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Abstract

Colorectal tumors originate and develop within intestinal crypts. Even though some of the essential phenomena that
characterize crypt structure and dynamics have been effectively described in the past, the relation between the
differentiation process and the overall crypt homeostasis is still only partially understood. We here investigate this relation
and other important biological phenomena by introducing a novel multiscale model that combines a morphological
description of the crypt with a gene regulation model: the emergent dynamical behavior of the underlying gene regulatory
network drives cell growth and differentiation processes, linking the two distinct spatio-temporal levels. The model relies on
a few a priori assumptions, yet accounting for several key processes related to crypt functioning, such as: dynamic gene
activation patterns, stochastic differentiation, signaling pathways ruling cell adhesion properties, cell displacement, cell
growth, mitosis, apoptosis and the presence of biological noise. We show that this modeling approach captures the major
dynamical phenomena that characterize the regular physiology of crypts, such as cell sorting, coordinate migration,
dynamic turnover, stem cell niche correct positioning and clonal expansion. All in all, the model suggests that the process of
stochastic differentiation might be sufficient to drive the crypt to homeostasis, under certain crypt configurations. Besides,
our approach allows to make precise quantitative inferences that, when possible, were matched to the current biological
knowledge and it permits to investigate the role of gene-level perturbations, with reference to cancer development. We also
remark the theoretical framework is general and may be applied to different tissues, organs or organisms.
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Introduction

Intestinal crypts are invaginations in the intestine connective

tissue, which are the loci where colorectal tumors, one of the major

causes of deaths in adults, originate and develop [1–4]. These

particular structures have been quite precisely characterized,

highlighting a fast renewing single layer epithelium in which

distinct cell populations are rather sharply stratified and cells

coordinately migrate from the multi-potent stem cell niche (at bottom)

toward the intestinal lumen, with some exceptions [5–9]. As long

as cells move upward they divide and differentiate through

intermediated stages, according to a hypothesized lineage commitment
tree, which ensures the correct functioning of the crypt and its

resistance to perturbations and biological noise. The complex

interplay between cell proliferation, differentiation, migration and

apoptosis results in the overall homeostasis of the system. Chemical

gradients ruled by key signaling pathways such as Wnt, Notch, Eph/

ephrin have a crucial role in all these processes and, when

progressively mutated or altered, cancerous structures may emerge

[10,11].

Mathematical and computational models have been widely used

to describe intestinal crypts (see [12,13] and references therein).

Among these, compartmental models analyze population dynamics via

mean-field approaches without accounting for the spatial and

mechanical properties of the crypts [14,15]. In order to consider

space, both in-lattice and off-lattice models have been defined. The

former use simplified cellular automata-based representations of

crypts to account for cell displacement, movement and interactions

(see, e.g., [16,17]). The latter strive to model more directly the

geometry and the physics of crypts, but, as they involve bio-

mechanical forces and complex geometries (e.g., Voronoi diagrams),

the spaces of parameters and variables dramatically enlarges (see,

e.g., [18–20]). As usual, the best trade-off between the complexity

of the model and that of the modeled phenomena depends on the

aim of the research.

Even if a large list of important phenomena, such as the spatial

arrangement of cell population or the stem cell niche maintenance,

have been described with noteworthy results with currently

existing models, the relation between the underlying differentia-

tion processes and the overall crypt homeostasis is still only

partially understood. To investigate in-silico this relation and other

important biological properties we here introduce a novel multiscale

model of intestinal crypt dynamics, presented in a preliminary
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version in [21]. The multiscale approach allows to consider, at

different abstraction levels, phenomena happening at distinct

spatiotemporal scales, as well as the hierarchy and the commu-

nication rules among them [22,23]. In the case of crypts, these

include intra-cellular processes such as gene regulation and intra-

cellular communication, and inter-cellular processes such as

signaling pathways, inter-cellular communication and microenvi-

ronment interactions. Their joint complex interaction allows to

quantify, at the level of tissues, some key properties of crypts such as

their spatial patterning, cellular migration, overall homeostasis and

clonal expansion.

The foundations of our model lay in statistical physics and in

complex systems theory, as the main rationale is to use the simplest

possible model to reproduce relevant complex phenomena, also

allowing for a comparison with experimental data and biological

knowledge [24]. Thus, our model relies on few a priori assumptions

and constraints, and most of its properties are emergent. The model

is composed of two distinct levels, accounting for the crypt

morphology and the underlying cellular Gene Regulatory Network

(GRN).

Crypt morphology, the spatial level of the model, is described

via the well-known in-lattice Cellular Potts Model (CPM), already

proven to reproduce several properties of real systems [25–27]. In

this discrete representation cells are represented as contiguous

lattice sites (i.e. pixels), and their movement (via pixel re-

assignment) is driven by an energy minimization criterion

accounting for cellular type, position, age and size. Despite being

a simplification of the real crypt morphology, important biological

aspects such as cell heterogeneity and noise are effectively

accounted for with this approach.

GRNs are modeled as Noisy Random Boolean Networks (NRBNs,

[28,29]), a simplified model of gene regulation that allows to relate

the processes of cell differentiation with the robustness of cells

against biological noise and perturbations [30]. This widely used

model considers genes as a ‘‘black box’’ and accounts for simplified

regulatory interactions, i.e., by not considering explicitly the

biochemical details of entities and relations, while focusing on the

emergent dynamical behavior of networks in terms of gene activation

patterns that characterize the cellular activity. Following an

approach typical of complex systems, the aim is to investigate

the so called generic (or universal) properties and principles of biological

systems, i.e., those properties that are shared by a broad range of

distinct systems, in this case by gene regulatory networks. A

powerful instrument in this regard is the statistical analysis of

ensembles of randomly simulated networks with certain biological

constraints, in order to scan the huge space in which real networks

(on which the information is still missing) are likely to be found.

Even though the Boolean modeling approach relies on drastic

simplifications, it was repeatedly proven fruitful in investigating the

generic properties of generally large networks, without the need of

using the high number of (usually not available) parameters

necessary in other approaches, e.g. modeling via differential

evolution equations. In fact, classical RBNs were efficiently used to

surrogate GRN models until complete information on real

networks started to become available [31–36]. Moreover, the

simulation of the dynamics of (usually small) biologically plausible

Boolean networks recently gained attention, starting from specific

works on regulatory circuits [37–39]. We place our model closer to

the large-networks approach, with the current goal of investigating

the generic properties of gene networks, yet with the explicit future

objective of approaching the modeling of more biologically

realistic architectures, given the generality of the cell differentia-

tion model here introduced.

Along the lines of [30], each cell type is characterized by

particular patterns, whose stability with respect to biological noise

is related to its degree of differentiation [40–43]. The approach is

general (i.e. it is not related to a specific organism) and is able to

reproduce key phenomena of the differentiation processes such as:

(i) hierarchical differentiation, i.e. from toti-/multi-potent stem cells to

fully differentiated cells through intermediate stages; (ii) stochastic

differentiation, i.e. a stochastic process rules certain fate decisions and

directions; (iii) deterministic differentiation, i.e. specific signals or

mutations trigger certain differentiation fates; (iv) induced pluripo-

tency, i.e. fully differentiated cells can return to a pluripotent stage

through the perturbation of some key genes [44].

In our multiscale approach, the GRN dynamics drives cellular

growth and the differentiation fate of cells, thus linking the GRN

to the crypt morphology.

Following the work by Wong et al. [17], in this paper we

investigate key dynamical properties of crypts and, in particular,

we show that the stochastic differentiation process is itself sufficient

to ensure the crypt homeostasis, under certain conditions. Our

novel approach permits to relate the genotype-level model of GRN

to complex phenotypes and quantitative measures of crucial

phenomena occurring in crypts, such as: (i) the spontaneous

sorting and segregation of cell populations in different compart-

ments, driven by cell adhesion processes; (ii) the maintenance of

the correct proportion between cell populations with distinct

functions in the crypt; (iii) the fast renewal process of cells, as

resulting from the interplay involving newborn cells and dead ones

(either because expulsion in the lumen or apoptosis, which should

be modeled per se, cfr. [45]); (iv) the coordinate migration of cells

from the stem cell-niche toward the intestinal lumen at the top of

the crypt; (v) the noise-driven progressive differentiation of

totipotent stem cells in 8 hierarchical cell types, through transit

amplifying stages; (vi) the clonal expansion of sub-populations

deriving from single progenitors.

Despite the affinity with [17], our work contains several major

differences (see the paragraph in the Model section for a detailed

comparison). For instance, our GRN-based differentiation model

consists of a stochastic fate decision process depending on an

emergent lineage tree and, also, the key features of the cell cycle that

we consider emerge by the dynamical properties of the underlying

GRNs, while in [17] are superimposed. In addition, one of the

major motivations for using a multiscale model is the possibility of

explicitly perturbing the GRN, simulating different kinds of

mutations and alterations at the genome level, which we leave as

future work. In this way, one can analyze the influence of the

progressive accumulation of genetic alterations on the overall

dynamical tissue-level behavior of crypts, thus providing a

powerful instrument to investigate the possible emergence of

aberrant structures such as colorectal cancer.

In this regard, the dynamical characterization of genotypic and

phenotypic phenomena recently gained greater attention [46,47].

