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Abstract
This work deals with the stochastic modelling of correlation in finance. It is well
known that the correlation between financial products, financial institutions, e.g.,
plays an essential role in pricing and evaluation of financial derivatives. Using simply a
constant or deterministic correlation may lead to correlation risk, since market
observations give evidence that the correlation is hardly a deterministic quantity. For
example, we illustrate this issue with the analysis of correlation between daily returns
time series of S&P Index and Euro/USD exchange rates.
The approach of modelling the correlation as a hyperbolic function of a stochastic

process has been recently proposed. Here, we review this novel concept and
generalize this approach to derive stochastic correlation processes (SCP) from a
hyperbolic transformation of the modified Ornstein-Uhlenbeck process. We
determine a transition density function of this SCP in closed form which could be
used easily to calibrate SCP models to historical data.
As an illustrating example of our new approach, we compute the price of a quantity

adjusting option (Quanto) and discuss concisely the effect of considering stochastic
correlation on pricing the Quanto.

Keywords: stochastic correlation; quanto option; correlation risk;
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1 Introduction
Correlation is a well established concept for quantifying the relationship between financial
assets. It plays an essential role in several financial applications, e.g. the arbitrage pricing
model [] is based on correlation as a measure for the dependence of assets. Also in port-
folio credit models, the default correlation is one fundamental factor of risk evaluation,
see e.g. [] and [].

For two random variables X and X with finite variances, the correlation of them is
defined as

ρ, = Corr(X, X) =
Cov(X, X)

σσ
, ()

with the covariance

Cov(X, X) = E
[
(X – μ)(X – μ)

]
, ()

where μi and σi are the expectation and standard deviation of Xi, i = , . Here ρ, denotes
a coefficient number in the interval [–, ]. The boundaries – and  will be reached if and
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only if X and X are indeed linearly related. The greater the absolute value of ρ, the
stronger the dependence between X and X is.

Generally, there are several disadvantages or fallacies of the correlation concept (), we
state only some of them:

• If the random variables X and X are independent, then it follows ρ, = . However,
the converse implication does not hold, since in () only the two first moments are
included. For example, we compute ρ, =  for X = X

 . Indeed, X and X depend
even almost perfectly on each other. This illustrates that the correlation coefficient
only recognizes linear dependencies between random variables.

• Correlation is invariant under strictly increasing linear transformations, but, in
contrast to Copula methods, not invariant under nonlinear strictly increasing
transformations. For example, in general the correlation of the random variables X

and X does not equal the correlation of the random variables ln X and ln X, i.e. after
a transformation of the financial data the correlation may change.

• Usually, the given marginal distributions and pairwise correlations of a random vector
cannot determine its joint distribution.

• Finally, as stated above, the variances of the two random variables X and X has to be
finite. This assumptions is not fulfilled for every standard distribution, e.g. the
Student’s t-distribution with v ≤  possess an infinite variance.

For more detailed information about the disadvantages or fallacies we refer to []. Al-
though this concept of correlation () to measure dependence inherits several limitations,
it has been widely applied in financial applications.

In financial markets, the first problem of using a correlation concept is the observability.
Unlike prices, volatilities, exchange rates and so on, the correlation cannot be observed
directly in the market and can only be measured in the context of a model. The easiest
estimator of the correlation is the sample correlation coefficient. Given a series of N mea-
surements of X and X, which are observable quantities in the market, and denoting the
measurements by x,j and x,j, j = , , . . . , N , the sample coefficient correlation reads

ρ̂ =
∑N

j=(x,j – μ̄)(x,j – μ̄)
√∑N

j=(x,j – μ̄) ∑N
j=(x,j – μ̄)

, ()

where μ̄ and μ̄ are the sample means of X and X.
In financial models, stochastic processes are used quite often to model data series, like

price, interest rate and exchange rate. When considering diffusion processes, the depen-
dence between the series is given by correlated Brownian motions. Two Brownian motions
W and W are correlated by the symbolic notion

dW,t dW,t = ρ, dt. ()

For example, in the multivariate Black-Scholes model, the correlation of the log-returns
is used as a measure of the dependence between asset processes. A further example of
coupled stochastic processes appears when pricing a quantity adjusting option (Quanto)
in the framework of the Black-Scholes model:

⎧
⎨

⎩
dSt = μSSt dt + σSSt dW S

t ,

dRt = μRRt dt + σRRt dW R
t ,

()
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with positive constants μS , μR, σS and σR. The first stochastic differential equation (SDE)
describes the price, St of the traded asset in a currency A. The second SDE is used to
model the exchange rate Rt between currency A and another currency B. Besides, the
Brownian motions are assumed to be correlated by a constant correlation ρ ∈ [–, ] which
is a measure of co-movements between St and Rt .

