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In this paper we present a definition of a domain relational calculus for fuzzy relational
databases using the GEFRED model as a starting point. It is possible to define an
equivalent fuzzy tuple relational calculus and consequently we achieve the two query
language levels that Codd designed for relational databases but these are extended to

Ž .fuzzy relational databases: Fuzzy relational algebra defined in the GEFRED model and
the fuzzy relational calculus which is put forward in this paper. The expressive power of
this fuzzy relational calculus is demonstrated through the use of a method to translate
any algebraic expression into an equivalent expression in fuzzy domain relational calcu-
lus. Furthermore, we include a useful system so that the degree to which each value has
satisfied the query condition can be measured. Some examples are also included in order
to clarify the definition. Q 1999 John Wiley & Sons, Inc.

I. INTRODUCTION

The relational database model was developed by E. F. Codd of IBM and
published in 1970 in Ref. 1. In addition, Codd designed two levels of data

Ž .manipulation languages DML in Ref. 2: relational algebra and relational
calculus.

Relational calculus uses first-order predicate calculus. Although the idea of
using the predicate calculus as a basis for a query language seems to have
originated in an article by Kuhns,3 it was originally proposed for application to
relational databases, as we said above, in Ref. 2. In this article, Codd also
introduces the concept of relational completeness: a query language is relation-
ally complete if every query that may be written by means of calculus expres-
sions, may also be written using propositions in that language. In the article,
Codd also describes ‘‘Codd’s reduction algorithm’’ to translate any calculus
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expression into a semantically equivalent algebraic expression, demonstrating
the relational algebra completeness and giving a possible way to compute the
calculus.

Codd’s calculus is known as tuple calculus because it is based on the tuple
variable concept, which is a variable that takes values from tuples of a relation
or from the union of two or more relations, i.e., the only permitted values for a
tuple variable are the tuples of a single relation or of a union.

One implementation of tuple calculus was the QUEL language, used in the
INGRES system.4 The SQL language5,6 has some calculus elements too.

In 1977, Lacroix and Pirotte proposed in Ref. 7 an alternative relational
calculus, the domain calculus, where the tuple variables are changed by domain
variables, which take values on the underlying domain of the attributes of the
relations. The same authors presented in Ref. 8 a language based on this
calculus, ILL. Pirotte and Wodon presented in Ref. 9 the FQL language, which

Ž .is far more formal than ILL. Query by example QBE , presented by Zloof in
Ref. 10 and other articles, may also be considered as a particular form of the
domain calculus.

Definitions of relational algebra and relational tuple and domain calculus
may be seen many times in the bibliography.11 ] 14 In Ref. 14 Ullman shows how
to translate an algebraic expression into a tuple calculus expression, how to
translate a tuple calculus expression into a domain calculus expression, and how
to translate a domain calculus expression into an algebraic expression.

These query languages are perfectly adapted to classic relational databases
with all the domains being crisp. In fuzzy databases, it is more difficult for the
definitions to cover a lot of cases. In Refs. 15 and 16, the GEFRED model was
proposed for fuzzy relational databases, giving a fuzzy relational algebra for this
model. The GEFRED model represents a synthesis among the different models
which have appeared to deal with the problem of the representation and
management of fuzzy information in relational databases. One of the main
advantages of this model is that it consists of a general abstraction which allows
us to deal with different approaches, even when these may seem disparate.

Here, we present a definition of fuzzy domain relational calculus framed in
the GEFRED model, although its theoretic basis may be used in other models.

In Ref. 17 a domain calculus is proposed for Buckles]Petry’s fuzzy rela-
tional database model,18,19 which is much more restrictive than the GEFRED
model.

We choose domain calculus instead of tuple calculus because domain
calculus is more explicit since it uses domain variables and manages each
attribute independently. Therefore, domain calculus tends to be closer to
natural language than tuple calculus.

The fundamental difference between tuple calculus and domain calculus
lies basically in how the user perceives the database, i.e., the relations and the
attributes. In tuple calculus the main entities are the relations which have

Ž .various properties its attributes . In domain calculus the main entities are the
attributes, which have relations among them represented by database relations.
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This latter vision is closer to how humans see and understand the universe
represented by the database.

First, we give some preliminary concepts about GEFRED; then we give the
definition of the fuzzy domain relational calculus with the calculus expressions
for algebraic primitive operators and for the more useful nonprimitive operators
and prove that any algebraic expression may be translated into an equivalent
calculus expression. We will then show a mechanism to ascertain, in the
resulting relation, the fulfilment degree to which each value has satisfied the
query condition. Finally, we explain some practical examples to show the ex-
pressive power of this language and how to extract the fulfilment degree in the
resulting relation.

II. PRELIMINARY CONCEPTS ABOUT GEFRED

The GEFRED model is based on the definition which is called generalized
Ž . Ž .fuzzy domain D and generalized fuzzy relation R , which include classic

domains and classic relations, respectively.

Ž̃ .DEFINITION 2.1. If U is the discourse or unï erse, PP U is the set of all possibility
distributions defined for U, including those which define the Unknown and Unde-

Ž .fined types types 8 and 9 in Table I , and NULL is another type defined in Table
˜Ž . Ž .I type 10 therefore, we define the generalized fuzzy domain as D : PP U j NULL.

The Unknown, Undefined, and NULL types are defined according to
Umano,20 and Fukami et al.21

With these fuzzy domains, all data types can be represented in Table I.

Table I. Data types.

Ž .1. A single scalar e.g., Size s Big, represented by the possibility of distribution 1rBig .
Ž .2. A single number e.g., Age s 28, represented by the possibility of distribution 1r28 .

Ž3. A set of mutually exclusive possible scalar assignations e.g., Behavior
� 4 � 4.s Bad, Good , represented by 1rBad, 1rGood .

Ž � 44. A set of mutually exclusive possible numeric assignations e.g., Age s 20, 21 ,
� 4.represented by 1r20, 1r21 .

Ž5. A possibility distribution in a scalar domain e.g., Behavior
� 4.s 0.6rBad, 1.0rRegular .

Ž � 46. A possibility distribution in a numeric domain e.g., Age s 0.4r23, 1.0r24, 0.8r25 ,
.fuzzy numbers or linguistic labels .

w x7. A real number belonging to 0, 1 , referring to the degree of matching
Ž .e.g., Quality s 0.9 .

� 48. An Unknown value with possibility distribution. Unknown s 1rd: e g D on
domain D, considered.

� 49. An Undefined value with possibility distribution. Undefined s 0rd: d g D on
domain D, considered.

� 410. A NULL value given by NULL s 1rUnknown, 1rUndefined .
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Ž .DEFINITION 2.2. A generalized fuzzy relation, R, is gï en by two sets: ‘‘Head’’ HH
Ž . Ž .and ‘‘Body’’ BB , R s HH, BB , defined as:

v ŽThe Head consists of a fixed set of attribute-domain-compatibility terms where the
.last is optional ,

w x w x w xHH s A : D , C , A : D , C , . . . , A : D , C� 4Ž . Ž . Ž .1 1 1 2 2 2 n n n

where each attribute A has an underlined fuzzy domain, not necessarily different, Dj j
Ž .j s 1, 2, . . . , n . C is a ‘‘compatibility attribute’’ which takes ¨alues in the rangej
w x0, 1 .

v The Body consists of a set of different generalized fuzzy tuples, where each tuple is
Ž .composed of a set of attribute-̈ alue-degree terms the degree is optional ,

˜ ˜ ˜w x w x w xBB s A : d , c , A : d , c , . . . , A : d , c� 4Ž . Ž . Ž .1 i1 i1 2 i2 i2 n in in

˜with i s 1, 2, . . . , m, where m is the number of tuples in the relation, and where di j
represents the domain ¨alue for the tuple i and the attribute A , and c is thej i j
compatibility degree associated with this ¨alue.

DEFINITION 2.3. Let R be a generalized fuzzy relation expressed by

¡ w x w xHH s A : D , C , . . . , A : D , C� 4Ž . Ž .1 1 1 n n n~R s 1Ž .¢ ˜ ˜w x w xBB s A : d , c , . . . , A : d , cŽ . Ž .½ 51 i1 i1 n in in

with i s 1, 2, . . . , m, m being the number of tuples in the relation. Therefore, we may
define:

v ¨Value component of a generalized fuzzy relation, R , as the part in the relation gï en
by

HH ¨ s A ; D , . . . , A : D� 4Ž . Ž .1 1 n n¨R s 2Ž .¨ ˜½ BB s A : c , . . . , A : dŽ .˜� 4Ž .1 i1 n in

where HH ¨ and BB¨ are the ¨alue components of the ‘‘head’’ and ‘‘body,’’ respectï ely.
v cCompatibility component of a generalized fuzzy relation, R , as the part in the relation

gï en by

c w x w xHH s C , . . . , , C� 41 ncR s 3Ž .c½ w x w xBB s c , . . . , , c� 4i1 in

where HH c and BBc are the compatibility components of the head and body, respec-
tï ely.
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The comparison operators are also redefined in order to adapt to the fuzzy
nature of our data:

DEFINITION 2.4. Let U be the considered discourse domain. We will call any fuzzy
relation defined on U, the extended comparator u , expressed in the following way,

w xu : U = U ª 0, 1
4Ž .w xu u , u ¬ 0, 1Ž .i j

with u , u g U.i j

DEFINITION 2.5. Let U be the considered discourse domain, let D be the general-
ized fuzzy domain constructed on it, and let u be an extended comparator defined on
U. Let us consider a function Qu defined as

u w xQ : D = D ª 0, 1
5Ž .

u ˜ ˜ w xQ d , d g 0, 1ž /1 2

Therefore, we may say that Qu is a generalized fuzzy comparator on D induced by
the extended comparator u , if it ¨erifies

u ˜ ˜Q d , d s u d , d ;d , d g U 6Ž . Ž .ž /1 2 1 2 1 2

˜ ˜where d , d represent the possibility distributions 1rd , 1rd , induced by the ¨alues1 2 1 2
d , d , respectï ely.1 2

On these definitions, GEFRED redefines the relational algebraic operators
in the so-called generalized fuzzy relational algebra: union, intersection, differ-
ence, Cartesian product, projection, selection, join, and quotient. These opera-
tors are defined giving the head and body of a generalized fuzzy relation which is
the result of the operation. All these operators are defined in Refs. 15 and 16,
but the quotient is defined in Ref. 22.

Ž .In a relation Definition 2.2 , the compatibility degree for an attribute value
Ž .in a tuple is obtained by manipulation processes performed on that relation
and it indicates the degree to which that value has satisfied the operation
performed on it.

