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Abstract

Compressed sensing (CS) is a rising focus in recent years for its simultaneous sampling and compression of sparse
signals. Speech signals can be considered approximately sparse or compressible in some domains for natural
characteristics. Thus, it has great prospect to apply compressed sensing to speech signals. This paper is involved in
three aspects. Firstly, the sparsity and sparsifying matrix for speech signals are analyzed. Simultaneously, a kind of
adaptive sparsifying matrix based on the long-term prediction of voiced speech signals is constructed. Secondly, a
CS matrix called two-block diagonal (TBD) matrix is constructed for speech signals based on the existing block
diagonal matrix theory to find out that its performance is empirically superior to that of the dense Gaussian
random matrix when the sparsifying matrix is the DCT basis. Finally, we consider the quantization effect on the
projections. Two corollaries about the impact of the adaptive quantization and nonadaptive quantization on
reconstruction performance with two different matrices, the TBD matrix and the dense Gaussian random matrix,
are derived. We find that the adaptive quantization and the TBD matrix are two effective ways to mitigate the
quantization effect on reconstruction of speech signals in the framework of CS.
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1 Introduction
In recent years, compressed sensing (CS) [1-4] has been
a new and popular paradigm of signal acquisition and
compression in applied science and engineering such as
image processing, wireless communication, magnetic
resonance imaging (MRI) and so on. In contrast with
the conventional Nyquist sampling theorem, CS theory
demonstrates that a sparse signal can be exactly recovered
through far fewer projections, providing that the sensing
matrix is highly incoherent with the sparsifying matrix.
As an important branch of signal processing, speech

signal processing has achieved a considerable develop-
ment in past decades. In addition, the application of CS
theory to the field of speech signal processing is becom-
ing a rising research focus. In [5,6], the sparsity of the
residual excitation is utilized to construct sparsifying
matrices for voiced speech signals. However, in the
aforementioned two literatures, the sparsifying matrix
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constructed using the impulse response for voiced
speech is impractical for its dependence on the currently
reconstructed signal itself. Therefore, a codebook of
impulse response vectors generated from the training
speech data is proposed as the sparsifying matrix in [5].
This work also constructs an adaptive sparsifying

matrix for voiced speech based on the quasi-periodicity
during voiced segments. And this adaptive sparsifying
matrix is a kind of symmetric cyclic matrix which is gen-
erated on the basis of the long term prediction. There-
fore, this adaptive sparsifying matrix is dependent on the
previously reconstructed signal instead of the current
signal.
Then, a kind of CS matrix called two-block diagonal

(TBD) matrix is constructed for voiced speech signals.
The concentration inequality of the TBD matrix is simply
demonstrated in Section 4. Subsequently, we can find that
the TBD matrix satisfies the restricted isometry property
(RIP) [7] according to a theorem in [8].
The third key point of this work to be discussed is

quantization. It is well known that analog signals should be
sampled, quantized and then encoded before transmission.
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Thus, quantization of CS projections is of great import-
ance. The distortion rate performance and some mea-
sures to mitigate the impact of quantization noise on
reconstruction have been considered in [9-15]. In this
paper, we apply uniform scalar quantization to the mea-
surements of the speech signal and quantitatively show
that how adaptive quantization affects the reconstruction
quality compared with the nonadaptive quantization. In
addition, we find that the TBD matrix is more robust to
the quantization noise than the dense Gaussian matrix
based on the fact that the TBD matrix can effectively
restricted the impact of quantization noise on recon-
struction of speech signals.
The rest of the paper is organized as follows. In

Section 2, we briefly review the principle of CS. Section
3 presents the construction of an adaptive sparsifying
matrix for voiced speech signals. In Section 4, a sensing
matrix is constructed for voiced speech signals. And in
Section 5, the effect of quantization of projections on
reconstruction is discussed. Section 6 then concludes
our work.

2 Compressed sensing background
Supposed that a vector x ¼ x 1ð Þ x 2ð Þ ⋯ x Nð Þ½ �T
can be represented as a linear combination of some basis
vectors {φ1 φ2 ⋅ ⋅ ⋅ φN }, we have

x ¼ Ψθ ¼
XN

i¼1
φiθ ið Þ ð1Þ

where Ψ = [ϕ1ϕ2 ⋅ ⋅ ⋅ϕN] and θ ¼ θ 1ð Þ θ 2ð Þ ⋯ θ Nð Þ½ �T .
If the number of nonzero entries of θ which can be repre-
sented as θk kl0 satisfies

θk kl0 ≤ K ð2Þ

x is considered to be K-sparse with respect to Ψ. Then Ψ is
called a sparsifying matrix.
And a matrix Φ ∈ RM ×N can be employed to project a

N-dimensional vector onto a M-dimensional subspace.
Then, we can acquire a low-dimensional vector y and
we have

y ¼ Φx ¼ ΦΨθ ¼ Aθ ð3Þ

where Φ is called the sensing matrix and A is named
the CS matrix. It is required that the CS matrix must
satisfy certain conditions for effective reconstruction
of the coefficient vector θ. And RIP is a sufficient con-
dition for effective reconstruction. In the following,
we firstly recall the definition of restricted isometry
constant.
Definition 1(Restricted isometry constant) ([7,16]). The

restricted isometry constant δK of matrix A is defined as
the smallest quantity such that

1� δKð Þ θk k2l2 ≤ Αθk k2l2 ≤ 1þ δKð Þ θk k2l2 ð4Þ

holds for all K-sparse vectors. And the matrix A is said to
satisfy K-order RIP with prescribed constant δK.
Although Eq. (3) is ill-conditioned, it is demonstrated

in [16] that as

δ2K <
ffiffiffi
2

p
� 1 ð5Þ

we can find the exact solution for K-sparse vector θ
from

min θk kl1 s:t: y ¼ Αθ ð6Þ

which is called BP algorithm [17].
When the measurement vector is corrupted by

bounded noise and can be represented as

y ¼ Aθ þ t ð7Þ

we can employ the basis pursuit denoising (BPDN)
algorithm [17]

min θk kl1 ::s:t: y� Aθk kl2 ≤ ε ð8Þ

to achieve effective reconstruction, where ε is an upper
bound of l2-norm of the noise vector t. A theorem introdu-
cing the reconstruction performance of BPDN algorithm
in detail is presented in Section 5 which is firstly formu-
lated in [16].
Another kind of reconstruction algorithms are

named greedy pursuit algorithms including orthogonal
matching pursuit (OMP) [18], subspace pursuit (SP) [19],
stagewise orthogonal matching pursuit (StOMP) [20],
regularized orthogonal matching pursuit (ROMP) [21]
and sparsity adaptive matching pursuit (SAMP) [22].