As we explained above, the constant correlation coefficient defined by () only captures
linear relationships between X and X. Therefore, in the model () a linear dependence
between St and Rt is assumed. However, from the market we realize that there is often a
nonlinear dependence between St and Rt . Specifically, a constant correlation means that
the two return processes are jointly stationary which is generally not true in the real world.
Thus, the dependence can be hardly modelled by a fixed constant, i.e. the constant cor-
relation may not be an appropriate measure of co-dependence. Using constant (“wrong”)
correlation may result some ’correlation risk’. There exist already some works which show
that the correlation should not be constant and even changes over a small time interval
as the volatility, see e.g. []. Several approaches generalize the constant correlation to a
time-varying and stochastic concept, like Dynamic Conditional Correlation model in [],
Local correlation models see e.g. [] and the Wishart autoregressive process proposed by
Gourieroux [] that guarantees the positive definiteness of the variance-covariance ma-
trix.

In fact, either implied correlation in the context of a model or historical correlation from
the market data show us that the correlation should be time-varying and behave like a
stochastic process. To illustrate this statement, we make an example of historical correla-
tions between S&P  index and Euro/US-Dollar exchange rate on a daily basis. We use
s̄ and r̄ to denote the daily return series of S&P  and Euro/US-Dollar exchange rate
and fix a time window nT , e.g. nT =  for -day historical correlation. At time t, using
the nT times most recent daily returns, the correlation at time t is given by the following
estimator

ρ̂t =
∑nT

j=(ŝt–j – 
nT

∑nT
j= ŝt–j)(r̂t–j – 

nT

∑nT
j= r̂t–j)

√∑nT
j=(ŝt–j – 

nT

∑nT
j= ŝt–j) ∑nT

j=(r̂t–j – 
nT

∑nT
j= r̂t–j)

. ()

Then we roll it to the time t + , and so on to obtain a series of correlations through the
time. The -day, -day and -day historical correlations are displayed in Figure .

We observe that the longer a time window (the value of nT ) the less volatile a historical
correlation is. In Figure , the -day historical correlation is more variable than the -
day historical correlation which is again more variable than the -day correlation. With
a longer averaging period a long-term correlation is calculated. If we choose nT =  or 
days, the estimated correlation for each time t using (), could be seen as a short-term
correlation of the current market phenomena whose immediate past returns are used for
the estimation. It is worthwhile noting that the events, especially, some extreme events in
a time window will affect the correlation which would be estimated in the following time
windows, even has a delayed effect on the long-term correlation.

If one assumes that the phenomena in the past could have a reflection in the future,
one would like to use the historical correlation as a forecast for the future. It could be
a better way for correlation forecasting, if one describes the correlation using a mean-
reverting stochastic process. Besides, modelling correlation as a stochastic process, not only
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Figure 1 Historical correlation between S&P 500 and Euro/US-Dollar exchange rate, source of data:
www.yahoo.co.

Figure 2 Empirical density function of the historical correlation between S&P 500 and Euro/US-Dollar
exchange rate.

the variation of the short-term correlation can be reflected, also the attributes of long-term
correlation is determined by the long-term parameter values, like long-term mean value
and mean reversion speed.

To see more properties, which a mean-reverting stochastic process should have to be
a SCP, we plot its empirical density functions in Figure  using different bandwidths. We
refer to [] for details about the estimation of a density function from historical data.

From studying the empirical density functions we require that the stochastic correlation
process should satisfy the following properties:

(i) only takes values in the interval (–, ),
(ii) varies around a mean value,

(iii) the probability mass tends to zero at the boundaries –, +.
One stochastic correlation process was proposed by van Emmerich [], including a re-

striction on the parameter range to ensure that the boundaries – and  of the correlation
process are not attractive and unattainable. A modified Jacobi process is suggested in []
modelling stochastic correlation. A more general stochastic correlation process was pro-
posed by Teng et al. [], which relies on the hyperbolic transformation with the hyper-

http://www.yahoo.co
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bolic tangent function of any mean-reverting process with positive and negative values,
the properties (i)-(iii) above can be thus directly satisfied without facing any additional
parameter restrictions. Hence, the subsequent calibration process is much simpler.