III. FUZZY DOMAIN RELATIONAL CALCULUS

We use the classic domain relational calculus to define the fuzzy domain
relational calculus, using the notation in Ref. 14. We first define the valid
expressions in this relational calculus with the fuzzy atoms and the well formed

Ž .formulas WFF with fuzzy atoms. Next, we look at how to restrict the calculus
Ž .expressions to those that represent a finite relation ‘‘safe’’ expressions .
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A. Definition of Fuzzy Domain Calculus Expressions

The expressions, in fuzzy domain relational calculus, take the following
form,

x , x , . . . , x N c x , x , . . . , x� 4Ž .1 2 n 1 2 n

where:

v x , x , . . . , x are domain variables, i.e., variables whose values are in the domain1 2 n
Ž .in which they are defined. These variables take values in the range or domain of

a particular attribute in a generalized fuzzy relation. Consequently, these vari-
ables sometimes have the same name as the attribute. With these variables we
express a tuple with the attributes we want in the resulting relation. The resulting
relation will be a generalized fuzzy relation. Among the x there may also existi
constants or expressions which use constants and variables, but these possibilities
are not taken into account in order to simplify and to better focus the problem.

v Ž .c x , x , . . . , x is a well formed formula or WFF built with fuzzy atoms and1 2 n
with some specified operators. This formula must have x , x , . . . , x as the only1 2 n
free variables and it expresses a predicate or condition that must be satisfied by
all the tuples in the resulting relation. A predicate c may only be True or False
Ž .remember that it is based on the first-order predicate calculus . Next, all these
concepts are defined.

III.A.1. Fuzzy Atoms

Ž .We define the fuzzy atoms from formulas c WFF consisting of two parts:

Ž .1 Fulfilment degree: D
Ž .2 Fulfilment threshold: g

and they will be expressed using the crisp comparator ‘‘G ’’,

D G g

The fulfilment degree D of the atoms may also be of two types:

Ž . Ž .1 Ownership: D s R x , x , . . . , x , where R is a generalized fuzzy relation of1 2 n
w Ž .xarity n and cardinality m as in Eq. 2 and each x is a constant or a domaini

Ž .variable. This atom expresses the fulfilment or truth degree of the affirmation
Ž .which holds that x , x , . . . , x is a tuple of R. This fulfilment degree is1 2 n

computed as follows,

s ˜R x , x , . . . , x s max min Q d , x 7Ž . Ž .� 4Ž .1 2 n rc c½ 5
rs1, . . . , m cs1, . . . , n

s Ž .where Q is a generalized fuzzy comparator see Definition 2.5 on D induced
Ž . Ž .by the extended comparator s d, d9 s d d, d9 , and defined in general form

as

Qs p , p9 s sup min s p , p9 , p p , p p9 8Ž . Ž . Ž . Ž .Ž .˜ ˜ Ž .p p9˜ ˜
Ž .p , p9 gU=U

s sup min p d , p d 9Ž . Ž . Ž .Ž .p p9˜ ˜
dgU
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where p, p9 g D, and their associated possibility distributions are p and p ,˜ ˜ p p9˜ ˜
respectively. U is the discourse domain underlying the generalized fuzzy domain

Ž . sD see Definition 2.1 . The comparator Q is translated into ‘‘approximately
equal.’’

Ž .If we denote one tuple as K s k , . . . , k where all k are constants, then1 n i˜ ˜Ž .we can say that the jth tuple, d , . . . , d , is the most similar tuple to K in Rj1 jn
so that it verifies

s ˜ s ˜max min Q d , k s min Q d , k 10Ž .� 4 � 4Ž . Ž .rc c jc c½ 5
rs1, . . . , m cs1, . . . , n cs1, . . . , n

˜ ˜Ž .The most similar tuple to K in R is the R tuple d , . . . , d which cost closelyj1 jn
Ž . Ž . w Ž .xresembles k , . . . , k . Therefore, R K takes the value in Eq. 7 of the1 n

similarity degree between K and the tuple which is the most similar to it in R.
Ž .In other words, Eq. 7 computes the greatest similarity between K and an R

Ž .tuple the tuple which is most similar to it . For means of simplification, this
Ž .similarity which is calculated by Eq. 7 is sometimes called the ownership

degree of a tuple in R.
Ž . u Ž . u2 Comparison: D s Q x, y , where Q is a generalized fuzzy comparator induced

by the extended comparator u , and x, y are constants or domain variables. This
fuzzy atom expresses the fulfilment degree to which x is related to y by means
of the comparator Qu. These fuzzy atoms will be called fuzzy comparisons.

We can see that crisp comparisons are a particular case of fuzzy compar-
isons and they are included within them. Therefore, in order to clarify the
calculus expressions we could use crisp comparisons with the traditional infixed
notation: x) y, where x and y are constants or domain variables and ) is an

� 4arithmetic comparator: ) g s , / , - , F , ) , G .
w xThe fulfilment threshold g is a real constant with g g 0, 1 , which states a

limit that D must overcome in order to consider the atom as True. We establish
that it is possible to write atoms without the threshold g when this is 1. This is
very usual in crisp comparisons and in ownership atoms to indicate that we only
consider those tuples in a concrete relation.

Example 1. Let the following be:

v R and S are generalized fuzzy relations of arity 4 and 3, respectively.
v x , x , and x are domain variables.1 2 3
v ‘‘Good’’ is a constant liguistic label with an associated possibility distribution.
v an is the fuzzy number ‘‘approximately n,’’ with n being a numeric constant.
v )Q is the generalized fuzzy comparator ‘‘greater than.’’
v ))Q is the generalized fuzzy comparator ‘‘very much greater than.’’

Then, in Table II we show some examples of fuzzy atoms and their
meaning.

Note how in each fuzzy atom field it is possible to put domain variables,
Žcrisp constants, or fuzzy constants fuzzy numbers, linguistic labels, possibility

.distributions . . . . B
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Table II.

Ž . Ž .R x , x , 13, 8 G 0.6 Tuple x , x , 13, 8 belongs to R with a minimum degree of 0.61 2 1 2
Ž . Ž .S x , Good, x Tuple x , Good, x belongs to S with a minimum degree of 11 3 1 3s Ž .Q x , Good G 0.9 x is Good with a minimum degree of 0.91 1
) Ž .Q x , a15 G 0.25 x is greater than ‘‘approximately 15’’ with a minimum degree1 1

of 0.25
)) Ž .Q a5, x G 0.5 ‘‘Approximately 5’’ is very much greater than x with a minimum2 2

degree of 0.5

The fulfilment threshold meaning and utility vary depending on the atom
type:

v Ownership atoms: In this atom type we apply a criterion in order to discover
Ž . Ž .when two fuzzy tuples may be considered different. In Eq. 7 we give R x , . . . , x1 n

Ž .the similarity value of tuple x , . . . , x with the R tuple which is most similar to1 n
it. If this similarity is greater than or equal to the fulfilment threshold g , i.e., if
Ž . Ž .R x , . . . , x G g then we consider that x , . . . , x g R. In this case the atom1 n 1 n

will be True and in any other case the atom will be False.
v Comparison atoms: The fulfilment threshold also states if the atom is considered

true or false: if the fuzzy comparator value is greater than or equal to g , then the
atom will be True. In any other case the atom will be False.

III.A.2. Well Formed Formulas with Fuzzy Atoms

We now define the valid operators, free and bound occurrences of domain
variables and the well formed formulas or WFF with fuzzy atoms. A WFF with
fuzzy atoms is defined as those WFF of classic calculus but including fuzzy
atoms:

Ž .1 A fuzzy atom is a WFF. All its occurrences of domain variables are free.
Ž . Ž .2 If c is a WFF, then !c NOT c is a WFF too. The formula !c asserts thatc

is false. Occurrences of domain variables in !c are free or bound as they are
free or bound in c .

Ž . Ž . Ž .3 If c and c are WFF, then c k c c OR c and c n c c AND c1 2 1 2 1 2 1 2 1 2
are also WFF asserting that ‘‘c or c , or both, are true,’’ and ‘‘c and c are1 2 1 2
both true,’’ respectively. Occurrences of domain variables are free or bound in
c k c or c n c as they are free or bound in c or c , depending on where1 2 1 2 1 2
they occur.

Ž . Ž .4 If c and c are WFF, c ª c IF c THEN c , is also a WFF asserting ‘‘if1 2 1 2 1 2
c is true then c is true.’’ Occurrences of domain variables are free or bound1 2
in c ª c as they are free or bound in c or c , depending on where they1 2 1 2
occur.

Ž . Ž . Ž .5 If c is a WFF and x is a domain variable free in c , then ' x c and ; x c are
also WFF, with the occurrences of x being bound in both WFF. The formula

Ž .' x c asserts that a value of x exists such that when we substitute this value for
Ž .all free occurrences of x in c , the formula c becomes true. The formula ; x c

asserts that whatever the value of x, if we replace all free occurrences of x in c
by this value, the formula c becomes true.

Ž . Ž .6 If c is a WFF, then c is also a WFF.
Ž .7 Nothing else is a WFF.
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Parentheses may be placed around formulas as needed in order to change
the precedence of the operator or to clarify the evaluation order. We assume

Ž . Ž .that the order of precedence is: Atoms, quantifiers ' and ; , negation ! ,
Ž . Ž . Ž .conjunction n , disjunction k , and implication ª , in that order. Likewise,

Ž .it is possible to introduce other operators such as XOR eXclusive OR , NOR
Ž . Ž .NOT OR , NAND NOT AND . . . . These have not been considered in order
to avoid complication.

Note that we only use the existential and the universal quantifiers. How-
ever, it is possible to define other fuzzy quantifiers to relax the queries in some
way. For example, we could use quantifiers like ‘‘the majority,’’ ‘‘the minority,’’
‘‘approximately n,’’ ‘‘approximately the middle’’ . . . . The definition of this type
of fuzzy quantifiers is a complex goal that we are currently investigating.

Ž .A WFF will be denoted c x , . . . , x when the domain variables x , . . . , x1 n 1 n
Ž .are free not necessarily all existing in c . We will sometimes denote a WFF

simply c , without this implying that c does not have any free variables.
If a constant k appears in the position i instead of the variable x ,i i

Ž .c x , . . . , k , . . . , x , we will suppose that all occurrences of the x variable may1 i n i
be substituted for k . Obviously, x is no longer a free variable, and therefore,i i

c x , . . . , x , k , x , . . . , x s c x , . . . , x , x , . . . , xŽ . Ž .1 iy1 i iq1 n 1 1 iy1 iq1 n

where c is the same WFF c but with all occurrences of x substituted for the1 i
constant k .i

It is possible to simplify the former definition of WFF by removing the
definition of some operators, as demonstrated in the following lemma:

ŽLEMMA 1. If c is a formula in domain relational calculus or tuple calculus, for
.that matter , then there is an equï alent formula c 9 with no occurrences of n, ;,

or ª .

