overlap. Generally, the electron-electron interaction 

can be described by an exchange Hamiltonian [225, 226]: 
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i j

H J S S ,                                                       (4.12) 
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where 𝑆𝑖
⃑⃑⃑   is the spin operator for electron i, and 𝐽𝑖𝑗 is the exchange coupling constant between 

spin i and j. The exchange coupling is given by the exchange integral:  
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in which  i 1 r  represents the wavefunction of electron i  

In double-QD molecular case, the Hamiltonian is written specifically for dot A and B 

with dot spacing r as: 

    AB A BAB
   exH r J r S S ,                                             (4.13) 

where   
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The average ground state wave function expectation is given in section 4.5, however, 

without the detailed information of the wave function profile, exchange coupling constant is not 

accessible. Therefore in this research, the exchange interaction has not be explored.  

 

 

 

 

 

 

 

 

 



 84 

5 SUMMARY AND CONCLUSION 

In this research, directed self-assembly sub-10 nm Ge/SiC/Si QDs have been fabricated 

with an optimized templated growth technique. The size distribution analysis of nanodot arrays 

by AFM and SEM shows a high degree of uniformity (51% of Ge/SiC QDs have FWHM ≤10 

nm and 95% are ≤15 nm). In addition, the seeding of individual QDs within 2 nm position 

precision has been achieved. TEM characterization of the fabricated QDs shows that SiC 

nanodots form at pre-patterned sites. The Ge wetting layer at the interface of Si capping and 

substrate layer is repelled from the SiC nanodots, forming an annular lowered band gap region in 

the Si surrounding the SiC dots. Electrons are weakly confined in this annulus. The fabrication 

process developed in this dissertation study provides a deterministic and scalable method to 

implement an extensive class of QD-based architectures. 

QD and QDM devices are fabricated by integrating various QD patterns into vertical 

transport structures. These devices are characterized with low-temperature magnetotransport by 

sweeping a dc bias applied to the collector gate and measuring the current from the emitter gate 

in varying magnetic fields.  

Based on the analysis on the transport data, the QD/QDM device is identified as a triple-

barrier resonant-tunneling (TBRT) structure: electrons resonantly tunnel from the emitter gate 

via the confinement states at the base and the apex of the QD, to the top gate. In magnetic fields, 

both the diamagnetic and Zeeman energy shifts are observed, allowing the QD orbital radius to 

be characterized. The ground-state radius expectation value of the single-QD device is close to 

that of the double-QD devices, indicating high uniformity of the QD device structures. The 

dependence of the interdot Coulomb interaction on the dot spacing has also been explored for 

double-QD systems.  
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The knowledge obtained from the magnetotransport is necessary to manipulate the 

electron charge and spin states confined by Ge/SiC/Si QDs. With the demonstrated ability to 

control the spatial positioning of electronically active QDs in nanometer scale, an enabling 

technology for new device paradigms has been provided for future application such as quantum 

computation and quantum simulation. 
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