For example, in [48] cancer development is depicted as a

dynamical process characterized by metastable states (i.e. attractors

in the terminology of dynamical systems) in which stochastic

transitions account for cancer heterogeneity and phenotypic

equilibria. In general, a dynamical approach provides more

information than the static counterpart, given the inherently

evolutionary nature of cancer. In this respect our model is, to the best

of our knowledge, the first attempt to combine a dynamical

attractor-based model of GRN with a morphological multicellular

model, allowing for innovative analysis perspectives.

Besides, our model is conceived to be flexible and modular, thus

both its spatial and gene-level components may be refined to

include, for instance, signaling pathways and chemical gradients.

A Multiscale Model of Crypt Dynamics
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We also remark that our modeling approach is general and, in

principle, can be applied to any kind of tissue, organ or organism.

The paper is structured as follows. A brief overview of the

biology of the crypts is given in the next section. Next, the internal

and external components of the model are described, as well as

their multiscale link. The results of the analyses on the model are

discussed in the subsequent section. Finally, conclusions are

drawn.

A brief overview of the biology of the intestine
Among many, the main functions of the human intestine are (i)

food digestion and (ii) nutrients absorption, while several other minor

processes are linked to the general homeostasis of the system and

to the immune system mechanisms. The distinct compartments of

the intestine are composed by muscular, stromal and cuboidal

epithelial cell. The lining of the small intestine is composed by a

single-layer epithelium that covers the villi and the crypts of

Lieberkühn, which are the object of our model. Notice that in the

large intestine there are no villi, but only crypts (see [1,49] and

references therein).

Four distinct differentiated epithelial cell types are present in the

crypt, all descending from multi-potent stem cells, which give rise to

a progeny that undergoes a post-mitotic progressive differentiation

process, characterized by the presence of partially differentiated

cells in transit amplifying stages (see [50] for an exhaustive discussion).

In particular, the four epithelial fully differentiated lineages are:

enterocytes, performing both absorptive and digestive activity via

hydrolases secretion, Goblet cell, secreting mucus to protect the

absorptive cells from digestion, Paneth cell, performing defensive

tasks by means of antimicrobial peptides and enzymes and

enteroendocrine cells (a general category with 15 subtypes) entailed in

many different tasks and signaling pathways [49,51,52]. Other

minor cell types, such as M-cells and Brush cells have been also

detected [53].

Cell type populations are segregated in distinct portions of the

crypt: the proliferative cell compartments is in the lower part of the

crypt, all other types but Paneth cells reside at its top. Stem cells

are sited at the bottom of the crypt in a specific niche, intermingled

or just above Paneth cells, according to different hypotheses [54]

(see Figure 1). The overall dynamics is a coordinated upward

migration of enterocyte, Goblet and enteroendocrine cells from

the stem-cell niche [55]. At the end of migration these cells are

shed into the intestinal lumen; this loss of cells balances the

production from the base of crypt. Paneth cells are the only cells

that move downward and reside at the bottom of the crypt (see

[2,50] and references therein). In this complex coordinate

movement cell populations maintain the segregation in distinct

compartments [1].

The cellular turnover is fast. For instance, in mice the crypt

progenitors divide every 12=17 hours, so around 200=300 cells per

day are generated, and they successively undergo up to five rounds

of cell division while migrating upwards [49,56]. Accordingly,

migrating cells move from the base to the surface in about 3=6
days, while Paneth cells, which live for about 3 to 6 weeks, and

stem cells localize at the crypt bottom and escape this flow [2,57].

The signaling pathways throughout the epithelial cells and

between the epithelium and the mesenchyme are fundamental for

many phenomena such as spatial patterning, proliferation in

transit-amplifying compartments, commitment to specific lineages,

differentiation and apoptosis [49]. We briefly describe the three

most important signaling pathways involved in these processes.

The Wnt pathway is supposed to drive cell proliferation and to

rule the differentiation fate. Also, it is responsible of avoiding the

immediate differentiation, and activates the expression of the

Notch pathway [49]. The activation of this pathway keeps the

crypts in a normal proliferative state, whereas its inactivation stops

the division/differentiation process. In [54,58] it is shown that its

correct activation is required to determine the Paneth cell fate and

lineage.

The Notch pathway is involved in the control of the spatial

patterning and the cell fate commitment, with the task of ensuring

the status of undifferentiated proliferative cells in the progenitors

compartment, in a concerted combination with the Wnt pathway

[59]. This signaling pathway mediates also lateral inhibition, which

forces the cells to diversify: some cells express Notch ligands and

activate the Notch signaling in the neighbors, while avoiding their

own activation. In this way they commit to the finally differen-

tiated fate. In the other cells the Notch ligands are inhibited while

the Notch pathway is active within the cell itself; in this way they

maintain the possibility of differentiating in any possible way.

Multi-potent crypt progenitors are supposed to be maintained only

when both Wnt and Notch pathways are active [53].

Finally, the interaction between Eph receptors and ephrin ligands

can trigger a downstream cascade that controls cell-cell adhesion,

cell-substrate adhesion, cytoskeletal organization and cell-extra-

cellular matrix binding, influencing the formation and the stability

Figure 1. Crypt morphology and differentiation tree. (A) A depiction of the crypt morphology, with the direction of cell migration and a
schematized representation of the interplay among the key signaling pathways (taken from [13]). All cells but stem and Paneth migrate upward. The
three major signaling pathways involved in the crypt activity are the Wnt, the Notch and the Eph/ephrins pathways. In (B) the crypt differentiation
tree is shown, involving stem (ST), transit amplifying stage (TA1, TA2-A, TA2-B), Paneth (PA), Goblet (GO), enteroendocrine (EE) and enterocyte (EC) cells.
doi:10.1371/journal.pone.0097272.g001
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of tight, adherence and gap junctions and integrin functions [60–

63].

Methods: A Multiscale Model of Intestinal Crypts

Dynamics

We separately introduce all the model components with respect

to the key biological processes we account for. A detailed

mathematical definition of the model and of the simulation

algorithms can be found in File S1.

Crypt morphology as a collective multi-cellular dynamical
structure

We adopt a simple geometrical representation of crypts inspired

by the theory of cellular automata and statistical physics: the

Cellular Potts Model (CPM, [25]), often used to account for energy-

driven spatial patterns formation [27]. A graphical representation

of the CPM model is shown in Figure 2.

We display cells over a rigid 2D grid by assuming a (simplified)

perfectly cylindrical crypt, opened and rolled out onto a

rectangular h|w lattice L through periodic boundary conditions.

Each cell is delimited by connected domains as in cellular

automata so a cell c, denoted as C(c), consists of all lattice sites of

l [ L with value c, that is

C(c)~fl~cDl[Lg: ð1Þ

For each disposition of cells a energy level is evaluated via a Potts-like

Hamiltonian function H : L?R accounting for the energy

required for each mutual interaction and other physical quantities

(see below). A discrete-time stochastic process of cellular re-

arrangement drives the lattice to configurations minimizing the

overall hamiltonian energy. The time unit of these steps is the so-

called Monte-Carlo Step (MCS). The operation key to cellular

re-arrangement is that of flipping a lattice site of a cell in favor of

another cell, thus modeling cellular movement over the lattice.

The changes in the lattice which can happen in a single MCS are

sketched as:

1. let l be a lattice site selected with uniform probability in L, let

N (l) be its set of neighbor sites, select a random l’[ N (l);

2. assign site l’ to the cell in l with probability

P(l/l’)~min 1,exp {
DH

kBT

� �� �
ð2Þ

where DH is the gain of energy (i.e., the hamiltonian difference)

in accepting the flip;

3. repeat steps 1–2 for hwk times, with k a positive integer.

In step 1 we set N (l) to the standard Von Neumann

neighborhood: if l is in position (x0,y0) its neighbors of degree

r [N are fDx{x0DzDy{y0Dƒrg. Step 2 is the probabilistic re-

arrangement of a single lattice site; by iterating hwk times a single

MCS is simulated and the new lattice configuration displays the

cells which moved in that time unit. The Boltzmann distribution is

used in equation (2) to drive cells to the configuration with

minimum energy; such a distribution depends on the temperature

T and on the Boltzmann constant kB (the factor kBT gives

account of the amplitude of the cell membrane fluctuations at

boundaries).

Cell sorting is the phenomenon by which population of cells of

distinct type segregate and form distinct compartments or different

tissues. According to Steinberg’s Differential Adhesion Hypothesis

(DAH, [64]), cell sorting may be due to cell motility combined

with differences in intercellular adhesiveness and these phenomena

in crypts are clearly related to the functioning of the Eph/ephrins

signaling pathway (see the Biological background section). In

Figure 2. Cellular Potts Model. Lattice-based representation of the crypt tissue as a opened and rolled out lattice L, with 4 cells. The energy
gradient induced by the DAH via J and the current/target area for each cell are represented. An example MCS step is shown resulting in the re-
arrangement of L in favor of L’ (15 flips accepted), whose hamiltonian energy is lower. The final tissue stratification is achieved when DH&0 where
the grey cell is expelled in the lumen. In the left corner an example picture of real tissue is displayed.
doi:10.1371/journal.pone.0097272.g002
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detail, under DAH tissues are considered as vascoelastic liquids

whose tissue surface tension can be measured. These tensions

correspond to the mutual cellular behavior thought to be

responsible for the formation of complex multi-cellular structures.