Proof. In order to remove the operators n, ;, and ª in a formula, we
substitute them with equivalent expressions in terms of the other operators:

Ž . Ž .1 Substitute each subformula c n c by ! !c k !c . This transformation1 2 1 2
is called DeMorgan’s law.

Ž . Ž Ž .. Ž Ž ..2 Substitute each subformula ; x c x by !' x !c x .
Ž .3 Substitute each subformula c ª c by !c k c .1 2 1 2

Therefore, in c 9 only the operators !, k, or ' appear, which are the really
essential ones. The other operators are useful to achieve both simpler and more
intuitive expressions. B

B. Restricting Relational Calculus to Yield Only Finite Relations

J. D. Ullman, in Ref. 14, defines the so-called safe expressions in classic
relational calculus. The safe expressions are those which yield finite relations.
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The nonsafe expressions must be ruled out since they are meaningless expres-
sions. If we call a set of domain variables x , . . . , x by the name X, an example1 n

� Ž .4of a nonsafe expression is X N ! R X , which denotes all possible tuples that
are not in R, something which is impossible to retrieve if any domain of R is
infinite.

Ž .To define safety, Ullman defines DOM c as the set of symbols that either
appear explicitly in expression c or are components of some tuple in some
relation mentioned in c . Ullman therefore says that an expression of classic

� Ž .4relational calculus X N c X is safe if:

Ž . Ž .1 Whenever X satisfies c , all components of X are members of DOM c .
Ž . Ž Ž ..2 For each subformula of c of the form 'u w u , if u satisfies w for any values

Ž .of the other free variables in w, then u g DOM w .
Ž . Ž Ž .. Ž .3 For each subformula of c of the form ;u w u , if u f DOM w , then u

satisfies w for all values of the other free variables in w.

Ž . Ž .As Ullman says, the purpose of points 2 and 3 is to assure that we can
Ž .determine the truth of a quantified formula with ' or ; by considering only

Ž .those u values belonging to DOM w . For example, any formula,

'u R u , . . . n ???Ž .Ž .

Ž .satisfies 2 , and any formula,

;u ! R u , . . . k ???Ž .Ž .

Ž .satisfies 3 . Note that in the definition of safety, we do not assume that any free
Ž . Ž . Ž .variables of w, besides u, necessarily have values in DOM w . Rules 2 and 3

must remain independent of the value of those variables.
All variables in a WFF must, at the very least, form part of a fuzzy

ownership atom. So, a variable has the domain of the corresponding attribute
according to the position of this variable in the atom. This variable can only take

Ž .the values of that attribute in the relation or relations . In some versions of
Ž 4.relational calculus like QUEL , it is possible to previously establish the range

of each variable, such that the formula is, in some cases, lightly simplified.
In fuzzy relational calculus, due to the fuzzy characteristics of its fuzzy

context and due to the fact that we can establish fulfilment degrees, it can
sometimes be useful to use nonsafe expressions in the classic sense and handle
them as if they were safe, i.e., handle them via the so-called ‘‘limited evaluation,’’

Ž .restricting their evaluation only with values in DOM c .

DEFINITION 3.1. In fuzzy relational calculus we will say that an expression is safe,
if on establishing all its thresholds to 1, the expression is safe when considered in the
classic sense. All expressions will be e¨aluated ¨ia the limited e¨aluation, as if they
were safe: in order to compute the query results it will be obligatory that all the

Ž .¨alues in the result belong to DOM c , i.e., the result is always restricted exclusï ely
Ž .to ¨alues in DOM c .
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The previous definition is logical because to consider all possible tuples in
Ž .our universe is meaningless there can be an infinite number of tuples . Then, as

in classic calculus, we only deal with those tuples which exist in the relevant
relations of our database. In the following section we study some cases in which
this is clarified.

IV. EXPRESSIVE POWER OF THE FUZZY DOMAIN
RELATIONAL CALCULUS

For every expression of fuzzy relational algebra, there is an equivalent
expression in relational calculus. This affirmation is fundamental for relational

Ž .completeness and it is demonstrated below Theorem 1 .
In this section, we will first express the relational primitive algebraic

Žoperators in fuzzy domain relational calculus union, difference, Cartesian
.product, projection, and selection . We will then express other nonprimitive

Ž .algebraic operators in calculus intersection, quotient, and join .
The queries in fuzzy calculus are especially expressive due to two main

reasons: the calculus is nonprocedural and therefore we must only indicate what
Ž .we want not how to obtain it , and, moreover, we can establish the thresholds

Ž .g which control the minimum fulfilment degree that the values in the resulting
tuples have.

In classic databases, the fulfilment degree must always be maximum, a goal
achieved with g s 1 in all fuzzy atoms. This does not necessarily indicate that
the matching between all different fuzzy values must be accurate, but that a

Ž .total possibility exists of both values being or referring to the same value.
Naturally, if all possible fuzzy values in the domain are well-defined then with
g s 1 we ensure accurate matching between the compared values. With ‘‘well-

Ž .defined fuzzy values’’ we indicate the x, y values such that, if they are
s Ž . wconsidered different they are not as similar as those in which Q x, y s 1 see

Ž .xEq. 8 .
Note that in some expressions, to put a threshold g - 1 is meaningless in

ownership atoms because we apply the limited evaluation. We will later explain
this better using the union expression as an example. We will explicitly indicate
those atoms in which it may be useful to put a threshold of g - 1.

A. Primitive Algebraic Operators

Below, we express in fuzzy domain relational calculus the fuzzy primitive
algebraic operators:

Ž .1 Fuzzy Union: Let R and R9 be two relations of arity n, compatible with regards
Ž .to the union with the same number and type of attributes . The union of both

relations is given by the following expression in calculus,

R j R9 s x , . . . , x N R x , . . . , x k R9 x , . . . , x 11� 4Ž . Ž . Ž .1 n 1 n 1 n

Ž .Put into words, this expression yields the set of tuples x , . . . , x such that they1 n
are in R or in R9. See Example 5 in Section VI.
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It is useless to put a threshold g - 1 on the ownership atoms in the union
expression. Each resulting tuple will belong with a degree of 1 to one of the two
relations: R or R9. The ownership degree to the other relation is not important.
This expression is safe in a classic sense and therefore we can say it is safe in
our fuzzy relational calculus. However, in a fuzzy sense that expression is not
safe because there may be tuples satisfying c with all or some of the elements

Ž .outside DOM c . The smaller the thresholds are, the more frequently this
Ž .should occur. In this case, the result is restricted to values in DOM c . The

fulfilment thresholds lose their meaning and so they are not put in the
expression.

Ž .2 Fuzzy Difference: Let R and R9 be two relations of arity n, compatible with
regards to the union. The difference between both relations is given by

R y R9 s x , . . . , x N R x , . . . , x n ! R9 x , . . . , x G g 12� 4Ž . Ž . Ž .1 n 1 n 1 n

Ž .Put into words, this expression yields the set of tuples x , . . . , x such that they1 n
are in R and not in R9 with a degree greater than or equal to g . With g s 1, we
have a difference similar to the classic style. With g - 1, tuples in R that belong

Ž .to R9 with a sufficiently large degree g are also removed in the resulting
Ž .relation. This ownership to R9 is calculated by Eq. 7 . See Example 12 in

Section VI.
Ž . Ž .3 Fuzzy Cartesian Product or Times : Let R and R9 be two relations of arity n

and m, respectively. The Cartesian product between both relations is expressed
by

R = R9 s x , . . . , x , ¨ , . . . , ¨ N R x , . . . , x n R9 ¨ , . . . , ¨ 13� 4Ž . Ž . Ž .1 n 1 m 1 n 1 m

ŽPut into words, this expression yields the set of all possible tuples x , . . . , x ,1 n
. Ž . Ž .¨ , . . . , ¨ such that x , . . . , x belong to R and ¨ , . . . , ¨ belong to R9.1 m 1 n 1 m

Ž . Ž .4 Fuzzy Projection: Let R be a relation of arity n and A , . . . , A be a set of R1 k
attributes with k - n. Then, the projection of R onto these attributes is
expressed by

PP R; A , . . . , A s x , . . . , x N ' x , . . . , x R x , . . . , x 14� 4Ž .Ž . Ž .1 k 1 k kq1 n 1 n

In order to simplify the expression, we suppose that the attributes onto which
the projection is made are the first k attributes. The extrapolation in the case of
them not being the first ones is trivial. This expression yields a relation similar
to R, but removing those attributes which are not projected onto. See Examples
11 and 12 in Section VI.

Ž .5 Fuzzy Selection: Let R be a relation of arity n and FF a formula expressing a
condition that tuples in R must satisfy. Then, the selection on R with the
condition FF is expressed by

SS R; FF s x , . . . , x N R x , . . . , x n FF 9 15� 4Ž . Ž . Ž .1 n 1 n

where FF 9 is the formula FF with each operand i, denoting the ith component,
replaced by x . This expression yields a relation with tuples in R satisfying thei

Ž .predicate FF or the WFF FF 9 . See Example 11 in Section VI.

B. Nonprimitive Algebraic Operators

There are other very useful operators in relational algebra which are not
primitive, i.e., they may be expressed in terms of primitive operators. We will
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express the most typical operators in fuzzy relational calculus:

Ž .1 Fuzzy Intersection: Let R and R9 be two relations of arity n, compatible with
regards to the union. The intersection of both relations is given by the following
calculus expression,

R l R9 s x , . . . , x N R x , . . . , x G g n R9 x , . . . , x G g 9 16� 4Ž . Ž . Ž .1 n 1 n 1 n

Ž .Put into words, this expression yields the set of tuples x , . . . , x such that they1 n
Ž . Žbelong to R with a minimum degree of g and they belong to R9 with a

.minimum degree of g 9 . If we observe this expression we can see that it is
possible that tuples exist which belong to R and R9 with a degree grater than or

Ž .equal to g and g 9, respectively, and with values outside DOM c . In order to
compute the result we apply limited evaluation restricting it to tuples with

Ž .values in DOM c . With this restriction, the fulfilment threshold g of the atom
Žof R will be useful in the R9 tuples because R tuples belong to R with a

.degree of 1 . Likewise, the threshold g 9 is applied to R tuples. So, an R tuple
belongs to the intersection if it belongs to R9 with a minimum degree of g 9. If
g s g 9 s 1 we have an intersection similar to the classic style. See Example 6 in
Section VI.