In this work, we study the general SCP by Teng et al. []. We show that the correla-
tion process by van Emmerich can be obtained by this general method, i.e. the correlation
process by van Emmerich turns out to be a special case of the hyperbolic transformation
of a stochastic process. Furthermore, we apply this general approach to find a new SCP
which has a transition density function in closed form. Finally, as an illustrating exam-
ple, we compute the price of a Quanto under stochastic correlation by our new SCP and
investigate the effect of considering stochastic correlation on pricing the Quanto.

2 A general stochastic correlation model
Here we study the hyperbolic transformation proposed in [] of a mean-reverting process
to be a correlation process. We show that the correlation process model of van Emmerich
[] can be obtained by transforming a mean-reverting process with the hyperbolic tan-
gent function. We fix a probability space (�,F ,P) and an information filtration (Ft)t∈R+

satisfying the usual conditions, see e.g. [].

2.1 The transformed mean-reverting process
For the motivations and the properties (i)-(iii) in Section , Teng et al. [] proposed the
hyperbolic tangent function of a mean-reverting stochastic process Xt , like the Ornstein-
Uhlenbeck process [] or the square root diffusion processes (with positive and negative
values)

dXt = a(t, Xt) dt + b(t, Xt) dWt , t ≥ , X = x, ()

to model the correlations as

ρt = tanh(Xt), ρ = tanh(x) ∈ (–, ). ()

Obviously, the properties (i)-(iii) are fulfilled due to the range of values of the hyperbolic
tangent function and mean reversion of the process. Besides, the function tanh is sym-
metrical and measurable. Although the function tanh can not really attain – and  which
presents perfect negative and perfect positive dependence, respectively. It should make no
difference to use this function for modelling correlations, because the correlation equal to
– or  is indeed an extreme event which happens very rarely in the real market, see e.g.
Figure . Besides, the function tanh tends to the boundaries – and  at infinity.

Applying Itô’s Lemma with ()

dρt = d tanh(Xt) =
∂ tanh(Xt)

∂t
dt +

∂ tanh(Xt)
∂x

dXt +



∂ tanh(Xt)
∂x (dXt), ()

we obtain the stochastic correlation process (SCP)

dρt =
(
 – ρ

t
)((

ã – ρt b̃)dt + b̃ dWt
)
, t ≥ , ()

where ρ ∈ (–, ), ã = a(t, artanh(ρt)) and b̃ = b(t, artanh(ρt)). From () we see that there
is a suitable number of free parameters to calibrate the model to market data. Besides, it
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is obvious that, in this approach any mean-reverting process (with positive and negative
values) can be considered without facing any additional parameter restrictions. The free
parameters are hidden in the functions a and b, see the example () in Section . and
() in Section ..

2.2 Transformation with other functions
Although we could intuitively observe that the function tanh(x) is eminently suitable for
correlation modelling, one can still ask whether other functions having values inside the
interval (–, ), like trigonometric functions or 

π
arctan( π

 x), x ∈R can also be applied for
this purpose? In theory, such functions could be used for the SCP model above. However,
the trigonometric function is a periodic function, the arising complex number will com-
plicate further calculations. For the function 

π
arctan( π

 x), its Itô’s formula for () is given
by

dρt = d

π

arctan

(
π


Xt

)
=

(
ã

( + tan( ρtπ
 ))

–
π b̃ tan( ρtπ

 )
( + tan( ρtπ

 ))

)
dt

+
b̃

( + tan( ρtπ
 ))

dWt , ()

which is rather complicate such that the further computation will be tedious. Further-
more, we compare the function 

π
arctan( π

 x) with tanh(x) in Figure  and find that the
both function are close to each other in the neighbourhood of x = . However, compared
with tanh(x), the function 

π
arctan( π

 x) grows much slower up to  and down to –, so that
the estimation of the correlation will be worsened. The reason is similar to the estimation
for the heavy tailed distributions.