In our model we adopt a thermodynamical interpretation of

Steinberg’s hypothesis to account for the effects of cell adhesion

molecules in a simple way. Along the lines of [17] we assume that a

certain amount of energy is required to keep two cells tied to each

other, and we assume that higher energy is required to stick

together cells of distinct types. Since the surface tensions can be

determined for various tissues, we can use realistic parameter

values for these energies [26,65,66]. In this way, we implicitly

include in our model an abstraction of one of the most important

signaling pathways involved in the phenomena relevant to crypt

homeostasis.

Therefore, the energy minimized by equation (2) is given by the

hamiltonian function

H(L)~
1

2

X

c1,c2

J(c1,c2)zl
X

c

½DC(c)D{A(t)�2, ð3Þ

where c denotes a generic cell of type t and c1 and c2 are different

neighbor cells. Function H accounts for:

N the amount of energy J(c1,c2) required to stick tied c1 and c2,

according to the DAH;

N the tendency of each cell of type t to grow towards some target

area A(t).

Thus, the target lattice configuration the system is driven to is

that where the amount of bond energy is minimal and cells tend to

grow up to their target size. Notice that the the total area of a cell

is measured as the total number of pixels currently occupied by the

cell, i.e., DC(c)D, and the capacity to deform a cell membrane is

given by the size constraint lw0. As far as the DAH is concerned,

J(c1,c2) is the surface energy between the two cells (defined on the

basis of the gradients of Eph receptors and ephrin ligands), and is

defined according to their cell type (see Tables 1 and 2).

Furthermore, since crypts are not isolated systems, we both

consider the expulsion of cells in the intestinal lumen (shedding of

fully differentiated cells by mitotic pressure) and the presence of

the Extra Cellular Matrix (ECM), i.e. the stroma scaffold surround-

ing crypts. Cell expulsion, which allows the renewal of cells in the

crypt, is achieved by the migration of cells towards the top of

lattice which, we recall, it is open. The ECM is modeled as a

special cell type with un-constrained area (see File S1 for a detailed

definition of function H with the ECM cell type).

Finally, cells moving on a lattice eventually complete their cell-

cycle. In our case mitosis follows cycle completion and a cell

Table 1. Parameters of the Noisy Random Boolean Networks modeling the Gene Regulatory Network of intestinal crypts, and of
the Cellular Potts model of crypt morphology.

Noisy Random Boolean Networks

Symbol Value Description Source

N 100 number of GRN genes (NRBN nodes) estimation in accordance with the driver genes for colorectal

cancer [85]*

|K| 3 average GRN connectivity input lineage tree*

- scale-free GRN topology [83]

c 2.3 Power-law exponent (scale-free GRNs) [84]

- canalyzing type of boolean functions [87]

Cellular Potts Model

Symbol Value Description Source

- 1mm=1 pixel conversion from pixels (side) to mm [6,19]

- 10 MCS= 1 h conversion from MCS to hours [17]

m 1 flip/MCS mutation (single flip) rate [80]

- 1NRBN=150/‘̂‘t MCS NRBN/MCS time conversion [1]

h 150 mm height of the lattice (crypt) [6,19]

w 100 mm width of the lattice (crypt) [6,19]

k 4 number of lattice spin attempts per
lattice site per MCS

cell turnover*

N 7 Von Neumann neighborhood size cell sorting*

n {0,0.1,0.25| disorder of cellular displacement in
the initial configurations

parameter scan

l 100 area constraint cell boundary crumpling*

kBT 50 temperature and Boltzmann constant cell boundary crumpling*

A(t) 50 pixels target area for all the cell types [1]

- 3–6 weeks apoptosis time for Paneth cells [2]

J see Table 2 cell adhesion matrix [17,26,65,66]

Parameters with symbol* are fit.
doi:10.1371/journal.pone.0097272.t001
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divides into two daughter cells, which are characterized by specific

target areas. In particular, stem cells divide asymmetrically,

producing a unique daughter (and the stem cell itself), whereas

the other proliferative cells divide in two daughters that change

type by following the differentiation fate ruled by the GRN

dynamics.

Noise-induced stochastic cellular differentiation via GRNs
We consider the 8 cell types T = {ST, TA1, TA2–A, TA2–B,

PA, GO, EC, EE} shown in Figure 1, and we adopt the hypothesis

that more differentiated cells are more robust against biological noise, because

of more refined control mechanism against perturbations and

random fluctuations. Accordingly, the toti-/multi-potent stem cell

type is less robust against noise and is thus able to differentiate in

any other cell type. In this regard, a wide literature is currently

available on: (i) the role of noise in gene regulation, e.g., [43,67–

71], (ii) the relation between noise and the differentiation

processes, e.g., [40,72–76], (iii) the hypothesis according to which

the level of noise in undifferentiated cells is relatively higher, e.g.,

[41,42,77].

By using this intuitive idea we link noise-resistance to the

stochastic cellular differentiation process, at the level of the GRN shared

by all the cells in the crypt: once a cell divides, the specific cell type

of its progeny depends on a random process, according to the

underlying lineage commitment tree. In this paper, we adopt a

simplified representation of such a GRN based on the Random

Boolean Networks (RBNs, [31,78,79]) approach where genes, and the

encoded proteins, are represented in a abstract ‘‘on’’/‘‘off’’

fashion. Despite the underlying abstractions, this model has

proven fruitful in reproducing several key generic properties of real

networks (see, e.g., [32,34–36]). Intuitively, each gene is associated

to a boolean variable xi: xi~1, the ‘‘on’’ state, models the activation

of the gene (i.e., production of a specific protein or RNA),

conversely xi~0 models the inactive gene. The interaction among

the genes is represented via a directed graph where nodes are the

binary variables, edges symbolize the regulation paths and each

gene affects the neighbor genes via a boolean updating function fi
associated to each node.

The network graph represents the possible genetic interactions

and is used to ‘‘simulate’’ the evolution of the GRN in a discrete-

time, synchronously and deterministically. Let xi(t) be the state of

each gene xi at time t, the new value of xi at time tz1 is a

function of its connected components xj , xk, …, that is

xi(tz1)~fi½xi(t),xj(t),xk(t), . . .�: ð4Þ

Given that the dynamics is synchronous and deterministic, gene

activation patterns will eventually emerge from it; technically, these

RBN attractors are stable limit cycles representing sequences of

activations/inhibitions of genes, repeating in time [78]. Patterns

will be used as a compact representation of the underlying GRN,

and their stability will be used to model the noise-resistance of each

cellular type [28].

This is the so-called Noisy Random Boolean Networks (NRBNs,

[29,30]) model of regulatory network. Together with the DAH-

based adhesion energy matrix, this model of regulatory network

implicitly includes within the multiscale model the relevant

signaling pathways, as their influence is encoded in the various

gene regulatory circuits, which, in turn, rule the overall crypt

dynamics. We here remark that each cell of the system is

characterized by the same NRBN, like all the cells of an organism

share the same genome (i.e. GRN). The differences in the activity
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of the distinct cells is due to the particular dynamics of their own

gene activation pattern (for instance, distinct cells of the same type

own the same NRBN and the same gene activation pattern, but

can be in different phases of the pattern).

We sketch here its usage, which is schematized in Figure 3; for a

exhaustive mathematical definition of NRBNs we refer to File S1.

The process is as follows:

1. a random RBN is generated with some specific bio-inspired

constraints (see below);

2. a set of GRN configurations representing the initial conditions

of the RBN is generated by turning ‘‘on’’/‘‘off’’ the genes (i.e.,

assigning 0/1 values to all the variables xi);

3. for each configuration the dynamical trajectory of the GRN is

generated via equation (4) (right table, Figure 3);

4. all the stable limit cycles of a GRN define its gene activation

patterns (e.g., the attractors A1 and A2 in Figure 3);

5. the stability to noise of each gene activation pattern is tested by

performing random perturbations on each gene (i.e., tempo-

rary flips). A stable pattern is robust when the dynamical

trajectory that follows a perturbations returns to the pattern

itself. Notice that unstable patterns may determine new

attractors;

6. by repeatedly performing step (5), the stability of each gene

activation pattern is numerically evaluated, determining the

noise-induced probability of switching between patterns. The

Attractor Transition Network (ATN, [30]) accounts for the relative

probabilities of switching among patterns (see Figure 3);

7. the connected components of the transition network are noise-driven

connected gene activation patterns used to define the hierarchical

differentiation tree in Figure 1, more precisely:

N toti-/multi-potent stem cells are the connected component of the

ATN involving all the possible genetic patterns, through

which the GRN continues to wander due to biological noise

and random fluctuations;

N according to the hypothesis that more differentiated cells are

characterized by a higher resistance to noise, we define

threshold-dependent Attractor Transition Network by pruning the

probabilities below distinct thresholds, hence neglecting the

transitions that are unlikely to occur in the lifetime of a cell:

higher thresholds correspond to a better resistance against

noise.

By performing this step recursively, we detect connected

components of patterns in the transition network according to

increasingly larger thresholds, termed Threshold Ergodic Sets (TESs)

in the NRBN jargon, which are hierarchically assigned to the sub-

types in the tree, according to the strategy defined in [30] (see

bottom of Figure 3).