Ž . Ž .2 Fuzzy Quotient or Division : The definition of the division operator in rela-
tional algebra is:

Ž . Ž .DEFINITION 4.1. Let R and R9 be relations with headers A, B and B ,
respectï ely, where A and B are simple attributes or sets of attributes. Then, the

Ž .relational quotient of R by R9, denoted by R % R9, is a relation Q with header A
Ž . Ž .whose body is formed by all the tuples A: a so that a tuple A: a, B: b exists in R

Ž .for e¨ery tuple B: b in R9.

Let R and R9 be two relations of arity n q m and m, respectively, with the
R9 attributes being of the same type as the last m attributes of R, defined by

R a , . . . , a , b , . . . , bŽ .1 n 1 m

R9 b , . . . , bŽ .1 m

Then, the relational quotient, R % R9, is expressed in the following query: Gï e
Ž . Ž .me the tuples a , . . . , a in R which are related in R with all the tuples in R91 n

Ž . Žwith a minimum degree of g . In fuzzy databases the relation is by similarity not
.by equality . Therefore, we can give a fulfilment degree of g to this similarity.

In fuzzy domain relational calculus this query is obtained by the expression,

R % R9 s a , . . . , a N ;b , . . . , b R9 b , . . . , b� Ž .Ž1 n 1 m 1 m

ª R a , . . . , a , b , . . . , b G g 174Ž . Ž ..1 n 1 m

This expression yields the set of tuples A such that if B belongs to R9 then
Ž .A, B belongs to R with a minimum degree of g .

Note that the atom of R has a fulfilment threshold of g . This makes is
possible for there to be tuples in the result which partially satisfy the query
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Ž .condition. If we establish that g s 1 we will only retrieve the R tuples a , . . . , a1 n
Ž .which are exactly related in R with all the values of R9. Thus, if g s 1 then we

have a division similar to the classic style. When g - 1 we also retrieve those
tuples which are similar to all the R9 tuples of minimum degree g . See Example
11 in Section VI.

Ž .Applying Lemma 1 to expression 17 we obtain the equivalent of

a , . . . , a N !'b , . . . , b ! ! R9 b , . . . , b k R a , . . . , a , b , . . . , b� Ž . Ž .Ž1 n 1 m 1 m 1 n 1 m

G g 4.
This expression is simplified by applying DeMorgan’s law,

a , . . . , a N !'b , . . . , b R9 b , . . . , b n ! R a , . . . , a , b , . . . , b G g� 4Ž . Ž .Ž .1 n 1 m 1 m 1 n 1 m

Ž .3 Fuzzy Join: Let R and R9 be two relations of arity n and m. The join of both
relations is expressed by

R j R9 s x , . . . , x , ¨ , . . . , ¨ N R x , . . . , x n R9 ¨ , . . . , ¨Ž . Ž .� 1 n 1 m 1 n 1 m
uŽ .Q x , ¨ Ggi j

nQu x , ¨ G g 18Ž . Ž .4i j

Ž 4 � 4with i g 1, . . . , n and j g 1, . . . , m . Put into words, this expression yields
Ž . Ž .the set of tuples x , . . . , x , ¨ , . . . , ¨ such that x , . . . , x belong to R,1 n 1 m 1 n

Ž .¨ , . . . , ¨ belong to R9 and they satisfy the condition,1 m

Qu x , ¨ G gŽ .i j

x and ¨ being two variables in R and R9, respectively. Note that a join is ai j
selection on the Cartesian product.

The natural join is a join in which all attributes with the same name in both
relations are compared using the fuzzy comparator approximately equal
w Ž .xEq. 8 . One of the two compared attributes is removed from the result. In a
fuzzy natural joint it may be interesting not to remove those attributes or to
fuse, in some way, the two attributes into a single attribute.

C. Reduction of Fuzzy Relational Algebra to Fuzzy Domain
Relational Calculus

THEOREM 1. For any expression E in fuzzy relational algebra there is an equï alent
safe expression in fuzzy domain relational calculus.

Proof. Using the above expressions, the proof proceeds by induction over the
number of operators in E: if E has no operators then it is a relation R without
operations. In this case, if R has arity n the domain calculus expression is

R s x , . . . , x N R x , . . . , x� 4Ž .1 n 1 n
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If E has one or more operators, the procedure will be in accordance with
Ž .the main operator. The main operator may be the union E s E j E , the1 2

Ž . Ž .difference E s E y E , the Cartesian product E s E = E , the projection1 2 1 2
Ž Ž .. Ž Ž ..E s PP E ; A , . . . , A , or the selection E s SS E ; FF . In each case,1 1 k 1

Ž . Ž .Eq. 11 ] 15 is applied, respectively, replacing the ownership atoms R and
R9 in the equations by the WFF of the calculus expressions of E and E ,1 2
respectively. B

V. COMPUTING THE RESULTING GENERALIZED
FUZZY RELATION

With all the former definitions, we can write any expression in this fuzzy
domain relational calculus. However, in fuzzy databases it is very useful to know
the fulfilment degree to which a concrete value satisfies a condition. The
GEFRED model has the so-called compatibility attributes, the C of each Aj j

Ž .attribute in each generalized fuzzy relation see Definition 2.2 . In order to
compute the values of C , the so-called c ‘‘compatibility degrees’’ of eachj i j
attribute in a tuple, we will define the degree of a domain variable in a WFF:

A. Degree of a Variable in a Well Formed Formula with a Substitution

We will define a function D which will be applied to a WFF c . This function
will return the degree to which a concrete value in a concrete tuple satisfies the

Ž .predicate c . The function needs the value x that we want to evaluate and its
Ž . Stuple S : D . This computation does not use the fulfilment degrees, g , of thex

atoms of c .

DEFINITION 5.1. Let EE be the set of all safe expressions of fuzzy domain relational
Ž .calculus, C be the set of all WFF in EE, c x , . . . , x g C be WFF with all the x1 n i

Žas unique free ¨ariables, and x be a domain ¨ariable which either appears or not in
.c . Then, to e¨aluate if c is True or False we must substitute the free ¨ariables in c

Ž .by ¨alues s , . . . , s which we will call substitution S.1 n
We suppose, by Lemma 1, that only three types of basic operators exist in c :

Ž . Ž . Ž .negation ! , disjunction k , and existential quantifier ' .
We then recursï ely define the so-called degree of a domain ¨ariable x in a WFF

S Ž .c with a substitution S, denoted by D c , as a function,x

S w xD : C ª 0, 1 j lx
19Ž .

S w xD c g 0, 1 j lŽ .x

w xwhere l is a constant with the requisite l f 0, 1 . This constant indicates that the
Ždegree of the ¨ariable x in c is not applicable or meaningless. We set l - 0 in order

.to simplify the disjunction definition .
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Depending on the type of the main operator in c , four cases exist:

Ž .1 Zero operators: In this case c is a fuzzy atom and it will distinguish the two types of
fuzzy atoms: Ownership and Comparison.

Ž .2 Negation.
Ž .3 Disjunction.
Ž .4 Existential Quantifier.

S Ž .We study these four cases in order to compute the ¨alue of D c . Thex
Ž Ž .definition is recursï e, where the base case is case 10 when c is an atom . In all

other cases, the degree in c is computed starting from the degrees in the subformulas
obtained by e¨aluating the main operator in c :

Ž . Ž .1 Zero operators c is an atom : In this case, there are two types of atoms:
Ž .a Ownership:

DS R x , . . . , x , K G gŽ .Ž .x 1 n

R K if there are no ¨ariables in cŽ .¡
R S, K if x s A and ~ CŽ . i i~s 20Ž .
min c , R S, K if x s A and 'C� 4Ž .r i i i¢
l in any other case

where:

v R is a generalized fuzzy relation of arity n q p.
v Ž .K is a list with all constant k , . . . , k in the atom.1 p
v Ž . Ž . Ž .The ¨alues of R S, K s R s , . . . , s , k , . . . , k and R K are computed1 n 1 p

Ž .by Eq. 7 .
v � 4A with i g 1, . . . , n , is an attribute of R. The comparison x s A indicatesi i

that the ¨ariable x has the domain of the A attribute.i
v c is the ¨alue of the compatibility attribute C in R, associated with the Ari i i˜ ˜Ž .attribute, in a tuple r such that its ¨alue component d , . . . , d is the mostr1 r n

Ž . Ž .similar tuple to S, K in R. The most similar tuple to S, K in a relation
always exists and it is e¨en possible that some tuples exist with the same
similarity. In the case of some tuples existing, the greatest c will be taken.r i

S Ž .Computing the degree D in an ownership atom R x , . . . , x , K is easy whenx 1 n
the following algorithm is used:

IF ~ ¨ariables in the atom
Ž .RETURN R K

ELSE
� 4 Ž .IF x s A with i g 1, . . . , n q p THEN ) If x is an R attribute)i

IF 'C in R THENi
Search the r th tuple in R such that it is the

Ž .most similar tuple to S, K in R with the greatest c :r i
� Ž .4RETURN min c , R S, Kri

Ž .ELSE ) ~ C )i
Ž .RETURN R S, K

END IF
Ž .ELSE )If x is NOT an attribute of R)

RETURN l
END IF

END IF
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The following algorithm is used to ‘‘Search the r th tuple in R such that it is
Ž .the most similar tuple to S, K in R with the greatest c ’’ and RETURNr i

Ž .the rele¨ant result. We suppose R has m tuples and we rename tuple S, K as
Ž .Y s y , . . . , y :1 nqp

Ž Ž . .G [ 0 )Greatest similarity: R S, K )
Ž .C [ 0 )Greatest compatibility degree: c )r i

Ž .FOR t [ 1 TO m DO )For each tuple in R . . . )
q ˜� Ž .4M [ min Q d , yws1, . . . , nqp t w w

Ž .)M [ Similarity between Y and the t th tuple)
IF G - M THEN

G [ M
C [ cti

ELSE
IF G s M THEN

IF C - c THENt i
C [ cti

END IF
END IF

END IF
END FOR

� 4RETURN min C, G
Ž .b Comparison:

¡ uQ s , y if x is a ¨ariable and x s xŽ .i i i
S u ~ uD Q x , y G g s 21Ž . Ž .Ž . Q x , y if x is a constantŽ .x i i i¢

l in any other case

where s is the ¨alue of S corresponding to the ¨ariable x . The equality x s xi i i
Ž .indicates that both ¨ariables are the same ¨ariable with the same domain .

Ž . Ž . Ž .2 Negation: c x , . . . , x s !c x , . . . , x ,1 n 1 1 n

DS c x , . . . , xŽ .Ž .x 1 n

1 y DS c x , . . . , x if DS c x , . . . , x / lŽ . Ž .Ž . Ž .x 1 1 n x 1 1 ns 22Ž .½ l in any other case

Ž . Ž . Ž . Ž .3 Disjunction: c x , . . . , x s c u , . . . , u k c ¨ , . . . , ¨ , where each u is a1 n 1 1 p 2 1 q j
distinct x and each ¨ is a distinct x , although some of the us and ¨s may be thek j k
same x . Thus,k

DS c x , . . . , x s max DS c u , . . . , x , DS c ¨ , . . . , ¨ 23Ž . Ž . Ž . Ž .Ž . � 4Ž . Ž .x 1 n x 1 1 p x 2 1 q

As l - 0, we are certain that the disjunction degree is l only if the degrees of both
disjunction parts are l.