2.3 The correlation model of van Emmerich
As an example, we show that the correlation model of van Emmerich can be obtained by
transforming the special mean-reverting process (), i.e. the van Emmerich’s correlation

Figure 3 Comparison of tanh(x) and 2
π arctan( π

2 x): the later is less steep having larger tails.
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process is just a special case of the general transformation []. To do so, we define the
following mean-reverting process

dXt =
κ(μ – tanh(Xt))

 – tanh(Xt)
dt +

σ
√

 – tanh(Xt)
dWt , t ≥ , X = x, ()

where κ and σ are positive, μ ∈ (–, ). Next, we transform () with ρt = tanh(Xt). Again,
applying Itô’s Lemma we obtain after a tedious calculation

dρt =
[(

κ(μ – ρt)
)

– σ ρt
]

dt + σ

√
 – ρ

t dWt . ()

Next, if we define

κ∗ = κ + σ , μ∗ =
κμ

κ + σ  , σ ∗ = σ ()

the correlation process () can be rewritten as

dρt = κ∗(μ∗ – ρt
)

dt + σ ∗
√

 – ρ
t dWt , ()

which is exactly the van Emmerich’s correlation process in []. Due to the transformation
with the function tanh, the correlations provided by (), with coefficients (), are obvi-
ously located in the interval (–, ). We can check this important property in another way:
We recall that van Emmerich [] derived the analytic condition

κ∗ ≥ σ ∗

 ± μ∗ ()

to ensure that the boundaries – and  are unattainable. We see that the correlation process
() must have already satisfied the condition (): Substituting () in () we obtain

σ 

κ( ± μ) + σ  ≤ , ()

which always holds whilst κ is positive and μ ∈ (–, ).

3 Stochastic correlation with a modified Ornstein-Uhlenbeck process
In this section, we specify a SCP by a hyperbolic transformation of the modified Ornstein-
Uhlenbeck process. The derivation of the transition density function of this SCP is pro-
vided in a closed form. Then, we analyse this density function and show how to fit the
correlation process to the historical market data.

3.1 The transformed modified Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process is defined by the SDE

dXt = κ(μ – Xt) dt + σ dWt , ()

where κ ,σ >  and X,μ ∈ R. If we want to restrict the mean reversion value μ to be only
in (–, ), it is reasonable to modify the Ornstein-Uhlenbeck process () as

dXt = κ
(
μ – tanh(Xt)

)
dt + σ dWt , ()
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where κ ,σ >  and X,μ ∈ (–, ).

Lemma  The SCP ρt = tanh(Xt) satisfies the SDE

dρt =
(
 – ρ

t
)(

κ(μ – ρt) – σ ρt
)

dt +
(
 – ρ

t
)
σ dWt , ()

where t ≥ , ρ ∈ (–, ), κ ,σ >  and μ ∈ (–, ).

Proof Applying Itô’s Lemma we obtain

dρt =
∂ tanh(Xt)

∂x
dXt +




∂ tanh(Xt)
∂x σ  dt

= sech(Xt)κ
(
μ – tanh(Xt)

)
dt – sech(Xt)

sinh(Xt)
cosh(Xt)

σ  dt + sech(Xt)σ  dWt

=
(
 – ρ

t
)
κ(μ – ρt) dt –

(
 – ρ

t
)
ρtσ

 dt +
(
 – ρ

t
)
σ  dWt = (). �

Let us introduce the notation

κ∗ = κ + σ , μ∗ =
κμ

κ + σ  , σ ∗ = σ . ()

and rewrite () as

dρt

 – ρ
t

= κ∗(μ∗ – ρt
)

dt + σ ∗ dWt , ()

where t ≥ , ρ ∈ (–, ), κ∗,σ ∗ >  and μ∗ ∈ (–, ).

3.2 Transition density function
For calibration purposes, we first determine the transition density function of () with the
aid of the Fokker-Planck equation []. Then, we obtain the parameters of the correlation
process () by fitting the density function to the market data.