Larger thresholds progressively determine smaller and more

fragmented ergodic sets, which correspond to more differentiated

cell types. These sets reflect the usual assumptions that less

Figure 3. Noise-induced stochastic differentiation. An example NRBN with 3 genes is shown, boolean functions are omitted. Two initial genetic
configurations yield two gene activation patterns: attractors A1 and A2 , whose noise-resistance is evaluated via flipping different nodes in different
phases and leading to an Attractors Transition Matrix. The emerging lineage commitment tree consists of 5 cell types (one for each Threshold Ergodic
Set for the 3 noise thresholds d1 , d2 and d3). The differentiation level corresponds to the noise-resistance, e.g., the toti-/multi-potent stem-alike cell
type (pink) roams among all possible gene activation patterns, the grey/yellow cell types are fully differentiated cells. This model of differentiation has
branches, i.e. a newborn pink cell has probability of differentiating in a green or yellow cell proportional to the properties of the attractors (see
Figure 4).
doi:10.1371/journal.pone.0097272.g003
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differentiated cells, e.g., stem cells, can roam in the wider portion

of the space of plausible genetic configurations for a cell (i.e., A1,

A2, A3 and A4 in Figure 3) and vice versa [71].

When all these steps are complete, the emerging hierarchy

between the cell types is matched against the crypt differentiation

tree of Figure 1, as sketched in Figure 3. If it matches, the

generated NRBN is a network whose emergent cellular types are

able to characterize the crypt lineage commitment tree and can be

used in the morphological simulation. If it does not match, the

NRBN is rejected and the process re-starts.

This strategy requires only a few a priori structural assumptions

on the underlying GRN, along the usual ensemble approach to

complex systems [31]. This makes sense since, in this case, it is

undoubtedly difficult and hazardous to conjecture a specific

human GRN. Instead, we aim at studying the general emergent

properties of a class of networks and relating them to the crypt

dynamics. In this respect, we generate NRBNs satisfying the

structural constraints given by the current biological knowledge of

real GRNs and select the suitable ones on the basis of their

emergent dynamical behavior (see the Results section). Notice

that, in line with the fact that the human GRN is unique, we

should not expect to find many ‘‘suitable’’ networks.

A multiscale link between GRNs and the morphology of
the crypt

Each cell on the spatial model incorporates a specific GRN,

which is characterized by specific gene activation patterns, related

to the degree of differentiation. Three major cellular processes are

then ruled by the internal NRBN dynamics, thus providing the

link between GRNs and the morphological model: (i) the length of

the cell cycle, proportional to the weighted length of the gene

activation patterns of each specific cell type, (ii) the cell growth

rate, assumed to be linear in time, and (iii) the differentiation

process, as explained in the previous section. We remark that,

without accounting explicitly for GRNs, (i) and (iii) could not be

emergent properties but should be assumed.

For clarity, in Figure 4 we represent the multiscale link and its

effect on a growing cell.

Cell cycle length and time-scales conversion. Ergodic sets

in the terminology of [30] are analogous to ergodic discrete-time

Markov Chains, which are known to possess a unique computable

stationary probability p (see File S1). We exploit this to evaluate

the probability that a cell will be in a certain genetic activation

pattern, in the long run. By this, we can infer a measure of the

average time needed to reach a stable GRN configuration, thus

estimating the cell cycle length (Figure 4, left).

In formulas, if p(a) is the stationary probability of a pattern a,

we define the length ‘t of the cell cycle for a cell of type t as

‘t~
X

a

DaDp(a) ð5Þ

where DaD is the number of genetic configurations of the pattern a

(i.e. number of states of the attractor), which ranges over the set of

patterns (i.e. attractors) belonging to the considered ergodic set.

The length of the cell cycle is then an emergent property of the

NRBN dynamics, thus a conversion between the involved time-

scales is required; this is, to the best of our knowledge, a novel

result. We link the internal time-scale (i.e., the NRBN steps) to the

external one (i.e., the MonteCarlo steps) by considering that (i) 10

MonteCarlo steps correspond to 1 hour of biological time,

according to [17], and that (ii) the average length of a cell cycle

Figure 4. Multiscale link. Example representation of the multiscale link for three distinct cell types A (pink), B (blue) and C (yellow), belonging to
the shown lineage tree. A specific Treshold Ergodic Set is associated to each cell type. The length of each attractor composing the TES is given by the
size of the different circles, whereas the stationary distribution is represented by the red bars. The length of the cell cycles is then computed with Eq.
5. A cell cycle for a cell of type A is shown in the upper row: the newborn cell starts with an initial area of 14 pixels and doubles its area in 12 hours. At
the end of its cycle it undergoes mitosis and differentiates stochastically. The stationary probabilities suggest that most likely daughter cells will be of
type B, rather than C. In the two scenarios the newborn cells will have different cell cycle length and division pace, and will lead to different
differentiation fates. This shows how the GRN dynamics affects the tissue-level cell dynamics.
doi:10.1371/journal.pone.0097272.g004
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is in between 12 and 17 hours (we here arbitrarily choose 150

MonteCarlo steps, namely 15 hours, as a reasonable value to be

used in the conversion) (ibidem). Thus, since the natural unit for ‘t
is the NRBN step, we have the following conversion:

1 NRBN step~
150

‘̂‘t
MCSs, ð6Þ

where ‘̂‘t is the average cell cycle length of all the cell types of the

NRBN. In this way, the relative difference in the lengths of the cell

cycles accounts for the difference in the replication pace of the

distinct cell types, as a consequence of the emergent dynamics of

the GRN. So, for instance, if a cell has only two cell types of

length, respectively, 2 and 10, the former type will require

2:150=6~50MCSs to complete the cell cycle, whereas the latter

will require 10:150=6~250MCSs.

Cell size dynamics. As we stated above, each cell of type t

grows towards a target area A(t), and newborn cells have assigned

area A(t)=2 so they need to double their size before performing

mitosis (Figure 4, top). To spontaneously drive a cell to double its

size we make the target area to be time-dependent on the time-

scale of the internal GRN, denoted A(t,t). As if it was mechanically

isolated, the time-dependent area grows linearly when the cycle

starts at some time t0, that is

A(t,t)~
A(t)=2, if t~t0,

A(t,t{1)zmRound A(t)
‘t

h i
otherwise:

(
ð7Þ

Here we discriminate among proliferative (m~1) and non-

dividing (m~0) cells; with reference to the tree in Figure 1, non-

dividing cells are paneth, goblet, enteroendocrine and enterocyte.

Also, Round denotes the nearest-integer function. By introducing

this time-dependent area we refine the constraint area term of

Equation (3) to be DC(c)D{A(t,t), where t is time passed since the

beginning of the cell cycle for cell c.

Cell division and differentiation dynamics. As long as the

CPM dynamics goes on, so does the underlying GRN dynamics

within each cell, in terms of dynamical evolution of the gene

activation patterns. We hypothesize the existence of a certain level

of biological noise and random fluctuations, which induces a

number of gene mutations: the mutation rate m defines the

frequency of single flips of genes (as when computing the ergodic

sets) and is derived from experimental evidences [80]. In this way,

cells that are characterized by TESs with more than one attractor

may wander through the distinct gene activation patterns, by

means of random mutations.

When a cell concludes in ‘t NRBN time-steps its cycle and

reaches its target size A(t) on the CPM, it instantaneously divides

and differentiates (Figure 4, right).

As explained in the previous section, once cells differentiate they

increase their noise resistance threshold [30]. The differentiation

branch depends on the dynamics of the underlying GRN, as

previously discussed and, in particular on the specific gene

activation pattern in which the cell is located when the cell

divides. Notice that stem cells perform asymmetric cell division to

preserve their niche, i.e., only one daughter cell differentiates, the

other one remains a stem cell [1].

Comparison with Wong’s differentiation model
The cell differentiation process modeled here profoundly differs

from the one in [17]. First, we here consider a branching (lineage)

tree in which the fate decisions of newborn cells depend on a

random process (see Figure 3). Also, our random process is ruled

by the level of biological noise and by the constraints emerging

from the dynamical properties of the gene activation patterns such

as their reachability and robustness against perturbations (see

Figure 4). Conversely, in [17] there is no branching, i.e. a parent

cell can generate only one type of descendent and, hence, the fate

decisions are deterministic for every newborn cell.

Second, in our model Paneth descend from stem cells (via

asymmetric differentiation), while in [17] Paneth cells are

independent of the lineage tree. More in general, the two

approaches consider different cell types.

Third, as a consequence of the multiscale link required by our

model, we reduce the model parameters by letting emerge, from

the internal dynamics, many properties of cells such as cycle length

and growth rate, which are prefixed in [17] (see Figure 4). As a

whole, less a priori assumptions are considered in our model, and

thus our model is more general and flexible. In this respect, the

differentiation process presented in [17] is a very particular (and

constrained) case of the model hereby introduced. This has also

repercussions on the interpretation of the results (see the Results

section).

Fourth, we clarify that solely the explicit presence of a gene

networks allows to investigate the role of perturbations on the

overall dynamical behavior, thus making our model amenable at

different analysis than those in [17], with particular regard to the

issue of cancer development. Similarly, signaling pathways, as

those driving cell adhesion properties (which are now implicitly

included in the model through the cell adhesion matrix), may be

explicitly inserted in the model by introducing, for instance,

chemical gradients influencing the activity of certain genes of the

GRN and linking the activity of those genes to the adhesion

properties of the cells. This will eventually allow to study the

influence of alterations hitting these pathways.