Ž . Ž . Ž Ž ..4 Existential Quantifier: c x , . . . , x s ' x c x , . . . , x ,1 n nq1 1 1 nq1

DS c x , . . . , x s max DS c x , . . . , x , s 24Ž . Ž . Ž .� 4Ž . Ž .x 1 n x 1 1 n nq1
Ž .s gDOM cnq 1

Ž . Ž .Note that DOM c s DOM c . We will call c a subformula of '. On1 1
e¨aluating the degree of c , s will be a constant and it will be treated as such.1 nq1
Naturally, the ¨alue of s will be within the domain of the ¨ariable x .nq1 nq1
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Ž .Figure 1. Definition of labels on attributes B and C Example 2 .

Example 2. Let us suppose a relation R where its two attributes are B and C.
The linguistic labels in Figure 1 are defined on them. Furthermore, let us
suppose that there are not yet any compatibility attributes in R.

Let c be the following WFF,

c b , c s R b , c n Qs b , B2 G 0.7 ª Qs c, C2 G 0.5Ž . Ž . Ž . Ž .Ž .
s Ž .where Q is the generalized fuzzy comparator in Eq. 8 .

Ž . S Ž Ž ..If we have a substitution S s B3, C1 g R, we can compute D c b, c .c
Then we apply Lemma 1 to c , obtaining

c b , c s ! ! R b , c k ! !Qq b , B2 G 0.7 k Q s c, C2 G 0.5Ž . Ž . Ž . Ž .Ž .Ž .
S Ž Ž ..A very easy way to compute D c b, c is in the following three steps:c

Ž .1 In c substitute all its atoms by the degrees of the same variable c in each atom
with the same substitution S,

DS c b , c ' ! !DS R b , c k ! !DS Qs b , B2 G 0.7Ž . Ž . Ž .Ž . Ž . Ž .ŽŽc c c

kDS Qs c, C2 G 0.5Ž .Ž . . .c

Ž .2 Compute each degree in each atom independently and replace it in its place,

DS c b , c ' ! !1 k ! ! l k 0.66Ž . Ž .Ž . Ž .c
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Ž .3 Operate according to Definition 5.1. In general, the values different from l
remain and the l values are ruled out. The operators are evaluated from the
greatest to the smallest precedence,

DS c b , c ' ! 1 y 1 k ! l k 0.66Ž . Ž .Ž . Ž .c

' ! 0 k ! 0.66Ž .Ž .
' ! 0 k 1 y 0.66Ž .Ž .
' ! 0 k 0.34Ž .
' ! 0.34Ž .
' 1 y 0.34

' 0.66

Likewise we can compute the degree of b in c with the substitution S,

DS c b , c ' ! !DS R b , c k ! !DS Qs b , B2 G 0.7Ž . Ž . Ž .Ž . Ž . Ž .ŽŽb b b

kDS Qs c, C2 G 0.5Ž .Ž . . .b

' ! !1 k ! !0.75 k lŽ .Ž .
' ! 1 y 1 k ! 1 y 0.75 k lŽ .Ž .
' ! 0 k ! 0.25Ž .Ž .
' ! ! 0.25Ž .Ž .
' 0.25

The constant l is a symbol indicating that we must remove that part and
center the computation in the other part. B

Looking at the former example, we can build the following lemma in order
to simplify some operations where a conjunction operator exists:

Ž .LEMMA 2. Let c be a WFF whose main operator is n conjunction , i.e., the
Ž . Ž . Ž .formula is c x , . . . , c s c u , . . . , u n c ¨ , . . . , ¨ , where each u is a1 n 1 1 p 2 1 q j

distinct x and each ¨ is a distinct x , although some of the us and ¨s may be thek j k
same x . In this case,k

¡ SD c u , . . . , xŽ .Ž .x 1 1 p

S sif D c / l and D c s lŽ . Ž .x 1 x 2

SD c ¨ , . . . , ¨Ž .Ž .x 2 1 qS ~D c x , . . . , x s 25Ž . Ž .Ž .x 1 n S Sif D c s l and D c / lŽ . Ž .x 1 x 2

S Smin D c u , . . . , x , D c ¨ , . . . , ¨Ž . Ž .� 4Ž . Ž .x 1 1 p x 2 1 q¢ in any other case
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Ž .Proof. By Lemma 1 DeMorgan’s law we obtain

c x , . . . , x s ! !c u , . . . , u k !c ¨ , . . . , ¨Ž . Ž . Ž .Ž .1 n 1 1 p 2 1 q

Let a and b be
a s DS c u , . . . , xŽ .Ž .x 1 1 p

b s DS c ¨ , . . . , ¨Ž .Ž .x 2 1 q

There are four distinct cases:

Ž .1 a / l and b s l: In this case the obtained result according to this lemma is a .
Applying Definition 5.1 we also obtain the same result,

DS c x , . . . , x ' ! ! a k ! l ' ! 1 y a k lŽ . Ž . Ž .Ž .x 1 n

' ! 1 y a ' 1 y 1 y a s aŽ . Ž .
Ž .2 a s l and b / l: Here the result obtained according to this lemma is b.

Applying Definition 5.1, we also obtain b ,

DS c x , . . . , x ' ! ! l k ! b ' ! l k 1 y bŽ . Ž . Ž .Ž .x 1 n

' ! 1 y b ' 1 y 1 y b s bŽ . Ž .
Ž . � 43 a / l and b / l: The result is min a , b , the same as that which is obtained by

Definition 5.1,
S � 4D c x , . . . , x ' ! ! a k ! b ' 1 y max 1 y a , 1 y bŽ . Ž .Ž .x 1 n

� 4 � 4It is necessary to take into account that: min a , b s 1 y max 1 y a , 1 y b .
Ž . � 44 asl and bsl: Here the result obtained according to this lemma is min l, l s

l. Applying Definition 5.1, we obtain the same result,

DS c x , . . . , x ' ! ! l k ! l ' ! l k l ' ! l ' lŽ . Ž . Ž .Ž .x 1 n

Ž .If we establish that l ) 1, Eq. 25 is simplified by only taking into account the
Ž .third case, but Eq. 23 of the disjunction will not be so simple. B

We present two other lemmas which simplify the computation of function D
Ž . Ž .when implication ª or universal quantifier ; operators exist.

Ž .LEMMA 3. Let c be a WFF whose main operator is ª implication , i.e., the
Ž . Ž . Ž .formula is c x , . . . , x s c u , . . . , u ª c ¨ , . . . , ¨ , where each u is a1 n 1 1 p 2 1 q j

distinct x and each ¨ is a distinct x , although some of the us and ¨s may be thek j k
same x . In this case,k

DS c x , . . . , xŽ .Ž .x 1 n

¡ S S S1 y D c u , . . . , x if D c / l and D c s lŽ . Ž . Ž .Ž .x 1 1 p x 1 x 2

S S SD c ¨ , . . . , ¨ if D c s l and D c / lŽ . Ž . Ž .Ž .x 2 1 q x 1 x 2~s 26Ž .
S S S Smax 1 y D c , D c if D c / l and D c / lŽ . Ž . Ž . Ž .� 4x 1 x 2 x 1 x 2

S S¢l if D c s l and D c s lŽ . Ž .x 1 x 2
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Proof. By Lemma 1 we obtain

c x , . . . , x s !c u , . . . , u k c ¨ , . . . , ¨Ž . Ž . Ž .1 n 1 1 p 2 1 q

Let a and b be

a s DS c u , . . . , xŽ .Ž .x 1 1 p

b s DS c ¨ , . . . , ¨Ž .Ž .x 2 1 q

There are four distinct cases:

Ž .1 a / l and b s l: In this case the result obtained according to this lemma is
1 y a . By Definition 5.1 we also obtain the same result,

DS c x , . . . , x ' ! a k l ' 1 y a k l ' 1 y aŽ . Ž .Ž .x 1 n

Ž .2 a s l and b / l: In this case the result obtained is b. By Definition 5.1 we also
obtain b ,

DS c x , . . . , x ' ! l k b ' l k b ' bŽ .Ž .x 1 n

Ž . � 43 a / l and b / l: The result is now max 1 y a , b , the same as that which is
obtained by Definition 5.1,

S � 4D c x , . . . , x ' ! a k b ' 1 y a k b ' max 1 y a , bŽ . Ž .Ž .x 1 n

Ž .4 a s l and b s l: By this lemma we obtain l, the same as that which is
obtained by Definition 5.1,

DS c x , . . . , x ' ! l k l ' l k l ' l BŽ .Ž .x 1 n

Ž .LEMMA 4. Let c be a WFF whose main operator is ; unï ersal quantifier , i.e.,
Ž . Ž .the formula is c x , . . . , x s ; x h x , . . . , x . then1 n nq1 1 1 nq1

DS c x , . . . , x s min DS c x , . . . , x , s 27Ž . Ž . Ž .� 4Ž . Ž .x 1 n x 1 1 n nq1
Ž .s gDOM cnq1

We will call c the subformula of ; to c . Evaluating the degree of c , si 1 nq1
will be a constant and it will be treated as such.