Let us assume that the SCP () possesses a transition density f (t, ρ̃|ρ) which satisfies
the following Fokker-Planck equation

∂

∂t
f (t, ρ̃) +

∂

∂ρ̃

(
â(t, ρ̃)f (t, ρ̃)

)
–




∂

∂ρ̃

(
b̂(t, ρ̃)f (t, ρ̃)

)
= , ()

with

â(t, ρ̃) = κ∗(μ∗ – ρ̃
)(

 – ρ̃), b̂(t, ρ̃) =
(
 – ρ̃)σ ∗. ()

For the calibration purpose we consider the stationary density (for t → ∞)

f (ρ̃) := lim
t→∞ f (t, ρ̃|ρ). ()

With the above construction the SCP () is also a mean-reverting process. Thus one can
show that every two solutions of () are the same for t → ∞, i.e. a unique stationary
solution f (ρ̃) exists, cf. [].
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In the sequel, we show how to determine the analytical stationary density function f (ρ̃)
of the SCP (). First, the stationary density function f (ρ̃) obviously satisfies

∂

∂ρ̃

((
 – ρ̃)(κ∗(μ∗ – ρ̃

))
f (ρ̃)

)
=




∂

∂ρ̃

((
 – ρ̃)σ ∗)f (ρ̃). ()

By solving the elliptic equation () with the aid of using Maple we obtain the stationary
density f (ρ̃) as

f (ρ̃) =
m


κ∗
σ∗

( + ρ̃)
κ∗–σ∗

σ∗ + κ∗μ∗
σ∗ ( – ρ̃)

κ∗–σ∗

σ∗ – κ∗μ∗
σ∗

+
n

ρ̃ – 

(



) σ∗–κ∗
σ∗

F
(

,
σ ∗ – κ∗

σ ∗ ,
(–μ∗ – )κ∗ + σ ∗

σ ∗ ,
ρ̃


+




)
()

with the constants m, n ∈R and the hypergeometric function F which is defined as

F(a, b, c, x) =
∞∑

k=

xk

k!
(a)k(b)k

(c)k
, |x| < , ()

where (·)k denotes the Pochhammer symbol,

(a)k = a(a + )(a + ) · · · (a + k – ), (a) = . ()

Next we need to fix the constants m and n in () to obtain the stationary density. Due to
the mean reversion the stationary density f (ρ̃) must satisfy

∫ 

–
ρ̃f (ρ̃) dρ̃ = μ∗.

If we choose μ∗ = , we observe that the first term in () becomes

m


κ∗

σ∗
( + ρ̃)

κ∗–σ∗

σ∗ ( – ρ̃)
κ∗–σ∗

σ∗ , ()

which is obviously symmetric around ρ̃ = , i.e. the condition () will be fulfilled for n = .
In the sequel we assume that n ≡  for all general μ∗ ∈ (–, ) such that the transition
density function () can be rewritten as

f (ρ̃) =
m


κ∗

σ∗
( + ρ̃)

κ∗–σ∗

σ∗ + κ∗μ∗
σ∗ ( – ρ̃)

κ∗–σ∗

σ∗ – κ∗μ∗
σ∗ . ()

To determine the value of m we can employ the basic property of a density function

∫ 

–
f (ρ̃) dρ̃ = . ()

The constant m in () must be chosen such that the normalization condition () is always
fulfilled. We set

a =
κ∗ – σ ∗

σ ∗ , b =
κ∗μ∗

σ ∗ , ()
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and substitute it into () to obtain

f (ρ̃) =
m


κ∗

σ∗
( + ρ̃)a+b( – ρ̃)a–b. ()

As long as

a ± b > –, ()

the integral

∫ 

–
( + ρ̃)a+b( – ρ̃)a–b dρ̃

has the solution

M :=
�( + a – b)F(, –a – b,  + a – b, –)

�( + a – b)

+
�( + a + b)F(, –a + b,  + a + b, –)

�( + a + b)
, ()

with the hypergeometric function F defined in () and the gamma function �.
Next we show that if μ ∈ (–, ) then () holds. Using the definitions of κ∗, μ∗ and σ ∗

in () and together with () we obtain

a =
κ∗ – σ ∗

σ ∗ =
κ – σ 

σ  , b =
κ∗μ∗

σ ∗ =
κμ

σ  . ()

We consider the following simple calculations

μ > – ⇒ κ( + μ) >  ⇒ κ – σ 

σ  +
κμ

σ  > – ⇒ a + b > –,

μ <  ⇒ κ( – μ) >  ⇒ κ – σ 

σ  –
κμ

σ  > – ⇒ a – b > –

and realize that the condition () will always hold due to μ ∈ (–, ). Thus, the constant
m can be determined as

m =


κ∗
σ∗

M
. ()