Finally, notice that our approach is general and might be

applied to lower-level representations of GRN, especially if entities

(genes, proteins, RNAs, etc.), connections (regulation and signaling

pathways) and functions (interaction rules) of a specific organism

were indeed available. In fact, the theory of Threshold Ergodic

Sets could be used in different settings to determine the emergent

lineage tree of, for instance, quantitative models. Clearly, the

detection of the relevant realistic entities and interactions involved in

crypts is a goal deserving its own research, and out of our scope in

this work. Nonetheless, our multiscale approach sets the basis for a

novel view on how the dynamical properties of GRNs may be

related to the phenotypic properties of cells and tissues, possibly

shedding a light on their complex interaction.

Results

Simulations of the model were performed by a ad-hoc Java

implementation developed by our research group. The search of

the NRBN matching the tree in Figure 1 was performed by using

G STOD , a C [81] plugin to generate and

Most of the parameters of the model are set on the basis of

experimental data on mice and on the general biological knowledge

concerning intestinal crypts, whereas the remaining ones are

estimated to fit the overall dynamics, with regard to both the

spatial and the GRN models. Tables 1 and 2 show the parameters

used in the simulations.
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We specify that some of the analyses that will be presented

reproduce some of the results shown in [17], in order to compare

the distinct approaches to the modeling of crypts.

Properties of the suitable GRNs
As mentioned above, the number of NRBNs with emergent

behavior coherent with the crypt lineage commitment tree must be

low. Further, no constructive approach is known to determine

such networks, and a generative approach is then required.

We here limited our search to NRBNs with certain structural

features (summarized in Table 1) known to be plausible for real

GRNs. In particular, we used scale-free topologies [83], i.e. NRBNS

where the fraction of genes with k outgoing connections follows

k{c for large k. Here we used c&2:3 estimated to be a realistic

value for many biological networks, including GRNs [84]. We

designed networks with 100 nodes, a number that is reasonably in

line with the order magnitude of high-confidence cancer driver

genes recently identified in various tumor types, among which

colorectal cancer [85]. Even though in the current analysis we

describe the normal functioning of crypt, this choice will allow to

investigate the relation between alterations at the GRN level and

the emergence of aberrant structures and phenomena, also

permitting to include in the model portions of real architectures

involving genes related to cancer development. Finally, concerning

boolean functions, we used biologically plausible canalizing functions

[86,87].

Our results confirm that finding suitable NRBNs is indeed hard:

only 7 out of 2|104 (i.e. &0:04%) distinctly generated networks

are amenable at use. This confirms that even rather small

networks can display a broad range of dynamical behaviors, thus

finding the correct emerging lineage commitment tree is hard.

This outcome also points to a strong Darwinian selection process

at the base of the emergence and evolution of the current human

GRNs. We tried to statistically discriminate among these NRBNs

by evaluating some measures commonly used in network analysis

(see, e.g., [83]): the number of emerging activation patterns (i.e.

the number of attractors), the average number of genetic

configurations they contain (i.e. the length of the attractors), the

clustering coefficient of the network, its diameter, the average path

length and the average bias of the boolean functions. Nonetheless,

even if the number of suitable NRBNs is too limited to draw

definitive conclusions, the comparison hints at the lack of

appreciable differences among the suitable and unsuitable

networks (not shown here). Further, this suggests that identifying

some GRN parameters to improve this generative approach is

indeed hard, as expected by considering that real GRNs are the

result of a Darwinian selection process which selected the fittest

networks in terms of robustness, evolvability and adaptability to

dynamic environmental conditions.

As explained in the previous sections, the emergent properties of

the GRN are related to some key features of the cell cycle and

differentiation processes at the spatial level. In particular, in

Table 3 we show the cell cycle lengths, as computed with equation

(5) for the 7 suitable GRNs actually used in the simulations.

It is possible to notice that the length of the cell cycle ranges

from 1 to 20 NRBN time steps in different nets and that the

variance can be dramatically different among nets, ranging from

the case of networks in which all the cell types have the same cell

cycle length (i.e. same replication pace), to the case of very

different lengths (i.e. very different replication paces). By looking at

the average values one can see that most of the cell types have a

similar cell cycle length, around 7. Considering that in simulations

we set 1 NRBN step ~150=‘̂‘t MCSs, we can estimate that on

average 21 MCS, i.e. around 2 hours, are needed in order to
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switch among the configurations of a gene activation patterns (i.e.

from one state to the following in the attractor). Accordingly, the

average cell cycle lasts around 15 hours, which is set to be in

accordance with biological knowledge (see the Biological

background section). Surprisingly, cell types that are closer in

the tree (i.e. EE and E ) display almost identical cell cycle length

with every network, pointing at an interesting property of such a

system.

Distinct other properties of the gene activation patterns of the

suitable networks are reported in File S1. We here remark that a

rather large variability in the robustness to perturbations of the

patterns is observed in the different cases, ranging from patterns

that are almost imperturbable (99% of the single-flip perturbations

end up in the same pattern) to ones that allow switches to other

attractors in 30% of the cases after single flip perturbations. This

result hints at interesting research perspectives related to the

possible advantage for GRN of being sufficiently robust to

perturbation, while not being too ordered. Historically, it has

been hypothesized that natural evolution might favor biological

systems that operate in the so-called critical dynamical regime, i.e.

the phase state between the ordered and disordered behaviors, as

defined in complex systems research [31], and this because of the

optimal trade-off between robustness and evolvability. In partic-

ular it was suggested that gene networks may operate in, or close

to, such a critical state, also according to some experimental

evidences, provided for instance in [31,34,36]. In our case, the

analysis of the stationary distributions shows very different

scenarios, ranging from the case in which all the patterns are

almost equally probable, to that of networks in which some of the

patterns are very unlikely (e.g. less than 5%). Also in this case, it

would be interesting to match these results against experimental

evidences, to investigate the role of the temporal permanence

within the same pattern and of the transitions among them.

Cell sorting and overall homeostasis
The major goal of this work is to determine under which

conditions the correct functioning of intestinal crypts is ensured

and maintained, with particular reference to cell sorting, coordinate

migration and general homeostasis.

To this end, we analyzed the crypt dynamics via CPM

simulation, by using the suitable NRBNs. Please refer to Tables 1

and 2 for the parameters of the CPM used in the simulations. To

account for the role of the initial displacement of cells within the

crypt we tested 4 distinct configurations on a 100|150 pixels

lattice, according to the initial level of ‘‘order’’ (in order to

represent the spatial properties of the cells with an adequate

resolution, we set 1 pixel side to 1mm, so to have crypts of size

100|150 mm, which is in agreement with experimental evidences

[6,19]). A disorder parameter, n discriminates the first three

configurations: n~0 denotes a configuration in which the cells

are perfectly sorted, n~0:1 (resp. n~0:25) a configuration in

which 10% (resp. 25%) of the cells are randomly positioned on the

lattice. The fourth initial condition is composed only of stem cells,

positioned at the bottom of the crypt, while the remaining lattice is

empty. The latter configuration aims at investigating in-silico the

dynamics of isolated stem cell progeny populations, as classically

done via in-vitro experiments [88].

In all the initial conditions cells are assigned a square shape, in

the first three cases 560 cells are displayed with the following

cellular proportions: 60 stem cells, 60 Paneth, 240 TA-1, 120 TA-

2 and 80 differentiated cells. In the fourth case 120 stem cells are

considered. Clearly, the initial squared shape of the cells is a strong

simplification, which however does not affect our analysis, because

the energy minimization-driven dynamics leads the cells to more

physically plausible shapes in a few MCSs. The initial conditions

are shown in Figures 5 and 6, together with some sampled crypts

after 2000 MCS (200h) with 50 final annealing steps. It is known

that, by performing simulations at nonzero temperature, cells are

not required to be connected and cell boundaries can crumple,

especially when the temperature is comparable to the boundary

energy. Glazier and Graner suggest to use a certain number of

zero-temperature annealing steps to remove these defects, even if

this procedure evolves the spatial pattern as well [26]. Nonetheless,

we here remark that this kind of lattice artifacts are not relevant to

our analysis, which is based on the statistical analysis of quantitive

measures at a coarser grain. For each of the 7 suitable GRNs we

performed 10 independent CPM simulation runs, in order to have

a relevant statistics. We remark that the values of J are based on

Figure 5. Crypt homeostasis - 1. Initial lattice configurations for n~0 (A) and n~0:1 (B) and corresponding lattice after simulating 200 hours of
crypt evolution, for a single simulation. The overall system energy is the average of 70 independent simulations. Crypt layout was drawn by using the
visualization capabilities of COMPUCELL3D [107].
doi:10.1371/journal.pone.0097272.g005
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experimental results showing that a high activation level of the

Eph receptor reduces cell adhesion and vice versa [65,66] (see

Table 2). Only the relative magnitudes of cell adhesion energies

are needed to our modeling approach.

By these figures it becomes clear that the final crypt ordering is

dependent of the initial ordering. In particular, for very low-noise

configurations the correct crypt behavior always emerges.

Differently, in the case for n~0:25 deeply different scenarios are

displayed at each simulation. In some cases, the correct cell

stratification is achieved, while in others some distinct geometrical

shapes, e.g., encapsulations and invaginations, are observed, and

the overall homeostasis is not achieved. In the fourth initial

configuration (i.e. only stems), it seems unlikely that the crypt may

reach a correct stratification. In the next sections we analyze these

scenarios in detail by evaluating specific statistics.