Proof. By Lemma 1 we have

c x , . . . , x s !' x !c x , . . . , xŽ . Ž .1 n nq1 1 1 nq1

Ž .Let a , . . . , a be all the f values of s , and1 f nq1

b s DS c x , . . . , x , aŽ .Ž .i x 1 1 n i

with i s 1, . . . , f. Then, according to this lemma the result obtained is

DS c x , . . . , x s min b , . . . , b� 4Ž .Ž .x 1 n 1 f
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By Definition 5.1, the result obtained is

DS c x , . . . , x ' !DS ' x !c x , . . . , xŽ . Ž .Ž . Ž .x 1 n x nq1 1 1 nq1

' 1 y max 1 y b , . . . , 1 y b� 41 f

We can see that both results are equivalent. B

B. Resulting Generalized Fuzzy Relation

With Definition 5.1 we can now compute the generalized fuzzy relation
resulting from a safe expression in fuzzy domain relational calculus in the form,

x , x , . . . , x N c x , x , . . . , x� 4Ž .1 2 n 1 2 n

The result of this expression is a generalized fuzzy relation R as follows,

¡ w x w xHH s A : D , C , . . . , A : D , C� 4Ž . Ž .1 1 1 n n n~R s¢ ˜ ˜w x w xBB s A : d , c , . . . , A : d , cŽ . Ž .½ 51 r1 r1 n r n r n

with r s 1, 2, . . . , m, m being the number of tuples of the relation. Then, in
order to retrieve HH and BB, we carry out two steps:

v ˜ ˜�Ž . Ž .4First, we compute the value component of the body, A : d , . . . , A : d ,1 r1 n r n
˜ ˜Ž . Ž .formed by all tuples d , . . . , d that satisfy make True the predicater1 r n˜ ˜Ž .c d , . . . , d . We call the number of tuples that satisfy the predicate m.r1 r n

v �w x w x4The compatibility component of the body, c , . . . , , c , is computed after,r1 r n
w xtaking into account that in the head, the compatibility attribute C , with i g 1, n ,i

SrŽ Ž ..exists if and only if D c x , . . . , x / l, for all the substitutions S sx 1 n ri˜ ˜Ž .d , . . . , d with r s 1, 2, . . . , m. It is easy to observe that if the degree is equalr1 r n
to l for one substitution, then it will be equal to l for all the rest of the
substitutions. Then, if attribute C exists, its compatibility degrees, for all the mi
tuples are computed in the following way,

c s DSr c x , . . . , x 28Ž . Ž .Ž .r i x 1 ni

˜ ˜Ž .where r s 1, 2, . . . , m and S s d , . . . , d is the tuple r th of R. Also, we mayr r1 r n
Ž .consider that ~ C and so it can be removed if c s 1 ; r s 1, . . . , m. If alli r i

tuples have a value 1 in a concrete compatibility attribute then this compatibility
attribute does not give us any information, because this is what we suppose if the
compatibility attribute does not exist.

We apply function D with substitutions s , i.e., with all the tuples thatr
satisfied the query predicate. This could pose the question of how to obtain
these tuples so that afterward the corresponding function D can be applied to
them. However, this question is meaningless because we are defining a rela-
tional calculus and this is, by definition, a nonprocedural language, i.e., its
expressions say what we want to retrieve but do not say how to retrieve it. Once

Ž .the tuples of result R have been obtained, in whatever way, the compatibility
degree of each value of each tuple is then computed, using function D.
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VI. EXAMPLES

The fuzzy relational calculus has a greater expressive power than classic
relational calculus. In order to demonstrate this power and to clarify the
computation of the resulting generalized fuzzy relation in a query, some exam-
ples are given in this section which include the vase casuistry that may be found
in a query. Each of the following examples focuses on one or several of these
particular cases, but all are based in the same context which is explained below.

Supposing we have a fuzzy relational database of basketball players. A
Ždatabase relation may have the attributes PLAYER, TEAM, HEIGHT,

.QUALITY, NUM SHIRT . . . . We will use a projection of this relation shown]
Ž .in Table III. The fields HEIGHT where the player’s height is stored and

ŽQUALITY where the player’s quality is measured according to his average
. Ž .points per match allow fuzzy values type 6 in Table I . For the sake of the

examples, we will use the linguistic labels in Figure 2.
We have eliminated the labels ‘‘Very short’’ and ‘‘Very bad,’’ since in our

opinion professional players with these characteristics do not exist.
We use the initial letter of the name of the attribute to whose domain they

Ž .belong p, t, h, and q as identifiers of the domain variables. We will call the
predicates c , as above. We will call the resulting relation of every example R ,i
where i is the example number.

Example 3. Show the players with their teams and the heights of those Short
Ž .players with a minimum degree of 0.5 .

Table III. Relation R.

HH PLAYER TEAM HEIGHT QUALITY

BB J1 Almerıa Tall Very good´
J2 Almerıa Short Regular´
J3 Cadiz Very tall Very good´
J4 Cadiz Short Good´
J5 Cordoba Short Very good´
J6 Cordoba Very tall Bad´
J7 Granada Short Bad
J8 Granada Very tall Bad
J9 Grandad Tall Regular
J10 Huelva Tall Very good
J11 Jaen Short Very good
J12 Jaen Normal Regular
J13 Jaen Tall Very good
J14 Jaen Tall Very good
J15 Malaga Short Very good´
J16 Malaga Tall Regular´
J17 Malaga Very tall Very good´
J18 Sevilla Short Good
J19 Sevilla Very tall Good
J20 Sevilla Normal Good
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Figure 2. Definition of labels on HEIGHT and QUALITY attributes.

The expression which resolves this query is

p , t , h N 'q R p , t , h , q n Q s h , Short G 0.5� 4Ž . Ž .Ž .
Ž .First, the value component is computed, i.e., the tuples p, t, h that satisfy

the predicate. Here, nine tuples exist which satisfy the predicate: see the value
component of the relation in Table IV. We will denote these nine tuples of the
value component as S with r s 1, . . . , 9. In Table IV, we indicate the sub-r
stitution name on the right of every tuple. Afterward, to compute the compati-
bility component it is necessary to study which compatibility attributes exist. We
do not consider the attributes C and C in the result since we have:PLAYER TEAM
; r s 1, . . . , 9,

c s DSr c p , t , h s 1Ž .Ž .r ŽPLAYER. p

c s DSr c p , t , h s 1Ž .Ž .r ŽTEAM. t

Ž .Note that, as there is a value for the primary key of R attribute PLAYER
in S, in order to compute the degree of the WFF it is possible to remove the 'c,
substituting the variable c by the only value for each S . In other words, as therei
is a value for the primary key in S, the value of c that obtains the maximum

w Ž .xdegree Eq. 24 will be that which corresponds to the tuple of its primary key.
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Table IV. Relation R resulting in Example 3.3

HH PLAYER TEAM HEIGHT C SubstitutionHEIGHT

BB J2 Almerıa Short 1 S´ 1
J4 Cadiz Short 1 S´ 2
J5 Cordoba Short 1 S´ 3
J7 Granada Short 1 S4
J11 Jaen Short 1 S5
J12 Jaen Normal 0.5 S6
J15 Malaga Short 1 S´ 7
J18 Sevilla Short 1 S8
J20 Sevilla Normal 0.5 S9

The attribute C exists and for each S ,HEIGHT r

c s SSr c p , t , hŽ .Ž .r ŽHEIGHT. h

Ž .For example, in the last tuple player ‘‘J20’’ with r s 9, we have

c s DSq c p , t , hŽ .Ž .9ŽHEIGHT. h

s DŽJ20, Sevilla , Normal. c p , t , hŽ .Ž .h

Applying the method of Example 2, we obtain

DŽJ20, Sevilla , Normal. c p , t , h ' 'q R J20, Sevilla, Normal, qŽ . Ž .Ž . Ž
nQs Normal, ShortŽ . .

' R J20, Sevilla, Normal, Good n 0.5Ž .
' 1 n 0.5
' 0.5

We remove the existential quantifier when we replace all the occurrences of
the variable q by the Good value, which maximizes the degree of the subfor-
mula of '. In particular, this value of q is the only one which exists in R with
the substitution S , because this substitution contains a value of the primary9
key. The degree in this atom, with this value of q, is 1. With other values of q,
the degree is 0. As it is a conjunction, we take the smallest degree of both atoms
Ž . � 4according to Lemma 2 . Thus, with other values of q we have min 0, 0.5 s 0

� 4 wand when q s Good we have min 1, 0.5 s 0.5. We take the maximum value Eq.
Ž .x � 424 of all these values, and we obtain max 0, . . . , 0, 0.5 s 0.5 as the final result.
There will be as many zeros as values of c different to Good as there are in

Ž .DOM c .

Example 4. Obtain the players with their teams and the heights of those
Žplayers from Jaen or Malaga who are Normal height with a minimum degree of´

. Ž .0.5 or Short with a minimum degree of 0.7 .
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Table V. Relation R resulting from Example 4.4

HH PLAYER TEAM HEIGHT C SubstitutionHEIGHT

BB J11 Jaen Short 1 S1
J12 Jaen Normal 1 S2
J13 Jaen Tall 0.5 S3
J14 Jaen Tall 0.5 S4
J15 Malaga Short 1 S´ 5
J16 Malaga Tall 0.5 S´ 6

The expression to solve this query is as follows,

p , t , h N 'q R p , t , h , q n t s Jaen n t s Malaga� Ž . Ž .Ž ´
n Qs h , Short G 0.7 k Qs h , Normal G 0.5 4Ž . Ž .Ž . Ž .Ž . .

Note that atoms such as t s Jaen are crisp comparisons and they may
s Ž .appear as fuzzy comparisons of the form Q t, Jaen G 1. These comparisons

take the value 1 if they are true or 0 if they are false. For greater clarity, we
write them as crisp comparisons.

The resulting relation, R , is shown in Table V. We do not write the4
attribute C because its value is 1 for all selected tuples, since for anyTEAM

Ž .substitution S s s , s , s , we haver r p r t r h

DSr c p , t , h ' 'q R s , s , s , q n s s Jaen k s s MalagaŽ . Ž .Ž . Ž .´Žt r p r t r h r t r t

n l k lŽ . .
' max 1 n s s Jaen k s s Malaga n l� 4Ž .´r t r t

Ž .qgDOM c

' s s Jaen k s s Malaga´r t r t

Ž .In the first step, we remove the ' by applying Eq. 24 . As this predicate is a
safe WFF and the only relation used is R, then all the resulting values are in R.
Therefore, the degree in the ownership atom will always be equal to 1 for any
value of q.

Ž .Furthermore, in the resulting relation, the teams s will be from ‘‘Jaen’’r t
or from ‘‘Malaga,’’ and thus, one of these comparisons will be equal to 1 and the´

� 4other equal to 0. So, for any substitution S , the result will be: max 1, 0 s 1.r
The calculation of C is made in the same way. Let us see how it isHEIGHT

Ž .calculated for the tuples S and S Table V ,1 6
S1Ž Ž .. Ž Ž . Ž .c sD c p, t, h ''q R J11, Jaen, Short, q n l k l1ŽHEIGHT. h

s sŽ Ž . Ž ...n Q Short, Short k Q Short, Normal
Ž .'1 n l n 1 k 0.5

� � 44'min 1, max 1, 0.5 s 1
s6Ž Ž .. Ž Ž . Ž .c sD c p, t, h ''q R J16, Malaga, Tall, q k l k l´6ŽHEIGHT. h

s sŽ Ž . Ž ...n Q Tall, Short k Q Tall, Normal
Ž .'1 n l n 0 k 0.5

� � 44'min 1, max 0, 0.5 s 0.5
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In the first case the variable q is replaced by ‘‘Very good’’ and in the
second case it is replaced by ‘‘Regular.’’ These are the only values of q so that
the degree of the subformula of ' is greater than 0.