Finally, we obtain the transition density function in a closed form as

f (ρ̃) =
( + ρ̃)a+b( – ρ̃)a–b

M
, ()

with a, b defined in () and M in (). The parameters κ∗, μ∗ and σ ∗, or rather, κ , μ and
σ can be obtained by fitting the expression () to the historical correlation from market
data, see Section ..
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We could generalize the correlation process () with the same definition but directly
with the arbitrary parameter coefficients κ > , μ ∈ (–, ) and σ > , like

dρt

 – ρ
t

= κ(μ – ρt) dt + σ dWt . ()

For this case, we have for a and b, as defined in (), as

a =
κ – σ 

σ  , b =
κμ

σ  . ()

We perform a similar calculation for checking the condition () as above:

a + b > – ⇐ κ – σ 

σ  +
κμ

σ  > – ⇐ κ( + μ) > σ  ⇐ κ >
σ 

 + μ
,

a – b > – ⇐ κ – σ 

σ  –
κμ

σ  > – ⇐ κ( – μ) > σ  ⇐ κ >
σ 

 – μ
.

Thus, the process () could be employed for the stochastic correlation if the condition

κ >
σ 

 ± μ
()

is fulfilled. We find that this condition dovetails nicely with that condition in [], which
ensures that the boundaries – and  are unattainable.

To further illustrate the transition density function f (ρ̃), we display in Figures ,  and 
the behaviour of f (ρ̃) for different values of each parameter. In Figure , we let κ =  and
μ =  and display f (ρ̃) ith different values of σ , which is equal to ., . and ., respec-
tively. Obviously, σ shows the magnitude of variation from the mean value μ = . Next, we
fix κ =  and σ = ., the behaviour of f (ρ̃) only with varying mean value μ = –., μ = 
and μ = . can be found in Figure . However, whilst μ = –. and μ = . we can observe
that the peak of the corresponding f (ρ̃) does not locate exactly at the points ρ̃ = –. and
ρ̃ = ., respectively. The reason is that, the value of κ , which is mean reversion rate, is not
large enough. In order to illustrate the role of κ , we set μ = –., σ = . and vary the value

Figure 4 Comparison of f (ρ̃) for different
values of σ (κ = 2 and μ = 0).
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Figure 5 Comparison of f (ρ̃) for different values
of μ (κ = 2 and σ = 0.3).

Figure 6 Comparison of f (ρ̃) for different values
of κ (μ = –0.5 and σ = 0.5).

of κ , see Figure . For κ = , the peak of the transition density function is far away from the
mean value –.. However, in contrast the peak reaches already the point ρ̃ = –. when
κ = .

3.3 Calibration
We assume that the correlation is itself observable. Under this assumption the transition
density can be used for calibration purposes. One uses usually maximum-likelihood esti-
mation (MLE) when the density function is known. Considering the density function (),
it will be tedious to determine its likelihood-function.

Another approach to estimate the parameters is to fit the empirically observed density
to the stationary density (). As an example we fit the historical data from Figures a to
(). The fitting by nonlinear least-squares works well, see Figure .

4 Stochastically correlated Brownian motions
The remaining problem is how to incorporate the stochastic correlation process in the
financial model, e.g. how to use the stochastic correlation in the option pricing model. In
Section , we mentioned that a widely used approach for dependence is to consider the
(constant) correlated Brownian motions. In order to consider a stochastic correlation, we



Teng et al. Journal of Mathematics in Industry  (2016) 6:2 Page 13 of 18

Figure 7 Correlation between S&P 500 and
Euro/US-Dollar exchange rate, empirical density
compared to density (39) computed with κ
= 7.937, μ = 0.003 and σ = 1.186 (mean squared
error: 2.46e–06).

need the concept of stochastically correlated Brownian motions. In the following, we study
the stochastically correlated Brownian motions following the work of van Emmerich [].

Based on two independent Brownian motions W,t and W,t we define

W,t =
∫ t


ρs dW,s +

∫ t



√
 – ρ

s dW,s, ()

where ρt is one SCP of type (), and we assume that Wt in () is independent of each
Wi,t , for i = , .