Notice that the overall system energy (i.e. the Hamiltonian H),

whose variation in time is shown in the figure, asymptotically

reaches a minimum value which ensures an optimal (dynamical)

configuration of the cells on the lattice. In the specific case of stem

cells (Figure 6), one can observe a peak in the Hamiltionian after

around 1000 MCS. This phenomenon is due to the expected

progressive appearance of large populations of distinct differenti-

ated types, as opposite to the relatively more favored initial

configuration, in which only cells of a unique type (i.e. stem) are

present in the system.

One of the most important results of these (and the following)

analyses is to show that in our model the stochastic differentiation

at the GRN level is itself sufficient to ensure the normal activity of

the crypt, in terms of overall spatial dynamics. This result is even

more surprising by considering that, as shown in the previous

section, the lengths of the cell cycles are indeed different in the

distinct suitable networks used in the simulations. Hence, it is

reasonable to hypothesize the existence of a relatively broad region

of the gene activation space in which the correct functioning of the

crypt is maintained, despite the differences in the replication pace

of different cell types, as long as a suitable differentiation tree is

maintained to ensure the correct cell turnover. Besides, with this

approach no explicit signaling pathways are considered, which

instead result from the interplay between the GRN and the CPM

features. Interesting research perspectives derive from this

outcome, with particular regard to the configuration of the

activation patterns related to the emergence of aberrant structures.

Figure 6. Crypt homeostasis - 2. Initial lattice configurations for n~0:25 (A) and the case of only stem cells (B), and corresponding lattice after
simulating 200 hours of crypt evolution, for a single simulation. The overall system energy is the average of 70 independent simulations.
doi:10.1371/journal.pone.0097272.g006

A Multiscale Model of Crypt Dynamics

PLOS ONE | www.plosone.org 12 May 2014 | Volume 9 | Issue 5 | e97272



Cell population dynamics
The variation in time of the number of cells in each population is

shown in Figures 7 and 8 for the four distinct initial configurations.

Despite some differences, in all the cases an asymptotic stable

proportion is reached, after a transient in which the crypts tend to

adjust. In particular, a proportion between the cell types is

maintained in all the cases, predicting quantities that are in

agreement with what is supposed to be the general proportion of

cell populations in real crypts, i.e. around 300 [1,17,19,89]. More

in detail, the average final configuration involves cell population in

these proportions: Stem cells 2.5%, TA1 2.5%, TA2-A 2%, TA2-

B 2%, Paneth 27%, Goblet 22%, Enterocite 22% and Enter-

oendocrine 20%. Surprisingly, this pseudo-equilibrium is reached

regardless of the different initial conditions, suggesting that the

GRN-driven crypt dynamics is able to ensure a ‘‘correct’’ cellular

proportion. The only clear difference predicted by the initial

conditions is that, in the case of a crypt with only stem cells, the

system appears to have a longer transient.

Figure 7. Dynamics of the cellular populations - 1. Number of cells for each cellular population (cumulative), number of newborn, dead and
alive cells and maximum, minimum and average cell size, in time. Notice the prediction of 300 cells, regardless of the two initial conditions n~0 (A)
and n~0:1 (B). The length of the transient is similar, in both cases.
doi:10.1371/journal.pone.0097272.g007

Figure 8. Dynamics of the cellular populations - 2. Number of cells for each cellular population (cumulative), number of newborn, dead and
alive cells and maximum, minimum and average cell size, in time. Notice the prediction of 300 cells, regardless of the two initial conditions n~0:25
(C) and the case with only stem cells (D), with a longer transient.
doi:10.1371/journal.pone.0097272.g008
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In the same figures we also show the number of newborn and dead

cells (either due to apoptosis or to the expulsion in the intestinal

lumen). Even these two quantities tend to a dynamical equilibrium

for all the distinct initial conditions, hinting at an intrinsic

capability of the system to ensure a correct dynamical turnover or, in

other words, the renewal of the tissue. The quantities shown in the

figures agree with the phenomena supposed to characterize real

crypts (see [17] and references therein).

Finally, the maximum, minimum and average size of each cell are

shown. We remark that the initial cells are newborn, so their size is

half of their target area when mature, i.e. just before undergoing

mitosis. This is the reason why all the initial values of this statistics,

particularly in the average case, are much lower than the

asymptotic ones which are, in any case, stable. One can see that

the average cell size is very close to the maximum, suggesting that

the crypt mostly contains ‘‘adult’’ cells. Also, being the variance

relatively small, this suggests that cells have similar sizes, on the

Figure 9. Cell migration. Relation between the distance from the bottom of the crypt (in pixels, i.e. mm) and the maximum (A) and average (B)
vertical velocity of the center of mass of all cells. This is averaged for all simulations, at all the time steps. In (C) we show the average center of mass
for stem, Goblet, Paneth, TA2-A, averaged on all simulations and sampled every 20 MCS.
doi:10.1371/journal.pone.0097272.g009

Figure 10. Spatial statistics for crypt stratification and coordinate migration. Time-variation of the Moran Index, MI (eq. 10) (A) and of the
Pearson Coefficient, PC (eq. 11) (B). In (D) the Spatial Correlation C(r) (eq. 8) with the relative standard deviation (E) is displayed, for the four initial
conditions. A crypt can be considered well stratified if its MI is high (it is indeed stratified), and its PC is high (it has the cellular populations in the
correct order), according to a template (C).
doi:10.1371/journal.pone.0097272.g010
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average. Finally, the maximum size has an upper bound

proportional to the pre-mitotic size, which is only rarely exceeded

due to random fluctuations.

We here remark that these results imply stronger conclusions

than those shown in [17], especially considering our more general

differentiation model. In fact, the size of the cell populations and

their proportion is not granted by the differentiation tree, and are

thus emerging as a result of a fate decision stochastic process. In

particular, the newborn cell type probability, the length of the cell

cycle and the rate of growth and duplication, which emerge from

the properties of the underlying GRN, can be very different

among cell types (e.g., see Figure 4). Therefore, it is noteworthy

that the cell population proportion is stable and ‘‘correct’’,

together with other key homeostasis measures, for different TESs

landscapes. This result could suggest that the homeostasis of this

system, as modeled and measured with the current analyses, is

relatively insensitive to the variation of certain key cellular

properties related to the stochastic differentiation process.

Stem cells population dynamics. We briefly comment on

the population dynamics of stem cells. As above recalled, it is

currently hypothesized that mammalian intestinal stem cells are

firmly located at the base of the crypt, as suggested by analyzing

the Lgr5 expression marker [90]. However, in a very recent study

Ritsma et al. tracked in-vivo the short-term spatial dynamics of

intestinal stem cells by using continuous intravital imaging of Lgr5-

Confetti mice, reporting of stem cells being expelled from the niche

[91]. In particular, it was discovered that certain stem cells are

sometimes passively displaced from the upper boundary of the

niche in the region of transit amplifying cells, while not loosing

stemness and not entering the transit amplifying stage (Figure 6 in

[91]). The authors also suggested that this peculiar spatial

dynamics may be due to the competition for space derived from

the cell proliferation dynamics, which would lead some stem cells

to be displaced from the niche independently of their division

history. In other words, some stem cells may be characterized by a

survival advantage only due to their specific position in the niche,

while other may have a bias towards loss.

This ‘‘expulsion’’ phenomenon is observable in our model. In

fact, despite the (constrained) asymmetrical division (i.e. the

invariant asymmetry division mode), the number of stem cells actually

decreases in time (Figure 7 and 8), hinting at an expulsion process

and at a successive migration of some stem cells in the proliferative

and differentiated regions, previous to their dispersion into the

lumen. Notice that the experiments in [91], which focus on the

short-term dynamics of this phenomenon, do not show the final

shed of the stem cells in the lumen. It can be hence hypothesized

that in our model the competition for space and resources, which

result from the interplay between the energetic constraints at the

spatial level and the GRN-driven cell cycle and proliferation

dynamics, drives stochastically the system towards a configuration

in which some stem cells are maintained in the niche, while others

are expelled. In all the analyzed configurations a progressive

reduction in the number of stem cells is observed, with a certain

variance. We remark that this phenomenon is emergent in our

model.

From another perspective, the asymmetrical division of stem

cells, as modeled here, is insufficient to ensure the maintenance of

the stem cell niche and population, which is profoundly affected by

this multi-level interplay. In particular, the fact that all the tested

configurations tend towards a stable and similar plateau might

suggest that the system is able to self-organize towards an

‘‘optimal’’ proportion of cell populations and, accordingly, of

stem cells. All these considerations affect also the clonal dynamics

of crypts, as we discuss below.

Coordinate migration
From experimental results it is known that cells at the bottom of

the crypt move slower toward the top than cells positioned in the

upper portion [17,92]. By looking at Figure 9 we can notice that

there is a correlation between the distance from the bottom of the

crypt and the average vertical velocity of cells. Only the vertical

component of the velocity is shown there, the positive values being

associated to the direction toward the top of the crypt. We do not

show the minimum vertical velocity which is 0, for some cells and

we also remark that the average values do not take into account

the fact that some cell populations (e.g. stem cells) move much less

than others (e.g. differentiated cell), as required. Recalling that 1

pixel side, p~1mm, the average vertical velocity of cells ranges

Figure 11. Survival probability of stem cells and clones. For each of the initial conditions in Figure 5 and 6 and for all the simulations we
evaluate the average and the standard deviation of the survival probability of stem cells and clones, as the ratio, over time, of alive stem cells and
clones over the initial number of stem cells.
doi:10.1371/journal.pone.0097272.g011
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from 0 pixel/MCS at the bottom of the crypt to 0:25 pixel/MCS

at the top, that is at most 2:5 pixel/hour. Hence, we can estimate

the average time needed for a random descendent of a stem cell

(and originating in the stem cell niche), to complete the

(progressively faster) migration toward the lumen. It turns out

that around 650 MCS, i.e. 65 hours, around 3 days, are needed and

this result is in perfect agreement with experimental data [1,93].