3 Sparsity and sparsifying matrix of speech
signals
Speech signals, because of their natural characteristics
such as the rich frequency components, cannot meet
the definition of exact sparsity in a strict sense. And
speech signals can only be regarded as compressible
with a lot of nonzero but small coefficients in some
basis like DCT. It is known that sparsity of signals is
the precondition of CS. Thus, in the following, we
firstly construct an adaptive sparsifying matrix for
voiced segments.
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3.1 Sparsifying matrix and sparsity of voiced speech
The sparsity of voiced speech has some bearing on
its quasi-periodicity. In conventional speech signal
coding system, the long-term prediction is always
used to minimize the mean-square error between the
predicted and the true values of voiced speech signals
[23]. Supposing that a voiced segment includes several
pitch periods (the reciprocal of vibration frequency of
vocal cords) and xi and xi+1 denote the vectors of
the ith period and the (i+1)th period respectively,
according to the principle of long-term prediction, we
have

xiþ1 nð Þ ≈ β �1ð Þxi n� Tþ 1ð Þ þ β 0ð Þxi n� Tð Þ
þ β 1ð Þxi n�T�1ð Þ n ¼ iT; iTþ 1;⋯ iþ 1ð ÞT� 1ð Þ

ð9Þ

where T denotes the number of samples in a pitch
period, namely, pitch period. In terms of the quasi-
periodicity of voiced speech, some assumptions are
made below.
As for the first point and the last point in the (i+1)th

period, we have xi + 1(iT) ≈ β(−1)xi((i − 1)T + 1) + β(0)xi
((i − 1)T) + β(1)xi((i − 1)T − 1) and

xiþ1 iþ 1ð ÞT� 1ð Þ ≈ β �1ð Þxi iTð Þ þ β 0ð Þxi iT� 1ð Þ
þ β 1ð Þxi iT� 2ð Þ:

However, the time-domain range of xi is from (i − 1)T
to iT − 1. Therefore, in the duration of xi, we make artifi-
cially xi((i − 1)T − 1) and xi(iT) in Eq. (9) equal to xi(iT −
1) and xi((i − 1)T) and then we have
xiþ1 iTð Þ
xiþ1 iTþ 1ð Þ
xiþ1 iTþ 2ð Þ

⋮
xiþ1 iþ 1ð ÞT� 1ð Þ

2
66664

3
77775 ≈

xi i� 1ð ÞTð Þ xi i� 1ð ÞTþ 1ð Þ ⋯ xi iT� 1ð Þ
xi i� 1ð ÞTþ 1ð Þ xi i� 1ð ÞTþ 2ð Þ ⋯ xi i� 1ð ÞTð Þ
xi i� 1ð ÞTþ 2ð Þ xi i� 1ð ÞTþ 3ð Þ ⋯ xi i� 1ð ÞTþ 1ð Þ

⋮ ⋮ ⋮ ⋮
xi iT� 1ð Þ xi i� 1ð ÞTð Þ ⋯ xi iT� 2ð Þ

2
66664

3
77775

β 0ð Þ
β �1ð Þ

0
⋮

β 1ð Þ

2
66664

3
77775 ð10Þ
Furthermore, in terms of Eq. (10), we establish that
Ψ ¼

xi i� 1ð ÞTð Þ xi i� 1ð ÞTþ 1ð Þ xi i� 1ð ÞTþð
xi i� 1ð ÞTþ 1ð Þ xi i� 1ð ÞTþ 2ð Þ xi i� 1ð ÞTþð
xi i� 1ð ÞTþ 2ð Þ xi i� 1ð ÞTþ 3ð Þ xi i� 1ð ÞTþð

⋮ ⋮ ⋮
xi iT� 1ð Þ xi i� 1ð ÞTð Þ xi i� 1ð ÞTþð

2
66664
β ¼ β 0ð Þ β �1ð Þ 0 ⋯ β 1ð Þ½ �T ð12Þ

and

xiþ1 ≈Ψβ ð13Þ

Thus, the vector β is called the coefficient vector of xi+1
with respect to the adaptive sparsifying matrix Ψ and we
have

βk kl0 ¼ 3: ð14Þ

It is obvious that xi+ 1 is approximately sparse with
respect to the matrix Ψ defined in Eq. (11) which is
composed of components of xi. Thus, at the decoder, the
recovered signal of the current pitch period can be used
to constitute a sparsifying matrix for the signal of next
pitch period.
As the adaptive sparsifying matrix Ψ is a real symmetric

cyclic matrix, we can get its eigenvalues [24] which are
denoted by λm(m = 0, 1⋯T − 1). We define

f zð Þ ¼
XT�1

l¼0
xi i� 1ð ÞTþ lð Þzl ð15Þ

and

ω ¼ e j
2π
T ð16Þ

Supposed that T is even, we have

λ0 ¼ f 1ð Þ ð17Þ

λm ¼ f ωmð Þj j m ¼ 1; 2⋯
T
2
� 1

� �
ð18Þ
2Þ ⋯ xi iT� 1ð Þ
3Þ ⋯ xi i� 1ð ÞTð Þ
4Þ ⋯ xi i� 1ð ÞTþ 1ð Þ

⋮ ⋮
1Þ ⋯ xi iT� 2ð Þ

3
77775 ð11Þ
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λm ¼ � f ωm�T
2þ1

� ���� ��� m ¼ T
2
;
T
2
þ 1;⋯T� 2

� �
ð19Þ

and

λT�1 ¼ f �1ð Þ ð20Þ
Otherwise, when T is odd, we have

λ0 ¼ f 1ð Þ ð21Þ

λm ¼ f ωmð Þj j m ¼ 1; 2⋯
T� 1
2

� �
ð22Þ

and

λm¼� f ωm�T�1
2

� ���� ��� m¼T� 1
2

þ 1;
T� 1
2

þ2;⋯T�1

� �
:

ð23Þ
Moreover, we can recall the DFT transform of xi

which can be expressed as Xi kð Þ¼
XT�1

l¼0

xi i�1ð ÞTþlð Þω�lk .