Ž . Ž .Example 5. Starting with relations R Table IV and R Table V of Exam-3 4
Ž .ples 3 and 4, respectively, the union expressed in terms of relational algebra of

both relations would correspond to the query: Get the players with their teams and
heights of those players belonging to R or R .3 4

Ž .The expression that solves this query is, as in Eq. 11 ,

R j R s p , t , h N R p , t , h k R p , t , h� 4Ž . Ž .3 4 3 4

The values of the compatibility attributes C and C will all bePLAYER TEAM
equal to 1, and so, we do not show them in the relation in Table VI. For
example, we show how these degrees are computed for the tuples S , S , and6 10

Ž . ŽS . Note that in order to compute the compatibility degrees, Eq. 20 or its12
.algorithm must be applied twice,

S6Ž . S6Ž Ž .. S6Ž Ž ..c sD c 'D R p, t, h k D R p, t, h '1 k 1 '16ŽTEAM. t t 3 t 4
S S S10 10 10Ž . Ž Ž .. Ž Ž ..c sD c 'D R p, t, h k D R p, t, h '0 k 1 '110ŽTEAM. t t 3 t 4
S S S12 12 12Ž . Ž Ž .. Ž Ž ..c sD c 'D R p, t, h k D R p, t, h '1 k 1 '112ŽTEAM. t t 3 t 4

The computation of c with r s 1, . . . , 12, is similar to that ofr ŽPLAYER.
c . We now show how to obtain the values of the compatibility attributer ŽTEAM.
C in the same tuples, since we know that this attribute exists in R andHEIGHT 3
in R ,4

S6Ž . � 4 � 4 � 4c sD c 'min 0.5, 1 k min 1, 1 'max 0.5, 1 s16ŽHEIGHT. h
S10 Ž . � 4 � 4c sD c '0 k min 0.5, 1 'max 0, 0.5 s0.510ŽHEIGHT. h
S12 Ž . � 4 � 4c sD c 'min 0.5, 1 k 0 'max 0.5, 0 s0.512ŽHEIGHT. h

Table VI. Relation R s R j R of Example 5.5 3 4

HH PLAYER TEAM HEIGHT C SubstitutionHEIGHT

BB J2 Almerıa Short 1 S´ 1
J4 Cadiz Short 1 S´ 2
J5 Cordoba Short 1 S´ 3
J7 Granada Short 1 S4
J11 Jaen Short 1 S5
J12 Jaen Normal 1 S6
J13 Jaen Tall 0.5 S7
J14 Jaen Tall 0.5 S8
J15 Malaga Short 1 S´ 9
J16 Malaga Tall 0.5 S´ 10
J18 Sevilla Short 1 S11
J20 Sevilla Normal 0.5 S12
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Example 6. In the same line as in the previous example, the intersection
Ž .expressed in terms of relational algebra of both relations R and R would3 4
correspond to the query: Get all the players with their teams and the heights of
those players belonging to R and R .3 4

Ž .The expression that solves this query is, as in Eq. 16 ,

R l R s p , t , h N R p , t , h n R p , t , h� 4Ž . Ž .3 4 3 4

The values of the compatibility attributes C and C are always 1,PLAYER TEAM
and so they do not appear in the resulting relation in Table VII. The computa-
tion of both is very similar: for each substitution S with r s 1, 2, 3 we haver

c s DSr c ' 1 n 1 ' 1Ž .r ŽTEAM. t

For the compatibility attribute C we haveHEIGHT

S1 S3 � 4 � 4c s c s D c s D c ' min 1, 1 n min 1, 1 ' 1Ž . Ž .1ŽHEIGHT. 3ŽHEIGHT. h h

S2 � 4 � 4 � 4c s D c ' min 0.5, 1 n min 1, 1 ' min 0.5, 1 s 0.5Ž .2ŽHEIGHT. h

ŽExample 7. Show the teams with at least one Bad player with a degree greater
.than or equal to 0.5 ,

t N 'p , h , q R p , t , h , q n Qs q , Bad G 0.5 29� 4Ž . Ž . Ž .Ž .

The result of this query is in Table VIII. For example, the value for CTEAM
in the first tuple S , c , is obtained by1 1ŽTEAM.

DS1 c ' 'p , h , q DS1 R p , t , h , q n DS1 Qs q , Bad G 0.5Ž . Ž . Ž .Ž . Ž .Ž .t t t

' max DS1 R J1, t , Tall, Very good n Qs Very good, Bad G 0.5 ,Ž . Ž .� Ž .t

DS1 R J2, t , Short, Regular n Qs Regular, Bad G 0.5Ž . Ž . 4Ž .t

� 4 s � 4' max min 1, 0 , min 1, Q Regular, Bad s max 0, 0.5 s 0.5� 4� 4Ž .

Ž .Note that when we evaluate the existential quantifier ' , the bound
Ž . w Ž .xvariables p, h, and q are replaced according to Eq. 24 by the values of p, h,

Ž . Ž .and q PLAYER, HEIGHT, and QUALITY existing in DOM c , in order to
take the greatest degree in all these substitutions. In the previous equation we
have removed the values of p, h, and q without a tuple in R with TEAM s S1
Ž .Almerıa , because the degree in the subformula of ' is 0 for these values.´

Table VII. Relation R s R l R of Example 6.6 3 4

HH PLAYER TEAM HEIGHT CHEIGHT

BB J11 Jaen Short 1
J12 Jaen Normal 0.5
J15 Malaga Short 1´
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Table VIII. Relation R .7

HH TEAM CTEAM

BB Almerıa 0.5´
Cordoba 1´
Granada 1
Jaen 0.5
Malaga 0.5´

S3Ž .Calculating D c , we find three possible values for the variables p, h, andt
q with a degree greater than 0 in the subformula of '. These three values are

Ž .those in the three R tuples with TEAM s S Granada ,3

DS3 c ' 'p , h , q DS3 R p , t , h , q n DS3 Qs q , Bad G 0.5Ž . Ž . Ž .Ž . Ž .Ž .t t t

' max DS3 R J7, t , Short, Bad n DS3 Qs Bad, Bad G 0.5 ,Ž . Ž .� Ž . Ž .t t

DS3 R J8, t , Very tall, Bad n DS3 Qs Bad, Bad G 0.5 ,Ž . Ž .Ž . Ž .t t

DS3 R J9, t , Tall, Regular n DS3 Qs Regular, Bad G 0.5Ž . Ž . 4Ž . Ž .t t

' max min 1, Qs Bad, Bad , min 1, Qs Bad, Bad ,� 4 � 4� Ž . Ž .
min 1, Qs Regular, Bad� 4 4Ž .

� 4 � 4 � 4 � 4' max min 1, 1 , min 1, 1 , min 1, 0.5 s max 1, 1, 0.5 s 1� 4

Ž .Applying Eq. 24 , we will take the greatest degree of the three and it may
be the degree of the tuple with player ‘‘J7’’ or ‘‘J8,’’ which both have a degree of
Ž .1 the tuple with the ‘‘J9’’ only has a degree of 0.5 .

ŽExample 8. Show teams with at least one Good player with a degree greater
.than or equal to 0.5 ,

t N 'p , h , q R p , t , h , q n Qs q , Good G 0.5 30� 4Ž . Ž . Ž .Ž .

Relation R is in Table IX.8

ŽExample 9. Show teams with at least one Bad player with a minimum degree
. Ž .of 0.5 and one Good player with a minimum degree of 0.5 ,

t N 'p , h , q R p , t , h , q n Qs q , Bad G 0.5 n 'p , h , q R p , t , h , q� Ž . Ž . Ž .Ž . Ž
nQs q , Good G 0.5 4Ž . .

The result is shown in Table X. Note that the predicate for this example is
formed by the conjunction of predicates in Examples 7 and 8. Thus, this query is
equivalent to the following,

t N R p , t , h n R p , t , h� 4Ž . Ž .7 8
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Table IX. Relation R .8

HH TEAM CTEAM

BB Almerıa 0.75´
Cadiz 1´
Cordoba 0.75´
Granada 0.66
Huelva 0.75
Jaen 0.75
Malaga 0.75´
Sevilla 1

ŽExample 10. Show the teams in which all its players are Short with a minimum
. Ž .degree of 0.5 or Good with a minimum degree of 0.75 ,

t N ;p , h , q R p , t , h , q ª Qs h , Short G 0.5 k Qs q , Good G 0.75� 4Ž . Ž . Ž .Ž .Ž .

The resulting relation is shown in Table XI. Let us show how this result is
obtained: If we call the subformula of ;c , we have1

c t s ;p , h , qc p , t , h , qŽ . Ž .1

Ž .For example, applying Lemma 4 for the first tuple Table XI , we will
Ž . Ž .search for the values of p, h, q in DOM c with the least degree in c with1

Ž . Ž .the substitution S . The values of p, h, q such that p, Almerıa, h, q g R have´1
Ž .a degree of 1. So, there are two values for p, h, q for which the degree can be

Ž .less than 1 the two tuples of the team from Almerıa . In the following equation´
Ž .we express only these values for p, h, q ,

c s DS1 c tŽ .Ž .1ŽTEAM. t

s min DS1 c J1, t , Tall, Very good , DS1 c J2, t , Short, RegularŽ . Ž .� 4Ž . Ž .t 1 t 1

Expanding these degrees using Lemma 3 we obtain

S1Ž Ž .. Ž . � 4D c J1, t, Tall, Very good '1 ª 0 k 0.75 'max 1 y 1, 0.75 '0.75t 1
S1Ž Ž .. Ž . � 4D c J2, t, Short, Regular '1 ª 1 k 0.66 'max 1 y 1, 1 '1t 1

Table X. Relation R .9

HH TEAM CTEAM

BB Almerıa 0.5´
Cordoba 0.75´
Granada 0.66
Jaen 0.5
Malaga 0.5´
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Table XI. Relation R .10

HH TEAM CTEAM

BB Almerıa 0.75´
Cadiz 0.75´
Huelva 0.75
Jaen 0.66
Sevilla 1

and then

S1 � 4c s D c t s min 0.75, 1 s 0.75Ž .Ž .1ŽTEAM. t

We also obtain the same result by applying Lemma 1: The query is
equivalent to

t N !'p , h , q! ! R p , t , h , q k Qs h , Short G 0.5� Ž . Ž .ŽŽ
kQs q , Good G 0.75 4Ž . . .