We can also notice that the maximum observed vertical velocity

ranges from around 0 at the bottom of the crypt to around 8 pixel/

MCS at its top, with regard to all the configurations. This outcome

indicates that some cells can move dramatically faster than other

in the overall spacial displacement, due to local energy configu-

rations.

In order to highlight the relative positioning of cell populations

during a simulation, in Figure 9 one can see the movement of the

average center of mass of the cells belonging to four distinct types,

i.e. stem, Paneth, Goblet and TA2-B, during the whole simulation.

A general correct positioning of the populations is maintained with

all the distinct initial configuration, yet as long as the level of

disorder increases the displacement becomes less precise, as for the

case of only stem cells. Notice also that the average position of the

stem cell population, approximately at the bottom of the crypt,

suggests that the observed process of expulsion of certain stem cells

from the niche (see above) is much faster than their residence time.

In general, a coordinate migration involving the whole crypt is

proven to be an emergent property of the GRN-driven dynamics.

This and the subsequent analyses prove that cells translocate in

a coordinate fashion towards the top of the crypt, as observed in-

vivo [93].

Quantitative measures of spatial ordering
Experimental evidences suggest that epithelial cells migrate in

coordination as sheets in culture [94]. Along the lines of [17] we

determine whether our cells move coordinately by using the

following spatial correlation index [94]:

C(r)~
1

Nr

Xr~Dr1{r2 D

c1,c2

v1
!:v2

!

Dv1
!DDv2

!D
: ð8Þ

Figure 12. Stem cells descendants. Empirical discrete probability distributions of the number of stem cell descendants (alive and dead) assessed at
the final simulation time: t~2050MCS. These heatmaps consider all the simulations and all the initial conditions: (A) n~0, (B) n~0:25, (C) only stems
and (D) n~0:1. (E) is the histogram for the 28th simulation with n~0:1. (F) shows the alive progeny of a stem cells with 85 descendants at the instants
t~f0,100,200,400,800,1600g, colored according to the cell types.
doi:10.1371/journal.pone.0097272.g012
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Here r is the distance between the center of masses of two

generic cells c1 and c2, v! is their cell velocity and Nr is the overall

number of cell pairs with distance equal to r. If a inverse

reciprocity relation holds between C(r) and r this implies that

closer cells display a more coordinate movement than distant ones.

This is what we actually observe in Figure 10: the movement of

the cells is highly correlated, unless for very distant cells, which

also show large fluctuations. For the stem cells case we observe a

slight decrease in the average correlation. This outcome closely

resembles the one shown in [17], confirming that the coordinated

cellular movement is maintained when also a GRN is used to drive

the stochastic differentiation dynamics.

In order to automatize the evaluation of the general spatial order

of crypts, we propose to use the Moran Index (MI, [95]) and the

Pearson’s correlation coefficient (PC) [96]. These measures will allow to

understand if the cell populations form groups, and if the correct

stratification is achieved. We recall their definition here, extended

straightforwardly to matrices (originally, these measures are

defined for vectors); the PC r for two matrices x and y is a

function of their (co)variances

r(x,y)~

P
(xi,j{x̂x)(yi,j{ŷy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(xi,j{x̂x)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(yi,j{ŷy)2
q , ð9Þ

where xi,j is a component of x, and x̂x is its average. The PC ranges

from {1 (inversely correlated) to 1 (correlated) and at 0 there is no

correlation between x and y.

The PC is also used in the MI, which is used to determine if

lattice positions are correlated, that is if cells are likely to form

strains of the same type. To define the MI we associate, to each

cellular type t, a unique integer value (so 8 values in total), and we

evaluate, for each position, the average of all its neighbor cellular

types. In formulas, for a position l [ L we evaluate

l~
1

DN D

X

w[N

tw

where N is the set of neighbors of l in L (we used the 1st order

Von Neumann neighborhood, i.e. r~1), and tw is the integer

associated to the cell type in w. This formula yields a new lattice

LN to compute the MI as

m(L)~r(L,LN ): ð10Þ

Notice that {1ƒmƒ1 with the usual meaning, and that the MI

is equivalent for two symmetrical lattices. Thus, despite being a

good measure for aggregation, the MI itself does not distinguish if

a crypt is stratified with the correct bottom-up ordering, or, for

instance, if it reversed. We can anyway use a template lattice T , i.e. a

lattice were the cellular stratification is made explicit, to asses, the

PC between a lattice and the template, that is

Figure 13. Clonal expansion, detail of two simulations. Variation of the cumulative clone density mi=N in time for the cases: (A) simulation 28
with n~0:1, (B) simulation 1 with only stem cells. The relative proportion of cells belonging to each clone over the total number of cells in the crypt
at each time is shown. The blue gradient is related to different classes, accounting for the ratio of alive cells belonging to each clone at the end of the
simulation. The red crosses mark the clone with the largest number of members along a simulation.
doi:10.1371/journal.pone.0097272.g013
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l(L)~r(L,T): ð11Þ

By combining these measures we can state that a crypt is well

stratified if it has high m(L) (i.e. it has high MI thus it is stratified),

and it has high l(L) (i.e. it is highly correlated to the template, thus

it has the cellular populations correctly stratified).

All these spatial measures are plot in Figure 10. Initially, the MI

(averaged over all the simulations) is clearly dependent on the

lattice initial condition. After a transient where the stratification

level decreases, the MI asymptotically approaches a high value

(still proportionally to the initial level of noise), in all but the only-

stem-cells case, where the MI gets highly dispersed. This suggests

that the stratification is generally maintained, with distinct GRNs

and initial conditions, in all cases but when only stem cells are

present, a clearly particular scenario.

We compared these statistics with the PC for the corresponding

simulations and the template lattice shown in Figure 10. The

template lattice considers the proportion among cell populations

that is derived from the average final configuration of the correctly

stratified lattices (see above). The variation of the PC in time seems

to be dependent on the initial condition, thus giving further

information besides the ‘‘general’’ degree of order depicted by the

MI. The PC suggests an inverse proportionality between the initial

noise and its asymptotic value, thus hinting at the importance of

the initial crypt morphology for its development in the preliminary

stages. As for the MI, the lowest PC is for the lattice with only stem

cells since we do not impose any constraint on the spatial

development of the crypt besides upper/lower bounds. Movement

direction and expansion of the cell population emerges from the

dynamics induced by the underlying GRN.

Clonal expansion
To investigate the process of clonal expansion in crypts we can

track the descendant of each stem cell. This will help to determine,

in future works, whether any relevant difference is detectable with

respect to the case of cancer evolution. It is in fact known that

tumors develop through a series of clonal expansions, in which the

most favorable clonal population survives and begins to dominate,

in a ‘‘survival of the fittest’’ Darwinian selection scenario [97].

As far as the normal tissue development is concerned, it was

proposed that stem cells may be routinely lost and replaced

through a stochastic process [98]. Among various hypotheses, it

was suggested that such a process may be driven by noisy gene

expression, leading to cell-to-cell variability in response to

environmental changes [99]. Besides, distinct experimental

evidences suggested that also developing tissues are ruled by

transcriptional noise to generate stochastic fate outcomes [100].

Our model accounts for this specific phenomenon by relating

noise-resistance, stochastic gene activation patterns and, accord-

ingly, the cell cycle and the cell fate decision processes.

In our model we consider asymmetric stem cell division (i.e. the

invariant asymmetry mode) as observed, e.g., in hematopoietic cells

[101,102]. However, distinct differentiation modes could be

included in the model as well: for instance, the population asymmetry

hypothesis (either cell-autonomous or external-induced) states that

stem cells descendants might either differentiate or remain in a

stem state, in a process coordinated by the requirements of the

tissue [98,103]. Population asymmetry is then characterized by

neutral competition among the clones.

The results presented in this section allow to investigate the

clonal expansion phenomenon in the development of healthy

crypts when invariant asymmetry is considered. Every stem cell

and its descendants constitute a clone, which is alive if at least one of

its constituting cells is alive. Notice that whenever a large number

of proliferative and differentiated cells is present in the initial

Figure 14. Clonal drift and scaling of the clone size distribution. On the left panels, we estimate at the instants t~f0,500,1000,1500,2000g
the number of cells constituting each alive clone for: sim 28, n~0:1, in Panels A and sim 1, Only stem case, in Panels B. On the right panels, we plot
the proportion of alive clones for which the ratio between their size and the average clone size: n=average(n) is larger than f0,0:25,0:5,:::,3g, at the
instants t~f0,500,1000,1500,2000g. Also we show how the distributions scale with respect to e{x.
doi:10.1371/journal.pone.0097272.g014
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configuration of the system (see Figure 5 and 6) we consider solely

the clones constituted from the stem cells present in the initial

configuration and their future descendants. This because it is not

possible to associate non-stem cells to such clones in a non-

arbitrary way.