Lemma  W,t satisfies
() W, = ,
() E[(W,t)] = t,
() E[W,t|Fs] = W,s, for s ≤ t.

Proof () is obvious. We calculate the two expected values as follows:

E
[
(W,t)] = E

[(∫ t


ρs dW,s

)

+
(∫ t



√
 – ρ

s dW,s

)

+ 
∫ t


ρs dW,s

∫ t



√
 – ρ

s dW,s

]

= E

[∫ t


ρ

s ds +
∫ t



(
 – ρ

s
)

ds
]

+ E

[

∫ t


ρs dW,s

∫ t



√
 – ρ

s dW,s

]

︸ ︷︷ ︸
=, since W⊥W

=
∫ t


 ds = t,

E[W,t|Fs] = W,s + E

[∫ t

s
ρs dW,s +

∫ t

s

√
 – ρ

s dW,s

∣
∣∣Fs

]

︸ ︷︷ ︸
:=

.

�

This means that we have defined one new Brownian motion W,t regarding the two in-
dependent Brownian motion W,t and W,t . Besides, we can check that

E[W,t · W,t] = E

[∫ t


ρs ds

]
, ()
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which is the definition for the case that the Brownian motions W,t and W,t are correlated
by the SCP ρt . One can immediately see that () agrees for

E[W,t · W,t] = ρt, ()

where W,t and W,t are correlated by the constant ρ . Indeed, () can be also seen as that
W,t and W,t are correlated by the average correlation


t

∫ t


E[ρs] ds ()

which is a constant.

5 Pricing quantos with stochastic correlation
To illustrate the impact of using stochastic correlation on option pricing, we use quanto
options as an example. These options hedge the exchange rate risk when investing in fi-
nancial products not valued in the domestic currency. To price these options, one has to
consider the correlation between the currency exchange rate Rt between domestic and
foreign currencies, and the price St of the underlying. We assume that St and Rt satisfy the
SDEs

⎧
⎨

⎩
dSt = μSSt dt + σSSt dW S

t ,

dRt = μRRt dt + σRRt dW R
t ,

()

where W S
t and W R

t are correlated using the SCP () as:

dρt

 – ρ
t

= κ(μ – ρt) dt + σ dWt . ()

Wt is assumed to be independent of W S
t and W R

t .
We consider as an example a Put-Option on the S&P  with payoff in Euro []

(Strike︸ ︷︷ ︸
:=K

– S&P T︸ ︷︷ ︸
:=ST

)+,

where (·)+ = max(, ·). Then the payoff in US-Dollar can be written with the Euro/US-
Dollar exchange rate as

exchangeRate︸ ︷︷ ︸
:=R

·(Strike – S&P T )+.

We denote the risk-free interest rate of Euro and US-Dollar respectively by re and rd . If
W S

t and W R
t are correlated with a constant correlation, the price of a Quanto Put-Option

in the Black-Scholes (BS) model with continuous dividend yield is []:

PQuanto(S, K , re, rd, D,σS,σR, T) = R
(
K exp–rdT N (–d) – S exp–DT N (–d)

)
,
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with

d =
log( S

K ) + ((rd – D) + σ
S
 )/T

σS
√

T
, d = d – σS

√
T , D = rd – re + ρσSσR.

We follow the train of thoughts in van Emmerich [] to incorporate the stochasticity
of the correlation in the BS price. The no-arbitrage principle requires


R

exp(reT)E[RT ] = exp(rdT) ()

and


R


S

E[ST RT ] = exp(rdT). ()

() can be interpreted as: The expected return of one unit of US-Dollar, exchanged to
Euro, risk-free invested in the Euro countries and re-exchanged to US-Dollar must equal
the risk-free return on one unit of US-Dollar in US-Dollar countries. The interpretation
of () is analogous, the left side of () describes the re-exchanged expected value of an
investment of one US-Dollar into the underlying with price S. Further computing () and
() by aid of Itô’s lemma we obtain

μR = rd – re ()

and

μS = rd – μR – σSσR

T

∫ T


ρt dt. ()

In the BS model, we interpret () as a return minus the continuous dividend

D(ρt) := μR + σSσR

T

∫ T


ρt dt = rd – re + σSσR


T

∫ T


ρt dt.