Then we can obtain the relation between the eigenvalues
of the adaptive sparsifying matrix Ψ and the spectrum of
the signal xi. When T is even, we have

λm ¼ Xi mð Þj j m ¼ 1; 2⋯
T
2
� 1

� �
ð24Þ

and

λm ¼ � Xi m� T
2
þ 1

� �����
���� m ¼ T

2
;
T
2
þ 1;⋯T� 2

� �
ð25Þ

And when T is odd, we have

λm ¼ Xi mð Þj j m ¼ 1; 2⋯
T� 1
2

� �
ð26Þ

and

λm ¼ � Xi m� T� 1
2

� �����
����

� m ¼ T� 1
2

þ 1;
T� 1
2

þ 2;⋯T� 1

� �
ð27Þ

And we define

g ¼ λ0λT�1

YT�2

m¼1

λm ð28Þ

Moreover, if g ≠ 0, the adaptive sparsifying matrix Ψ
defined in Eq. (11) is invertible.
Although this adaptive sparsifying matrix is not a

canonical basis in a conventional sense, it has two advan-
tages. On the one hand, as an adaptive sparsifying matrix
which is constructed by the recovered signal, the decoder
doesn’t need additional storage space and at the
encoder it is not necessary to spend time attaining the
training data to construct the codebook and to trans-
mit it to the decoder such as the approach proposed
in [5]. On the other hand, the approximate sparsity of
speech signals with respect to this adaptive sparsifying
matrix is superior to the DCT basis, which can be
verified by the comparison of reconstruction performance
between the adaptive sparsifying matrix and the DCT
basis in the subsection 3.3.

3.2 Sparsity of unvoiced speech signals
The transform coefficients based on the spectral charac-
teristics of unvoiced speech signals are nearly uniformly
distributed in the frequency domain with no obvious
decay. Consequently, the sparsity of unvoiced speech sig-
nal with respect to the DCT basis is undesirable. Further-
more, we have not found a satisfactory sparsifying matrix
for unvoiced speech signals. Therefore, the usual practice
in the framework of CS is to apply the scheme to entire
speech signals and not to distinguish voiced speech sig-
nals and unvoiced speech signals in advance. Moreover,
we find that the overall performance has not been greatly
influenced, which can be verified by the simulation
results in the following subsection. The reason is that the
proportion of voiced speech is more than seventy per-
cent and voiced speech bears dominating information of
speech. Certainly, it is of great significance for us to seek
to construct a basis or a redundant dictionary for unvoiced
speech signals, which is the focus of our future work.

3.3 Simulation
Some simulation results are illustrated in this subsection
to show the performance of the adaptive sparsifying
matrix. The testing speech signals are sampled at 16KHz
with the length of a frame N=320. There are 152 frames
including 135 frames of voiced speech and 17 frames of
unvoiced speech. And the sensing matrix used in this
section is the dense Gaussian random matrix whose entries
are i.i.d Gaussian random variables with mean zero and
variance 1

M . And BP algorithm is used in this subsection to
achieve reconstruction of speech signals.
It should be pointed out that the first pitch period

in each frame is recovered with respect to the DCT
basis. Moreover, the following pitch periods are com-
pressed with the same compression rate and at the de-
coder we achieve reconstruction with respect to the
adaptive sparsifying matrix. The compression rate is
defined as

u ¼ M
N

ð29Þ
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Moreover, it is necessary for us to distinguish the com-
pression rate denoted as uf for the first pitch period and
the compression rate denoted as us for the following
periods. Thus, we have

uf ¼ Mf

N
ð30Þ

and

us ¼ Ms

N
ð31Þ

where Mf and Ms represent the number of measure-
ments for the first period and the following ones re-
spectively. Moreover, it is required that

uf ≥ us ð32Þ
for mitigating error propagation.
The measure used to evaluate the reconstruction per-

formance is signal to noise ratio (SNR) which is defined as

SNR ¼ 10log10
xk k2l2

x� x�k k2l2
ð33Þ

where x* is the reconstructed signal vector.
As the adaptive sparsifying matrix is constructed

according to the quasi-periodicity of voiced speech, it is
necessary for us to analyze the reconstruction perform-
ance of the different types of voiced speech signals. We
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Figure 1 Waveform of the first type of voiced speech signals and ave
speech signals. (b) Average compression rate with different values of uf a
make an analysis of the testing speech signals and iden-
tify three types of voiced speech signals which are shown
in Figure 1a, Figure 2a and Figure 3a. There are 41
frames, 21frames and 18 frames of voiced speech signals
similar to the first type, the second type and the third
type of voiced speech respectively in the testing speech
signals. Figure 1b, Figure 2b and Figure 3b show the
average compression rate for the above three types of
voiced speech signals.
Moreover, it is illustrated in Figure 4, Figure 5 and

Figure 6 the comparison of reconstruction qualities
for the above three different types of voiced speech
signals between the adaptive sparsifying matrix and
the DCT basis. Figure 4a, Figure 5a and Figure 6a
show average SNR of each pitch period with different
compression rates with respect to the adaptive sparsi-
fying matrix and the DCT basis. And Figure 4b,
Figure 5b and Figure 6b show average SNR of each
frame.
Regardless of the types of pitch periods, when us ≤ 0.5,

the reconstruction performance of the adaptive sparsify-
ing matrix is far better than that of DCT. But when us >
0.5, the adaptive sparsifying matrix and the DCT basis
have similar performance for the first type and third type
of voiced speech. However, for the second type of voiced
speech, the reconstruction performance of the adaptive
sparsifying matrix is slightly worse than that of the DCT
basis. The reason is that with the great attenuation of
200 250 300 350
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Figure 2 Waveform of the second type of voiced speech signals and average compression rate: (a) Waveform of the second type of
voiced speech signals. (b) Average compression rate with different values of uf and us.
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the amplitude, the quasi-periodicity of the second type
of voiced speech is undesirable.
Figure 7 illustrates the average reconstruction per-

formance of all the voiced speech signals in the testing
speech signals. It is obvious that the adaptive sparsifying
matrix can achieve better reconstruction performance
for voiced speech than the DCT basis with us ≤ 0.5.
However, it is obvious in Figure 7 that the reconstruc-
tion performance of voiced speech signals with respect
to the adaptive sparsifying matrix is slightly worse than
that of the DCT basis with us = 0.7. The reason is that
the approximate sparsity of the adaptive sparsifying
matrix is far better than that of the DCT basis but the
whole approximation accuracy of the adaptive sparsify-
ing matrix is slightly worse than that of the DCT basis.
Finally, we apply the adaptive sparsifying matrix to

the entire speech signals including voiced speech and
unvoiced speech and illustrate the reconstruction per-
formance in Figure 8. Compared with Figure 7, we
found out the performance in this case just degrades
slightly.