Stem cell and clone survival probabilities. As discussed

above, some stem cells and their clones are characterized by a

survival advantage, as shown in Figure 2 of [91] where the survival

probability of clones decreases in time, whereas the average clone

size increases. These results are differently reproduced in our

model according to its initial configuration.

In Figure 11, in all the configurations, the variation in the

survival probability of stem cells and clones tend to a similar

plateau with around 15{20% of the initial stem cells. This is due

to the aforementioned phenomenon of progressive expulsion of

some stem cells from the niche, in a scenario of competition for

limited spatial resources. In general, this hints to the existence of

an optimal number of stem cells ensuring the correct functioning

of the system, regardless of the initial configurations, which are

characterized by different transients. In a future study we plan to

correlate, in an automated hypothesis-testing scenario, the

predicted plateau value (i.e. number of stem-cells) to statistical

measures of crypt homeostasis, possibly estimating optimal

‘‘proportions’’ of stem cells.

The survival probability of clones shows an analogous overall

behaviour, yet with much higher magnitudes, displaying average

final configurations (at 2050MCS, around 200 hours) with a

relatively high fraction of alive clones, around 60{70% for the

normal configurations and 40% for the only stem case. This latter

result suggest that in the only stem case a lower number of clones

colonizes the crypt (see the conclusions below). A possible

explanation of the difference between the survival probability of

stem cells and the relative clones can be given by analyzing the

clone size dynamics.

Clone size dynamics. We estimate an upper bound to the

number of cells belonging to a clone generated by a stem cell. Let

us assume a hypothetical scenario with (i) no spatial competition

and unlimited available space, (ii) a non-skewed differentiation

tree with depth w and (iii) synchronized pace of division for all the

involved cells, the clone size a(k) after k§w cell cycles grows

approximately as:

a(k)~(k{w)2w{1
z

Xw

i~1

2i{1
z1 ð12Þ

where the first term accounts for fully differentiated cells and the

second for the others. In our model spatial competition and finite

space play a key role in the overall dynamics (see above), the tree

in Figure 1 is skewed because of the Paneth cells branch and the

pace of division is not synchronized, so a(k) is an approximate

upper bound for the clone size growth. Yet, it explains why

relatively large clones can be observed in a limited number of

division rounds. Therefore, the probability that all the cells

belonging to a clone are lost decreases as the size of a clone

increases, e.g. some cells of the largest clones can progress and

divide without being expelled into the lumen, and before entering

apoptosis. Conversely, certain stem cells can be sometimes

displaced from their niche, being progressively lost. Hence, the

fact that a fraction of clones survive their own stem cell explains

the differences in the trends of Figure 11.

In Figure 12 we show the distribution of the number of

descendants of each stem cell at the final simulation time, for each

simulation. This quantity represents the potential maximum size of a

clone in the case in which none of its cells are lost. Regardless of

the initial configuration, a few cells only display around 80{90

descendants, which is an approximate upper limit due to the

maximum possible division rounds in the selected simulation time.

Besides, because of the overall spatial dynamics, the total number

of descendants dramatically differs from the number of alive clone

cells. For example, one of the largest progenies is observed in

simulation 28, case n~0:1. Despite the progeny includes 88

descendants, the clone actually fails in colonizing the whole crypt

or even a significant proportion of it. In fact, at the end of the

simulation only around 15 cells out of the 88 total are alive, that is

only the 5% of the overall population (almost 300 cells, see

Figure 13). This phenomenon can be similarly observed in all the

simulations. However, we remark that a larger number of

descendants (on average) is predicted proportionally to the noise

in the initial configuration, thus hinting to the importance of a

correct stratification in maintaining the right pace of division in the

crypt.

We focused on two specific cases to highlight some interesting

and commonly observed behaviors. In Figure 13 we show the

(cumulative) variation mi=N of the clone density computed over

time where mi is the number of alive cells in the i-th clone and N is

the number of alive cells in the crypt at time t, for two initial

conditions. In Figure 14, as proposed in [98], we show for different

simulation instants the size of each alive clone (i.e. the clone drift)

and the cumulative clone size distribution, computed as the

proportion of alive clones for which the ratio between their size

and the average clone size is larger than a certain value. Panels A

in Figure 13 and 14 refer to the 28th simulation with n~0:1,

whereas Panels B refer to the 1st simulation with only stem cells in

the initial configuration.

In the former case we identify a relatively large number of

distinct clones (around 15) which share similar portions of the total

population, i.e. from 4% to 8%, and in an apparently stable trend.

Many clones actually get extinct during the simulation and a few

others remain small. Also, the most prolific clone (shown in

Figure 12 and 13) comprises of a low portion of the population, so

no clone appears to be dominating. The outcomes in Figure 14

suggest a progressive enlargement of the clone size distribution

resembling the experimental results on murine crypts shown in

[98]. This suggests that also the invariant asymmetry scenario, as

modeled with this multiscale approach, can actually describe the

clonal dynamics in intestinal crypt, providing an alternative

explanation to the population asymmetry hypothesis.

Nevertheless, this conclusion seems to be strongly dependent on

the initial crypt configuration. In fact, in Figure 13 panel B, a few

clones seem to start the colonization process of a crypt initially

constituted of only stem cells. In this case, a specific clone at the

end of the simulation already comprises of around the 13% of the

total cells, and appears to continue growing. Also, in this case the

number of alive clones is much higher, as if they were in a sort of

dormant phase, with the possibility of rising due to the stochasticity

of the process. In this setting the system seems to be far from

equilibrium and thus the possibility of a colonization by one or

more clones is plausible. This results are mirrored by the clonal

drift in Figure 14 and, mostly, by the cumulative probability of a

clone to be larger than the average clone size, which is well fit by

an exponential curve. Note that this result is rather common for

crypts starting with only stem cells, as indicated by the lower clone

survival probability for such an initial configuration, which hints at

a lower number of clones progressively colonizing the crypt.

On the basis of these results we draw the following conclusions.

Firstly, when crypts reach and maintain homeostasis, as we

evaluated in the previous sections, the clonal dynamics appears to
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be ‘‘balanced’’ and not affecting the overall behavior. This

conclusion is made stronger by considering that the clonal

dynamics appears to be in a (slow) transient phase: even if the

number and the size of the clones slowly changes, the overall

homeostasis is maintained due to the underlying multi-level

interplay.

Conversely, non-natural configurations of the crypt, as for

instance when only stem cells are present in the initial

configuration, can lead to both (i) the emergence of aberrant

structures, as seen in Figure 6 and (ii) the appearance of

dominating clones, in a complex interplay between the GRN

and the spatial dynamics that still has to be deciphered.

In this regard, we expect that cumulative mutations hitting the

underlying GRN of healthy crypts may lead to the appearance of

fast replicant dominating clones, which may eventually colonize

the whole crypt or a relevant part of it.

Conclusions and Further Development

In this paper we introduced a novel multiscale model of

intestinal crypt dynamics, by combining a well known in-lattice

model from statistical physics to a boolean GRN model from

complex systems theory. This model relies on a few assumptions

only, thus reducing the number of its parameters, and the

multiscale link between the crypt morphology and its genotype

results from the emergent properties of the underlying GRN.

The model allows to efficiently investigate many dynamical

properties of crypts such as, e.g., cell sorting, coordinate migration,

stem cell niche correct positioning and clonal expansion. On the

overall, the model suggests that the fundamental process of

stochastic differentiation may be sufficient to drive the overall

crypt to homeostasis, under certain crypt configurations. Our

approach allows also to make precise quantitative inferences that,

when possible, were matched to the current biological knowledge.

The model itself was conceived to be flexible and modular, thus

all of its components will be possibly refined in future works, along

the lines of other approaches (see the references provided in the

introduction). In this first paper we focused on studying the

development of healthy crypts, and we tried to assess the model

conditions under which the activity of a normal crypt emerges and

is maintained. These results will be used as a base for future

research directions, all of them pointing to multiscale studies

concerning the emergence of colorectal cancer, which is supposed

to originate in crypts, most likely in the stem cell niche [2].

To this end, the choice of the internal GRN model allows for

many possible improvements and research perspectives. For

instance, along the lines of the usual NRBN approach, the effect

of genetic perturbations of various types (e.g. gene mutations) will be

assessed with respect to the emergence and development of cancer.

Possible communication mechanisms among the GRNs of

neighbor cells may be introduced in the model as in, e.g., [104],

as well as more accurate descriptions of gene activation and

dynamics as in, e.g., [105]. Also, the role of the extrinsic noise in

the system, e.g. random thermodynamic and kinetic fluctuations,

might be quantitatively assessed as discussed, for instance, in

[106]. Besides, the role of further types of stem cell division beyond

invariant asymmetry will be investigated.

Finally, the networks that we found suitable to describe the

lineage commitment tree for crypts will be matched against the

currently known portions of the human GRN by employing, for

instance, graph isomorphism techniques. Also, current knowledge will

be used to set up constraints on networks generation, possibly

allowing to infer new portions of the human GRN related to the

genes involved in the activity of the crypts. To address this

ambitious goal, the relevant genes and their interactions involved

in the evolution of colorectal cancer could be explicitly considered

in the generation of the GRNs to be used in our model.
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