The integral of the stochastic correlation ρt can be computed numerically using e.g. the
Milstein scheme []. Finally, the price of a Quanto Put-Option in the extended BS model
incorporating the SCP reads

PQuanto = PQuanto
(
S, K , re, rd, D(ρt),σS,σR, T

)

= R
(
K exp–rdT N (–d) – S exp–D(ρt )T N (–d)

)
()

with

d =
log( S

K ) + ((rd – D(ρt)) + σ
S
 )/T

σS
√

T
, d = d – σS

√
T .

The price of a Quanto Call-Option is derived easily from the put-call parity [].
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Figure 8 BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.05, re = 0.03, σS = 0.2, σR = 0.4, SCP
parameters: κ = 7.937, μ = 0.003, σ = 1.186 and ρ0 = 0.3.

We use a conditional Monte-Carlo approach and first simulate all the paths of ρ i
t , for

i ∈ {, , . . . , M} and for each path we can compute a price Pi
Quanto by the pricing formula

(). Then the fair price P is the mean value over all prices

P = E
[
E[PQuanto|Ft]

] ≈
∑M

i= Pi
Quanto

M
. ()

In Figure , we assume the parameter for the Black-Scholes model and use the estimated
parameter for the SCP model (see Figure ). Besides, we apply the sample coefficient corre-
lation () to estimate a constant correlation using the whole historical data (Jan -Mar
) of S&P  and Euro/US-Dollar exchange rate, which is .. At the same time,
we can let the SCP starting from the first correlation in the historical correlations. In Fig-
ure b we present the relative difference between the price with constant correlation and
stochastic correlation. We can observe, whilst the maturity T is shorter than three years,
the prices with constant correlation are lower than the prices with stochastic correlation.
However, for the contracts with maturities which are longer than three years, the prices
using constant correlation are higher than the prices using stochastic correlation. The
reason for this, for a short maturity (T < ), the SCP provides the correlations which are
still closed to the initial correlation ρ = ., which is larger than the constant correlation
ρ = .. Since the price of quanto increases direct proportional with the correlation,
therefore, the prices using stochastic correlation are higher than the prices using constant
correlation for these short maturities. However, for the long maturities (T > ), the gener-
ated correlations will tend to the mean reversion value μ = . which are less than the
value of the constant correlation, the prices with the constant correlation are thus higher.

If we let ρ to be a value which is lower than the constant correlation ρ = ., e.g.
ρ = –.. And we choose a larger value for μ, say .. We can expect that the prices with
constant correlation will be higher than the prices with stochastic correlation only for the
short maturities. For the longer maturities, the prices using stochastic correlations are
higher, see Figures .

Furthermore, to illustrate the role of the parameters κ and σ in pricing a Quanto option,
we display the prices by varying the values of κ and σ in Figure a and b, respectively. In
Figure a we see that the both prices using constant and stochastic correlation are quite
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Figure 9 BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.05, re = 0.03, σS = 0.2, σR = 0.4, SCP
parameters: κ = 7.937, μ = 0.1, σ = 1.186 and ρ0 = –0.6.

Figure 10 BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.05, re = 0.03, σS = 0.2, σR = 0.4.

closed to each other for κ = . This is because that, for a large value of κ , the correlation
tends rapidly to the mean reversion value μ of the SCP process. And the value of μ has
been set to be equal to the value of constant correlation, the price differences are thus
quite small.

In contrast, fixing a value for κ , the price differences between using constant and
stochastic correlation become bigger by increasing the value of the diffusion σ (and thus
randomness in the SCP process), as shown in Figure b.

6 Conclusion
In this work we have revised concisely some stochastic correlation models. Market obser-
vations give strong evidence that financial quantities are correlated in a strongly nonlin-
ear, non-deterministic way. Instead of assuming a constant correlation, correlation has to
be modelled as a stochastic process. We discussed first the general stochastic correlation
model proposed in [] and proved that the stochastic correlation process in [] can be
obtained by applying this general approach.

We generalized our approach [] to derive a stochastic correlation model from a hyper-
bolic transformation of the modified Ornstein-Uhlenbeck process allowing for a transi-
tion density function in a closed form and an easy-to-handle calibration to historical data.
As an example, we computed the fair price of a Quanto Put-option with stochastic cor-
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relation. The numerical results showed that the correlation risk caused by using a wrong
(constant) correlation model cannot be neglected.
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