4 Sensing matrix for speech signals
4.1 Two-block diagonal matrix
A sufficient condition for successful reconstruction of a
sparse vector from undersampled measurements is that
the CS matrix satisfies RIP with a required constant. It
has been shown in some literatures that a dense
Gaussian random matrix whose entries are i.i.d. random
variables drawn according to normal distribution with
mean zero and variance 1

M [1, 2, 8 ] satisfies RIP with
high probability.
In this section, a sensing matrix is constructed accord-

ing to the characteristics of voiced speech signals. In
[25–29], a kind of structured random matrix called block
diagonal matrix is applied to achieve CS in wireless
communication and image processing. In [25,26], a lot
of identical blocks are used to construct a block diagonal
matrix as a sensing matrix for image processing with no
proof of its property to meet RIP. From a view of infor-
mation theory, [27] proposes the block diagonal matrix
for natural images also with no proof of its property to
meet RIP. In addition, [28,29] present RIP for block di-
agonal matrices.
However, in this work, a specific block diagonal matrix

with just two different blocks called two-block diagonal
(TBD) matrix is constructed for voiced speech signals
and a simple proof of its RIP is given although some
proofs of RIP for block diagonal matrices have been
given in [28,29].
As we know, the spectral energy of voiced speech sig-

nals is concentrated in low-frequency domain and
decays rapidly. Thus, the high-frequency coefficients of a
voiced speech signal in DCT domain are much sparser
than the low-frequency coefficients. In the following, the
definition of the TBD matrix is stated.



0 50 100 150 200 250 300 350
−0.3

−0.2

−0.1

0

0.1

Number of samples

A
m

pl
itu

de

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

Compression ratio of the first period u
f

A
ve

ra
ge

 c
om

pr
es

si
on

 r
at

e

(b)

u
s
=0.1

u
s
=0.3

u
s
=0.5

u
s
=0.7

Figure 3 Waveform of the third type of voiced speech signals and average compression rate: (a) Waveform of the third type of voiced
speech signals. (b) Average compression rate with different values of uf and us.
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Definition 2 (TBD matrix) A matrix Α ∈ RM ×N is defined
as the TBD matrix endowed with the following structure

Α ¼ Φ1 0
0 Φ2

� 	
ð34Þ

where Φ1 ∈ RM1�N1 is a Gaussian random matrix whose en-
tries are i.i.d. random variables drawn according to normal
distribution with mean zero and variance 1

M1
and

Φ2 ∈ RM2�N2 is also a Gaussian random matrix whose en-
tries are i.i.d. random variables drawn according to normal
distribution with mean zero and variance 1

M2
.

In line with this characteristic, a matrix Φ ¼
Φ1 0
0 Φ2

� 	
ΨT is constructed as a sensing matrix for

voiced speech signals, where ΨT is the transpose of an
orthonormal basis. In addition, it is required that

M1 ≥M2 ð35Þ

M1 þM2 ¼ M ð36Þ

and

N1 þ N2 ¼ N ð37Þ
And then we have

y ¼ Φx ¼ Φ1 0

0 Φ2

� 	
ΨTx ¼ Φ1 0

0 Φ2

� 	
θ ¼ Αθ

ð38Þ

where θ =ΨTx. We just need to prove that A satisfies
RIP.
Lemma 1 (Concentration inequality of TBD matrix)

Suppose that the matrix A is a TBD matrix defined in
definition 2. Then, the matrix obeys the concentration
inequality with the prescribed constant δ

P Αθk k2l2 � θk k2l2
�� �� ≥ δ θk k2l2
� �

≤ 2e�MC δð Þ ð39Þ

where C(δ) is a constant depending on δ.
The proof of Lemma 1 can be found in Appendix.

In order to prove that the TBD matrix satisfies RIP, a
theorem in literature [8] is first recalled.
Theorem 1 ([8]) Suppose that a CS matrix A satisfies

the concentration inequality. If

K ≤ c1M=log N=Kð Þ ð40Þ

the matrix A satisfies the K-order RIP with the pre-
scribed constant δ with probability ≥ 1� 2e�c2M , where
c1 and c2 are constants depending on δ.
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Therefore, in light of Lemma 1 and theorem 1, it suf-
fices to show that the TBD matrix A satisfies RIP. In
fact, the TBD matrix can also be employed as the CS
matrix when the sparsifying matrix is the adaptive spar-
sifying matrix in Section 3. The reason is that the coeffi-
cient vector β with respect to the adaptive sparsifying
matrix in Eq. (12) also exhibits similar concentration
characteristic to the DCT coefficients. However, it is in-
appropriate to employ the adaptive sparsifying matrix
and the TBD matrix simultaneously in CS system.
Firstly, the adaptive sparsifying matrix must be ortho-
normalized in this case, which undoubtedly increase the
computational complexity of the CS system. Secondly,
more parameters need to be adjusted. The last but not
the least, the TBD matrix cannot considerably improve
the reconstruction performance with respect to the
adaptive sparsifying matrix for the extremely compress-
ible coefficient vector β and limited approximation
accuracy. Thus, we employ the DCT basis as the
sparsifying matrix for speech signals in Section 4 and
Section 5.
4.2 Simulation
The testing speech signals used in the experiments of
this subsection are the same as in Section 3. The BP
algorithm is also employed in this subsection to achieve
reconstruction. At first, we define

ul ¼ M1

N
anduh ¼ M2

N
ð41Þ

and then we have

u ¼ ul þ uh andul ≥ uh ð42Þ

In this subsection, we firstly compare the reconstruction
performance between the TBD matrix and the dense
Gaussian random matrix with respect to the adaptive spar-
sifying matrix. Figure 9a and Figure 9b show the average
SNR of pitch periods and frames respectively for the TBD
matrix and the dense Gaussian random matrix in the case
of the adaptive sparsifying matrix. It is obvious in Figure 9
that the TBD matrix cannot bring about desirable improve-
ment on the reconstruction performance with respect to
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Figure 5 Average SNR of voiced speech signals whose waveforms are similar to that in Figure 2a. (a) Average reconstruction SNR of pitch
periods with different values of f u and s u. (b) Average reconstruction SNR of frames with different values of f u and s u.
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the adaptive sparsifying matrix. Therefore, we focus on the
reconstruction performance when TBD matrix is used as
the CS matrix with respect to the DCT basis.
Figure 10a shows the comparison of average SNR of

135 frames of voiced speech signals between the TBD
matrix and dense Gaussian random matrix when the
sparsifying matrix is the DCT basis. It is obvious that
the performance of the TBD matrix with the right values
of ul and uh is much better than that of the dense
Gaussian random matrix especially when the value of
overall compression rate u is relatively small.
Figure 10b demonstrates the comparison of average SNR

of the entire testing speech signals between the TBD matrix
and the dense Gaussian random matrix. Although the over-
all reconstruction performance degrades slightly, the TBD
matrix with right values of ul and uh still performs much
better than the dense Gaussian random matrix.
More importantly, as the TBD matrix can restrict the

impact of quantization noise on reconstruction of
speech signals, it can attain better reconstruction per-
formance than the dense Gaussian matrix when the
measurements are quantized, which is described in
details in the next section.
5 Quantization effect on speech signals with
compressed sensing
5.1 Quantization of speech signals in the framework of CS
In this paper, we apply CS to speech signals to achieve effi-
cient compression. However, we still need to quantify the
projections before transmission. At first, we should
analyze the distribution of the projections. When the sens-
ing matrix is the dense Gaussian random matrix, we have

y ¼ Φx ¼
XN

i¼1
x ið Þφi ð43Þ

where ¼ φ1 φ2 ⋯ φN½ � ¼
φ1;1 φ1;2 ⋯ φ1;N
φ2;1 φ2;2 ⋯ φ2;N
⋮ ⋮ ⋮ ⋮

φM;1 φM;2 ⋯ φM;N

2
664

3
775:

And then, we can obtain

y kð Þ ¼
XN

i¼1
x ið Þφk;i k ¼ 1; 2⋯Mð Þ ð44Þ

where φk,i is the i.i.d. Gaussian random variable with
mean zero and variance 1

M . Thus, y(k) is a random
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Figure 6 Average SNR of voiced speech signals whose waveforms are similar to that in Figure 3a. (a) Average reconstruction SNR of pitch
periods with different values of f u and s u. (b) Average reconstruction SNR of frames with different values of f u and s u.
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variable independently drawn by the normal distribution
with

E y kð Þð Þ ¼ 0 ð45Þ
D y kð Þð Þ ¼ 1

M

XN

i¼1
x kð Þð Þ2 ¼ 1

M
xk k2l2 ð46Þ

However, when the CS matrix is the TBD matrix, we
have

y ¼ Αθ ¼ Φ1 0
0 Φ2

� 	
θ1
θ2

� 	
ð47Þ

where Φ1 ¼ φ1
1 φ1

2 ⋯ φ1
N1


 �
and Φ2 ¼

φ2
1 φ2

2 ⋯ φ2
N2


 �
are both dense Gaussian random

matrices. Thus, we have

y kð Þ ¼
XN1

i¼1
φ1
k;iθ1 ið Þ k ¼ 1; 2⋯M1ð Þ ð48Þ

and

y kð Þ¼
XN2

i¼1
φ2
k;iθ2 ið Þ k¼M1 þ 1;M1 þ 2;⋯M1þM2ð Þ

ð49Þ
Then y(k) is also an independent Gaussian random
variable with

E y kð Þð Þ ¼ 0 k ¼ 1; 2⋯M1 þM2ð Þ ð50Þ

D y kð Þð Þ ¼ 1
M1

θ1k k2l2 k ¼ 1; 2⋯M1ð Þ ð51Þ

and

D y kð Þð Þ ¼ 1
M2

θ2k k2l2 k ¼ M1þ1;M2þ1;⋯M1þM2ð Þ
ð52Þ

We apply uniform scalar quantization to the projec-
tions. In [30], an analysis of the noise power generated
by the uniform scalar quantization when the input signal
meets the Gaussian distribution has been carried out
and a table for the optimal values of finite quantization
range for different quantization levels is provided, which
contributes to our following analysis on adaptive
quantization.
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Figure 7 Average SNR of all the voiced speech signals in the testing speech signals: (a) Average reconstruction SNR of pitch periods
with different values of uf and us. (b) Average reconstruction SNR of frames with different values of uf and us. ASM in the figure stands for
adaptive sparsifying matrix.
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Speech signals are a kind of time-variant signals and
it is possible for the energy of different segments to
show great changes. Furthermore, in an expectation
sense, the energy of measurement vector is equal to
that of the signal vector. Therefore, it is necessary to
implement adaptive quantization to the projections. In
the following, the effect of adaptive quantization on
reconstruction performance is discussed in the frame-
work of CS.
As we know, the noise of uniform scalar quantizer is

induced by quantization and saturation. Let Δ denote
the quantization interval, Q denote the number of
quantization intervals and σi denote the standard devi-
ation of the projection of the ith frame of voiced speech.
[−mσi,mσi] is the quantization range for the ith frame.
And when the quantization is adaptive, [−mσi + 1,mσi + 1]
is the quantization range for the (i + 1)th frame. Other-
wise, when the quantizer is fixed, in the convenience of
analysis, [−mσi,mσi] is used as the quantization range
for the (i + 1)th frame. In other words, the nonadaptive
quantization is used in the fixed quantizer. And ENa

denotes the noise power for the adaptive quantizer and
ENf denotes the noise power for the fixed quantizer.
Hence, for adaptive quantizer, we have

Δ ¼ 2mσ iþ1

Q
ð53Þ

and

ENa ¼ Δ2

12
1� 2

Z þ1

m

1ffiffiffiffiffiffi
2π

p e�
t2
2 dt

��

þ2 m2þ1
� 

σ2
iþ1

Z þ1

m

1ffiffiffiffiffiffi
2π

p e�
t2
2 dt�mσ2iþ1ffiffiffiffiffiffi

2π
p e�

m2
2

� �
ð54Þ

For a fixed quantizer, we have

Δ ¼ 2mσ i

Q
ð55Þ



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

Compression rate of the first period u
f

A
ve

ra
ge

 S
N

R

(a)
u
s
=0.1,DCT

u
s
=0.1,ASM

u
s
=0.3,DCT

u
s
=0.3,ASM

u
s
=0.5,DCT

u
s
=0.5,ASM

u
s
=0.7,DCT

u
s
=0.7,ASM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

Compression rate of the first period u
f

A
ve

ra
ge

 S
N

R

(b)
u
s
=0.1,DCT

u
s
=0.1,ASM

u
s
=0.3,DCT

u
s
=0.3,ASM

u
s
=0.5,DCT

u
s
=0.5,ASM

u
s
=0.7,DCT

u
s
=0.7,ASM

Figure 8 Average SNR of the entire speech signals: (a) Average reconstruction SNR of pitch periods with different values of uf and us.
(b) Average reconstruction SNR of frames with different values of uf and us. ASM in the figure stands for adaptive sparsifying matrix.
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and

ENf ¼ Δ2

12
1� 2

Z þ1

m
σi

σiþ1

1ffiffiffiffiffiffi
2π

p e�
t2
2 dt

 !