If we call this WFF without the first negation c , and this WFF without the2
quantifier c , then3

c t s !c t s !'p , h , q c p , t , h , q s !'p , h , q !c p , t , h , qŽ . Ž . Ž . Ž .Ž . Ž .2 3 1

Then, in the first tuple

c s DS1 c t s 1 y DS1 c tŽ . Ž .Ž . Ž .1ŽTEAM. t t 2

S1Ž Ž .. Ž . Ž .In order to solve D c t we search for values of p, h, q in DOM ct 2
with a greater degree in c with the substitution S . So, we find two values of3 1
Ž .p, h, q for which the degree can be greater than 0. In the following equation

Ž .we only write these two values of p, h, q , i.e., the two tuples from Almerıa,´

DS1 h t s max DS1 c J1, t , Tall, Very good ,Ž . Ž .�Ž . Ž .t 2 t 3

DS1 c J2, t , Short, RegularŽ . 4Ž .t 3

Expanding these degrees, we obtain

S1Ž Ž .. Ž . Ž .D c J1, t, Tall, Very good '! !1 k 0 k 0.75 '! 0.75 '0.25t 3
S1Ž Ž .. Ž . Ž .D c J2, Short, Regular '! !1 k 1 k 0.66 '! 1 '0t 3

and then

S1 � 4D c t s max 0.25, 0 s 0.25Ž .Ž .t 2
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Therefore, we obtain the expected result,

c s DS1 c t s 1 y DS1 c t s 1 y 0.25 s 0.75Ž . Ž .Ž . Ž .1ŽTEAM. t t 2

We also develop the equations for the fourth tuple, S ,4

c s DS4 c tŽ .Ž .4ŽTEAM. t

Ž . Ž .Now we find four values of p, h, q in DOM c with a degree in c with1
Ž .the substitution S smaller than 1 the four tuples from Jaen . In the following1

Ž .equation we only write these four values of p, h, q ,

DS4 c e s min DS4 J11, t , Short, Very good ,Ž . Ž .�Ž .t t

DS4 c J12, t , Normal, Regular , DS4 c J13, t , Tall, Very good ,Ž . Ž .Ž . Ž .t 1 t 1

DS4 c J14, t , Tall, Very goodŽ . 4Ž .t 1

Computing all of these degrees, we obtain

S4Ž Ž .. Ž . � 4D c J11, t, Short, Very good '1 ª 1 k 0.75 'max 1 y 1, 1 '1t 1
S4Ž Ž .. Ž . � 4D c J12, t, Normal, Regular '1 ª 0.5 k 0.66 'max 1 y 1, 0.66 '0.66t 1
S4Ž Ž .. Ž . � 4D c J13, t, Tall, Very good '1 ª 0 k 0.75 'max 1 y 1, 0.75 '0.75t 1
S4Ž Ž .. Ž . � 4D c J14, t, Tall, Very good '1 ª 0 k 0.75 'max 1 y 1, 0.75 '0.75t 1

Thus, we obtain

S4 � 4c s D c t s min 1, 0.66, 0.75, 0.75 s 0.66Ž .Ž .4ŽTEAM. t

Example 11. Select the teams with players with the same height and quality
Ž .characteristics as the team from Cadiz with a minimum degree of 0.5 .´

To solve this query we will create two relations R9 and R0 defined by

R9 t , h , q s t , h , q N 'p R p , t , h , q� 4Ž . Ž .
R0 h , q ' h , q N 'p , t R p , t , h , q n t s Cadiz� 4Ž . Ž .Ž .´

Ž .where R p, t, h, q is the generalized fuzzy relation in Table III.
Expressed in terms of relational algebra, the relation R9 is a projection of

the relation R onto the attributes TEAM, HEIGHT, and QUALITY. The
relation R0 is a selection with the condition TEAM s Cadiz and subsequently a´
projection onto the attributes HEIGHT and QUALITY. The relations R9 and
R0 are shown in Tables XII and XIII, respectively.

With relational algebra, this query is solved by the quotient R9 % R0, which
Ž .is equivalent to the following expression in fuzzy calculus, as in Eq. 17 ,

R9 % R0 s t N ;h , q R0 h , q ª R9 t , h , q G 0.5� 4Ž . Ž .Ž .
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Table XII. Relation R9 in Example 11.

HH TEAM HEIGHT QUALITY

BB Almerıa Tall Very good´
Almerıa Short Regular´
Cadiz Very tall Very good´
Cadiz Short Good´
Cordoba Short Very good´
Cordoba Very tall Bad´
Granada Short Bad
Granada Very tall Bad
Granada Tall Regular
Huelva Tall Very good
Jaen Short Very good
Jaen Normal Regular
Jaen Tall Very good
Malaga Short Very good´
Malaga Tall Regular´
Malaga Very tall Very good´
Sevilla Short Good
Sevilla Very tall Good
Sevilla Normal Good

Ž .Note that the atom of R9 includes a fulfilment threshold g s 0.5 . So,
tuples partially satisfying the query condition exist in the result. If g s 1, only
the teams with players with exactly the same height and quality characteristics as the
team from Cadiz will be retrie¨ed.´

The result of this query, R , is shown in Table XIV.11
Ž .The compatibility degree for the first tuple S is given by the following1

Ž . Ž .equation, we have only shown those values of h, q in DOM c for which the
degree of the subformula of ; is smaller than 1, i.e., the two tuples of R0,

c s DS1 c s min DS1 R0 Very tall, Very goodŽ . Ž .� Ž1TEAM t t

ª R9 t , Very tall, Very Good ,Ž . .
DS1 R0 Short, Good ª R9 t , Short, GoodŽ . Ž . 4Ž .t

� 4 � 4s min max 1 y 1, 0.5 , max 1 y 1, 0.66� 4
� 4s min 0.5, 0.66 s 0.5

Table XIII. Relation R0 in Examples
11 and 12.

HH HEIGHT QUALITY

BB Very tall Very good
Short Good
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Table XIV. Relation R .11

HH TEAM CTEAM

BB Almerıa 0.5´
Cadiz 1´
Jaen 0.5
Malaga 0.75´
Sevilla 0.75

Briefly, the compatibility degrees in the other tuples are given by

� � 4 � 44c smin max 1 y 1, 1 , max 1 y 1, 1 s12TEAM
� � 4 � 44c smin max 1 y 1, 0.5 , max 1 y 1, 0.75 s0.53TEAM
� � 4 � 44c smin max 1 y 1, 1 , max 1 y 1, 0.75 s0.754TEAM
� � 4 � 44c smin max 1 y 1, 0.75 , max 1 y 1, 1 s0.755TEAM

One of the advantages of relational calculus versus relational algebra is that
any query may be expressed in a single expression in relational calculus. Thus,
any algebraic expression, with any number of operators, may be expressed in a
single expression in calculus. Consequently, this example could have been solved
with a single expression without using the relations R9 and R0, and the same

Ž .result could have been obtained Table XIV .

t N ;p9, h , q R p9, Cadiz, h , q ª 'pR p , t , h , q G 0.5� 4Ž . Ž .Ž .´

Fuzzy relational quotient is explained in Ref. 22, obtaining the same result
as in relational calculus when g s 1. If g - 1, in order to obtain identical results
using algebra, we must apply a selection after the quotient to retrieve only those
tuples surpassing g .

Ž .Example 12. Now, we take a projection in terms of relational algebra of R9
Ž .Table XII onto the attributes HEIGHT and QUALITY. The resulting rela-
tion, R-, is shown in Table XV and it is obtained by the expression,

R- h , q s h , q N ' t R9 t , h , q� 4Ž . Ž .

Ž . Ž .Then, starting from relations R- Table XV and R0 Table XIII , the
w Ž .xrelational difference, R- y R0 Eq. 12 , acquires a greater expressivity in

relational calculus, solving the following query: Gï e me the tuples in R- and not
Ž .in R0 with a minimum degree of 0.75 ,

R- h , q y r 0 s h , q N R- h , q n ! R0 h , q G 0.75� 4Ž . Ž . Ž .

The result is shown in Table XVI. The computation of the compatibility
degrees is easy. For every tuple i, c s c is satisfied and, foriŽHEIGHT. iŽQUALITY.
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Table XV. Relation R- in Example 12.

HH HEIGHT QUALITY

BB Tall Very good
Short Regular
Very tall Very good
Short Good
Short Very good
Very tall Bad
Short Bad
Tall Regular
Normal Regular
Very tall Good
Normal Good

Ž .example, in the two first tuples S and S we have1 2

S1Ž . S1Ž . � 4D c sD c '1 n !0.5 'min 1, 1 y 0.5 s0.5h q
S S2 2Ž . Ž . � 4D c sD c '1 n !0.66 'min 1, 1 y 0.66 s0.34h q

Note that for all tuples, the degree in the left part of the conjunction is
Ž .always 1. Therefore, taking the minimum of the conjunction Lemma 2 the

result will be equal to the degree in the right part of the conjunction. This right
Ž .part is a negation ! and therefore the more a tuple belongs to R0, the less it

will belong to the difference and less will be the compatibility degree of its
attributes in the result. If a tuple belongs to R0 with a degree greater than 0.75
then it does not belong in the result, because 0.75 is the fulfilment threshold
adopted.

VII. CONCLUSIONS

In this paper we have presented a fuzzy relational calculus for fuzzy
databases. This calculus is an extension of classic calculus and so it is also useful
in classic databases or in relations without fuzzy attributes.

Moreover, we have presented a function D that, as we have shown, is an
evaluator which returns the degree to which a concrete value x, of a concrete

Table XVI. Relation R s R- y R0 in Example 12.12

HH HEIGHT C QUALITY CHEIGHT QUALITY

BB Tall 0.5 Very good 0.5
Short 0.34 Regular 0.34
Very tall 1 Bad 1
Short 1 Bad 1
Tall 1 Regular 1
Normal 0.5 Regular 0.5
Normal 0.5 Good 0.5
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Ž .tuple S, K , satisfies the predicate c . This function allows us to ascertain the
degree to which every value of every tuple satisfies the query condition, i.e., D
returns the compatibility attributes in the resulting generalized fuzzy relation.

The work of function D is essential, because relational calculus is based on
first-order predicate calculus and so, the predicates can only be True or False.
This feature will be used, as in the classic model, to determine whether a tuple
belongs to the resulting relation: if the values of the tuple make the predicate
True, this tuple belongs to the result and if its values make the predicate False,
this tuple does not belong to the result. Then, if a tuple satisfies the predicate it
is because every value in this tuple satisfies the conditions of the predicate.
However, each value has satisfied the conditions to a certain degree in the range
w x0, 1 , and it is essential to know these degrees in fuzzy databases. The work of
function D is to compute these degrees.

It is easy to translate an expression in fuzzy domain relational calculus to
an equivalent expression in a fuzzy tuple relational calculus.

Thus, we achieve the two levels of query languages designed by Codd2 for
relational databases but they are extended to fuzzy relational databases: fuzzy

Ž 15,16,22relational algebra defined by the GEFRED model and the fuzzy rela-
tional calculus which we have shown in this paper.
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