þ 2 σ2iþ1 1þm2σ2i
σ2iþ1

� �Z þ1

m
σi

σiþ1

1ffiffiffiffiffiffi
2π

p e�
t2
2 dt

 

�mσ iσ iþ1ffiffiffiffiffiffi
2π

p e
�m2σ2

i
2σ2

iþ1

!
ð56Þ

From Eq. (56), it is clear that the noise power of a
fixed quantizer depends not only on the variance of the
current frame but also depends on the ratio of the var-
iances of the successive two frames.
Theorem 2 ([16]): Suppose that θ is an approximately

sparse vector in RN. Assuming that the 2K-order
restricted isometry constant of the CS matrix satisfies

δ2K <
ffiffiffi
2

p
� 1 ð57Þ

the solution θ* to Eq. (8) obeys

θ� � θk kl2 ≤ C1εþ C2
θ � θKk kl1ffiffiffiffi

K
p ð58Þ

where C1 and C2 are constants depending on δ2K.
For an adaptive quantizer, the reconstruction SNR is
written as SNRa, and for a fixed quantizer, the recon-
struction SNR is written as SNRf. In the following, two
corollaries about the impact of the adaptive quantization
on reconstruction performance are derived in this paper.
In this paper, we focus on the effect of quantization
noise. Therefore, in the two corollaries below, we as-
sume that θ � θKk kl1 extends to zero.
Corollary 1: Suppose that x is a voiced speech signal

vector and the sparsifying matrix is an orthonormal basis
Ψ. Provided that the sensing matrix is the dense Gaussian
random matrix whose entries are i.i.d. Gaussian variables
with mean 0 and variance 1

M, there exist a constant Cq so
that the reconstruction SNR for an adaptive quantizer
with the value of quantization level Q to be 32 obeys

SNRa ≥ 24:792� 10log10C
2
1Cq ð59Þ

Assuming that σ i
σ iþ1

¼ 1:25, then the reconstruction SNR

for a fixed quantizer with the value of Q to be 32 obeys

SNRf ≥ 23:656� 10log10C
2
1Cq ð60Þ
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Figure 9 Comparsion of average SNR between the TBD matrix and the dense Gaussian matrix: (a) Average reconstruction SNR of pitch
periods of voiced speech signals with respect to the adaptive sparsifying matrix. (b) Average reconstruction SNR of frames of voiced
speech signals with respect to the adaptive sparsifying matrix.
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Assuming that σ i
σ iþ1

¼ 0:75, then the reconstruction SNR

for a fixed quantizer with the value of Q to be 32 obeys

SNRf ≥ 20:8067� 10log10C
2
1Cq ð61Þ

Corollary 2: Suppose that x is a voiced speech signal
vector and the sparsifying matrix is the DCT basis. Pro-
vided that the CS matrix is the TBD matrix and ul and
uh are defined as in Eq. (41), there exist a constant Cp so
that the reconstruction SNR for an adaptive quantizer
with the value of Q to be 32 obeys

SNRa ≥ 10log10
ul

C2
1Cp 3:317�10�3ul þ 2:738�10�3uhð Þ

ð62Þ

Assuming that σ i
σ iþ1

¼ 1:25, then the reconstruction SNR

for a fixed quantizer with the value of Q to be 32 obeys

SNRf ≥ 10log10
ul

C2
1Cp 4:39�10�3ul þ 4:2775�10�3uhð Þ

ð63Þ
Assuming that σ i
σ iþ1

¼ 0:75 , then the reconstruction

SNR for a fixed quantizer with value of Q to be 32 obeys

SNRf ≥ 10log10
ul

C2
1Cp 8:305�10�3ul þ 1:534�10�3uhð Þ

ð64Þ

5.2 Simulation
The testing speech signals used in experiments of this
subsection are also the same as that in Section 3. The
sparsifying matrix used in this section is the DCT basis.
And we employ the BPDN algorithm to achieve recon-
struction in this subsection. The measure of perform-
ance evaluation is also the average SNR.
At first, we analyze the performance of adaptive

quantization compared with the nonadaptive quantization
for both the TBD matrix and the dense Gaussian random
matrix in the framework of CS. We fixed the value of Q
to be 32. Figure 11a illustrates the quantization effect on
voiced speech signals of the testing speech signals. And
Figure 11b illustrates the quantization effect on the entire
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Figure 10 Comparison of average SNR between the TBD matrix and the dense Gaussian matrix: (a) Average reconstruction SNR of
voiced speech signals when the sparsifying matrix is the DCT basis. (b) Average reconstruction SNR of the entire speech signals when the
sparsifying matrix is the DCT basis.
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testing speech signals. It is obvious that the adaptive
quantization can greatly improve the reconstruction per-
formance compared with the nonadaptive quantization.
Moreover, we can find out from Figure 11 that the per-
formance of TBD matrix with uh = 0.05 is superior to the
dense Gaussian random matrix for both the adaptive
quantization and nonadaptive quantization. The reason is
that the TBD matrix is more robust to quantization noise
based on the fact the TBD matrix can effectively restrict
the impact of quantization on speech signals.
In the following, we focus on the adaptive quantization

effect on reconstruction of speech signals with different
quantization levels. Figure 12a, Figure 12b, Figure 13a
and Figure 13b show the average reconstruction SNR
of voiced speech signals with the quantization level Q
to be 8, 16, 32 and 64 respectively when the adaptive
quantization is applied to the projections in the case of
TBD matrices and the dense Gaussian matrix. On the
one hand, the reconstruction performance in the case
of adaptive quantization improves with the increase of
the quantization level. On the other hand, with right
values of ul and uh, TBD matrix performs much better
than the dense Gaussian random matrix confronted with
the quantization noise regardless of the quantization
level. In addition, Figure 14a, Figure 14b, Figure 15a and
Figure 15b show the average reconstruction SNR of
entire speech signals with the quantization level Q to
be 8, 16, 32 and 64 respectively. And the above findings
also hold for the entire speech signals including voiced
and unvoiced speech signals. Thus, we can conclude
that the adaptive quantization and the TBD matrix can
effectively mitigate the impact of quantization noise on
reconstruction in the framework of CS.

6 Conclusions
This paper demonstrates the potential of applying CS to
speech signals especially voiced speech signals. From the
viewpoint of long-term prediction, we analyze the spars-
ity of voiced speech signals and construct an adaptive
sparsifying matrix. Moreover, a CS matrix called TBD
matrix is constructed in terms of the spectral character-
istics of voiced speech signals. Finally, the distribution of
the projections is analyzed to carry out quantization.
And the reconstruction performance of the adaptive
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Figure 11 Average reconstruction SNR of adaptive quantization and nonadaptive quantization: (a) Average reconstruction SNR of
voiced speech signals with respect to the TBD matrix and dense Gaussian matrix in the case of adaptive quantization and
nonadaptive quantization. (b) Average reconstruction SNR of the entire testing speech signals with respect to the TBD matrix and dense
Gaussian matrix in the case of adaptive quantization and nonadaptive quantization.
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quantization and nonadaptive quantization is studied. In
addition, under the adaptive quantization, the recon-
struction qualities of TBD matrix and the dense Gauss-
ian matrix are empirically compared with different
quantization bits. Therefore, we find that the TBD
matrix and the adaptive quantization can effectively
mitigate the quantization effect on reconstruction of
speech signals in the framework of CS.

Appendix

Proof of Lemma 1 Let θ ¼ θ1
θ2

� 	
where θ1 and θ2 are

also column vectors. Then, we have

Αθ ¼ Φ1 0

0 Φ2

� 	
θ ¼ Φ1 0

0 Φ2

� 	
θ1

θ2

� 	
¼ Φ1θ1

Φ2θ2

� 	
ð65Þ

and

Αθk k2l2 ¼ Φ1θ1k k2l2 þ Φ2θ2k k2l2 ð66Þ
As Φ1 is an M1 ×N1 Gaussian matrix whose entries
are i.i.d. random variables drawn according to normal
distribution with mean zero and variance 1

M1
and Φ2 is

an M2 ×N2 Gaussian matrix whose entries are i.i.d. random
variables drawn according to normal distribution with
mean zero and variance 1

M2
, we establish

E Φ1θ1k k2l2
� �

¼ θ1k k2l2 ð67Þ
and

E Φ2θ2k k2l2
� �

¼ θ2k k2l2 ð68Þ

Hence, we have

E Αθk k2l2
� �

¼ θ1k k2l2 þ θ2k k2l2 ¼ θk k2l2 ð69Þ

Moreover, it is proved in [31] and [32] that

P Φ1θ1k k2l2 � θ1k k2l2
�� �� ≥ δ θ1k k2l2
� �

≤ 2e�
M1δ

2

8 ð70Þ
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Figure 12 Average SNR of adaptive quantization of voiced speech signals with different quantization levels: (a) Q=8. (b) Q=16.
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and

P Φ2θ2k k2l2 � θ2k k2l2
�� �� ≥ δ θ2k k2l2
� �

≤ 2e�
M2δ

2

8 ð71Þ

Therefore, we have

P �δ θ1k k2l2 ≤ Φ1θ1k k2l2 � θ1k k2l2 ≤ δ θ1k k2l2
� �

≥ 1�2e�
M1δ

2

8

ð72Þ

and

P �δ θ2k k2l2 ≤ Φ2θ2k k2l2 � θ2k k2l2 ≤ δ θ2k k2l2
� �

≥1�2e�
M2δ

2

8

ð73Þ
Then, it suffice to show that

P Φ1θ1k k2l2 � θ1k k2l2
�� �� ≤ δ θ1k k2l2
n o�

\ Φ2θ2k k2l2� θ2k k2l2
�� �� ≤ δ θ2k k2l2
n o�

≥1�2e�
M1δ

2

8 �2e�
M2δ

2

8

ð74Þ
We can use the union bound to show that

P Αθk k2l2 � θk k2l2
�� �� ≥ δ θk k2l2
� �

≤ P Φ1θ1k k2l2 � θ1k k2l2
�� ��n�

≥ δ θ1k k2l2
o
[ Φ2θ2k k2l2 � θ2k k2l2
�� �� ≥ δ θ2k k2l2
n o�

≤ P Φ1θ1k k2l2 � θ1k k2l2
�� �� ≥ δ θ1k k2l2
� �

þP Φ2θ2k k2l2� θ2k k2l2
�� �� ≥ δ θ2k k2l2
� �

≤2e�
M1δ

2

8 þ2e�
M2δ

2

8

ð75Þ

There is certainly a constant C(δ) > 0 for δ ∈ (0, 1) so
that

e�
M1δ

2

8 þ e�
M2δ

2

8 ¼ e�MC δð Þ ð76Þ

which yields that

C δð Þ ¼ �
log e�

M1δ
2

8 þ e�
M2δ

2

8

� �
M

ð77Þ
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Figure 13 Average SNR of adaptive quantization of voiced speech signals with different quantization levels: (a) Q=32. (b) Q=64.
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Thus, we can conclude that

P Αθk k2l2 � θk k2l2
�� �� ≥ δ θk k2l2
� �

≤ 2e�MC δð Þ ð78Þ

Proof of Corollary 1 The class X of interest is a finite
set of objects x which are voiced segments. Denote then

X¼ xk : xk is the kth frame of voiced speech signals
� �

:

ð79Þ
When the sensing matrix is the dense Gaussian ran-

dom matrix, the projection vector of the (i + 1)th frame
of voiced speech signal xi + 1 is denoted by yi + 1 and then

yiþ1 ¼ Φxiþ1: ð80Þ

In terms of Eq. (45) and Eq. (46), the entries of yi + 1

are i.i.d. Gaussian random variables with mean 0 and

variance 1
M xiþ1k k2l2 . And the quantization vector of yi + 1

is denoted by

ŷiþ1 ¼ yiþ1 þ eiþ1 ¼ Φxiþ1 þ eiþ1 ð81Þ
where eiþ1 ¼ eiþ1 1ð Þ eiþ1 2ð Þ ⋯ eiþ1 Mð Þ½ �T is the
quantization error vector of the (i + 1)th frame. The
quantization error vectors for all the voiced segments in X
can be represented by a matrix ―e ¼ e1 e2 ⋯ e Xj j


 �
where |X| denotes the cardinality of the set X. When
Q = 32, according to the results in [30], m = 2.9. Then
for an adaptive quantizaer, in light with Eq. (54), we have,

E eiþ1 kð Þð Þ2�  ¼ 3:317� 10�3σ2
iþ1 k ¼ 1; 2⋯Mð Þ

ð82Þ

and

E eiþ1k k2l2
� �

¼ ME eiþ1 kð Þð Þ2�  ¼ 3:317� 10�3Mσ2iþ1:

ð83Þ

We can find a subset in X denoted by V that can be
represented as

V ¼ k : xkk k2l2 ¼ xiþ1k k2l2 ; xk ∈ X
n o

: ð84Þ
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Figure 14 Average SNR of adaptive quantization of entire speech signals with different quantization levels: (a) Q=8. (b) Q=16.
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Let ε > 0 and we have

ε2 ¼ sup
j ∈ V

ej
�� ��2

l2
: ð85Þ

There exist a constant Ca such that

ε2 ¼ CaE eiþ1k k2l2
� �

ð86Þ

As eiþ1k k2l2 ≤ ε2, we have

eiþ1k k2l2 ≤ CaE eiþ1k k2l2
� �

ð87Þ

In this paper, we are just concerned with the impact of
quantization on reconstruction. Therefore, we assume
that θ � θKk kl1 extends to zero. While the voiced speech
signal is compressible with respect to an orthonormal
basis, we have

xiþ1 � x�iþ1

�� ��2
l2
¼ Ψ θiþ1 � θ�iþ1

� �� ��2
l2

¼ θiþ1 � θ�iþ1

�� ��2
l2
≤ 3:317� 10�3C2

1CaMσ2iþ1 ð88Þ
where xi + 1* =Ψθi + 1* and θi + 1* is the solution to

min θiþ1k kl1 s:t ŷiþ1 �ΦΨθiþ1

��� ���
l2
≤ ε: ð89Þ

Therefore,

SNRa ≥ 10log10
Mσ2iþ1

3:317� 10�3C2
1CaMσ2iþ1

� �

¼ 24:792� 10log10 C2
1Ca

� 
: ð90Þ

However, for a fixed quantizer, when σ i
σ iþ1

¼ 1:25,

according to Eq. (56), we establish

E eiþ1 kð Þð Þ2�  ¼ 4:309� 10�3σ2iþ1: ð91Þ
Then, we have

E eiþ1k k2l2
� �

¼ ME eiþ1 kð Þð Þ2�  ¼ 4:309� 10�3Mσ2
iþ1:

ð92Þ
Let ε1 > 0 and we have

ε21 ¼ sup
j ∈ V

ej
�� ��2

l2
: ð93Þ
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There exist a constant Cf1 so that

ε21 ¼ Cf1E eiþ1k k2l2
� �

¼ 4:309� 10�3Cf1Mσ2
iþ1 ð94Þ

Then we have

SNRf ≥ 10log10
Mσ2

iþ1

4:309� 10�3C2
1Cf1Mσ2iþ1

� �
¼ 23:656� 10log10 C2

1Cf1

�  ð95Þ

Similarly, when σ i
σ iþ1

¼ 0:75, we have

E eiþ1 kð Þð Þ2�  ¼ 8:305� 10�3σ2iþ1 ð96Þ

Thus, we can establish that

SNRf ≥ 10log10
Mσ2

iþ1

8:305� 10�3C2
1Cf2Mσ2iþ1

� �
¼ 20:8067� 10log10 C2

1Cf2

�  ð97Þ
Let Cq ¼ max Ca;Cf1 ;Cf2

� 
and then we obtain

SNRa ≥ 24:792� 10log10C
2
1Cq:

When σ i
σ iþ1

¼ 1:25, we have

SNRf ≥ 23:656� 10log10C
2
1Cq:

When σ i
σ iþ1

¼ 0:75, we have

SNRf ≥ 20:8067� 10log10C
2
1Cq:

Proof of Corollary 2 When the CS matrix is the TBD
matrix, then we have

yiþ1¼Αθiþ1 ¼
Φ1 0

0 Φ2

� 	
θiþ1¼

Φ1 0

0 Φ2

� 	
θiþ1;1

θiþ1;2

� 	

where θi + 1 is the coefficient vector of xi + 1 with respect
to DCT. In terms of Eqs. (50), (51), (52), denote then

σ2iþ1;1 ¼
1
M1

θiþ1;1

�� ��2
l2

ð98Þ
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and

σ2iþ1;2 ¼
1
M2

θiþ1;2

�� ��2
l2
: ð99Þ

Moreover, according to the characteristic of the voiced
segments, σi + 1,1≫ σi + 1,2. As an adaptive quantizer,
[−mσi + 1,1,mσi + 1,1] is used as the quantization range of

the (i + 1)th projection vector yi + 1 and Δ ¼ 2mσ iþ1;1

Q . In

light with Eq. (54), for an adaptive quantizer, we have

E eiþ1 kð Þð Þ2�  ¼ 3:317
� 10�3σ2iþ1;1 k ¼ 1; 2⋯M1ð Þ ð100Þ

And in terms of Eq. (56), we have

E eiþ1 kð Þð Þ2� 
≈
Δ2

12
¼ 2:738

�10�3σ2iþ1;1 ðk ¼ M1 þ 1;M1

þ2;⋯M1 þM2Þ ð101Þ
and

E eiþ1k k2l2
� �

¼ M1E eiþ1 M1ð Þð Þ2� 
þM2E eiþ1 M1 þM2ð Þð Þ2� 

¼ 3:317� 10�3M1σ
2
iþ1;1

þ 2:738� 10�3M2σ
2
iþ1;1 ð102Þ

We can find a subset in X denoted by V that can be
represented as

V ¼ k : θk;1
�� ��2

l2
¼ θiþ1;1

�� ��2
l2
; θk;2
�� ��2

l2
¼ θiþ1;2

�� ��2
l2
;

n
θk is the DCT coefficients vector of xk ; xk ∈ X

o
ð103Þ

We define that ε2 ¼ sup
j ∈ V

ej
�� ��2

l2
: There exist a constant

Cb such that

ε2 ¼ CbE eiþ1k k2l2
� �

ð104Þ

Therefore, we establish

eiþ1k k2l2 ≤ CbE eiþ1k k2l2
� �

ð105Þ

As stated in corollary 1, we extend θ � θKk kl1 to zero.

Thus, we establish xiþ1�x�iþ1

�� ��2
l2
¼ Ψ θiþ1 � θ�iþ1

� �� ��2
l2
¼

θiþ1 � θ�iþ1

�� ��2
l2
≤ C2

1Cb 3:317� 10�3 M1 σ2iþ1;1 þ 2:738
�

� 10�3M2σ2iþ1;1Þ where θi + 1
* is the solution to

min θiþ1k kl1 s:t: ŷiþ1 � Αθiþ1

�� ��
l2
≤ ε ð106Þ
and then we have

x�iþ1 ¼ Ψθ�iþ1: ð107Þ

Then, we have

SNRa ≥ 10log10
M1σ2iþ1;1 þM2σ2iþ1;2

C2
1Cb 3:317�10�3M1σ2iþ1;1þ2:738� 10�3M2σ2iþ1;1

� �
≥ 10log10

M1σ2iþ1;1

C2
1Cb 3:317�10�3M1σ2iþ1;1þ2:738�10�3M2σ2iþ1;1
� �

¼ 10log10
ul

C2
1Cb 3:317� 10�3ul þ 2:738� 10�3uhð Þ

ð108Þ
Moreover, for a fixed quantizer, when σ i;1

σ iþ1;1
¼ 0:75, we

can prove in the same way that there exist a constant Cf3

so that

SNRf ≥ 10log10
ul

C2
1Cf3 8:305�10�3ul þ 1:534�10�3uhð Þ :

ð109Þ
And when σ i;1

σ iþ1;1
¼ 1:25, we can prove in the same way

that there exist a constant Cf4 so that

SNRf ≥ 10log10
ul

C2
1Cf4 4:39�10�3ulþ 4:2775� 10�3uhð Þ

ð110Þ
Let Cp ¼ max Cb;Cf3 ;Cf4

� 
, and then we can conclude

that

SNRa ≥ 10log10
ul

C2
1Cp 3:317�10�3ulþ 2:738�10�3uhð Þ :

When σ i;1
σ iþ1;1

¼ 0:75, we have

SNRf ≥ 10log10
ul

C2
1Cp 8:305�10�3ulþ1:534� 10�3uhð Þ :

When σ i;1
σ iþ1;1

¼ 1:25, we have

SNRf ≥ 10log10
ul

C2
1Cp 4:39�10�3ul þ 4:2775�10�3uhð Þ :
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